Sample records for alter immune function

  1. Effects of the space flight environment on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.

    2003-01-01

    Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.

  2. In immune defense: redefining the role of the immune system in chronic disease.

    PubMed

    Rubinow, Katya B; Rubinow, David R

    2017-03-01

    The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.

  3. Short Term, Low Dose Simvastatin Pretreatment Alters Memory Immune Function Following Secondary Staphylococcus aureus Infection.

    PubMed

    Smelser, Lisa K; Walker, Callum; Burns, Erin M; Curry, Michael; Black, Nathanael; Metzler, Jennifer A; McDowell, Susan A; Bruns, Heather A

    Statins are potent modulators of immune responses, resulting in their ability to enhance host survival from primary bacterial infections. Alterations in primary immune responses that may be beneficial for survival following infection may also result in alterations in the generation of the immunologic memory response and subsequently affect immune responses mounted during secondary bacterial infection. In this study, we report that levels of total serum IgG2c, following primary infection, were decreased in simvastatin pretreated mice, and investigate the effect of simvastatin treatment, prior to primary infection, on immune responses activated during secondary S. aureus infection. A secondary infection model was implemented whereby simvastatin pretreated and control mice were reinfected with S. aureus 14 days after primary infection, with no additional simvastatin treatment, and assessed for survival and alterations in immune function. While survivability to secondary S. aureus infection was not different between simvastatin pretreated and control mice, memory B and T lymphocyte functions were altered. Memory B cells, isolated 14 days after secondary infection, from simvastatin pretreated mice and stimulated ex vivo produced increased levels of IgG1 compared to memory B cells isolated from control mice, while levels of IgM and IgG2c remained similar. Furthermore, memory B and T lymphocytes from simvastatin pretreated mice exhibited a decreased proliferative response when stimulated ex vivo compared to memory cells isolated from control mice. These findings demonstrate the ability of a short term, low dose simvastatin treatment to modulate memory immune function.

  4. Immune System Activation and Depression: Roles of Serotonin in the Central Nervous System and Periphery.

    PubMed

    Robson, Matthew J; Quinlan, Meagan A; Blakely, Randy D

    2017-05-17

    Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.

  5. Opioids and the immune system: what is their mechanism of action?

    PubMed

    Eisenstein, Toby K

    2011-12-01

    There is a significant amount of literature showing that morphine and other opioids modulate immune responses. The findings support many mechanisms by which this may occur. In vitro experiments provide evidence for direct actions of opioids on immune cells using a variety of functional end points. When these drugs are given in vivo, a plethora of immune parameters are also altered. The paper in this issue of the journal by Zhang et al. provides new information on morphine alteration of immune cell subsets in the spleen and thymus of mice and the potential role of glucocorticoids in these observed phenomena. This Commentary reviews the in vitro activities of morphine on leucocytes, as well as other documented mechanisms by which morphine can alter immune function in vivo. © 2011 The Author. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  6. Microglia, the missing link in maternal immune activation and fetal neurodevelopment; and a possible link in preeclampsia and disturbed neurodevelopment?

    PubMed

    Prins, Jelmer R; Eskandar, Sharon; Eggen, Bart J L; Scherjon, Sicco A

    2018-04-01

    Disturbances in fetal neurodevelopment have extensively been related to neurodevelopmental disorders in early and later life. Fetal neurodevelopment is dependent on adequate functioning of the fetal immune system. During pregnancy, the maternal immune system is challenged to both tolerate the semi-allogenic fetus and to protect the mother and fetus from microbes. The fetal immune system is influenced by maternal immune disturbances; therefore, perturbations in maternal immunity likely do not only alter pregnancy outcome but also alter fetal neurodevelopment. A possible common pathway could be modulating the functioning of tissue macrophages in the placenta and brain. Maternal immune tolerance towards the fetus involves several complex adaptations. In this active maternal immune state, the fetus develops its own immunity. As cytokines and other players of the immune system -which can pass the placenta- are involved in neurodevelopment, disruptions in immune balance influence fetal neurodevelopment. Several studies reported an association between maternal immune activation, complications of pregnancy as preeclampsia, and altered neonatal neurodevelopment. A possible pathway involves dysfunctioning of microglia cells, the immune cells of the brain. Functionality of microglia cells during normal pregnancy is, however, poorly understood. The recent outbreak of ZIKA virus (ZKV), but also the literature on virus infections in general and its consequences on microglial cell function and fetal neurodevelopment show the devastating effects a virus infection during pregnancy can have. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Ageing alters the impact of nutrition on immune function.

    PubMed

    Yaqoob, Parveen

    2017-08-01

    Immunosenescence during ageing is a major challenge which weakens the ability of older individuals to respond to infection or vaccination. There has been much interest in dietary strategies to improve immunity in older people, but there is an assumption that modulation of the immune response in older people will be based on the same principles as for younger adults. Recent evidence suggests that ageing fundamentally alters the impact of nutrition on immune function. As a result, interpretation of data from studies investigating the impact of diet on immune function is highly dependent on subject age. Study design is critically important when investigating the efficacy of dietary components, and most studies involving older people include rigorous inclusion/exclusion criteria based on medical history, laboratory tests, general health status and often nutritional status. However, immunological status is rarely accounted for, but can vary significantly, even amongst healthy older people. There are several clear examples of age-related changes in immune cell composition, phenotype and/or function, which can directly alter the outcome of an intervention. This review uses two case studies to illustrate how the effects of n-3 PUFA and probiotics differ markedly in young v. older subjects. Evidence from both suggests that baseline differences in immunosenescence influence the outcome of an intervention, highlighting the need for detailed immunological characterisation of subjects prior to interventions. Finally, future work elucidating alterations in metabolic regulation within cells of the immune system as a result of ageing may be important in understanding the impact of diet on immune function in older people.

  8. Perinatal stress and early life programming of lung structure and function

    PubMed Central

    Wright, Rosalind J.

    2010-01-01

    Exposure to environmental toxins during critical periods of prenatal and/or postnatal development may alter the normal course of lung morphogenesis and maturation, potentially resulting in changes that affect both structure and function of the respiratory system. Moreover, these early effects may persist into adult life magnifying the potential public health impact. Aberrant or excessive pro-inflammatory immune responses, occurring both locally and systemically, that result in inflammatory damage to the airway are a central determinant of lung structure-function changes throughout life. Disruption of neuroendocrine function in early development, specifically the hypothalamic-pituitary-adrenal (HPA) axis, may alter functional status of the immune system. Autonomic nervous system (ANS) function (sympathovagal imbalance) is another integral component of airway function and immunity in childhood. This overview discusses the evidence linking psychological factors to alterations in these interrelated physiological processes that may, in turn, influence childhood lung function and identifies gaps in our understanding. PMID:20080145

  9. The role of immune dysfunction in the pathophysiology of autism

    PubMed Central

    Onore, Charity; Careaga, Milo; Ashwood, Paul

    2012-01-01

    Autism spectrum disorders (ASD) are a complex group of neurodevelopmental disorders encompassing impairments in communication, social interactions and restricted stereotypical behaviors. Although a link between altered immune responses and ASD was first recognized nearly 40 years ago, only recently has new evidence started to shed light on the complex multifaceted relationship between immune dysfunction and behavior in ASD. Neurobiological research in ASD has highlighted pathways involved in neural development, synapse plasticity, structural brain abnormalities, cognition and behavior. At the same time, several lines of evidence point to altered immune dysfunction in ASD that directly impacts some or all these neurological processes. Extensive alterations in immune function have now been described in both children and adults with ASD, including ongoing inflammation in brain specimens, elevated pro-inflammatory cytokine profiles in the CSF and blood, increased presence of brain-specific auto-antibodies and altered immune cell function. Furthermore, these dysfunctional immune responses are associated with increased impairments in behaviors characteristic of core features of ASD, in particular, deficits in social interactions and communication. This accumulating evidence suggests that immune processes play a key role in the pathophysiology of ASD. This review will discuss the current state of our knowledge of immune dysfunction in ASD, how these findings may impact on underlying neuro-immune mechanisms and implicate potential areas where the manipulation of the immune response could have an impact on behavior and immunity in ASD. PMID:21906670

  10. Changes in Nutritional Status Impact Immune Cell Metabolism and Function.

    PubMed

    Alwarawrah, Yazan; Kiernan, Kaitlin; MacIver, Nancie J

    2018-01-01

    Immune cell function and metabolism are closely linked. Many studies have now clearly demonstrated that alterations in cellular metabolism influence immune cell function and that, conversely, immune cell function determines the cellular metabolic state. Less well understood, however, are the effects of systemic metabolism or whole organism nutritional status on immune cell function and metabolism. Several studies have demonstrated that undernutrition is associated with immunosuppression, which leads to both increased susceptibility to infection and protection against several types of autoimmune disease, whereas overnutrition is associated with low-grade, chronic inflammation that increases the risk of metabolic and cardiovascular disease, promotes autoreactivity, and disrupts protective immunity. Here, we review the effects of nutritional status on immunity and highlight the effects of nutrition on circulating cytokines and immune cell populations in both human studies and mouse models. As T cells are critical members of the immune system, which direct overall immune response, we will focus this review on the influence of systemic nutritional status on T cell metabolism and function. Several cytokines and hormones have been identified which mediate the effects of nutrition on T cell metabolism and function through the expression and action of key regulatory signaling proteins. Understanding how T cells are sensitive to both inadequate and overabundant nutrients may enhance our ability to target immune cell metabolism and alter immunity in both malnutrition and obesity.

  11. PERINATAL EXPOSURE TO THE PESTICIDE HEPTACHLOR PRODUCES ALTERATIONS IN IMMUNE FUNCTION PARAMETERS IN SPRAGUE DAWLEY RATS

    EPA Science Inventory

    PERINATAL EXPOSURE TO THE PESTICIDE HEPTACHLOR PRODUCES ALTERATIONS IN IMMUNE FUNCTION PARAMETERS IN SPRAGUE DAWLEY RATS. R A Matulka1, AA Rooney3, W Williams2, CB Copeland2, and R J Smialowicz2. 1Curriculum in Toxicology, UNC, Chapel Hill, NC, USA; 2US EPA, ITB, ETD, NHEERL, RT...

  12. Disruption of Serinc1, which facilitates serine-derived lipid synthesis, fails to alter macrophage function, lymphocyte proliferation or autoimmune disease susceptibility.

    PubMed

    Chu, Edward P F; Elso, Colleen M; Pollock, Abigail H; Alsayb, May A; Mackin, Leanne; Thomas, Helen E; Kay, Thomas W H; Silveira, Pablo A; Mansell, Ashley S; Gaus, Katharina; Brodnicki, Thomas C

    2017-02-01

    During immune cell activation, serine-derived lipids such as phosphatidylserine and sphingolipids contribute to the formation of protein signaling complexes within the plasma membrane. Altering lipid composition in the cell membrane can subsequently affect immune cell function and the development of autoimmune disease. Serine incorporator 1 (SERINC1) is a putative carrier protein that facilitates synthesis of serine-derived lipids. To determine if SERINC1 has a role in immune cell function and the development of autoimmunity, we characterized a mouse strain in which a retroviral insertion abolishes expression of the Serinc1 transcript. Expression analyses indicated that the Serinc1 transcript is readily detectable and expressed at relatively high levels in wildtype macrophages and lymphocytes. The ablation of Serinc1 expression in these immune cells, however, did not significantly alter serine-derived lipid composition or affect macrophage function and lymphocyte proliferation. Analyses of Serinc1-deficient mice also indicated that systemic ablation of Serinc1 expression did not affect viability, fertility or autoimmune disease susceptibility. These results suggest that Serinc1 is dispensable for certain immune cell functions and does not contribute to previously reported links between lipid composition in immune cells and autoimmunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Alterations in adaptive immunity persist during long-duration spaceflight.

    PubMed

    Crucian, Brian; Stowe, Raymond P; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2015-01-01

    It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8 + T-cell maturation. A reduction in general T-cell function (both CD4 + and CD8 + ) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4 + T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions.

  14. Alterations in adaptive immunity persist during long-duration spaceflight

    PubMed Central

    Crucian, Brian; Stowe, Raymond P; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2015-01-01

    Background: It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). AIMS: To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Methods: Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Results: Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8+ T-cell maturation. A reduction in general T-cell function (both CD4+ and CD8+) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4+ T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. Conclusions: The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions. PMID:28725716

  15. Spaceflight and immune responses of Rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1994-01-01

    Evidence from both human and rodent studies indicates that alterations in immunological parameters occur after space flight. The objective of this project is to determine the effects of space flight on immune responses of Rhesus monkeys. The expected significance of the work is a determination of the range of immunological functions of the Rhesus monkey, a primate similar in many ways to man, affected by space flight. Changes in immune responses that could yield alterations in resistance to infection may be determined as well as the duration of alterations in immune responses. Additional information on the nature of cellular interactions for the generation of immune responses may also be obtained.

  16. Effects of Simulated Microgravity on Functions of Neutrophil-like HL-60 Cells

    NASA Astrophysics Data System (ADS)

    Wang, Chengzhi; Li, Ning; Zhang, Chen; Sun, Shujin; Gao, Yuxin; Long, Mian

    2015-11-01

    Altered gravity, especially microgravity affects cellular functions of immune cells and can result in immune dysfunction for long-term, manned spaceflight and space exploration. The underlying mechanism, however, of sensing and responding to the gravity alteration is poorly understood. Here, a rotary cell culture system (RCCS) bioreactor was used to elucidate the effects of simulated microgravity on polymorphonuclear neutrophils (PMN)-like HL-60 cells. Alteration of cell morphology, up-regulation of (nitric oxide) NO production, enhancement of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein 1 (MCP-1) secretion, and diversity of cellular adhesion molecule expression were observed for the cells cultured in RCCS, leading to the up-regulated inflammatory immune responses and host defense. It was also indicated that such alterations in biological responses of PMNs mediated the reduced rolling velocity and decreased adhesion of PMN-like HL-60 cells on endothelial cells under shear flow. This work furthers the understandings in the effects and mechanism of microgravity on PMN functions, which are potentially helpful for optimizing the countermeasures to immune suppression in the future long-term, manned spaceflight.

  17. Immune cell phenotype and function in sepsis

    PubMed Central

    Rimmelé, Thomas; Payen, Didier; Cantaluppi, Vincenzo; Marshall, John; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A.

    2015-01-01

    Cells of the innate and adaptive immune systems play a critical role in the host response to sepsis. Moreover, their accessibility for sampling and their capacity to respond dynamically to an acute threat increases the possibility that leukocytes might serve as a measure of a systemic state of altered responsiveness in sepsis. The working group of the 14th Acute Dialysis Quality Initiative (ADQI) conference sought to obtain consensus on the characteristic functional and phenotypic changes in cells of the innate and adaptive immune system in the setting of sepsis. Techniques for the study of circulating leukocytes were also reviewed and the impact on cellular phenotypes and leukocyte function of non extracorporeal treatments and extracorporeal blood purification therapies proposed for sepsis was analyzed. A large number of alterations in the expression of distinct neutrophil and monocyte surface markers have been reported in septic patients. The most consistent alteration seen in septic neutrophils is their activation of a survival program that resists apoptotic death. Reduced expression of HLA-DR is a characteristic finding on septic monocytes but monocyte antimicrobial function does not appear to be significantly altered in sepsis. Regarding adaptive immunity, sepsis-induced apoptosis leads to lymphopenia in patients with septic shock and it involves all types of T cells (CD4, CD8 and Natural Killer) except T regulatory cells, thus favoring immunosuppression. Finally, numerous promising therapies targeting the host immune response to sepsis are under investigation. These potential treatments can have an effect on the number of immune cells, the proportion of cell subtypes and the cell function. PMID:26529661

  18. IMMUNE CELL PHENOTYPE AND FUNCTION IN SEPSIS.

    PubMed

    Rimmelé, Thomas; Payen, Didier; Cantaluppi, Vincenzo; Marshall, John; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A

    2016-03-01

    Cells of the innate and adaptive immune systems play a critical role in the host response to sepsis. Moreover, their accessibility for sampling and their capacity to respond dynamically to an acute threat increases the possibility that leukocytes might serve as a measure of a systemic state of altered responsiveness in sepsis.The working group of the 14th Acute Dialysis Quality Initiative (ADQI) conference sought to obtain consensus on the characteristic functional and phenotypic changes in cells of the innate and adaptive immune system in the setting of sepsis. Techniques for the study of circulating leukocytes were also reviewed and the impact on cellular phenotypes and leukocyte function of nonextracorporeal treatments and extracorporeal blood purification therapies proposed for sepsis was analyzed.A large number of alterations in the expression of distinct neutrophil and monocyte surface markers have been reported in septic patients. The most consistent alteration seen in septic neutrophils is their activation of a survival program that resists apoptotic death. Reduced expression of HLA-DR is a characteristic finding on septic monocytes, but monocyte antimicrobial function does not appear to be significantly altered in sepsis. Regarding adaptive immunity, sepsis-induced apoptosis leads to lymphopenia in patients with septic shock and it involves all types of T cells (CD4, CD8, and Natural Killer) except T regulatory cells, thus favoring immunosuppression. Finally, numerous promising therapies targeting the host immune response to sepsis are under investigation. These potential treatments can have an effect on the number of immune cells, the proportion of cell subtypes, and the cell function.

  19. Opioids and the immune system: what is their mechanism of action?

    PubMed Central

    Eisenstein, Toby K

    2011-01-01

    There is a significant amount of literature showing that morphine and other opioids modulate immune responses. The findings support many mechanisms by which this may occur. In vitro experiments provide evidence for direct actions of opioids on immune cells using a variety of functional end points. When these drugs are given in vivo, a plethora of immune parameters are also altered. The paper in this issue of the journal by Zhang et al. provides new information on morphine alteration of immune cell subsets in the spleen and thymus of mice and the potential role of glucocorticoids in these observed phenomena. This Commentary reviews the in vitro activities of morphine on leucocytes, as well as other documented mechanisms by which morphine can alter immune function in vivo. LINKED ARTICLE This article is a commentary on Zhang et al., pp. 1829–1844 of this issue. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2011.01475.x PMID:21627636

  20. Deciphering the role of interleukin-22 in metabolic alterations.

    PubMed

    Sabat, Robert; Wolk, Kerstin

    2015-01-01

    Inflammatory processes and metabolic alterations are supposed to substantially interact. Recently, cumulating reports describe a profound role of interleukin(IL)-22 in this relationship. IL-22 is a particular kind of immune mediator that is produced by certain lymphocyte populations and regulates the function of several tissue cells but not immune cells. So far, IL-22 was known to plays a fundamental role in the elimination of bacterial infections at border surfaces of the body and to protect tissues from damage. This research highlight article arranges the facts regarding the effects of IL-22 in the context of adiposity and metabolic alterations and postulates a new function of the immune system.

  1. Neuroimmunology of disordered sleep in depression and alcoholism.

    PubMed

    Irwin, M

    2001-11-01

    The specific functions of sleep are not known, although sleep is commonly considered a restorative process that is important for the proper functioning of the immune system. Severity of disordered sleep in depressed and alcoholic subjects correlates with declines in natural and cellular immunity and is associated with alterations in the complex cytokine network. Despite evidence that sleep and sleep loss have effects on immune processes and nocturnal secretion of cytokines, the physiological significance of these immune changes is not known. Moreover, in view of basic evidence of a reciprocal interaction between sleep and cytokines, further research is needed to understand whether alterations in cytokines contribute to disordered sleep.

  2. Evidence Report: Risk of Crew Adverse Health Event Due to Altered Immune Response

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Sams, Clarence F.

    2013-01-01

    The Risk of Crew Adverse Health Event Due to Altered Immune Response is identified by the National Aeronautics and Space Administration (NASA) Human Research Program (HRP) as a recognized risk to human health and performance in space. The HRP Program Requirements Document (PRD) defines these risks. This Evidence Report provides a summary of the evidence that has been used to identify and characterize this risk. It is known that human immune function is altered in- and post-flight, but it is unclear at present if such alterations lead to increased susceptibility to disease. Reactivation of latent viruses has been documented in crewmembers, although this reactivation has not been directly correlated with immune changes or with observed diseases. As described in this report, further research is required to better characterize the relationships between altered immune response and susceptibility to disease during and after spaceflight. This is particularly important for future deep-space exploration missions.

  3. Abnormal Epigenetic Regulation of Immune System during Aging.

    PubMed

    Jasiulionis, Miriam G

    2018-01-01

    Epigenetics refers to the study of mechanisms controlling the chromatin structure, which has fundamental role in the regulation of gene expression and genome stability. Epigenetic marks, such as DNA methylation and histone modifications, are established during embryonic development and epigenetic profiles are stably inherited during mitosis, ensuring cell differentiation and fate. Under the effect of intrinsic and extrinsic factors, such as metabolic profile, hormones, nutrition, drugs, smoke, and stress, epigenetic marks are actively modulated. In this sense, the lifestyle may affect significantly the epigenome, and as a result, the gene expression profile and cell function. Epigenetic alterations are a hallmark of aging and diseases, such as cancer. Among biological systems compromised with aging is the decline of immune response. Different regulators of immune response have their promoters and enhancers susceptible to the modulation by epigenetic marks, which is fundamental to the differentiation and function of immune cells. Consistent evidence has showed the regulation of innate immune cells, and T and B lymphocytes by epigenetic mechanisms. Therefore, age-dependent alterations in epigenetic marks may result in the decline of immune function and this might contribute to the increased incidence of diseases in old people. In order to maintain health, we need to better understand how to avoid epigenetic alterations related to immune aging. In this review, the contribution of epigenetic mechanisms to the loss of immune function during aging will be discussed, and the promise of new means of disease prevention and management will be pointed.

  4. Does Exercise Alter Immune Function and Respiratory Infections?

    ERIC Educational Resources Information Center

    Nieman, David C.

    2001-01-01

    This paper examines whether physical activity influences immune function as a consequence risk of infection from the common cold and other upper respiratory tract infections (URTI) and whether the immune system responds differently to moderate versus intense physical exertion. Research indicates that people who participate in regular moderate…

  5. Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters.

    PubMed

    Bedrosian, Tracy A; Fonken, Laura K; Walton, James C; Nelson, Randy J

    2011-06-23

    Species have been adapted to specific niches optimizing survival and reproduction; however, urbanization by humans has dramatically altered natural habitats. Artificial light at night (LAN), termed 'light pollution', is an often overlooked, yet increasing disruptor of habitats, which perturbs physiological processes that rely on precise light information. For example, LAN alters the timing of reproduction and activity in some species, which decreases the odds of successful breeding and increases the threat of predation for these individuals, leading to reduced fitness. LAN also suppresses immune function, an important proxy for survival. To investigate the impact of LAN in a species naive to light pollution in its native habitat, immune function was examined in Siberian hamsters derived from wild-caught stock. After four weeks exposure to dim LAN, immune responses to three different challenges were assessed: (i) delayed-type hypersensitivity (DTH), (ii) lipopolysaccharide-induced fever, and (iii) bactericide activity of blood. LAN suppressed DTH response and reduced bactericide activity of blood after lipopolysaccharide treatment, in addition to altering daily patterns of locomotor activity, suggesting that human encroachment on habitats via night-time lighting may inadvertently compromise immune function and ultimately fitness.

  6. Validation of Procedures for Monitoring Crewmember Immune Function SDBI-1900, SMO-015 - Integrated Immune

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Nehlsen-Cannarella, Sandra; Morukov, Boris; Pierson, Duane; Sams, Clarence

    2007-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk from prolonged immune dysregulation during space flight are not yet determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight condition. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flight-compatible immune monitoring strategy. Characterization of the clinical risk and the development of a monitoring strategy are necessary prerequisite activities prior to validating countermeasures. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers immune system. Pre-flight, in-flight and post-flight assessments of immune status, immune function, viral reactivation and physiological stress will be performed. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter landing day assessments. The overall status of the immune system during flight (activation, deficiency, dysregulation) and the response of the immune system to specific latent virus reactivation (known to occur during space flight) will be thoroughly assessed. Following completion of the SMO the data will be evaluated to determine the optimal set of assays for routine monitoring of crewmember immune system function, should the clinical risk warrant such monitoring.

  7. The immune system which adversely alter thyroid functions: a review on the concept of autoimmunity.

    PubMed

    Mansourian, Azad Reza

    2010-08-15

    The immune system protect individual from many pathogens exists within our environment and in human body, by destroying them through molecular and cellular mechanism of B and T cells of immune system. Autoimmunity is an adverse relation of immune system against non- foreign substances leaving behind either alters the normal function or destroying the tissue involved. Autoimmunity occur in genetically predispose persons with familial connections. The autoimmunity to the thyroid gland mainly consists of Hashimato thyroiditis and Grave's disease, the two end of spectrum in thyroid function of hypo and hyperactivity, respectively. The thyroid stimulating hormone receptor, thyroglobuline, enzymes of thyroid hormones synthesis are targeted by autoantibodies and cell- mediated reactions. The aim of this review is to explore the studies reported on the autoimmunity to the thyroid gland.

  8. Lack of broad functional differences in immunity in fully vaccinated vs. unvaccinated children.

    PubMed

    Sherrid, Ashley M; Ruck, Candice E; Sutherland, Darren; Cai, Bing; Kollmann, Tobias R

    2017-04-01

    Concerns have been raised that with an increase in the number of vaccines administered early in life, immune development could be altered, leading to either increased or decreased immune reactivity. We investigated the impact of vaccination on immune status, contrasting the immune response to general, nonantigen-specific stimuli in a cohort of entirely unvaccinated vs. fully vaccinated children at 3-5 y of age. Innate immunity was assessed by quantifying bulk and cell-type-specific cytokine production in response to stimulation with pathogen associated microbial patterns. Adaptive immune status was characterized by assessing lymphocyte proliferation and cytokine production in response to generic T cell stimuli. Our investigations failed to reveal a broadly evident alteration of either innate or adaptive immunity in vaccinated children. Equivalently robust innate and adaptive responses to pathogen associated microbial patterns and generic T cell stimulants were observed in both groups. Although our sample size was small, our data suggest that standard childhood vaccinations do not lead to long-lasting gross alterations of the immune system.

  9. Evidence of reactive astrocytes but not peripheral immune system activation in a mouse model of Fragile X Syndrome

    PubMed Central

    Yuskaitis, Christopher J.; Beurel, Eleonore; Jope, Richard S.

    2010-01-01

    Fragile X syndrome (FXS) is the most common form of inherited mental retardation and is one of the few known genetic causes of autism. FXS results from the loss of Fmr1 gene function, thus Fmr1 knockout mice provide a model to study impairments associated with FXS and autism and to test potential therapeutic interventions. The inhibitory serine-phosphorylation of glycogen synthase kinase-3 (GSK3) is lower in brain regions of Fmr1 knockout mice than wild-type mice and the GSK3 inhibitor lithium rescues several behavioral impairments in Fmr1 knockout mice. Therefore, we examined if the serine-phosphorylation of GSK3 in Fmr1 knockout mice also was altered outside the brain and if administration of lithium ameliorated the macroorchidism phenotype. Additionally, since GSK3 regulates numerous functions of the immune system and immune alterations have been associated with autism, we tested if immune function is altered in Fmr1 knockout mice. The inhibitory serine-phosphorylation of GSK3 was significantly lower in the testis and liver of Fmr1 knockout mice than wild-type mice, and chronic lithium treatment reduced macroorchidism in Fmr1 knockout mice. No alterations in peripheral immune function were identified in Fmr1 knockout mice. However, examination of glia, the immune cells of the brain, revealed reactive astrocytes in several brain regions of Fmr1 knockout mice and treatment with lithium reduced this in the striatum and cerebellum. These results provide further evidence of the involvement of dysregulated GSK3 in FXS, and demonstrate that lithium administration reduces macroorchidism and reactive astrocytes in Fmr1 knockout mice. PMID:20600866

  10. Immune System Dysregulation, Viral Reactivation and Stress During Short-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Pierson, Duane; Sams, Clarence; Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather

    2010-01-01

    The objective of this NASA Short-Duration Bioastronautics Investigation (SDBI) was to assess spaceflight-associated immune dysregulation. Many previous studies have investigated this phenomenon post-flight, and found altered distribution and function of the peripheral leukocyte populations. Alterations in cytokine production profiles have also been reported. Unfortunately, post-flight data may be altered by the stress associated with high-G re-entry and readaptation to unit gravity following deconditioning. Therefore, the current study collected blood and saliva samples from crewmembers immediately before landing, and returned those samples to Earth for terrestrial analysis. Assays include peripheral comprehensive immunophenotype, T cell function, cytokine profiles, viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. A total of 18 short duration crewmembers completed the study and the final data will be presented.

  11. Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults

    PubMed Central

    Yu, Hong-Ren; Hsu, Te-Yao; Huang, Hsin-Chun; Kuo, Ho-Chang; Li, Sung-Chou; Yang, Kuender D.; Hsieh, Kai-Sheng

    2016-01-01

    Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies. PMID:28066425

  12. Differential Gender Effects in the Relationship between Perceived Immune Functioning and Autistic Traits.

    PubMed

    Mackus, Marlou; Kruijff, Deborah de; Otten, Leila S; Kraneveld, Aletta D; Garssen, Johan; Verster, Joris C

    2017-04-12

    Altered immune functioning has been demonstrated in individuals with autism spectrum disorder (ASD). The current study explores the relationship between perceived immune functioning and experiencing ASD traits in healthy young adults. N = 410 students from Utrecht University completed a survey on immune functioning and autistic traits. In addition to a 1-item perceived immune functioning rating, the Immune Function Questionnaire (IFQ) was completed to assess perceived immune functioning. The Dutch translation of the Autism-Spectrum Quotient (AQ) was completed to examine variation in autistic traits, including the domains "social insights and behavior", "difficulties with change", "communication", "phantasy and imagination", and "detail orientation". The 1-item perceived immune functioning score did not significantly correlate with the total AQ score. However, a significant negative correlation was found between perceived immune functioning and the AQ subscale "difficulties with change" (r = -0.119, p = 0.019). In women, 1-item perceived immune functioning correlated significantly with the AQ subscales "difficulties with change" (r = -0.149, p = 0.029) and "communication" (r = -0.145, p = 0.032). In men, none of the AQ subscales significantly correlated with 1-item perceived immune functioning. In conclusion, a modest relationship between perceived immune functioning and several autistic traits was found.

  13. Immune System Dysfunction in the Elderly.

    PubMed

    Fuentes, Eduardo; Fuentes, Manuel; Alarcón, Marcelo; Palomo, Iván

    2017-01-01

    Human aging is characterized by both physical and physiological frailty that profoundly affects the immune system. In this context aging is associated with declines in adaptive and innate immunity established as immunosenescence. Immunosenescence is a new concept that reflects the age-associated restructuring changes of innate and adaptive immune functions. Thus elderly individuals usually present chronic low-level inflammation, higher infection rates and chronic diseases. A study of alterations in the immune system during aging could provide a potentially useful biomarker for the evaluation of immune senescence treatment. The immune system is the result of the interplay between innate and adaptive immunity, yet the impact of aging on this function is unclear. In this article the function of the immune system during aging is explored.

  14. EFFECTS OF SELENIUM ON MALLARD DUCK REPRODUCTION AND IMMUNE FUNCTION

    EPA Science Inventory

    Selenium from irrigation drain water and coal-fired power stations is a significant environmental contaminant in some regions of the USA. Our objectives were to examine whether selenium-exposed waterfowl had altered immune function, disease resistance, or reproduction. Pairs of a...

  15. Altered Methylation Profile of Lymphocytes Is Concordant with Perturbation of Lipids Metabolism and Inflammatory Response in Obesity

    PubMed Central

    Jacobsen, Mette J.; Mentzel, Caroline M. Junker; Olesen, Ann Sofie; Huby, Thierry; Jørgensen, Claus B.; Barrès, Romain; Fredholm, Merete

    2016-01-01

    Obesity is associated with immunological perturbations that contribute to insulin resistance. Epigenetic mechanisms can control immune functions and have been linked to metabolic complications, although their contribution to insulin resistance still remains unclear. In this study, we investigated the link between metabolic dysfunction and immune alterations with the epigenetic signature in leukocytes in a porcine model of obesity. Global DNA methylation of circulating leukocytes, adipose tissue leukocyte trafficking, and macrophage polarisation were established by flow cytometry. Adipose tissue inflammation and metabolic function were further characterised by quantification of metabolites and expression levels of genes associated with obesity and inflammation. Here we show that obese pigs showed bigger visceral fat pads, higher levels of circulating LDL cholesterol, and impaired glucose tolerance. These changes coincided with impaired metabolism, sustained macrophages infiltration, and increased inflammation in the adipose tissue. Those immune alterations were linked to global DNA hypermethylation in both B-cells and T-cells. Our results provide novel insight into the possible contribution of immune cell epigenetics into the immunological disturbances observed in obesity. The dramatic changes in the transcriptomic and epigenetic signature of circulating lymphocytes reinforce the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity. PMID:26798656

  16. Exercise and the Regulation of Immune Functions.

    PubMed

    Simpson, Richard J; Kunz, Hawley; Agha, Nadia; Graff, Rachel

    2015-01-01

    Exercise has a profound effect on the normal functioning of the immune system. It is generally accepted that prolonged periods of intensive exercise training can depress immunity, while regular moderate intensity exercise is beneficial. Single bouts of exercise evoke a striking leukocytosis and a redistribution of effector cells between the blood compartment and the lymphoid and peripheral tissues, a response that is mediated by increased hemodynamics and the release of catecholamines and glucocorticoids following the activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. Single bouts of prolonged exercise may impair T-cell, NK-cell, and neutrophil function, alter the Type I and Type II cytokine balance, and blunt immune responses to primary and recall antigens in vivo. Elite athletes frequently report symptoms associated with upper respiratory tract infections (URTI) during periods of heavy training and competition that may be due to alterations in mucosal immunity, particularly reductions in secretory immunoglobulin A. In contrast, single bouts of moderate intensity exercise are "immuno-enhancing" and have been used to effectively increase vaccine responses in "at-risk" patients. Improvements in immunity due to regular exercise of moderate intensity may be due to reductions in inflammation, maintenance of thymic mass, alterations in the composition of "older" and "younger" immune cells, enhanced immunosurveillance, and/or the amelioration of psychological stress. Indeed, exercise is a powerful behavioral intervention that has the potential to improve immune and health outcomes in the elderly, the obese, and patients living with cancer and chronic viral infections such as HIV. © 2015 Elsevier Inc. All rights reserved.

  17. Integrated analysis of HPV-mediated immune alterations in cervical cancer.

    PubMed

    Chen, Long; Luan, Shaohong; Xia, Baoguo; Liu, Yansheng; Gao, Yuan; Yu, Hongyan; Mu, Qingling; Zhang, Ping; Zhang, Weina; Zhang, Shengmiao; Wei, Guopeng; Yang, Min; Li, Ke

    2018-05-01

    Human papillomavirus (HPV) infection is the primary cause of cervical cancer. HPV-mediated immune alterations are known to play crucial roles in determining viral persistence and host cell transformation. We sought to thoroughly understand HPV-directed immune alterations in cervical cancer by exploring publically available datasets. 130 HPV positive and 7 HPV negative cervical cancer cases from The Cancer Genome Atlas were compared for differences in gene expression levels and functional enrichment. Analyses for copy number variation (CNV) and genetic mutation were conducted for differentially expressed immune genes. Kaplan-Meier analysis was performed to assess survival and relapse differences across cases with or without alterations of the identified immune signature genes. Genes up-regulated in HPV positive cervical cancer were enriched for various gene ontology terms of immune processes (P=1.05E-14~1.00E-05). Integrated analysis of the differentially expressed immune genes identified 9 genes that displayed either CNV, genetic mutation and/or gene expression changes in at least 10% of the cases of HPV positive cervical cancer. Genomic amplification may cause elevated levels of these genes in some HPV positive cases. Finally, patients with alterations in at least one of the nine signature genes overall had earlier relapse compared to those without any alterations. The altered expression of either TFRC or MMP13 may indicate poor survival for a subset of cervical cancer patients (P=1.07E-07). We identified a novel immune gene signature for HPV positive cervical cancer that is potentially associated with early relapse of cervical cancer. Copyright © 2018. Published by Elsevier Inc.

  18. Terrestrial Spaceflight Analogs: Antarctica

    NASA Technical Reports Server (NTRS)

    Crucian, Brian

    2013-01-01

    Alterations in immune cell distribution and function, circadian misalignment, stress and latent viral reactivation appear to persist during Antarctic winterover at Concordia Station. Some of these changes are similar to those observed in Astronauts, either during or immediately following spaceflight. Others are unique to the Concordia analog. Based on some initial immune data and environmental conditions, Concordia winterover may be an appropriate analog for some flight-associated immune system changes and mission stress effects. An ongoing smaller control study at Neumayer III will address the influence of the hypoxic variable. Changes were observed in the peripheral blood leukocyte distribution consistent with immune mobilization, and similar to those observed during spaceflight. Alterations in cytokine production profiles were observed during winterover that are distinct from those observed during spaceflight, but potentially consistent with those observed during persistent hypobaric hypoxia. The reactivation of latent herpesviruses was observed during overwinter/isolation, that is consistently associated with dysregulation in immune function.

  19. Acute brief heat stress in late gestation alters neonatal calf innate immune functions

    USDA-ARS?s Scientific Manuscript database

    Heat stress (HS), as one of the environmental stressors affecting the dairy industry, compromises the cow's milk production, immune function, and reproductive system. However, few studies have looked at how prenatal HS affects the offspring. The objective of this study was to evaluate the effect of ...

  20. Validation of Procedures for Monitoring Crewmember Immune Function

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2008-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk (if any) from prolonged immune dysregulation during exploration-class space flight has not yet been determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight status of immunity as it resolves over prolonged flight. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess immunity, latent viral reactivation and physiological stress during both short and long duration flights. Upon completion, it is expected that any clinical risks resulting from the adverse effects of space flight on the human immune system will have been determined. In addition, a flight-compatible immune monitoring strategy will have been developed with which countermeasures validation could be performed. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers' immune systems. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter R+0 assessments. The overall status of the immune system during flight (activation, deficiency, dysregulation) and the response of the immune system to specific latent virus reactivation (known to occur during space flight) will be thoroughly assessed. The first in-flight activity for integrated immunity very recently occurred during the STS-120 Space Shuttle mission. The protocols functioned well from a technical perspective, and accurate in-flight data was obtained from 1 Shuttle and 2 ISS crewmembers. Crew participation rates for the study continue to be robust.

  1. Loss of function JAK1 mutations occur at high frequency in cancers with microsatellite instability and are suggestive of immune evasion.

    PubMed

    Albacker, Lee A; Wu, Jeremy; Smith, Peter; Warmuth, Markus; Stephens, Philip J; Zhu, Ping; Yu, Lihua; Chmielecki, Juliann

    2017-01-01

    Immune evasion is a well-recognized hallmark of cancer and recent studies with immunotherapy agents have suggested that tumors with increased numbers of neoantigens elicit greater immune responses. We hypothesized that the immune system presents a common selective pressure on high mutation burden tumors and therefore immune evasion mutations would be enriched in high mutation burden tumors. The JAK family of kinases is required for the signaling of a host of immune modulators in tumor, stromal, and immune cells. Therefore, we analyzed alterations in this family for the hypothesized signature of an immune evasion mutation. Here, we searched a database of 61,704 unique solid tumors for alterations in the JAK family kinases (JAK1/2/3, TYK2). We used The Cancer Genome Atlas and Cancer Cell Line Encyclopedia data to confirm and extend our findings by analyzing gene expression patterns. Recurrent frameshift mutations in JAK1 were associated with high mutation burden and microsatellite instability. These mutations occurred in multiple tumor types including endometrial, colorectal, stomach, and prostate carcinomas. Analyzing gene expression signatures in endometrial and stomach adenocarcinomas revealed that tumors with a JAK1 frameshift exhibited reduced expression of interferon response signatures and multiple anti-tumor immune signatures. Importantly, endometrial cancer cell lines exhibited similar gene expression changes that were expected to be tumor cell intrinsic (e.g. interferon response) but not those expected to be tumor cell extrinsic (e.g. NK cells). From these data, we derive two primary conclusions: 1) JAK1 frameshifts are loss of function alterations that represent a potential pan-cancer adaptation to immune responses against tumors with microsatellite instability; 2) The mechanism by which JAK1 loss of function contributes to tumor immune evasion is likely associated with loss of the JAK1-mediated interferon response.

  2. EVALUATING THE IMPACTS OF COINFECTION ON IMMUNE SYSTEM FUNCTION OF THE DEER MOUSE ( PEROMYSCUS MANICULATUS) USING SIN NOMBRE VIRUS AND BARTONELLA AS MODEL PATHOGEN SYSTEMS.

    PubMed

    Lehmer, Erin M; Lavengood, Kathryn; Miller, Mason; Rodgers, Jacob; Fenster, Steven D

    2018-01-01

    :  Simultaneous infections with multiple pathogens can alter the function of the host's immune system, often resulting in additive or synergistic morbidity. We examined how coinfection with the common pathogens Sin Nombre virus (SNV) and Bartonella sp. affected aspects of the adaptive and innate immune responses of wild deer mice ( Peromyscus maniculatus). Adaptive immunity was assessed by measuring SNV antibody production; innate immunity was determined by measuring levels of C-reactive protein (CRP) in blood and the complement activity of plasma. Coinfected mice had reduced plasma complement activity and higher levels of CRP compared to mice infected with either SNV or Bartonella. However, antibody titers of deer mice infected with SNV were more than double those of coinfected mice. Plasma complement activity and CRP levels did not differ between uninfected deer mice and those infected with only Bartonella, suggesting that comorbid SNV and Bartonella infections act synergistically, altering the innate immune response. Collectively, our results indicated that the immune response of deer mice coinfected with both SNV and Bartonella differed substantially from individuals infected with only one of these pathogens. Results of our study provided unique, albeit preliminary, insight into the impacts of coinfection on immune system function in wild animal hosts and underscore the complexity of the immune pathways that exist in coinfected hosts.

  3. The Major Histocompatibility Complex and Autism Spectrum Disorder

    PubMed Central

    Needleman, Leigh A.; McAllister, A. Kimberley

    2015-01-01

    Autism spectrum disorder (ASD) is a complex disorder that appears to be caused by interactions between genetic changes and environmental insults during early development. A wide range of factors have been linked to the onset of ASD, but recently both genetic associations and environmental factors point to a central role for immune- related genes and immune responses to environmental stimuli. Specifically, many of the proteins encoded by the major histocompatibility complex (MHC) play a vital role in the formation, refinement, maintenance, and plasticity of the brain. Manipulations of levels of MHC molecules have illustrated how disrupted MHC signaling can significantly alter brain connectivity and function. Thus, an emerging hypothesis in our field is that disruptions in MHC expression in the developing brain caused by mutations and/or immune dysregulation may contribute to the altered brain connectivity and function characteristic of ASD. This review provides an overview of the structure and function of the three classes of MHC molecules in the immune system, healthy brain, and their possible involvement in ASD. PMID:22760919

  4. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity.

    PubMed

    Cissé, Yasmine M; Russart, Kathryn L G; Nelson, Randy J

    2017-03-31

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues.

  5. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity

    PubMed Central

    Cissé, Yasmine M.; Russart, Kathryn L.G.; Nelson, Randy J.

    2017-01-01

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues. PMID:28361901

  6. Functional changes in neutrophils and psychoneuroendocrine responses during 105 days of confinement.

    PubMed

    Strewe, C; Muckenthaler, F; Feuerecker, M; Yi, B; Rykova, M; Kaufmann, I; Nichiporuk, I; Vassilieva, G; Hörl, M; Matzel, S; Schelling, G; Thiel, M; Morukov, B; Choukèr, A

    2015-05-01

    The innate immune system as one key element of immunity and a prerequisite for an adequate host defense is of emerging interest in space research to ensure crew health and thus mission success. In ground-based studies, spaceflight-associated specifics such as confinement caused altered immune functions paralleled by changes in stress hormone levels. In this study, six men were confined for 105 days to a space module of ~500 m(3) mimicking conditions of a long-term space mission. Psychic stress was surveyed by different questionnaires. Blood, saliva, and urine samples were taken before, during, and after confinement to determine quantitative and qualitative immune responses by analyzing enumerative assays and quantifying microbicide and phagocytic functions. Additionally, expression and shedding of L-selectin (CD62L) on granulocytes and different plasma cytokine levels were measured. Cortisol and catecholamine levels were analyzed in saliva and urine. Psychic stress or an activation of the psychoneuroendocrine system could not be testified. White blood cell counts were not significantly altered, but innate immune functions showed increased cytotoxic and reduced microbicide capabilities. Furthermore, a significantly enhanced shedding of CD62L might be a hint at increased migratory capabilities. However, this was observed in the absence of any acute inflammatory state, and no rise in plasma cytokine levels was detected. In summary, confinement for 105 days caused changes in innate immune functions. Whether these changes result from an alert immune state in preparation for further immune challenges or from a normal adaptive process during confinement remains to be clarified in future research. Copyright © 2015 the American Physiological Society.

  7. Role of macrophages in the altered epithelial function during a type 2 immune response induced by enteric nematode infection

    USDA-ARS?s Scientific Manuscript database

    Two major functions of the intestinal epithelium are to act as a physical barrier and to regulate the movement of nutrients, ions and fluid. Nematode infection induces alterations in smooth and epithelial cell function, including increased fluid in the intestinal lumen, which are attributed to a ST...

  8. Developmental Bisphenol A Exposure Modulates Immune-Related Diseases

    PubMed Central

    Xu, Joella; Huang, Guannan; Guo, Tai L.

    2016-01-01

    Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases. PMID:29051427

  9. Developmental Bisphenol A Exposure Modulates Immune-Related Diseases.

    PubMed

    Xu, Joella; Huang, Guannan; Guo, Tai L

    2016-09-26

    Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases.

  10. Long-Term Immune Alterations Accompanying Chronic Posttraumatic Stress Disorder following Exposure to Suicide Bomb Terror Incidents during Childhood.

    PubMed

    Shalev, Amit; Benarroch, Fortunato; Goltser-Dubner, Tanya; Canetti, Laura; Saloner, Chen; Roichman, Asael; Cohen, Haim; Galili-Weisstub, Esti; Segman, Ronen

    2018-06-27

    Long-term immune alterations have been proposed to play a mechanistic role in posttraumatic stress disorder (PTSD) as well as in its associated increase in medical morbidity and mortality. Better characterization of altered immune function may help identify diagnostic and prognostic biomarkers and potentially targets for preventive intervention. As part of an ongoing study, we conducted a preliminary case-control comparison of resting immune inflammatory profiles between terror victims treated in childhood at the emergency department over the previous decade, who developed chronic PTSD upon long-term follow-up, and healthy controls. Our preliminary results in a subsample of this ongoing study support and extend elevated resting levels of granulocyte colony-stimulating factor, interleukin-4, and regulated on activation, normal T cell expressed and secreted in childhood onset chronic PTSD. Chronic immune alterations may participate in inflammatory activation and signal to the CNS through the neurovascular unit, as well as modulate the neuroendocrine axis. Better characterization and understanding of these preliminary findings may point to diagnostic and prognostic biomarkers and potentially elucidate mechanistic involvement of immune activation in PTSD. © 2018 S. Karger AG, Basel.

  11. The Immune System and Developmental Programming of Brain and Behavior

    PubMed Central

    Bilbo, Staci D.; Schwarz, Jaclyn M.

    2012-01-01

    The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition. PMID:22982535

  12. The effects of chemotherapeutics on cellular metabolism and consequent immune recognition.

    PubMed

    Newell, M Karen; Melamede, Robert; Villalobos-Menuey, Elizabeth; Swartzendruber, Douglas; Trauger, Richard; Camley, Robert E; Crisp, William

    2004-02-02

    Awidely held view is that oncolytic agents induce death of tumor cells directly. In this report we review and discuss the apoptosis-inducing effects of chemotherapeutics, the effects of chemotherapeutics on metabolic function, and the consequent effects of metabolic function on immune recognition. Finally, we propose that effective chemotherapeutic and/or apoptosis-inducing agents, at concentrations that can be achieved physiologically, do not kill tumor cells directly. Rather, we suggest that effective oncolytic agents sensitize immunologically altered tumor cells to immune recognition and immune-directed cell death.

  13. The effects of chemotherapeutics on cellular metabolism and consequent immune recognition

    PubMed Central

    Newell, M Karen; Melamede, Robert; Villalobos-Menuey, Elizabeth; Swartzendruber, Douglas; Trauger, Richard; Camley, Robert E; Crisp, William

    2004-01-01

    A widely held view is that oncolytic agents induce death of tumor cells directly. In this report we review and discuss the apoptosis-inducing effects of chemotherapeutics, the effects of chemotherapeutics on metabolic function, and the consequent effects of metabolic function on immune recognition. Finally, we propose that effective chemotherapeutic and/or apoptosis-inducing agents, at concentrations that can be achieved physiologically, do not kill tumor cells directly. Rather, we suggest that effective oncolytic agents sensitize immunologically altered tumor cells to immune recognition and immune-directed cell death. PMID:14756899

  14. Zinc as a Gatekeeper of Immune Function

    PubMed Central

    Wessels, Inga; Maywald, Martina; Rink, Lothar

    2017-01-01

    After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function. PMID:29186856

  15. mTOR at the Transmitting and Receiving Ends in Tumor Immunity

    PubMed Central

    Guri, Yakir; Nordmann, Thierry M.; Roszik, Jason

    2018-01-01

    Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis. PMID:29662490

  16. mTOR at the Transmitting and Receiving Ends in Tumor Immunity.

    PubMed

    Guri, Yakir; Nordmann, Thierry M; Roszik, Jason

    2018-01-01

    Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis.

  17. Sleep and immune function: glial contributions and consequences of aging

    PubMed Central

    Ingiosi, Ashley M.; Opp, Mark R.; Krueger, James M.

    2013-01-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5′-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. PMID:23452941

  18. Sleep and immune function: glial contributions and consequences of aging.

    PubMed

    Ingiosi, Ashley M; Opp, Mark R; Krueger, James M

    2013-10-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. Copyright © 2013. Published by Elsevier Ltd.

  19. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    PubMed Central

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and/or treating alcohol-related pulmonary disorders. PMID:24940828

  20. How (and why) the immune system makes us sleep

    PubMed Central

    Imeri, Luca; Opp, Mark R.

    2010-01-01

    Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified during infection, indicating that these interactions might underlie the changes in sleep that occur during infection. Why should the immune system cause us to sleep differently when we are sick? We propose that the alterations in sleep architecture during infection are exquisitely tailored to support the generation of fever, which in turn imparts survival value. PMID:19209176

  1. How (and why) the immune system makes us sleep.

    PubMed

    Imeri, Luca; Opp, Mark R

    2009-03-01

    Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified during infection, indicating that these interactions might underlie the changes in sleep that occur during infection. Why should the immune system cause us to sleep differently when we are sick? We propose that the alterations in sleep architecture during infection are exquisitely tailored to support the generation of fever, which in turn imparts survival value.

  2. Immunologic alterations and the pathogenesis of organ failure in the ICU.

    PubMed

    Opal, Steven M

    2011-10-01

    Rapid and marked alterations of innate and adaptive immunity typify the host response to systemic infection and acute inflammatory states. Immune dysfunction contributes to the development of organ failure in most patients with critical illness. The molecular mechanisms by which microbial pathogens and tissue injury activate myeloid cells and prime cellular and humoral immunity are increasingly understood. An early and effective immune response to microbial invasion is essential to mount an effective antimicrobial response. However, unchecked and nonresolving inflammation can induce diffuse vasodilation, increased capillary permeability, microvascular damage, coagulation activation, and organ dysfunction. Control of the inflammatory response to limit tissue damage, yet retain the antimicrobial responses in critically ill patients with severe infection, has been sought for decades. Anti-inflammatory approaches might be beneficial in some patients but detrimental in others. It is now clear that a state of sepsis-induced immune suppression can follow the immune activation phase of sepsis. In carefully selected patients, a better therapeutic strategy might be to provide immunoadjuvants to reconstitute immune function in intensive care unit (ICU) patients. Proresolving agents are also in development to terminate acute inflammatory reactions without immune suppression. This brief review summarizes the current understanding of the fundamental immune alterations in critical illness that lead to organ failure in critical illness. © Thieme Medical Publishers.

  3. High-Concentrate Diet-Induced Change of Cellular Metabolism Leads to Decreases of Immunity and Imbalance of Cellular Activities in Rumen Epithelium.

    PubMed

    Lu, Zhongyan; Shen, Hong; Shen, Zanming

    2018-01-01

    In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive). In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. These results indicated that the alterations of cellular metabolism promote the alterations in cellular immunity, repair, and homeostasis in the rumen epithelium, thereby leading to the switch of concentrate effects from positive to negative with regard to animal production and health. © 2018 The Author(s). Published by S. Karger AG, Basel.

  4. Current immunotherapeutic strategies in pancreatic cancer.

    PubMed

    Plate, Janet M D

    2007-10-01

    The immune systems of patients with newly diagnosed pancreatic cancers are functional, with T-cell responses capable of responding to tumor antigen presentation. Pancreatic tumors have been demonstrated to express tumor antigens as mutated, altered, underglycosylated and/or inappropriately overexpressed proteins. Considering these two facts, it should be possible for patients' bodies to recognize their tumors as foreign and to reject them. A number of clinical trials have been initiated to exploit this immune activation to eradicate or stabilize tumor growth. Immunotherapeutic trials include the specific testing of a variety of tumor vaccines, of cytokines as adjuvants or directed cytotoxicity, and of monoclonal antibodies to target specific molecules. This article reviews evidence for immune-cell activation and function in patients with pancreatic cancer, and evidence that pancreatic tumor cells express tumor antigens, or mutated (or altered) proteins. Nevertheless, tumors survive immune attacks by producing products that help them to circumvent effector T cells. The article thus examines complications of immune evasion by cancer cells, as well as the challenges of trying to exploit the immune system in solid tumors where tumor cell products can turn off invading immune T cells set to kill them. Finally, the article discusses the choices of a variety of clinical trials using immune modulation for patients with pancreatic cancer.

  5. Neuroimmune Basis of Methamphetamine Toxicity

    PubMed Central

    Loftis, Jennifer M.; Janowsky, Aaron

    2015-01-01

    Although it is not known which antigen-specific immune responses (or if antigen-specific immune responses) are relevant or required for methamphetamine's neurotoxic effects, it is apparent that methamphetamine exposure is associated with significant effects on adaptive and innate immunity. Alterations in lymphocyte activity and number, changes in cytokine signaling, impairments in phagocytic functions, and glial activation and gliosis have all been reported. These drug-induced changes in immune response, particularly within the CNS, are now thought to play a critical role in the addiction process for methamphetamine dependence as well as for other substance use disorders. In Section 2, methamphetamine's effects on glial cell (e.g., microglia and astrocytes) activity and inflammatory signaling cascades are summarized, including how alterations in immune cell function can induce the neurotoxic and addictive effects of methamphetamine. Section 2 also describes neurotransmitter involvement in the modulation of methamphetamine's inflammatory effects. Section 3 discusses the very recent use of pharmacological and genetic animal models which have helped elucidate the behavioral effects of methamphetamine's neurotoxic effects and the role of the immune system. Section 4 is focused on the effects of methamphetamine on blood–brain barrier integrity and associated immune consequences. Clinical considerations such as the combined effects of methamphetamine and HIV and/or HCV on brain structure and function are included in Section 4. Finally, in Section 5, immune-based treatment strategies are reviewed, with a focus on vaccine development, neuroimmune therapies, and other anti-inflammatory approaches. PMID:25175865

  6. Changes in the immune system are conditioned by nutrition.

    PubMed

    Marcos, A; Nova, E; Montero, A

    2003-09-01

    Undernutrition due to insufficient intake of energy and macronutrients and/or due to deficiencies in specific micronutrients impairs the immune system, suppressing immune functions that are fundamental to host protection. The most consistent abnormalities are seen in cell-mediated immunity, complement system, phagocyte function, cytokine production, mucosal secretory antibody response, and antibody affinity. There is a number of physiological situations such as ageing and performance of intense physical exercise associated with an impairment of some immune parameters' response. Nutrition can influence the extent of immune alteration in both of them. There are also numerous pathological situations in which nutrition plays a role as a primary or secondary determinant of some underlying immunological impairments. This includes obesity, eating disorders (anorexia nervosa and bulimia nervosa), food hypersensitivity and gastrointestinal disorders as some examples. The implications of nutrition on immune function in these disorders are briefly reviewed.

  7. IMMUNOLOGIC EFFECTS OF ELECTROMAGNETIC FIELDS (1981-1983)

    EPA Science Inventory

    In vitro studies provide evidence that support and EM field induced thermal mechanism for immune effects. When proper control of culture temperatures has been achieved during in vitro exposure to EM fields, no alterations have been observed for a variety of immune cell functions....

  8. Interleukin 1 and Tumor Necrosis Factor Inhibit Cardiac Myocyte β -adrenergic Responsiveness

    NASA Astrophysics Data System (ADS)

    Gulick, Tod; Chung, Mina K.; Pieper, Stephen J.; Lange, Louis G.; Schreiner, George F.

    1989-09-01

    Reversible congestive heart failure can accompany cardiac allograft rejection and inflammatory myocarditis, conditions associated with an immune cell infiltrate of the myocardium. To determine whether immune cell secretory products alter cardiac muscle metabolism without cytotoxicity, we cultured cardiac myocytes in the presence of culture supernatants from activated immune cells. We observed that these culture supernatants inhibit β -adrenergic agonist-mediated increases in cultured cardiac myocyte contractility and intracellular cAMP accumulation. The myocyte contractile response to increased extracellular Ca2+ concentration is unaltered by prior exposure to these culture supernatants, as is the increase in myocyte intracellular cAMP concentration in response to stimulation with forskolin, a direct adenyl cyclase activator. Inhibition occurs in the absence of alteration in β -adrenergic receptor density or ligand binding affinity. Suppressive activity is attributable to the macrophage-derived cytokines interleukin 1 and tumor necrosis factor. Thus, these observations describe a role for defined cytokines in regulating the hormonal responsiveness and function of contractile cells. The effects of interleukin 1 and tumor necrosis factor on intracellular cAMP accumulation may be a model for immune modulation of other cellular functions dependent upon cyclic nucleotide metabolism. The uncoupling of agonist-occupied receptors from adenyl cyclase suggests that β -receptor or guanine nucleotide binding protein function is altered by the direct or indirect action of cytokines on cardiac muscle cells.

  9. Immune responsiveness and risk of illness in U.S. Air Force Academy cadets during basic cadet training

    NASA Technical Reports Server (NTRS)

    Lee, David J.; Meehan, Richard T.; Robinson, Christine; Mabry, Thomas R.; Smith, Morey L.

    1992-01-01

    It has been proposed, but not confirmed, that environmental stressors alter immune function and increase the risk of viral infection among healthy individuals. This hypothesis was evaluated by examining the relationship among stress, immune function, and illness in 96 first-year U.S. Air Force Academy cadets during orientation and four weeks later during the stressful environment of basic cadet training (BCT). Perceived stress and well-being levels of cadets were assessed via questionnaire. Immune responsiveness was analyzed by PHA-stimulated thymidine uptake in mononuclear leucocytes and by serologic evidence of reactivation of the Epstein-Barr virus (EBV). Results showed significant declines in in vitro PHA-induced lymphocyte transformation (-35 percent)and subjective well-being (-19 percent) from orientation to BCT with corresponding, significant increases in perceived stress (+32 percent). Despite significantly altered in vitro immune responsiveness, there was no serologic evidence of EBV reactivation nor was there an association between these measures and risk of illness as determined by medical chart review and self-reported symptoms.

  10. Senescence of T Lymphocytes: Implications for Enhancing Human Immunity.

    PubMed

    Akbar, Arne N; Henson, Sian M; Lanna, Alessio

    2016-12-01

    As humans live longer, a central concern is to find ways to maintain their health as they age. Immunity declines during ageing, as shown by the increased susceptibility to infection by both previously encountered and new pathogens and by the decreased efficacy of vaccination. It is therefore crucial to understand the mechanisms responsible for this decrease in immunity and to develop new strategies to enhance immune function in older humans. We discuss here how the induction of senescence alters leukocyte, and specifically T cell, function. An emerging concept is that senescence and nutrient sensing-signalling pathways within T cells converge to regulate functional responses, and the manipulation of these pathways may offer new ways to enhance immunity during ageing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Selective estrogen receptor modulators differentially alter the immune response of gilthead seabream juveniles.

    PubMed

    Rodenas, M C; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2016-05-01

    17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives and hormone replacement therapy, tamoxifen (Tmx), a selective estrogen-receptor modulator used in hormone replacement therapy, and G1, a G protein-coupled estrogen receptor (GPER) selective agonist, differentially increased the hepatic vitellogenin (vtg) gene expression and altered the immune response in adult gilthead seabream (Sparus aurata L.) males. However, no information exists on the effects of these compounds on the immune response of juveniles. This study aims, for the first time, to investigate the effects of the dietary intake of EE2, Tmx or G1 on the immune response of gilthead seabream juveniles and the capacity of the immune system of the specimens to recover its functionality after ceasing exposures (recovery period). The specimens were immunized with hemocyanin in the presence of aluminium adjuvant 1 (group A) or 120 (group B) days after the treatments ceased (dpt). The results indicate that EE2 and Tmx, but not G1, differentially promoted a transient alteration in hepatic vtg gene expression. Although all three compounds did not affect the production of reactive oxygen intermediates, they inhibited the induction of interleukin-1β (il1b) gene expression after priming. Interestingly, although Tmx increased the percentage of IgM-positive cells in both head kidney and spleen during the recovery period, the antibody response of vaccinated fish varied depending on the compound used and when the immunization was administered. Taken together, our results suggest that these compounds differentially alter the capacity of fish to respond to infection during ontogeny and, more interestingly, that the adaptive immune response remained altered to an extent that depends on the compound. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Innate immunity, insulin resistance and type 2 diabetes.

    PubMed

    Fernández-Real, José Manuel; Pickup, John C

    2008-01-01

    Recent evidence has disclosed previously unrecognized links among insulin resistance, obesity, circulating immune markers, immunogenetic susceptibility, macrophage function and chronic infection. Genetic variations leading to altered production or function of circulating innate immune proteins, cellular pattern-recognition receptors and inflammatory cytokines have been linked with insulin resistance, type 2 diabetes, obesity and atherosclerosis. Cellular innate immune associations with obesity and insulin resistance include increased white blood cell count and adipose tissue macrophage numbers. The innate immune response is modulated possibly by both predisposition (genetic or fetal programming), perhaps owing to evolutionary pressures caused by acute infections at the population level (pandemics), and chronic low exposure to environmental products or infectious agents. The common characteristics shared among innate immunity activation, obesity and insulin resistance are summarized.

  13. ALTERED HISTOLOGY OF THE THYMUS AND SPLEEN IN CONTAMINANT-EXPOSED JUVENILE AMERICAN ALLIGATORS

    EPA Science Inventory

    Morphological difference in spleen and thymus are closely related to functional immune differences. Hormonal regulation of the immune system has been demonstrated in reptilian splenic and thymic tissue. Spleens and thymus were obtained from juvenile alligators at two reference si...

  14. Visceral Inflammation and Immune Activation Stress the Brain

    PubMed Central

    Holzer, Peter; Farzi, Aitak; Hassan, Ahmed M.; Zenz, Geraldine; Jačan, Angela; Reichmann, Florian

    2017-01-01

    Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut–brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut–brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention. PMID:29213271

  15. Evaluation of Marijuana Compounds on Neuroimmune Endpoints in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Kaplan, Barbara L F

    2018-02-21

    Cannabinoid compounds refer to a group of more than 60 plant-derived compounds in Cannabis sativa, more commonly known as marijuana. Exposure to marijuana and cannabinoid compounds has been increasing due to increased societal acceptance for both recreational and possible medical use. Cannabinoid compounds suppress immune function, and while this could compromise one's ability to fight infections, immune suppression is the desired effect for therapies for autoimmune diseases. It is critical, therefore, to understand the effects and mechanisms by which cannabinoid compounds alter immune function, especially immune responses induced in autoimmune disease. Therefore, this unit will describe induction and assessment of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), and its potential alteration by cannabinoid compounds. The unit includes three approaches to induce EAE, two of which provide correlations to two forms of MS, and the third specifically addresses the role of autoreactive T cells in EAE. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  16. Cytokines and immune surveillance in humans

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1993-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. Among the parameters shown, by us and others, to be affected is the production of interferons. Interferons are a family of cytokines that are antiviral and play a major role in regulating immune responses that control resistance to infection. Alterations in interferon and other cytokine production and activity could result in changes in immunity and a possible compromise of host defenses against both opportunistic and external infections. The purpose of the present study is to further explore the effects of space flight on cytokines and cytokine-directed immunological function.

  17. Proliferation capacity of T-lymphocytes is affected transiently after a long-term weight gain in Beagle dogs.

    PubMed

    Van de Velde, H; Janssens, G P J; Rochus, K; Duchateau, L; Scharek-Tedin, L; Zentek, J; Nguyen, P; Cox, E; Buyse, J; Biourge, V; Hesta, M

    2013-04-15

    Across species obesity is associated with several disorders but in companion animals little information is available on the impact of chronic obesity on immune competence. The aim of the present study was to investigate whether weight gain and stable obese bodyweight affects the immune cell response. Obesity was induced in eight adult healthy beagle dogs (weight gain group; WGG) by a weight gain period (WGP) of 47 weeks, which was immediately followed by a period (stable period: SP) of stable obesity of 26 weeks. Eight adult healthy beagle dogs were included as a control group (CG) and remained at their ideal bodyweight throughout the entire study. Body composition was measured at five intervening time-points. Concentration of serum leptin and inflammatory cytokines, functionality of lymphocytes and phagocytic activity of neutrophils and monocytes were evaluated at ten intervening time-points. Serum leptin concentration was rising during the WGP in the WGG but went to lower concentrations during the SP. At the end of long-term weight gain, a decreased mitogen-induced proliferation of T-lymphocytes was noted but this alteration seemed to be transient after stabilization of bodyweight. This finding may imply an altered immune response for dogs with different energy balances. However, no systemic low grade inflammation or alteration in other immune cell functions was observed. Consequently it is suggested that the change in energy balance during the onset of obesity (becoming obese versus being obese), evokes an additional obesity-related disorder in dogs, i.e. impaired T-lymphocyte immune function. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Immunoregulation of follicular renewal, selection, POF, and menopause in vivo, vs. neo-oogenesis in vitro, POF and ovarian infertility treatment, and a clinical trial

    PubMed Central

    2012-01-01

    The immune system plays an important role in the regulation of tissue homeostasis ("tissue immune physiology"). Function of distinct tissues during adulthood, including the ovary, requires (1) Renewal from stem cells, (2) Preservation of tissue-specific cells in a proper differentiated state, which differs among distinct tissues, and (3) Regulation of tissue quantity. Such morphostasis can be executed by the tissue control system, consisting of immune system-related components, vascular pericytes, and autonomic innervation. Morphostasis is established epigenetically, during morphogenetic (developmental) immune adaptation, i.e., during the critical developmental period. Subsequently, the tissues are maintained in a state of differentiation reached during the adaptation by a “stop effect” of resident and self renewing monocyte-derived cells. The later normal tissue is programmed to emerge (e.g., late emergence of ovarian granulosa cells), the earlier its function ceases. Alteration of certain tissue differentiation during the critical developmental period causes persistent alteration of that tissue function, including premature ovarian failure (POF) and primary amenorrhea. In fetal and adult human ovaries the ovarian surface epithelium cells called ovarian stem cells (OSC) are bipotent stem cells for the formation of ovarian germ and granulosa cells. Recently termed oogonial stem cells are, in reality, not stem but already germ cells which have the ability to divide. Immune system-related cells and molecules accompany asymmetric division of OSC resulting in the emergence of secondary germ cells, symmetric division, and migration of secondary germ cells, formation of new granulosa cells and fetal and adult primordial follicles (follicular renewal), and selection and growth of primary/preantral, and dominant follicles. The number of selected follicles during each ovarian cycle is determined by autonomic innervation. Morphostasis is altered with advancing age, due to degenerative changes of the immune system. This causes cessation of oocyte and follicular renewal at 38 +/-2 years of age due to the lack of formation of new granulosa cells. Oocytes in primordial follicles persisting after the end of the prime reproductive period accumulate genetic alterations resulting in an exponentially growing incidence of fetal trisomies and other genetic abnormalities with advanced maternal age. The secondary germ cells also develop in the OSC cultures derived from POF and aging ovaries. In vitro conditions are free of immune mechanisms, which prevent neo-oogenesis in vivo. Such germ cells are capable of differentiating in vitro into functional oocytes. This may provide fresh oocytes and genetically related children to women lacking the ability to produce their own follicular oocytes. Further study of "immune physiology" may help us to better understand ovarian physiology and pathology, including ovarian infertility caused by POF or by a lack of ovarian follicles with functional oocytes in aging ovaries. The observations indicating involvement of immunoregulation in physiological neo-oogenesis and follicular renewal from OSC during the fetal and prime reproductive periods are reviewed as well as immune system and age-independent neo-oogenesis and oocyte maturation in OSC cultures, perimenopausal alteration of homeostasis causing disorders of many tissues, and the first OSC culture clinical trial. PMID:23176151

  19. Does major surgery induce immune suppression and increase the risk of postoperative infection?

    PubMed

    Torrance, Hew D T; Pearse, Rupert M; O'Dwyer, Michael J

    2016-06-01

    Infection is the commonest cause of a postoperative complication. Following major surgery alterations in immune function are commonplace and these may contribute to an enhanced susceptibility to acquire nosocomial infections. This review will discuss postoperative infections in the context of an altered perioperative immune response and the factors influencing this response. Up to 10% of patients undergoing elective in-patient surgery may develop a postoperative infection. Laboratory advances now permit systematic monitoring of single-cell immune signatures, which enable a clearer description of the interaction between tissue damage, immune modulation and clinical outcomes. Traditional candidate gene expression has identified pathways that define the detrimental immune modulating effects of perioperative allogeneic blood transfusion. Large clinical studies have demonstrated that the choice of anaesthetic technique may have an impact on postoperative infections through differential immune modulation. Point of care tests are emerging that allow monitoring of the perioperative immune response. These could be further developed to introduce personalised care pathways. Consideration must also be given to anaesthesia techniques and perioperative treatments that may be associated with poor outcomes through immune modulation.

  20. Reproduction Alters Hydration State but Does Not Impact the Positive Effects of Dehydration on Innate Immune Function in Children's Pythons (Antaresia childreni).

    PubMed

    Brusch, George A; Billy, Gopal; Blattman, Joseph N; DeNardo, Dale F

    Resource availability can impact immune function, with the majority of studies of such influences focusing on the allocation of energy investment into immune versus other physiological functions. When energy is a limited resource, performance trade-offs can result, compromising immunity. Dehydration is also considered a physiological challenge resulting from the limitation of a vital resource, yet previous research has found a positive relationship between dehydration and innate immune performance. However, these studies did not examine the effects of dehydration on immunity when there was another concurrent, substantial physiological challenge. Thus, we examined the impact of reproduction and water deprivation, individually and in combination, on immune performance in Children's pythons (Antaresia childreni). We collected blood samples from free-ranging A. childreni to evaluate osmolality and innate immune function (lysis, agglutination, bacterial growth inhibition) during the austral dry season, when water availability is limited and this species is typically reproducing. To examine how reproduction and water imbalance, both separately and combined, impact immune function, we used a laboratory-based 2 × 2 experiment. Our results demonstrate that A. childreni experience significant dehydration during the dry season and that, overall, osmolality, regardless of the underlying cause (seasonal rainfall, water deprivation, or reproduction), is positively correlated with increased innate immune performance.

  1. The role of psychoneuroendocrine factors on spaceflight-induced immunological alterations

    NASA Technical Reports Server (NTRS)

    Meehan, R.; Whitson, P.; Sams, C.

    1993-01-01

    This paper summarizes previous in-flight infections and novel conditions of spaceflight that may suppress immune function. Granulocytosis, monocytosis, and lymphopenia are routinely observed following short duration orbital flights. Subtle changes within the monocyte and T cell populations can also be noted by flow cytometric analysis. The similarity between the immunological changes observed after spaceflight and other diverse environmental stressors suggest that most of these alterations may be neuroendocrine-mediated. Available data support the hypothesis that spaceflight and other environmental stressors modulate normal immune regulation via stress hormones, other than exclusively glucocorticoids. It will be essential to simultaneously collect in-flight endocrine, immunologic, and infectious illness data to determine the clinical significance of these results. Additional research that delineates the neuroendocrine mechanisms of stress-induced changes in normal immune regulation will allow clinicians in the future to initiate prophylactic immunomodulator therapy to restore immune competence altered by the stress of long-duration spaceflight and therefore reduce morbidity from infectious illness, autoimmune disease, or malignancy.

  2. Assessment of Immune Status, Latent Viral Reactivation and Stress during Long Duration Bed Rest as an Analog for Spaceflight

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Stowe, Raymond P.; Mehta, Satish K.; Yetman, Deborah L.; Leaf, Melanie J.; Pierson, Duane L.; Sams, Clarence F.

    2007-01-01

    As logistical access for in-flight space research becomes more limited, the use of ground based spaceflight analogs for life science studies will increase. These studies are particularly important as NASA progresses towards the Lunar and eventually Mars missions outlined in the 2005 Vision for Space Exploration. Countermeasures must be developed to mitigate the clinical risks associated with exploration class space missions. In an effort to coordinate studies across multiple disciplines, NASA has selected 90-day bed rest as the analog of choice, and initiated the Flight Analogs Project to implement research studies with or without the evaluation of countermeasures. Although bed rest is not the analog of choice to evaluate spaceflight-associated immune dysfunction, a standard Immune Assessment was developed for subjects participating in the 90-day bed best studies. The Immune Assessment consists of: leukocyte subset distribution, T cell functional responses, intracellular cytokine production profiles, latent viral reactivation, virus specific T cell levels, virus specific T cell function, stress hormone levels and a behavioral assessment using stress questionnaires. The purpose of the assessment during the initial studies (without countermeasure) is to establish control data against which future studies (with countermeasure) will be evaluated. It is believed that some of the countermeasures planned to be evaluated in future studies, such as exercise, pharmacologic intervention or nutritional supplementation, have the ability to impact immune function. Therefore immunity will likely be monitored during those studies. The data generated during the first three control studies showed that the subjects in general did not display altered peripheral leukocyte subsets, constitutive immune activation, significant latent viral reactivation (EBV, VZV) or altered T cell function. Interestingly, for some subjects the level of constitutively activated T cells (CD8+/CD69+) and virus-specific T cells (CMV and EBV) both decreased during the studies. This likely reflects the isolation of the subjects (from an immunological perspective) and absence of everyday subclinical challenges to the immune system. Cortisol levels (plasma and saliva) did not vary significantly during the studies. This probably reflects a lack of physiological stress during the study and the stress of readaptation to the 1xG environment at R+1. These data demonstrate the absence of significant immune alteration during 90-day bed rest, and establish control data against which future studies (including countermeasures) may be compared.

  3. The Immune System’s Role in Sepsis Progression, Resolution and Long-Term Outcome

    PubMed Central

    Delano, Matthew J.; Ward, Peter A.

    2016-01-01

    SUMMARY Sepsis occurs when an infection exceeds local tissue containment and induces a series of dysregulated physiologic responses that result in organ dysfunction. A subset of patients with sepsis progress to septic shock, defined by profound circulatory, cellular, and metabolic abnormalities, and associated with a greater mortality. Historically, sepsis-induced organ dysfunction and lethality were attributed to the complex interplay between the initial inflammatory and later anti-inflammatory responses. With advances in intensive care medicine and goal-directed interventions, early 30-day sepsis mortality has diminished, only to steadily escalate long after “recovery” from acute events. Since so many sepsis survivors succumb later to persistent, recurrent, nosocomial and secondary infections, many investigators have turned their attention to the long-term sepsis-induced alterations in cellular immune function. Sepsis clearly alters the innate and adaptive immune responses for sustained periods of time after clinical recovery, with immune suppression, chronic inflammation, and persistence of bacterial representing such alterations. Understanding that sepsis-associated immune cell defects correlate with long-term mortality, more investigations have centered on the potential for immune modulatory therapy to improve long term patient outcomes. These efforts are focused on more clearly defining and effectively reversing the persistent immune cell dysfunction associated with long-term sepsis mortality. PMID:27782333

  4. Critical disease windows shaped by stress exposure alter allocation trade-offs between development and immunity.

    PubMed

    Kirschman, Lucas J; Crespi, Erica J; Warne, Robin W

    2018-01-01

    Ubiquitous environmental stressors are often thought to alter animal susceptibility to pathogens and contribute to disease emergence. However, duration of exposure to a stressor is likely critical, because while chronic stress is often immunosuppressive, acute stress can temporarily enhance immune function. Furthermore, host susceptibility to stress and disease often varies with ontogeny; increasing during critical developmental windows. How the duration and timing of exposure to stressors interact to shape critical windows and influence disease processes is not well tested. We used ranavirus and larval amphibians as a model system to investigate how physiological stress and pathogenic infection shape development and disease dynamics in vertebrates. Based on a resource allocation model, we designed experiments to test how exposure to stressors may induce resource trade-offs that shape critical windows and disease processes because the neuroendocrine stress axis coordinates developmental remodelling, immune function and energy allocation in larval amphibians. We used wood frog larvae (Lithobates sylvaticus) to investigate how chronic and acute exposure to corticosterone, the dominant amphibian glucocorticoid hormone, mediates development and immune function via splenocyte immunohistochemistry analysis in association with ranavirus infection. Corticosterone treatments affected immune function, as both chronic and acute exposure suppressed splenocyte proliferation, although viral replication rate increased only in the chronic corticosterone treatment. Time to metamorphosis and survival depended on both corticosterone treatment and infection status. In the control and chronic corticosterone treatments, ranavirus infection decreased survival and delayed metamorphosis, although chronic corticosterone exposure accelerated rate of metamorphosis in uninfected larvae. Acute corticosterone exposure accelerated metamorphosis increased survival in infected larvae. Interactions between stress exposure (via glucocorticoid actions) and infection impose resource trade-offs that shape optimal allocation between development and somatic function. As a result, critical disease windows are likely shaped by stress exposure because any conditions that induce changes in differentiation rates will alter the duration and susceptibility of organisms to stressors or disease. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  5. Neural circuitry and immunity

    PubMed Central

    Pavlov, Valentin A.; Tracey, Kevin J.

    2015-01-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuroimmune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases defines the emerging field of Bioelectronic Medicine. PMID:26512000

  6. Lifelong Impacts of Moderate Prenatal Alcohol Exposure on Neuroimmune Function

    PubMed Central

    Noor, Shahani; Milligan, Erin D.

    2018-01-01

    In utero alcohol exposure is emerging as a major risk factor for lifelong aberrant neuroimmune function. Fetal alcohol spectrum disorder encompasses a range of behavioral and physiological sequelae that may occur throughout life and includes cognitive developmental disabilities as well as disease susceptibility related to aberrant immune and neuroimmune actions. Emerging data from clinical studies and findings from animal models support that very low to moderate levels of fetal alcohol exposure may reprogram the developing central nervous system leading to altered neuroimmune and neuroglial signaling during adulthood. In this review, we will focus on the consequences of low to moderate prenatal alcohol exposure (PAE) on neuroimmune interactions during early life and at different stages of adulthood. Data discussed here will include recent studies suggesting that while abnormal immune function is generally minimal under basal conditions, following pathogenic stimuli or trauma, significant alterations in the neuroimmune axis occur. Evidence from published reports will be discussed with a focus on observations that PAE may bias later-life peripheral immune responses toward a proinflammatory phenotype. The propensity for proinflammatory responses to challenges in adulthood may ultimately shape neuron–glial-immune processes suspected to underlie various neuropathological outcomes including chronic pain and cognitive impairment.

  7. Involvement of HLA class I molecules in the immune escape of urologic tumors.

    PubMed

    Carretero, R; Gil-Julio, H; Vázquez-Alonso, F; Garrido, F; Castiñeiras, J; Cózar, J M

    2014-04-01

    To analyze the influence of different alterations in human leukocyte antigen class I molecules (HLA I) in renal cell carcinoma, as well as in bladder and prostate cancer. We also study the correlation between HLA I expression and the progression of the disease and the response after immunotherapy protocols. It has been shown, experimentally, that the immune system can recognize and kill neoplastic cells. By analyzing the expression of HLA I molecules on the surface of cancer cells, we were able to study the tumor escape mechanisms against the immune system. Alteration or irreversible damage in HLA I molecules is used by the neoplastic cells to escape the immune system. The function of these molecules is to recognize endogenous peptides and present them to T cells of the immune system. There is a clear relationship between HLA I reversible alterations and success of therapy. Irreversible lesions also imply a lack of response to treatment. The immune system activation can reverse HLA I molecules expression in tumors with reversible lesions, whereas tumors with irreversible ones do not respond to such activation. Determine the type of altered HLA I molecules in tumors is of paramount importance when choosing the type of treatment to keep looking for therapeutic success. Those tumors with reversible lesions can be treated with traditional immunotherapy; however, tumour with irreversible alterations should follow alternative protocols, such as the use of viral vectors carrying the HLA genes to achieve damaged re-expression of the protein. From studies in urologic tumors, we can conclude that the HLA I molecules play a key role in these tumors escape to the immune system. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  8. Retinoic Acid as a Modulator of T Cell Immunity

    PubMed Central

    Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela

    2016-01-01

    Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965

  9. Molecular control of steady-state dendritic cell maturation and immune homeostasis.

    PubMed

    Hammer, Gianna Elena; Ma, Averil

    2013-01-01

    Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.

  10. Autonomic innervation of immune organs and neuroimmune modulation.

    PubMed

    Mignini, F; Streccioni, V; Amenta, F

    2003-02-01

    1. Increasing evidence indicates the occurrence of functional interconnections between immune and nervous systems, although data available on the mechanisms of this bi-directional cross-talking are frequently incomplete and not always focussed on their relevance for neuroimmune modulation. 2. Primary (bone marrow and thymus) and secondary (spleen and lymph nodes) lymphoid organs are supplied with an autonomic (mainly sympathetic) efferent innervation and with an afferent sensory innervation. Anatomical studies have revealed origin, pattern of distribution and targets of nerve fibre populations supplying lymphoid organs. 3. Classic (catecholamines and acetylcholine) and peptide transmitters of neural and non-neural origin are released in the lymphoid microenvironment and contribute to neuroimmune modulation. Neuropeptide Y, substance P, calcitonin gene-related peptide, and vasoactive intestinal peptide represent the neuropeptides most involved in neuroimmune modulation. 4. Immune cells and immune organs express specific receptors for (neuro)transmitters. These receptors have been shown to respond in vivo and/or in vitro to the neural substances and their manipulation can alter immune responses. Changes in immune function can also influence the distribution of nerves and the expression of neural receptors in lymphoid organs. 5. Data on different populations of nerve fibres supplying immune organs and their role in providing a link between nervous and immune systems are reviewed. Anatomical connections between nervous and immune systems represent the structural support of the complex network of immune responses. A detailed knowledge of interactions between nervous and immune systems may represent an important basis for the development of strategies for treating pathologies in which altered neuroimmune cross-talking may be involved.

  11. The Human in Space: Lesson from ISS

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.

    2009-01-01

    This viewgraph presentation reviews the lessons learned from manned space flight on the International Space Station. The contents include: 1) Overview of space flight effects on crewmembers; 2) General overview of immune system; 3) How does space flight alter immune system? 4) What factors associated with space flight inteact with crewmember immune function and impact health risks? 5) What is the current understanding of space flight effects on the immune system? and 6) Why should NASA be interested in immunology? Why is it significant?

  12. A Dialogue between the Immune System and Brain, Spoken in the Language of Serotonin

    PubMed Central

    2012-01-01

    Neuropsychiatric disorders have long been linked to both immune system activation and alterations in serotonin (5-HT) signaling. In the CNS, the contributions of 5-HT modulate a broad range of targets, most notably, hypothalamic, limbic and cortical circuits linked to the control of mood and mood disorders. In the periphery, many are aware of the production and actions of 5-HT in the gut but are unaware that the molecule and its receptors are also present in the immune system where evidence suggests they contribute to the both innate and adaptive responses. In addition, there is clear evidence that the immune system communicates to the brain via both humoral and neuronal mechanisms, and that CNS 5-HT neurons are a direct or indirect target for these actions. Following a brief primer on the immune system, we describe our current understanding of the synthesis, release, and actions of 5-HT in modulating immune function, including the expression of 5-HT biosynthetic enzymes, receptors, and transporters that are typically studied with respect to the roles in the CNS. We then orient our presentation to recent findings that pro-inflammatory cytokines can modulate CNS 5-HT signaling, leading to a conceptualization that among the many roles of 5-HT in the body is an integrated physiological and behavioral response to inflammatory events and pathogens. From this perspective, altered 5-HT/immune conversations are likely to contribute to risk for neurobehavioral disorders historically linked to compromised 5-HT function or ameliorated by 5-HT targeted medications, including depression and anxiety disorders, obsessive-compulsive disorder (OCD), and autism. Our review raises the question as to whether genetic variation impacting 5-HT signaling genes may contribute to maladaptive behavior as much through perturbed immune system modulation as through altered brain mechanisms. Conversely, targeting the immune system for therapeutic development may provide an important opportunity to treat mental illness. PMID:23336044

  13. An experimental heat wave changes immune defense and life history traits in a freshwater snail.

    PubMed

    Leicht, Katja; Jokela, Jukka; Seppälä, Otto

    2013-12-01

    The predicted increase in frequency and severity of heat waves due to climate change is expected to alter disease dynamics by reducing hosts' ability to resist infections. This could take place via two different mechanisms: (1) through general reduction in hosts' performance under harsh environmental conditions and/or (2) through altered resource allocation that reduces expression of defense traits in order to maintain other traits. We tested these alternative hypotheses by measuring the effect of an experimental heat wave (25 vs. 15°C) on the constitutive level of immune defense (hemocyte concentration, phenoloxidase [PO]-like activity, antibacterial activity of hemolymph), and life history traits (growth and number of oviposited eggs) of the great pond snail Lymnaea stagnalis. We also manipulated the exposure time to high temperature (1, 3, 5, 7, 9, or 11 days). We found that if the exposure to high temperature lasted <1 week, immune function was not affected. However, when the exposure lasted longer than that, the level of snails' immune function (hemocyte concentration and PO-like activity) was reduced. Snails' growth and reproduction increased within the first week of exposure to high temperature. However, longer exposures did not lead to a further increase in cumulative reproductive output. Our results show that short experimental heat waves do not alter immune function but lead to plastic responses that increase snails' growth and reproduction. Thus, although the relative expression of traits changes, short experimental heat waves do not impair snails' defenses. Negative effects on performance get pronounced when the heat waves are prolonged suggesting that high performance cannot be maintained over long time periods. This ultimately reduces the levels of defense traits.

  14. Virus Innexins induce alterations in insect cell and tissue function

    USDA-ARS?s Scientific Manuscript database

    Polydnaviruses are dsDNA viruses that induce immune and developmental alterations in their caterpillar hosts. Characterization of polydnavirus gene families and family members is necessary to understand mechanisms of pathology and evolution of these viruses, and may aid to elucidate the role of host...

  15. Cellular energy metabolism in T-lymphocytes.

    PubMed

    Gaber, Timo; Strehl, Cindy; Sawitzki, Birgit; Hoff, Paula; Buttgereit, Frank

    2015-01-01

    Energy homeostasis is a hallmark of cell survival and maintenance of cell function. Here we focus on the impact of cellular energy metabolism on T-lymphocyte differentiation, activation, and function in health and disease. We describe the role of transcriptional and posttranscriptional regulation of lymphocyte metabolism on immune functions of T cells. We also summarize the current knowledge about T-lymphocyte adaptations to inflammation and hypoxia, and the impact on T-cell behavior of pathophysiological hypoxia (as found in tumor tissue, chronically inflamed joints in rheumatoid arthritis and during bone regeneration). A better understanding of the underlying mechanisms that control immune cell metabolism and immune response may provide therapeutic opportunities to alter the immune response under conditions of either immunosuppression or inflammation, potentially targeting infections, vaccine response, tumor surveillance, autoimmunity, and inflammatory disorders.

  16. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke.

    PubMed

    Singh, Vikramjeet; Roth, Stefan; Llovera, Gemma; Sadler, Rebecca; Garzetti, Debora; Stecher, Bärbel; Dichgans, Martin; Liesz, Arthur

    2016-07-13

    Acute brain ischemia induces a local neuroinflammatory reaction and alters peripheral immune homeostasis at the same time. Recent evidence has suggested a key role of the gut microbiota in autoimmune diseases by modulating immune homeostasis. Therefore, we investigated the mechanistic link among acute brain ischemia, microbiota alterations, and the immune response after brain injury. Using two distinct models of acute middle cerebral artery occlusion, we show by next-generation sequencing that large stroke lesions cause gut microbiota dysbiosis, which in turn affects stroke outcome via immune-mediated mechanisms. Reduced species diversity and bacterial overgrowth of bacteroidetes were identified as hallmarks of poststroke dysbiosis, which was associated with intestinal barrier dysfunction and reduced intestinal motility as determined by in vivo intestinal bolus tracking. Recolonizing germ-free mice with dysbiotic poststroke microbiota exacerbates lesion volume and functional deficits after experimental stroke compared with the recolonization with a normal control microbiota. In addition, recolonization of mice with a dysbiotic microbiome induces a proinflammatory T-cell polarization in the intestinal immune compartment and in the ischemic brain. Using in vivo cell-tracking studies, we demonstrate the migration of intestinal lymphocytes to the ischemic brain. Therapeutic transplantation of fecal microbiota normalizes brain lesion-induced dysbiosis and improves stroke outcome. These results support a novel mechanism in which the gut microbiome is a target of stroke-induced systemic alterations and an effector with substantial impact on stroke outcome. We have identified a bidirectional communication along the brain-gut microbiota-immune axis and show that the gut microbiota is a central regulator of immune homeostasis. Acute brain lesions induced dysbiosis of the microbiome and, in turn, changes in the gut microbiota affected neuroinflammatory and functional outcome after brain injury. The microbiota impact on immunity and stroke outcome was transmissible by microbiota transplantation. Our findings support an emerging concept in which the gut microbiota is a key regulator in priming the neuroinflammatory response to brain injury. These findings highlight the key role of microbiota as a potential therapeutic target to protect brain function after injury. Copyright © 2016 the authors 0270-6474/16/367428-13$15.00/0.

  17. Alcohol, aging, and innate immunity.

    PubMed

    Boule, Lisbeth A; Kovacs, Elizabeth J

    2017-07-01

    The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals. © Society for Leukocyte Biology.

  18. Immune deficiency vs. immune excess in inflammatory bowel diseases-STAT3 as a rheo-STAT of intestinal homeostasis.

    PubMed

    Leppkes, Moritz; Neurath, Markus F; Herrmann, Martin; Becker, Christoph

    2016-01-01

    Genome-wide association studies have provided many genetic alterations, conferring susceptibility to multifactorial polygenic diseases, such as inflammatory bowel diseases. Yet, how specific genetic alterations functionally affect intestinal inflammation often remains elusive. It is noteworthy that a large overlap of genes involved in immune deficiencies with those conferring inflammatory bowel disease risk has been noted. This has provided new arguments for the debate on whether inflammatory bowel disease arises from either an excess or a deficiency in the immune system. In this review, we highlight the functional effect of an inflammatory bowel disease-risk allele, which cannot be deduced from genome-wide association studies data alone. As exemplified by the transcription factor signal transducer and activator of transcription 3 (STAT3), we show that a single gene can have a plethora of effects in various cell types of the gut. These effects may individually contribute to the restoration of intestinal homeostasis on the one hand or pave the way for excessive immunopathology on the other, as an inflammatory "rheo-STAT". © Society for Leukocyte Biology.

  19. Lactobacillus johnsonii Supplementation Attenuates Respiratory Viral Infection via Metabolic Reprogramming and Immune Cell Modulation

    PubMed Central

    Fonseca, Wendy; Lucey, Kaitlyn; Jang, Sihyug; Fujimura, Kei E.; Rasky, Andrew; Ting, Hung-An; Petersen, Julia; Johnson, Christine C.; Boushey, Homer A.; Zoratti, Edward; Ownby, Dennis R.; Levine, Albert M.; Bobbit, Kevin R.

    2017-01-01

    Summary Regulation of respiratory mucosal immunity by microbial-derived metabolites has been a proposed mechanism that may provide airway protection. Here we examine the effect of oral Lactobacillus johnsonii-supplementation on metabolic and immune response dynamics during respiratory syncytial virus (RSV) infection. L. johnsonii-supplementation reduced airway Th2 cytokines, dendritic cell function, increased T-regulatory cells, and was associated with a reprogrammed circulating metabolic environment, including docosahexanoic acid (DHA) enrichment. RSV-infected bone-marrow derived dendritic cells (BMDC) from L. johnsonii-supplemented mice had altered cytokine secretion, reduced expression of co-stimulatory molecules, and modified CD4+ T cell cytokines. This was replicated upon co-incubation of wild-type BMDCs with either plasma from L. johnsonii-supplemented mice, or DHA. Finally, airway transfer of BMDCs from L. johnsonii-supplemented mice, or with wild-type derived BMDCs pre-treated with plasma from L. johnsonii-supplemented mice, reduced airway pathologic responses to infection in recipient animals. Thus, L. johnsonii-supplementation mediates airway mucosal protection via immunomodulatory metabolites and altered immune function. PMID:28295020

  20. Lactobacillus johnsonii supplementation attenuates respiratory viral infection via metabolic reprogramming and immune cell modulation.

    PubMed

    Fonseca, W; Lucey, K; Jang, S; Fujimura, K E; Rasky, A; Ting, H-A; Petersen, J; Johnson, C C; Boushey, H A; Zoratti, E; Ownby, D R; Levine, A M; Bobbit, K R; Lynch, S V; Lukacs, N W

    2017-11-01

    Regulation of respiratory mucosal immunity by microbial-derived metabolites has been a proposed mechanism that may provide airway protection. Here we examine the effect of oral Lactobacillus johnsonii supplementation on metabolic and immune response dynamics during respiratory syncytial virus (RSV) infection. L. johnsonii supplementation reduced airway T helper type 2 cytokines and dendritic cell (DC) function, increased regulatory T cells, and was associated with a reprogrammed circulating metabolic environment, including docosahexanoic acid (DHA) enrichment. RSV-infected bone marrow-derived DCs (BMDCs) from L. johnsonii-supplemented mice had altered cytokine secretion, reduced expression of co-stimulatory molecules, and modified CD4+ T-cell cytokines. This was replicated upon co-incubation of wild-type BMDCs with either plasma from L. johnsonii-supplemented mice or DHA. Finally, airway transfer of BMDCs from L. johnsonii-supplemented mice or with wild-type derived BMDCs pretreated with plasma from L. johnsonii-supplemented mice reduced airway pathological responses to infection in recipient animals. Thus L. johnsonii supplementation mediates airway mucosal protection via immunomodulatory metabolites and altered immune function.

  1. Early Microbes Modify Immune System Development and Metabolic Homeostasis—The “Restaurant” Hypothesis Revisited

    PubMed Central

    Nash, Michael J.; Frank, Daniel N.; Friedman, Jacob E.

    2017-01-01

    The developing infant gut microbiome affects metabolism, maturation of the gastrointestinal tract, immune system function, and brain development. Initial seeding of the neonatal microbiota occurs through maternal and environmental contact. Maternal diet, antibiotic use, and cesarean section alter the offspring microbiota composition, at least temporarily. Nutrients are thought to regulate initial perinatal microbial colonization, a paradigm known as the “Restaurant” hypothesis. This hypothesis proposes that early nutritional stresses alter both the initial colonizing bacteria and the development of signaling pathways controlled by microbial mediators. These stresses fine-tune the immune system and metabolic homeostasis in early life, potentially setting the stage for long-term metabolic and immune health. Dysbiosis, an imbalance or a maladaptation in the microbiota, can be caused by several factors including dietary alterations and antibiotics. Dysbiosis can alter biological processes in the gut and in tissues and organs throughout the body. Misregulated development and activity of both the innate and adaptive immune systems, driven by early dysbiosis, could have long-lasting pathologic consequences such as increased autoimmunity, increased adiposity, and non-alcoholic fatty liver disease (NAFLD). This review will focus on factors during pregnancy and the neonatal period that impact a neonate’s gut microbiome, as well as the mechanisms and possible links from early infancy that can drive increased risk for diseases including obesity and NAFLD. The complex pathways that connect diet, the microbiota, immune system development, and metabolism, particularly in early life, present exciting new frontiers for biomedical research. PMID:29326657

  2. Epigenetic alterations are associated with monocyte immune dysfunctions in HIV-1 infection.

    PubMed

    Espíndola, Milena S; Soares, Luana S; Galvão-Lima, Leonardo J; Zambuzi, Fabiana A; Cacemiro, Maira C; Brauer, Verônica S; Marzocchi-Machado, Cleni M; de Souza Gomes, Matheus; Amaral, Laurence R; Martins-Filho, Olindo A; Bollela, Valdes R; Frantz, Fabiani G

    2018-04-03

    Monocytes are key cells in the immune dysregulation observed during human immunodeficiency virus (HIV) infection. The events that take place specifically in monocytes may contribute to the systemic immune dysfunction characterized by excessive immune activation in infected individuals, which directly correlates with pathogenesis and progression of the disease. Here, we investigated the immune dysfunction in monocytes from untreated and treated HIV + patients and associated these findings with epigenetic changes. Monocytes from HIV patients showed dysfunctional ability of phagocytosis and killing, and exhibited dysregulated cytokines and reactive oxygen species production after M. tuberculosis challenge in vitro. In addition, we showed that the expression of enzymes responsible for epigenetic changes was altered during HIV infection and was more prominent in patients that had high levels of soluble CD163 (sCD163), a newly identified plasmatic HIV progression biomarker. Among the enzymes, histone acetyltransferase 1 (HAT1) was the best epigenetic biomarker correlated with HIV - sCD163 high patients. In conclusion, we confirmed that HIV impairs effector functions of monocytes and these alterations are associated with epigenetic changes that once identified could be used as targets in therapies aiming the reduction of the systemic activation state found in HIV patients.

  3. Will Global Climate Change Alter Fundamental Human Immune Reactivity: Implications for Child Health?

    PubMed

    Swaminathan, Ashwin; Lucas, Robyn M; Harley, David; McMichael, Anthony J

    2014-11-11

    The human immune system is an interface across which many climate change sensitive exposures can affect health outcomes. Gaining an understanding of the range of potential effects that climate change could have on immune function will be of considerable importance, particularly for child health, but has, as yet, received minimal research attention. We postulate several mechanisms whereby climate change sensitive exposures and conditions will subtly impair aspects of the human immune response, thereby altering the distribution of vulnerability within populations-particularly for children-to infection and disease. Key climate change-sensitive pathways include under-nutrition, psychological stress and exposure to ambient ultraviolet radiation, with effects on susceptibility to infection, allergy and autoimmune diseases. Other climate change sensitive exposures may also be important and interact, either additively or synergistically, to alter health risks. Conducting directed research in this area is imperative as the potential public health implications of climate change-induced weakening of the immune system at both individual and population levels are profound. This is particularly relevant for the already vulnerable children of the developing world, who will bear a disproportionate burden of future adverse environmental and geopolitical consequences of climate change.

  4. Nutritional strategies to optimize dairy cattle immunity.

    PubMed

    Sordillo, L M

    2016-06-01

    Dairy cattle are susceptible to increased incidence and severity of both metabolic and infectious diseases during the periparturient period. A major contributing factor to increased health disorders is alterations in bovine immune mechanisms. Indeed, uncontrolled inflammation is a major contributing factor and a common link among several economically important infectious and metabolic diseases including mastitis, retained placenta, metritis, displaced abomasum, and ketosis. The nutritional status of dairy cows and the metabolism of specific nutrients are critical regulators of immune cell function. There is now a greater appreciation that certain mediators of the immune system can have a reciprocal effect on the metabolism of nutrients. Thus, any disturbances in nutritional or immunological homeostasis can provide deleterious feedback loops that can further enhance health disorders, increase production losses, and decrease the availability of safe and nutritious dairy foods for a growing global population. This review will discuss the complex interactions between nutrient metabolism and immune functions in periparturient dairy cattle. Details of how either deficiencies or overexposure to macro- and micronutrients can contribute to immune dysfunction and the subsequent development of health disorders will be presented. Specifically, the ways in which altered nutrient metabolism and oxidative stress can interact to compromise the immune system in transition cows will be discussed. A better understanding of the linkages between nutrition and immunity may facilitate the design of nutritional regimens that will reduce disease susceptibility in early lactation cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. [Indicators of the persistent pro-inflammatory activation of the immune system in depression].

    PubMed

    Cubała, Wiesław Jerzy; Godlewska, Beata; Trzonkowski, Piotr; Landowski, Jerzy

    2006-01-01

    The aetiology of depression remains tentative. Current hypotheses on the aetiology of the depressive disorder tend to integrate monoaminoergic, neuroendocrine and immunological concepts of depression. A number of research papers emphasise the altered hormonal and immune status of patients with depression with pronounced cytokine level variations. Those studies tend to link the variable course of depression in relation to the altered proinflammatory activity of the immune system. The results of the studies on the activity of the selected elements of the immune system are ambiguous indicating both increased and decreased activities of its selected elements. However, a number of basic and psychopharmacological studies support the hypothesis of the increased proinflammatory activity of the immune system in the course of depression which is the foundation for the immunological hypothesis of depression. The aim of this paper is to review the functional abnormalities that are observed in depression focusing on the monoaminoergic deficiency and increased immune activation as well as endocrine dysregulation. This paper puts together and discusses current studies related to this subject with a detailed insight into interactions involving nervous, endocrine and immune systems.

  6. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner.

    PubMed

    Bollinger, Justin L; Collins, Kaitlyn E; Patel, Rushi; Wellman, Cara L

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress-induced dendritic remodeling across OFC, BLA, and DHC. Together, these data suggest the potential for microglia-mediated sex differences in stress effects on neural structure, function, and behavior.

  7. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner

    PubMed Central

    Bollinger, Justin L.; Collins, Kaitlyn E.; Patel, Rushi

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress-induced dendritic remodeling across OFC, BLA, and DHC. Together, these data suggest the potential for microglia-mediated sex differences in stress effects on neural structure, function, and behavior. PMID:29194444

  8. Differential Effects of Controllable and Uncontrollable Stress on Immune Function in Humans

    DTIC Science & Technology

    1989-02-24

    illness, divorce, unemploy - ment, and academic examination periods, humans tend to exhibit signs of altered immunity (e.g., Arnetz et al., 1987; Bartrop...the separation were responsible for the occurrence of these immune ., ., 15 differences. Arnetz et al. (1987) studied 17 unemployed women and 8...subjects; however, sampling procedures were not symmetrical and sub- jects were studied at different times of the year. rhe women bad been unemployed

  9. Immune responses in age-related macular degeneration and a possible long-term therapeutic strategy for prevention.

    PubMed

    Nussenblatt, Robert B; Lee, Richard W J; Chew, Emily; Wei, Lai; Liu, Baoying; Sen, H Nida; Dick, Andrew D; Ferris, Frederick L

    2014-07-01

    To describe the immune alterations associated with age-related macular degeneration (AMD); and, based on these findings, to offer an approach to possibly prevent the expression of late disease. Perspective. Review of the existing literature dealing with epidemiology, models, and immunologic findings in patients. Significant genetic associations have been identified and reported, but environmentally induced (including epigenetic) changes are also an important consideration. Immune alterations include a strong interleukin 17 family signature as well as marked expression of these molecules in the eye. Oxidative stress as well as other homeostatic altering mechanisms occur throughout life. With this immune dysregulation there is a rationale for considering immunotherapy. Indeed, immunotherapy has been shown to affect the late stages of AMD. Immune dysregulation appears to be an underlying alteration in AMD, as in other diseases thought to be degenerative and attributable to aging. Para-inflammation and immunosenescence may importantly contribute to the development of disease. The role of complement factor H still needs to be better defined, but in light of its association with ocular inflammatory conditions such as sarcoidosis, it does not appear to be unique to AMD but rather may be a marker for retinal pigment epithelium function. With the strong interleukin 17 family signature and the need to treat early on in the disease process, oral tolerance may be considered to prevent disease progression. Published by Elsevier Inc.

  10. Immune Function and Reactivation of Latent Viruses

    NASA Technical Reports Server (NTRS)

    Butel, Janet S.

    1999-01-01

    A major concern associated with long-duration space flight is the possibility of infectious diseases posing an unacceptable medical risk to crew members. One major hypothesis addressed in this project is that space flight will cause alterations in the immune system that will allow latent viruses that are endogenous in the human population to reactivate and shed to higher levels than normal, which may affect the health of crew members. The second major hypothesis being examined is that the effects of space flight will alter the mucosal immune system, the first line of defense against many microbial infections, including herpesviruses, polyomaviruses, and gastroenteritis viruses, rendering crew members more susceptible to virus infections across the mucosa. We are focusing the virus studies on the human herpesviruses and polyomaviruses, important pathogens known to establish latent infections in most of the human population. Both primary infection and reactivation from latent infection with these groups of viruses (especially certain herpesviruses) can cause a variety of illnesses that result in morbidity and, occasionally, mortality. Both herpesviruses and polyomaviruses have been associated with human cancer, as well. Effective vaccines exist for only one of the eight known human herpesviruses and available antivirals are of limited use. Whereas normal individuals display minimal consequences from latent viral infections, events which alter immune function (such as immunosuppressive therapy following solid organ transplantation) are known to increase the risk of complications as a result of viral reactivations.

  11. The role of cytokines in immune changes induced by spaceflight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Miller, E. S.

    1993-01-01

    It has become apparent that spaceflight alters many immune responses. Among the regulatory components of the immune response that have been shown to be affected by spaceflight is the cytokine network. Spaceflight, as well as model systems of spaceflight, have been shown to affect the production and action of various cytokines including interferons, interleukins, colony stimulating factors, and tumor necrosis factors. These changes have been shown not to involve a general shutdown of the cytokine network but, rather, to involve selective alterations of specific cytokine functions by spaceflight. The full breadth of changes in cytokines induced by spaceflight, as well as mechanisms, duration, adaptation, reversibility, and significance to resistance to infection and neoplastic diseases, remains to be established.

  12. Effect of radon on the immune system: alterations in the cellularity and functions of T cells in lymphoid organs of mouse.

    PubMed

    Nagarkatti, M; Nagarkatti, P S; Brooks, A

    1996-04-19

    Exposure to radon and its progeny induces significant damage to the cells of the respiratory tract and causes lung cancer. Whether a similar exposure to radon would alter the functions of the immune system has not been previously investigated. In the current study, we investigated the effect of exposure of C57BL/6 mice to 1000 or 2500 working-level months (WLM) of radon and its progeny by inhalation, on the number and function of T lymphocytes in lymphoid organs. The control mice received uranium ore dust carrier aerosol by inhalation. Exposure to radon induced marked decrease in the total cellularity of most lymphoid organs such as thymus, peripheral lymph nodes (PLN), and lung-associated lymph nodes (LALN), when compared to the controls. The percentage of T cells increased, while that of non-T cells decreased, in all peripheral lymphoid organs at both the doses of radon. In the thymus, particularly at 2500 WLM of radon exposure, there was a marked decrease in CD4+CD8+ T cells and an increase in the immature CD4-CD8- T cells. Such alterations in both the numbers and percentages of lymphocytes and macrophages in radon-exposed mice may have resulted from the cell killing by the alpha particles as the immune cells were migrating through the lungs, or it may have been caused by altered migration of cells, inasmuch as expression of CD44, a molecule involved in migration and homing of immune cells, was significantly altered on cells found in different lymphoid organs. In the LALN, where one would predict the largest number of damaged cells to be present, there was a significant decrease in the T-cell responsiveness to mitogens while the B-cell response was not affected. Such alterations may have resulted from the direct effect of alpha-particle exposure on the migrating lymphocytes, altered percentage of lymphocytes as seen in secondary lymphoid organs, or altered expression of adhesion molecules involved in cell activation such as CD44 and CD3. Interestingly, radon exposure caused and increase in the T- and B-cell responsiveness to mitogens in the spleen and PLN. Since there is little evidence of direct radiation dose from radon in lymphoid organs, our studies demonstrating immunological alterations suggest an indirect effect of radon exposure that may have significant repercussions on the development of hypersensitivity and increased susceptibility to infections and cancer in the lung.

  13. Immune and genetic gardening of the intestinal microbiome

    PubMed Central

    Jacobs, Jonathan P.; Braun, Jonathan

    2014-01-01

    The mucosal immune system – consisting of adaptive and innate immune cells as well as the epithelium – is profoundly influenced by its microbial environment. There is now growing evidence that the converse is also true, that the immune system shapes the composition of the intestinal microbiome. During conditions of health, this bidirectional interaction achieves a homeostasis in which inappropriate immune responses to nonpathogenic microbes are averted and immune activity suppresses blooms of potentially pathogenic microbes (pathobionts). Genetic alteration in immune/epithelial function can affect host gardening of the intestinal microbiome, contributing to the diversity of intestinal microbiota within a population and in some cases allowing for unfavorable microbial ecologies (dysbiosis) that confer disease susceptibility. PMID:24613921

  14. Immunomodulation of enteric neural function in irritable bowel syndrome.

    PubMed

    O'Malley, Dervla

    2015-06-28

    Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder which is characterised by symptoms such as bloating, altered bowel habit and visceral pain. It's generally accepted that miscommunication between the brain and gut underlies the changes in motility, absorpto-secretory function and pain sensitivity associated with IBS. However, partly due to the lack of disease-defining biomarkers, understanding the aetiology of this complex and multifactorial disease remains elusive. Anecdotally, IBS patients have noted that periods of stress can result in symptom flares and many patients exhibit co-morbid stress-related mood disorders such as anxiety and depression. However, in addition to psychosocial stressors, infection-related stress has also been linked with the initiation, persistence and severity of symptom flares. Indeed, prior gastrointestinal infection is one of the strongest predictors of developing IBS. Despite a lack of overt morphological inflammation, the importance of immune factors in the pathophysiology of IBS is gaining acceptance. Subtle changes in the numbers of mucosal immune cell infiltrates and elevated levels of circulating pro-inflammatory cytokines have been reproducibly demonstrated in IBS populations. Moreover, these immune mediators directly affect neural signalling. An exciting new area of research is the role of luminal microbiota in the modulation of neuro-immune signalling, resulting in local changes in gastrointestinal function and alterations in central neural functioning. Progress in this area has begun to unravel some of the complexities of neuroimmune and neuroendocrine interactions and how these molecular exchanges contribute to GI dysfunction.

  15. Inflammatory cytokines and neurological and neurocognitive alterations in the course of schizophrenia

    PubMed Central

    Fineberg, Anna M.; Ellman, Lauren M.

    2013-01-01

    A growing body of evidence suggests that immune alterations, especially those related to inflammation, are associated with increased risk of schizophrenia and schizophrenia-related brain alterations. Much of this work has focused on the prenatal period, since infections during pregnancy have been repeatedly (albeit inconsistently) linked to risk of schizophrenia. Given that most infections do not cross the placenta, cytokines associated with inflammation (proinflammatory cytokines) have been targeted as potential mediators of the damaging effects of infection on the fetal brain in prenatal studies. Moreover, additional evidence from both human and animal studies suggests links between increased levels of proinflammatory cytokines, immune-related genes, and schizophrenia, as well as brain alterations associated with the disorder. Additional support for the role of altered immune factors in the etiology of schizophrenia comes from neuroimaging studies, which have linked proinflammatory cytokine gene polymorphisms with some of the structural and functional abnormalities repeatedly found in schizophrenia. These findings are reviewed and discussed using a life course perspective, examining the contribution of inflammation from the fetal period to disorder presentation. Unexplored areas and future directions, such as the interplay between inflammation, genes, and individual-level environmental factors (e.g., stress, sleep, and nutrition), are also discussed. PMID:23414821

  16. Immunological hazards from nutritional imbalance in athletes.

    PubMed

    Shephard, R J; Shek, P N

    1998-01-01

    This review examines the influences of nutritional imbalance on immune function of competitive athletes, who may adopt an unusual diet in an attempt to enhance performance. A major increase in body fat can have adverse effects on immune response. In contrast, a negative energy balance and reduction of body mass are likely to impair immune function in an already thin athlete. A moderate increase in polyunsaturated fat enhances immune function, but excessive consumption can be detrimental. Since endurance exercise leads to protein catabolism, an athlete may need 2.0 g/kg protein rather than the 0.7-1.0 g/kg recommended for a sedentary individual. Both sustained exercise and overtraining reduce plasma glutamine levels, which may contribute to suppressed immune function postexercise. A large intake of carbohydrate counters glutamine depletion but may also modify immune responses by altering the secretion of glucose-regulating hormones. Vitamins are important to immune function because of their antioxidant role. However, the clinical benefits of vitamin C supplementation are not enhanced by the use of more complex vitamin mixtures, and excessive vitamin E can have negative effects. Iron, selenium, zinc, calcium, and magnesium ion all influence immune function. Supplements may be required after heavy sweating, but an excessive intake of iron facilitates bacterial growth. In making dietary recommendations to athletes, it is important to recognize that immune response can be jeopardized not only by deficiencies but also by excessive intake of certain nutrients. The goal should be a well-balanced diet.

  17. Genetic Diversity of Toll-Like Receptors and Immunity to M. leprae Infection

    PubMed Central

    Hart, Bryan E.; Tapping, Richard I.

    2012-01-01

    Genetic association studies of leprosy cohorts across the world have identified numerous polymorphisms which alter susceptibility and outcome to infection with Mycobacterium leprae. As expected, many of the polymorphisms reside within genes that encode components of the innate and adaptive immune system. Despite the preponderance of these studies, our understanding of the mechanisms that underlie these genetic associations remains sparse. Toll-like receptors (TLRs) have emerged as an essential family of innate immune pattern recognition receptors which play a pivotal role in host defense against microbes, including pathogenic strains of mycobacteria. This paper will highlight studies which have uncovered the association of specific TLR gene polymorphisms with leprosy or tuberculosis: two important diseases resulting from mycobacterial infection. This analysis will focus on the potential influence these polymorphic variants have on TLR expression and function and how altered TLR recognition or signaling may contribute to successful antimycobacterial immunity. PMID:22529866

  18. Altered Immune Function Associated with Disordered Neural Connectivity and Executive Dysfunctions: A Neurophysiological Study on Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Han, Yvonne M. Y.; Chan, Agnes S.; Sze, Sophia L.; Cheung, Mei-Chun; Wong, Chun-kwok; Lam, Joseph M. K.; Poon, Priscilla M. K.

    2013-01-01

    Previous studies have shown that children with autism spectrum disorders (ASDs) have impaired executive function, disordered neural connectivity, and abnormal immunologic function. The present study examined whether these abnormalities were associated. Seventeen high-functioning (HFA) and 17 low-functioning (LFA) children with ASD, aged 8-17…

  19. "TRP inflammation" relationship in cardiovascular system.

    PubMed

    Numata, Tomohiro; Takahashi, Kiriko; Inoue, Ryuji

    2016-05-01

    Despite considerable advances in the research and treatment, the precise relationship between inflammation and cardiovascular (CV) disease remains incompletely understood. Therefore, understanding the immunoinflammatory processes underlying the initiation, progression, and exacerbation of many cardiovascular diseases is of prime importance. The innate immune system has an ancient origin and is well conserved across species. Its activation occurs in response to pathogens or tissue injury. Recent studies suggest that altered ionic balance, and production of noxious gaseous mediators link to immune and inflammatory responses with altered ion channel expression and function. Among plausible candidates for this are transient receptor potential (TRP) channels that function as polymodal sensors and scaffolding proteins involved in many physiological and pathological processes. In this review, we will first focus on the relevance of TRP channel to both exogenous and endogenous factors related to innate immune response and transcription factors related to sustained inflammatory status. The emerging role of inflammasome to regulate innate immunity and its possible connection to TRP channels will also be discussed. Secondly, we will discuss about the linkage of TRP channels to inflammatory CV diseases, from a viewpoint of inflammation in a general sense which is not restricted to the innate immunity. These knowledge may serve to provide new insights into the pathogenesis of various inflammatory CV diseases and their novel therapeutic strategies.

  20. Immunotoxicity of trenbolone acetate in Japanese quail

    USGS Publications Warehouse

    Quinn, M.J.; McKernan, M.; Lavoie, E.T.; Ottinger, M.A.

    2007-01-01

    Trenbolone acetate is a synthetic androgen that is currently used as a growth promoter in many meat-exporting countries. Despite industry laboratories classifying trenbolone as nonteratogenic, data showed that embryonic exposure to this androgenic chemical altered development of the immune system in Japanese quail. Trenbolone is lipophilic, persistent, and released into the environment in manure used as soil fertilizer. This is the first study to date to assess this chemical's immunotoxic effects in an avian species. A one-time injection of trenbolone into yolks was administered to mimic maternal deposition, and subsequent effects on the development and function of the immune system were determined in chicks and adults. Development of the bursa of Fabricius, an organ responsible for development of the humoral arm of the immune system, was disrupted, as indicated by lower masse, and smaller and fewer follicles at day 1 of hatch. Morphological differences in the bursas persisted in adults, although no differences in either two measures of immune function were observed. Total numbers of circulating leukocytes were reduced and heterophil-lymphocyte ratios were elevated in chicks but not adults. This study shows that trenbolone acetate is teratogenic and immunotoxic in Japanese quail, and provides evidence that the quail immune system may be fairly resilient to embryonic endocrine-disrupting chemical-induced alterations following no further exposure posthatch.

  1. Toll Mediated Infection Response Is Altered by Gravity and Spaceflight in Drosophila

    PubMed Central

    Taylor, Katherine; Kleinhesselink, Kurt; George, Michael D.; Morgan, Rachel; Smallwood, Tangi; Hammonds, Ann S.; Fuller, Patrick M.; Saelao, Perot; Alley, Jeff; Gibbs, Allen G.; Hoshizaki, Deborah K.; von Kalm, Laurence; Fuller, Charles A.; Beckingham, Kathleen M.; Kimbrell, Deborah A.

    2014-01-01

    Space travel presents unlimited opportunities for exploration and discovery, but requires better understanding of the biological consequences of long-term exposure to spaceflight. Immune function in particular is relevant for space travel. Human immune responses are weakened in space, with increased vulnerability to opportunistic infections and immune-related conditions. In addition, microorganisms can become more virulent in space, causing further challenges to health. To understand these issues better and to contribute to design of effective countermeasures, we used the Drosophila model of innate immunity to study immune responses in both hypergravity and spaceflight. Focusing on infections mediated through the conserved Toll and Imd signaling pathways, we found that hypergravity improves resistance to Toll-mediated fungal infections except in a known gravitaxis mutant of the yuri gagarin gene. These results led to the first spaceflight project on Drosophila immunity, in which flies that developed to adulthood in microgravity were assessed for immune responses by transcription profiling on return to Earth. Spaceflight alone altered transcription, producing activation of the heat shock stress system. Space flies subsequently infected by fungus failed to activate the Toll pathway. In contrast, bacterial infection produced normal activation of the Imd pathway. We speculate on possible linkage between functional Toll signaling and the heat shock chaperone system. Our major findings are that hypergravity and spaceflight have opposing effects, and that spaceflight produces stress-related transcriptional responses and results in a specific inability to mount a Toll-mediated infection response. PMID:24475130

  2. Jet fuel-induced immunotoxicity.

    PubMed

    Harris, D T; Sakiestewa, D; Titone, D; Robledo, R F; Young, R S; Witten, M

    2000-09-01

    Chronic exposure to jet fuel has been shown to cause human liver dysfunction, emotional dysfunction, abnormal electroencephalograms, shortened attention spans, and to decrease sensorimotor speed (3-5). Exposure to potential environmental toxicants such as jet fuel may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.), e.g., the immune system. Significant changes in immune function, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed 1 h/day for 7 days to a 1000-mg/m3 concentration of aerosolized jet fuel obtained from various sources (JP-8, JP-8+100 and Jet A1) and of differing compositions to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on the immune system. It was observed that exposure to all jet fuel sources examined had detrimental effects on the immune system. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in differential losses of immune cell populations in the thymus. Further, jet fuel exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low-concentration exposure of mice to aerosolized jet fuel, regardless of source or composition, caused significant deleterious effects on the immune system.

  3. Altered energy production, lowered antioxidant potential, and inflammatory processes mediate CNS damage associated with abuse of the psychostimulants MDMA and methamphetamine

    PubMed Central

    Downey, Luke A.; Loftis, Jennifer M.

    2014-01-01

    Central nervous system (CNS) damage associated with psychostimulant dependence may be an ongoing, degenerative process with adverse effects on neuropsychiatric function. However, the molecular mechanisms regarding how altered energy regulation affects immune response in the context of substance use disorders are not fully understood. This review summarizes the current evidence regarding the effects of psychostimulant [particularly 3,4-methylenedioxy-N-methylamphetamine (MDMA) and methamphetamine] exposure on brain energy regulation, immune response, and neuropsychiatric function. Importantly, the neuropsychiatric impairments (e.g., cognitive deficits, depression, and anxiety) that persist following abstinence are associated with poorer treatment outcomes – increased relapse rates, lower treatment retention rates, and reduced daily functioning. Qualifying the molecular changes within the CNS according to the exposure and use patterns of specifically abused substances should inform the development of new therapeutic approaches for addiction treatment. PMID:24485894

  4. Altered energy production, lowered antioxidant potential, and inflammatory processes mediate CNS damage associated with abuse of the psychostimulants MDMA and methamphetamine.

    PubMed

    Downey, Luke A; Loftis, Jennifer M

    2014-03-15

    Central nervous system (CNS) damage associated with psychostimulant dependence may be an ongoing, degenerative process with adverse effects on neuropsychiatric function. However, the molecular mechanisms regarding how altered energy regulation affects immune response in the context of substance use disorders are not fully understood. This review summarizes the current evidence regarding the effects of psychostimulant [particularly 3,4-methylenedioxy-N-methylamphetamine (MDMA) and methamphetamine] exposure on brain energy regulation, immune response, and neuropsychiatric function. Importantly, the neuropsychiatric impairments (e.g., cognitive deficits, depression, and anxiety) that persist following abstinence are associated with poorer treatment outcomes - increased relapse rates, lower treatment retention rates, and reduced daily functioning. Qualifying the molecular changes within the CNS according to the exposure and use patterns of specifically abused substances should inform the development of new therapeutic approaches for addiction treatment. Published by Elsevier B.V.

  5. The Role of Innate and Adaptive Immunity in Parkinson's Disease

    PubMed Central

    Kannarkat, George T.; Boss, Jeremy M.; Tansey, Malú G.

    2014-01-01

    In recent years, inflammation has become implicated as a major pathogenic factor in the onset and progression of Parkinson's disease. Understanding the precise role for inflammation in PD will likely lead to understanding of how sporadic disease arises. In vivo evidence for inflammation in PD includes microglial activation, increased expression of inflammatory genes in the periphery and in the central nervous system (CNS), infiltration of peripheral immune cells into the CNS, and altered composition and phenotype of peripheral immune cells. These findings are recapitulated in various animal models of PD and are reviewed herein. Furthermore, we examine the potential relevance of PD-linked genetic mutations to altered immune function and the extent to which environmental exposures that recapitulate these phenotypes, which may lead to sporadic PD through similar mechanisms. Given the implications of immune system involvement on disease progression, we conclude by reviewing the evidence supporting the potential efficacy of immunomodulatory therapies in PD prevention or treatment. There is a clear need for additional research to clarify the role of immunity and inflammation in this chronic, neurodegenerative disease. PMID:24275605

  6. The effects of electroshock on immune function and disease progression in juvenile spring chinook salmon

    USGS Publications Warehouse

    VanderKooi, S.P.; Maule, A.G.; Schreck, C.B.

    2001-01-01

    Although much is known about the effects of electroshock on fish physiology, consequences to the immune system and disease progression have not received attention. Our objectives were to determine the effects of electroshock on selected immune function in juvenile spring chinook salmon Oncorhynchus tshawytscha, the mechanism of any observed alteration, and the effects of electroshock on disease progression. We found that the ability of anterior kidney leukocytes to generate antibody-producing cells (APC) was suppressed 3 h after a pulsed-DC electroshock (300 V, 50 Hz, 8 ms pulse width) but recovered within 24 h. This response was similar in timing and magnitude to that of fish subjected to an acute handling stress. The mechanism of suppression is hypothesized to be via an elevation of plasma cortisol concentrations in response to stress. Other monitored immune functions, skin mucous lysozyme levels, and respiratory burst activity were not affected by exposure to electroshock. The progression of a Renibacterium salmoninarum (RS) infection may have been altered after exposure to an electroshock. The electroshock did not affect infection severity or the number of mortalities, but may have accelerated the time to death. The limited duration of APC suppression and lack of effects on lysozyme and respiratory burst, as well as infection severity and mortality levels in RS-infected fish, led us to conclude that electrofishing under the conditions we tested is a safe procedure in regards to immunity and disease.

  7. Ly49 Receptors: Innate and Adaptive Immune Paradigms

    PubMed Central

    Rahim, Mir Munir A.; Tu, Megan M.; Mahmoud, Ahmad Bakur; Wight, Andrew; Abou-Samra, Elias; Lima, Patricia D. A.; Makrigiannis, Andrew P.

    2014-01-01

    The Ly49 receptors are type II C-type lectin-like membrane glycoproteins encoded by a family of highly polymorphic and polygenic genes within the mouse natural killer (NK) gene complex. This gene family is designated Klra, and includes genes that encode both inhibitory and activating Ly49 receptors in mice. Ly49 receptors recognize class I major histocompatibility complex-I (MHC-I) and MHC-I-like proteins on normal as well as altered cells. Their functional homologs in humans are the killer cell immunoglobulin-like receptors, which recognize HLA class I molecules as ligands. Classically, Ly49 receptors are described as being expressed on both the developing and mature NK cells. The inhibitory Ly49 receptors are involved in NK cell education, a process in which NK cells acquire function and tolerance toward cells that express “self-MHC-I.” On the other hand, the activating Ly49 receptors recognize altered cells expressing activating ligands. New evidence shows a broader Ly49 expression pattern on both innate and adaptive immune cells. Ly49 receptors have been described on multiple NK cell subsets, such as uterine NK and memory NK cells, as well as NKT cells, dendritic cells, plasmacytoid dendritic cells, macrophages, neutrophils, and cells of the adaptive immune system, such as activated T cells and regulatory CD8+ T cells. In this review, we discuss the expression pattern and proposed functions of Ly49 receptors on various immune cells and their contribution to immunity. PMID:24765094

  8. Sex hormones and the genesis of autoimmunity.

    PubMed

    Ackerman, Lindsay S

    2006-03-01

    The sexually dimorphic prevalence of autoimmune disease remains one of the most intriguing clinical observations among this group of disorders. While sex hormones have long been recognized for their roles in reproductive functions, within the past 2 decades scientists have found that sex hormones are integral signaling modulators of the mammalian immune system. Sex hormones have definitive roles in lymphocyte maturation, activation, and synthesis of antibodies and cytokines. Sex hormone expression is altered among patients with autoimmune disease, and this variation of expression contributes to immune dysregulation. English-language literature from the last 10 years was reviewed to examine the relationship between sex hormones and the function of the mammalian immune system. Approximately 50 publications were included in this review, and the majority were controlled trials with investigator blinding that compared both male and female diseased and normal subjects. The review provided basic knowledge regarding the broad impact of sex hormones on the immune system and how abnormal sex hormone expression contributes to the development and maintenance of autoimmune phenomena, with a focus on systemic lupus erythematosus, as models of "lupus-prone" mice are readily available. Sex hormones affect the function of the mammalian immune system, and sex hormone expression is different in patients with systemic lupus erythematosus than in healthy subjects. Sex hormones play a role in the genesis of autoimmunity. Future research may provide a therapeutic approach that is capable of altering disease pathogenesis, rather than targeting disease sequelae.

  9. Do all roads lead to Rome? The role of neuro-immune interactions before birth in the programming of offspring obesity

    PubMed Central

    Jasoni, Christine L.; Sanders, Tessa R.; Kim, Dong Won

    2015-01-01

    The functions of the nervous system can be powerfully modulated by the immune system. Although traditionally considered to be quite separate, neuro-immune interactions are increasingly recognized as critical for both normal and pathological nervous system function in the adult. However, a growing body of information supports a critical role for neuro-immune interactions before birth, particularly in the prenatal programming of later-life neurobehavioral disease risk. This review will focus on maternal obesity, as it represents an environment of pathological immune system function during pregnancy that elevates offspring neurobehavioral disease risk. We will first delineate the normal role of the immune system during pregnancy, including the role of the placenta as both a barrier and relayer of inflammatory information between the maternal and fetal environments. This will be followed by the current exciting findings of how immuno-modulatory molecules may elevate offspring risk of neurobehavioral disease by altering brain development and, consequently, later life function. Finally, by drawing parallels with pregnancy complications other than obesity, we will suggest that aberrant immune activation, irrespective of its origin, may lead to neuro-immune interactions that otherwise would not exist in the developing brain. These interactions could conceivably derail normal brain development and/or later life function, and thereby elevate risk for obesity and other neurobehavioral disorders later in the offspring's life. PMID:25691854

  10. Epigenetic Regulation of Non-Lymphoid Cells by Bisphenol A, a Model Endocrine Disrupter: Potential Implications for Immunoregulation

    PubMed Central

    Khan, Deena; Ahmed, S. Ansar

    2015-01-01

    Endocrine disrupting chemicals (EDC) abound in the environment since many compounds are released from chemical, agricultural, pharmaceutical, and consumer product industries. Many of the EDCs such as Bisphenol A (BPA) have estrogenic activity or interfere with endogenous sex hormones. Experimental studies have reported a positive correlation of BPA with reproductive toxicity, altered growth, and immune dysregulation. Although the precise relevance of these studies to the environmental levels is unclear, nevertheless, their potential health implications remain a concern. One possible mechanism by which BPA can alter genes is by regulating epigenetics, including microRNA, alteration of methylation, and histone acetylation. There is now wealth of information on BPA effects on non-lymphoid cells and by comparison, paucity of data on effects of BPA on the immune system. In this mini review, we will highlight the BPA regulation of estrogen receptor-mediated immune cell functions and in different inflammatory conditions. In addition, BPA-mediated epigenetic regulation of non-lymphoid cells is emphasized. We recognize that most of these studies are on non-lymphoid cells, and given that BPA also affects the immune system, it is plausible that BPA could have similar epigenetic regulation in immune cells. It is hoped that this review will stimulate studies in this area to ascertain whether or not BPA epigenetically regulates the cells of the immune system. PMID:26097467

  11. Risk of Crew Adverse Health Event Due to Altered Immune Response

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Kunz, Hawley; Sams, Clarence F.

    2015-01-01

    Determining the effect of space travel on the human immune system has proven to be extremely challenging. Limited opportunities for in-flight studies, varying mission durations, technical and logistical obstacles, small subject numbers, and a broad range of potential assays have contributed to this problem. Additionally, the inherent complexity of the immune system, with its vast array of cell populations, sub-populations, diverse regulatory molecules, and broad interactions with other physiological systems, makes determining precise variables to measure very difficult. There is also the challenge of determining the clinical significance of any observed immune alterations. Will such a change lead to disease, or is it a transient subclinical observation related to short-term stress? The effect of this problem may be observed by scanning publications associated with immunity and spaceflight, which began to appear during the 1970s. Although individually they are each valid studies, the comprehensive literature to date suffers from widely varying sampling methods and assay techniques, low subject counts, and sometimes a disparate focus on narrow aspects of immunity. The most clinically relevant data are derived from in-flight human studies, which have demonstrated altered cell-mediated immunity and reactivation of latent herpes viruses. Much more data are available from post-flight testing of humans, with clear evidence of altered cytokine production patterns, altered leukocyte distribution, continued latent viral reactivation, and evidence of dramatically altered virus-specific immunity. It is unknown if post-flight assessments relate to the in-flight condition or are a response to landing stress and readaptation. In-flight culture of cells has clearly demonstrated that immune cells are gravity-sensitive and display altered functional characteristics. It is unknown if these data are related to in vivo immune cell function or are an artifact of microgravity culture. Ground analog testing of humans and animals, as well as microgravity-analog cell culture, has demonstrated utility. However, in all cases, it is not known with certainty if these data would reflect similar testing during space travel. Given their ready availability, ground analogs may be extremely useful for assay development and the evaluation of potential countermeasures. In general, the evidence base suffers from widely disparate studies on small numbers of subjects that do not directly correlate well with each other or spaceflight itself. Also lacking are investigations of the effect of gender on adaption to spaceflight. This results in significant knowledge 'gaps' that must be filled by future studies to completely determine any clinical risk related to immunity for human exploration-class space missions. These gaps include a significant lack of in-flight data, particularly during long-duration space missions. The International Space Station represents an excellent science platform with which to address this knowledge gap. Other knowledge gaps include lack of a single validated ground analog for the phenomenon and a lack of flight-compatible laboratory equipment capable of monitoring astronauts (for either clinical or research purposes). However, enough significant data exist, as described in this manuscript, to warrant addressing this phenomenon during the utilization phase of the ISS. A recent Space Shuttle investigation has confirmed the 31 in-flight nature of immune dysregulation, demonstrating that it is not merely a post-flight phenomenon. Several current studies are ongoing onboard the ISS that should thoroughly characterize the phenomenon. NASA recognizes that if spaceflight-associated immune dysregulation persists during exploration flights in conjunction with other dangers, such as high-energy radiation, the result may be a significant clinical risk. This emphasizes the need for a continued integrated comprehensive approach to determining the effect of prolonged spaceflight, separated from transient launch and landing stresses, on human immunity. After such studies, the phenomenon will be understood, and, hopefully, a monitoring strategy will have been developed that could be used to monitor the effectiveness of countermeasure

  12. Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells.

    PubMed

    Gardiner, Erin J; Cairns, Murray J; Liu, Bing; Beveridge, Natalie J; Carr, Vaughan; Kelly, Brian; Scott, Rodney J; Tooney, Paul A

    2013-04-01

    Peripheral blood mononuclear cells (PBMCs) represent an accessible tissue source for gene expression profiling in schizophrenia that could provide insight into the molecular basis of the disorder. This study used the Illumina HT_12 microarray platform and quantitative real time PCR (QPCR) to perform mRNA expression profiling on 114 patients with schizophrenia or schizoaffective disorder and 80 non-psychiatric controls from the Australian Schizophrenia Research Bank (ASRB). Differential expression analysis revealed altered expression of 164 genes (59 up-regulated and 105 down-regulated) in the PBMCs from patients with schizophrenia compared to controls. Bioinformatic analysis indicated significant enrichment of differentially expressed genes known to be involved or associated with immune function and regulating the immune response. The differential expression of 6 genes, EIF2C2 (Ago 2), MEF2D, EVL, PI3, S100A12 and DEFA4 was confirmed by QPCR. Genome-wide expression analysis of PBMCs from individuals with schizophrenia was characterized by the alteration of genes with immune system function, supporting the hypothesis that the disorder has a significant immunological component in its etiology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Embracing the gut microbiota: the new frontier for inflammatory and infectious diseases

    PubMed Central

    van den Elsen, Lieke WJ; Poyntz, Hazel C; Weyrich, Laura S; Young, Wayne; Forbes-Blom, Elizabeth E

    2017-01-01

    The gut microbiota provides essential signals for the development and appropriate function of the immune system. Through this critical contribution to immune fitness, the gut microbiota has a key role in health and disease. Recent advances in the technological applications to study microbial communities and their functions have contributed to a rapid increase in host–microbiota research. Although it still remains difficult to define a so-called ‘normal' or ‘healthy' microbial composition, alterations in the gut microbiota have been shown to influence the susceptibility of the host to different diseases. Current translational research combined with recent technological and computational advances have enabled in-depth study of the link between microbial composition and immune function, addressing the interplay between the gut microbiota and immune responses. As such, beneficial modulation of the gut microbiota is a promising clinical target for many prevalent diseases including inflammatory bowel disease, metabolic abnormalities such as obesity, reduced insulin sensitivity and low-grade inflammation, allergy and protective immunity against infections. PMID:28197336

  14. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID.

    PubMed

    Sauer, Aisha V; Brigida, Immacolata; Carriglio, Nicola; Hernandez, Raisa Jofra; Scaramuzza, Samantha; Clavenna, Daniela; Sanvito, Francesca; Poliani, Pietro L; Gagliani, Nicola; Carlucci, Filippo; Tabucchi, Antonella; Roncarolo, Maria Grazia; Traggiai, Elisabetta; Villa, Anna; Aiuti, Alessandro

    2012-02-09

    Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)-mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA-treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA(-/-) Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA-treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA-treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID.

  15. Probiotics Improve Inflammation-Associated Sickness Behavior by Altering Communication between the Peripheral Immune System and the Brain.

    PubMed

    D'Mello, Charlotte; Ronaghan, Natalie; Zaheer, Raza; Dicay, Michael; Le, Tai; MacNaughton, Wallace K; Surrette, Michael G; Swain, Mark G

    2015-07-29

    Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how the immune system signals the brain to alter brain function. These findings broaden our understanding of how probiotics may beneficially affect brain function in the context of inflammation occurring within the body and may open potential new therapeutic alternatives for the treatment of these alterations in behavior that can greatly affect patient quality of life. Copyright © 2015 the authors 0270-6474/15/3510822-10$15.00/0.

  16. Amitriptyline Usage Exacerbates the Immune Suppression Following Burn Injury.

    PubMed

    Johnson, Bobby L; Rice, Teresa C; Xia, Brent T; Boone, Kirsten I; Green, Ellis A; Gulbins, Erich; Caldwell, Charles C

    2016-11-01

    Currently, over 10% of the US population is taking antidepressants. Numerous antidepressants such as amitriptyline are known to inhibit acid sphingomyelinase (Asm), an enzyme that is known to mediate leukocyte function and homeostasis. Severe burn injury can lead to an immunosuppressive state that is characterized by decreased leukocyte function and numbers as well as increased susceptibility to infection. Based upon the intersection of these facts, we hypothesized that amitriptyline-treated, scald-injured mice would have an altered immune response to injury as compared with untreated scald mice. Prior to burn, mice were pretreated with amitriptyline. Drug- or saline-treated mice were subjected full thickness dorsal scald- or sham-injury. Immune cells from spleen, thymus, and bone marrow were subsequently harvested and characterized. We first observed that amitriptyline prior to burn injury increased body mass loss and spleen contraction. Both amitriptylinetreatment and burn injury resulted in a 40% decrease of leukocyte Asm activity. Following scald injury, we demonstrate increased reduction of lymphocyte precursors in the bone marrow and thymus, as well as mature leukocytes in the spleen in mice that were treated with amitriptyline. We also demonstrate that amitriptyline treatment prior to injury reduced neutrophil accumulation following peptidoglycan stimulus in scald-injured mice. These data show that Asm alterations can play a significant role in mediating alterations to the immune system after injury. The data further suggest that those taking antidepressants may be at a higher risk for complications following burn injury.

  17. Quantitative, Phenotypical, and Functional Characterization of Cellular Immunity in Children and Adolescents With Down Syndrome.

    PubMed

    Schoch, Justine; Rohrer, Tilman R; Kaestner, Michael; Abdul-Khaliq, Hashim; Gortner, Ludwig; Sester, Urban; Sester, Martina; Schmidt, Tina

    2017-05-15

    Infections and autoimmune disorders are more frequent in Down syndrome, suggesting abnormality of adaptive immunity. Although the role of B cells and antibodies is well characterized, knowledge regarding T cells is limited. Lymphocyte subpopulations of 40 children and adolescents with Down syndrome and 51 controls were quantified, and phenotype and functionality of antigen-specific effector T cells were analyzed with flow cytometry after polyclonal and pathogen-specific stimulation (with varicella-zoster virus [VZV] and cytomegalovirus [CMV]). Results were correlated with immunoglobulin (Ig) G responses. Apart from general alterations in the percentage of lymphocytes, regulatory T cells, and T-helper 1 and 17 cells, all major T-cell subpopulations showed higher expression of the inhibitory receptor PD-1. Polyclonally stimulated effector CD4+ T-cell frequencies were significantly higher in subjects with Down syndrome, whereas their inhibitory receptor expression (programmed cell death 1 [PD-1] and cytotoxic T-lymphocyte antigen 4 [CTLA-4]) was similar to that of controls and cytokine expression profiles were only marginally altered. Pathogen-specific immunity showed age-appropriate levels of endemic infection, with correlation of CMV-specific cellular and humoral immunity in all subjects. Among VZV IgG-positive individuals, a higher percentage of VZV-specific T-cell-positive subjects was seen in those with Down syndrome. Despite alterations in lymphocyte subpopulations, individuals with Down syndrome can mount effector T-cell responses with similar phenotype and functionality as controls but may require higher effector T-cell frequencies to ensure pathogen control. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  18. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity.

    PubMed

    Tauber, Svantje; Lauber, Beatrice A; Paulsen, Katrin; Layer, Liliana E; Lehmann, Martin; Hauschild, Swantje; Shepherd, Naomi R; Polzer, Jennifer; Segerer, Jürgen; Thiel, Cora S; Ullrich, Oliver

    2017-01-01

    The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC-TOF-MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface-bound fucose. The reduced ICAM-1 expression and the loss of cell surface-bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non-significant cytoskeletal alterations represent a stable "steady state" after adaptive processes are initiated in the new microgravity environment. Due to the utmost importance of the human macrophage system for the elimination of pathogens and the clearance of apoptotic cells, its apparent robustness to a low gravity environment is crucial for human health and performance during long-term space missions.

  19. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity

    PubMed Central

    Tauber, Svantje; Lauber, Beatrice A.; Paulsen, Katrin; Layer, Liliana E.; Lehmann, Martin; Hauschild, Swantje; Shepherd, Naomi R.; Polzer, Jennifer; Segerer, Jürgen; Thiel, Cora S.

    2017-01-01

    The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC–TOF–MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface–bound fucose. The reduced ICAM-1 expression and the loss of cell surface–bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non-significant cytoskeletal alterations represent a stable “steady state” after adaptive processes are initiated in the new microgravity environment. Due to the utmost importance of the human macrophage system for the elimination of pathogens and the clearance of apoptotic cells, its apparent robustness to a low gravity environment is crucial for human health and performance during long-term space missions. PMID:28419128

  20. Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress.

    PubMed

    Bharwani, Aadil; Mian, M Firoz; Surette, Michael G; Bienenstock, John; Forsythe, Paul

    2017-01-11

    Stress-related disorders involve systemic alterations, including disruption of the intestinal microbial community. Given the putative connections between the microbiota, immunity, neural function, and behaviour, we investigated the potential for microbe-induced gut-to-brain signalling to modulate the impact of stress on host behaviour and immunoregulation. Male C57BL/6 mice treated orally over 28 days with either Lactobacillus rhamnosus (JB-1) ™ or vehicle were subjected to chronic social defeat and assessed for alterations in behaviour and immune cell phenotype. 16S rRNA sequencing and mass spectrometry were employed to analyse the faecal microbial community and metabolite profile. Treatment with JB-1 decreased stress-induced anxiety-like behaviour and prevented deficits in social interaction with conspecifics. However, JB-1 did not alter development of aggressor avoidance following social defeat. Microbial treatment attenuated stress-related activation of dendritic cells while increasing IL-10+ regulatory T cells. Furthermore, JB-1 modulated the effect of stress on faecal metabolites with neuroactive and immunomodulatory properties. Exposure to social defeat altered faecal microbial community composition and reduced species richness and diversity, none of which was prevented by JB-1. Stress-related microbiota disruptions persisted in vehicle-treated mice for 3 weeks following stressor cessation. These data demonstrate that despite the complexity of the gut microbiota, exposure to a single microbial strain can protect against certain stress-induced behaviours and systemic immune alterations without preventing dysbiosis. This work supports microbe-based interventions for stress-related disorders.

  1. Immune remodeling: lessons from repertoire alterations during chronological aging and in immune-mediated disease.

    PubMed

    Vallejo, Abbe N

    2007-03-01

    Immunological studies of aging and of patients with chronic immune-mediated diseases document overlap of immune phenotypes. Here, the term "immune remodeling" refers to these phenotypes that are indicative of biological processes of deterioration and repair. This concept is explored through lessons from studies about the changes in the T-cell repertoire and the functional diversity of otherwise oligoclonal, senescent T cells. Immune remodeling suggests a gradual process that occurs throughout life. However, similar but more drastic remodeling occurs disproportionately among young patients with chronic disease. In this article, I propose that immune remodeling is a beneficial adaptation of aging to promote healthy survival beyond reproductive performance, but acute remodeling poses risk of premature exhaustion of the immune repertoire and, thus, is detrimental in young individuals.

  2. Health Effects in Fish of Long-Term Exposure to Effluents from Wastewater Treatment Works

    PubMed Central

    Liney, Katherine E.; Hagger, Josephine A.; Tyler, Charles R.; Depledge, Michael H.; Galloway, Tamara S.; Jobling, Susan

    2006-01-01

    Concern has been raised in recent years that exposure to wastewater treatment effluents containing estrogenic chemicals can disrupt the endocrine functioning of riverine fish and cause permanent alterations in the structure and function of the reproductive system. Reproductive disorders may not necessarily arise as a result of estrogenic effects alone, and there is a need for a better understanding of the relative importance of endocrine disruption in relation to other forms of toxicity. Here, the integrated health effects of long-term effluent exposure are reported (reproductive, endocrine, immune, genotoxic, nephrotoxic). Early life-stage roach, Rutilus rutilus, were exposed for 300 days to treated wastewater effluent at concentrations of 0, 15.2, 34.8, and 78.7% (with dechlorinated tap water as diluent). Concentrations of treated effluents that induced feminization of male roach, measured as vitellogenin induction and histological alteration to gonads, also caused statistically significant alterations in kidney development (tubule diameter), modulated immune function (differential cell count, total number of thrombocytes), and caused genotoxic damage (micronucleus induction and single-strand breaks in gill and blood cells). Genotoxic and immunotoxic effects occurred at concentrations of wastewater effluent lower than those required to induce recognizable changes in the structure and function of the reproductive endocrine system. These findings emphasize the need for multiple biological end points in tests that assess the potential health effects of wastewater effluents. They also suggest that for some effluents, genotoxic and immune end points may be more sensitive than estrogenic (endocrine-mediated) end points as indicators of exposure in fish. PMID:16818251

  3. “Listening” and “talking” to neurons: Implications of immune activation for pain control and increasing the efficacy of opioids

    PubMed Central

    Watkins, Linda R.; Hutchinson, Mark R.; Milligan, Erin D.; Maier, Steven F.

    2008-01-01

    It is recently become clear that activated immune cells and immune-like glial cells can dramatically alter neuronal function. By increasing neuronal excitability, these non-neuronal cells are now implicated in the creation and maintenance of pathological pain, such as occurs in response to peripheral nerve injury. Such effects are exerted at multiple sites along the pain pathway, including at peripheral nerves, dorsal root ganglia, and spinal cord. In addition, activated glial cells are now recognized as disrupting the pain suppressive effects of opioid drugs and contributing to opioid tolerance and opioid dependence/withdrawal. While this review focuses on regulation of pain and opioid actions, such immune-neuronal interactions are broad in their implications. Such changes in neuronal function would be expected to occur wherever immune-derived substances come in close contact with neurons. PMID:17706291

  4. [Researches in immunological responses after burn injury in China].

    PubMed

    Peng, Dai-zhi

    2008-10-01

    For five decades it has been recognized that severe burn injury may precipitate in marked alterations in immune function, resulting in life-threatening systemic infections, sepsis, multiple organ failure, and even death. Extensive and deep burns exert widespread and profound impacts on various cells and molecules of the immune system. The general characteristics of abnormal immune responses following major burns are hyperinflammatory response and hypoimmune response of innate and adaptive immunity. These are recognized as postburn immune dysfunction (PID). The stress reaction, massive necrotic tissue, shock, infection, malnutrition and various therapeutic procedures after burns alter the microenvironment of the immune cells and molecules in which they reside, and consequently result in the changes in immune cells and their secretions in quantity and/or activity, and also aberrant signal transduction in different immune cells. These events constitute the cellular and molecular bases in the pathogenesis of PID. The main clinical consequences of PID include tissue damages and increased susceptibility to opportunistic pathogens caused by refractory inflammation and suppressed adaptive immunity. In order to decrease the morbidity of these lethal complications, efforts to improve the immune dysfunction after burn injury have been made not only at the integral level of etiological factors, but also at the cellular and molecular levels of its mechanisms. In this review, all these above-mentioned aspects of PID are comprehensively discussed.

  5. The immune system in children with malnutrition--a systematic review.

    PubMed

    Rytter, Maren Johanne Heilskov; Kolte, Lilian; Briend, André; Friis, Henrik; Christensen, Vibeke Brix

    2014-01-01

    Malnourished children have increased risk of dying, with most deaths caused by infectious diseases. One mechanism behind this may be impaired immune function. However, this immune deficiency of malnutrition has not previously been systematically reviewed. To review the scientific literature about immune function in children with malnutrition. A systematic literature search was done in PubMed, and additional articles identified in reference lists and by correspondence with experts in the field. The inclusion criteria were studies investigating immune parameters in children aged 1-60 months, in relation to malnutrition, defined as wasting, underweight, stunting, or oedematous malnutrition. The literature search yielded 3402 articles, of which 245 met the inclusion criteria. Most were published between 1970 and 1990, and only 33 after 2003. Malnutrition is associated with impaired gut-barrier function, reduced exocrine secretion of protective substances, and low levels of plasma complement. Lymphatic tissue, particularly the thymus, undergoes atrophy, and delayed-type hypersensitivity responses are reduced. Levels of antibodies produced after vaccination are reduced in severely malnourished children, but intact in moderate malnutrition. Cytokine patterns are skewed towards a Th2-response. Other immune parameters seem intact or elevated: leukocyte and lymphocyte counts are unaffected, and levels of immunoglobulins, particularly immunoglobulin A, are high. The acute phase response appears intact, and sometimes present in the absence of clinical infection. Limitations to the studies include their observational and often cross-sectional design and frequent confounding by infections in the children studied. The immunological alterations associated with malnutrition in children may contribute to increased mortality. However, the underlying mechanisms are still inadequately understood, as well as why different types of malnutrition are associated with different immunological alterations. Better designed prospective studies are needed, based on current understanding of immunology and with state-of-the-art methods.

  6. Arsenic Compromises Conducting Airway Epithelial Barrier Properties in Primary Mouse and Immortalized Human Cell Cultures

    PubMed Central

    Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2013-01-01

    Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408

  7. The Emerging Role of Epigenetics in Inflammation and Immunometabolism.

    PubMed

    Raghuraman, Sukanya; Donkin, Ida; Versteyhe, Soetkin; Barrès, Romain; Simar, David

    2016-11-01

    Recent research developments have shed light on the risk factors contributing to metabolic complications, implicating both genetic and environmental factors, potentially integrated by epigenetic mechanisms. Distinct epigenetic changes in immune cells are frequently observed in obesity and type 2 diabetes mellitus, and these are associated with alterations in the phenotype, function, and trafficking patterns of these cells. The first step in the development of effective therapeutic strategies is the identification of distinct epigenetic signatures associated with metabolic disorders. In this review we provide an overview of the epigenetic mechanisms influencing immune cell phenotype and function, summarize current knowledge about epigenetic changes affecting immune functions in the context of metabolic diseases, and discuss the therapeutic options currently available to counteract epigenetically driven metabolic complications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of early-life adversity on immune function are mediated by prenatal environment: Role of prenatal alcohol exposure.

    PubMed

    Raineki, Charlis; Bodnar, Tamara S; Holman, Parker J; Baglot, Samantha L; Lan, Ni; Weinberg, Joanne

    2017-11-01

    The contribution of the early postnatal environment to the pervasive effects of prenatal alcohol exposure (PAE) is poorly understood. Moreover, PAE often carries increased risk of exposure to adversity/stress during early life. Dysregulation of immune function may play a role in how pre- and/or postnatal adversity/stress alters brain development. Here, we combine two animal models to examine whether PAE differentially increases vulnerability to immune dysregulation in response to early-life adversity. PAE and control litters were exposed to either limited bedding (postnatal day [PN] 8-12) to model early-life adversity or normal bedding, and maternal behavior and pup vocalizations were recorded. Peripheral (serum) and central (amygdala) immune (cytokines and C-reactive protein - CRP) responses of PAE animals to early-life adversity were evaluated at PN12. Insufficient bedding increased negative maternal behavior in both groups. Early-life adversity increased vocalization in all animals; however, PAE pups vocalized less than controls. Early-life adversity reduced serum TNF-α, KC/GRO, and IL-10 levels in control but not PAE animals. PAE increased serum CRP, and levels were even higher in pups exposed to adversity. Finally, PAE reduced KC/GRO and increased IL-10 levels in the amygdala. Our results indicate that PAE alters immune system development and both behavioral and immune responses to early-life adversity, which could have subsequent consequences for brain development and later life health. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Practical immunoregulation: neonatal immune response variation and prophylaxis of experimental food allergy in pigs.

    PubMed

    Wilkie, Bruce N; Rupa, Prithy; Schmied, Julie

    2012-07-15

    The importance of environment in immune response is identified and the increase in prevalence of allergic, autoimmune and chronic inflammatory diseases reviewed. In particular, altered opportunity to acquire evolutionarily anticipated commensal microbiota is associated through the "hygiene hypothesis" with defective developmental and response signals to the innate and adaptive immune systems. Evidence of the detrimental effects of such environments is reviewed as is evidence for remediation using controlled exposure to bacteria or their active components such as LPS or peptidoglycan ligands for TLR and NOD-like receptors. Occurrence of major environmentally associated changes in porcine immune response phenotype are described. The prophylactic effects of heat-killed Escherichia coli given intramuscularly or of oral Lactococcus lactis on experimental ovomucoid-induced allergy in piglets are described in the context of altered immune response bias favouring reduced type-2 phenotypes. The high frequency of clinical tolerance to developing allergic signs even in the face of classical sensitization indicates possible function in this pig model of regulatory effectors such as Treg cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Immune Alterations in Male and Female Mice after 2-Deoxy-D-Glucose Administration

    NASA Technical Reports Server (NTRS)

    Dreau, Didier; Morton, Darla S.; Foster, Mareva; Swiggett, Jeanene P.; Sonnenfeld, Gerald

    1995-01-01

    Administration of 2-deoxy-D-glucose (2-DG), an analog of glucose which inhibits glycolysis by competitive antagonism for phosphohexose isomerase, results in acute periods of intracellular glucoprivation and hyperglycemia resulting in hyperphagia. In addition to these changes in the carbohydrate metabolism, injection of 2-DG results in alterations of both the endocrine and neurological systems as suggested by modifications in oxytocin and glucocorticoid levels and norepinephrine production. Moreover, alterations of the immune response, such as a decrease in the in vitro proliferation of splenocytes after mitogen-stimulation, were observed in mice injected with 2-DG. Sex, genotype and environment are among the factors that may modulate effects of catecholamines and hypothalamo-pituitary-adrenal axis on these immune changes. Sexual dimorphism in immune function resulting from the effects of sex hormones on immune effector cells has been shown in both animals and humans. These observations have important implications, especially with regard to higher incidence of many autoimmune diseases in females. Evidence exists that reproductive hormones influence the immune system and increase the risk of immunologically related disorders in both animals and humans. Indeed, immunological responses in stressful situations may also be confounded by fluctuations of sex hormones especially in females. Lymphocyte distribution, cytoldne production, and the ability of lymphocyte to proliferate in vitro were analyzed in male and female mice to determine if sex influenced 2-DG immunomodulation. In addition, the influence of hormones, especially sex hormones, on these changes were evaluated.

  11. Mast cell: an emerging partner in immune interaction.

    PubMed

    Gri, Giorgia; Frossi, Barbara; D'Inca, Federica; Danelli, Luca; Betto, Elena; Mion, Francesca; Sibilano, Riccardo; Pucillo, Carlo

    2012-01-01

    Mast cells (MCs) are currently recognized as effector cells in many settings of the immune response, including host defense, immune regulation, allergy, chronic inflammation, and autoimmune diseases. MC pleiotropic functions reflect their ability to secrete a wide spectrum of preformed or newly synthesized biologically active products with pro-inflammatory, anti-inflammatory and/or immunosuppressive properties, in response to multiple signals. Moreover, the modulation of MC effector phenotypes relies on the interaction of a wide variety of membrane molecules involved in cell-cell or cell-extracellular-matrix interaction. The delivery of co-stimulatory signals allows MC to specifically communicate with immune cells belonging to both innate and acquired immunity, as well as with non-immune tissue-specific cell types. This article reviews and discusses the evidence that MC membrane-expressed molecules play a central role in regulating MC priming and activation and in the modulation of innate and adaptive immune response not only against host injury, but also in peripheral tolerance and tumor-surveillance or -escape. The complex expression of MC surface molecules may be regarded as a measure of connectivity, with altered patterns of cell-cell interaction representing functionally distinct MC states. We will focalize our attention on roles and functions of recently discovered molecules involved in the cross-talk of MCs with other immune partners.

  12. Mast Cell: An Emerging Partner in Immune Interaction

    PubMed Central

    Gri, Giorgia; Frossi, Barbara; D’Inca, Federica; Danelli, Luca; Betto, Elena; Mion, Francesca; Sibilano, Riccardo; Pucillo, Carlo

    2012-01-01

    Mast cells (MCs) are currently recognized as effector cells in many settings of the immune response, including host defense, immune regulation, allergy, chronic inflammation, and autoimmune diseases. MC pleiotropic functions reflect their ability to secrete a wide spectrum of preformed or newly synthesized biologically active products with pro-inflammatory, anti-inflammatory and/or immunosuppressive properties, in response to multiple signals. Moreover, the modulation of MC effector phenotypes relies on the interaction of a wide variety of membrane molecules involved in cell–cell or cell-extracellular-matrix interaction. The delivery of co-stimulatory signals allows MC to specifically communicate with immune cells belonging to both innate and acquired immunity, as well as with non-immune tissue-specific cell types. This article reviews and discusses the evidence that MC membrane-expressed molecules play a central role in regulating MC priming and activation and in the modulation of innate and adaptive immune response not only against host injury, but also in peripheral tolerance and tumor-surveillance or -escape. The complex expression of MC surface molecules may be regarded as a measure of connectivity, with altered patterns of cell–cell interaction representing functionally distinct MC states. We will focalize our attention on roles and functions of recently discovered molecules involved in the cross-talk of MCs with other immune partners. PMID:22654879

  13. Altered Immune Regulation in Type 1 Diabetes

    PubMed Central

    Zóka, András; Műzes, Györgyi; Somogyi, Anikó; Varga, Tímea; Szémán, Barbara; Al-Aissa, Zahra; Hadarits, Orsolya; Firneisz, Gábor

    2013-01-01

    Research in genetics and immunology was going on separate strands for a long time. Type 1 diabetes mellitus might not be characterized with a single pathogenetic factor. It develops when a susceptible individual is exposed to potential triggers in a given sequence and timeframe that eventually disarranges the fine-tuned immune mechanisms that keep autoimmunity under control in health. Genomewide association studies have helped to understand the congenital susceptibility, and hand-in-hand with the immunological research novel paths of immune dysregulation were described in central tolerance, apoptotic pathways, or peripheral tolerance mediated by regulatory T-cells. Epigenetic factors are contributing to the immune dysregulation. The interplay between genetic susceptibility and potential triggers is likely to play a role at a very early age and gradually results in the loss of balanced autotolerance and subsequently in the development of the clinical disease. Genetic susceptibility, the impaired elimination of apoptotic β-cell remnants, altered immune regulatory functions, and environmental factors such as viral infections determine the outcome. Autoreactivity might exist under physiologic conditions and when the integrity of the complex regulatory process is damaged the disease might develop. We summarized the immune regulatory mechanisms that might have a crucial role in disease pathology and development. PMID:24285974

  14. PRENATAL ALCOHOL EXPOSURE ALTERS STEADY-STATE AND ACTIVATED GENE EXPRESSION IN THE ADULT RAT BRAIN

    PubMed Central

    Stepien, Katarzyna A.; Lussier, Alexandre A.; Neumann, Sarah M.; Pavlidis, Paul; Kobor, Michael S.; Weinberg, Joanne

    2016-01-01

    Background Prenatal alcohol exposure (PAE) is associated with alterations in numerous physiological systems, including the stress and immune systems . We have previously shown that PAE increases the course and severity of arthritis in an adjuvant-induced arthritis (AA) model. While the molecular mechanisms underlying these effects are not fully known, changes in neural gene expression are emerging as important factors in the etiology of PAE effects. As the prefrontal cortex (PFC) and hippocampus (HPC) play key roles in neuroimmune function, PAE-induced alterations to their transcriptome may underlie abnormal steady-state functions and responses to immune challenge. The current study examined brains from adult PAE and control females from our recent AA study to determine whether PAE causes long-term alterations in gene expression and whether these mediate the altered severity and course of arthritis in PAE females Methods Adult females from PAE, pair-fed [PF], and ad libitum-fed control [C]) groups were injected with either saline or complete Freund’s adjuvant. Animals were terminated at the peak of inflammation or during resolution (days 16 and 39 post-injection, respectively); cohorts of saline-injected PAE, PF and C females were terminated in parallel. Gene expression was analyzed in the PFC and HPC using whole genome mRNA expression microarrays. Results Significant changes in gene expression in both the PFC and HPC were found in PAE compared to controls in response to ethanol exposure alone (saline-injected females), including genes involved in neurodevelopment, apoptosis, and energy metabolism. Moreover, in response to inflammation (adjuvant-injected females), PAE animals showed unique expression patterns, while failing to exhibit the activation of genes and regulators involved in the immune response observed in control and pair-fed animals. Conclusions These results support the hypothesis that PAE affects neuroimmune function at the level of gene expression, demonstrating long-term effects of PAE on the CNS response under steady-state conditions and following an inflammatory insult. PMID:25684047

  15. Immunometabolism in systemic lupus erythematosus.

    PubMed

    Morel, Laurence

    2017-05-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease mediated by pathogenic autoantibodies directed against nucleoprotein complexes. Beyond the activation of autoreactive B cells, this process involves dysregulation in many other types of immune cells, including CD4 + T cells, dendritic cells, macrophages and neutrophils. Metabolic substrate utilization and integration of cues from energy sensors are critical checkpoints of effector functions in the immune system, with common as well as cell-specific programmes. Patients with SLE and lupus-prone mice present with activated metabolism of CD4 + T cells, and the use of metabolic inhibitors to normalize these features is associated with therapeutic effects. Far less is known about the metabolic requirements of B cells and myeloid cells in SLE. This article reviews current knowledge of the alterations in metabolism of immune cells in patients with SLE and mouse models of lupus in the context of what is known about the metabolic regulation of these cells during normal immune responses. How these alterations might contribute to lupus pathogenesis and how they can be targeted therapeutically are also discussed.

  16. Arsenic and Immune Response to Infection During Pregnancy and Early Life.

    PubMed

    Attreed, Sarah E; Navas-Acien, Ana; Heaney, Christopher D

    2017-06-01

    Arsenic, a known carcinogen and developmental toxicant, is a major threat to global health. While the contribution of arsenic exposure to chronic diseases and adverse pregnancy and birth outcomes is recognized, its ability to impair critical functions of humoral and cell-mediated immunity-including the specific mechanisms in humans-is not well understood. Arsenic has been shown to increase risk of infectious diseases that have significant health implications during pregnancy and early life. Here, we review the latest research on the mechanisms of arsenic-related immune response alterations that could underlie arsenic-associated increased risk of infection during the vulnerable periods of pregnancy and early life. The latest evidence points to alteration of antibody production and transplacental transfer as well as failure of T helper cells to produce IL-2 and proliferate. Critical areas for future research include the effects of arsenic exposure during pregnancy and early life on immune responses to natural infection and the immunogenicity and efficacy of vaccines.

  17. The zinc pool is involved in the immune-reconstituting effect of melatonin in pinealectomized mice.

    PubMed

    Mocchegiani, E; Bulian, D; Santarelli, L; Tibaldi, A; Muzzioli, M; Lesnikov, V; Pierpaoli, W; Fabris, N

    1996-06-01

    Melatonin (MEL) affects the immune system by direct or indirect mechanisms. An involvement of the zinc pool in the immune-reconstituting effect of MEL in old mice has recently been documented. An altered zinc turnover and impaired immune functions are also evident in pinealectomized (px) mice. The present work investigates further the effect of "physiological" doses of MEL on the zinc pool and on thymic and peripheral immune functions in px mice. Daily injections of MEL (100 micrograms/mouse) for 1 month in px mice restored the crude zinc balance from negative to positive values. Thymic and peripheral immune functions, including plasma levels of interleukin-2, also recovered. The nontoxic effect of MEL on immune functions was observed in sham-operated mice. Because the half-life of MEL is very short (12 min), interruption of MEL treatment in px mice resulted, after 1 month, in a renewed negative crude zinc balance and a regression of immune functions. Both the zinc pool and immunological parameters were restored by 30 further days of MEL treatment. The existence of a significant correlation between zinc and thymic hormone after both cycles of MEL treatment clearly shows an involvement of the zinc pool in the immunoenhancing effects of MEL and thus suggests an inter-relationship between zinc and MEL in px mice. Moreover, the existence of significant positive correlations between zinc or thymulin and interleukin-2 suggests that interleukin-2 may participate in the action of MEL, via zinc, on thymic functions in px MEL-treated mice.

  18. Immune changes in test animals during spaceflight

    NASA Technical Reports Server (NTRS)

    Lesnyak, A. T.; Sonnenfeld, G.; Rykova, M. P.; Meshkov, D. O.; Mastro, A.; Konstantinova, I.

    1993-01-01

    Over the past two decades, it has become apparent that changes in immune parameters occur in cosmonauts and astronauts after spaceflight. Therefore, interest has been generated in the use of animal surrogates to better understand the nature and extent of these changes, the mechanism of these changes, and to allow the possible development of countermeasures. Among the changes noted in animals after spaceflight are alterations in lymphocytic blastogenesis, cytokine function, natural killer cell activity, and colony-stimulating factors. The nature and significance of spaceflight-induced changes in immune responses will be the focus of this review.

  19. Immunoendocrine alterations following Marine Corps Martial Arts training are associated with changes in moral cognitive processes.

    PubMed

    Siedlik, Jacob A; Deckert, Jake A; Clopton, Aaron W; Gigliotti, Nicole; Chan, Marcia A; Benedict, Stephen H; Herda, Trent J; Gallagher, Philip M; Vardiman, John P

    2016-02-01

    Combined physical and psychological stress events have been associated with exacerbated endocrine responses and increased alterations in immune cell trafficking when compared to exercise stress alone. Military training programs are rigorous in nature and often purposefully delivered in environments combining high levels of both physical and mental stress. The objective of this study was to assess physiological and cognitive changes following U.S. Marine Corps Martial Arts training. Seven active-duty, male Marines were observed during a typical Marine Corps Martial Arts training session. Immune parameters, including immunomodulatory cytokines, and hormone concentrations were determined from blood samples obtained at baseline, immediately post training (IP) and at 15min intervals post-training to 1h (R15, R30, R45, R60). Assessments of cognitive moral functioning (moral judgment and intent) were recorded at intervals during recovery. There were significant fluctuations in immunoendocrine parameters. Peak endocrine measures were observed within the IP-R15 time interval. Distributions of circulating immune cells were significantly altered with neutrophils and all lymphocyte subsets elevated at IP. IFN-γ and IL-17a exhibited small, non-significant, parallel increases over the recovery period. Moral functioning was informed by different social identities during the recovery resulting in changes in moral decision-making. These data demonstrate that the Marine Corps Martial Arts Program induces significant alterations in lymphocyte and leukocyte distributions, but does not shift the balance of Th1/Th2 cytokines or induce a systemic inflammatory response. The program does, however, induce alterations in moral decision-making ability associated with the observed endocrine responses, even suggesting a potential interaction between one's social identities and endocrine responses upon moral decision-making. Copyright © 2015. Published by Elsevier Inc.

  20. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID

    PubMed Central

    Sauer, Aisha V.; Brigida, Immacolata; Carriglio, Nicola; Jofra Hernandez, Raisa; Scaramuzza, Samantha; Clavenna, Daniela; Sanvito, Francesca; Poliani, Pietro L.; Gagliani, Nicola; Carlucci, Filippo; Tabucchi, Antonella; Roncarolo, Maria Grazia; Traggiai, Elisabetta; Villa, Anna

    2012-01-01

    Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)–mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA–treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA−/− Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA–treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA–treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID. Trials were registered at www.clinicaltrials.gov as NCT00598481/NCT00599781. PMID:22184407

  1. Transcriptome characterization of immune suppression from battlefield-like stress

    PubMed Central

    Muhie, S; Hammamieh, R; Cummings, C; Yang, D; Jett, M

    2013-01-01

    Transcriptome alterations of leukocytes from soldiers who underwent 8 weeks of Army Ranger training (RASP, Ranger Assessment and Selection Program) were analyzed to evaluate impacts of battlefield-like stress on the immune response. About 1400 transcripts were differentially expressed between pre- and post-RASP leukocytes. Upon functional analysis, immune response was the most enriched biological process, and most of the transcripts associated with the immune response were downregulated. Microbial pattern recognition, chemotaxis, antigen presentation and T-cell activation were among the most downregulated immune processes. Transcription factors predicted to be stress-inhibited (IRF7, RELA, NFκB1, CREB1, IRF1 and HMGB) regulated genes involved in inflammation, maturation of dendritic cells and glucocorticoid receptor signaling. Many altered transcripts were predicted to be targets of stress-regulated microRNAs. Post-RASP leukocytes exposed ex vivo to Staphylococcal enterotoxin B showed a markedly impaired immune response to this superantigen compared with pre-RASP leukocytes, consistent with the suppression of the immune response revealed by transcriptome analyses. Our results suggest that suppression of antigen presentation and lymphocyte activation pathways, in the setting of normal blood cell counts, most likely contribute to the poor vaccine response, impaired wound healing and infection susceptibility associated with chronic intense stress. PMID:23096155

  2. Study Design to Test the Hypothesis That Long-Term Space Travel Harms the Human and Animal Immune Systems

    NASA Technical Reports Server (NTRS)

    Shearer, William T.; Lugg, Desmond J.; Ochs, H. D.; Pierson, Duane L.; Reuben, James M.; Rosenblatt, Howard M.; Sams, Clarence; Smith, C. Wayne; Smith, E. Obrian; Smolen, James E.

    1999-01-01

    The potential threat of immunosuppression and abnormal inflammatory responses in long-term space travel, leading to unusual predilection for opportunistic infections, malignancy, and death, is of ma or concern to the National Aeronautics and Space Administration (NASA) Program. This application has been devised to seek answers to questions of altered immunity in space travel raised by previous investigations spanning 30-plus years. We propose to do this with the help of knowledge gained by the discovery of the molecular basis of many primary and secondary immunodeficiency diseases and by application of molecular and genetic technology not previously available. Two areas of immunity that previously received little attention in space travel research will be emphasized: specific antibody responses and non-specific inflammation and adhesion. Both of these areas of research will not only add to the growing body of information on the potential effects of space travel on the immune system, but be able to delineate any functional alterations in systems important for antigen presentation, specific immune memory, and cell:cell and cell:endothelium interactions. By more precisely defining molecular dysfunction of components of the immune system, it is hoped that targeted methods of prevention of immune damage in space could be devised.

  3. IL-33-induced alterations in murine intestinal function and cytokine responses are MyD88, STAT6, and IL-13-dependent

    USDA-ARS?s Scientific Manuscript database

    IL-33 is a recently identified cytokine member of the IL-1 family. The biological activities of IL-33 are associated with promotion of Th2 and inhibition of Th1/Th17 immune responses. Exogenous IL-33 induces a typical “type 2” immune response in the gastrointestinal tract, yet the underlying mechani...

  4. Liver immunology and herbal treatment

    PubMed Central

    Balaban, Yasemin H; Aka, Ceylan; Koca-Caliskan, Ufuk

    2017-01-01

    Beyond the metabolic functions, the liver recently has been defined as an organ of immune system (IS), which have central regulatory role for innate and adaptive immunity. The liver keeps a delicate balance between hepatic screening of pathogenic antigens and immune tolerance to self-antigens. Herbal treatments with immunological effects have potential to alter this hepatic immune balance towards either therapeutic side or diseases side by inducing liver injury via hepatotoxicity or initiation of autoimmune diseases. Most commonly known herbal treatments, which have therapeutic effect on liver and IS, have proven via in vitro, in vivo, and/or clinical studies were summarized in this review. PMID:28660010

  5. Effect of immune stress on body weight regulation is altered by ovariectomy in female rats.

    PubMed

    Iwasa, Takeshi; Matsuzaki, Toshiya; Kinouchi, Riyo; Gereltsetseg, Ganbat; Murakami, Masahiro; Nakazawa, Hiroshi; Fujisawa, Shinobu; Yamamoto, Satoshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2011-09-01

    It has been suggested that obesity and loss of ovarian function alter the inflammatory response to immune stress. Ovariectomized (OVX) rats, which are used as a model of human menopause, exhibit both hyperphagia-induced obesity and gonadal steroid deficiency. To evaluate the effects of ovariectomy on inflammatory responses, we compared the anorectic response to LPS in OVX rats and gonad intact female rats. As leptin and hypothalamic interleukin-1β (IL1β) play pivotal roles in the anorectic response to immune stress, these factors were also measured. It was found that the OVX rats exhibited an increased anorectic response to LPS compared with the sham-operated rats. The OVX rats showed higher serum leptin concentrations and a greater increase in hypothalamic IL1β mRNA expression after LPS injection. In addition, in order to determine whether gonadal steroid deficiency contributes to the changes in the inflammatory responses of OVX rats, we compared responses between OVX rats treated with gonadal steroids and untreated OVX rats. There were no differences in appetite, the serum leptin level, and hypothalamic IL1β mRNA expression between the two groups after LPS injection. These findings suggest that the loss of ovarian function increases the induction of leptin and hypothalamic IL1β synthesis and consequently increases the anorectic response under immune stress conditions. It is possible that these alterations are caused by OVX-induced obesity rather than the direct effects of gonadal steroid deficiency. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Repeat-containing protein effectors of plant-associated organisms

    PubMed Central

    Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126

  7. Repeat-containing protein effectors of plant-associated organisms.

    PubMed

    Mesarich, Carl H; Bowen, Joanna K; Hamiaux, Cyril; Templeton, Matthew D

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.

  8. Studying the Impact of Spaceflight Environment on Immune Functions Using New Molecular Diagnostics System

    NASA Astrophysics Data System (ADS)

    Cohen, Luchino

    Immune functions are altered during space flights. Latent virus reactivation, reduction in the number of immune cells, decreased cell activation and increased sensitivity of astronauts to infections following their return on Earth demonstrate that the immune system is less efficient during space flight. The causes of this immune deficiency are not fully understood and this dysfunction during long-term missions could result in the appearance of opportunistic infections or a decrease in the immuno-surveillance mechanisms that eradicate cancer cells. Therefore, the immune functions of astronauts will have to be monitored continuously during long-term missions in space, using miniature and semi-automated diagnostic systems. The objectives of this project are to study the causes of space-related immunodeficiency, to develop countermeasures to maintain an optimal immune function and to improve our capacity to detect infectious diseases during space missions through the monitoring of astronauts' immune system. In order to achieve these objectives, an Immune Function Diagnostic System (IFDS) will be designed to perform a set of immunological assays on board spacecrafts or on planet-bound bases. Through flow cytometric assays and molecular biology analyses, this diagnostic system could improve medical surveillance of astronauts and could be used to test countermeasures aimed at preventing immune deficiency during space missions. The capacity of the instrument to assess cellular fluorescence and to quantify the presence of soluble molecules in biological samples would support advanced molecular studies in space life sciences. Finally, such diagnostic system could also be used on Earth in remote areas or in mobile hospitals following natural disasters to fight against infectious diseases and other pathologies.

  9. Immunotoxic effects of environmental pollutants in marine mammals.

    PubMed

    Desforges, Jean-Pierre W; Sonne, Christian; Levin, Milton; Siebert, Ursula; De Guise, Sylvain; Dietz, Rune

    2016-01-01

    Due to their marine ecology and life-history, marine mammals accumulate some of the highest levels of environmental contaminants of all wildlife. Given the increasing prevalence and severity of diseases in marine wildlife, it is imperative to understand how pollutants affect the immune system and consequently disease susceptibility. Advancements and adaptations of analytical techniques have facilitated marine mammal immunotoxicology research. Field studies, captive-feeding experiments and in vitro laboratory studies with marine mammals have associated exposure to environmental pollutants, most notable polychlorinated biphenyls (PCBs), organochlorine pesticides and heavy metals, to alterations of both the innate and adaptive arms of immune systems, which include aspects of cellular and humoral immunity. For marine mammals, reported immunotoxicology endpoints fell into several major categories: immune tissue histopathology, haematology/circulating immune cell populations, functional immune assays (lymphocyte proliferation, phagocytosis, respiratory burst, and natural killer cell activity), immunoglobulin production, and cytokine gene expression. Lymphocyte proliferation is by far the most commonly used immune assay, with studies using different organic pollutants and metals predominantly reporting immunosuppressive effects despite the many differences in study design and animal life history. Using combined field and laboratory data, we determined effect threshold levels for suppression of lymphocyte proliferation to be between b0.001-10 ppm for PCBs, 0.002-1.3 ppm for Hg, 0.009-0.06 for MeHg, and 0.1-2.4 for cadmium in polar bears and several pinniped and cetacean species. Similarly, thresholds for suppression of phagocytosis were 0.6-1.4 and 0.08-1.9 ppm for PCBs and mercury, respectively. Although data are lacking for many important immune endpoints and mechanisms of specific immune alterations are not well understood, this review revealed a systemic suppression of immune function in marine mammals exposed to environmental contaminants. Exposure to immunotoxic contaminants may have significant population level consequences as a contributing factor to increasing anthropogenic stress in wildlife and infectious disease outbreaks.

  10. Developmental origins of inflammatory and immune diseases

    PubMed Central

    Chen, Ting; Liu, Han-xiao; Yan, Hui-yi; Wu, Dong-mei; Ping, Jie

    2016-01-01

    Epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exert a profound influence on physiological function and risk of diseases in adult life. The concepts of the ‘developmental programming’ and Developmental Origins of Health and Diseases (DOHaD) have become well accepted and have been applied across almost all fields of medicine. Adverse intrauterine environments may have programming effects on the crucial functions of the immune system during critical periods of fetal development, which can permanently alter the immune function of offspring. Immune dysfunction may in turn lead offspring to be susceptible to inflammatory and immune diseases in adulthood. These facts suggest that inflammatory and immune disorders might have developmental origins. In recent years, inflammatory and immune disorders have become a growing health problem worldwide. However, there is no systematic report in the literature on the developmental origins of inflammatory and immune diseases and the potential mechanisms involved. Here, we review the impacts of adverse intrauterine environments on the immune function in offspring. This review shows the results from human and different animal species and highlights the underlying mechanisms, including damaged development of cells in the thymus, helper T cell 1/helper T cell 2 balance disturbance, abnormal epigenetic modification, effects of maternal glucocorticoid overexposure on fetal lymphocytes and effects of the fetal hypothalamic–pituitary–adrenal axis on the immune system. Although the phenomena have already been clearly implicated in epidemiologic and experimental studies, new studies investigating the mechanisms of these effects may provide new avenues for exploiting these pathways for disease prevention. PMID:27226490

  11. IMPORTANCE OF ENZYMATIC BIOTRANSFORMATION IN IMMUNOTOXICOLOGY

    EPA Science Inventory

    Many immunotoxic compounds, such as benzene and other organic solvents, pesticides, mycotoxins and polycyclic aromatic hydrocarbons, can alter immune function only after undergoing enzyme-mediated reactions within various tissues. In the review that follows, the role of enzymatic...

  12. The effects of early life adversity on the immune system.

    PubMed

    Elwenspoek, Martha M C; Kuehn, Annette; Muller, Claude P; Turner, Jonathan D

    2017-08-01

    Early life adversity (ELA) is associated with a higher risk for diseases in adulthood. Although the pathophysiological effects of ELA are varied, there may be a unifying role for the immune system in all of the long-term pathologies such as chronic inflammatory disorders (autoimmune diseases, allergy, and asthma). Recently, significant efforts have been made to elucidate the long-term effects ELA has on immune function, as well as the mechanisms underlying these immune changes. In this review, we focus on data from human studies investigating immune parameters in relation to post-natal adverse experiences. We describe the current understanding of the 'ELA immune phenotype', characterized by inflammation, impairment of the cellular immune system, and immunosenescence. However, at present, data addressing specific immune functions are limited and there is a need for high-quality, well powered, longitudinal studies to unravel cause from effect. Besides the immune system, also the stress system and health behaviors are altered in ELA. We discuss probable underlying mechanisms based on epigenetic programming that could explain the ELA immune phenotype and whether this is a direct effect of immune programming or an indirect consequence of changes in behavior or stress reactivity. Understanding the underlying mechanisms will help define effective strategies to prevent or counteract negative ELA-associated outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. HIV-1, Reactive Oxygen Species and Vascular Complications

    PubMed Central

    Porter, Kristi M.; Sutliff, Roy L.

    2012-01-01

    Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies (HAART) restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species, including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species (ROS) and how these effects likely contribute to vascular dysfunction and disease. PMID:22564529

  14. Arenaviruses. Genes, proteins, and expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldstone, M.B.A.

    1987-01-01

    This book provides a discussion of current knowledge on Arenaviruses. These viruses are the cause of major health problems, such as Lassa fever and Junin virus disease, and have been the Rosetta stone on which many of the major concepts in viral pathogenesis and immunobiology have been built. For example, study of lymphocytic choriomeningitis naturally and experimentally induced infection in the normal mouse host presented the scientific community with the first and definitive work on the following topics: virus induced immune response disease, immunologic tolerance, virus induced immune complex disease, presence and generation of cytotoxic T cells in vitro andmore » in vivo, H-2 restriction and dual recognition phenomena, and viral disease induced by altering physiologic or differential functions of a cell without causing alterations of house keeping or vital functions, i.e. pathology in the absence of cell or tissue lysis.« less

  15. Pneumococcal Capsular Polysaccharide Immunity in the Elderly

    PubMed Central

    Ferreira, Daniela M.; Gordon, Stephen B.; Rylance, Jamie

    2017-01-01

    ABSTRACT Immunity to pneumococcal infections is impaired in older people, and current vaccines are poorly protective against pneumococcal disease in this population. Naturally acquired immunity to pneumococcal capsular polysaccharides develops during childhood and is robust in young adults but deteriorates with advanced age. In particular, antibody levels and function are reduced in older people. Pneumococcal vaccines are recommended for people >65 years old. However, the benefits of polysaccharide and protein-conjugated vaccines in this population are small, because of both serotype replacement and incomplete protection against vaccine serotype pneumococcal disease. In this review, we overview the immune mechanisms by which naturally acquired and vaccine-induced pneumococcal capsular polysaccharide immunity declines with age, including altered colonization dynamics, reduced opsonic activity of antibodies (particularly IgM), and impaired mucosal immunity. PMID:28424198

  16. [Immune dysfunction and cognitive deficit in stress and physiological aging. Part II: New approaches to cognitive disorder prevention and treatment ].

    PubMed

    Pukhal'skiĭ, A L; Shmarina, G V; Aleshkin, V A

    2014-01-01

    Long-term stress as well as physiological aging result in similar immunological and hormonal disturbances including hypothalamic-pituitary-adrenal) axis depletion, aberrant immune response (regulatory T-cells, Tregs, and T(h17)-lymphocyte accumulation) and decreased dehydroepian-drosterone synthesis both in the brain and in the adrenal glands. Since the main mechanisms of inflammation control, "prompt" (stress hormones) and "delayed" (Tregs), are broken, serum cytokine levels increase and become sufficient for blood-brain-barrier disruption. As a result peripheral cytokines penetrate into the brain where they begin to perform new functions. Structural and functional alterations of blood-brain-barrier as well as stress- (or age-) induced neuroinflammation promote influx of bone marrow derived dendritic cells and lymphocyte effectors into the brain parenchyma. Thereafter, mass intrusion ofpro-inflammatory mediators and immune cells having a lot of specific targets alters the brain work that we can observe both in humans and in animal experiments. The concept of stressful cognitive dysfunction, which is under consideration in this review, allows picking out several therapeutic targets: 1) reduction of excessive Treg accumulation; 2) supporting hypothalamic-pituitary-adrenal axis and inflammatory reaction attenuation; 3) recovery of dehydroepiandrosterone level; 4) improvement of blood-brain-barrier function.

  17. Inflammatory models drastically alter tumor growth and the immune microenvironment in hepatocellular carcinoma.

    PubMed

    Markowitz, Geoffrey J; Michelotti, Gregory A; Diehl, Anna Mae; Wang, Xiao-Fan

    2015-04-01

    Initiation and progression of hepatocellular carcinoma (HCC) is intimately associated with a chronically diseased liver tissue. This diseased liver tissue background is a drastically different microenvironment from the healthy liver, especially with regard to immune cell prevalence and presence of mediators of immune function. To better understand the consequences of liver disease on tumor growth and the interplay with its microenvironment, we utilized two standard methods of fibrosis induction and orthotopic implantation of tumors into the inflamed and fibrotic liver to mimic the liver condition in human HCC patients. Compared to non-diseased controls, tumor growth was significantly enhanced under fibrotic conditions. The immune cells that infiltrated the tumors were also drastically different, with decreased numbers of natural killer cells but greatly increased numbers of immune-suppressive CD11b + Gr1 hi myeloid cells in both models of fibrosis. In addition, there were model-specific differences: Increased numbers of CD11b + myeloid cells and CD4 + CD25 + T cells were found in tumors in the bile duct ligation model but not in the carbon tetrachloride model. Induction of fibrosis altered the cytokine production of implanted tumor cells, which could have farreaching consequences on the immune infiltrate and its functionality. Taken together, this work demonstrates that the combination of fibrosis induction with orthotopic tumor implantation results in a markedly different tumor microenvironment and tumor growth kinetics, emphasizing the necessity for more accurate modeling of HCC progression in mice, which takes into account the drastic changes in the tissue caused by chronic liver disease.

  18. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma.

    PubMed

    Miao, Diana; Margolis, Claire A; Gao, Wenhua; Voss, Martin H; Li, Wei; Martini, Dylan J; Norton, Craig; Bossé, Dominick; Wankowicz, Stephanie M; Cullen, Dana; Horak, Christine; Wind-Rotolo, Megan; Tracy, Adam; Giannakis, Marios; Hodi, Frank Stephen; Drake, Charles G; Ball, Mark W; Allaf, Mohamad E; Snyder, Alexandra; Hellmann, Matthew D; Ho, Thai; Motzer, Robert J; Signoretti, Sabina; Kaelin, William G; Choueiri, Toni K; Van Allen, Eliezer M

    2018-02-16

    Immune checkpoint inhibitors targeting the programmed cell death 1 receptor (PD-1) improve survival in a subset of patients with clear cell renal cell carcinoma (ccRCC). To identify genomic alterations in ccRCC that correlate with response to anti-PD-1 monotherapy, we performed whole-exome sequencing of metastatic ccRCC from 35 patients. We found that clinical benefit was associated with loss-of-function mutations in the PBRM1 gene ( P = 0.012), which encodes a subunit of the PBAF switch-sucrose nonfermentable (SWI/SNF) chromatin remodeling complex. We confirmed this finding in an independent validation cohort of 63 ccRCC patients treated with PD-1 or PD-L1 (PD-1 ligand) blockade therapy alone or in combination with anti-CTLA-4 (cytotoxic T lymphocyte-associated protein 4) therapies ( P = 0.0071). Gene-expression analysis of PBAF-deficient ccRCC cell lines and PBRM1 -deficient tumors revealed altered transcriptional output in JAK-STAT (Janus kinase-signal transducers and activators of transcription), hypoxia, and immune signaling pathways. PBRM1 loss in ccRCC may alter global tumor-cell expression profiles to influence responsiveness to immune checkpoint therapy. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Soy lecithin supplementation alters macrophage phagocytosis and lymphocyte response to concanavalin A: a study in alloxan-induced diabetic rats.

    PubMed

    Miranda, Dalva T S Z; Batista, Vanessa G; Grando, Fernanda C C; Paula, Fernanda M; Felício, Caroline A; Rubbo, Gabriella F S; Fernandes, Luiz C; Curi, Rui; Nishiyama, Anita

    2008-12-01

    Dietary soy lecithin supplementation decreases hyperlipidemia and influences lipid metabolism. Although this product is used by diabetic patients, there are no data about the effect of soy lecithin supplementation on the immune system. The addition of phosphatidylcholine, the main component of lecithin, to a culture of lymphocytes has been reported to alter their function. If phosphatidylcholine changes lymphocyte functions in vitro as previously shown, then it could also affect immune cells in vivo. In the present study, the effect of dietary soy lecithin on macrophage phagocytic capacity and on lymphocyte number in response to concanavalin A (ConA) stimulation was investigated in non-diabetic and alloxan-induced diabetic rats. Supplementation was carried out daily with 2 g kg(-1) b.w. lecithin during 7 days. After that, blood was drawn from fasting rats and peritoneal macrophages and mesenteric lymph node lymphocytes were collected to determine the phospholipid content. Plasma triacylglycerol (TAG), total and HDL cholesterol and glucose levels were also determined. Lymphocytes were stimulated by ConA. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dye reduction method and flow cytometry were employed to evaluate lymphocyte metabolism and cell number, respectively. Soy lecithin supplementation significantly increased both macrophage phagocytic capacity (+29%) in non-diabetic rats and the lymphocyte number in diabetic rats (+92%). It is unlikely that plasma lipid levels indirectly affect immune cells, since plasma cholesterol, TAG, or phospholipid content was not modified by lecithin supplementation. In conclusion, lymphocyte and macrophage function were altered by lecithin supplementation, indicating an immunomodulatory effect of phosphatidylcholine.

  20. Microbiota as Therapeutic Targets.

    PubMed

    Xavier, Ramnik J

    Inflammatory bowel disease (IBD) represents a family of diseases including Crohn's disease and ulcerative colitis. IBD has garnered significant attention in recent years due to successes in 2 areas of basic science: complex human genetics and host-microbe interactions. Advances in understanding the genetics of IBD, mainly driven by genome-wide association studies, have identified more than 160 genetic loci that modulate the risk of disease. Notably, several of these genes have pointed to alterations in host-microbe interactions as being critical factors in pathogenesis. Investigations into the microbial communities of the gastrointestinal tract (or the 'gut microbiome') in IBD have yielded important insights into several aspects of interactions between microbiota and the host immune system, including how alterations to microbial community composition and function have important consequences for immune homeostasis. The anatomy of the gastrointestinal tract plays a role in defining not only intestinal function, but also the microbial ecosystem that lives within the gut. Careful investigations into the composition and function of these microbial communities have suggested that patients with IBD have an imbalance in their gut microbiota, termed dysbiosis. These studies, as well as studies using samples from healthy individuals, have begun to uncover mechanisms of crosstalk between particular microbes (and microbial products) and immunomodulatory pathways, alterations which may drive immune diseases such as IBD. Investigations into the role of the microbiome in IBD have provided important clues to potential pathogenic mechanisms. Harnessing this knowledge to develop therapeutics and identify biomarkers is currently a major translational goal, holding great promise for clinically meaningful progress. © 2016 S. Karger AG, Basel.

  1. Ionizing Radiation Selectively Reduces Skin Regulatory T Cells and Alters Immune Function

    PubMed Central

    Zhou, Yu; Ni, Houping; Balint, Klara; Sanzari, Jenine K.; Dentchev, Tzvete; Diffenderfer, Eric S.; Wilson, Jolaine M.; Cengel, Keith A.; Weissman, Drew

    2014-01-01

    The skin serves multiple functions that are critical for life. The protection from pathogens is achieved by a complicated interaction between aggressive effectors and controlling functions that limit damage. Inhomogeneous radiation with limited penetration is used in certain types of therapeutics and is experienced with exposure to solar particle events outside the protection of the Earth’s magnetic field. This study explores the effect of ionizing radiation on skin immune function. We demonstrate that radiation, both homogeneous and inhomogeneous, induces inflammation with resultant specific loss of regulatory T cells from the skin. This results in a hyper-responsive state with increased delayed type hypersensitivity in vivo and CD4+ T cell proliferation in vitro. The effects of inhomogeneous radiation to the skin of astronauts or as part of a therapeutic approach could result in an unexpected enhancement in skin immune function. The effects of this need to be considered in the design of radiation therapy protocols and in the development of countermeasures for extended space travel. PMID:24959865

  2. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity

    PubMed Central

    McGaha, Tracy L.; Huang, Lei; Lemos, Henrique; Metz, Richard; Mautino, Mario; Prendergast, George C.; Mellor, Andrew L.

    2014-01-01

    Summary Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen-presenting cell and lymphocyte functions and reveal critical roles for amino acid- and catabolite-sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field. PMID:22889220

  3. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances.

    PubMed

    Haapakoski, Rita; Ebmeier, Klaus P; Alenius, Harri; Kivimäki, Mika

    2016-04-03

    The inflammation theory of depression, proposed over 20years ago, was influenced by early studies on T cell responses and since then has been a stimulus for numerous research projects aimed at understanding the relationship between immune function and depression. Observational studies have shown that indicators of immunity, especially C reactive protein and proinflammatory cytokines, such as interleukin 6, are associated with an increased risk of depressive disorders, although the evidence from randomized trials remains limited and only few studies have assessed the interplay between innate and adaptive immunity in depression. In this paper, we review current knowledge on the interactions between central and peripheral innate and adaptive immune molecules and the potential role of immune-related activation of microglia, inflammasomes and indoleamine-2,3-dioxygenase in the development of depressive symptoms. We highlight how combining basic immune methods with more advanced 'omics' technologies would help us to make progress in unravelling the complex associations between altered immune function and depressive disorders, in the identification of depression-specific biomarkers and in developing immunotherapeutic treatment strategies that take individual variability into account. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances

    PubMed Central

    Haapakoski, Rita; Ebmeier, Klaus P.; Alenius, Harri; Kivimäki, Mika

    2016-01-01

    The inflammation theory of depression, proposed over 20 years ago, was influenced by early studies on T cell responses and since then has been a stimulus for numerous research projects aimed at understanding the relationship between immune function and depression. Observational studies have shown that indicators of immunity, especially C reactive protein and proinflammatory cytokines, such as interleukin 6, are associated with an increased risk of depressive disorders, although the evidence from randomized trials remains limited and only few studies have assessed the interplay between innate and adaptive immunity in depression. In this paper, we review current knowledge on the interactions between central and peripheral innate and adaptive immune molecules and the potential role of immune-related activation of microglia, inflammasomes and indoleamine-2,3-dioxygenase in the development of depressive symptoms. We highlight how combining basic immune methods with more advanced ‘omics’ technologies would help us to make progress in unravelling the complex associations between altered immune function and depressive disorders, in the identification of depression-specific biomarkers and in developing immunotherapeutic treatment strategies that take individual variability into account. PMID:26631274

  5. Stressor Controllability and Immune Function

    DTIC Science & Technology

    1986-10-17

    susceptibility to infectious disease . In E. Kurstak, P. V. Morozov, & Z. P. Lipowski (Eds.), Viruses , immunity, and mental health. Plenum Press, in press. w...following inmunization . a. ELISA Procedure. We-Tsof a flat bottomed microtiter plate (NUNC, certified Immunopla.e I) were coated with KLH (0.2 mi/well, 0.5 mg...because the, rats were being infected with viruses and other agents tnat could alter proliferation. We thus began to purchase pathogen-free animals and

  6. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.

    PubMed

    Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C

    2014-03-07

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.

  7. Review of the Literature: Integrating Psychoneuroimmunology into Pediatric Chronic Illness Interventions

    PubMed Central

    Nassau, Jack H.; Tien, Karen; Fritz, Gregory K.

    2012-01-01

    Objective Provide an orientation to psychoneuroimmunology, a rationale for including assessments of immune function in intervention studies of pediatric chronic illness, review the current literature, and provide recommendations for future research. Methods Using electronic searches and previous reviews, selected and reviewed published studies in which immunological changes related to psychological interventions were assessed in pediatric samples. Results Eight studies were identified and included in the review. These utilized a range of interventions (e.g., disclosure and hypnosis) and included a variety of pediatric samples (e.g., those with asthma, HIV infection, or lupus). Conclusions Results suggest that psychological intervention can influence immune function in pediatric samples. Recommendations for advancing our knowledge by studying populations for whom the immune system plays an active role in disease pathophysiology, measuring disease-relevant immune mediators, studying pediatric patients under times of stress, and focusing on interventions aimed at altering the stress system are provided. PMID:17848391

  8. Interplay between the gut microbiota and immune responses of ayu (Plecoglossus altivelis) during Vibrio anguillarum infection.

    PubMed

    Nie, Li; Zhou, Qian-Jin; Qiao, Yan; Chen, Jiong

    2017-09-01

    Gut microbiota plays fundamental roles in protection against pathogen invasion. However, the mechanism and extent of responses of gut microbiota to pathogenic infection are poorly understood. This study investigated the gut bacterial communities and immune responses of ayu (Plecoglossus altivelis) upon exposure to Vibrio anguillarum. The succession of V. anguillarum infection was evidenced by increased expression of immune genes and bacterial loads in ayu tissues, which in turn altered the composition and predicted functions of gut bacterial community. The dynamics of gut bacterial diversity and evenness were temporally stable in control ayu but were reduced in infected subjects, particularly at the late stages of infection. Variations in the gut microbiota were significantly associated with the expression levels of TNF-α (P = 0.019) and IL-1 β (P = 0.013). The profiles of certain gut bacterial taxa were indicative of V. anguillarum infection. Compared with healthy controls, the ayu infected with V. anguillarum possessed less complex, fewer connected, and lower cooperative gut bacterial interspecies interaction, coinciding with significant shifts in keystone species. These findings imply that V. anguillarum infection substantially disrupted the compositions and interspecies interaction of ayu gut bacterial community, thereby altering gut microbial-mediated functions and inducing host immune responses. This study provides an integrated overview on the interaction between the gut microbiota and host immune responses to pathogen infection from an ecological perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Infectious diseases and immunological responses in adult subjects with lifetime untreated, congenital GH deficiency.

    PubMed

    Campos, Viviane C; Barrios, Mônica R; Salvatori, Roberto; de Almeida, Roque Pacheco; de Melo, Enaldo V; Nascimento, Ana C S; de Jesus, Amélia Ribeiro; Aguiar-Oliveira, Manuel H

    2016-10-01

    Growth hormone is important for the development and function of the immune system, but there is controversy on whether growth hormone deficiency is associated to immune disorders. A model of isolated growth hormone deficiency may clarify if the lack of growth hormone is associated with increased susceptibility to infections, or with an altered responsiveness of the immune system. We have studied the frequency of infectious diseases and the immune function in adults with congenital, untreated isolated growth hormone deficiency. In a cross-sectional study, 35 adults with isolated growth hormone deficiency due to a homozygous mutation in the growth hormone releasing hormone receptor gene and 31 controls were submitted to a clinical questionnaire, physical examination serology for tripanosomiasis, leishmaniasis, HIV, tetanus, hepatitis B and C, and serum total immunoglobulin G, M, E and A measurement. The immune response was evaluated in a subset of these subjects by skin tests and response to vaccination for hepatitis B, tetanus, and bacillus Calmette-Guérin. There was no difference between the groups in history of infectious diseases and baseline serology. Isolated growth hormone deficiency subjects had lower total IgG, but within normal range. There was no difference in the response to any of the vaccinations or in the positivity to protein Purified Derived, streptokinase or candidin. Adult untreated isolated growth hormone deficiency does not cause an increased frequency of infectious diseases, and does not alter serologic tests, but is associated with lower total IgG levels, without detectable clinical impact.

  10. Aging and Immune Function: Molecular Mechanisms to Interventions

    PubMed Central

    Ponnappan, Subramaniam

    2011-01-01

    Abstract The immune system of an organism is an essential component of the defense mechanism aimed at combating pathogenic stress. Age-associated immune dysfunction, also dubbed “immune senescence,” manifests as increased susceptibility to infections, increased onset and progression of autoimmune diseases, and onset of neoplasia. Over the years, extensive research has generated consensus in terms of the phenotypic and functional defects within the immune system in various organisms, including humans. Indeed, age-associated alterations such as thymic involution, T cell repertoire skewing, decreased ability to activate naïve T cells and to generate robust memory responses, have been shown to have a causative role in immune decline. Further, understanding the molecular mechanisms underlying the generation of proteotoxic stress, DNA damage response, modulation of ubiquitin proteasome pathway, and regulation of transcription factor NFκB activation, in immune decline, have paved the way to delineating signaling pathways that cross-talk and impact immune senescence. Given the role of the immune system in combating infections, its effectiveness with age may well be a marker of health and a predictor of longevity. It is therefore believed that a better understanding of the mechanisms underlying immune senescence will lead to an effective interventional strategy aimed at improving the health span of individuals. Antioxid. Redox Signal. 14, 1551–1585. PMID:20812785

  11. Fatal autoimmunity in mice reconstituted with human hematopoietic stem cells encoding defective FOXP3

    PubMed Central

    Goettel, Jeremy A.; Biswas, Subhabrata; Lexmond, Willem S.; Yeste, Ada; Passerini, Laura; Patel, Bonny; Yang, Siyoung; Sun, Jiusong; Ouahed, Jodie; Shouval, Dror S.; McCann, Katelyn J.; Horwitz, Bruce H.; Mathis, Diane; Milford, Edgar L.; Notarangelo, Luigi D.; Roncarolo, Maria-Grazia; Fiebiger, Edda; Marasco, Wayne A.; Bacchetta, Rosa; Quintana, Francisco J.; Pai, Sung-Yun; Klein, Christoph; Muise, Aleixo M.

    2015-01-01

    Mice reconstituted with a human immune system provide a tractable in vivo model to assess human immune cell function. To date, reconstitution of murine strains with human hematopoietic stem cells (HSCs) from patients with monogenic immune disorders have not been reported. One obstacle precluding the development of immune-disease specific “humanized” mice is that optimal adaptive immune responses in current strains have required implantation of autologous human thymic tissue. To address this issue, we developed a mouse strain that lacks murine major histocompatibility complex class II (MHC II) and instead expresses human leukocyte antigen DR1 (HLA-DR1). These mice displayed improved adaptive immune responses when reconstituted with human HSCs including enhanced T-cell reconstitution, delayed-type hypersensitivity responses, and class-switch recombination. Following immune reconstitution of this novel strain with HSCs from a patient with immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, associated with aberrant FOXP3 function, mice developed a lethal inflammatory disorder with multiorgan involvement and autoantibody production mimicking the pathology seen in affected humans. This humanized mouse model permits in vivo evaluation of immune responses associated with genetically altered HSCs, including primary immunodeficiencies, and should facilitate the study of human immune pathobiology and the development of targeted therapeutics. PMID:25833964

  12. Bovine temperament impacts immunity, metabolism, and reproduction: A review

    USDA-ARS?s Scientific Manuscript database

    Temperament, or excitability, is a behavioral trait that has been shown to impact physiology and performance. Temperament in cattle alters the function of the hypothalamic-pituitary-adrenal axis, thereby influencing circulating concentrations of catecholamines and glucocorticoids. The physiological ...

  13. Nutritionally mediated programming of the developing immune system.

    PubMed

    Palmer, Amanda C

    2011-09-01

    A growing body of evidence highlights the importance of a mother's nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a "layered" expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease.

  14. Immune cells in term and preterm labor

    PubMed Central

    Gomez-Lopez, Nardhy; StLouis, Derek; Lehr, Marcus A; Sanchez-Rodriguez, Elly N; Arenas-Hernandez, Marcia

    2014-01-01

    Labor resembles an inflammatory response that includes secretion of cytokines/chemokines by resident and infiltrating immune cells into reproductive tissues and the maternal/fetal interface. Untimely activation of these inflammatory pathways leads to preterm labor, which can result in preterm birth. Preterm birth is a major determinant of neonatal mortality and morbidity; therefore, the elucidation of the process of labor at a cellular and molecular level is essential for understanding the pathophysiology of preterm labor. Here, we summarize the role of innate and adaptive immune cells in the physiological or pathological activation of labor. We review published literature regarding the role of innate and adaptive immune cells in the cervix, myometrium, fetal membranes, decidua and the fetus in late pregnancy and labor at term and preterm. Accumulating evidence suggests that innate immune cells (neutrophils, macrophages and mast cells) mediate the process of labor by releasing pro-inflammatory factors such as cytokines, chemokines and matrix metalloproteinases. Adaptive immune cells (T-cell subsets and B cells) participate in the maintenance of fetomaternal tolerance during pregnancy, and an alteration in their function or abundance may lead to labor at term or preterm. Also, immune cells that bridge the innate and adaptive immune systems (natural killer T (NKT) cells and dendritic cells (DCs)) seem to participate in the pathophysiology of preterm labor. In conclusion, a balance between innate and adaptive immune cells is required in order to sustain pregnancy; an alteration of this balance will lead to labor at term or preterm. PMID:24954221

  15. Neuroendocrine host factors and inflammatory disease susceptibility.

    PubMed Central

    Ligier, S; Sternberg, E M

    1999-01-01

    The etiology of autoimmune diseases is multifactorial, resulting from a combination of genetically predetermined host characteristics and environmental exposures. As the term autoimmune implies, immune dysfunction and dysregulated self-tolerance are key elements in the pathophysiology of all these diseases. The neuroendocrine and sympathetic nervous systems are increasingly recognized as modulators of the immune response at the levels of both early inflammation and specific immunity. As such, alterations in their response represent a potential mechanism by which pathologic autoimmunity may develop. Animal models of autoimmune diseases show pre-existing changes in neuroendocrine responses to a variety of stimuli, and both animal and human studies have shown altered stress responses in the setting of active immune activation. The potential role of the neuroendocrine system in linking environmental exposures and autoimmune diseases is 2-fold. First, it may represent a direct target for toxic compounds. Second, its inadequate function may result in the inappropriate response of the immune system to an environmental agent with immunogenic properties. This article reviews the relationship between autoimmune diseases and the neuroendocrine system and discusses the difficulties and pitfalls of investigating a physiologic response that is sensitive to such a multiplicity of environmental exposures. PMID:10502534

  16. Immune Cell Metabolism in Systemic Lupus Erythematosus.

    PubMed

    Choi, Seung-Chul; Titov, Anton A; Sivakumar, Ramya; Li, Wei; Morel, Laurence

    2016-11-01

    Cellular metabolism represents a newly identified checkpoint of effector functions in the immune system. A solid body of work has characterized the metabolic requirements of normal T cells during activation and differentiation into polarized effector subsets. Similar studies have been initiated to characterize the metabolic requirements for B cells and myeloid cells. Only a few studies though have characterized the metabolism of immune cells in the context of autoimmune diseases. Here, we review what is known on the altered metabolic patterns of CD4 + T cells, B cells, and myeloid cells in lupus patients and lupus-prone mice and how they contribute to lupus pathogenesis. We also discuss how defects in immune metabolism in lupus can be targeted therapeutically.

  17. HIV-1 alters the cytokine microenvironment and effector function of CD8+T cells upon antigen-specific activation with mycobacteria

    USDA-ARS?s Scientific Manuscript database

    Tuberculosis is the most common opportunistic infection in individuals living with human immunodeficiency virus (HIV). In addition to CD4+ T cell depletion, HIV infection compromises the function of CD8+ T cell-mediated immunity to Mycobacterium tuberculosis (M.tb). These effects on susceptibility ...

  18. Selenium Supplementation Restores Innate and Humoral Immune Responses in Footrot-Affected Sheep

    PubMed Central

    Hall, Jean A.; Vorachek, William R.; Stewart, Whitney C.; Gorman, M. Elena; Mosher, Wayne D.; Pirelli, Gene J.; Bobe, Gerd

    2013-01-01

    Dietary selenium (Se) alters whole-blood Se concentrations in sheep, dependent upon Se source and dosage administered, but little is known about effects on immune function. We used footrot (FR) as a disease model to test the effects of supranutritional Se supplementation on immune function. To determine the effect of Se-source (organic Se-yeast, inorganic Na-selenite or Na-selenate) and Se-dosage (1, 3, 5 times FDA-permitted level) on FR severity, 120 ewes with and 120 ewes without FR were drenched weekly for 62 weeks with different Se sources and dosages (30 ewes/treatment group). Innate immunity was evaluated after 62 weeks of supplementation by measuring neutrophil bacterial killing ability. Adaptive immune function was evaluated by immunizing sheep with keyhole limpet hemocyanin (KLH). The antibody titer and delayed-type hypersensitivity skin test to KLH were used to assess humoral immunity and cell-mediated immunity, respectively. At baseline, FR-affected ewes had lower whole-blood and serum-Se concentrations; this difference was not observed after Se supplementation. Se supplementation increased neutrophil bacterial killing percentages in FR-affected sheep to percentages observed in supplemented and non-supplemented healthy sheep. Similarly, Se supplementation increased KLH antibody titers in FR-affected sheep to titers observed in healthy sheep. FR-affected sheep demonstrated suppressed cell-mediated immunity at 24 hours after intradermal KLH challenge, although there was no improvement with Se supplementation. We did not consistently prevent nor improve recovery from FR over the 62 week Se-treatment period. In conclusion, Se supplementation does not prevent FR, but does restore innate and humoral immune functions negatively affected by FR. PMID:24340044

  19. Developmental origins of inflammatory and immune diseases.

    PubMed

    Chen, Ting; Liu, Han-Xiao; Yan, Hui-Yi; Wu, Dong-Mei; Ping, Jie

    2016-08-01

    Epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exert a profound influence on physiological function and risk of diseases in adult life. The concepts of the 'developmental programming' and Developmental Origins of Health and Diseases (DOHaD) have become well accepted and have been applied across almost all fields of medicine. Adverse intrauterine environments may have programming effects on the crucial functions of the immune system during critical periods of fetal development, which can permanently alter the immune function of offspring. Immune dysfunction may in turn lead offspring to be susceptible to inflammatory and immune diseases in adulthood. These facts suggest that inflammatory and immune disorders might have developmental origins. In recent years, inflammatory and immune disorders have become a growing health problem worldwide. However, there is no systematic report in the literature on the developmental origins of inflammatory and immune diseases and the potential mechanisms involved. Here, we review the impacts of adverse intrauterine environments on the immune function in offspring. This review shows the results from human and different animal species and highlights the underlying mechanisms, including damaged development of cells in the thymus, helper T cell 1/helper T cell 2 balance disturbance, abnormal epigenetic modification, effects of maternal glucocorticoid overexposure on fetal lymphocytes and effects of the fetal hypothalamic-pituitary-adrenal axis on the immune system. Although the phenomena have already been clearly implicated in epidemiologic and experimental studies, new studies investigating the mechanisms of these effects may provide new avenues for exploiting these pathways for disease prevention. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Influence of cattle temperament on blood serum fatty acid content

    USDA-ARS?s Scientific Manuscript database

    Cattle temperament has been reported to influence blood metabolites. Specifically, temperament was related with increased circulation of serum NEFA, decreased blood urea nitrogen, and reduced insulin sensitivity. Metabolic alterations such as these may impact cattle immune function, performance trai...

  1. Innate transcriptional effects by adjuvants on the magnitude, quality, and durability of HIV envelope responses in NHPs.

    PubMed

    Francica, Joseph R; Zak, Daniel E; Linde, Caitlyn; Siena, Emilio; Johnson, Carrie; Juraska, Michal; Yates, Nicole L; Gunn, Bronwyn; De Gregorio, Ennio; Flynn, Barbara J; Valiante, Nicholas M; Malyala, Padma; Barnett, Susan W; Sarkar, Pampi; Singh, Manmohan; Jain, Siddhartha; Ackerman, Margaret; Alam, Munir; Ferrari, Guido; Tomaras, Georgia D; O'Hagan, Derek T; Aderem, Alan; Alter, Galit; Seder, Robert A

    2017-11-28

    Adjuvants have a critical role for improving vaccine efficacy against many pathogens, including HIV. Here, using transcriptional RNA profiling and systems serology, we assessed how distinct innate pathways altered HIV-specific antibody responses in nonhuman primates (NHPs) using 8 clinically based adjuvants. NHPs were immunized with a glycoprotein 140 HIV envelope protein (Env) and insoluble aluminum salts (alum), MF59, or adjuvant nanoemulsion (ANE) coformulated with or without Toll-like receptor 4 (TLR4) and 7 agonists. These were compared with Env administered with polyinosinic-polycytidylic acid:poly-L-lysine, carboxymethylcellulose (pIC:LC) or immune-stimulating complexes. Addition of the TLR4 agonist to alum enhanced upregulation of a set of inflammatory genes, whereas the TLR7 agonist suppressed expression of alum-responsive inflammatory genes and enhanced upregulation of antiviral and interferon (IFN) genes. Moreover, coformulation of the TLR4 or 7 agonists with alum boosted Env-binding titers approximately threefold to 10-fold compared with alum alone, but remarkably did not alter gene expression or enhance antibody titers when formulated with ANE. The hierarchy of adjuvant potency was established after the second of 4 immunizations. In terms of antibody durability, antibody titers decreased ∼10-fold after the final immunization and then remained stable after 65 weeks for all adjuvants. Last, Env-specific Fc-domain glycan structures and a series of antibody effector functions were assessed by systems serology. Antiviral/IFN gene signatures correlated with Fc-receptor binding across all adjuvant groups. This study defines the potency and durability of 8 different clinically based adjuvants in NHPs and shows how specific innate pathways can alter qualitative aspects of Env antibody function.

  2. Immunological changes following protein losing enteropathy after surgery total cavopulmonary connection (TCPC) by cytomics

    NASA Astrophysics Data System (ADS)

    Bocsi, József; Lenz, Dominik; Mittag, Anja; Sauer, Ursula; Wild, Lena; Hess, John; Schranz, Dietmar; Hambsch, Jörg; Schneider, Peter; Tárnok, Attila

    2008-02-01

    Complex immunophenotyping single-cell analysis are essential for systems biology and cytomics. The application of cytomics in immunology and cardiac research and diagnostics is very broad, ranging from the better understanding of the cardiovascular cell biology to the identification of heart function and immune consequences after surgery. TCPC or Fontan-type circulation is an accepted palliative surgery for patients with a functionally univentricular heart. Protein-losing enteropathy (PLE), the enteric loss of proteins, is a potential late complication after TCPC surgery. PLE etiology is poorly understood, but immunological factors seem to play a role. This study was aimed to gain insight into immune phenotype alterations following post-TCPC PLE. Patients were studied during routine follow-up up to 5yrs after surgery, blood samples of TCPC patients without (n=21, age 6.8+/-2.6 years at surgery; mean+/-SD) and with manifest PLE (n=12, age 12.8+/- 4.5 years at sampling) and age matched healthy children (control, n=22, age 8.6+/-2.5 years) were collected. Routine laboratory, immune phenotype and serological parameters were determined. Following PLE the immune phenotype dramatically changed with signs of acute inflammation (increased neutrophil and monocyte count, CRP, IL-8). In contrast, lymphocyte count (NK-cells, αβTCR +CD4 +, αβTCR +CD8 + cells) decreased (p<0.001). The residual T-cells had elevated CD25 and CD69 expression. In PLE-patients unique cell populations with CD3 +αβ/γδTCR - and αβTCR +CD4 -8 - phenotype were present in increased frequencies. Our studies show dramatically altered leukocyte phenotype after PLE in TCPC patients. These alterations resemble to changes in autoimmune diseases. We conclude that autoimmune processes may play a role in etiology and pathophysiology of PLE.

  3. Innate transcriptional effects by adjuvants on the magnitude, quality, and durability of HIV envelope responses in NHPs

    PubMed Central

    Francica, Joseph R.; Zak, Daniel E.; Linde, Caitlyn; Siena, Emilio; Johnson, Carrie; Juraska, Michal; Yates, Nicole L.; Gunn, Bronwyn; De Gregorio, Ennio; Flynn, Barbara J.; Valiante, Nicholas M.; Malyala, Padma; Barnett, Susan W.; Sarkar, Pampi; Singh, Manmohan; Jain, Siddhartha; Ackerman, Margaret; Alam, Munir; Ferrari, Guido; Tomaras, Georgia D.; O’Hagan, Derek T.; Aderem, Alan; Alter, Galit

    2017-01-01

    Adjuvants have a critical role for improving vaccine efficacy against many pathogens, including HIV. Here, using transcriptional RNA profiling and systems serology, we assessed how distinct innate pathways altered HIV-specific antibody responses in nonhuman primates (NHPs) using 8 clinically based adjuvants. NHPs were immunized with a glycoprotein 140 HIV envelope protein (Env) and insoluble aluminum salts (alum), MF59, or adjuvant nanoemulsion (ANE) coformulated with or without Toll-like receptor 4 (TLR4) and 7 agonists. These were compared with Env administered with polyinosinic-polycytidylic acid:poly-L-lysine, carboxymethylcellulose (pIC:LC) or immune-stimulating complexes. Addition of the TLR4 agonist to alum enhanced upregulation of a set of inflammatory genes, whereas the TLR7 agonist suppressed expression of alum-responsive inflammatory genes and enhanced upregulation of antiviral and interferon (IFN) genes. Moreover, coformulation of the TLR4 or 7 agonists with alum boosted Env-binding titers approximately threefold to 10-fold compared with alum alone, but remarkably did not alter gene expression or enhance antibody titers when formulated with ANE. The hierarchy of adjuvant potency was established after the second of 4 immunizations. In terms of antibody durability, antibody titers decreased ∼10-fold after the final immunization and then remained stable after 65 weeks for all adjuvants. Last, Env-specific Fc-domain glycan structures and a series of antibody effector functions were assessed by systems serology. Antiviral/IFN gene signatures correlated with Fc-receptor binding across all adjuvant groups. This study defines the potency and durability of 8 different clinically based adjuvants in NHPs and shows how specific innate pathways can alter qualitative aspects of Env antibody function. PMID:29296883

  4. An XA21-Associated Kinase (OsSERK2) Regulates Immunity Mediated by the XA21 and XA3 Immune Receptors

    PubMed Central

    Chen, Xuewei; Zuo, Shimin; Schwessinger, Benjamin; Chern, Mawsheng; Canlas, Patrick E.; Ruan, Deling; Zhou, Xiaogang; Wang, Jing; Daudi, Arsalan; Petzold, Christopher J.; Heazlewood, Joshua L.; Ronald, Pamela C.

    2014-01-01

    The rice XA21 immune receptor kinase and the structurally related XA3 receptor confer immunity to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. Here we report the isolation of OsSERK2 (rice somatic embryogenesis receptor kinase 2) and demonstrate that OsSERK2 positively regulates immunity mediated by XA21 and XA3 as well as the rice immune receptor FLS2 (OsFLS2). Rice plants silenced for OsSerk2 display altered morphology and reduced sensitivity to the hormone brassinolide. OsSERK2 interacts with the intracellular domains of each immune receptor in the yeast two-hybrid system in a kinase activity-dependent manner. OsSERK2 undergoes bidirectional transphosphorylation with XA21 in vitro and forms a constitutive complex with XA21 in vivo. These results demonstrate an essential role for OsSERK2 in the function of three rice immune receptors and suggest that direct interaction with the rice immune receptors is critical for their function. Taken together, our findings suggest that the mechanism of OsSERK2-meditated regulation of rice XA21, XA3, and FLS2 differs from that of AtSERK3/BAK1-mediated regulation of Arabidopsis FLS2 and EFR. PMID:24482436

  5. Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety.

    PubMed

    Sominsky, Luba; Fuller, Erin A; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R; Dickson, Phillip W; Hodgson, Deborah M

    2013-01-01

    Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.

  6. Functional Programming of the Autonomic Nervous System by Early Life Immune Exposure: Implications for Anxiety

    PubMed Central

    Sominsky, Luba; Fuller, Erin A.; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R.; Dickson, Phillip W.; Hodgson, Deborah M.

    2013-01-01

    Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes. PMID:23483921

  7. Exposure to Silver Nanospheres Leads to Altered Respiratory Mechanics and Delayed Immune Response in an in Vivo Murine Model

    PubMed Central

    Botelho, Danielle; Leo, Bey F.; Massa, Christopher; Sarkar, Srijata; Tetley, Terry; Chung, Kian F.; Chen, Shu; Ryan, Mary P.; Porter, Alexandra; Atochina-Vasserman, Elena N.; Zhang, Junfeng; Schwander, Stephan; Gow, Andrew J.

    2018-01-01

    Here we examine the organ level toxicology of both carbon black (CB) and silver nanoparticles (AgNP). We aim to determine metal-specific effects to respiratory function, inflammation and potential interactions with lung lining fluid (LLF). C57Bl6/J male mice were intratracheally instilled with saline (control), low (0.05 μg/g) or high (0.5 μg/g) doses of either AgNP or CB 15 nm nanospheres. Lung histology, cytology, surfactant composition and function, inflammatory gene expression, and pulmonary function were measured at 1, 3, and 7 days post-exposure. Acutely, high dose CB resulted in an inflammatory response, increased neutrophilia and cytokine production, without alteration in surfactant composition or respiratory mechanics. Low dose CB had no effect. Neither low nor high dose AgNPs resulted in an acute inflammatory response, but there was an increase in work of breathing. Three days post-exposure with CB, a persistent neutrophilia was noted. High dose AgNP resulted in an elevated number of macrophages and invasion of lymphocytes. Additionally, AgNP treated mice displayed increased expression of IL1B, IL6, CCL2, and IL10. However, there were no significant changes in respiratory mechanics. At day 7, inflammation had resolved in AgNP-treated mice, but tissue stiffness and resistance were significantly decreased, which was accompanied by an increase in surfactant protein D (SP-D) content. These data demonstrate that the presence of metal alters the response of the lung to nanoparticle exposure. AgNP-surfactant interactions may alter respiratory function and result in a delayed immune response, potentially due to modified airway epithelial cell function. PMID:29632485

  8. The Immune System in Children with Malnutrition—A Systematic Review

    PubMed Central

    Rytter, Maren Johanne Heilskov; Kolte, Lilian; Briend, André; Friis, Henrik; Christensen, Vibeke Brix

    2014-01-01

    Background Malnourished children have increased risk of dying, with most deaths caused by infectious diseases. One mechanism behind this may be impaired immune function. However, this immune deficiency of malnutrition has not previously been systematically reviewed. Objectives To review the scientific literature about immune function in children with malnutrition. Methods A systematic literature search was done in PubMed, and additional articles identified in reference lists and by correspondence with experts in the field. The inclusion criteria were studies investigating immune parameters in children aged 1–60 months, in relation to malnutrition, defined as wasting, underweight, stunting, or oedematous malnutrition. Results The literature search yielded 3402 articles, of which 245 met the inclusion criteria. Most were published between 1970 and 1990, and only 33 after 2003. Malnutrition is associated with impaired gut-barrier function, reduced exocrine secretion of protective substances, and low levels of plasma complement. Lymphatic tissue, particularly the thymus, undergoes atrophy, and delayed-type hypersensitivity responses are reduced. Levels of antibodies produced after vaccination are reduced in severely malnourished children, but intact in moderate malnutrition. Cytokine patterns are skewed towards a Th2-response. Other immune parameters seem intact or elevated: leukocyte and lymphocyte counts are unaffected, and levels of immunoglobulins, particularly immunoglobulin A, are high. The acute phase response appears intact, and sometimes present in the absence of clinical infection. Limitations to the studies include their observational and often cross-sectional design and frequent confounding by infections in the children studied. Conclusion The immunological alterations associated with malnutrition in children may contribute to increased mortality. However, the underlying mechanisms are still inadequately understood, as well as why different types of malnutrition are associated with different immunological alterations. Better designed prospective studies are needed, based on current understanding of immunology and with state-of-the-art methods. PMID:25153531

  9. The ESA-NASA CHOICE Study: Winterover at Concordia Station, Interior Antarctica, A Potential Analog for Spaceflight-Associated Immune Dysregulation

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Quiriarte, H.; Pierson, D L.; Sams, C. F.

    2010-01-01

    For ground-based space physiological research, the choice of terrestrial analog must carefully match the system of interest. Antarctica winter-over at the European Concordia Station is potentially a superior ground-analog for spaceflight-associated immune dysregulation (SAID). Concordia missions consist of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation, disrupted circadian rhythms and international crews. The ESA-NASA CHOICE study assesses innate and adaptive immunity, viral reactivation and stress factors during Concordia winterover deployment. Initial data obtained from the first study deployment (2009 mission; 'n' of 6) will be presented, and logistical challenges regarding analog usage for biological studies will also be discussed. The total WBC increased, and alterations in some peripheral leukocyte populations were observed during winterover at Concordia Station. Percentages of lymphocytes and monocytes increased, and levels of senescent CD8+ T cells were increased during deployment. Transient increases in constitutively activated T cell subsets were observed, at mission time points associated with endemic disease outbreaks. T cell function (early blastogenesis response) was increased near the entry/exit deployment phases, and production of most measured cytokines increased during deployment. Salivary cortisol demonstrated high variability during winterover, but was generally increased. A 2-point circadian rhythm of cortisol measurement (morning/evening) was unaltered during winterover. Perceived stress was mildly elevated during winterover. Other measures, including in-vitro DTH assessment, viral specific T cell number/function and latent herpesvirus reactivation have not yet been completed for the 2009 winterover subjects. Based on the preliminary data, alterations in immune cell distribution and function appear to persist during Antarctic winterover at Concordia Station. Some of these changes are similar to those observed in Astronauts, either during or immediately following spaceflight. Based on the initial immune data and environmental conditions, Concordia winterover may be an appropriate analog for some flight-associated immune changes.

  10. Annexin A1 influences in breast cancer: Controversies on contributions to tumour, host and immunoediting processes.

    PubMed

    Tu, Yan; Johnstone, Cameron N; Stewart, Alastair G

    2017-05-01

    Annexin A1 is a multifunctional protein characterised by its actions in modulating the innate and adaptive immune response. Accumulating evidence of altered annexin A1 expression in many human tumours raises interest in its functional role in cancer biology. In breast cancer, altered annexin A1 expression levels suggest a potential influence on tumorigenic and metastatic processes. However, reports of conflicting results reveal a relationship that is much more complex than first conceptualised. In this review, we explore the diverse actions of annexin A1 on breast tumour cells and various host cell types, including stromal immune and structural cells, particularly in the context of cancer immunoediting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Impaired interferon signaling is a common immune defect in human cancer

    PubMed Central

    Critchley-Thorne, Rebecca J.; Simons, Diana L.; Yan, Ning; Miyahira, Andrea K.; Dirbas, Frederick M.; Johnson, Denise L.; Swetter, Susan M.; Carlson, Robert W.; Fisher, George A.; Koong, Albert; Holmes, Susan; Lee, Peter P.

    2009-01-01

    Immune dysfunction develops in patients with many cancer types and may contribute to tumor progression and failure of immunotherapy. Mechanisms underlying cancer-associated immune dysfunction are not fully understood. Efficient IFN signaling is critical to lymphocyte function; animals rendered deficient in IFN signaling develop cancer at higher rates. We hypothesized that altered IFN signaling may be a key mechanism of immune dysfunction common to cancer. To address this, we assessed the functional responses to IFN in peripheral blood lymphocytes from patients with 3 major cancers: breast cancer, melanoma, and gastrointestinal cancer. Type-I IFN (IFN-α)-induced signaling was reduced in T cells and B cells from all 3 cancer-patient groups compared to healthy controls. Type-II IFN (IFN-γ)-induced signaling was reduced in B cells from all 3 cancer patient groups, but not in T cells or natural killer cells. Impaired-IFN signaling was equally evident in stage II, III, and IV breast cancer patients, and downstream functional defects in T cell activation were identified. Taken together, these findings indicate that defects in lymphocyte IFN signaling arise in patients with breast cancer, melanoma, and gastrointestinal cancer, and these defects may represent a common cancer-associated mechanism of immune dysfunction. PMID:19451644

  12. Characterisation of cell functions and receptors in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME).

    PubMed

    Hardcastle, Sharni Lee; Brenu, Ekua Weba; Johnston, Samantha; Nguyen, Thao; Huth, Teilah; Wong, Naomi; Ramos, Sandra; Staines, Donald; Marshall-Gradisnik, Sonya

    2015-06-02

    Abnormal immune function is often an underlying component of illness pathophysiology and symptom presentation. Functional and phenotypic immune-related alterations may play a role in the obscure pathomechanism of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). The objective of this study was to investigate the functional ability of innate and adaptive immune cells in moderate and severe CFS/ME patients. The 1994 Fukuda criteria for CFS/ME were used to define CFS/ME patients. CFS/ME participants were grouped based on illness severity with 15 moderately affected (moderate) and 12 severely affected (severe) CFS/ME patients who were age and sex matched with 18 healthy controls. Flow cytometric protocols were used for immunological analysis of dendritic cells, monocytes and neutrophil function as well as measures of lytic proteins and T, natural killer (NK) and B cell receptors. CFS/ME patients exhibited alterations in NK receptors and adhesion markers and receptors on CD4(+)T and CD8(+)T cells. Moderate CFS/ME patients had increased CD8(+) CD45RA effector memory T cells, SLAM expression on NK cells, KIR2DL5(+) on CD4(+)T cells and BTLA4(+) on CD4(+)T central memory cells. Moderate CFS/ME patients also had reduced CD8(+)T central memory LFA-1, total CD8(+)T KLRG1, naïve CD4(+)T KLRG1 and CD56(dim)CD16(-) NK cell CD2(+) and CD18(+)CD2(+). Severe CFS/ME patients had increased CD18(+)CD11c(-) in the CD56(dim)CD16(-) NK cell phenotype and reduced NKp46 in CD56(bright)CD16(dim) NK cells. This research accentuated the presence of immunological abnormalities in CFS/ME and highlighted the importance of assessing functional parameters of both innate and adaptive immune systems in the illness.

  13. Immunotoxicological effects of JP-8 jet fuel exposure.

    PubMed

    Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M

    1997-01-01

    Chronic exposure to jet fuel has been shown to have adverse effects on human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans, and to decrease sensorimotor speed (3-5). Due to the decision by the United States Air Force to implement the widespread use of JP-8 jet fuel in its operations, a thorough understanding of its potential effects upon exposed personnel is both critical and necessary. Exposure to potential environmental toxicants such as JP-8 may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.); e.g., the immune system. Significant changes in immune consequences, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long-lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed for 1h/day for 7 days to varying concentrations of aerosolized JP-8 jet fuel to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on their immune systems. It was observed that even at exposure concentrations as low as 100 mg/m3 detrimental effects on the immune system occurred. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in losses of different immune cell subpopulations depending upon the immune organ being examined. Further, JP-8 exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low concentration exposure of mice to JP-8 jet fuel caused significant toxicological effects on the immune system. It appears that the immune system may be the most sensitive indicator of toxicological damage due to JP-8 exposure, as effects were seen at concentrations of jet fuel that did not evidence change in other biological systems. Such changes may have significant effects on the health of the exposed individual.

  14. ALTERATION OF IMMUNE FUNCTION IN MICE FOLLOWING CARCINOGEN EXPOSURE

    EPA Science Inventory

    Treatment of mice with the direct-acting alkylating agent methyl methanesulfonate produced marked suppression of the humoral response to sheep erythrocytes and suppression of T cell responses to foreign antigens. These effects occurred without loss of spleen, thymus or body weigh...

  15. Maternal Immune Activation During the Third Trimester Is Associated with Neonatal Functional Connectivity of the Salience Network and Fetal to Toddler Behavior.

    PubMed

    Spann, Marisa N; Monk, Catherine; Scheinost, Dustin; Peterson, Bradley S

    2018-03-14

    Prenatal maternal immune activation (MIA) is associated with altered brain development and risk of psychiatric disorders in offspring. Translational human studies of MIA are few in number. Alterations of the salience network have been implicated in the pathogenesis of the same psychiatric disorders associated with MIA. If MIA is pathogenic, then associated abnormalities in the salience network should be detectable in neonates immediately after birth. We tested the hypothesis that third trimester MIA of adolescent women who are at risk for high stress and inflammation is associated with the strength of functional connectivity in the salience network of their neonate. Thirty-six women underwent blood draws to measure interleukin-6 (IL-6) and C-reactive protein (CRP) and electrocardiograms to measure fetal heart rate variability (FHRV) at 34-37 weeks gestation. Resting-state imaging data were acquired in the infants at 40-44 weeks postmenstrual age (PMA). Functional connectivity was measured from seeds placed in the anterior cingulate cortex and insula. Measures of cognitive development were obtained at 14 months PMA using the Bayley Scales of Infant and Toddler Development-Third Edition (BSID-III). Both sexes were studied. Regions in which the strength of the salience network correlated with maternal IL-6 or CRP levels included the medial prefrontal cortex, temporoparietal junction, and basal ganglia. Maternal CRP level correlated inversely with FHRV acquired at the same gestational age. Maternal CRP and IL-6 levels correlated positively with measures of cognitive development on the BSID-III. These results suggest that MIA is associated with short- and long-term influences on offspring brain and behavior. SIGNIFICANCE STATEMENT Preclinical studies in rodents and nonhuman primates and epidemiological studies in humans suggest that maternal immune activation (MIA) alters the development of brain circuitry and associated behaviors, placing offspring at risk for psychiatric illness. Consistent with preclinical findings, we show that maternal third trimester interleukin-6 and C-reactive protein levels are associated with neonatal functional connectivity and with both fetal and toddler behavior. MIA-related functional connectivity was localized to the salience, default mode, and frontoparietal networks, which have been implicated in the pathogenesis of psychiatric disorders. Our results suggest that MIA alters functional connectivity in the neonatal brain, that those alterations have consequences for cognition, and that these findings may provide pathogenetic links between preclinical and epidemiological studies associating MIA with psychiatric risk in offspring. Copyright © 2018 the authors 0270-6474/18/382877-10$15.00/0.

  16. The influence of pregnancy on systemic immunity.

    PubMed

    Pazos, Michael; Sperling, Rhoda S; Moran, Thomas M; Kraus, Thomas A

    2012-12-01

    Adaptations in maternal systemic immunity are presumed to be responsible for observed alterations in disease susceptibility and severity as pregnancy progresses. Epidemiological evidence as well as animal studies have shown that influenza infections are more severe during the second and third trimesters of pregnancy, resulting in greater morbidity and mortality, although the reason for this is still unclear. Our laboratory has taken advantage of 20 years of experience studying the murine immune response to respiratory viruses to address questions of altered immunity during pregnancy. With clinical studies and unique animal model systems, we are working to define the mechanisms responsible for altered immune responses to influenza infection during pregnancy and what roles hormones such as estrogen or progesterone play in these alterations.

  17. Neuroimmunologic aspects of sleep and sleep loss

    NASA Technical Reports Server (NTRS)

    Rogers, N. L.; Szuba, M. P.; Staab, J. P.; Evans, D. L.; Dinges, D. F.

    2001-01-01

    The complex and intimate interactions between the sleep and immune systems have been the focus of study for several years. Immune factors, particularly the interleukins, regulate sleep and in turn are altered by sleep and sleep deprivation. The sleep-wake cycle likewise regulates normal functioning of the immune system. Although a large number of studies have focused on the relationship between the immune system and sleep, relatively few studies have examined the effects of sleep deprivation on immune parameters. Studies of sleep deprivation's effects are important for several reasons. First, in the 21st century, various societal pressures require humans to work longer and sleep less. Sleep deprivation is becoming an occupational hazard in many industries. Second, to garner a greater understanding of the regulatory effects of sleep on the immune system, one must understand the consequences of sleep deprivation on the immune system. Significant detrimental effects on immune functioning can be seen after a few days of total sleep deprivation or even several days of partial sleep deprivation. Interestingly, not all of the changes in immune physiology that occur as a result of sleep deprivation appear to be negative. Numerous medical disorders involving the immune system are associated with changes in the sleep-wake physiology--either being caused by sleep dysfunction or being exacerbated by sleep disruption. These disorders include infectious diseases, fibromyalgia, cancers, and major depressive disorder. In this article, we will describe the relationships between sleep physiology and the immune system, in states of health and disease. Interspersed will be proposals for future research that may illuminate the clinical relevance of the relationships between sleeping, sleep loss and immune function in humans. Copyright 2001 by W.B. Saunders Company.

  18. More than Fever: Thermoregulatory Responses to Immunological Stimulation and Consequences of Thermoregulatory Strategy on Innate Immunity in Gopher Tortoises (Gopherus polyphemus).

    PubMed

    Goessling, Jeffrey M; Guyer, Craig; Mendonça, Mary T

    Organisms possess a range of thermoregulatory strategies that may vary in response to sickness, thereby driving important life-history consequences. Because the immune system is vital to maintaining organism function, understanding the suite of immune responses to infection indicates basic costs and benefits of physiological strategies. Here, we assessed consequences of thermoregulation and seasonality on immune function in both immunologically stimulated and nonstimulated gopher tortoises (Gopherus polyphemus). An ectothermic vertebrate was used as an experimental model because the effects of thermoregulation on immunity remain understudied and are of increasing importance in light of anthropogenic alterations to thermal environments. We found that G. polyphemus increased body temperature (T b ) at 1 h after injection with lipopolysaccharide (LPS) when compared with saline controls (P = 0.04), consistent with behavioral fever. LPS increased plasma bactericidal ability (BA; P = 0.006), reduced plasma iron concentration (P = 0.041), and increased heterophil∶lymphocyte ratios (P < 0.001). In nonstimulated animals, thermoregulatory strategy had a strong effect on innate immunity, which demonstrated that individuals have the ability to facultatively adjust immune function when infection burden is low; this relationship was not present in LPS-injected animals, which suggested that animals stimulated with LPS maximize bactericidal ability independently of temperature. Seasonal acclimation state did not influence responses to LPS, although baseline plasma iron was significantly lower in animals acclimated to winter. These results support that a trade-off exists between immunity and other conflicting physiological interests. Moreover, these results clearly demonstrate the ability of individuals to modulate immune function as a direct result of thermoregulatory decisions.

  19. DISREGULATION OF INFLAMMATORY RESPONSES BY CHRONIC CIRCADIAN DISRUPTION

    PubMed Central

    Castanon-Cervantes, Oscar; Wu, Mingwei; Ehlen, J. Christopher; Paul, Ketema; Gamble, Karen L.; Johnson, Russell L.; Besing, Rachel C.; Menaker, Michael; Gewirtz, Andrew T.; Davidson, Alec J.

    2010-01-01

    Circadian rhythms modulate nearly every mammalian physiological process. Chronic disruption of circadian timing in shift work or during chronic jet lag in animal models leads to a higher risk of several pathologies. Many of these conditions in both shift workers and experimental models share the common risk factor of inflammation. Here we show that experimentally-induced circadian disruption altered innate immune responses. Endotoxemic shock induced by LPS was magnified leading to hypothermia and death after 4 consecutive weekly 6h phase-advances of the light-dark schedule, with 89% mortality compared with 21% in unshifted control mice. This may be due to a heightened release of pro-inflammatory cytokines in response to LPS treatment in shifted animals. Isolated peritoneal macrophages harvested from shifted mice exhibited a similarly heightened response to LPS in vitro, indicating that these cells are a target for jet lag. Sleep deprivation and stress are known to alter immune function and are potential mediators of the effects we describe. However polysomnographic recording in mice exposed to the shifting schedule revealed no sleep loss, and stress measures were not altered in shifted mice. In contrast, we observed altered or abolished rhythms in the expression of clock genes in the central clock, liver, thymus and peritoneal macrophages in mice after chronic jet lag. We conclude that circadian disruption, but not sleep loss or stress, are associated with jet lag-related disregulation of the innate immune system. Such immune changes might be a common mechanism for the myriad negative health effects of shift work. PMID:20944004

  20. Highly sensitivity adhesion molecules detection in hereditary haemochromatosis patients reveals altered expression.

    PubMed

    Norris, S; White, M; Mankan, A K; Lawless, M W

    2010-04-01

    Several abnormalities in the immune status of patients with hereditary haemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, altered immune signalling contributing to the pathogenesis of this disorder. Adhesion molecules L-, E- and P-Selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) are some of the major regulators of the immune processes and altered levels of these proteins have been found in pathological states including cardiovascular diseases, arthritis and liver cancer. The aim of this study was to assess L-, E- and P-Selectin, ICAM-1 and VCAM-1 expression in patients with HH and correlate these results with HFE mutation status and iron indexes. A total of 139 subjects were diagnosed with HH (C282Y homozygotes = 87, C282Y/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N/N), 18 normal subjects heterozygous for the H63D mutation served as age-sex-matched controls. We observed a significant decrease in L-selectin (P = 0.0002) and increased E-selectin and ICAM-1 (P = 0.0006 and P = 0.0059) expression in HH patients compared with healthy controls. This study observes for the first time that an altered adhesion molecules profile occurs in patients with HH that is associated with specific HFE genetic component for iron overload, suggesting that differential expression of adhesion molecules may play a role in the pathogenesis of HH.

  1. [Effects of prebiotics and probiotics on gastrointestinal tract lymphoid tissue in hiv infected patients].

    PubMed

    Feria, Manuel G; Taborda, Natalia A; Hernandez, Juan C; Rugeles, María T

    2017-02-01

    HIV infection induces alterations in almost all immune cell populations, mainly in CD4+ T cells, leading to the development of opportunistic infections. The gut-associated lymphoid tissue (GALT) constitutes the most important site for viral replication, because the main target cells, memory T-cells, reside in this tissue. It is currently known that alterations in GALT are critical during the course of the infection, as HIV-1 induces loss of tissue integrity and promotes translocation of microbial products from the intestinal lumen to the systemic circulation, leading to a persistent immune activation state and immune exhaustion. Although antiretroviral treatment decreases viral load and substantially improves the prognosis of the infection, the alterations in GALT remains, having a great impact on the ability to establish effective immune responses. This emphasizes the importance of developing new therapeutic alternatives that may promote structural and functional integrity of this tissue. In this regard, therapy with probiotics/prebiotics has beneficial effects in GALT, mainly in syndromes characterized by intestinal dysbiosis, including the HIV-1 infection. In these patients, the consumption of probiotics/prebiotics decreased microbial products in plasma and CD4+ T cell activation, increased CD4+ T cell frequency, in particular Th17, and improved the intestinal flora. In this review, the most important findings on the potential impact of the probiotics/prebiotics therapy are discussed.

  2. Obesity alters immune and metabolic profiles: new insight from obese-resistant mice on high fat diet

    PubMed Central

    Boi, Shannon K.; Buchta, Claire M.; Pearson, Nicole A.; Francis, Meghan B.; Meyerholz, David K.; Grobe, Justin L.; Norian, Lyse A.

    2016-01-01

    Objective Diet-induced obesity has been shown to alter immune function in mice, but distinguishing the effects of obesity from changes in diet composition is complicated. We hypothesized that immunological differences would exist between diet-induced obese (DIO) and obese-resistant (OB-Res) mice fed the same high-fat diet (HFD). Methods BALB/c mice were fed either standard chow or HFD to generate lean or DIO and OB-Res mice, respectively. Resulting mice were analyzed for serum immunologic and metabolic profiles, and cellular immune parameters. Results BALB/c mice on HFD can be categorized as DIO or OB-Res, based on body weight versus lean controls. DIO mice are physiologically distinct from OB-Res mice, whose serum Insulin, Leptin, GIP, and Eotaxin concentrations remain similar to lean controls. DIO mice have increased macrophage+ crown-like structures in white adipose tissue, although macrophage percentages were unchanged from OB-Res and lean mice. DIO mice also have decreased splenic CD4+ T cells, elevated serum GM-CSF, and increased splenic CD11c+ dendritic cells, but impaired dendritic cell stimulatory capacity (p < 0.05 versus lean controls). These parameters were unaltered in OB-Res mice versus lean controls. Conclusions Diet-induced obesity results in alterations in immune and metabolic profiles that are distinct from effects caused by HFD alone. PMID:27515998

  3. Individual differences in maternal response to immune challenge predict offspring behavior: Contribution of environmental factors

    PubMed Central

    Bronson, Stefanie L.; Ahlbrand, Rebecca; Horn, Paul S.; Kern, Joseph R.; Richtand, Neil M.

    2011-01-01

    Maternal infection during pregnancy elevates risk for schizophrenia and related disorders in offspring. Converging evidence suggests the maternal inflammatory response mediates the interaction between maternal infection, altered brain development, and behavioral outcome. The extent to which individual differences in the maternal response to immune challenge influence the development of these abnormalities is unknown. The present study investigated the impact of individual differences in maternal response to the viral mimic polyinosinic:polycytidylic acid (poly I:C) on offspring behavior. We observed significant variability in body weight alterations of pregnant rats induced by administration of poly I:C on gestational day 14. Furthermore, the presence or absence of maternal weight loss predicted MK-801 and amphetamine stimulated locomotor abnormalities in offspring. MK-801 stimulated locomotion was altered in offspring of all poly I:C treated dams; however, the presence or absence of maternal weight loss resulted in decreased and modestly increased locomotion, respectively. Adult offspring of poly I:C treated dams that lost weight exhibited significantly decreased amphetamine stimulated locomotion, while offspring of poly I:C treated dams without weight loss performed similarly to vehicle controls. Social isolation and increased maternal age predicted weight loss in response to poly I:C but not vehicle injection. In combination, these data identify environmental factors associated with the maternal response to immune challenge and functional outcome of offspring exposed to maternal immune activation. PMID:21255612

  4. Immune-Specific Expression and Estrogenic Regulation of the Four Estrogen Receptor Isoforms in Female Rainbow Trout (Oncorhynchus mykiss).

    PubMed

    Casanova-Nakayama, Ayako; Wernicke von Siebenthal, Elena; Kropf, Christian; Oldenberg, Elisabeth; Segner, Helmut

    2018-03-21

    Genomic actions of estrogens in vertebrates are exerted via two intracellular estrogen receptor (ER) subtypes, ERα and ERβ, which show cell- and tissue-specific expression profiles. Mammalian immune cells express ERs and are responsive to estrogens. More recently, evidence became available that ERs are also present in the immune organs and cells of teleost fish, suggesting that the immunomodulatory function of estrogens has been conserved throughout vertebrate evolution. For a better understanding of the sensitivity and the responsiveness of the fish immune system to estrogens, more insight is needed on the abundance of ERs in the fish immune system, the cellular ratios of the ER subtypes, and their autoregulation by estrogens. Consequently, the aims of the present study were (i) to determine the absolute mRNA copy numbers of the four ER isoforms in the immune organs and cells of rainbow trout, Oncorhynchus mykiss , and to compare them to the hepatic ER numbers; (ii) to analyse the ER mRNA isoform ratios in the immune system; and, (iii) finally, to examine the alterations of immune ER mRNA expression levels in sexually immature trout exposed to 17β-estradiol (E2), as well as the alterations of immune ER mRNA expression levels in sexually mature trout during the reproductive cycle. All four ER isoforms were present in immune organs-head kidney, spleen-and immune cells from head kidney and blood of rainbow trout, but their mRNA levels were substantially lower than in the liver. The ER isoform ratios were tissue- and cell-specific, both within the immune system, but also between the immune system and the liver. Short-term administration of E2 to juvenile female trout altered the ER mRNA levels in the liver, but the ERs of the immune organs and cells were not responsive. Changes of ER gene transcript numbers in immune organs and cells occurred during the reproductive cycle of mature female trout, but the changes in the immune ER profiles differed from those in the liver and gonads. The correlation between ER gene transcript numbers and serum E2 concentrations was only moderate to low. In conclusion, the low mRNA numbers of nuclear ER in the trout immune system, together with their limited estrogen-responsiveness, suggest that the known estrogen actions on trout immunity may be not primarily mediated through genomic actions, but may involve other mechanisms, such as non-genomic pathways or indirect effects.

  5. The Complex Contributions of Genetics and Nutrition to Immunity in Drosophila melanogaster

    PubMed Central

    Unckless, Robert L.; Rottschaefer, Susan M.; Lazzaro, Brian P.

    2015-01-01

    Both malnutrition and undernutrition can lead to compromised immune defense in a diversity of animals, and “nutritional immunology” has been suggested as a means of understanding immunity and determining strategies for fighting infection. The genetic basis for the effects of diet on immunity, however, has been largely unknown. In the present study, we have conducted genome-wide association mapping in Drosophila melanogaster to identify the genetic basis for individual variation in resistance, and for variation in immunological sensitivity to diet (genotype-by-environment interaction, or GxE). D. melanogaster were reared for several generations on either high-glucose or low-glucose diets and then infected with Providencia rettgeri, a natural bacterial pathogen of D. melanogaster. Systemic pathogen load was measured at the peak of infection intensity, and several indicators of nutritional status were taken from uninfected flies reared on each diet. We find that dietary glucose level significantly alters the quality of immune defense, with elevated dietary glucose resulting in higher pathogen loads. The quality of immune defense is genetically variable within the sampled population, and we find genetic variation for immunological sensitivity to dietary glucose (genotype-by-diet interaction). Immune defense was genetically correlated with indicators of metabolic status in flies reared on the high-glucose diet, and we identified multiple genes that explain variation in immune defense, including several that have not been previously implicated in immune response but which are confirmed to alter pathogen load after RNAi knockdown. Our findings emphasize the importance of dietary composition to immune defense and reveal genes outside the conventional “immune system” that can be important in determining susceptibility to infection. Functional variation in these genes is segregating in a natural population, providing the substrate for evolutionary response to pathogen pressure in the context of nutritional environment. PMID:25764027

  6. The complex contributions of genetics and nutrition to immunity in Drosophila melanogaster.

    PubMed

    Unckless, Robert L; Rottschaefer, Susan M; Lazzaro, Brian P

    2015-03-01

    Both malnutrition and undernutrition can lead to compromised immune defense in a diversity of animals, and "nutritional immunology" has been suggested as a means of understanding immunity and determining strategies for fighting infection. The genetic basis for the effects of diet on immunity, however, has been largely unknown. In the present study, we have conducted genome-wide association mapping in Drosophila melanogaster to identify the genetic basis for individual variation in resistance, and for variation in immunological sensitivity to diet (genotype-by-environment interaction, or GxE). D. melanogaster were reared for several generations on either high-glucose or low-glucose diets and then infected with Providencia rettgeri, a natural bacterial pathogen of D. melanogaster. Systemic pathogen load was measured at the peak of infection intensity, and several indicators of nutritional status were taken from uninfected flies reared on each diet. We find that dietary glucose level significantly alters the quality of immune defense, with elevated dietary glucose resulting in higher pathogen loads. The quality of immune defense is genetically variable within the sampled population, and we find genetic variation for immunological sensitivity to dietary glucose (genotype-by-diet interaction). Immune defense was genetically correlated with indicators of metabolic status in flies reared on the high-glucose diet, and we identified multiple genes that explain variation in immune defense, including several that have not been previously implicated in immune response but which are confirmed to alter pathogen load after RNAi knockdown. Our findings emphasize the importance of dietary composition to immune defense and reveal genes outside the conventional "immune system" that can be important in determining susceptibility to infection. Functional variation in these genes is segregating in a natural population, providing the substrate for evolutionary response to pathogen pressure in the context of nutritional environment.

  7. Critical role of intestinal epithelial cell-derived IL-25 in enteric nematode infection-induced changes in intestinal function

    USDA-ARS?s Scientific Manuscript database

    The current study investigated the mechanism of immune regulation of IL-25 and the contribution of IL-25 to nematode infection-induced alterations in intestinal smooth muscle and epithelial cell function. Mice were infected with an enteric nematode or injected with IL-25 or IL-13. In vitro smooth m...

  8. Imagining 'reactivity': allergy within the history of immunology.

    PubMed

    Jamieson, Michelle

    2010-12-01

    An allergy is commonly understood to be an overreaction of the immune system to harmless substances that are misrecognised as foreign. This concept of allergy as an abnormal, misdirected immune response-a biological fault-stems from the idea that the immune system is an inherently defensive operation designed to protect the individual through an innate capacity to discriminate between the benign and toxic, or self and nonself. However, this definition of allergy represents a radical departure from its original formulation. Literally meaning 'altered reactivity', the term was coined in 1906 by Austrian paediatrician Clemens von Pirquet, to describe the fundamentally mutable nature of the immune response. This paper argues that the conventional interpretation of allergy-as-pathology derives from specific concepts of 'organism', 'response', and 'normal' immune function that have-for over a century-governed the perception and study of immune phenomena within immunology. Through an examination of Louis Pasteur's conceptualisation of the host body/microorganism relationship, I argue that immunology is founded on a view of the organism as a discrete, autonomous entity, and on a concomitant notion of the immune response as essentially reactive. Revisiting the concept of 'altered reactivity', this paper points to the fact that allergy was initially posited as a general theory of immune responsiveness and, importantly, one that poses a significant challenge to orthodox notions of immunopathology. It suggests that Pirquet's unique view of immune responsiveness presents an account of organismic or biological identity that encapsulates, rather than reduces, its ecological complexity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. The trenbolone acetate affects the immune system in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Massart, Sophie; Redivo, Baptiste; Flamion, Enora; Mandiki, S N M; Falisse, Elodie; Milla, Sylvain; Kestemont, Patrick

    2015-06-01

    In aquatic systems, the presence of endocrine-disrupting chemicals (EDC) can disrupt the reproductive function but also the immune system of wildlife. Some studies have investigated the effects of androgens on the fish immune parameters but the mechanisms by which the xenoandrogens alter the immunity are not well characterized. In order to test the effects of trenbolone acetate (TbA) on fish immune system, we exposed rainbow trout male juveniles during three weeks to TbA levels at 0.1 and 1μg/L. The present results suggest that TbA impacts, in a tissue-dependent manner, the rainbow trout immunity by affecting primarily the humoral immunity. Indeed, TbA inhibited lysozyme activity in plasma and liver and enhanced the alternative complement pathway activity (ACH50) in kidney. In plasma, the modulation of the complement system was time-dependent. The mRNA expression of genes encoding some cytokines such as renal TGF-β1, TNF-α in skin and hepatic IL-1β was also altered in fish exposed to TbA. Regarding the cellular immunity, no effect was observed on the leucocyte population. However, the expression of genes involved in the development and maturation of lymphoid cells (RAG-1 and RAG-2) was decreased in TbA-treated fish. Among those effects, we suggest that the modulation of RAG-1 and mucus apolipoprotein-A1 gene expression as well as plasma and hepatic lysozyme activities are mediated through the action of the androgen receptor. All combined, we conclude that trenbolone affects the rainbow trout immunity. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Nutritionally Mediated Programming of the Developing Immune System12

    PubMed Central

    Palmer, Amanda C.

    2011-01-01

    A growing body of evidence highlights the importance of a mother’s nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a “layered” expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease. PMID:22332080

  11. Cellular changes in microgravity and the design of space radiation experiments

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.

    1994-01-01

    Cell metabolism, secretion and cell-cell interactions can be altered during space flight. Early radiobiology experiments have demonstrated synergistic effects of radiation and microgravity as indicated by increased mutagenesis, increased chromosome aberrations, inhibited development, and retarded growth. Microgravity-induced changes in immune cell functions include reduced blastogenesis and cell-mediated, delayed-type hypersensitivity responses, increased cytokine secretions, but inhibited cytotoxic effects an macrophage differentiation. These effects are important because of the high radiosensitivity of immune cells. It is difficult to compare ground studies with space radiation biology experiments because of the complexity of the space radiation environment, types of radiation damage and repair mechanisms. Altered intracellular functions and molecular mechanisms must be considered in the design and interpretation of space radiation experiments. Critical steps in radiocarcinogenesis could be affected. New cell systems and hardware are needed to determine the biological effectiveness of the low dose rate, isotropic, multispectral space radiation and the potential usefulness of radioprotectants during space flight.

  12. Similarities and differences between helminth parasites and cancer cell lines in shaping human monocytes: Insights into parallel mechanisms of immune evasion.

    PubMed

    Narasimhan, Prakash Babu; Akabas, Leor; Tariq, Sameha; Huda, Naureen; Bennuru, Sasisekhar; Sabzevari, Helen; Hofmeister, Robert; Nutman, Thomas B; Tolouei Semnani, Roshanak

    2018-04-01

    A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma) or to live microfilariae (mf) of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β), M2-associated (CCL13, CD206), Mreg-associated (IL-10, TGF-β), and angiogenesis associated (MMP9, VEGF) genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.

  13. Assessing immune aging in HIV-infected patients

    PubMed Central

    Appay, Victor; Sauce, Delphine

    2017-01-01

    ABSTRACT Many of the alterations that affect innate and adaptive immune cell compartments in HIV-infected patients are reminiscent of the process of immune aging, characteristic of old age. These alterations define the immunological age of individuals and are likely to participate to the decline of immune competence with HIV disease progression. It is therefore important to characterize these changes, which point toward the accumulation of highly differentiated immunocompetent cells, associated with overall telomere length shortening, as well as understanding their etiology, especially related to the impact of chronic immune activation. Particular attention should be given to the exhaustion of primary immune resources, including haematopoietic progenitors and naïve cells, which holds the key for effective hematopoiesis and immune response induction, respectively. The alteration of these compartments during HIV infection certainly represents the foundation of the immune parallel with aging. PMID:27310730

  14. Arsenic and Immune Response to Infection During Pregnancy and Early Life

    PubMed Central

    Attreed, Sarah E.; Navas-Acien, Ana

    2017-01-01

    Purpose of Review Arsenic, a known carcinogen and developmental toxicant, is a major threat to global health. While the contribution of arsenic exposure to chronic diseases and adverse pregnancy and birth outcomes is recognized, its ability to impair critical functions of humoral and cell-mediated immunity—including the specific mechanisms in humans—is not well understood. Arsenic has been shown to increase risk of infectious diseases that have significant health implications during pregnancy and early life. Here, we review the latest research on the mechanisms of arsenic-related immune response alterations that could underlie arsenic-associated increased risk of infection during the vulnerable periods of pregnancy and early life. Recent Findings The latest evidence points to alteration of antibody production and transplacental transfer as well as failure of T helper cells to produce IL-2 and proliferate. Summary Critical areas for future research include the effects of arsenic exposure during pregnancy and early life on immune responses to natural infection and the immunogenicity and efficacy of vaccines. PMID:28488132

  15. Fetal-sex dependent genomic responses in the circulating lymphocytes of arsenic-exposed pregnant women in New Hampshire.

    PubMed

    Bommarito, Paige A; Martin, Elizabeth; Smeester, Lisa; Palys, Thomas; Baker, Emily R; Karagas, Margaret R; Fry, Rebecca C

    2017-10-01

    Exposure to inorganic arsenic (iAs) during pregnancy is associated with adverse health outcomes present both at birth and later in life. A biological mechanism may include epigenetic and genomic alterations in fetal genes involved in immune functioning. To investigate the role of the maternal immune response to in utero iAs exposure, we conducted an analysis of the expression of immune-related genes in pregnant women from the New Hampshire Birth Cohort Study. A set of 31 genes was identified with altered expression in association with levels of urinary total arsenic, urinary iAs, urinary monomethylated arsenic and urinary dimethylated arsenic. Notably, maternal gene expression signatures differed when stratified on fetal sex, with a more robust inflammatory response observed in male pregnancies. Moreover, the differentially expressed genes were also related to birth outcomes. These findings highlight the sex-dependent nature of the maternal iAs-induced inflammatory response in relationship to fetal outcomes. Copyright © 2017. Published by Elsevier Inc.

  16. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; hide

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  17. Long-term alterations in neuroimmune responses after neonatal exposure to lipopolysaccharide.

    PubMed

    Boissé, Lysa; Mouihate, Abdeslam; Ellis, Shaun; Pittman, Quentin J

    2004-05-26

    Fever is an integral part of the host's defense to infection that is orchestrated by the brain. A reduced febrile response is associated with reduced survival. Consequently, we have asked if early life immune exposure will alter febrile and neurochemical responses to immune stress in adulthood. Fourteen-day-old neonatal male rats were given Escherichia coli lipopolysaccharide (LPS) that caused either fever or hypothermia depending on ambient temperature. Control rats were given pyrogen-free saline. Regardless of the presence of neonatal fever, adult animals that had been neonatally exposed to LPS displayed attenuated fevers in response to intraperitoneal LPS but unaltered responses to intraperitoneal interleukin 1beta or intracerebroventricular prostaglandin E(2). The characteristic reduction in activity that accompanies fever was unaltered, however, as a function of neonatal LPS exposure. Treatment of neonates with an antigenically dissimilar LPS (Salmonella enteritidis) was equally effective in reducing adult responses to E. coli LPS, indicating an alteration in the innate immune response. In adults treated as neonates with LPS, basal levels of hypothalamic cyclooxygenase 2 (COX-2), determined by semiquantitative Western blot analysis, were significantly elevated compared with controls. In addition, whereas adult controls responded to LPS with the expected induction of COX-2, adults pretreated neonatally with LPS responded to LPS with a reduction in COX-2. Thus, neonatal LPS can alter CNS-mediated inflammatory responses in adult rats.

  18. Exercise and gut immune function: evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training.

    PubMed

    Cook, Marc D; Allen, Jacob M; Pence, Brandt D; Wallig, Matthew A; Gaskins, H Rex; White, Bryan A; Woods, Jeffrey A

    2016-02-01

    There is robust evidence that habitual physical activity is anti-inflammatory and protective against developing chronic inflammatory disease. Much less is known about the effects of habitual moderate exercise in the gut, the compartment that has the greatest immunological responsibility and interactions with the intestinal microbiota. The link between the two has become evident, as recent studies have linked intestinal dysbiosis, or the disproportionate balance of beneficial to pathogenic microbes, with increased inflammatory disease susceptibility. Limited animal and human research findings imply that exercise may have a beneficial role in preventing and ameliorating such diseases by having an effect on gut immune function and, recently, microbiome characteristics. Emerging data from our laboratory show that different forms of exercise training differentially impact the severity of intestinal inflammation during an inflammatory insult (for example, ulcerative colitis) and may be jointly related to gut immune cell homeostasis and microbiota-immune interactions. The evidence we review and present will provide data in support of rigorous investigations concerning the effects of habitual exercise on gut health and disease.

  19. Neuroimmune Interface in the Comorbidity between Alcohol Use Disorder and Major Depression

    PubMed Central

    Neupane, Sudan Prasad

    2016-01-01

    Bidirectional communication links operate between the brain and the body. Afferent immune-to-brain signals are capable of inducing changes in mood and behavior. Chronic heavy alcohol drinking, typical of alcohol use disorder (AUD), is one such factor that provokes an immune response in the periphery that, by means of circulatory cytokines and other neuroimmune mediators, ultimately causes alterations in the brain function. Alcohol can also directly impact the immune functions of microglia, the resident immune cells of the central nervous system (CNS). Several lines of research have established the contribution of specific inflammatory mediators in the development and progression of depressive illness. Much of the available evidence in this field stems from cross-sectional data on the immune interactions between isolated AUD and major depression (MD). Given their heterogeneity as disease entities with overlapping symptoms and shared neuroimmune correlates, it is no surprise that systemic and CNS inflammation could be a critical determinant of the frequent comorbidity between AUD and MD. This review presents a summary and analysis of the extant literature on neuroimmune interface in the AUD–MD comorbidity. PMID:28082989

  20. Loss of the LIM-only protein Fhl2 impairs inflammatory reaction and scar formation after cardiac ischemia leading to better hemodynamic performance.

    PubMed

    Goltz, Diane; Hittetiya, Kanishka; Gevensleben, Heidrun; Kirfel, Jutta; Diehl, Linda; Meyer, Rainer; Büttner, Reinhard

    2016-04-15

    The pathogenesis of myocardial ischemia-reperfusion injury (MI/R) involves an inflammatory response. Since the four-and-a-half LIM domain-containing protein 2 (Fhl2) has been observed to modulate immune cell migration, we aimed to study the consequences of Fhl2(-/-) under MI/R with respect to immune reaction, scar formation, and hemodynamic performance. In a closed chest model of 1h MI/R, immune cell invasion of phagocytic monocytes was characterized by flow cytometry and immunohistochemistry. In addition, infarct size was assessed by triphenyltetrazolium chloride/Masson trichrome staining 24h/21days after reperfusion and a set of hemodynamic parameters was recorded by catheterisation in Fhl2(-/-) mice and controls. While flow cytometry did not reveal differences in myocardial CD45(high) immune cell infiltrate, histological analysis showed that infiltrating immune cells in Fhl2(-/-) animals were preferentially located in the perivascular area, whereas in wild type, immune cells were well dispersed within the area at risk. After 24h and 21days of reperfusion, infarct size was significantly reduced in Fhl2(-/-) compared to WT animals. In addition, hemodynamic performance was better in Fhl2(-/-) mice, compared to WT mice up to day 21 of reperfusion. The loss of Fhl2 leads to an altered immune response to myocardial ischemia, which results in smaller infarcts and better hemodynamic performance up to 21days after myocardial ischemia reperfusion. Immune cell invasion plays a pivotal role in the context of MI/R. Fhl2 significantly influences immune cell function and immune cell interaction with injured cardiac tissue leading to altered scar composition. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease.

    PubMed

    Gjoneska, Elizabeta; Pfenning, Andreas R; Mathys, Hansruedi; Quon, Gerald; Kundaje, Anshul; Tsai, Li-Huei; Kellis, Manolis

    2015-02-19

    Alzheimer's disease (AD) is a severe age-related neurodegenerative disorder characterized by accumulation of amyloid-β plaques and neurofibrillary tangles, synaptic and neuronal loss, and cognitive decline. Several genes have been implicated in AD, but chromatin state alterations during neurodegeneration remain uncharacterized. Here we profile transcriptional and chromatin state dynamics across early and late pathology in the hippocampus of an inducible mouse model of AD-like neurodegeneration. We find a coordinated downregulation of synaptic plasticity genes and regulatory regions, and upregulation of immune response genes and regulatory regions, which are targeted by factors that belong to the ETS family of transcriptional regulators, including PU.1. Human regions orthologous to increasing-level enhancers show immune-cell-specific enhancer signatures as well as immune cell expression quantitative trait loci, while decreasing-level enhancer orthologues show fetal-brain-specific enhancer activity. Notably, AD-associated genetic variants are specifically enriched in increasing-level enhancer orthologues, implicating immune processes in AD predisposition. Indeed, increasing enhancers overlap known AD loci lacking protein-altering variants, and implicate additional loci that do not reach genome-wide significance. Our results reveal new insights into the mechanisms of neurodegeneration and establish the mouse as a useful model for functional studies of AD regulatory regions.

  2. Immune System Dysregulation and Latent Herpesvirus Reactivation During Winterover at Concordia Station, Dome C, Antarctica

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Feuerecker, M.; Salam, A. P.; Rybka, A.; Stowe, R. P.; Morrels, M.; Meta, S. K.; Quiriarte, H.; Quintens, Roel; Thieme, U.; hide

    2011-01-01

    Immune system dysregulation occurs during spaceflight and consists of altered peripheral leukocyte distribution, reductions in immunocyte function and altered cytokine production profiles. Causes may include stress, confinement, isolation, and disrupted circadian rhythms. All of these factors may be replicated to some degree in terrestrial environments. NASA is currently evaluating the potential for a ground-based analog for immune dysregulation, which would have utility for mechanistic investigations and countermeasures evaluation. For ground-based space physiology research, the choice of terrestrial analog must carefully match the system of interest. Antarctica winter-over, consisting of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation and disrupted circadian rhythms, is potentially a good ground-analog for spaceflight-associated immune dysregulation. Of all Antarctica bases, the French-Italian Concordia Station, may be the most appropriate to replicate spaceflight/exploration conditions. Concordia is an interior base located in harsh environmental conditions, and has been constructed to house small, international crews in a station-environment similar to what should be experienced by deep space astronauts. The ESA-NASA CHOICE study assessed innate and adaptive immunity, viral reactivation and stress factors during Concordia winterover deployment. The study was conducted over two winterover missions in 2009 and 2010. Final study data from NASA participation in these missions will be presented.

  3. Influence of tumors on protective anti-tumor immunity and the effects of irradiation

    PubMed Central

    Foulds, Gemma A.; Radons, Jürgen; Kreuzer, Mira; Multhoff, Gabriele; Pockley, Alan G.

    2012-01-01

    Innate and adaptive immunity plays important roles in the development and progression of cancer and it is becoming apparent that tumors can influence the induction of potentially protective responses in a number of ways. The prevalence of immunoregulatory T cell populations in the circulation and tumors of patients with cancer is increased and the presence of these cells appears to present a major barrier to the induction of tumor immunity. One aspect of tumor-mediated immunoregulation which has received comparatively little attention is that which is directed toward natural killer (NK) cells, although evidence that the phenotype and function of NK cell populations are modified in patients with cancer is accumulating. Although the precise mechanisms underlying these localized and systemic immunoregulatory effects remain unclear, tumor-derived factors appear, in part at least, to be involved. The effects could be manifested by an altered function and/or via an influence on the migratory properties of individual cell subsets. A better insight into endogenous immunoregulatory mechanisms and the capacity of tumors to modify the phenotype and function of innate and adaptive immune cells might assist the development of new immunotherapeutic approaches and improve the management of patients with cancer. This article reviews current knowledge relating to the influence of tumors on protective anti-tumor immunity and considers the potential influence that radiation-induced effects might have on the prevalence, phenotype, and function of innate and adaptive immune cells in patients with cancer. PMID:23378947

  4. Chronobiology of the neuroimmunoendocrine system and aging.

    PubMed

    Mate, Ianire; Madrid, Juan Antonio; De la Fuente, Mónica

    2014-01-01

    The health maintenance depends on the preservation of the homeostatic systems, such as nervous, endocrine and immune system, and a proper communication between them. In this regard, the circadian system, which promotes a better physiological system functions and thus well being, could be considered part of that homeostatic complex, since the neuroimmunoendocrine system possesses circadian patterns in most variables, as well as circannual or seasonal variations. With aging, an impairment of the homeostatic systems occurs and an alteration of circadian system regulation has been demonstrated. In the immune system, several function parameters, which are good markers of health and of the rate of aging, change not only with age (immunosenescence) but also throughout the day and year. Indeed, with advancing age there is a modification of immune cell circadian function especially in lymphocytes. Moreover, immune functions at early afternoon correspond to more aged values than at morning, especially in mature subjects (60-79 years of age). In addition, these mature men and women showed a significant impaired immune cell function, which is especially remarkable in the winter. It is noteworthy the role of immunomodulatory hormones, such as melatonin, in the regulation of biological rhythms and their involvement in the aging process. Furthermore, the evidence of a neuroimmune regulation of the circadian system and its disturbance with aging, highlights the importance of proinflammatory cytokines in this complex cross-talk. The biological rhythms disruption with age and some diseases (jet lag, cancer and seasonal affective disorder), could contribute increasing the immune system impairment and consequently the loss of health.

  5. An examination of changes in maternal neuroimmune function during pregnancy and the postpartum period.

    PubMed

    Sherer, Morgan L; Posillico, Caitlin K; Schwarz, Jaclyn M

    2017-11-01

    There is strong evidence that the immune system changes dramatically during pregnancy in order to prevent the developing fetus from being "attacked" by the maternal immune system. Due to these alterations in peripheral immune function, many women that suffer from autoimmune disorders actually find significant relief from their symptoms throughout pregnancy; however, these changes can also leave the mother more susceptible to infections that would otherwise be mitigated by the inflammatory response (Robinson and Klein, 2012). Only one other study has looked at changes in microglial number and morphology during pregnancy and the postpartum period (Haim et al., 2016), but no one has yet examined the neuroimmune response following an immune challenge during this time. Therefore, in this study, we investigated the impact of an immune challenge during various time-points throughout pregnancy and the postpartum period on the expression of immune molecules in the brain of the mother and fetus. Our results indicate that similar to the peripheral immune suppression measured during pregnancy, we also see significant suppression of the immune response in the maternal brain, particularly during late gestation. In contrast to the peripheral immune system, immune modulation in the maternal brain extends moderately into the postpartum period. Additionally, we found that the fetal immune response in the brain and placenta is also suppressed just before parturition, suggesting that cytokine production in the fetus and placenta are mirroring the peripheral cytokine response of the mother. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Hyperbaric hyperoxia alters innate immune functional properties during NASA Extreme Environment Mission Operation (NEEMO).

    PubMed

    Strewe, C; Crucian, B E; Sams, C F; Feuerecker, B; Stowe, R P; Choukèr, A; Feuerecker, M

    2015-11-01

    Spaceflight is associated with immune dysregulation which is considered as risk factor for the performance of exploration-class missions. Among the consequences of confinement and other environmental factors of living in hostile environments, the role of different oxygen concentrations is of importance as either low (e.g. as considered for lunar or Martian habitats) or high (e.g. during extravehicular activities) can trigger immune dysfunction. The aim of this study was to investigate the impact of increased oxygen availability--generated through hyperbaricity--on innate immune functions in the course of a 14 days NEEMO mission. 6 male subjects were included into a 14 days undersea deployment at the Aquarius station (Key Largo, FL, USA). The underwater habitat is located at an operating depth of 47 ft. The 2.5 times higher atmospheric pressure in the habitat leads to hyperoxia. The collection of biological samples occurred 6 days before (L-6), at day 7 (MD7) and 11/13 (MD11/13) during the mission, and 90 days thereafter (R). Blood analyses included differential blood cell count, ex vivo innate immune activation status and inhibitory competences of granulocytes. The absolute leukocyte count showed an increase during deployment as well as the granulocyte and monocyte count. Lymphocyte count was decreased on MD7. The assessments of native adhesion molecules on granulocytes (CD11b, CD62L) indicated a highly significant cellular activation (L-6 vs. MD7/MD13) during mission. In contrast, granulocytes were more sensitive towards anti-inflammatory stimuli (adenosine) on MD13. Living in the NEEMO habitat for 14 days induced significant immune alterations as seen by an activation of adhesion molecules and vice versa higher sensitivity towards inhibition. This investigation under hyperbaric hyperoxia is important especially for Astronauts' immune competence during extravehicular activities when exposed to similar conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Peroxiredoxin 5 modulates immune response in Drosophila

    PubMed Central

    Radyuk, Svetlana N.; Michalak, Katarzyna; Klichko, Vladimir I.; Benes, Judith; Orr, William C.

    2010-01-01

    Background Peroxiredoxins are redox-sensing enzymes with multiple cellular functions. Previously, we reported on the potent antioxidant function of Drosophila peroxiredoxin 5 (dPrx5). Studies with mammalian and human cells suggest that peroxiredoxins can modulate immune-related signaling. Methods Survivorship studies and bacteriological analysis were used to determine resistance of flies to fungal and bacterial infections. RT-PCR and immunoblot analyses determined expression of dPrx5 and immunity factors in response to bacterial challenge. Double mutants for dprx5 gene and genes comprising the Imd/Relish and dTak1/Basket branches of the immune signaling pathways were used in epistatic analysis. Results The dprx5 mutant flies were more resistant to bacterial infection than controls, while flies overexpressing dPrx5 were more susceptible. The enhanced resistance to bacteria was accompanied by rapid induction of the Imd-dependent antimicrobial peptides, phosphorylation of the JNK kinase Basket and altered transcriptional profiling of the transient response genes, puckered, ets21C and relish, while the opposite effects were observed in flies over-expressing dPrx5. Epistatic analysis of double mutants, using attacin D and Puckered as read outs of activation of the Imd and JNK pathways, implicated dPrx5 function in the control of the dTak1-JNK arm of immune signaling. Conclusions Differential effects on fly survivorship suggested a trade-off between the antioxidant and immune functions of dPrx5. Molecular and epistatic analyses identified dPrx5 as a negative regulator in the dTak1-JNK arm of immune signaling. General significance Our findings suggest that peroxiredoxins play an important modulatory role in the Drosophila immune response. PMID:20600624

  8. Effects of Ex Vivo y-Tocopherol on Airway Macrophage Function in Healthy and Mild Allergic Asthmatics

    EPA Science Inventory

    Elevated inflammation and altered immune responses are features found in atopic asthmatic airways. Recent studies indicate y-tocopherol (GT) supplementation can suppress airway inflammation in allergic asthma. We studied the effects of in vitro GT supplementation on receptor-med...

  9. Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas); Implications for Dive Physiology and Health

    PubMed Central

    Thompson, Laura A.; Romano, Tracy A.

    2016-01-01

    Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC) in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression) and Concanavalin A induced lymphocyte proliferation (BrdU incorporation) in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE) and capture/release conditions. Beluga blood samples (n = 4) were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska (n = 9). Human blood samples (n = 4) (Biological Specialty Corporation) were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α = 0.05). Cortisol was significantly higher in Bristol Bay belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and Bristol Bay belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth) as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals to fight infection or avoid dive related pathologies. PMID:27746745

  10. Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas); Implications for Dive Physiology and Health.

    PubMed

    Thompson, Laura A; Romano, Tracy A

    2016-01-01

    Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC) in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression) and Concanavalin A induced lymphocyte proliferation (BrdU incorporation) in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE) and capture/release conditions. Beluga blood samples ( n = 4) were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska ( n = 9). Human blood samples ( n = 4) (Biological Specialty Corporation) were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α = 0.05). Cortisol was significantly higher in Bristol Bay belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and Bristol Bay belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth) as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals to fight infection or avoid dive related pathologies.

  11. Altered Cellular Metabolism Drives Trained Immunity.

    PubMed

    Sohrabi, Yahya; Godfrey, Rinesh; Findeisen, Hannes M

    2018-04-04

    Exposing innate immune cells to an initial insult induces a long-term proinflammatory response due to metabolic and epigenetic alterations which encompass an emerging new concept called trained immunity. Recent studies provide novel insights into mechanisms centered on metabolic reprogramming which induce innate immune memory in hematopoietic stem cells and monocytes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Effects of space flight conditions on the function of the immune system and catecholamine production simulated in a rodent model of hindlimb unloading

    NASA Technical Reports Server (NTRS)

    Aviles, Hernan; Belay, Tesfaye; Vance, Monique; Sonnenfeld, Gerald

    2005-01-01

    The rodent model of hindlimb unloading has been successfully used to simulate some of the effects of space flight conditions. Previous studies have indicated that mice exposed to hindlimb-unloading conditions have decreased resistance to infections compared to restrained and normally housed control mice. OBJECTIVE: The purpose of this study was to clarify the mechanisms involved in resistance to infection in this model by examining the effects of hindlimb unloading on the function of the immune system and its impact on the production of catecholamines. METHODS: Female Swiss Webster mice were hindlimb-unloaded during 48 h and the function of the immune system was assessed in spleen and peritoneal cells immediately after this period. In addition, the kinetics of catecholamine production was measured throughout the hindlimb-unloading period. RESULTS: The function of the immune system was significantly suppressed in the hindlimb-unloaded group compared to restrained and normally housed control mice. Levels of catecholamines were increased in the hindlimb-unloaded group and peaked at 12 h following the commencement of unloading. CONCLUSION: These results suggest that physiological responses of mice are altered early after hindlimb unloading and that catecholamines may play a critical role in the modulation of the immune system. These changes may affect the ability of mice to resist infections. Copyright (c) 2005 S. Karger AG, Basel.

  13. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development, and suppresses plant innate immunity

    PubMed Central

    Block, Anna; Guo, Ming; Li, Guangyong; Elowsky, Christian; Clemente, Thomas E.; Alfano, James R.

    2009-01-01

    Summary The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N-terminal two-thirds was sufficient for mitochondrial localization. A HopG1-GFP fusion lacking HopG1’s N-terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N-terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1’s target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions. PMID:19863557

  14. Growth hormone transgenesis in coho salmon disrupts muscle immune function impacting cross-talk with growth systems.

    PubMed

    Alzaid, Abdullah; Kim, Jin-Hyoung; Devlin, Robert H; Martin, Samuel A M; Macqueen, Daniel J

    2018-04-26

    Suppression of growth during infection may aid resource allocation towards effective immune function. Past work supporting this hypothesis in salmonid fish revealed an immune-responsive regulation of the insulin-like growth factor (IGF) system, an endocrine pathway downstream of growth hormone (GH). Skeletal muscle is the main target for growth and energetic storage in fish, yet little is known about how its growth is regulated during an immune response. We addressed this knowledge gap by characterizing muscle immune responses in size-matched coho salmon ( Oncorhynchus kisutch ) achieving different growth rates. We compared a wild-type strain with two GH transgenic groups from the same genetic background achieving either maximal or suppressed growth, a design separating GH's direct effects from its influence on growth rate and nutritional state. Fish were sampled 30h post-injection with PBS (control) or mimics of bacterial or viral infection. We quantified mRNA expression levels for genes from the GH, GH receptor, IGF hormone, IGF1 receptor and IGF-binding protein families, along with immune genes involved in inflammatory or antiviral responses and muscle growth status marker genes. We demonstrate dampened immune function in GH transgenics compared to wild-type. The muscle of GH transgenics achieving rapid growth showed no detectable antiviral response, coupled with evidence of a constitutive inflammatory state. GH and IGF system gene expression was strongly altered by GH transgenesis and fast growth, both for baseline expression and responses to immune stimulation. Thus, GH transgenesis strongly disrupts muscle immune status and normal GH and IGF system expression responses to immune stimulation. © 2018. Published by The Company of Biologists Ltd.

  15. A targeted boost-and-sort immunization strategy using Escherichia coli BamA identifies rare growth inhibitory antibodies.

    PubMed

    Vij, Rajesh; Lin, Zhonghua; Chiang, Nancy; Vernes, Jean-Michel; Storek, Kelly M; Park, Summer; Chan, Joyce; Meng, Y Gloria; Comps-Agrar, Laetitia; Luan, Peng; Lee, Sophia; Schneider, Kellen; Bevers, Jack; Zilberleyb, Inna; Tam, Christine; Koth, Christopher M; Xu, Min; Gill, Avinash; Auerbach, Marcy R; Smith, Peter A; Rutherford, Steven T; Nakamura, Gerald; Seshasayee, Dhaya; Payandeh, Jian; Koerber, James T

    2018-05-08

    Outer membrane proteins (OMPs) in Gram-negative bacteria are essential for a number of cellular functions including nutrient transport and drug efflux. Escherichia coli BamA is an essential component of the OMP β-barrel assembly machinery and a potential novel antibacterial target that has been proposed to undergo large (~15 Å) conformational changes. Here, we explored methods to isolate anti-BamA monoclonal antibodies (mAbs) that might alter the function of this OMP and ultimately lead to bacterial growth inhibition. We first optimized traditional immunization approaches but failed to identify mAbs that altered cell growth after screening >3000 hybridomas. We then developed a "targeted boost-and-sort" strategy that combines bacterial cell immunizations, purified BamA protein boosts, and single hybridoma cell sorting using amphipol-reconstituted BamA antigen. This unique workflow improves the discovery efficiency of FACS + mAbs by >600-fold and enabled the identification of rare anti-BamA mAbs with bacterial growth inhibitory activity in the presence of a truncated lipopolysaccharide layer. These mAbs represent novel tools for dissecting the BamA-mediated mechanism of β-barrel folding and our workflow establishes a new template for the efficient discovery of novel mAbs against other highly dynamic membrane proteins.

  16. Integrative medicine and human health - the role of pre-, pro- and synbiotics

    PubMed Central

    2012-01-01

    Western lifestyle is associated with a sustained low grade increase in inflammation -increased levels of endotoxin in the body and increased activation of Toll-like receptors and neutrophils, which leads to impaired immunity and reduced resistance to disease, changes which might explain the epidemic of chronic diseases spreading around the globe. The immune system cannot function properly without access to bacteria and raw plants, rich not only in bacteria but also in plant fibre, antioxidants, healthy fats and numerous other nutrients. Modern food technology with plant breeding, separation, condensation of food ingredients, heating, freezing, drying, irradiation, microwaving, are effective tool to counteract optimal immune function, and suspected to be a leading cause of so called Western diseases. Supply of pre-, pro-, and synbiotics have sometimes proved to be effective tools to counteract, especially acute diseases, but have often failed, especially in chronic diseases. Thousands of factors contribute to unhealth and numerous alterations in life style and food habits are often needed, in order to prevent and cure “treatment-resistant” chronic diseases. Such alterations include avoiding processed foods rich in pro-inflammatory molecules, but also a focus on consuming substantial amounts of foods with documented anti-inflammatory effects, often raw and fresh green vegetables and tubers such as turmeric/curcumin. PMID:23369440

  17. Absence of γ-Chain in Keratinocytes Alters Chemokine Secretion, Resulting in Reduced Immune Cell Recruitment.

    PubMed

    Nowak, Karolin; Linzner, Daniela; Thrasher, Adrian J; Lambert, Paul F; Di, Wei-Li; Burns, Siobhan O

    2017-10-01

    Loss-of-function mutations in the common gamma (γc) chain cytokine receptor subunit give rise to severe combined immunodeficiency characterized by lack of T and natural killer cells and infant death from infection. Hematopoietic stem cell transplantation or gene therapy offer a cure, but despite successful replacement of lymphoid immune lineages, a long-term risk of severe cutaneous human papilloma virus infections persists, possibly related to persistent γc-deficiency in other cell types. Here we show that keratinocytes, the only cell type directly infected by human papilloma virus, express functional γc and its co-receptors. After stimulation with the γc-ligand IL-15, γc-deficient keratinocytes show significantly impaired secretion of specific chemokines including CXCL1, CXCL8, and CCL20, resulting in reduced chemotaxis of dendritic cells and CD4 + T cells. Furthermore, γc-deficient keratinocytes also exhibit defective induction of T-cell chemotaxis in a model of stable human papilloma virus-18 infection. These findings suggest that persistent γc-deficiency in keratinocytes alters immune cell recruitment to the skin, which may contribute to the development and persistence of warts in this condition and would require different treatment approaches. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Antarctic isolation: immune and viral studies

    NASA Technical Reports Server (NTRS)

    Tingate, T. R.; Lugg, D. J.; Muller, H. K.; Stowe, R. P.; Pierson, D. L.

    1997-01-01

    Stressful environmental conditions are a major determinant of immune reactivity. This effect is pronounced in Australian National Antarctic Research Expedition populations exposed to prolonged periods of isolation in the Antarctic. Alterations of T cell function, including depression of cutaneous delayed-type hypersensitivity responses and a peak 48.9% reduction of T cell proliferation to the mitogen phytohaemagglutinin, were documented during a 9-month period of isolation. T cell dysfunction was mediated by changes within the peripheral blood mononuclear cell compartment, including a paradoxical atypical monocytosis associated with altered production of inflammatory cytokines. There was a striking reduction in the production by peripheral blood mononuclear cells of the predominant pro-inflammatory monokine TNF-alpha and changes were also detected in the production of IL-1, IL-2, IL-6, IL-1ra and IL-10. Prolonged Antarctic isolation is also associated with altered latent herpesvirus homeostasis, including increased herpesvirus shedding and expansion of the polyclonal latent Epstein-Barr virus-infected B cell population. These findings have important long-term health implications.

  19. Malnutrition and Gastrointestinal and Respiratory Infections in Children: A Public Health Problem

    PubMed Central

    Rodríguez, Leonor; Cervantes, Elsa; Ortiz, Rocío

    2011-01-01

    Infectious disease is the major cause of morbidity and mortality in developing countries, particularly in children. Increasing evidence suggests that protein-calorie malnutrition is the underlying reason for the increased susceptibility to infections observed in these areas. Moreover, certain infectious diseases also cause malnutrition, which can result in a vicious cycle. Malnutrition and bacterial gastrointestinal and respiratory infections represent a serious public health problem. The increased incidence and severity of infections in malnourished children is largely due to the deterioration of immune function; limited production and/or diminished functional capacity of all cellular components of the immune system have been reported in malnutrition. In this review, we analyze the cyclical relationship between malnutrition, immune response dysfunction, increased susceptibility to infectious disease, and metabolic responses that further alter nutritional status. The consequences of malnutrition are diverse and included: increased susceptibility to infection, impaired child development, increased mortality rate and individuals who come to function in suboptimal ways. PMID:21695035

  20. Change in the immune function of porcine iliac artery endothelial cells infected with porcine circovirus type 2 and its inhibition on monocyte derived dendritic cells maturation

    PubMed Central

    Liu, Shiyu; Zou, Zhanming; Zhu, Linlin; Liu, Xinyu; Zhou, Shuanghai

    2017-01-01

    Porcine circovirus-associated disease is caused by porcine circovirus type 2 (PCV2) infection, which targets iliac artery endothelial cells (PIECs); it leads to severe immunopathologies and is associated with major economic losses in the porcine industry. Here, we report that in vitro PCV2 infection of PIECs causes cell injury, which affects DC function as well as adaptive immunity. Specifically, PCV2 infection downregulated PIEC antigen-presenting molecule expression, upregulated cytokines involved in the immune and inflammatory response causing cell damage and repair, and altered the migratory capacity of PIECs. In addition, PCV2-infected PIECs inhibited DC maturation, enhanced the endocytic ability of DCs, and weakened the stimulatory effect of DCs on T lymphocytes. Together, these findings indicate that profound functional impairment of DCs in the presence of PCV2-infected PIECs may be a potential pathogenic mechanism associated with PCV2-induced porcine disease. PMID:29073194

  1. Defective chemokine signal integration in leukocytes lacking activator of G protein signaling 3 (AGS3).

    PubMed

    Branham-O'Connor, Melissa; Robichaux, William G; Zhang, Xian-Kui; Cho, Hyeseon; Kehrl, John H; Lanier, Stephen M; Blumer, Joe B

    2014-04-11

    Activator of G-protein signaling 3 (AGS3, gene name G-protein signaling modulator-1, Gpsm1), an accessory protein for G-protein signaling, has functional roles in the kidney and CNS. Here we show that AGS3 is expressed in spleen, thymus, and bone marrow-derived dendritic cells, and is up-regulated upon leukocyte activation. We explored the role of AGS3 in immune cell function by characterizing chemokine receptor signaling in leukocytes from mice lacking AGS3. No obvious differences in lymphocyte subsets were observed. Interestingly, however, AGS3-null B and T lymphocytes and bone marrow-derived dendritic cells exhibited significant chemotactic defects as well as reductions in chemokine-stimulated calcium mobilization and altered ERK and Akt activation. These studies indicate a role for AGS3 in the regulation of G-protein signaling in the immune system, providing unexpected venues for the potential development of therapeutic agents that modulate immune function by targeting these regulatory mechanisms.

  2. Gut Microbiota-Immune System Crosstalk and Pancreatic Disorders

    PubMed Central

    Saviano, A.; Newton, E. E.; Serricchio, M. L.; Dal Lago, A. A.

    2018-01-01

    Gut microbiota is key to the development and modulation of the mucosal immune system. It plays a central role in several physiological functions, in the modulation of inflammatory signaling and in the protection against infections. In healthy states, there is a perfect balance between commensal and pathogens, and microbiota and the immune system interact to maintain gut homeostasis. The alteration of such balance, called dysbiosis, determines an intestinal bacterial overgrowth which leads to the disruption of the intestinal barrier with systemic translocation of pathogens. The pancreas does not possess its own microbiota, and it is believed that inflammatory and neoplastic processes affecting the gland may be linked to intestinal dysbiosis. Increasing research evidence testifies a correlation between intestinal dysbiosis and various pancreatic disorders, but it remains unclear whether dysbiosis is the cause or an effect. The analysis of specific alterations in the microbiome profile may permit to develop novel tools for the early detection of several pancreatic disorders, utilizing samples, such as blood, saliva, and stools. Future studies will have to elucidate the mechanisms by which gut microbiota is modulated and how it tunes the immune system, in order to be able to develop innovative treatment strategies for pancreatic disorders. PMID:29563853

  3. Gut microbiome and the risk factors in central nervous system autoimmunity.

    PubMed

    Ochoa-Repáraz, Javier; Kasper, Lloyd H

    2014-11-17

    Humans are colonized after birth by microbial organisms that form a heterogeneous community, collectively termed microbiota. The genomic pool of this macro-community is named microbiome. The gut microbiota is essential for the complete development of the immune system, representing a binary network in which the microbiota interact with the host providing important immune and physiologic function and conversely the bacteria protect themselves from host immune defense. Alterations in the balance of the gut microbiome due to a combination of environmental and genetic factors can now be associated with detrimental or protective effects in experimental autoimmune diseases. These gut microbiome alterations can unbalance the gastrointestinal immune responses and influence distal effector sites leading to CNS disease including both demyelination and affective disorders. The current range of risk factors for MS includes genetic makeup and environmental elements. Of interest to this review is the consistency between this range of MS risk factors and the gut microbiome. We postulate that the gut microbiome serves as the niche where different MS risk factors merge, thereby influencing the disease process. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Chromatin organization as an indicator of glucocorticoid induced natural killer cell dysfunction.

    PubMed

    Misale, Michael S; Witek Janusek, Linda; Tell, Dina; Mathews, Herbert L

    2018-01-01

    It is well-established that psychological distress reduces natural killer cell immune function and that this reduction can be due to the stress-induced release of glucocorticoids. Glucocorticoids are known to alter epigenetic marks associated with immune effector loci, and are also known to influence chromatin organization. The purpose of this investigation was to assess the effect of glucocorticoids on natural killer cell chromatin organization and to determine the relationship of chromatin organization to natural killer cell effector function, e.g. interferon gamma production. Interferon gamma production is the prototypic cytokine produced by natural killer cells and is known to modulate both innate and adaptive immunity. Glucocorticoid treatment of human peripheral blood mononuclear cells resulted in a significant reduction in interferon gamma production. Glucocorticoid treatment also resulted in a demonstrable natural killer cell nuclear phenotype. This phenotype was localization of the histone, post-translational epigenetic mark, H3K27me3, to the nuclear periphery. Peripheral nuclear localization of H3K27me3 was directly related to cellular levels of interferon gamma. This nuclear phenotype was determined by direct visual inspection and by use of an automated, high through-put technology, the Amnis ImageStream. This technology combines the per-cell information content provided by standard microscopy with the statistical significance afforded by large sample sizes common to standard flow cytometry. Most importantly, this technology provides for a direct assessment of the localization of signal intensity within individual cells. The results demonstrate glucocorticoids to dysregulate natural killer cell function at least in part through altered H3K27me3 nuclear organization and demonstrate H3K27me3 chromatin organization to be a predictive indicator of glucocorticoid induced immune dysregulation of natural killer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.

    PubMed

    Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio

    2018-02-01

    Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  6. A core viral protein binds host nucleosomes to sequester immune danger signals

    PubMed Central

    Avgousti, Daphne C.; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J.; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C.; Blumenthal, Daniel; Paris, Andrew J.; Reyes, Emigdio D.; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H.; Worthen, G. Scott; Black, Ben E.; Garcia, Benjamin A.; Weitzman, Matthew D.

    2016-01-01

    Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses1. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important role in innate immune responses2. Viral encoded core basic proteins compact viral genomes but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones3. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles4,5, it is unknown whether protein VII impacts cellular chromatin. Our observation that protein VII alters cellular chromatin led us to hypothesize that this impacts antiviral responses during adenovirus infection. We found that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in chromatin of members of the high-mobility group protein B family (HMGB1, HMGB2, and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses6,7. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling. PMID:27362237

  7. Ionizing Radiation Induces Morphological Changes and Immunological Modulation of Jurkat Cells

    PubMed Central

    Voos, Patrick; Fuck, Sebastian; Weipert, Fabian; Babel, Laura; Tandl, Dominique; Meckel, Tobias; Hehlgans, Stephanie; Fournier, Claudia; Moroni, Anna; Rödel, Franz; Thiel, Gerhard

    2018-01-01

    Impairment or stimulation of the immune system by ionizing radiation (IR) impacts on immune surveillance of tumor cells and non-malignant cells and can either foster therapy response or side effects/toxicities of radiation therapy. For a better understanding of the mechanisms by which IR modulates T-cell activation and alters functional properties of these immune cells, we exposed human immortalized Jurkat cells and peripheral blood lymphocytes (PBL) to X-ray doses between 0.1 and 5 Gy. This resulted in cellular responses, which are typically observed also in naïve T-lymphocytes in response of T-cell receptor immune stimulation or mitogens. These responses include oscillations of cytosolic Ca2+, an upregulation of CD25 surface expression, interleukin-2 and interferon-γ synthesis, elevated expression of Ca2+ sensitive K+ channels and an increase in cell diameter. The latter was sensitive to inhibition by the immunosuppressant cyclosporine A, Ca2+ buffer BAPTA-AM, and the CDK1-inhibitor RO3306, indicating the involvement of Ca2+-dependent immune activation and radiation-induced cell cycle arrest. Furthermore, on a functional level, Jurkat and PBL cell adhesion to endothelial cells was increased upon radiation exposure and was highly dependent on an upregulation of integrin beta-1 expression and clustering. In conclusion, we here report that IR impacts on immune activation and functional properties of T-lymphocytes that may have implications in both toxic effects and treatment response to combined radiation and immune therapy in cancer patients. PMID:29760710

  8. Ionizing Radiation Induces Morphological Changes and Immunological Modulation of Jurkat Cells.

    PubMed

    Voos, Patrick; Fuck, Sebastian; Weipert, Fabian; Babel, Laura; Tandl, Dominique; Meckel, Tobias; Hehlgans, Stephanie; Fournier, Claudia; Moroni, Anna; Rödel, Franz; Thiel, Gerhard

    2018-01-01

    Impairment or stimulation of the immune system by ionizing radiation (IR) impacts on immune surveillance of tumor cells and non-malignant cells and can either foster therapy response or side effects/toxicities of radiation therapy. For a better understanding of the mechanisms by which IR modulates T-cell activation and alters functional properties of these immune cells, we exposed human immortalized Jurkat cells and peripheral blood lymphocytes (PBL) to X-ray doses between 0.1 and 5 Gy. This resulted in cellular responses, which are typically observed also in naïve T-lymphocytes in response of T-cell receptor immune stimulation or mitogens. These responses include oscillations of cytosolic Ca 2+ , an upregulation of CD25 surface expression, interleukin-2 and interferon-γ synthesis, elevated expression of Ca 2+ sensitive K + channels and an increase in cell diameter. The latter was sensitive to inhibition by the immunosuppressant cyclosporine A, Ca 2+ buffer BAPTA-AM, and the CDK1-inhibitor RO3306, indicating the involvement of Ca 2+ -dependent immune activation and radiation-induced cell cycle arrest. Furthermore, on a functional level, Jurkat and PBL cell adhesion to endothelial cells was increased upon radiation exposure and was highly dependent on an upregulation of integrin beta-1 expression and clustering. In conclusion, we here report that IR impacts on immune activation and functional properties of T-lymphocytes that may have implications in both toxic effects and treatment response to combined radiation and immune therapy in cancer patients.

  9. Effects of Cannabinoids on T-cell Function and Resistance to Infection

    PubMed Central

    Eisenstein, Toby K.

    2015-01-01

    This review examines the effects of cannabinoids on immune function, with a focus on effects on T-cells, as well as on resistance to infection. The paper considers the immune modulating capacity of marijuana, of Δ9-THC extracted from the marijuana plant, and synthetic cannabinoids. Of particular interest are synthetic compounds that are CB2 receptor (CB2R) selective agonists. As the CB2R is principally expressed on cells of the immune system, agonists that target this receptor, and not CB1 (which is mainly expressed on neurons), have the possibility of altering immune function without psychoactive effects. The overall conclusion of the studies discussed in this review is that cannabinoids that bind to the CB2 receptor, including Δ9-THC and CB2 selective agonists are immunosuppressive. The studies provide objective evidence for potentially beneficial effects of marijuana and Δ9-THC on the immune system in conditions where it is desirable to dampen immune responses. Evidence is also reviewed supporting the conclusion that these same compounds can sensitize to some infections through their immunosuppressive activities, but not to others. An emerging area of investigation that is reviewed is evidence to support the conclusion that CB2 selective agonists are a new class of immunosuppressive and anti-inflammatory compounds that may have exceptional beneficial effects in a variety of conditions, such as autoimmune diseases and graft rejection, where it is desirable to dampen the immune response without psychoactive effects. PMID:25876735

  10. Immunization alters body odor.

    PubMed

    Kimball, Bruce A; Opiekun, Maryanne; Yamazaki, Kunio; Beauchamp, Gary K

    2014-04-10

    Infections have been shown to alter body odor. Because immune activation accompanies both infection and immunization, we tested the hypothesis that classical immunization might similarly result in the alteration of body odors detectable by trained biosensor mice. Using a Y-maze, we trained biosensor mice to distinguish between urine odors from rabies-vaccinated (RV) and unvaccinated control mice. RV-trained mice generalized this training to mice immunized with the equine West Nile virus (WNV) vaccine compared with urine of corresponding controls. These results suggest that there are similarities between body odors of mice immunized with these two vaccines. This conclusion was reinforced when mice could not be trained to directly discriminate between urine odors of RV- versus WNV-treated mice. Next, we trained biosensor mice to discriminate the urine odors of mice treated with lipopolysaccharide (LPS; a general elicitor of innate immunological responses) from the urine of control mice. These LPS-trained biosensors could distinguish between the odors of LPS-treated mouse urine and RV-treated mouse urine. Finally, biosensor mice trained to distinguish between the odors of RV-treated mouse urine and control mouse urine did not generalize this training to discriminate between the odors of LPS-treated mouse urine and control mouse urine. From these experiments, we conclude that: (1) immunization alters urine odor in similar ways for RV and WNV immunizations; and (2) immune activation with LPS also alters urine odor but in ways different from those of RV and WNV. Published by Elsevier Inc.

  11. Beneficial Autoimmunity at Body Surfaces – Immune Surveillance and Rapid Type 2 Immunity Regulate Tissue Homeostasis and Cancer

    PubMed Central

    Dalessandri, Tim; Strid, Jessica

    2014-01-01

    Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis. PMID:25101088

  12. PCBs as environmental estrogens: Turtle sex determination as a biomarker of environmental contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergeron, J.M.; Crews, D.; McLachlan, J.A.

    1994-09-01

    Polychlorinated biphenyls (PCBs) are widespread, low-level environmental pollutants associated with adverse health effects such as immune suppression and teratogenicity. There is increasing evidence that some PCB compounds are capable of disrupting reproductive and endocrine function in fish, birds, and mammals, including humans, particularly during development. Research on the mechanism through which these compounds act to alter reproductive function indicates estrogenic activity, whereby the compounds may be altering sexual differentiation. Here we demonstrate the estrogenic effect of some PCBs by reversing gonadal sex in a reptile species that exhibits temperature-dependent sex determination. 17 refs., 1 fig., 1 tab.

  13. A bitter aftertaste: unintended effects of artificial sweeteners on the gut microbiome

    PubMed Central

    Bokulich, Nicholas A.; Blaser, Martin J.

    2015-01-01

    Intestinal microbial communities regulate a range of host physiological functions, from energy harvest and glucose homeostasis to immune development and regulation. Suez and colleagues (2014) recently demonstrated that artificial sweeteners alter gut microbial communities, leading to glucose intolerance in both mice and humans. PMID:25440050

  14. Vascular normalization as an emerging strategy to enhance cancer immunotherapy.

    PubMed

    Huang, Yuhui; Goel, Shom; Duda, Dan G; Fukumura, Dai; Jain, Rakesh K

    2013-05-15

    The recent approval of Provenge has brought new hope for anticancer vaccine therapies. However, the immunosuppressive tumor microenvironment seems to impair the efficacy of vaccine therapies. The abnormal tumor vasculature creates a hypoxic microenvironment that polarizes inflammatory cells toward immune suppression. Moreover, tumors systemically alter immune cells' proliferation, differentiation, and function via secretion of growth factors and cytokines. For example, VEGF, a major proangiogenic cytokine induced by hypoxia, plays a critical role in immunosuppression via these mechanisms. Hence, antiangiogenic treatment may be an effective modality to potentiate immunotherapy. Here, we discuss the local and systemic effects of VEGF on tumor immunity and propose a potentially translatable strategy to re-engineer the tumor-immune microenvironment and improve cancer immunotherapy by using lower "vascular normalizing" doses of antiangiogenic agents. ©2013 AACR.

  15. Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys?

    PubMed

    Block, Anna; Alfano, James R

    2011-02-01

    The phytopathogenic bacterium Pseudomonas syringae can suppress both pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) by the injection of type III effector (T3E) proteins into host cells. T3Es achieve immune suppression using a variety of strategies including interference with immune receptor signaling, blocking RNA pathways and vesicle trafficking, and altering organelle function. T3Es can be recognized indirectly by resistance proteins monitoring specific T3E targets resulting in ETI. It is presently unclear whether the monitored targets represent bona fide virulence targets or guarded decoys. Extensive overlap between PTI and ETI signaling suggests that T3Es may suppress both pathways through common targets and by possessing multiple activities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Impairment of Immunoproteasome Function by Cigarette Smoke and in Chronic Obstructive Pulmonary Disease.

    PubMed

    Kammerl, Ilona E; Dann, Angela; Mossina, Alessandra; Brech, Dorothee; Lukas, Christina; Vosyka, Oliver; Nathan, Petra; Conlon, Thomas M; Wagner, Darcy E; Overkleeft, Hermen S; Prasse, Antje; Rosas, Ivan O; Straub, Tobias; Krauss-Etschmann, Susanne; Königshoff, Melanie; Preissler, Gerhard; Winter, Hauke; Lindner, Michael; Hatz, Rudolf; Behr, Jürgen; Heinzelmann, Katharina; Yildirim, Ali Ö; Noessner, Elfriede; Eickelberg, Oliver; Meiners, Silke

    2016-06-01

    Patients with chronic obstructive pulmonary disease (COPD) and in particular smokers are more susceptible to respiratory infections contributing to acute exacerbations of disease. The immunoproteasome is a specialized type of proteasome destined to improve major histocompatibility complex (MHC) class I-mediated antigen presentation for the resolution of intracellular infections. To characterize immunoproteasome function in COPD and its regulation by cigarette smoke. Immunoproteasome expression and activity were determined in bronchoalveolar lavage (BAL) and lungs of human donors and patients with COPD or idiopathic pulmonary fibrosis (IPF), as well as in cigarette smoke-exposed mice. Smoke-mediated alterations of immunoproteasome activity and MHC I surface expression were analyzed in human blood-derived macrophages. Immunoproteasome-specific MHC I antigen presentation was evaluated in spleen and lung immune cells that had been smoke-exposed in vitro or in vivo. Immunoproteasome and MHC I mRNA expression was reduced in BAL cells of patients with COPD and in isolated alveolar macrophages of patients with COPD or IPF. Exposure of immune cells to cigarette smoke extract in vitro reduced immunoproteasome activity and impaired immunoproteasome-specific MHC I antigen presentation. In vivo, acute cigarette smoke exposure dynamically regulated immunoproteasome function and MHC I antigen presentation in mouse BAL cells. End-stage COPD lungs showed markedly impaired immunoproteasome activities. We here show that the activity of the immunoproteasome is impaired by cigarette smoke resulting in reduced MHC I antigen presentation. Regulation of immunoproteasome function by cigarette smoke may thus alter adaptive immune responses and add to prolonged infections and exacerbations in COPD and IPF.

  17. Immune dysregulation may contribute to disease pathogenesis in spinal muscular atrophy mice

    PubMed Central

    Deguise, Marc-Olivier; De Repentigny, Yves; McFall, Emily; Auclair, Nicole; Sad, Subash

    2017-01-01

    Abstract Spinal muscular atrophy (SMA) has long been solely considered a neurodegenerative disorder. However, recent work has highlighted defects in many other cell types that could contribute to disease aetiology. Interestingly, the immune system has never been extensively studied in SMA. Defects in lymphoid organs could exacerbate disease progression by neuroinflammation or immunodeficiency. Smn depletion led to severe alterations in the thymus and spleen of two different mouse models of SMA. The spleen from Smn depleted mice was dramatically smaller at a very young age and its histological architecture was marked by mislocalization of immune cells in the Smn2B/- model mice. In comparison, the thymus was relatively spared in gross morphology but showed many histological alterations including cortex thinning in both mouse models at symptomatic ages. Thymocyte development was also impaired as evidenced by abnormal population frequencies in the Smn2B/- thymus. Cytokine profiling revealed major changes in different tissues of both mouse models. Consistent with our observations, we found that survival motor neuron (Smn) protein levels were relatively high in lymphoid organs compared to skeletal muscle and spinal cord during postnatal development in wild type mice. Genetic introduction of one copy of the human SMN2 transgene was enough to rescue splenic and thymic defects in Smn2B/- mice. Thus, Smn is required for the normal development of lymphoid organs, and altered immune function may contribute to SMA disease pathogenesis. PMID:28108555

  18. Deletion of muscarinic type 1 acetylcholine receptors alters splenic lymphocyte functions and splenic noradrenaline concentration.

    PubMed

    Hainke, Susanne; Wildmann, Johannes; Del Rey, Adriana

    2015-11-01

    The existence of interactions between the immune and the sympathetic nervous systems is well established. Noradrenaline can promote or inhibit the immune response, and conversely, the immune response itself can affect noradrenaline concentration in lymphoid organs, such as the spleen. It is also well known that acetylcholine released by pre-ganglionic neurons can modulate noradrenaline release by the postsynaptic neuron. The spleen does not receive cholinergic innervation, but it has been reported that lymphocytes themselves can produce acetylcholine, and express acetylcholine receptors and acetylcholinesterase. We found that the spleen of not overtly immunized mice in which muscarinic type 1 acetylcholine receptors have been knocked out (M1KO) has higher noradrenaline concentrations than that of the wildtype mice, without comparable alterations in the heart, in parallel to a decreased number of IgG-producing B cells. Splenic lymphocytes from M1KO mice displayed increased in vitro-induced cytotoxicity, and this was observed only when CD4(+) T cells were present. In contrast, heterozygous acetylcholinesterase (AChE+/-) mice, had no alterations in splenic noradrenaline concentration, but the in vitro proliferation of AChE+/- CD4(+) T cells was increased. It is theoretically conceivable that reciprocal effects between neuronally and non-neuronally derived acetylcholine and noradrenaline might contribute to the results reported. Our results emphasize the need to consider the balance between the effects of these mediators for the final immunoregulatory outcome. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. ACE Over Expression in Myelomonocytic Cells: Effect on a Mouse Model of Alzheimer's Disease

    PubMed Central

    Koronyo-Hamaoui, Maya; Shah, Kandarp; Koronyo, Yosef; Bernstein, Ellen; Giani, Jorge F.; Janjulia, Tea; Black, Keith L.; Shi, Peng D.; Gonzalez-Villalobos, Romer A.; Fuchs, Sebastien; Shen, Xiao Z.; Bernstein, Kenneth E.

    2014-01-01

    While it is well known that angiotensin converting enzyme (ACE) plays an important role in blood pressure control, ACE also has effects on renal function, hematopoiesis, reproduction, and aspects of the immune response. ACE 10/10 mice over express ACE in myelomonocytic cells. Macrophages from these mice have an increased polarization towards a pro-inflammatory phenotype that results in a very effective immune response to challenge by tumors or bacterial infection. In a mouse model of Alzheimer's disease (AD), the ACE 10/10 phenotype provides significant protection against AD pathology, including reduced inflammation, reduced burden of the neurotoxic amyloid-β protein and preserved cognitive function. Taken together, these studies show that increased myelomonocytic ACE expression in mice alters the immune response to better defend against many different types of pathologic insult, including the cognitive decline observed in an animal model of AD. PMID:24792094

  20. Toll-like receptors and cytokines as surrogate biomarkers for evaluating vaginal immune response following microbicide administration.

    PubMed

    Gupta, Sadhana M; Aranha, Clara C; Mohanty, Madhu C; Reddy, K V R

    2008-01-01

    Topical microbicides are intended for frequent use by women in reproductive age. Hence, it is essential to evaluate their impact on mucosal immune function in the vagina. In the present study, we evaluated nisin, a naturally occurring antimicrobial peptide (AMP), for its efficacy as an intravaginal microbicide. Its effect on the vaginal immune function was determined by localizing Toll-like receptors (TLRs-3, 9) and cytokines (IL-4, 6 , 10 and TNF-alpha) in the rabbit cervicovaginal epithelium following intravaginal administration of high dose of nisin gel for 14 consecutive days. The results revealed no alteration in the expression of TLRs and cytokines at both protein and mRNA levels. However, in SDS gel-treated group, the levels were significantly upregulated with the induction of NF-kappaB signalling cascade. Thus, TLRs and cytokines appear as sensitive indicators for screening immunotoxic potential of candidate microbicides.

  1. Using Proteomics to Identify Viral microRNA-Regulated Genes | Center for Cancer Research

    Cancer.gov

    Kaposi sarcoma is a soft tissue malignancy that affects the skin, the mucous membranes, the lymph nodes and other organs of individuals with compromised immune systems. It is caused by infection with human herpesvirus-8 also known as Kaposi sarcoma-associated herpesvirus or KSHV. The herpesvirus family is unique in that it is the only viral family currently known to express multiple microRNAs (miRNAs); KSHV produces 12 pre-miRNAs, which are processed into at least 25 mature miRNAs. While their functions are not well understood, these miRNAs may be a way for the virus to alter the host immune response without producing proteins that could be recognized and targeted by the immune system. Joseph Ziegelbauer, Ph.D., in CCR’s HIV and AIDS Malignancy Branch, and his colleagues set out to identify human targets of KSHV miRNAs and to understand their functional importance.

  2. Immune Response in Microgravity: Genetic Basis and Countermeasure Development Implications

    NASA Technical Reports Server (NTRS)

    Risin, Diana; Ward, Nancy E.; Risin, Semyon A.; Pellis, Neal R.

    2006-01-01

    Impairment of the immunity in astronauts and cosmonauts even in shortterm flights is a recognized risk. Longterm orbital space missions and anticipated interplanetary flights increase the concern for more pronounced effects on the immune system with potential clinical consequences. Studies in true and modeled microgravity (MG) have demonstrated that MG directly affects numerous lymphocyte functions. The purpose of this study was to screen for genes involved in lymphocytes response to modeled microgravity (MMG) that could explain the functional and structural changes observed earlier. The microgravity-induced changes in gene expression were analyzed by microarray DNA chip technology. CD3and IL2activated Tcells were cultured in 1g (static) and modeled microgravity (NASA Rotating Wall Vessel bioreactor) conditions for 24 hours. Total RNA was extracted using the RNeasy isolation kit (Qiagen, Valencia, CA). Microarray experiments were performed utilizing Affymetrix Gene Chips (U133A), allowing testing for 18,400 human genes. To decrease the biological variation and aid in detecting microgravity-associated changes, experiments were performed in triplicate using cells obtained from three different donors. Exposure to modeled microgravity resulted in alteration of 89 genes, 10 of which were upregulated and 79 down-regulated. Altered genes were categorized by their function, structural role and by association with metabolic and regulatory pathways. A large proportion was found to be involved in fundamental cellular processes: signal transduction, DNA repair, apoptosis, and multiple metabolic pathways. There was a group of genes directly related to immune and inflammatory responses (IL7R, granulysin, proteasome activator subunit 2, peroxiredoxin 4, HLADRA, lymphocyte antigen 75, IL18R and DOCK2 genes). Among these genes only one (IL7R) was upregulated, the rest were downregulated. The upregulation of the IL7 receptor gene was confirmed by RT PCR. Three genes with altered expression were identified in the apoptosis related group (Granzyme B, APO2 ligand and Beta3endonexin). All of them were downregulated. Gene expression changes in MG might appear pivotal in identifying potential molecular targets for countermeasure development. (Supported by NRA OLMSA02 and NSCORT NAG54072 grants).

  3. Effect of roundup and tordon 202C herbicides on antibody production in mice.

    PubMed

    Blakley, B R

    1997-08-01

    Female CD-1 mice were exposed to Tordon 202C (2,4-dichlorophenoxyacetic acid [2,4-D] and picloram) or Roundup (glyphosate) in drinking water for 26 d at concentrations ranging from 0 to 0.42% or from 0 to 1.05%, respectively. The mice were inoculated with sheep red blood cells to produce a T-lymphocyte, macrophage dependent antibody response on day 21 of the herbicide exposure period. Tordon 202C dosing reduced weight gain and water consumption at the 0.42% level of exposure. Roundup exposure did not alter weight gain or water consumption. Antibody production was unaffected by Roundup dosing, suggesting that Roundup is unlikely to cause immune dysfunction under normal application conditions. In contrast, all levels of Tordon 202C exposure reduced antibody production by as much as 45%. The immunosuppressive activity of Tordon 202C was associated with levels more than 12 x the normal application level, although it was not determined which component of the formulation was responsible for the immunosuppression effect. The presence of immune alteration subsequent to exposure to Tordon 202C at levels marginally above the normal application levels suggests that chronic exposure to Tordon 202C in the environment has the potential to alter immune function.

  4. Tumors Alter Inflammation and Impair Dermal Wound Healing in Female Mice

    PubMed Central

    Pyter, Leah M.; Husain, Yasmin; Calero, Humberto; McKim, Daniel B.; Lin, Hsin-Yun; Godbout, Jonathan P.; Sheridan, John F.; Engeland, Christopher G.; Marucha, Phillip T.

    2016-01-01

    Tissue repair is an integral component of cancer treatment (e.g., due to surgery, chemotherapy, radiation). Previous work has emphasized the immunosuppressive effects of tumors on adaptive immunity and has shown that surgery incites cancer metastases. However, the extent to which and how tumors may alter the clinically-relevant innate immune process of wound healing remains an untapped potential area of improvement for treatment, quality of life, and ultimately, mortality of cancer patients. In this study, 3.5 mm full-thickness dermal excisional wounds were placed on the dorsum of immunocompetent female mice with and without non-malignant flank AT-84 murine oral squamous cell carcinomas. Wound closure rate, inflammatory cell number and inflammatory signaling in wounds, and circulating myeloid cell concentrations were compared between tumor-bearing and tumor-free mice. Tumors delayed wound closure, suppressed inflammatory signaling, and altered myeloid cell trafficking in wounds. An in vitro scratch “wounding” assay of adult dermal fibroblasts treated with tumor cell-conditioned media supported the in vivo findings. This study demonstrates that tumors are sufficient to disrupt fundamental and clinically-relevant innate immune functions. The understanding of these underlying mechanisms provides potential for therapeutic interventions capable of improving the treatment of cancer while reducing morbidities and mortality. PMID:27548621

  5. Phenotyping of congenic dipeptidyl peptidase 4 (DP4) deficient Dark Agouti (DA) rats suggests involvement of DP4 in neuro-, endocrine, and immune functions.

    PubMed

    Frerker, Nadine; Raber, Kerstin; Bode, Felix; Skripuletz, Thomas; Nave, Heike; Klemann, Christian; Pabst, Reinhard; Stephan, Michael; Schade, Jutta; Brabant, Georg; Wedekind, Dirk; Jacobs, Roland; Jörns, Anne; Forssmann, Ulf; Straub, Rainer H; Johannes, Sigrid; Hoffmann, Torsten; Wagner, Leona; Demuth, Hans-Ulrich; von Hörsten, Stephan

    2009-01-01

    Treatment of diabetes type 2 using chronic pharmacological inhibition of dipeptidyl peptidase 4 (DP4) still requires an in-depth analysis of models for chronic DP4 deficiency, because adverse reactions induced by some DP4 inhibitors have been described. In the present study, a novel congenic rat model of DP4 deficiency on a "DP4-high" DA rat genetic background was generated (DA.F344-Dpp4(m)/ SvH rats) and comprehensively phenotyped. Similar to chronic pharmacological inhibition of DP4, DP4 deficient rats exhibited a phenotype involving reduced diet-induced body weight gain and improved glucose tolerance associated with increased levels of glucagon-like peptide-1 (GLP-1) and bound leptin as well as decreased aminotransferases and triglycerides. Additionally, DA.F344-Dpp4(m)/SvH rats showed anxiolytic-like and reduced stress-like responses, a phenomenon presently not targeted by DP4 inhibitors. However, several immune alterations, such as differential leukocyte subset composition at baseline, blunted natural killer cell and T-cell functions, and altered cytokine levels were observed. While this animal model confirms a critical role of DP4 in GLP-1-dependent glucose regulation, genetically induced chronic DP4 deficiency apparently also affects stress-regulatory and immuneregulatory systems, indicating that the use of chronic DP4 inhibitors might have the potential to interfere with central nervous system and immune functions in vivo.

  6. GABAergic neurons in cerebellar interposed nucleus modulate cellular and humoral immunity via hypothalamic and sympathetic pathways.

    PubMed

    Lu, Jian-Hua; Wang, Xiao-Qin; Huang, Yan; Qiu, Yi-Hua; Peng, Yu-Ping

    2015-06-15

    Our previous work has shown that cerebellar interposed nucleus (IN) modulates immune function. Herein, we reveal mechanism underlying the immunomodulation. Treatment of bilateral cerebellar IN of rats with 3-mercaptopropionic acid (3-MP), a glutamic acid decarboxylase antagonist that reduces γ-aminobutyric acid (GABA) synthesis, enhanced cellular and humoral immune responses to bovine serum albumin, whereas injection of vigabatrin, a GABA-transaminase inhibitor that inhibits GABA degradation, in bilateral cerebellar IN attenuated the immune responses. The 3-MP or vigabatrin administrations in the cerebellar IN decreased or increased hypothalamic GABA content and lymphoid tissues' norepinephrine content, respectively, but did not alter adrenocortical or thyroid hormone levels in serum. In addition, a direct GABAergic projection from cerebellar IN to hypothalamus was found. These findings suggest that GABAergic neurons in cerebellar IN regulate immune system via hypothalamic and sympathetic pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Epilepsy and the immune system: is there a link?

    PubMed

    Billiau, An D; Wouters, Carine H; Lagae, Lieven G

    2005-01-01

    The concept that the immune system plays a role in the epileptogenic process of some epileptic syndromes was first proposed more than 20 years ago. Since then, numerous studies have reported on the existence of a variety of immunological alterations in epileptic patients, on the observation of favourable responses of refractory epilepsy syndromes to immunomodulatory treatment, and on the association of certain well-known immune-mediated disease states with epilepsy. This review comprehensively recapitulates the currently available evidence supporting or arguing against the possible involvement of the immune system in the pathogenesis of certain types of epilepsy. It is concluded that an abundance of facts is in support of this concept and that further studies should be directed at substantiating the pathogenic significance of (auto)immune responses in certain types of epilepsy. Current progress in the functional and molecular immunological research techniques will indisputably contribute to the elucidation of this link.

  8. Zinc Signals and Immunity.

    PubMed

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  9. The effects of commensal bacteria on innate immune responses in the female genital tract

    PubMed Central

    Mirmonsef, P; Gilbert, D; Zariffard, MR; Hamaker, BR; Kaur, A; Landay, AL; Spear, GT

    2013-01-01

    The innate and adaptive immune systems are important mechanisms for resistance to pathogens in the female lower genital tract. Lactobacilli at this site help maintain a healthy vagina by producing several factors including lactic acid. Indeed, bacterial vaginosis, a condition in which the genital microbiota is altered, is strongly associated with increased rates of a number of infections including HIV. However, the precise factors that contribute to increased rates of microbial and viral infections in bacterial vaginosis remain to be elucidated. We have studied the effects of bacterial microbiota in the lower genital tract on innate immunity and have found that Toll-like receptor ligands and short chain fatty acids, produced by bacterial microbiota, have dramatic effects on immune function. In this review, we will discuss these results, in addition to some recent articles that we believe will enhance our understanding of how microbes might interact with the immune system. PMID:21143335

  10. The effect of pre-laying maternal immunization on offspring growth and immunity differs across experimentally altered postnatal rearing conditions in a wild songbird.

    PubMed

    Martyka, Rafał; Śliwińska, Ewa B; Martyka, Mirosław; Cichoń, Mariusz; Tryjanowski, Piotr

    2018-01-01

    Prenatal antibody transfer is an immune-mediated maternal effect by which females can shape postnatal offspring resistance to pathogens and parasites. Maternal antibodies passed on to offspring provide primary protection to neonates against diverse pathogenic antigens, but they may also affect offspring growth and influence the development of an offspring's own immune response. The effects of maternal antibodies on offspring performance commonly require that the disease environment experienced by a mother prior to breeding matches the environment encountered by her offspring after hatching/birth. However, other circumstances, like postnatal rearing conditions that affect offspring food availability, may also determine the effects of maternal antibodies on offspring growth and immunity. To date, knowledge about how prenatal immune-mediated maternal effects interact with various postnatal rearing conditions to affect offspring development and phenotype in wild bird population remains elusive. Here we experimentally studied the interactive effects of pre-laying maternal immunization with a bacterial antigen (lipopolysaccharide) and post-hatching rearing conditions, altered by brood size manipulation, on offspring growth and humoral immunity of wild great tits ( Parus major ). We found that maternal immunization and brood size manipulation interactively affected the growth and specific humoral immune response of avian offspring. Among nestlings reared in enlarged broods, only those that originated from immunized mothers grew better and were heavier at fledging stage compared to those that originated from non-immunized mothers. In contrast, no such effects were observed among nestlings reared in non-manipulated (control) broods. Moreover, offspring of immunized females had a stronger humoral immune response to lipopolysaccharide during postnatal development than offspring of non-immunized females, but only when the nestling was reared in control broods. This study demonstrates that offspring development and their ability to cope with pathogens after hatching are driven by mutual influences of pathogen-induced prenatal maternal effects and post-hatching rearing conditions. Our findings suggest that immune-mediated maternal effects may have context-dependent influences on offspring growth and immune function, related to the postnatal environmental conditions experienced by the progeny.

  11. Comprehensive proteome analysis of lysosomes reveals the diverse function of macrophages in immune responses.

    PubMed

    Gao, Yanpan; Chen, Yanyu; Zhan, Shaohua; Zhang, Wenhao; Xiong, Feng; Ge, Wei

    2017-01-31

    Phagocytosis and autophagy in macrophages have been shown to be essential to both innate and adaptive immunity. Lysosomes are the main catabolic subcellular organelles responsible for degradation and recycling of both extracellular and intracellular material, which are the final steps in phagocytosis and autophagy. However, the molecular mechanisms underlying lysosomal functions after infection remain obscure. In this study, we conducted a quantitative proteomics analysis of the changes in constitution and glycosylation of proteins in lysosomes derived from murine RAW 264.7 macrophage cells treated with different types of pathogens comprising examples of bacteria (Listeria monocytogenes, L. m), DNA viruses (herpes simplex virus type-1, HSV-1) and RNA viruses (vesicular stomatitis virus, VSV). In total, 3,704 lysosome-related proteins and 300 potential glycosylation sites on 193 proteins were identified. Comparative analysis showed that the aforementioned pathogens induced distinct alterations in the proteome of the lysosome, which is closely associated with the immune functions of macrophages, such as toll-like receptor activation, inflammation and antigen-presentation. The most significant changes in proteins and fluctuations in glycosylation were also determined. Furthermore, Western blot analysis showed that the changes in expression of these proteins were undetectable at the whole cell level. Thus, our study provides unique insights into the function of lysosomes in macrophage activation and immune responses.

  12. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa.

    PubMed

    Dantzer, Robert

    2018-01-01

    Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.

  13. Immune System Dysregulation and Herpesvirus Reactivation Persist During Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Stowe, R. P.; Mehta, S.; Uchakin, P.; Quiriarte, H.; Pierson, D.; Sams, C. F.

    2010-01-01

    Background: Immunity, latent herpesvirus reactivation, physiological stress and circadian rhythms were assessed during six month spaceflight onboard ISS. Blood and saliva samples were collected early, mid and late in-flight and returned for immediate analysis. Mid-point study data (10 of 17 planned subjects) will be presented. Results: Some shifts in leukocyte distribution occurred during flight, including alterations in CD8+ T cell maturation. General T cell function was consistently reduced early in-flight. Levels CD8+/IFNg+ producing T cells were depressed early in-flight, and immediately upon landing. Persistent mitogen-dependant reductions were observed in IFNg, IL-17a, IL-10, TNFa and IL-6 production. Monocyte production of IL-10 was reduced, whereas IL-8 levels were increased. Levels of mRNA for the TNFa, IL-6 and IFNg were transiently elevated early in-flight, and the dynamics of TNF and IL-6 gene expression were somewhat antagonistic to their corresponding receptors during flight. The number of virus-specific CD8+ T-cells was measured using MHC tetramers, while their function was measured using intracellular cytokine analysis following peptide stimulation. Both the number and function of EBV-specific cells decreased during flight as compared to preflight levels. The number of CMV-specific T-cells generally increased as the mission progressed while their function was variable. Viral (EBV) load in blood was elevated postflight. Anti-EBV VCA antibodies were significantly elevated by R+0; anti-EA antibodies were not significantly elevated at landing; and anti-CMV antibodies were somewhat elevated during flight. Higher levels of salivary EBV DNA were found during flight. VZV DNA reactivation occurred in 50 % of astronauts during flight, continuing for up to 30 days post-flight. CMV was shed in 35 % the in-flight and 30% of postflight urine samples of the crewmembers. There was generally a higher level of cortisol as measured in urine and saliva in the astronauts during flight, but plasma cortisol was relatively unchanged during flight. Circadian rhythm of salivary cortisol was altered during flight. Conclusion. Some alterations in immunity do not resolve during six month spaceflight, consequentially resulting in persistent herpesvirus reactivation. Ongoing immune dysregulation may represent specific clinical risks for exploration-class space missions.

  14. A Systematic Review of Innate Immunomodulatory Effects of Household Air Pollution Secondary to the Burning of Biomass Fuels.

    PubMed

    Lee, Alison; Kinney, Patrick; Chillrud, Steve; Jack, Darby

    2015-01-01

    Household air pollution (HAP)-associated acute lower respiratory infections cause 455,000 deaths and a loss of 39.1 million disability-adjusted life years annually. The immunomodulatory mechanisms of HAP are poorly understood. The aim of this study was to conduct a systematic review of all studies examining the mechanisms underlying the relationship between HAP secondary to solid fuel exposure and acute lower respiratory tract infection to evaluate current available evidence, identify gaps in knowledge, and propose future research priorities. We conducted and report on studies in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. In all, 133 articles were fully reviewed and main characteristics were detailed, namely study design and outcome, including in vivo versus in vitro and pollutants analyzed. Thirty-six studies were included in a nonexhaustive review of the innate immune system effects of ambient air pollution, traffic-related air pollution, or wood smoke exposure of developed country origin. Seventeen studies investigated the effects of HAP-associated solid fuel (biomass or coal smoke) exposure on airway inflammation and innate immune system function. Particulate matter may modulate the innate immune system and increase susceptibility to infection through a) alveolar macrophage-driven inflammation, recruitment of neutrophils, and disruption of barrier defenses; b) alterations in alveolar macrophage phagocytosis and intracellular killing; and c) increased susceptibility to infection via upregulation of receptors involved in pathogen invasion. HAP secondary to the burning of biomass fuels alters innate immunity, predisposing children to acute lower respiratory tract infections. Data from biomass exposure in developing countries are scarce. Further study is needed to define the inflammatory response, alterations in phagocytic function, and upregulation of receptors important in bacterial and viral binding. These studies have important public health implications and may lead to the design of interventions to improve the health of billions of people daily. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The murine polyomavirus microRNA locus is required to promote viruria during the acute phase of infection.

    PubMed

    Burke, James M; Bass, Clovis R; Kincaid, Rodney P; Ulug, Emin T; Sullivan, Christopher S

    2018-06-06

    Polyomaviruses (PyVs) can cause serious disease in immunosuppressed hosts. Several pathogenic PyVs encode microRNAs (miRNAs), small RNAs that regulate gene expression via RNA silencing. Despite recent advances in understanding the activities of PyV miRNAs, the biological functions of PyV miRNAs during in vivo infections are mostly unknown. Studies presented here use murine polyomavirus (MuPyV) as a model to assess the roles of the PyV miRNAs in a natural host. This analysis reveals that a MuPyV mutant that is unable to express miRNAs has enhanced viral DNA loads in select tissues at late times after infection. This is consistent with the PyV miRNAs functioning to reduce viral replication during the persistent phase of infection in a natural host. Additionally, the MuPyV miRNA locus promotes viruria during the acute phase of infection as evidenced by a defect in shedding during infection with the miRNA mutant virus. The viruria defect of the miRNA mutant virus could be rescued by infecting Rag2-/- mice. These findings implicate the miRNA locus as functioning in both the persistent and acute phases of infection and suggest a role for MuPyV miRNA in evading the adaptive immune response. IMPORTANCE MicroRNAs are expressed by diverse viruses, but for only a few is there any understanding of their in vivo function. PyVs can cause serious disease in immunocompromised hosts. Therefore, increased knowledge of how these viruses interact with the immune response is of clinical relevance. Here we show a novel activity for a viral miRNA locus in promoting virus shedding. This work indicates that in addition to any role for the PyV miRNA locus in long-term persistence, that it also has biological activity during the acute phase. As this mutant phenotype is alleviated by infection of mice lacking an adaptive immune response, our work also connects the in vivo activity of the PyV miRNA locus to the immune response. Given that PyV-associated disease is associated with alterations in the immune response, our findings help to better understand how the balance between PyVs and the immune response becomes altered in pathogenic states. Copyright © 2018 American Society for Microbiology.

  16. Consequences of contamination of the spacecraft environment: immunologic consequences

    NASA Technical Reports Server (NTRS)

    Shearer, W. T.

    2001-01-01

    Long-term space voyages pose numerous known and unknown health hazards, to the human immune system. Well-studied clinical examples of secondary immunodeficiencies created on Earth, lead one to predict that the conditions of prolonged space flight would weaken the human immune responses that normally hold infection and cancer in check. From evidence gathered from humans flown for prolonged periods in space and from human models of space flight studied on Earth it is reasonable to suspect that space travelers to the planet Mars would experience a weakening of immunity. Subtle defects of immune cell structure and function have been observed in astronauts, such as weakening of specific T-lymphocyte recall of specific antigens. Ground-based models also have demonstrated alterations of immune function, such as the elevation of neuroendocrine immune system messengers, interleukin-6, and soluble tumor necrosis factor-alpha receptor in sleep deprivation. Since severe immune compromise the clinical consequences of reactivation of latent virus infections and the development of cancer, has yet to be seen in space flight or in the Earth models, it is extremely important to begin to quantify early changes in immunity to predict the development of immune system collapse with poor clinical outcomes. This approach is designed to validate a number of surrogate markers that will predict trouble ahead. Inherent in this research is the development of countermeasures to reduce the risks of infection and cancer in the first humans going to Mars.

  17. Aging of the Immune System. Mechanisms and Therapeutic Targets.

    PubMed

    Weyand, Cornelia M; Goronzy, Jörg J

    2016-12-01

    Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.

  18. Role of selenium-containing proteins in T cell and macrophage function

    PubMed Central

    Carlson, Bradley A.; Yoo, Min-Hyuk; Shrimali, Rajeev K.; Irons, Robert; Gladyshev, Vadim N.; Hatfield, Dolph L.; Park, Jin Mo

    2011-01-01

    Synopsis Selenium has been known for many years to have a role in boosting immune function, but the manner in which this element acts at the molecular level in host defense and inflammatory diseases is poorly understood. To elucidate the role of selenium-containing proteins in immune function, we knocked out the expression of this protein class in T cells or macrophages of mice by targeting the removal of the selenocysteine tRNA gene using loxP-Cre technology. Mice with selenoprotein-less T cells manifested reduced pools of mature and functional T cells in lymphoid tissues and an impairment in T cell-dependent antibody responses. Furthermore, selenoprotein deficiency in T cells led to an inability of these cells to suppress reactive oxygen species (ROS) production, which in turn affected their ability to proliferate in response to T cell receptor stimulation. Selenoprotein-less macrophages, on the other hand, manifested mostly normal inflammatory responses, but this deficiency resulted in an altered regulation in extracellular matrix-related gene expression and a diminished migration of macrophages in a protein gel matrix. These observations provided novel insights into the role of selenoproteins in immune function and tissue homeostasis. PMID:20576203

  19. Immune monitoring of clinical trials with biotherapies.

    PubMed

    Whiteside, Theresa L

    2008-01-01

    Immune monitoring of biotherapy clinical trials has undergone a considerable change in recent years. Technical advances together with new insights into molecular immunology have ushered a new genre of assays into immune monitoring. Single-cell assays, multiplex profiling, and signaling molecule detection have replaced formerly used bulk assays, such as proliferation or cytotoxicity. The emphasis on immune cell functions and quantitation of antigen-specific T cells has been playing a major role in attempts to establish correlations between therapy-induced alterations in immune responses and clinical endpoints. However, this has been an elusive goal to achieve, and there is a special need for improving the quality of serial monitoring to ensure that it adequately and reliably measures changes induced by administered biotherapy. In this respect, monitoring performed in specialized reference laboratories operating as good laboratory practice (GLP) facilities and strengthening of interactions between the clinical investigator, the clinical immunologist, and the biostatistician are crucial for successful use of immune monitoring in clinical studies.

  20. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents.

    PubMed

    Luck, Helen; Tsai, Sue; Chung, Jason; Clemente-Casares, Xavier; Ghazarian, Magar; Revelo, Xavier S; Lei, Helena; Luk, Cynthia T; Shi, Sally Yu; Surendra, Anuradha; Copeland, Julia K; Ahn, Jennifer; Prescott, David; Rasmussen, Brittany A; Chng, Melissa Hui Yen; Engleman, Edgar G; Girardin, Stephen E; Lam, Tony K T; Croitoru, Kenneth; Dunn, Shannon; Philpott, Dana J; Guttman, David S; Woo, Minna; Winer, Shawn; Winer, Daniel A

    2015-04-07

    Obesity has reached epidemic proportions, but little is known about its influence on the intestinal immune system. Here we show that the gut immune system is altered during high-fat diet (HFD) feeding and is a functional regulator of obesity-related insulin resistance (IR) that can be exploited therapeutically. Obesity induces a chronic phenotypic pro-inflammatory shift in bowel lamina propria immune cell populations. Reduction of the gut immune system, using beta7 integrin-deficient mice (Beta7(null)), decreases HFD-induced IR. Treatment of wild-type HFD C57BL/6 mice with the local gut anti-inflammatory, 5-aminosalicyclic acid (5-ASA), reverses bowel inflammation and improves metabolic parameters. These beneficial effects are dependent on adaptive and gut immunity and are associated with reduced gut permeability and endotoxemia, decreased visceral adipose tissue inflammation, and improved antigen-specific tolerance to luminal antigens. Thus, the mucosal immune system affects multiple pathways associated with systemic IR and represents a novel therapeutic target in this disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Complex multicellular functions at a unicellular eukaryote level: Learning, memory, and immunity.

    PubMed

    Csaba, György

    2017-06-01

    According to experimental data, eukaryote unicellulars are able to learn, have immunity and memory. Learning is carried out in a very primitive form, and the memory is not neural but an epigenetic one. However, this epigenetic memory, which is well justified by the presence and manifestation of hormonal imprinting, is strong and permanent in the life of cell and also in its progenies. This memory is epigenetically executed by the alteration and fixation of methylation pattern of genes without changes in base sequences. The immunity of unicellulars is based on self/non-self discrimination, which leads to the destruction of non-self invaders and utilization of them as nourishment (by phagocytosis). The tools of learning, memory, and immunity of unicellulars are uniformly found in plasma membrane receptors, which formed under the effect of dynamic receptor pattern generation, suggested by Koch et al., and this is the basis of hormonal imprinting, by which the encounter between a chemical substance and the cell is specifically memorized. The receptors and imprinting are also used in the later steps of evolution up to mammals (including man) in each mentioned functions. This means that learning, memory, and immunity can be deduced to a unicellular eukaryote level.

  2. Immunomodulatory effects of fluoxetine: A new potential pharmacological action for a classic antidepressant drug?

    PubMed

    Di Rosso, María Emilia; Palumbo, María Laura; Genaro, Ana María

    2016-07-01

    Selective serotonin reuptake inhibitors are frequently used antidepressants. In particular, fluoxetine is usually chosen for the treatment of the symptoms of depression, obsessive-compulsive, panic attack and bulimia nervosa. Antidepressant therapy has been associated with immune dysfunction. However, there is contradictory evidence about the effect of fluoxetine on the immune system. Experimental findings indicate that lymphocytes express the serotonin transporter. Moreover it has been shown that fluoxetine is able to modulate the immune function through a serotonin-dependent pathway and through a novel independent mechanism. In addition, several studies have shown that fluoxetine can alter tumor cell viability. Thus, it was recently demonstrated in vivo that chronic fluoxetine treatment inhibits tumor growth by increasing antitumor T-cell activity. Here we briefly review some of the literature referring to how fluoxetine is able to modify, for better or worse, the functionality of the immune system. These results of our analysis point to the relevance of the novel pharmacological action of this drug as an immunomodulator helping to treat several pathologies in which immune deficiency and/or deregulation is present. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Inflammation-associated microsatellite alterations: Mechanisms and significance in the prognosis of patients with colorectal cancer.

    PubMed

    Koi, Minoru; Tseng-Rogenski, Stephanie S; Carethers, John M

    2018-01-15

    Microsatellite alterations within genomic DNA frameshift as a result of defective DNA mismatch repair (MMR). About 15% of sporadic colorectal cancers (CRCs) manifest hypermethylation of the DNA MMR gene MLH1 , resulting in mono- and di-nucleotide frameshifts to classify it as microsatellite instability-high (MSI-H) and hypermutated, and due to frameshifts at coding microsatellites generating neo-antigens, produce a robust protective immune response that can be enhanced with immune checkpoint blockade. More commonly, approximately 50% of sporadic non-MSI-H CRCs demonstrate frameshifts at di- and tetra-nucleotide microsatellites to classify it as MSI-low/elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) as a result of functional somatic inactivation of the DNA MMR protein MSH3 via a nuclear-to-cytosolic displacement. The trigger for MSH3 displacement appears to be inflammation and/or oxidative stress, and unlike MSI-H CRC patients, patients with MSI-L/EMAST CRCs show poor prognosis. These inflammatory-associated microsatellite alterations are a consequence of the local tumor microenvironment, and in theory, if the microenvironment is manipulated to lower inflammation, the microsatellite alterations and MSH3 dysfunction should be corrected. Here we describe the mechanisms and significance of inflammatory-associated microsatellite alterations, and propose three areas to deeply explore the consequences and prevention of inflammation's effect upon the DNA MMR system.

  4. Inflammation-associated microsatellite alterations: Mechanisms and significance in the prognosis of patients with colorectal cancer

    PubMed Central

    Koi, Minoru; Tseng-Rogenski, Stephanie S; Carethers, John M

    2018-01-01

    Microsatellite alterations within genomic DNA frameshift as a result of defective DNA mismatch repair (MMR). About 15% of sporadic colorectal cancers (CRCs) manifest hypermethylation of the DNA MMR gene MLH1, resulting in mono- and di-nucleotide frameshifts to classify it as microsatellite instability-high (MSI-H) and hypermutated, and due to frameshifts at coding microsatellites generating neo-antigens, produce a robust protective immune response that can be enhanced with immune checkpoint blockade. More commonly, approximately 50% of sporadic non-MSI-H CRCs demonstrate frameshifts at di- and tetra-nucleotide microsatellites to classify it as MSI-low/elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) as a result of functional somatic inactivation of the DNA MMR protein MSH3 via a nuclear-to-cytosolic displacement. The trigger for MSH3 displacement appears to be inflammation and/or oxidative stress, and unlike MSI-H CRC patients, patients with MSI-L/EMAST CRCs show poor prognosis. These inflammatory-associated microsatellite alterations are a consequence of the local tumor microenvironment, and in theory, if the microenvironment is manipulated to lower inflammation, the microsatellite alterations and MSH3 dysfunction should be corrected. Here we describe the mechanisms and significance of inflammatory-associated microsatellite alterations, and propose three areas to deeply explore the consequences and prevention of inflammation’s effect upon the DNA MMR system. PMID:29375743

  5. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon,more » 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.« less

  6. TLR agonists are highly effective at eliciting functional memory CTLs of effector memory phenotype in peptide immunization

    USDA-ARS?s Scientific Manuscript database

    Given the importance of memory cytotoxic T lymphocytes (CTLs) in eliminating altered self-cells, including virus-infected and tumor cells, devising effective vaccination strategies for generating memory CTLs is a priority in the field of immunology. Herein, we elaborate upon a novel boosting approac...

  7. Season of birth and inflammatory response system in schizophrenia.

    PubMed

    Altamura, A Carlo; Bassetti, Roberta; Bocchio, Luisella; Santini, Annalisa; Mundo, Emanuela

    2003-08-01

    Infective agents (e.g., viruses) together with functional alterations of the immune system have been hypothesized to be implicated in the multifactorial pathogenesis of schizophrenia. The viral hypothesis of schizophrenia has been supported by the observation of birth peaks in winter seasons, prenatal exposure to virus epidemics and specific geographic patterns. On the other hand, not all the data published have shown consistent results supporting the immune hypothesis. Thus, it is likely that immune response factors may play a role in the pathogenesis of the disease only in specific subgroups of patients. The aim of the study was to investigate for the presence of differences of IL-6, IL-6R, gp130 and CC16 among four groups of chronic schizophrenic patients categorized according to the season of birth. We hypothesized that patients born in winter and spring would have had increased values of these cytokines. No significant differences were found among the four groups in any of the measures considered. These preliminary results appear to exclude a major role of the season of birth in determining reported interleukins system alterations in chronic schizophrenia.

  8. Controlling the burn and fueling the fire: defining the role for the alarmin interleukin-33 in alloimmunity.

    PubMed

    Liu, Quan; Turnquist, Heth R

    2016-02-01

    The purpose of this review is to provide a general update on recent developments in the immunobiology of IL-33 and IL-33-targeted immune cells. We also discuss emerging concepts regarding the potential role IL-33 appears to play in altering alloimmune responses mediating host-versus-graft and graft-versus-host alloresponses. Stromal cells and leukocytes display regulated expression of IL-33 and may actively or passively secrete this pleotropic cytokine. Type 2 innate lymphoid cells and a large proportion of tissue resident regulatory T cells (Treg) express membrane-bound suppressor of tumorigenicity 2 (ST2), the IL-33 receptor. Although Treg are appreciated suppressors of the inflammatory function of immune cells, both type 2 innate lymphoid cells and tissue resident Treg could play key roles in tissue repair and homeostasis. The functions of IL-33 in transplantation are poorly understood. However, like other disease models, the functions of IL-33 in alloimmunity appear to be quite pleiotropic. IL-33 is associated with immune regulation and graft protection in cardiac transplant settings. Yet, it is highly proinflammatory and stimulates lethal graft-versus-host disease through its capacity to stimulate type 1 immunity. Intensive studies on IL-33/ST2 signaling pathways and ST2 cell populations in solid organ and cell transplantation are warranted. A better understanding of this important pathway will provide promising therapeutic targets controlling pathogenic alloimmune responses, as well as potentially facilitating the function of regulatory and reparative immune cells posttransplantation.

  9. MicroRNAs (MiRs) Precisely Regulate Immune System Development and Function in Immunosenescence Process.

    PubMed

    Aalaei-Andabili, Seyed Hossein; Rezaei, Nima

    2016-01-01

    Human aging is a complex process with pivotal changes in gene expression of biological pathways. Immune system dysfunction has been recognized as one of the most important abnormalities induced by senescent names immunosenescence. Emerging evidences suggest miR role in immunosenescence. We aimed to systemically review all relevant reports to clearly state miR effects on immunosenescence process. Sensitive electronic searches carried out. Quality assessment has been performed. Since majority of the included studies were laboratory works, and therefore heterogen, we discussed miR effects on immunological aging process nonstatically. Forty-six articles were found in the initial search. After exclusion of 34 articles, 12 studies enrolled to the final stage. We found that miRs have crucial roles in exact function of immune system. MiRs are involved in the regulation of the aging process in the immune system components and target certain genes, promoting or inhibiting immune system reaction to invasion. Also, miRs control life span of the immune system members by regulation of the genes involved in the apoptosis. Interestingly, we found that immunosenescence is controllable by proper manipulation of the various miRs expression. DNA methylation and histone acetylation have been discovered as novel strategies, altering NF-κB binding ability to the miR promoter sites. Effect of miRs on impairment of immune system function due to the aging is emerging. Although it has been accepted that miRs have determinant roles in the regulation of the immunosenescence; however, most of the reports are concluded from animal/laboratory works, suggesting the necessity of more investigations in human.

  10. Estrogen signaling through the G protein-coupled estrogen receptor regulates granulocyte activation in fish.

    PubMed

    Cabas, Isabel; Rodenas, M Carmen; Abellán, Emilia; Meseguer, José; Mulero, Victoriano; García-Ayala, Alfonsa

    2013-11-01

    Neutrophils are major participants in innate host responses. It is well known that estrogens have an immune-modulatory role, and some evidence exists that neutrophil physiology can be altered by these molecules. Traditionally, estrogens act via classical nuclear estrogen receptors, but the identification of a G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor that binds estradiol and other estrogens, has opened up the possibility of exploring additional estrogen-mediated effects. However, information on the importance of GPER for immunity, especially, in neutrophils is scant. In this study, we report that gilthead seabream (Sparus aurata L.) acidophilic granulocytes, which are the functional equivalent of mammalian neutrophils, express GPER at both mRNA and protein levels. By using a GPER selective agonist, G1, it was found that GPER activation in vitro slightly reduced the respiratory burst of acidophilic granulocytes and drastically altered the expression profile of several genes encoding major pro- and anti-inflammatory mediators. In addition, GPER signaling in vivo modulated adaptive immunity. Finally, a cAMP analog mimicked the effects of G1 in the induction of the gene coding for PG-endoperoxide synthase 2 and in the induction of CREB phosphorylation, whereas pharmacological inhibition of protein kinase A superinduced PG-endoperoxide synthase 2. Taken together, our results demonstrate for the first time, to our knowledge, that estrogens are able to modulate vertebrate granulocyte functions through a GPER/cAMP/protein kinase A/CREB signaling pathway and could establish therapeutic targets for several immune disorders in which estrogens play a prominent role.

  11. Enhanced phagocytic activity of HIV-specific antibodies correlates with natural production of immunoglobulins with skewed affinity for FcγR2a and FcγR2b.

    PubMed

    Ackerman, Margaret E; Dugast, Anne-Sophie; McAndrew, Elizabeth G; Tsoukas, Stephen; Licht, Anna F; Irvine, Darrell J; Alter, Galit

    2013-05-01

    While development of an HIV vaccine that can induce neutralizing antibodies remains a priority, decades of research have proven that this is a daunting task. However, accumulating evidence suggests that antibodies with the capacity to harness innate immunity may provide some protection. While significant research has focused on the cytolytic properties of antibodies in acquisition and control, less is known about the role of additional effector functions. In this study, we investigated antibody-dependent phagocytosis of HIV immune complexes, and we observed significant differences in the ability of antibodies from infected subjects to mediate this critical effector function. We observed both quantitative differences in the capacity of antibodies to drive phagocytosis and qualitative differences in their FcγR usage profile. We demonstrate that antibodies from controllers and untreated progressors exhibit increased phagocytic activity, altered Fc domain glycosylation, and skewed interactions with FcγR2a and FcγR2b in both bulk plasma and HIV-specific IgG. While increased phagocytic activity may directly influence immune activation via clearance of inflammatory immune complexes, it is also plausible that Fc receptor usage patterns may regulate the immune response by modulating downstream signals following phagocytosis--driving passive degradation of internalized virus, release of immune modulating cytokines and chemokines, or priming of a more effective adaptive immune response.

  12. Natural and Sun-Induced Aging of Human Skin

    PubMed Central

    Rittié, Laure; Fisher, Gary J.

    2015-01-01

    With worldwide expansion of the aging population, research on age-related pathologies is receiving growing interest. In this review, we discuss current knowledge regarding the decline of skin structure and function induced by the passage of time (chronological aging) and chronic exposure to solar UV irradiation (photoaging). Nearly every aspect of skin biology is affected by aging. The self-renewing capability of the epidermis, which provides vital barrier function, is diminished with age. Vital thermoregulation function of eccrine sweat glands is also altered with age. The dermal collagenous extracellular matrix, which comprises the bulk of skin and confers strength and resiliency, undergoes gradual fragmentation, which deleteriously impacts skin mechanical properties and dermal cell functions. Aging also affects wound repair, pigmentation, innervation, immunity, vasculature, and subcutaneous fat homeostasis. Altogether, age-related alterations of skin lead to age-related skin fragility and diseases. PMID:25561721

  13. Steroid hormone regulation of antiviral immunity.

    PubMed

    Padgett, D A; Loria, R M; Sheridan, J F

    2000-01-01

    Recent observations in both humans and animals have demonstrated that stress is immunomodulatory and can alter the pathogenesis of microbial infections to the extent that it may be adverse to health. Stress disrupts homeostasis, and the body responds through endocrine and nervous system interactions in an effort to re-establish the health of the host. However, the resulting physiologic changes associated with stress, such as the rise in serum glucocorticoids (GCs), are implicated in suppression of antiviral immunity. Therefore, it would be of significance to counterregulate stress-mediated immunosuppression during viral infection to improve immune responses and limit virus-mediated damage. The data in this study focus upon the antiglucocorticoid influence of a native steroid hormone that has been shown to augment immune function and protect animals against lethal viral infections. Androstenediol (5-androstene-3 beta,17 beta-diol, AED), a metabolite of dehydroepiandrosterone (DHEA), confers protection against lethal infection with influenza A virus. The protective activity appears to counterbalance the function of the regulatory GCs because AED prevents GC-mediated suppression of IL-1, TNF-alpha, and IL-2 secretion. Furthermore, AED inhibits GC-induced transcription of a GC-sensitive reporter gene.

  14. Developmental immunotoxicity (DIT): assays for evaluating effects of exogenous agents on development of the immune system.

    PubMed

    DeWitt, Jamie C; Peden-Adams, Margie M; Keil, Deborah E; Dietert, Rodney R

    2012-02-01

    Developmental immunotoxicity (DIT) occurs when exposure to environmental risk factors prior to adulthood, including chemical, biological, physical, or physiological factors, alters immune system development. DIT may elicit suppression, hyperactivation, or misregulation of immune responses and may present clinically as decreased resistance to pathogens, allergic and autoimmune diseases, and inflammatory diseases. Immunotoxicity testing guidelines established by the Environmental Protection Agency for adult animals (OPPTS 8703.7800) require functional tests and immunophenotyping that are suitable for detecting immunomodulation, especially immunosuppression. However, evaluating immune function in offspring that are not fully immunocompetent yields results that are challenging to interpret. Therefore, this unit will describe an optimum exposure scenario, reference two assays (immunophenotyping and histopathology) appropriate for detecting immunomodulation in weaning-age offspring, and reference four assays (immunophenotyping, histopathology, T cell-dependent antibody responses, and delayed-type hypersensitivity) appropriate for detecting immunomodulation in immunocompetent offspring. The protocol also will reference other assays (natural killer cell and cytotoxic T lymphocyte) with potential utility for assessing DIT. © 2012 by John Wiley & Sons, Inc.

  15. Immune modulation following immunization with polyvalent vaccines in dogs.

    PubMed

    Strasser, Alois; May, Bettina; Teltscher, Andrea; Wistrela, Eva; Niedermüller, Hans

    2003-08-15

    A decline in T-cell-mediated immunity and transient state of immunosuppression after immunization has been reported in dogs. Nevertheless, dogs are still routinely vaccinated with polyvalent live vaccines and severe disease does not generally occur. In order to investigate these effects on the canine immune system and to elucidate possible mechanisms we determined the following immune parameters in the blood of 33 clinically sound German shepherd dogs before and after standard vaccination with a polyvalent vaccine against distemper, parvovirus, viral hepatitis, leptospirosis, kennel cough and rabies: white and differential blood cell count, the serum concentrations and/or activities of IL-1, IL-2, IFN-gamma, TNF-alpha, neopterin and IgG, natural killer (NK) cell activity, bactericidal activity and complement hemolytic activity, lymphocyte proliferation test (LPT) and nitroblue tetrazolium test (NBT). Our major findings were that significant postvaccinal decreases in T-cell mitogenic response to PHA and in neutrophil function and neopterin serum concentration were accompanied by simultaneous increase in plasma IgG and hemolytic complement activity. This suggests a transient shift in the balance between cell-mediated and humoral (T(H)1/T(H)2) immunity rather than immunosuppression. These results do not imply that dogs should not receive live vaccines, as the response to vaccines just seems to create a state of altered homeostasis when immunization elicits protection by humoral and cell-mediated immunity. However, these recognized compromises of immune function should be considered and vaccines still be applied only in healthy animals and strictly according to the rules and regulations given by the manufacturer.

  16. Functional defect in regulatory T cells in myasthenia gravis

    PubMed Central

    Thiruppathi, Muthusamy; Rowin, Julie; Jiang, Qin Li; Sheng, Jian Rong; Prabhakar, Bellur S.; Meriggioli, Matthew N.

    2012-01-01

    Forkhead box P3 (FOXP3)+ is a transcription factor necessary for the function of regulatory T cells (Treg cells). Treg cells maintain immune homeostasis and self-tolerance, and play an important role in the prevention of autoimmune disease. Here, we discuss the role of Treg cells in the pathogenesis of myasthenia gravis (MG) and review evidence indicating that a significant defect in Treg cell in vitro suppressive function exists in MG patients, without an alteration in circulating frequency. This functional defect is associated with a reduced expression of key functional molecules such as FOXP3 on isolated Treg cells and appears to be more pronounced in immunosuppression-naive MG patients. In vitro administration of granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced the suppressive function of Treg cells and up-regulated FOXP3 expression. These findings indicate a clinically relevant Treg cell–intrinsic defect in immune regulation in MG that may reveal a novel therapeutic target. PMID:23252899

  17. Validation of Procedures for Monitoring Crewmember Immune Function

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2009-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation, however the nature of the phenomenon as it equilibrates over longer flights has not been determined. This dysregulation may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk (if any) for exploration-class space flight is unknown, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. The objective of this Supplemental Medical Objective (SMO) is to determine the status of the immune system, physiological stress and latent viral reactivation (a clinical outcome that can be measured) during both short and long-duration spaceflight. In addition, this study will develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. Pre-mission, in-flight and post-flight blood and saliva samples will be obtained from participating crewmembers. Assays included peripheral immunophenotype, T cell function, cytokine profiles (RNA, intracellular, secreted), viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. This study is currently ongoing. To date, 10 short duration and 5 long-duration crewmembers have completed the study. Technically, the study is progressing well. In-flight blood samples are being collected, and returned for analysis, including functional assays that require live cells. For all in-flight samples to date, sample viability has been acceptable. Preliminary data (n = 4/7; long/short duration, respectively) indicate that distribution of most peripheral leukocyte subsets is largely unaltered during flight. Exceptions include elevated T cells, reduced B/NK cells, increased memory T cells and increased central memory CD8+ T cells. General T cell function, early blastogenesis response to mitogenic stimulation, is markedly reduced in-flight. In-vivo cytokine production profiles are altered, with in-flight dysregulation observed in the Th1/Th2/Treg equilibrium. EBV specific T cell levels are increased during flight, whereas their function is reduced. VZV reactivation was observed inflight and several days post flight with highest levels measured later during long-duration flight. The shedding of CMV in the urine was detected of 4/5 long duration and 4/7 short duration crewmembers. Plasma cortisol was not elevated during flight. Further data will be required to validate the initial observations.

  18. Tumor-derived exosomes modulate T cell function through transfer of RNA.

    PubMed

    House, Imran G; Petley, Emma V; Beavis, Paul A

    2018-03-01

    Tumor cells can develop a variety of mechanisms to evade and subvert the immune system for their survival. Bland et al., in this edition of The FEBS Journal, make the novel finding that the tumor line B16F0 can deliver mRNA/miRNA loaded exosomes to cytotoxic T lymphocytes and alter their metabolic function and interferon gamma production. © 2018 Federation of European Biochemical Societies.

  19. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases.

    PubMed

    Akdis, Mübeccel; Aab, Alar; Altunbulakli, Can; Azkur, Kursat; Costa, Rita A; Crameri, Reto; Duan, Su; Eiwegger, Thomas; Eljaszewicz, Andrzej; Ferstl, Ruth; Frei, Remo; Garbani, Mattia; Globinska, Anna; Hess, Lena; Huitema, Carly; Kubo, Terufumi; Komlosi, Zsolt; Konieczna, Patricia; Kovacs, Nora; Kucuksezer, Umut C; Meyer, Norbert; Morita, Hideaki; Olzhausen, Judith; O'Mahony, Liam; Pezer, Marija; Prati, Moira; Rebane, Ana; Rhyner, Claudio; Rinaldi, Arturo; Sokolowska, Milena; Stanic, Barbara; Sugita, Kazunari; Treis, Angela; van de Veen, Willem; Wanke, Kerstin; Wawrzyniak, Marcin; Wawrzyniak, Paulina; Wirz, Oliver F; Zakzuk, Josefina Sierra; Akdis, Cezmi A

    2016-10-01

    There have been extensive developments on cellular and molecular mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections during the last few years. Better understanding the functions, reciprocal regulation, and counterbalance of subsets of immune and inflammatory cells that interact through interleukins, interferons, TNF-α, and TGF-β offer opportunities for immune interventions and novel treatment modalities in the era of development of biological immune response modifiers particularly targeting these molecules or their receptors. More than 60 cytokines have been designated as interleukins since the initial discoveries of monocyte and lymphocyte interleukins (called IL-1 and IL-2, respectively). Studies of transgenic or gene-deficient mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided essential information about their functions. Here we review recent developments on IL-1 to IL-38, TNF-α, TGF-β, and interferons. We highlight recent advances during the last few years in this area and extensively discuss their cellular sources, targets, receptors, signaling pathways, and roles in immune regulation in patients with allergy and asthma and other inflammatory diseases. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. Differential Immunotoxicity Induced by Two Different Windows of Developmental Trichloroethylene Exposure

    PubMed Central

    Gilbert, Kathleen M.; Woodruff, William; Blossom, Sarah J.

    2014-01-01

    Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE) from gestational day (GD) 0 to postnatal day (PND) 49 alters several aspects of CD4+ T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0)) and early-life only (PND0-PND49). The mice were examined for specific alterations in CD4+ T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4+ T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4+ T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences. PMID:24696780

  1. Reactive oxygen species alteration of immune cells in local residents at an electronic waste recycling site in northern China.

    PubMed

    Li, Ran; Yang, Qiaoyun; Qiu, Xinghua; Li, Keqiu; Li, Guang; Zhu, Ping; Zhu, Tong

    2013-04-02

    The health effects of exposure to pollutants from electronic waste (e-waste) pose an important issue. In this study, we explored the association between oxidative stress and blood levels of e-waste-related pollutants. Blood samples were collected from individuals living in the proximity of an e-waste recycling site located in northern China, and pollutants, as well as reactive oxygen species (ROS), were measured in comparison to a reference population. The geometric mean concentrations of PCBs, dechlorane plus, and 2,2',4,4',5,5'-hexabromobiphenyl in plasma from the exposure group were 60.4, 9.0, and 0.55 ng g(-1) lipid, respectively, which were 2.2, 3.2, and 2.2 times higher than the corresponding measurement in the reference group. Correspondingly, ROS levels in white blood cells, including in neutrophil granulocytes, from the exposure group were significantly higher than in those from the reference group, suggesting potential ROS related health effects for residents at the e-waste site. In contrast, fewer ROS were generated in the respiratory burst of neutrophil granulocytes for the exposure group, indicating a depressed innate immune function for the individuals living at the e-waste site. These findings suggest a potential linkage between exposure to pollutants from e-waste recycling and both elevated oxidative stress and altered immune function.

  2. A longitudinal analysis of circulating stress-related proteins and chronic ethanol self-administration in cynomolgus macaques

    PubMed Central

    Helms, Christa M.; Messaoudi, Ilhem; Jeng, Sophia; Freeman, Willard M.; Vrana, Kent E.; Grant, Kathleen A.

    2011-01-01

    Background Alcoholics have alterations in endocrine and immune function and increased susceptibility to stress-related disorders. A longitudinal analysis of chronic ethanol intake on homeostatic mechanisms is, however, incompletely characterized in primates. Methods Plasma proteins (n = 60; Luminex) and hormones (adrenocorticotropic hormone, ACTH; cortisol) were repeatedly measured in adult male cynomolgus monkeys (Macaca fascicularis, n = 10) during a 32-month experimental protocol at baseline, during induction of water and ethanol (4% w/v in water) self-administration, after 4 months and after 12 months of 22-h daily concurrent access to ethanol and water. Results Significant changes were observed in ACTH, cortisol and 45/60 plasma proteins: a majority (28/45) were suppressed as a function of ethanol self-administration, eight proteins were elevated and nine showed biphasic changes. Cortisol and ACTH were greatest during induction, and correlations between these hormones and plasma proteins varied across the experiment. Pathway analyses implicated nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) as possible mediators of ethanol-induced effects on immune-related proteins in primates. Conclusion Chronic ethanol consumption in primates leads to an allostatic state of physiological compromise with respect to circulating immune- and stress-related proteins in NF-κB- and STAT/JAK-related pathways in correlation with altered endocrine activity. PMID:22141444

  3. Thirty Minutes of Hypobaric Hypoxia Provokes Alterations of Immune Response, Haemostasis, and Metabolism Proteins in Human Serum

    PubMed Central

    Hinkelbein, Jochen; Jansen, Stefanie; Iovino, Ivan; Kruse, Sylvia; Meyer, Moritz; Cirillo, Fabrizio; Drinhaus, Hendrik; Hohn, Andreas; Klein, Corinna; Robertis, Edoardo De; Beutner, Dirk

    2017-01-01

    Hypobaric hypoxia (HH) during airline travel induces several (patho-) physiological reactions in the human body. Whereas severe hypoxia is investigated thoroughly, very little is known about effects of moderate or short-term hypoxia, e.g. during airline flights. The aim of the present study was to analyse changes in serum protein expression and activation of signalling cascades in human volunteers staying for 30 min in a simulated altitude equivalent to airline travel. After approval of the local ethics committee, 10 participants were exposed to moderate hypoxia (simulation of 2400 m or 8000 ft for 30 min) in a hypobaric pressure chamber. Before and after hypobaric hypoxia, serum was drawn, centrifuged, and analysed by two-dimensional gel electrophoresis (2-DIGE) and matrix-assisted laser desorption/ionization followed by time-of-flight mass spectrometry (MALDI-TOF). Biological functions of regulated proteins were identified using functional network analysis (GeneMania®, STRING®, and Perseus® software). In participants, oxygen saturation decreased from 98.1 ± 1.3% to 89.2 ± 1.8% during HH. Expression of 14 spots (i.e., 10 proteins: ALB, PGK1, APOE, GAPDH, C1QA, C1QB, CAT, CA1, F2, and CLU) was significantly altered. Bioinformatic analysis revealed an association of the altered proteins with the signalling cascades “regulation of haemostasis” (four proteins), “metabolism” (five proteins), and “leukocyte mediated immune response” (five proteins). Even though hypobaric hypoxia was short and moderate (comparable to an airliner flight), analysis of protein expression in human subjects revealed an association to immune response, protein metabolism, and haemostasis PMID:28858246

  4. Immune Dysregulation Following Short versus Long Duration Space Flight. Version 03

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Stowe, Raymond P.; Pierson, Duane L.; Sams, Clarence F.

    2007-01-01

    Immune system dysregulation has been demonstrated to occur during spaceflight and has the potential to cause serious health risks to crewmembers participating in exploration-class missions. A comprehensive immune assessment was recently performed on 13 short duration Space Shuttle crewmembers and 8 long duration International Space Station (ISS) crewmembers. Statistically significant post-flight phenotype alterations (as compared to pre-flight baseline) for the Shuttle crewmembers included: granulocytosis, increased percentage of B cells, reduced percentage of NK cells, elevated CD4/CD8 ratio, elevated levels of memory CD4+ T cells, and a CD8+ T cell shift to a less differentiated state. For the Shuttle crewmembers, T cell function was surprisingly elevated post-flight, among both the CD4+ and CD8+ subsets. This is likely an acute stress response in less-deconditioned crewmembers. The percentage of CD4+/IL-2+, CD4+/IFNg+ and CD8+/IFNg+ T cells were all decreased at landing. Culture secreted IFNg production was significantly decreased at landing, whereas production of Th2 cytokines was largely unchanged. It was found that the IFNg:IL-10 ratio was obviously declined in the Shuttle crewmembers immediately post-flight. A similar pattern of alterations were observed for the long duration ISS crewmembers. In contrast to Shuttle crewmembers, the ISS crewmembers demonstrated a dramatic reduction in T cell function immediately post-flight. This may be related to the effect of acute landing stress in conjunction with prolonged deconditioning associated with extended flight. The reduction in IFNg:IL-10 ratio (Th2 shift) was also observed post-flight in the ISS crewmembers to a much higher degree. These data indicate consistent peripheral phenotype changes and altered cytokine production profiles occur following space travel of both short and long duration.

  5. Antibiotic-induced dysbiosis alters host-bacterial interactions and leads to colonic sensory and motor changes in mice

    PubMed Central

    Aguilera, M; Cerdà-Cuéllar, M; Martínez, V

    2015-01-01

    Alterations in the composition of the commensal microbiota (dysbiosis) seem to be a pathogenic component of functional gastrointestinal disorders, mainly irritable bowel syndrome (IBS), and might participate in the secretomotor and sensory alterations observed in these patients.We determined if a state antibiotics-induced intestinal dysbiosis is able to modify colonic pain-related and motor responses and characterized the neuro-immune mechanisms implicated in mice. A 2-week antibiotics treatment induced a colonic dysbiosis (increments in Bacteroides spp, Clostridium coccoides and Lactobacillus spp and reduction in Bifidobacterium spp). Bacterial adherence was not affected. Dysbiosis was associated with increased levels of secretory-IgA, up-regulation of the antimicrobial lectin RegIIIγ, and toll-like receptors (TLR) 4 and 7 and down-regulation of the antimicrobial-peptide Resistin-Like Molecule-β and TLR5. Dysbiotic mice showed less goblet cells, without changes in the thickness of the mucus layer. Neither macroscopical nor microscopical signs of inflammation were observed. In dysbiotic mice, expression of the cannabinoid receptor 2 was up-regulated, while the cannabinoid 1 and the mu-opioid receptors were down-regulated. In antibiotic-treated mice, visceral pain-related responses elicited by intraperitoneal acetic acid or intracolonic capsaicin were significantly attenuated. Colonic contractility was enhanced during dysbiosis. Intestinal dysbiosis induce changes in the innate intestinal immune system and modulate the expression of pain-related sensory systems, an effect associated with a reduction in visceral pain-related responses. Commensal microbiota modulates gut neuro-immune sensory systems, leading to functional changes, at least as it relates to viscerosensitivity. Similar mechanisms might explain the beneficial effects of antibiotics or certain probiotics in the treatment of IBS. PMID:25531553

  6. Immunosuppression induced by talc granulomatosis in the rat.

    PubMed Central

    Radić, I; Vucak, I; Milosević, J; Marusić, A; Vukicević, S; Marusić, M

    1988-01-01

    Granulomatosis caused by four subcutaneous talc powder-suspension injections induced strong immunosuppression in rats. The disturbance included reduction of mononuclear white blood cell count in the peripheral blood, atrophy of the thymic cortex, spleen enlargement with predominance of red over the white pulp, increase in the number of lymph node germinal centres and a significant delay of the first-set and second-set allograft rejection. Neither phagocytic function of reticuloendothelial system nor erythrocyte count and humoral immune response were found to be altered. Indomethacin suppression of prostaglandin production did not normalize the allograft rejection dynamics. In contrast, splenectomy completely abolished the immunosuppressive effects of granulomatosis. In splenectomized, talc-treated animals WBC counts were not altered and the rejection of allografts was not delayed. Suppression of immune response to alloantigens was transferred to normal and splenectomized recipients by both serum and spleen cells of talc-injected animals. Also, in a cell mixture-transfer experiment, spleen cells from talc-granulomatosis-bearing donors suppressed the immune response induced by lymph node cells from immune donors in T cell-deficient rats. The inability of serum from splenectomized talc-injected rats to transfer the suppression suggested the crucial role of the spleen in the mechanisms leading to suppression in rats bearing talc-granulomatosis. PMID:3052948

  7. Impact of genetic variations in C-C chemokine receptors and ligands on infectious diseases.

    PubMed

    Qidwai, Tabish; Khan, M Y

    2016-10-01

    Chemokine receptors and ligands are crucial for extensive immune response against infectious diseases such as malaria, leishmaniasis, HIV and tuberculosis and a wide variety of other diseases. Role of chemokines are evidenced in the activation and regulation of immune cell migration which is important for immune response against diseases. Outcome of disease is determined by complex interaction among pathogen, host genetic variability and surrounding milieu. Variation in expression or function of chemokines caused by genetic polymorphisms could be associated with attenuated immune responses. Exploration of chemokine genetic polymorphisms in therapeutic response, gene regulation and disease outcome is important. Infectious agents in human host alter the expression of chemokines via epigenetic alterations and thus contribute to disease pathogenesis. Although some fragmentary data are available on chemokine genetic variations and their contribution in diseases, no unequivocal conclusion has been arrived as yet. We therefore, aim to investigate the association of CCR5-CCL5 and CCR2-CCL2 genetic polymorphisms with different infectious diseases, transcriptional regulation of gene, disease severity and response to therapy. Furthermore, the role of epigenetics in genes related to chemokines and infectious disease are also discussed. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  8. Ebola Virus Altered Innate and Adaptive Immune Response Signalling Pathways: Implications for Novel Therapeutic Approaches.

    PubMed

    Kumar, Anoop

    2016-01-01

    Ebola virus (EBOV) arise attention for their impressive lethality by the poor immune response and high inflammatory reaction in the patients. It causes a severe hemorrhagic fever with case fatality rates of up to 90%. The mechanism underlying this lethal outcome is poorly understood. In 2014, a major outbreak of Ebola virus spread amongst several African countries, including Leone, Sierra, and Guinea. Although infections only occur frequently in Central Africa, but the virus has the potential to spread globally. Presently, there is no vaccine or treatment is available to counteract Ebola virus infections due to poor understanding of its interaction with the immune system. Accumulating evidence indicates that the virus actively alters both innate and adaptive immune responses and triggers harmful inflammatory responses. In the literature, some reports have shown that alteration of immune signaling pathways could be due to the ability of EBOV to interfere with dendritic cells (DCs), which link innate and adaptive immune responses. On the other hand, some reports have demonstrated that EBOV, VP35 proteins act as interferon antagonists. So, how the Ebola virus altered the innate and adaptive immune response signaling pathways is still an open question for the researcher to be explored. Thus, in this review, I try to summarize the mechanisms of the alteration of innate and adaptive immune response signaling pathways by Ebola virus which will be helpful for designing effective drugs or vaccines against this lethal infection. Further, potential targets, current treatment and novel therapeutic approaches have also been discussed.

  9. Tlr7 deletion alters expression profiles of genes related to neural function and regulates mouse behaviors and contextual memory.

    PubMed

    Hung, Yun-Fen; Chen, Chiung-Ya; Li, Wan-Chen; Wang, Ting-Fang; Hsueh, Yi-Ping

    2018-06-07

    The neuronal innate immune system recognizes endogenous danger signals and regulates neuronal development and function. Toll-like receptor 7 (TLR7), one of the TLRs that trigger innate immune responses in neurons, controls neuronal morphology. To further assess the function of TLR7 in the brain, we applied next generation sequencing to investigate the effect of Tlr7 deletion on gene expression in hippocampal and cortical mixed cultures and on mouse behaviors. Since previous in vivo study suggested that TLR7 is more critical for neuronal morphology at earlier developmental stages, we analyzed two time-points (4 and 18 DIV) to represent young and mature neurons, respectively. At 4 DIV, Tlr7 KO neurons exhibited reduced expression of genes involved in neuronal development, synaptic organization and activity and behaviors. Some of these Tlr7-regulated genes are also associated with multiple neurological and neuropsychiatric diseases. TLR7-regulated transcriptomic profiles differed at 18 DIV. Apart from neuronal genes, genes related to glial cell development and differentiation became sensitive to Tlr7 deletion at 18 DIV. Moreover, Tlr7 KO mice exhibited altered behaviors in terms of anxiety, aggression, olfaction and contextual fear memory. Electrophysiological analysis further showed an impairment of long-term potentiation in Tlr7 KO hippocampus. Taken together, these results indicate that TLR7 regulates neural development and brain function, even in the absence of infectious or pathogenic molecules. Our findings strengthen evidence for the role of the neuronal innate immune system in fine-tuning neuronal morphology and activity and implicate it in neuropsychiatric disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Pyridostigmine bromide (PYR) alters immune function in B6C3F1 mice.

    PubMed

    Peden-Adams, M M; Dudley, A C; EuDaly, J G; Allen, C T; Gilkeson, G S; Keil, D E

    2004-02-01

    Pyridostigmine bromide (PYR) is an anticholinesterase drug indicated for the treatment of myasthenia gravis and neuromuscular blockade reversal. It acts as a reversible cholinesterase inhibitor and was used as a pretreatment for soldiers during Operation Desert Storm to protect against possible nerve gas attacks. Since that time, PYR has been implicated as a possible causative agent contributing to Gulf War Illness. PYR's mechanism of action has been well-delineated with regards to its effects on the nervous system, yet little is known regarding potential effects on immunological function. To evaluate the effects of PYR on immunological function, adult female B6C3F1 mice were gavaged daily for 14 days with PYR (0, 1, 5, 10, or 20 mg/kg/day). Immune parameters assessed were lymphoproliferation, natural killer cell activity, the SRBC-specific antibody plaque-forming cell (PFC) response, thymus and spleen weight and cellularity, and thymic and splenic CD4/CD8 lymphocyte subpopulations. Exposure to PYR did not alter splenic and thymus weight or splenic cellularity. However, 20 mg PYR/kg/day decreased thymic cellularity with decreases in both CD4+/CD8+ (20 mg/kg/day) and CD4-/CD8- (10 and 20 mg/kg/day) cell types. Functional immune assays indicated that lymphocyte proliferative responses and natural killer cell activity were normal; whereas exposure to PYR significantly decreased primary IgM antibody responses to a T-cell dependent antigen at the 1, 5, 10 and 20 mg/kg treatment levels for 14 days. This is the first study to examine the immunotoxicological effects of PYR and demonstrate that this compound selectively suppresses humoral antibody responses.

  11. Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment?

    PubMed

    Gładysz, Dominika; Krzywdzińska, Amanda; Hozyasz, Kamil K

    2018-01-06

    Autism spectrum disorders (ASD) are characterized by impairments in language and communication development, social behavior, and the occurrence of stereotypic patterns of behavior and interests. Despite substantial speculation about causes of ASD, its exact etiology remains unknown. Recent studies highlight a link between immune dysfunction and behavioral traits. Various immune anomalies, including humoral and cellular immunity along with abnormalities at the molecular level, have been reported. There is evidence of altered immune function both in cerebrospinal fluid and peripheral blood. Several studies hypothesize a role for neuroinflammation in ASD and are supported by brain tissue and cerebrospinal fluid analysis, as well as evidence of microglial activation. It has been shown that immune abnormalities occur in a substantial number of individuals with ASD. Identifying subgroups with immune system dysregulation and linking specific cellular immunophenotypes to different symptoms would be key to defining a group of patients with immune abnormalities as a major etiology underlying behavioral symptoms. These determinations would provide the opportunity to investigate causative treatments for a defined patient group that may specifically benefit from such an approach. This review summarizes recent insights into immune system dysfunction in individuals with ASD and discusses the potential implications for future therapies.

  12. The Immunologic Revolution: Photoimmunology

    PubMed Central

    Ullrich, Stephen E.; Byrne, Scott N.

    2011-01-01

    UV radiation targets the skin and is a primary cause of skin cancer (both melanoma and non-melanoma skin cancer). Exposure to UV also suppresses the immune response, and UV-induced immune suppression is a major risk factor for skin cancer induction. The efforts of Dermatologists and Cancer Biologists to understand how UV exposure suppresses the immune response and contributes to skin cancer induction led to the development of the sub-discipline we call photoimmunology. Advances in photoimmunology have generally paralleled advances in immunology. However, there are a number of examples where investigations into the mechanisms underlying UV-induced immune suppression reshaped our understanding of basic immunological concepts. Unconventional immune regulatory roles for Langerhans cells, mast cells, and NKT cells as well as the immune suppressive function of lipid mediators of inflammation and alarmins, are just some examples of how advances in immunodermatology have altered our understanding of basic immunology. In this anniversary issue celebrating 75 years of Cutaneous Science, we will provide examples of how concepts that grew out of efforts by Immunologists and Dermatologists to understand immune regulation by UV radiation impacted on immunology in general. PMID:22170491

  13. Immune resistance of man in space flights

    NASA Astrophysics Data System (ADS)

    Irina, V.; Konstantinova, M. D.

    The immune system of 72 cosmonauts was studied after their flights on board Salyut 6, 7 and Mir orbital stations. PHA lymphocyte reactivity, T helper activity and NK capacity to recognize and kill the target were decreased on 1-7 days after prolonged (3-11 months) space flights. Certain alterations were found in the ultrastructure of the NK secretory and locomotor apparatuses. Decrement of IL 2 production was shown using the biological test. However immunoenzymatic analysis did not reveal a decrease in IL 2 synthesis. Production of α-interferon remained unchanged while that of γ-interferon either rose or was diminished. Several cosmonanauts displayed a trend towards increased OAF production. The observed decrease in immune system functioning may increase the risk of various diseases during prolonged space flights.

  14. Hepatitis B virus surface antigen impairs myeloid dendritic cell function: a possible immune escape mechanism of hepatitis B virus

    PubMed Central

    Op den Brouw, Marjoleine L; Binda, Rekha S; van Roosmalen, Mark H; Protzer, Ulrike; Janssen, Harry L A; van der Molen, Renate G; Woltman, Andrea M

    2009-01-01

    Chronic hepatitis B virus (HBV) infection is the result of an inadequate immune response towards the virus. Myeloid dendritic cells (mDC) of patients with chronic HBV are impaired in their maturation and function, resulting in more tolerogenic rather than immunogenic responses, which may contribute to viral persistence. The mechanism responsible for altered mDC function remains unclear. The HBV-infected patients display large amounts of HBV particles and viral proteins in their circulation, especially the surface antigen HBsAg, which allows multiple interactions between the virus, its viral proteins and DC. To assess whether HBV directly influences mDC function, the effects of HBV and HBsAg on human mDC maturation and function were investigated in vitro. As already described for internalization of HBV by DC, the present study shows that peripheral blood-derived mDC of healthy controls also actively take up HBsAg in a time-dependent manner. Cytokine-induced maturation in the presence of HBV or HBsAg resulted in a significantly more tolerogenic mDC phenotype as demonstrated by a diminished up-regulation of costimulatory molecules and a decreased T-cell stimulatory capacity, as assessed by T-cell proliferation and interferon-γ production. In addition, the presence of HBV significantly reduced interleukin-12 production by mDC. These results show that both HBV particles and purified HBsAg have an immune modulatory capacity and may directly contribute to the dysfunction of mDC in patients with chronic HBV. The direct immune regulatory effect of HBV and circulating HBsAg particles on the function of DC can be considered as part of the mechanism by which HBV escapes immunity. PMID:18624732

  15. Physiological basis of climate change impacts on North American inland fishes

    USGS Publications Warehouse

    Whitney, James E.; Al-Chokhachy, Robert K.; Bunnell, David B.; Caldwell, Colleen A.; Cooke, Steven J.; Eliason, Erika J.; Rogers, Mark W.; Lynch, Abigail J.; Paukert, Craig P.

    2016-01-01

    Global climate change is altering freshwater ecosystems and affecting fish populations and communities. Underpinning changes in fish distribution and assemblage-level responses to climate change are individual-level physiological constraints. In this review, we synthesize the mechanistic effects of climate change on neuroendocrine, cardiorespiratory, immune, osmoregulatory, and reproductive systems of freshwater and diadromous fishes. Observed climate change effects on physiological systems are varied and numerous, including exceedance of critical thermal tolerances, decreased cardiorespiratory performance, compromised immune function, and altered patterns of individual reproductive investment. However, effects vary widely among and within species because of species, population, and even sex-specific differences in sensitivity and resilience and because of habitat-specific variation in the magnitude of climate-related environmental change. Research on the interactive effects of climate change with other environmental stressors across a broader range of fish diversity is needed to further our understanding of climate change effects on fish physiology.

  16. Effects of stress on immune function: the good, the bad, and the beautiful.

    PubMed

    Dhabhar, Firdaus S

    2014-05-01

    Although the concept of stress has earned a bad reputation, it is important to recognize that the adaptive purpose of a physiological stress response is to promote survival during fight or flight. While long-term stress is generally harmful, short-term stress can be protective as it prepares the organism to deal with challenges. This review discusses the immune effects of biological stress responses that can be induced by psychological, physiological, or physical (including exercise) stressors. We have proposed that short-term stress is one of the nature's fundamental but under-appreciated survival mechanisms that could be clinically harnessed to enhance immunoprotection. Short-term (i.e., lasting for minutes to hours) stress experienced during immune activation enhances innate/primary and adaptive/secondary immune responses. Mechanisms of immuno-enhancement include changes in dendritic cell, neutrophil, macrophage, and lymphocyte trafficking, maturation, and function as well as local and systemic production of cytokines. In contrast, long-term stress suppresses or dysregulates innate and adaptive immune responses by altering the Type 1-Type 2 cytokine balance, inducing low-grade chronic inflammation, and suppressing numbers, trafficking, and function of immunoprotective cells. Chronic stress may also increase susceptibility to some types of cancer by suppressing Type 1 cytokines and protective T cells and increasing regulatory/suppressor T cell function. Here, we classify immune responses as being protective, pathological, or regulatory, and discuss "good" versus "bad" effects of stress on health. Thus, short-term stress can enhance the acquisition and/or expression of immunoprotective (wound healing, vaccination, anti-infectious agent, anti-tumor) or immuno-pathological (pro-inflammatory, autoimmune) responses. In contrast, chronic stress can suppress protective immune responses and/or exacerbate pathological immune responses. Studies such as the ones discussed here could provide mechanistic targets and conceptual frameworks for pharmacological and/or biobehavioral interventions designed to enhance the effects of "good" stress, minimize the effects of "bad" stress, and maximally promote health and healing.

  17. Losing the sugar coating: potential impact of perineuronal net abnormalities on interneurons in schizophrenia.

    PubMed

    Berretta, Sabina; Pantazopoulos, Harry; Markota, Matej; Brown, Christopher; Batzianouli, Eleni T

    2015-09-01

    Perineuronal nets (PNNs) were shown to be markedly altered in subjects with schizophrenia. In particular, decreases of PNNs have been detected in the amygdala, entorhinal cortex and prefrontal cortex. The formation of these specialized extracellular matrix (ECM) aggregates during postnatal development, their functions, and association with distinct populations of GABAergic interneurons, bear great relevance to the pathophysiology of schizophrenia. PNNs gradually mature in an experience-dependent manner during late stages of postnatal development, overlapping with the prodromal period/age of onset of schizophrenia. Throughout adulthood, PNNs regulate neuronal properties, including synaptic remodeling, cell membrane compartmentalization and subsequent regulation of glutamate receptors and calcium channels, and susceptibility to oxidative stress. With the present paper, we discuss evidence for PNN abnormalities in schizophrenia, the potential functional impact of such abnormalities on inhibitory circuits and, in turn, cognitive and emotion processing. We integrate these considerations with results from recent genetic studies showing genetic susceptibility for schizophrenia associated with genes encoding for PNN components, matrix-regulating molecules and immune system factors. Notably, the composition of PNNs is regulated dynamically in response to factors such as fear, reward, stress, and immune response. This regulation occurs through families of matrix metalloproteinases that cleave ECM components, altering their functions and affecting plasticity. Several metalloproteinases have been proposed as vulnerability factors for schizophrenia. We speculate that the physiological process of PNN remodeling may be disrupted in schizophrenia as a result of interactions between matrix remodeling processes and immune system dysregulation. In turn, these mechanisms may contribute to the dysfunction of GABAergic neurons. Copyright © 2015. Published by Elsevier B.V.

  18. Reversible Reprogramming of Circulating Memory T Follicular Helper Cell Function during Chronic HIV Infection

    PubMed Central

    Cubas, Rafael; van Grevenynghe, Julien; Wills, Saintedym; Kardava, Lela; Santich, Brian H.; Buckner, Clarisa M.; Muir, Roshell; Tardif, Virginie; Nichols, Carmen; Procopio, Francesco; He, Zhong; Metcalf, Talibah; Ghneim, Khader; Locci, Michela; Ancuta, Petronella; Routy, Jean-Pierre; Trautmann, Lydie; Li, Yuxing; McDermott, Adrian B.; Koup, Rick A.; Petrovas, Constantinos; Migueles, Steven A.; Connors, Mark; Tomaras, Georgia D.; Moir, Susan; Crotty, Shane

    2015-01-01

    Despite the overwhelming benefits of antiretroviral therapy (ART) in curtailing viral load in HIV-infected individuals, ART does not fully restore cellular and humoral immunity. HIV-infected individuals under ART show reduced responses to vaccination and infections and are unable to mount an effective antiviral immune response upon ART cessation. Many factors contribute to these defects, including persistent inflammation, especially in lymphoid tissues, where T follicular helper (Tfh) cells instruct and help B cells launch an effective humoral immune response. In this study we investigated the phenotype and function of circulating memory Tfh cells as a surrogate of Tfh cells in lymph nodes and found significant impairment of this cell population in chronically HIV-infected individuals, leading to reduced B cell responses. We further show that these aberrant memory Tfh cells exhibit an IL-2–responsive gene signature and are more polarized toward a Th1 phenotype. Treatment of functional memory Tfh cells with IL-2 was able to recapitulate the detrimental reprogramming. Importantly, this defect was reversible, as interfering with the IL-2 signaling pathway helped reverse the abnormal differentiation and improved Ab responses. Thus, reversible reprogramming of memory Tfh cells in HIV-infected individuals could be used to enhance Ab responses. Altered microenvironmental conditions in lymphoid tissues leading to altered Tfh cell differentiation could provide one explanation for the poor responsiveness of HIV-infected individuals to new Ags. This explanation has important implications for the development of therapeutic interventions to enhance HIV- and vaccine-mediated Ab responses in patients under ART. PMID:26546609

  19. Failure of attenuated canine distemper virus (Rockborn strain) to suppress lymphocyte blastogenesis in dogs.

    PubMed

    Schultz, R D

    1976-01-01

    The attenuated Rockborn strain of canine distemper virus is commonly used in commercial vaccines. Since immunosuppression is a common feature of virulent (Snyder Hill) distemper virus infection of the dog, an evaluation of the cellular immune functions of dogs given inoculums of the less virulent Rockborn strain was done using lymphocyte blastogenesis responses to various mitogens. Unlike the viruslent Snyder Hill strain, the attenuated distemper virus did not alter lymphocyte blastogenesis responses to phytohemaglutinin (PHA) and pokeweed mitogen (PWM) which are considered in vitro correlates of T and B cell immunity.

  20. Human genetic variation and the gut microbiome in disease.

    PubMed

    Hall, Andrew Brantley; Tolonen, Andrew C; Xavier, Ramnik J

    2017-11-01

    Taxonomic and functional changes to the composition of the gut microbiome have been implicated in multiple human diseases. Recent microbiome genome-wide association studies reveal that variants in many human genes involved in immunity and gut architecture are associated with an altered composition of the gut microbiome. Although many factors can affect the microbial organisms residing in the gut, a number of recent findings support the hypothesis that certain host genetic variants predispose an individual towards microbiome dysbiosis. This condition, in which the normal microbiome population structure is disturbed, is a key feature in disorders of metabolism and immunity.

  1. Probiotic bacteria cell walls stimulate the activity of the intestinal epithelial cells and macrophage functionality.

    PubMed

    Lemme-Dumit, J M; Polti, M A; Perdigón, G; Galdeano, C Maldonado

    2018-01-29

    The effect of oral administration of probiotic bacteria cell walls (PBCWs) in the stimulation of the immune system in healthy BALB/c mice was evaluated. We focused our investigation mainly on intestinal epithelial cells (IECs) which are essential for coordinating an adequate mucosal immune response and on the functionality of macrophages. The probiotic bacteria and their cell walls were able to stimulate the IECs exhibiting an important activation and cytokine releases. Supplementation with PBCWs promoted macrophage activation from peritoneum and spleen, indicating that the PBCWs oral administration was able to improve the functionality of the macrophages. In addition, the PBCWs increased immunoglobulin A (IgA)-producing cells in the gut lamina propria in a similar way to probiotic bacteria, but this supplementation did not have an effect on the population of goblet cells in the small intestine epithelium. These results indicate that the probiotic bacteria and their cell walls have an important immunoregulatory effect on the IECs without altering the homeostatic environment but with an increase in IgA+ producing cells and in the innate immune cells, mainly those distant from the gut such as spleen and peritoneum. These findings about the capacity of the cell walls from probiotic bacteria to stimulate key cells, such as IECs and macrophages, and to improve the functioning of the immune system, suggest that those structures could be applied as a new oral adjuvant.

  2. Comprehensive proteome analysis of lysosomes reveals the diverse function of macrophages in immune responses

    PubMed Central

    Zhan, Shaohua; Zhang, Wenhao; Xiong, Feng; Ge, Wei

    2017-01-01

    Phagocytosis and autophagy in macrophages have been shown to be essential to both innate and adaptive immunity. Lysosomes are the main catabolic subcellular organelles responsible for degradation and recycling of both extracellular and intracellular material, which are the final steps in phagocytosis and autophagy. However, the molecular mechanisms underlying lysosomal functions after infection remain obscure. In this study, we conducted a quantitative proteomics analysis of the changes in constitution and glycosylation of proteins in lysosomes derived from murine RAW 264.7 macrophage cells treated with different types of pathogens comprising examples of bacteria (Listeria monocytogenes, L. m), DNA viruses (herpes simplex virus type-1, HSV-1) and RNA viruses (vesicular stomatitis virus, VSV). In total, 3,704 lysosome-related proteins and 300 potential glycosylation sites on 193 proteins were identified. Comparative analysis showed that the aforementioned pathogens induced distinct alterations in the proteome of the lysosome, which is closely associated with the immune functions of macrophages, such as toll-like receptor activation, inflammation and antigen-presentation. The most significant changes in proteins and fluctuations in glycosylation were also determined. Furthermore, Western blot analysis showed that the changes in expression of these proteins were undetectable at the whole cell level. Thus, our study provides unique insights into the function of lysosomes in macrophage activation and immune responses. PMID:28088779

  3. Characteristics of human dendritic cells generated in a microgravity analog culture system

    NASA Technical Reports Server (NTRS)

    Savary, C. A.; Grazziuti, M. L.; Przepiorka, D.; Tomasovic, S. P.; McIntyre, B. W.; Woodside, D. G.; Pellis, N. R.; Pierson, D. L.; Rex, J. H.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Generation of an effective immune response requires that antigens be processed and presented to T lymphocytes by antigen-presenting cells, the most efficient of which are dendritic cells (DC). Because of their influence on both the innate and the acquired arms of immunity, a defect in DC would be expected to result in a broad impairment of immune function, not unlike that observed in astronauts during or after space flight. In the study reported here, we investigated whether DC generation and function are altered in a culture environment that models microgravity, i.e., the rotary-cell culture system (RCCS). We observed that RCCS supported the generation of DC identified by morphology, phenotype (HLA-DR+ and lacking lineage-associated markers), and function (high allostimulatory activity). However, the yield of DC from RCCS was significantly lower than that from static cultures. RCCS-generated DC were less able to phagocytose Aspergillus fumigatus conidia and expressed a lower density of surface HLA-DR. The proportion of DC expressing CD80 was also significantly reduced in RCCS compared to static cultures. When exposed to fungal antigens, RCCS-generated DC produced lower levels of interleukin-12 and failed to upregulate some costimulatory/adhesion molecules involved in antigen presentation. These data suggest that DC generation, and some functions needed to mount an effective immune response to pathogens, may be disturbed in the microgravity environment of space.

  4. Interacting Symbionts and Immunity in the Amphibian Skin Mucosome Predict Disease Risk and Probiotic Effectiveness

    PubMed Central

    Woodhams, Douglas C.; Brandt, Hannelore; Baumgartner, Simone; Kielgast, Jos; Küpfer, Eliane; Tobler, Ursina; Davis, Leyla R.; Schmidt, Benedikt R.; Bel, Christian; Hodel, Sandro; Knight, Rob; McKenzie, Valerie

    2014-01-01

    Pathogenesis is strongly dependent on microbial context, but development of probiotic therapies has neglected the impact of ecological interactions. Dynamics among microbial communities, host immune responses, and environmental conditions may alter the effect of probiotics in human and veterinary medicine, agriculture and aquaculture, and the proposed treatment of emerging wildlife and zoonotic diseases such as those occurring on amphibians or vectored by mosquitoes. Here we use a holistic measure of amphibian mucosal defenses to test the effects of probiotic treatments and to assess disease risk under different ecological contexts. We developed a non-invasive assay for antifungal function of the skin mucosal ecosystem (mucosome function) integrating host immune factors and the microbial community as an alternative to pathogen exposure experiments. From approximately 8500 amphibians sampled across Europe, we compared field infection prevalence with mucosome function against the emerging fungal pathogen Batrachochytrium dendrobatidis. Four species were tested with laboratory exposure experiments, and a highly susceptible species, Alytes obstetricans, was treated with a variety of temperature and microbial conditions to test the effects of probiotic therapies and environmental conditions on mucosome function. We found that antifungal function of the amphibian skin mucosome predicts the prevalence of infection with the fungal pathogen in natural populations, and is linked to survival in laboratory exposure experiments. When altered by probiotic therapy, the mucosome increased antifungal capacity, while previous exposure to the pathogen was suppressive. In culture, antifungal properties of probiotics depended strongly on immunological and environmental context including temperature, competition, and pathogen presence. Functional changes in microbiota with shifts in temperature provide an alternative mechanistic explanation for patterns of disease susceptibility related to climate beyond direct impact on host or pathogen. This nonlethal management tool can be used to optimize and quickly assess the relative benefits of probiotic therapies under different climatic, microbial, or host conditions. PMID:24789229

  5. Plasmacytoid DC from Aged Mice Down-Regulate CD8 T Cell Responses by Inhibiting cDC Maturation after Encephalitozoon cuniculi Infection

    PubMed Central

    Gigley, Jason P.; Khan, Imtiaz A.

    2011-01-01

    Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations. PMID:21695169

  6. Parallels in Immunometabolic Adipose Tissue Dysfunction with Ageing and Obesity

    PubMed Central

    Trim, William; Turner, James E.; Thompson, Dylan

    2018-01-01

    Ageing, like obesity, is often associated with alterations in metabolic and inflammatory processes resulting in morbidity from diseases characterised by poor metabolic control, insulin insensitivity, and inflammation. Ageing populations also exhibit a decline in immune competence referred to as immunosenescence, which contributes to, or might be driven by chronic, low-grade inflammation termed “inflammageing”. In recent years, animal and human studies have started to uncover a role for immune cells within the stromal fraction of adipose tissue in driving the health complications that come with obesity, but relatively little work has been conducted in the context of immunometabolic adipose function in ageing. It is now clear that aberrant immune function within adipose tissue in obesity—including an accumulation of pro-inflammatory immune cell populations—plays a major role in the development of systemic chronic, low-grade inflammation, and limiting the function of adipocytes leading to an impaired fat handling capacity. As a consequence, these changes increase the chance of multiorgan dysfunction and disease onset. Considering the important role of the immune system in obesity-associated metabolic and inflammatory diseases, it is critically important to further understand the interplay between immunological processes and adipose tissue function, establishing whether this interaction contributes to age-associated immunometabolic dysfunction and inflammation. Therefore, the aim of this article is to summarise how the interaction between adipose tissue and the immune system changes with ageing, likely contributing to the age-associated increase in inflammatory activity and loss of metabolic control. To understand the potential mechanisms involved, parallels will be drawn to the current knowledge derived from investigations in obesity. We also highlight gaps in research and propose potential future directions based on the current evidence. PMID:29479350

  7. Plasmacytoid DC from aged mice down-regulate CD8 T cell responses by inhibiting cDC maturation after Encephalitozoon cuniculi infection.

    PubMed

    Gigley, Jason P; Khan, Imtiaz A

    2011-01-01

    Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations.

  8. Photoperiodic adjustments in immune function protect Siberian hamsters from lethal endotoxemia.

    PubMed

    Prendergast, Brian J; Hotchkiss, Andrew K; Bilbo, Staci D; Kinsey, Steven G; Nelson, Randy J

    2003-02-01

    Seasonal changes in day length enhance or suppress components of immune function in individuals of several mammalian species. Siberian hamsters (Phodopus sungorus) exhibit multiple changes in neuroendocrine, reproductive, and immune function after exposure to short days. The manner in which these changes are integrated into the host response to pathogens is not well understood. The present experiments tested the hypothesis that short-day changes in immune function alter the pathogenesis of septic shock and survival after challenge with endotoxin. Male and female Siberian hamsters raised in long-day photoperiods were transferred as adults to short days or remained in their natal photoperiod. Six to 8 weeks later, hamsters were injected i.p. with 0, 1, 2.5, 10, 25, or 50 mg/kg bacterial lipopolysaccharide (LPS) (the biologically active constituent of endotoxin), and survival was monitored for 96 h. Short days significantly improved survival of male hamsters treated with 10 or 25 mg/kg LPS and improved survival in females treated with 50 mg/kg LPS. Transfer from long to short days shifted the LD50 in males by approximately 90%, from 5.3 to 9.9 mg/kg, and in females from 11.1 to 15.0 mg/kg (+35%). Long-day females were more resistant than were males to lethal endotoxemia. In vitro production of the proinflammatory cytokine TNFalpha in response to LPS stimulation was significantly lower in macrophages extracted from short-day relative to long-day hamsters, as were circulating concentrations of TNFalpha in vivo after i.p. administration of LPS, suggesting that diminished cytokine responses to LPS in short days may mitigate the lethality of endotoxemia. Adaptation to short days induces changes in immune parameters that affect survival in the face of immune challenges.

  9. Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice

    PubMed Central

    Blednov, Y.A.; Benavidez, J.M.; Geil, C.; Perra, S.; Morikawa, H.; Harris, R.A.

    2011-01-01

    Previous studies showed that mice with genetic predisposition for high alcohol consumption as well as human alcoholics show changes in brain expression of genes related to immune signaling. In addition, mutant mice lacking genes related to immune function show decreased alcohol consumption (Blednov et al., in press), suggesting that immune signaling promotes alcohol consumption. To test the possibility that activation of immune signaling will increase alcohol consumption, we treated mice with lipopolysaccaride (LPS; 1 mg/kg, i.p.) and tested alcohol consumption in the continuous two-bottle choice test. To take advantage of the long-lasting activation of brain immune signaling by LPS, we measured drinking beginning one week or one month after LPS treatment and continued the studies for several months. LPS produced persistent increases in alcohol consumption in C57/Bl6 J (B6) inbred mice, FVBxB6F1 and B6xNZBF1 hybrid mice, but not in FVB inbred mice. To determine if this effect of LPS is mediated through binding to TLR4, we tested mice lacking CD14, a key component of TLR4 signaling. These null mutants showed no increase of alcohol intake after treatment with LPS. LPS treatment decreased ethanol-conditioned taste aversion but did not alter ethanol-conditioned place preference (B6xNZBF1 mice). Electro-physiological studies of dopamine neurons in the ventral tegmental area showed that pretreatment of mice with LPS decreased the neuronal firing rate. These results suggest that activation of immune signaling promotes alcohol consumption and alters certain aspects of alcohol reward/aversion. PMID:21266194

  10. A bitter aftertaste: unintended effects of artificial sweeteners on the gut microbiome.

    PubMed

    Bokulich, Nicholas A; Blaser, Martin J

    2014-11-04

    Intestinal microbial communities regulate a range of host physiological functions, from energy harvest and glucose homeostasis to immune development and regulation. Suez et al. (2014) recently demonstrated that artificial sweeteners alter gut microbial communities, leading to glucose intolerance in both mice and humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Acute High-level Exposure to WTC Particles Alters Expression of Genes Associated with Oxidative Stress and Immune Function in the Lung

    EPA Science Inventory

    Abstract First responders (FR) present at Ground Zero in the first 72 h after the World Trade Center (WTC) collapsed have progressively exhibited significant respiratory injuries. The few toxicology studies performed to date evaluated effects from just fine(< 2.5 um) WTC dusts; n...

  12. Comprehensive Astronaut Immune Assessment Following a Short-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Yetman, Deborah; Pierson, Duane; Sams, Clarence

    2006-01-01

    Immune system dysregulation has been demonstrated to occur during spaceflight and has the potential to cause serious health risks to crewmembers participating in exploration class missions. As a part of an ongoing NASA flight experiment assessing viral immunity (DSO-500), a generalized immune assessment was performed on 3 crewmembers who participated in the recent STS-114 Space Shuttle mission. The following assays were performed: (1) comprehensive immunophenotype analysis; (2) T cell function/intracellular cytokine profiles; (4) secreted Th1/Th2 cytokine profiles via cytometric bead array. Immunophenotype analysis included a leukocyte differential, lymphocyte subsets, T cell subsets, cytotoxic/effector CD8+ T cells, memory/naive T cell subsets and constitutively activated T cells. Study timepoints were L-180, L-65, L-10, R+0, R+3 and R+14. Detailed data are presented in the poster text. As expected from a limited number of human subjects, data tended to vary with respect to most parameters. Specific post-flight alterations were as follows (subject number in parentheses): Granulocytosis (2/3), reduced NK cells (3/3), elevated CD4/CD8 ratio (3/3), general CD8+ phenotype shift to a less differentiated phenotype (3/3), elevated levels of memory CD4+ T cells (3/3), loss of L-selectin on T cell subsets (3/3), increased levels of activated T cells (2/3), reduced IL-2 producing T cell subsets (3/3), levels of IFNg producing T cells were unchanged. CD8+ T cell expression of the CD69 activation markers following whole blood stimulation with SEA+SEB were dramatically reduced postflight (3/3), whereas other T cell function assessments were largely unchanged. Cytometric bead array assessment of secreted T cell cytokines was performed, following whole blood stimulation with either CD3/CD28 antibodies or PMA+ionomycin for 48 hours. Specific cytokines assessed were IFNg, TNFa, IL-2, IL-4, IL-5, IL-10. Following CD3/CD28 stimulation, all three crewmembers had a mission-associated reduction in the levels of secreted IFNg. One crewmember had a post-flight inversion in the IFNg/IL-10 ratio postflight, which trended back to baseline by R+14. Detailed cytokine data are presented in the poster text. This testing regimen was designed to correlate immunophenotype changes (thought to correspond to specific in-vivo immune responses or pathogenesis), against altered leukocyte function and cytokine profiles. In-flight studies are required to determine if post-flight alterations are reflective of the in-flight condition, or are a response to landing and readaptation.

  13. Strengthening insights into host responses to mastitis infection in ruminants by combining heterogeneous microarray data sources

    PubMed Central

    2011-01-01

    Background Gene expression profiling studies of mastitis in ruminants have provided key but fragmented knowledge for the understanding of the disease. A systematic combination of different expression profiling studies via meta-analysis techniques has the potential to test the extensibility of conclusions based on single studies. Using the program Pointillist, we performed meta-analysis of transcription-profiling data from six independent studies of infections with mammary gland pathogens, including samples from cattle challenged in vivo with S. aureus, E. coli, and S. uberis, samples from goats challenged in vivo with S. aureus, as well as cattle macrophages and ovine dendritic cells infected in vitro with S. aureus. We combined different time points from those studies, testing different responses to mastitis infection: overall (common signature), early stage, late stage, and cattle-specific. Results Ingenuity Pathway Analysis of affected genes showed that the four meta-analysis combinations share biological functions and pathways (e.g. protein ubiquitination and polyamine regulation) which are intrinsic to the general disease response. In the overall response, pathways related to immune response and inflammation, as well as biological functions related to lipid metabolism were altered. This latter observation is consistent with the milk fat content depression commonly observed during mastitis infection. Complementarities between early and late stage responses were found, with a prominence of metabolic and stress signals in the early stage and of the immune response related to the lipid metabolism in the late stage; both mechanisms apparently modulated by few genes, including XBP1 and SREBF1. The cattle-specific response was characterized by alteration of the immune response and by modification of lipid metabolism. Comparison of E. coli and S. aureus infections in cattle in vivo revealed that affected genes showing opposite regulation had the same altered biological functions and provided evidence that E. coli caused a stronger host response. Conclusions This meta-analysis approach reinforces previous findings but also reveals several novel themes, including the involvement of genes, biological functions, and pathways that were not identified in individual studies. As such, it provides an interesting proof of principle for future studies combining information from diverse heterogeneous sources. PMID:21569310

  14. Effect of lead acetate on the in vitro engulfment and killing capability of toad (Bufo arenarum) neutrophils.

    PubMed

    Rosenberg, Carolina E; Fink, Nilda E; Arrieta, Marcos A; Salibián, Alfredo

    2003-11-01

    Lead is an element of risk for the environment and human health and has harmful effects that may exceed those of other inorganic toxicants. The immune system is one of the targets of lead. Its immunomodulatory actions depend on the level of exposure, and it has been demonstrated that environmental amounts of the metal alter immune function. Very little information is available regarding the effect of the metal on different aspects of the immune system of lower vertebrates, in particular of amphibians. The aim of this study was to investigate the effect of sublethal lead (as acetate) on the function of polymorphonuclear cells of Bufo arenarum. The results revealed that phagocytic and lytic functions of the adherent blood cells collected from sublethal lead-injected toads and incubated with suspensions of Candida pseudotropicalis were affected negatively. The decrease of the phagocytic activity was correlated with increased blood lead levels (P < 0.0001). Additional information referred to the total and differential leukocyte counts was presented; the only difference found was in the number of blast-like cells that resulted augmented in the samples of lead-injected toads. It was concluded that the evaluation of these parameters might be a reliable tool for the biological monitoring of the immune status of amphibians.

  15. Apoptosis and dysfunction of blood dendritic cells in patients with falciparum and vivax malaria

    PubMed Central

    Woodberry, Tonia; Kienzle, Vivian; McPhun, Virginia; Minigo, Gabriela; Lampah, Daniel A.; Kenangalem, Enny; Engwerda, Christian; López, J. Alejandro; Anstey, Nicholas M.

    2013-01-01

    Malaria causes significant morbidity worldwide and a vaccine is urgently required. Plasmodium infection causes considerable immune dysregulation, and elicitation of vaccine immunity remains challenging. Given the central role of dendritic cells (DCs) in initiating immunity, understanding their biology during malaria will improve vaccination outcomes. Circulating DCs are particularly important, as they shape immune responses in vivo and reflect the functional status of other subpopulations. We performed cross-sectional and longitudinal assessments of the frequency, phenotype, and function of circulating DC in 67 Papuan adults during acute uncomplicated P. falciparum, P. vivax, and convalescent P. falciparum infections. We demonstrate that malaria patients display a significant reduction in circulating DC numbers and the concurrent accumulation of immature cells. Such alteration is associated with marked levels of spontaneous apoptosis and impairment in the ability of DC to mature, capture, and present antigens to T cells. Interestingly, sustained levels of plasma IL-10 were observed in patients with acute infection and were implicated in the induction of DC apoptosis. DC apoptosis was reversed upon IL-10 blockade, and DC function recovered when IL-10 levels returned to baseline by convalescence. Our data provide key information on the mechanisms behind DC suppression during malaria and will assist in developing strategies to better harness DC’s immunotherapeutic potential. PMID:23835848

  16. Distinctive Regulatory T Cells and Altered Cytokine Profile Locally in the Airways of Young Smokers with Normal Lung Function

    PubMed Central

    Ostadkarampour, Mahyar; Müller, Malin; Öckinger, Johan; Kullberg, Susanna; Lindén, Anders; Eklund, Anders; Grunewald, Johan; Wahlström, Jan

    2016-01-01

    Smoking influences the immune system in different ways and, hypothetically, effects on pulmonary effector and regulatory T cells emerge as potentially detrimental. Therefore, we characterized the frequencies and characteristics of CD4+ and CD8+ T cell subsets in the blood and lungs of young tobacco smokers. Bronchoalveolar lavage (BAL) and peripheral blood were obtained from healthy moderate smokers (n = 18; 2–24 pack-years) and never-smokers (n = 15), all with normal lung function. Cells were stimulated ex vivo and key intracellular cytokines (IFNγ, IL-17, IL-10 and TNFα) and transcription factors (Foxp3, T-bet and Helios) were analyzed using flow cytometry. Our results indicate that smoking is associated with a decline in lung IL-17+ CD4+ T cells, increased IFNγ+ CD8+ T cells and these alterations relate to the history of daily cigarette consumption. There is an increased fraction of Foxp3+ regulatory T cells being Helios- in the lungs of smokers. Cytokine production is mainly confined to the Helios- T cells, both in regulatory and effector subsets. Moreover, we detected a decline of Helios+Foxp3- postulated regulatory CD8+ T cells in smokers. These alterations in the immune system are likely to increase risk for infection and may have implications for autoimmune processes initiated in the lungs among tobacco smokers. PMID:27798682

  17. Functional and quantitative alterations in T lymphocyte subpopulations in acute toxoplasmosis.

    PubMed

    Luft, B J; Kansas, G; Engleman, E G; Remington, J S

    1984-11-01

    The cellular immune response to Toxoplasma gondii has been studied in 23 patients with acute toxoplasma infection. Abnormalities of T cell subpopulations included a marked and significant elevation in suppressor (Leu 2) T cells in patients with prolonged symptoms due to acute infection and either a decrease in the number of T helper cells or an increase in the number of suppressor cells--or both--in patients with asymptomatic lymphadenopathy. There was no significant difference in lymphocyte proliferation to phytohemagglutinin or pokeweed mitogen among the various groups tested. The peak lymphocyte response to toxoplasma antigen, however, was significantly depressed in patients with acute infection compared with that in chronically infected control patients. The kinetics of the depression were consistent with the induction of a non-Leu 2 suppressor cell. These results demonstrate marked quantitative alterations in T lymphocyte subpopulations and functional alterations of T cells to toxoplasma antigen during infection with T. gondii.

  18. Memory-like Responses of Natural Killer Cells

    PubMed Central

    Cooper, Megan A.; Yokoyama, Wayne M.

    2010-01-01

    Summary Natural killer (NK) cells are lymphocytes with the capacity to produce cytokines and kill target cells upon activation. NK cells have long been categorized as members of the innate immune system and as such have been thought to follow the ‘rules’ of innate immunity, including the principle that they have no immunologic memory, a property thought to be strictly limited to adaptive immunity. However, recent studies have suggested that NK cells have the capacity to alter their behavior based on prior activation. This property is analogous to adaptive immune memory; however, some NK cell memory-like functions are not strictly antigen-dependent and can be demonstrated following cytokine stimulation. Here we discuss the recent evidence that NK cells can exhibit properties of immunologic memory, focusing on the ability of cytokines to non-specifically induce memory-like NK cells with enhanced responses to restimulation. PMID:20536571

  19. Integrated analysis of genetic, behavioral, and biochemical data implicates neural stem cell-induced changes in immunity, neurotransmission and mitochondrial function in Dementia with Lewy Body mice.

    PubMed

    Lakatos, Anita; Goldberg, Natalie R S; Blurton-Jones, Mathew

    2017-03-10

    We previously demonstrated that transplantation of murine neural stem cells (NSCs) can improve motor and cognitive function in a transgenic model of Dementia with Lewy Bodies (DLB). These benefits occurred without changes in human α-synuclein pathology and were mediated in part by stem cell-induced elevation of brain-derived neurotrophic factor (BDNF). However, instrastriatal NSC transplantation likely alters the brain microenvironment via multiple mechanisms that may synergize to promote cognitive and motor recovery. The underlying neurobiology that mediates such restoration no doubt involves numerous genes acting in concert to modulate signaling within and between host brain cells and transplanted NSCs. In order to identify functionally connected gene networks and additional mechanisms that may contribute to stem cell-induced benefits, we performed weighted gene co-expression network analysis (WGCNA) on striatal tissue isolated from NSC- and vehicle-injected wild-type and DLB mice. Combining continuous behavioral and biochemical data with genome wide expression via network analysis proved to be a powerful approach; revealing significant alterations in immune response, neurotransmission, and mitochondria function. Taken together, these data shed further light on the gene network and biological processes that underlie the therapeutic effects of NSC transplantation on α-synuclein induced cognitive and motor impairments, thereby highlighting additional therapeutic targets for synucleinopathies.

  20. Improved resistance to Eimeria acervulina infection in chickens due to dietary supplementation with garlic metabolites.

    PubMed

    Kim, Duk Kyung; Lillehoj, Hyun S; Lee, Sung Hyen; Lillehoj, Erik P; Bravo, David

    2013-01-14

    The effects of a compound including the secondary metabolites of garlic, propyl thiosulphinate (PTS) and propyl thiosulphinate oxide (PTSO), on the in vitro and in vivo parameters of chicken gut immunity during experimental Eimeria acervulina infection were evaluated. In in vitro assays, the compound comprised of PTSO (67 %) and PTS (33 %) dose-dependently killed invasive E. acervulina sporozoites and stimulated higher spleen cell proliferation. Broiler chickens continuously fed from hatch with PTSO/PTS compound-supplemented diet and orally challenged with live E. acervulina oocysts had increased body weight gain, decreased faecal oocyst excretion and greater E. acervulina profilin antibody responses, compared with chickens fed a non-supplemented diet. Differential gene expression by microarray hybridisation identified 1227 transcripts whose levels were significantly altered in the intestinal lymphocytes of PTSO/PTS-fed birds compared with non-supplemented controls (552 up-regulated, 675 down-regulated). Biological pathway analysis identified the altered transcripts as belonging to the categories 'Disease and Disorder' and 'Physiological System Development and Function'. In the former category, the most significant function identified was 'Inflammatory Response', while the most significant function in the latter category was 'Cardiovascular System Development and Function'. This new information documents the immunologic and genomic changes that occur in chickens following PTSO/PTS dietary supplementation, which are relevant to protective immunity during avian coccidiosis.

  1. Effects of sodium fluoride on blood cellular and humoral immunity in mice.

    PubMed

    Guo, Hongrui; Kuang, Ping; Luo, Qin; Cui, Hengmin; Deng, Huidan; Liu, Huan; Lu, Yujiao; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Li, Yinglun; Wang, Xun; Zhao, Ling

    2017-10-17

    Exposure to high fluorine can cause toxicity in human and animals. Currently, there are no systematic studies on effects of high fluorine on blood cellular immunity and humoral immunity in mice. We evaluated the alterations of blood cellular immunity and humoral immunity in mice by using flow cytometry and ELISA. In the cellular immunity, we found that sodium fluoride (NaF) in excess of 12 mg/Kg resulted in a significant decrease in the percentages of CD3 + , CD3 + CD4 + , CD3 + CD8 + T lymphocytes in the peripheral blood. Meanwhile, serum T helper type 1 (Th1) cytokines including interleukin (IL)-2, interferon (IFN)-γ, tumor necrosis factor (TNF), and Th2 cytokines including IL-4, IL-6, IL-10, and Th17 cytokine (IL-17A) contents were decreased. In the humoral immunity, NaF reduced the peripheral blood percentages of CD19 + B lymphocytes and serum immunoglobulin A (IgA), immunoglobulin G (IgG) and immunoglobulin M (IgM). The above results show that NaF can reduce blood cellular and humoral immune function in mice, providing an excellent animal model for clinical studies on immunotoxicity-related fluorosis.

  2. Regulatory dendritic cells: there is more than just immune activation.

    PubMed

    Schmidt, Susanne V; Nino-Castro, Andrea C; Schultze, Joachim L

    2012-01-01

    The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34(+) stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies.

  3. Regulatory dendritic cells: there is more than just immune activation

    PubMed Central

    Schmidt, Susanne V.; Nino-Castro, Andrea C.; Schultze, Joachim L.

    2012-01-01

    The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34+ stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies. PMID:22969767

  4. Immune changes during short-duration missions

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.

    1993-01-01

    Spaceflight materially influences the immune mechanism of humans and animals. Effects resulting from missions of less than 1 month are examined. Effects from longer missions are discussed in the companion paper by Konstantinova et al. Most immunology studies have involved analyses of subjects and samples from subjects obtained after flight, with the data being compared with similar data obtained before flight. These studies have demonstrated that short-duration missions can result in a postflight depression in blast cell transformation, major changes in cytokine function, and alterations in the relative numbers of immune cell populations. In addition to these post- vs. preflight studies, some data have been produced in flight. However, these in vitro analyses have been less than satisfactory because of differences between in-flight and ground-control conditions. Recently, both the U.S. and Russian space programs have started collecting in-flight, in vivo, cell-mediated immunity data. These studies have confirmed that the human cell-mediated immune system is blunted during spaceflight.

  5. Immune changes during short-duration missions.

    PubMed

    Taylor, G R

    1993-09-01

    Spaceflight materially influences the immune mechanism of humans and animals. Effects resulting from missions of less than 1 month are examined. Effects from longer missions are discussed in the companion paper by Konstantinova et al. Most immunology studies have involved analyses of subjects and samples from subjects obtained after flight, with the data being compared with similar data obtained before flight. These studies have demonstrated that short-duration missions can result in a postflight depression in blast cell transformation, major changes in cytokine function, and alterations in the relative numbers of immune cell populations. In addition to these post- vs. preflight studies, some data have been produced in flight. However, these in vitro analyses have been less than satisfactory because of differences between in-flight and ground-control conditions. Recently, both the U.S. and Russian space programs have started collecting in-flight, in vivo, cell-mediated immunity data. These studies have confirmed that the human cell-mediated immune system is blunted during spaceflight.

  6. The early stages of the immune response of the European abalone Haliotis tuberculata to a Vibrio harveyi infection.

    PubMed

    Cardinaud, Marion; Dheilly, Nolwenn M; Huchette, Sylvain; Moraga, Dario; Paillard, Christine

    2015-08-01

    Vibrio harveyi is a marine bacterial pathogen responsible for episodic abalone mortalities in France, Japan and Australia. In the European abalone, V. harveyi invades the circulatory system in a few hours after exposure and is lethal after 2 days of infection. In this study, we investigated the responses of European abalone immune cells over the first 24 h of infection. Results revealed an initial induction of immune gene expression including Rel/NF-kB, Mpeg and Clathrin. It is rapidly followed by a significant immuno-suppression characterized by reduced cellular hemocyte parameters, immune response gene expressions and enzymatic activities. Interestingly, Ferritin was overexpressed after 24 h of infection suggesting that abalone attempt to counter V. harveyi infection using soluble effectors. Immune function alteration was positively correlated with V. harveyi concentration. This study provides the evidence that V. harveyi has a hemolytic activity and an immuno-suppressive effect in the European abalone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Conserved hypothetical protein Rv1977 in Mycobacterium tuberculosis strains contains sequence polymorphisms and might be involved in ongoing immune evasion.

    PubMed

    Jiang, Yi; Liu, Haican; Wang, Xuezhi; Li, Guilian; Qiu, Yan; Dou, Xiangfeng; Wan, Kanglin

    2015-01-01

    Host immune pressure and associated parasite immune evasion are key features of host-pathogen co-evolution. A previous study showed that human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved and thus it was deduced that M. tuberculosis lacks antigenic variation and immune evasion. Here, we selected 151 clinical Mycobacterium tuberculosis isolates from China, amplified gene encoding Rv1977 and compared the sequences. The results showed that Rv1977, a conserved hypothetical protein, is not conserved in M. tuberculosis strains and there are polymorphisms existed in the protein. Some mutations, especially one frameshift mutation, occurred in the antigen Rv1977, which is uncommon in M.tb strains and may lead to the protein function altering. Mutations and deletion in the gene all affect one of three T cell epitopes and the changed T cell epitope contained more than one variable position, which may suggest ongoing immune evasion.

  8. Review: Impact of Helminth Infection on Antimycobacterial Immunity—A Focus on the Macrophage

    PubMed Central

    Lang, Roland; Schick, Judith

    2017-01-01

    Successful immune control of Mycobacterium tuberculosis (MTB) requires robust CD4+ T cell responses, with IFNγs as the key cytokine promoting killing of intracellular mycobacteria by macrophages. By contrast, helminth infections typically direct the immune system toward a type 2 response, characterized by high levels of the cytokines IL-4 and IL-10, which can antagonize IFNγ production and its biological effects. In many countries with high burden of tuberculosis, helminth infections are endemic and have been associated with increased risk to develop tuberculosis or to inhibit vaccination-induced immunity. Mechanistically, regulation of the antimycobacterial immune response by helminths has been mostly been attributed to the T cell compartment. Here, we review the current status of the literature on the impact of helminths on vaccine-induced and natural immunity to MTB with a focus on the alterations enforced on the capacity of macrophages to function as sensors of mycobacteria and effector cells to control their replication. PMID:29312343

  9. Zinc Signals and Immunity

    PubMed Central

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-01-01

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc. PMID:29064429

  10. Aging of the T cell compartment in mice and humans: from no naïve expectations to foggy memories

    PubMed Central

    Nikolich-Žugich, Janko

    2014-01-01

    Until the mid-20th century, infectious diseases were the major cause of morbidity and mortality in humans. Massive vaccination campaigns, antibiotics, antivirals and advanced public health measures drastically reduced sickness and death of infections in children and younger adults. Older adults (>65yr of age), however, remain vulnerable to infections, and to date infectious diseases remain amongst the top 5–10 causes of death in this population. The aging of the immune system, often referred to as immune senescence, is the key phenomenon underlying this vulnerability. This review centers on age-related changes in T cells, which are dramatically and reproducibly altered with aging. I will discuss changes in T cell production, maintenance, function and response to latent persistent infection, particularly against the cytomegalovirus (CMV), that exerts profound influence on the aging T cell pool, concluding with a brief list of measures to improve immune function in older adults. PMID:25193936

  11. Neuroimmune regulation of neurophysiology in the cerebellum.

    PubMed

    Gruol, Donna L

    2013-06-01

    Recent studies have established the existence of an innate immune system in the central nervous system (CNS) and implicated a critical role for this system in both normal and pathological processes. Astrocytes and microglia, normal components of the CNS, are the primary cell types that comprise the innate immune system of the CNS. Basic to their role during normal and adverse conditions is the production of neuroimmune factors such as cytokines and chemokines, which are signaling molecules that initiate or coordinate downstream cellular actions. During adverse conditions, cytokines and chemokines function in defensive and repair. However, if expression of these factors becomes dysregulated, abnormal CNS function can result. Both neurons and glial cells of the CNS express receptors for cytokines and chemokines, but the biological consequence of receptor activation has yet to be fully resolved. Our studies show that neuroadaptive changes are produced in primary cultures of rat cerebellar cells chronically treated with the cytokine interleukin-6 (IL-6) and in the cerebellum of transgenic mice that chronically express elevated levels of IL-6 in the CNS. In the cerebellum in culture and in vivo, the neuroadaptive changes included alterations in the level of expression of proteins involved in gene expression, signal transduction, and synaptic transmission. Associated with these changes were alterations in neuronal function. A comparison of results from the cultured cerebellar cells and cerebellum of the transgenic mice indicated that the effects of IL-6 can vary across neuronal types. However, alterations in mechanisms involved in Ca(2+) homeostasis were observed in all cell types studied. These results indicate that modifications in cerebellar function are likely to occur in disorders associated with elevated levels of IL-6 in the cerebellum.

  12. Increase of oxidation and inflammation in nervous and immune systems with aging and anxiety.

    PubMed

    Vida, Carmen; González, Eva M; De la Fuente, Mónica

    2014-01-01

    According to the oxidation-inflammation theory of aging, chronic oxidative stress and inflammatory stress situations (with higher levels of oxidant and inflammatory compounds and lower antioxidant and anti-inflammatory defenses) are the basis of the agerelated impairment of organism functions, including those of the nervous and immune systems, as well as of the neuroimmune communication, which explains the altered homeostasis and the resulting increase of morbidity and mortality. Overproduction of oxidant compounds can induce an inflammatory response, since oxidants are inflammation effectors. Thus, oxidation and inflammation are interlinked processes and have many feedback loops. However, the nature of their potential interactions, mainly in the brain and immune cells, and their key involvement in aging remain unclear. Moreover, in the context of the neuroimmune communication, it has been described that an oxidative-inflammatory situation occurs in subjects with anxiety, and this situation contributes to an immunosenescence, alteration of survival responses and shorter life span. As an example of this, a model of premature aging in mice, in which animals show a poor response to stress and high levels of anxiety, an oxidative stress in their immune cells and tissues, as well as a premature immunosenescence and a shorter life expectancy, will be commented in the present review. This model supports the hypothesis that anxiety can be a situation of chronic oxidative stress and inflammation, especially in brain and immune cells, and this accelerates the rate of aging.

  13. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases?

    PubMed

    Pellegrini, Carolina; Antonioli, Luca; Colucci, Rocchina; Blandizzi, Corrado; Fornai, Matteo

    2018-05-24

    Neurological diseases, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS) and multiple sclerosis, are often associated with functional gastrointestinal disorders. These gastrointestinal disturbances may occur at all stages of the neurodegenerative diseases, to such an extent that they are now considered an integral part of their clinical picture. Several lines of evidence support the contention that, in central neurodegenerative diseases, changes in gut microbiota and enteric neuro-immune system alterations could contribute to gastrointesinal dysfunctions as well as initiation and upward spreading of the neurologic disorder. The present review has been intended to provide a comprehensive overview of the available knowledge on the role played by enteric microbiota, mucosal immune system and enteric nervous system, considered as an integrated network, in the pathophysiology of the main neurological diseases known to be associated with intestinal disturbances. In addition, based on current human and pre-clinical evidence, our intent was to critically discuss whether changes in the dynamic interplay between gut microbiota, intestinal epithelial barrier and enteric neuro-immune system are a consequence of the central neurodegeneration or might represent the starting point of the neurodegenerative process. Special attention has been paid also to discuss whether alterations of the enteric bacterial-neuro-immune network could represent a common path driving the onset of the main neurodegenerative diseases, even though each disease displays its own distinct clinical features.

  14. 2013 Immune Risk Standing Review Panel Evidence Review for: The Risk of Crew Adverse Health Event Due to Altered Immune Response

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2014-01-01

    The 2013 Immune Risk Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on February 3-4, 2014. The SRP reviewed the new Evidence Report for the Risk of Crew Adverse Health Event Due to Altered Immune Response (from here on referred to as the 2013 Immune Evidence Report), as well as the Research Plan for this Risk that is in the current version of the Human Research Program’s (HRP) Integrated Research Plan (IRP).

  15. Complex pattern of immune evasion in MSI colorectal cancer.

    PubMed

    Ozcan, Mine; Janikovits, Jonas; von Knebel Doeberitz, Magnus; Kloor, Matthias

    2018-01-01

    Mismatch repair (MMR)-deficient cancers accumulate multiple insertion/deletion mutations at coding microsatellites (cMS), which give rise to frameshift peptide neoantigens. The high mutational neoantigen load of MMR-deficient cancers is reflected by pronounced anti-tumoral immune responses of the host and high responsiveness towards immune checkpoint blockade. However, immune evasion mechanisms can interfere with the immune response against MMR-deficient tumors. We here performed a comprehensive analysis of immune evasion in MMR-deficient colorectal cancers, focusing on HLA class I-mediated antigen presentation. 72% of MMR-deficient colorectal cancers of the DFCI database harbored alterations affecting genes involved in HLA class I-mediated antigen presentation, and 54% of these mutations were predicted to abrogate function. Mutations affecting the HLA class I transactivator NLRC5 were observed as a potential new immune evasion mechanism in 26% (6% abrogating) of the analyzed tumors. NLRC5 mutations in MMR-deficient cancers were associated with decreased levels of HLA class I antigen expression. In summary, the majority of MMR-deficient cancers display mutations interfering with HLA class I antigen presentation that reflect active immune surveillance and immunoselection during tumor development. Clinical studies focusing on immune checkpoint blockade in MSI cancer should account for the broad variety of immune evasion mechanisms as potential biomarkers of therapy success.

  16. Inducible nitric oxide synthase in T cells regulates T cell death and immune memory

    PubMed Central

    Vig, Monika; Srivastava, Smita; Kandpal, Usha; Sade, Hadassah; Lewis, Virginia; Sarin, Apurva; George, Anna; Bal, Vineeta; Durdik, Jeannine M.; Rath, Satyajit

    2004-01-01

    The progeny of T lymphocytes responding to immunization mostly die rapidly, leaving a few long-lived survivors functioning as immune memory. Thus, control of this choice of death versus survival is critical for immune memory. There are indications that reactive radicals may be involved in this death pathway. We now show that, in mice lacking inducible nitric oxide synthase (iNOS), higher frequencies of both CD4 and CD8 memory T cells persist in response to immunization, even when iNOS+/+ APCs are used for immunization. Postactivation T cell death by neglect is reduced in iNOS–/– T cells, and levels of the antiapoptotic proteins Bcl-2 and Bcl-xL are increased. Inhibitors of the iNOS-peroxynitrite pathway also enhance memory responses and block postactivation death by neglect in both mouse and human T cells. However, early primary immune responses are not enhanced, which suggests that altered survival, rather than enhanced activation, is responsible for the persistent immunity observed. Thus, in primary immune responses, iNOS in activated T cells autocrinely controls their susceptibility to death by neglect to determine the level of persisting CD4 and CD8 T cell memory, and modulation of this pathway can enhance the persistence of immune memory in response to vaccination. PMID:15199408

  17. Pilot study of small bowel mucosal gene expression in patients with irritable bowel syndrome with diarrhea.

    PubMed

    Camilleri, Michael; Carlson, Paula; Valentin, Nelson; Acosta, Andres; O'Neill, Jessica; Eckert, Deborah; Dyer, Roy; Na, Jie; Klee, Eric W; Murray, Joseph A

    2016-09-01

    Prior studies in with irritable bowel syndrome with diarrhea (IBS-D) patients showed immune activation, secretion, and barrier dysfunction in jejunal or colorectal mucosa. We measured mRNA expression by RT-PCR of 91 genes reflecting tight junction proteins, chemokines, innate immunity, ion channels, transmitters, housekeeping genes, and controls for DNA contamination and PCR efficiency in small intestinal mucosa from 15 IBS-D and 7 controls (biopsies negative for celiac disease). Fold change was calculated using 2((-ΔΔCT)) formula. Nominal P values (P < 0.05) were interpreted with false detection rate (FDR) correction (q value). Cluster analysis with Lens for Enrichment and Network Studies (LENS) explored connectivity of mechanisms. Upregulated genes (uncorrected P < 0.05) were related to ion transport (INADL, MAGI1, and SONS1), barrier (TJP1, 2, and 3 and CLDN) or immune functions (TLR3, IL15, and MAPKAPK5), or histamine metabolism (HNMT); downregulated genes were related to immune function (IL-1β, TGF-β1, and CCL20) or antigen detection (TLR1 and 8). The following genes were significantly upregulated (q < 0.05) in IBS-D: INADL, MAGI1, PPP2R5C, MAPKAPK5, TLR3, and IL-15. Among the 14 nominally upregulated genes, there was clustering of barrier and PDZ domains (TJP1, TJP2, TJP3, CLDN4, INADL, and MAGI1) and clustering of downregulated genes (CCL20, TLR1, IL1B, and TLR8). Protein expression of PPP2R5C in nuclear lysates was greater in patients with IBS-D and controls. There was increase in INADL protein (median 9.4 ng/ml) in patients with IBS-D relative to controls (median 5.8 ng/ml, P > 0.05). In conclusion, altered transcriptome (and to lesser extent protein) expression of ion transport, barrier, immune, and mast cell mechanisms in small bowel may reflect different alterations in function and deserves further study in IBS-D. Copyright © 2016 the American Physiological Society.

  18. Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes.

    PubMed

    Semenkovich, Nicholas P; Planer, Joseph D; Ahern, Philip P; Griffin, Nicholas W; Lin, Charles Y; Gordon, Jeffrey I

    2016-12-20

    The gut microbiota impacts many aspects of host biology including immune function. One hypothesis is that microbial communities induce epigenetic changes with accompanying alterations in chromatin accessibility, providing a mechanism that allows a community to have sustained host effects even in the face of its structural or functional variation. We used Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) to define chromatin accessibility in predicted enhancer regions of intestinal αβ + and γδ + intraepithelial lymphocytes purified from germ-free mice, their conventionally raised (CONV-R) counterparts, and mice reared germ free and then colonized with CONV-R gut microbiota at the end of the suckling-weaning transition. Characterizing genes adjacent to traditional enhancers and super-enhancers revealed signaling networks, metabolic pathways, and enhancer-associated transcription factors affected by the microbiota. Our results support the notion that epigenetic modifications help define microbial community-affiliated functional features of host immune cell lineages.

  19. TCR and IL-7 Signaling Are Altered in the Absence of Functional GTPase of the Immune Associated Nucleotide Binding Protein 5 (GIMAP5)

    PubMed Central

    Chen, Xi-Lin; Serrano, Daniel; Ghobadi, Farnaz; Mayhue, Marian; Hoebe, Kasper; Ilangumaran, Subburaj; Ramanathan, Sheela

    2016-01-01

    GTPase of the immune associated nucleotide binding protein (GIMAP) family of proteins are expressed essentially in cells of the hematopoietic system. Mutation in the founding member of this gene family, Gimap5, results in the lymphopenic phenotype in Bio-Breeding diabetes prone rats. In mice, deletion of functional Gimap5 gene affects the survival and renewal of hematopoietic stem cells in addition to the defects observed in T cells. Here we show that T cells from OTII TCR-transgenic Gimap5sph/sph mice do not proliferate in response to its cognate antigen. Furthermore, T cells from Gimap5 mutant rats and mice show decreased phosphorylation of STAT5 following stimulation with IL-7. Our results suggest that functional Gimap5 is required for optimal signaling through TCR and IL-7R in T cells. PMID:27023180

  20. Cervical (pre)neoplastic microenvironment promotes the emergence of tolerogenic dendritic cells via RANKL secretion

    PubMed Central

    Demoulin, Stéphanie A; Somja, Joan; Duray, Anaëlle; Guénin, Samuel; Roncarati, Patrick; Delvenne, Philippe O; Herfs, Michael F; Hubert, Pascale M

    2015-01-01

    The progression of genital human papillomavirus (HPV) infections into preneoplastic lesions suggests that infected/malignant cells are not adequately recognized by the immune system. In this study, we demonstrated that cervical/vulvar cancer cells secrete factor(s) that affect both the maturation and function of dendritic cells (DC) leading to a tolerogenic profile. Indeed, DC cocultured with cancer cell lines display both a partially mature phenotype after lipopolysaccharide (LPS) maturation and an altered secretory profile (IL-10high and IL-12p70low). In addition, tumor-converted DC acquire the ability to alter T-cell proliferation and to induce FoxP3+ suppressive T cells from naive CD4+ T cells. Among the immunosuppressive factors implicated in DC alterations in genital (pre)neoplastic microenvironment, we identified receptor activator of nuclear factor kappa-B ligand (RANKL), a TNF family member, as a potential candidate. For the first time, we showed that RANKL expression strongly increases during cervical progression. We also confirmed that RANKL is directly secreted by cancer cells and this expression is not related to HPV viral oncoprotein induction. Interestingly, the addition of osteoprotegerin (OPG) in coculture experiments reduces significantly the inhibition of DC maturation, the release of a tolerogenic cytokine profile (IL-12low IL-10high) and the induction of regulatory T (Treg) cells. Our findings suggest that the use of inhibitory molecules directed against RANKL in cervical/vulvar (pre)neoplastic lesions might prevent alterations of DC functionality and represent an attractive strategy to overcome immune tolerance in such cancers. PMID:26155412

  1. Maternal obesity alters immune cell frequencies and responses in umbilical cord blood samples.

    PubMed

    Wilson, Randall M; Marshall, Nicole E; Jeske, Daniel R; Purnell, Jonathan Q; Thornburg, Kent; Messaoudi, Ilhem

    2015-06-01

    Maternal obesity is one of the several key factors thought to modulate neonatal immune system development. Data from murine studies demonstrate worse outcomes in models of infection, autoimmunity, and allergic sensitization in offspring of obese dams. In humans, children born to obese mothers are at increased risk for asthma. These findings suggest a dysregulation of immune function in the children of obese mothers; however, the underlying mechanisms remain poorly understood. The aim of this study was to examine the relationship between maternal body weight and the human neonatal immune system. Umbilical cord blood samples were collected from infants born to lean, overweight, and obese mothers. Frequency and function of major innate and adaptive immune cell populations were quantified using flow cytometry and multiplex analysis of circulating factors. Compared to babies born to lean mothers, babies of obese mothers had fewer eosinophils and CD4 T helper cells, reduced monocyte and dendritic cell responses to Toll-like receptor ligands, and increased plasma levels of IFN-α2 and IL-6 in cord blood. These results support the hypothesis that maternal obesity influences programming of the neonatal immune system, providing a potential link to increased incidence of chronic inflammatory diseases such as asthma and cardiovascular disease in the offspring. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Immune, inflammatory and cardiovascular consequences of sleep restriction and recovery.

    PubMed

    Faraut, Brice; Boudjeltia, Karim Zouaoui; Vanhamme, Luc; Kerkhofs, Myriam

    2012-04-01

    In addition to its effects on cognitive function, compelling evidence links sleep loss to alterations in the neuroendocrine, immune and inflammatory systems with potential negative public-health ramifications. The evidence to suggest that shorter sleep is associated with detrimental health outcomes comes from both epidemiological and experimental sleep deprivation studies. This review will focus on the post-sleep deprivation and recovery changes in immune and inflammatory functions in well-controlled sleep restriction laboratory studies. The data obtained indicate non-specific activation of leukocyte populations and a state of low-level systemic inflammation after sleep loss. Furthermore, one night of recovery sleep does not allow full recovery of a number of these systemic immune and inflammatory markers. We will speculate on the mechanism(s) that link(s) sleep loss to these responses and to the progression of cardiovascular disease. The immune and inflammatory responses to chronic sleep restriction suggest that chronic exposure to reduced sleep (<6 h/day) and insufficient time for recovery sleep could have gradual deleterious effects, over years, on cardiovascular pathogenesis with a heightened risk in women and in night and shift workers. Finally, we will examine countermeasures, e.g., napping or sleep extension, which could improve the recovery processes, in terms of alertness and immune and inflammatory parameters, after sleep restriction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Age‐related alterations in immune responses to West Nile virus infection

    PubMed Central

    2016-01-01

    Summary West Nile virus (WNV) is the most important causative agent of viral encephalitis worldwide and an important public health concern in the United States due to its high prevalence, severe disease, and the absence of effective treatments. Infection with WNV is mainly asymptomatic, but some individuals develop severe, possibly fatal, neurological disease. Individual host factors play a role in susceptibility to WNV infection, including genetic polymorphisms in key anti‐viral immune genes, but age is the most well‐defined risk factor for susceptibility to severe disease. Ageing is associated with distinct changes in immune cells and a decline in immune function leading to increased susceptibility to infection and reduced responses to vaccination. WNV is detected by pathogen recognition receptors including Toll‐like receptors (TLRs), which show reduced expression and function in ageing. Neutrophils, monocyte/macrophages and dendritic cells, which first recognize and respond to infection, show age‐related impairment of many functions relevant to anti‐viral responses. Natural killer cells control many viral infections and show age‐related changes in phenotype and functional responses. A role for the regulatory receptors Mertk and Axl in blood–brain barrier permeability and in facilitating viral uptake through phospholipid binding may be relevant for susceptibility to WNV, and age‐related up‐regulation of Axl has been noted previously in human dendritic cells. Understanding the specific immune parameters and mechanisms that influence susceptibility to symptomatic WNV may lead to a better understanding of increased susceptibility in elderly individuals and identify potential avenues for therapeutic approaches: an especially relevant goal, as the world's populating is ageing. PMID:27612657

  4. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes?

    PubMed

    Fulop, Tamas; Larbi, Anis; Dupuis, Gilles; Le Page, Aurélie; Frost, Eric H; Cohen, Alan A; Witkowski, Jacek M; Franceschi, Claudio

    2017-01-01

    The immune system is the most important protective physiological system of the organism. It has many connections with other systems and is, in fact, often considered as part of the larger neuro-endocrine-immune axis. Most experimental data on immune changes with aging show a decline in many immune parameters when compared to young healthy subjects. The bulk of these changes is termed immunosenescence. Immunosenescence has been considered for some time as detrimental because it often leads to subclinical accumulation of pro-inflammatory factors and inflamm-aging. Together, immunosenescence and inflamm-aging are suggested to stand at the origin of most of the diseases of the elderly, such as infections, cancer, autoimmune disorders, and chronic inflammatory diseases. However, an increasing number of immune-gerontologists have challenged this negative interpretation of immunosenescence with respect to its significance in aging-related alterations of the immune system. If one considers these changes from an evolutionary perspective, they can be viewed preferably as adaptive or remodeling rather than solely detrimental. Whereas it is conceivable that global immune changes may lead to various diseases, it is also obvious that these changes may be needed for extended survival/longevity. Recent cumulative data suggest that, without the existence of the immunosenescence/inflamm-aging duo (representing two sides of the same phenomenon), human longevity would be greatly shortened. This review summarizes recent data on the dynamic reassessment of immune changes with aging. Accordingly, attempts to intervene on the aging immune system by targeting its rejuvenation, it may be more suitable to aim to maintain general homeostasis and function by appropriately improving immune-inflammatory-functions.

  5. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes?

    PubMed Central

    Fulop, Tamas; Larbi, Anis; Dupuis, Gilles; Le Page, Aurélie; Frost, Eric H.; Cohen, Alan A.; Witkowski, Jacek M.; Franceschi, Claudio

    2018-01-01

    The immune system is the most important protective physiological system of the organism. It has many connections with other systems and is, in fact, often considered as part of the larger neuro–endocrine–immune axis. Most experimental data on immune changes with aging show a decline in many immune parameters when compared to young healthy subjects. The bulk of these changes is termed immunosenescence. Immunosenescence has been considered for some time as detrimental because it often leads to subclinical accumulation of pro-inflammatory factors and inflamm-aging. Together, immunosenescence and inflamm-aging are suggested to stand at the origin of most of the diseases of the elderly, such as infections, cancer, autoimmune disorders, and chronic inflammatory diseases. However, an increasing number of immune-gerontologists have challenged this negative interpretation of immunosenescence with respect to its significance in aging-related alterations of the immune system. If one considers these changes from an evolutionary perspective, they can be viewed preferably as adaptive or remodeling rather than solely detrimental. Whereas it is conceivable that global immune changes may lead to various diseases, it is also obvious that these changes may be needed for extended survival/longevity. Recent cumulative data suggest that, without the existence of the immunosenescence/inflamm-aging duo (representing two sides of the same phenomenon), human longevity would be greatly shortened. This review summarizes recent data on the dynamic reassessment of immune changes with aging. Accordingly, attempts to intervene on the aging immune system by targeting its rejuvenation, it may be more suitable to aim to maintain general homeostasis and function by appropriately improving immune-inflammatory-functions. PMID:29375577

  6. Sequential infection with common pathogens promotes human-like immune gene expression and altered vaccine response

    PubMed Central

    Reese, Tiffany A.; Bi, Kevin; Kambal, Amal; Filali-Mouhim, Ali; Beura, Lalit K.; Bürger, Matheus C.; Pulendran, Bali; Sekaly, Rafick; Jameson, Stephen C.; Masopust, David; Haining, W. Nicholas; Virgin, Herbert W.

    2016-01-01

    Summary Immune responses differ between laboratory mice and humans. Chronic infection with viruses and parasites are common in humans, but are absent in laboratory mice, and thus represent potential contributors to inter-species differences in immunity. To test this, we sequentially infected laboratory mice with herpesviruses, influenza, and an intestinal helminth, and compared their blood immune signatures to mock-infected mice before and after vaccination against Yellow Fever Virus (YFV-17D). Sequential infection altered pre- and post-vaccination gene expression, cytokines, and antibodies in blood. Sequential pathogen exposure induced gene signatures that recapitulated those seen in blood from pet store-raised versus laboratory mice, and adult versus cord blood in humans. Therefore basal and vaccine-induced murine immune responses are altered by infection with agents common outside of barrier facilities. This raises the possibility that we can improve mouse models of vaccination and immunity by selective microbial exposure of laboratory animals to mimic that of humans. PMID:27107939

  7. Stress-Related Immune Markers in Depression: Implications for Treatment

    PubMed Central

    Hughes, Martina M.; Connor, Thomas J.

    2016-01-01

    Major depression is a serious psychiatric disorder; however, the precise biological basis of depression still remains elusive. A large body of evidence implicates a dysregulated endocrine and inflammatory response system in the pathogenesis of depression. Despite this, given the heterogeneity of depression, not all depressed patients exhibit dysregulation of the inflammatory and endocrine systems. Evidence suggests that inflammation is associated with depression in certain subgroups of patients and that those who have experienced stressful life events such as childhood trauma or bereavement may be at greater risk of developing depression. Consequently, prolonged exposure to stress is thought to be a key trigger for the onset of a depressive episode. This review assesses the relationship between stress and the immune system, with a particular interest in the mechanisms by which stress impacts immune function, and how altered immune functioning, in turn, may lead to a feed forward cascade of multiple systems dysregulation and the subsequent manifestation of depressive symptomology. The identification of stress-related immune markers and potential avenues for advances in therapeutic intervention is vital. Changes in specific biological markers may be used to characterize or differentiate depressive subtypes or specific symptoms and may predict treatment response, in turn facilitating a more effective, targeted, and fast-acting approach to treatment. PMID:26775294

  8. Cytokines and macrophage function in humans - role of stress

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald (Principal Investigator)

    1996-01-01

    We have begun this study to commence the determination of the role of mild chronic stress in the effects of space flight on macrophage/monocyte function, a component of the immune response. Medical students undergoing regular periods of stress and relaxation have been shown to be an excellent model for determining the effects of stress on immune responses. We have begun using this model using the macrophage/monocyte as model leukocyte. The monocyte/macrophage plays a central role in immunoregulation. The studies to be included in this three year project are the effects of stress on: (1) interactions of monocytes with microbes, (2) monocyte production of cytokines, (3) monocyte phagocytosis and activity, and (4) monocyte expression of cell surface antigens important in immune responses. Stress hormone levels will also be carried out to determine if there is a correlation between stress effects on immune responses and hormonal levels. Psychological testing to insure subjects are actually stressed or relaxed at the time of testing will also be carried out. The results obtained from the proposed studies should be comparable with space flight studies with whole animals and isolated cell cultures. When complete this study should allow the commencement of the establishment of the role of stress as one compartment of the induction of immune alterations by space flight.

  9. Does Oil Rich in Alpha-Linolenic Fatty Acid Cause the Same Immune Modulation as Fish Oil in Walker 256 Tumor-Bearing Rats?

    PubMed

    Schiessel, Dalton Luiz; Yamazaki, Ricardo K; Kryczyk, Marcelo; Coelho de Castro, Isabela; Yamaguchi, Adriana A; Pequito, Danielle C T; Brito, Gleisson A P; Borghetti, Gina; Aikawa, Júlia; Nunes, Everson A; Naliwaiko, Kátia; Fernandes, Luiz C

    2016-01-01

    Polyunsaturated fatty acids n-3 (PUFA n-3) have shown effects in reducing tumor growth, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) abundantly present in fish oil (FO). When these fatty acids are provided in the diet, they alter the functions of the cells, particularly in tumor and immune cells. However, the effects of α-linolenic fatty acid (ALA), which is the precursor of EPA and DHA, are controversial. Thus, our objective was to test the effect of this parental fatty acid. Non-tumor-bearing and tumor-bearing Wistar rats (70 days) were supplemented with 1 g/kg body weight of FO or Oro Inca® (OI) oil (rich in ALA). Immune cells function, proliferation, cytokine production, and subpopulation profile were evaluated. We have shown that innate immune cells enhanced phagocytosis capacity, and increased processing and elimination of antigens. Moreover, there was a decrease in production of pro-inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6)) by macrophages. Lymphocytes showed decreased proliferation capacity, increased cluster of differentiation 8 (CD8 + ) subpopulation, and increased TNF-α production. Oil rich in ALA caused similar immune modulation in cancer when compared with FO.

  10. Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains

    PubMed Central

    2013-01-01

    Background Pathogen infection triggers a large-scale transcriptional reprogramming in plants, and the speed of this reprogramming affects the outcome of the infection. Our understanding of this process has significantly benefited from mutants that display either delayed or accelerated defense gene induction. In our previous work we demonstrated that the Arabidopsis Elongator complex subunit 2 (AtELP2) plays an important role in both basal immunity and effector-triggered immunity (ETI), and more recently showed that AtELP2 is involved in dynamic changes in histone acetylation and DNA methylation at several defense genes. However, the function of other Elongator subunits in plant immunity has not been characterized. Results In the same genetic screen used to identify Atelp2, we found another Elongator mutant, Atelp3-10, which mimics Atelp2 in that it exhibits a delay in defense gene induction following salicylic acid treatment or pathogen infection. Similarly to AtELP2, AtELP3 is required for basal immunity and ETI, but not for systemic acquired resistance (SAR). Furthermore, we demonstrate that both the histone acetyltransferase and radical S-adenosylmethionine domains of AtELP3 are essential for its function in plant immunity. Conclusion Our results indicate that the entire Elongator complex is involved in basal immunity and ETI, but not in SAR, and support that Elongator may play a role in facilitating the transcriptional induction of defense genes through alterations to their chromatin. PMID:23856002

  11. Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains.

    PubMed

    Defraia, Christopher T; Wang, Yongsheng; Yao, Jiqiang; Mou, Zhonglin

    2013-07-16

    Pathogen infection triggers a large-scale transcriptional reprogramming in plants, and the speed of this reprogramming affects the outcome of the infection. Our understanding of this process has significantly benefited from mutants that display either delayed or accelerated defense gene induction. In our previous work we demonstrated that the Arabidopsis Elongator complex subunit 2 (AtELP2) plays an important role in both basal immunity and effector-triggered immunity (ETI), and more recently showed that AtELP2 is involved in dynamic changes in histone acetylation and DNA methylation at several defense genes. However, the function of other Elongator subunits in plant immunity has not been characterized. In the same genetic screen used to identify Atelp2, we found another Elongator mutant, Atelp3-10, which mimics Atelp2 in that it exhibits a delay in defense gene induction following salicylic acid treatment or pathogen infection. Similarly to AtELP2, AtELP3 is required for basal immunity and ETI, but not for systemic acquired resistance (SAR). Furthermore, we demonstrate that both the histone acetyltransferase and radical S-adenosylmethionine domains of AtELP3 are essential for its function in plant immunity. Our results indicate that the entire Elongator complex is involved in basal immunity and ETI, but not in SAR, and support that Elongator may play a role in facilitating the transcriptional induction of defense genes through alterations to their chromatin.

  12. Alterations in chemically induced tissue injury related to all-trans-retinol pretreatment in rodents.

    PubMed

    Sauer, J M; Hooser, S B; Badger, D A; Baines, A; Sipes, I G

    1995-01-01

    Retinol (vitamin A) is an essential nutrient which has many physiological effects throughout the body. Our studies have demonstrated that retinol modulation of immune response, through alteration of macrophage and neutrophil function, can have dramatic effects on the toxicity of some compounds. Based on these studies, our current hypothesis for retinol potentiation of chemical-induced liver injury is that retinol administered to rats prior to the hepatotoxicant (CCl4 and AA in rats; and AA, APAP, and GalN in mice) primes the Kupffer cells to a more active state. This may occur in part as a result of increases in chemical mediators such as TNF from these Kupffer cells. Following hepatocyte damage by a toxicant, Kupffer cells are activated to release reactive oxygen species, immune mediators, and chemotactic factors which all serve to enhance the inflammatory response. This increased inflammatory response then results in increased injury to the already toxicant-damaged hepatocytes. In addition, retinol modulation of toxicant activation and detoxification may also make important contributions to the potentiation of some toxicants such as AA. Retinol protection of CCl4 hepatotoxicity in mice is more difficult to explain at this time but is possibly related to alterations in CCl4 metabolism in this species. Differences in response between pulmonary and liver macrophages (Kupffer cells) may explain the retinol protection from 1-NN pulmonary toxicity. Retinol may decrease the inflammatory response through downregulation of pulmonary macrophage function, thus resulting in decreased pulmonary injury. Finally, since retinol protection of cadmium toxicity in the liver and testis requires 7 days of retinol pretreatment, we suspect that retinol is inducing protective protein(s) in these organs. Aside from its normal biological role in rhe body, clinical medicine has found new uses for retinol in the treatment and prevention of some cancers, and in the treatment of certain dermatologic conditions. Since these patients are frequently administered or exposed to other potentially toxic compounds, it is obviously prudent and necessary to continue research into the effects of retinol on immune modulation and interaction with other compounds. More importantly, these studies demonstrate the modulation of immune function is one mechanism by which one chemical can influence the toxicity of another.

  13. Methamphetamine mediates immune dysregulation in a murine model of chronic viral infection

    PubMed Central

    Sriram, Uma; Haldar, Bijayesh; Cenna, Jonathan M.; Gofman, Larisa; Potula, Raghava

    2015-01-01

    Methamphetamine (METH) is a highly addictive psychostimulant that not only affects the brain and cognitive functions but also greatly impacts the host immune system, rendering the body susceptible to infections and exacerbating the severity of disease. Although there is gathering evidence about METH abuse and increased incidence of HIV and other viral infections, not much is known about the effects on the immune system in a chronic viral infection setting. We have used the lymphocytic choriomeningitis virus (LCMV) chronic mouse model of viral infection in a chronic METH environment and demonstrate that METH significantly increases CD3 marker on splenocytes and programmed death-1 (PD-1) expression on T cells, a cell surface signaling molecule known to inhibit T cell function and cause exhaustion in a lymphoid organ. Many of these METH effects were more pronounced during early stage of infection, which are gradually attenuated during later stages of infection. An essential cytokine for T-lymphocyte homeostasis, Interleukin-2 (IL-2) in serum was prominently reduced in METH-exposed infected mice. In addition, the serum pro-inflammatory (TNF, IL12 p70, IL1β, IL-6, and KC-GRO) and Th2 (IL-2, IL-10, and IL-4) cytokine profiles were also altered in the presence of METH. Interestingly CXCR3, an inflammatory chemokine receptor, showed significant increase in the METH treated LCMV infected mice. Similarly, compared to only infected mice, epidermal growth factor receptor (EGFR) in METH exposed LCMV infected mice were up regulated. Collectively, our data suggest that METH alters systemic, peripheral immune responses and modulates key markers on T cells involved in pathogenesis of chronic viral infection. PMID:26322025

  14. Blood gene expression profiles suggest altered immune function associated with symptoms of generalized anxiety disorder.

    PubMed

    Wingo, Aliza P; Gibson, Greg

    2015-01-01

    Prospective epidemiological studies found that generalized anxiety disorder (GAD) can impair immune function and increase risk for cardiovascular disease or events. Mechanisms underlying the physiological reverberations of anxiety, however, are still elusive. Hence, we aimed to investigate molecular processes mediating effects of anxiety on physical health using blood gene expression profiles of 336 community participants (157 anxious and 179 control). We examined genome-wide differential gene expression in anxiety, as well as associations between nine major modules of co-regulated transcripts in blood gene expression and anxiety. No significant differential expression was observed in women, but 631 genes were differentially expressed between anxious and control men at the false discovery rate of 0.1 after controlling for age, body mass index, race, and batch effect. Gene set enrichment analysis (GSEA) revealed that genes with altered expression levels in anxious men were involved in response of various immune cells to vaccination and to acute viral and bacterial infection, and in a metabolic network affecting traits of metabolic syndrome. Further, we found one set of 260 co-regulated genes to be significantly associated with anxiety in men after controlling for the relevant covariates, and demonstrate its equivalence to a component of the stress-related conserved transcriptional response to adversity profile. Taken together, our results suggest potential molecular pathways that can explain negative effects of GAD observed in epidemiological studies. Remarkably, even mild anxiety, which most of our participants had, was associated with observable changes in immune-related gene expression levels. Our findings generate hypotheses and provide incremental insights into molecular mechanisms mediating negative physiological effects of GAD. Published by Elsevier Inc.

  15. Microbiota and innate immunity in intestinal inflammation and neoplasia.

    PubMed

    Cario, Elke

    2013-01-01

    This review focuses on recent advances and novel insights into the mechanistic events that may link commensal microbiota and host innate immunity in the pathophysiology of intestinal inflammation and neoplasia. Unanswered questions are discussed and future perspectives in the field are highlighted. Commensal microbiota, host innate immunity, and genetics form a multidimensional network that controls homeostasis of the mucosal barrier in the intestine. Large-scale sequencing projects have begun to catalog the healthy human microbiome. Converging evidence suggests that alterations in the regulation of the complex host environment [e.g., dysbiosis and overgrowth of select commensal bacterial species, dietary factors, copresence of facultative pathogens (including viruses), and changes in mucus characteristics] may trigger aberrant innate immune signaling, thereby contributing to the development of intestinal inflammation and associated colon cancer in the susceptible individual. Genetically determined innate immune malfunction may create an inflammatory environment that promotes tumor progression (such as the TLR4-D299G mutation). The next challenging steps to be taken are to decipher changes in the human microbiome (and virome) during well defined diseased states, and relate them to intestinal mucosal immune functions and host genotypes.

  16. Complement factor H in host defense and immune evasion.

    PubMed

    Parente, Raffaella; Clark, Simon J; Inforzato, Antonio; Day, Anthony J

    2017-05-01

    Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.

  17. Immune function during space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Shearer, William T.

    2002-01-01

    It is very likely that the human immune system will be altered in astronauts exposed to the conditions of long-term space flight: isolation, containment, microgravity, radiation, microbial contamination, sleep disruption, and insufficient nutrition. In human and animal subjects flown in space, there is evidence of immune compromise, reactivation of latent virus infection, and possible development of a premalignant or malignant condition. Moreover, in ground-based space flight model investigations, there is evidence of immune compromise and reactivation of latent virus infection. All of these observations in space flight itself or in ground-based models of space flight have a strong resonance in a wealth of human pathologic conditions involving the immune system where reactivated virus infections and cancer appear as natural consequences. The clinical conditions of Epstein-Barr-driven lymphomas in transplant patients and Kaposi's sarcoma in patients with autoimmune deficiency virus come easily to mind in trying to identify these conditions. With these thoughts in mind, it is highly appropriate, indeed imperative, that careful investigations of human immunity, infection, and cancer be made by space flight researchers.

  18. Differential proteomics analysis of Frankliniella occidentalis immune response after infection with Tomato spotted wilt virus (Tospovirus).

    PubMed

    Ogada, Pamella Akoth; Kiirika, Leonard Muriithi; Lorenz, Christin; Senkler, Jennifer; Braun, Hans-Peter; Poehling, Hans-Michael

    2017-02-01

    Tomato spotted wilt virus (TSWV) is mainly vectored by Frankliniella occidentalis Pergande, and it potentially activates the vector's immune response. However, molecular background of the altered immune response is not clearly understood. Therefore, using a proteomic approach, we investigated the immune pathways that are activated in F. occidentalis larvae after 24 h exposure to TSWV. Two-dimensional isoelectric focusing/sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D-IEF/SDS/PAGE) combined with mass spectrometry (MS), were used to identify proteins that were differentially expressed upon viral infection. High numbers of proteins were abundantly expressed in F. occidentalis exposed to TSWV (73%) compared to the non-exposed (27%), with the majority functionally linked to the innate immune system such as: signaling, stress response, defense response, translation, cellular lipids and nucleotide metabolism. Key proteins included: 70 kDa heat shock proteins, Ubiquitin and Dermcidin, among others, indicative of a responsive pattern of the vector's innate immune system to viral infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung

    PubMed Central

    Florez‐Sampedro, Laura; Song, Shanshan

    2018-01-01

    Abstract In healthy circumstances the immune system coordinates tissue repair responses in a tight balance that entails efficient inflammation for removal of potential threats, proper wound closure, and regeneration to regain tissue function. Pathological conditions, continuous exposure to noxious agents, and even ageing can dysregulate immune responses after injury. This dysregulation can lead to a chronic repair mechanism known as fibrosis. Alterations in wound healing can occur in many organs, but our focus lies with the lung as it requires highly regulated immune and repair responses with its continuous exposure to airborne threats. Dysregulated repair responses can lead to pulmonary fibrosis but the exact reason for its development is often not known. Here, we review the diversity of innate immune cells of myeloid origin that are involved in tissue repair and we illustrate how these cell types can contribute to the development of pulmonary fibrosis. Moreover, we briefly discuss the effect of age on innate immune responses and therefore on wound healing and we conclude with the implications of current knowledge on the avenues for future research. PMID:29721324

  20. Cell Surface Changes Associated with Cellular Immune Reactions in Drosophila

    NASA Astrophysics Data System (ADS)

    Nappi, Anthony J.; Silvers, Michael

    1984-09-01

    In Drosophila melanogaster a temperature-induced change in immune competence accompanies cell surface alterations that cause its blood cells to adhere and to encapsulate a parasite. At 29 degrees C the blood cells of the tumorous-lethal (Tuml) mutant show a high degree of immune competence and encapsulate the eggs of the parasitic wasp Leptopilina heterotoma. At 21 degrees C the blood cells are essentially immune incompetent. High percentages of lectin binding cells were found under conditions which potentiated cellular encapsulation responses. Some immune reactive blood cells did not bind lectin. The low percentages of lectin binding cells in susceptible hosts suggest that developing parasites alter the cell surface of the blood cells of immune reactive hosts.

  1. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis—Masters of Survival and Clonality?

    PubMed Central

    Pleyer, Lisa; Valent, Peter; Greil, Richard

    2016-01-01

    Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs. PMID:27355944

  2. Neuron-Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region.

    PubMed

    Hossain, Mohammad Zakir; Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-09-26

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate-glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron-glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP.

  3. Neuron–Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region

    PubMed Central

    Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-01-01

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate–glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron–glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP. PMID:28954391

  4. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality?

    PubMed

    Pleyer, Lisa; Valent, Peter; Greil, Richard

    2016-06-27

    Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the "reprogramming" of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs.

  5. Innate lymphoid cells in autoimmunity and chronic inflammatory diseases.

    PubMed

    Xiong, Tingting; Turner, Jan-Eric

    2018-03-22

    Abnormal activation of the innate immune system is a common feature of autoimmune and chronic inflammatory diseases. Since their identification as a separate family of leukocytes, innate lymphoid cells (ILCs) have emerged as important effector cells of the innate immune system. Alterations in ILC function and subtype distribution have been observed in a variety of immune-mediated diseases in humans and evidence from experimental models suggests a subtype specific role of ILCs in the pathophysiology of autoimmune inflammation. In this review, we discuss recent advances in the understanding of ILC biology in autoimmune and chronic inflammatory disorders, including multiple sclerosis, inflammatory bowel diseases, psoriasis, and rheumatic diseases, with a special focus on the potential of ILCs as therapeutic targets for the development of novel treatment strategies in humans.

  6. Immunity and Inflammation in Epilepsy

    PubMed Central

    Vezzani, Annamaria; Lang, Bethan; Aronica, Eleonora

    2016-01-01

    This review reports the available evidence on the activation of the innate and adaptive branches of the immune system and the related inflammatory processes in epileptic disorders and the putative pathogenic role of inflammatory processes developing in the brain, as indicated by evidence from experimental and clinical research. Indeed, there is increasing knowledge supporting a role of specific inflammatory mediators and immune cells in the generation and recurrence of epileptic seizures, as well as in the associated neuropathology and comorbidities. Major challenges in this field remain: a better understanding of the key inflammatory pathogenic pathways activated in chronic epilepsy and during epileptogenesis, and how to counteract them efficiently without altering the homeostatic tissue repair function of inflammation. The relevance of this information for developing novel therapies will be highlighted. PMID:26684336

  7. Survival and Evolution of CRISPR–Cas System in Prokaryotes and Its Applications

    PubMed Central

    Shabbir, Muhammad Abu Bakr; Hao, Haihong; Shabbir, Muhammad Zubair; Hussain, Hafiz Iftikhar; Iqbal, Zahid; Ahmed, Saeed; Sattar, Adeel; Iqbal, Mujahid; Li, Jun; Yuan, Zonghui

    2016-01-01

    Prokaryotes have developed numerous innate immune mechanisms in order to fend off bacteriophage or plasmid attack. One of these immune systems is clustered regularly interspaced short palindromic repeats (CRISPR). CRISPR-associated proteins play a key role in survival of prokaryotes against invaders, as these systems cleave DNA of foreign genetic elements. Beyond providing immunity, these systems have significant impact in altering the bacterial physiology in term of its virulence and pathogenicity, as well as evolution. Also, due to their diverse nature of functionality, cas9 endoribonuclease can be easily reprogrammed with the help of guide RNAs, showing unprecedented potential and significance for gene editing in treating genetic diseases. Here, we also discuss the use of NgAgo–gDNA system in genome editing of human cells. PMID:27725818

  8. Abdominal pain in Irritable Bowel Syndrome: a review of putative psychological, neural and neuro-immune mechanisms.

    PubMed

    Elsenbruch, Sigrid

    2011-03-01

    Chronic abdominal pain is a common symptom of great clinical significance in several areas of medicine. In many cases no organic cause can be established resulting in the classification as functional gastrointestinal disorder. Irritable Bowel Syndrome (IBS) is the most common of these conditions and is considered an important public health problem because it can be disabling and constitutes a major social and economic burden given the lack of effective treatments. IBS aetiology is most likely multi-factorial involving biological, psychological and social factors. Visceral hyperalgesia (or hypersensitivity) and visceral hypervigilance, which could be mediated by peripheral, spinal, and/or central pathways, constitute key concepts in current research on pathophysiological mechanisms of visceral hyperalgesia. The role of central nervous system mechanisms along the "brain-gut axis" is increasingly appreciated, owing to accumulating evidence from brain imaging studies that neural processing of visceral stimuli is altered in IBS together with long-standing knowledge regarding the contribution of stress and negative emotions to symptom frequency and severity. At the same time, there is also growing evidence suggesting that peripheral immune mechanisms and disturbed neuro-immune communication could play a role in the pathophysiology of visceral hyperalgesia. This review presents recent advances in research on the pathophysiology of visceral hyperalgesia in IBS, with a focus on the role of stress and anxiety in central and peripheral response to visceral pain stimuli. Together, these findings support that in addition to lower pain thresholds displayed by a significant proportion of patients, the evaluation of pain appears to be altered in IBS. This may be attributable to affective disturbances, negative emotions in anticipation of or during visceral stimulation, and altered pain-related expectations and learning processes. Disturbed "top-down" emotional and cognitive pain modulation in IBS is reflected by functional and possibly structural brain changes involving prefrontal as well as cingulate regions. At the same time, there is growing evidence linking peripheral and mucosal immune changes and abdominal pain in IBS, supporting disturbed peripheral pain signalling. Findings in post-infectious IBS emphasize the interaction between centrally-mediated psychosocial risk factors and local inflammation in predicting long-term IBS symptoms. Investigating afferent immune-to-brain communication in visceral hyperalgesia as a component of the sickness response constitutes a promising future research goal. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. MUC1-specific CTLs are non-functional within a pancreatic tumor microenvironment.

    PubMed

    Mukherjee, P; Ginardi, A R; Madsen, C S; Tinder, T L; Jacobs, F; Parker, J; Agrawal, B; Longenecker, B M; Gendler, S J

    2001-01-01

    Pancreatic cancer is a highly aggressive, treatment refractory disease and is the fourth leading cause of death in the United States. In humans, 90% of pancreatic adenocarcinomas over-express altered forms of a tumor-associated antigen, MUC1 (an epithelial mucin glycoprotein), which is a target for immunotherapy. Using a clinically relevant mouse model of pancreas cancer that demonstrates peripheral and central tolerance to human MUC1 and develops spontaneous tumors of the pancreas, we have previously reported the presence of functionally active, low affinity, MUC1-specific precursor cytotoxic T cells (pCTLs). Hypothesis for this study is that MUC1-based immunization may enhance the low level MUC1-specific immunity that may lead to an effective anti-tumor response. Data demonstrate that MUC1 peptide-based immunization elicits mature MUC1-specific CTLs in the peripheral lymphoid organs. The mature CTLs secrete IFN-gamma and are cytolytic against MUC1-expressing tumor cells in vitro. However, active CTLs that infiltrate the pancreas tumor microenvironment become cytolytically anergic and are tolerized to MUC1 antigen, allowing the tumor to grow. We demonstrate that the CTL tolerance could be reversed at least in vitro with the use of anti-CD40 co-stimulation. The pancreas tumor cells secrete immunosuppressive cytokines, including IL-10 and TGF-beta that are partly responsible for the down-regulation of CTL activity. In addition, they down-regulate their MHC class I molecules to avoid immune recognition. CD4+ CD25+ T regulatory cells, which secrete IL-10, were also found in the tumor environment. Together these data indicate the use of several immune evasion mechanisms by tumor cells to evade CTL killing. Thus altering the tumor microenvironment to make it more conducive to CTL killing may be key in developing a successful anti-cancer immunotherapy.

  10. Evaluation of Montanide™ ISA 71 VG Adjuvant during Profilin Vaccination against Experimental Coccidiosis

    PubMed Central

    Lillehoj, Hyun S.; Lee, Sung Hyen; Lee, Kyung Woo; Bertrand, François; Dupuis, Laurent; Deville, Sébastien; Ben Arous, Juliette; Lillehoj, Erik P.

    2013-01-01

    Chickens were immunized subcutaneously with an Eimeria recombinant profilin protein plus Montanide™ ISA 70 VG (ISA 70) or Montanide™ ISA 71 VG (ISA 71) water-in-oil adjuvants, or with profilin alone, and comparative RNA microarray hybridizations were performed to ascertain global transcriptome changes induced by profilin/ISA 70 vs. profilin alone and by profilin/ISA 71 vs. profilin alone. While immunization with profilin/ISA 70 vs. profilin alone altered the levels of more total transcripts compared with profilin/ISA 71 vs. profilin alone (509 vs. 296), the latter was associated with a greater number of unique biological functions, and a larger number of genes within these functions, compared with the former. Further, canonical pathway analysis identified 10 pathways that were associated with genes encoding the altered transcripts in animals immunized with profilin/ISA 71 vs. profilin alone, compared with only 2 pathways in profilin/ISA 70 vs. profilin alone. Therefore, ISA 71 was selected as a candidate adjuvant in conjunction with profilin vaccination for in vivo disease protection studies. Vaccination with profilin/ISA 71 was associated with greater body weight gain following E. acervulina infection, and decreased parasite fecal shedding after E. maxima infection, compared with profilin alone. Anti-profilin antibody levels were higher in sera of E. maxima- and E. tenella-infected chickens vaccinated with profilin/ISA 71 compared with profilin alone. Finally, the levels of transcripts encoding interferon-γ, interleukin (IL)-2, IL-10, and IL-17A were increased in intestinal lymphocytes from E. acervulina-, E. maxima-, and/or E. tenella-infected chickens vaccinated with profilin/ISA 71 compared with profilin alone. None of these effects were seen in chickens injected with ISA 71 alone indicating that the adjuvant was not conferring non-specific immune stimulation. These results suggest that profilin plus ISA 71 augments protective immunity against selective Eimeria species in chickens. PMID:23593150

  11. Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study

    PubMed Central

    Zhang, Ting; Tang, Meng; Zhang, Shanshan; Hu, Yuanyuan; Li, Han; Zhang, Tao; Xue, Yuying; Pu, Yuepu

    2017-01-01

    The numerous increasing use of carbon nanotubes (CNTs) derived from nanotechnology has raised concerns about their biosafety and potential toxicity. CNTs cause immunologic dysfunction and limit the application of CNTs in biomedicine. The immunological responses induced by pristine multi-walled carbon nanotubes (p-MWCNTs) and PEGylated multi-walled carbon nanotubes (MWCNTs-PEG) on BALB/c mice via an intravenous administration were investigated. The results reflect that the p-MWCNTs induced significant increases in spleen, thymus, and lung weight. Mice treated with p-MWCNTs showed altered lymphocyte populations (CD3+, CD4+, CD8+, and CD19+) in peripheral blood and increased serum IgM and IgG levels, and splenic macrophage ultrastructure indicated mitochondria swelling. p-MWCNTs inhibited humoral and cellular immunity function and were associated with decreased immune responses against sheep erythrocytes and serum hemolysis level. Natural killer (NK) activity was not modified by two types of MWCNTs. In comparison with two types of MWCNTs, for a same dose, p-MWCNTs caused higher levels of inflammation and immunosuppression than MWCNTs-PEG. The results of immunological function suggested that after intravenous administration with p-MWCNTs caused more damage to systemic immunity than MWCNTs-PEG. Here, we demonstrated that a surface functional modification on MWCNTs reduces their immune perturbations in vivo. The chemistry-modified MWCNTs change their preferred immune response in vivo and reduce the immunotoxicity of p-MWCNTs. PMID:28280324

  12. Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study.

    PubMed

    Zhang, Ting; Tang, Meng; Zhang, Shanshan; Hu, Yuanyuan; Li, Han; Zhang, Tao; Xue, Yuying; Pu, Yuepu

    2017-01-01

    The numerous increasing use of carbon nanotubes (CNTs) derived from nanotechnology has raised concerns about their biosafety and potential toxicity. CNTs cause immunologic dysfunction and limit the application of CNTs in biomedicine. The immunological responses induced by pristine multi-walled carbon nanotubes (p-MWCNTs) and PEGylated multi-walled carbon nanotubes (MWCNTs-PEG) on BALB/c mice via an intravenous administration were investigated. The results reflect that the p-MWCNTs induced significant increases in spleen, thymus, and lung weight. Mice treated with p-MWCNTs showed altered lymphocyte populations (CD3 + , CD4 + , CD8 + , and CD19 + ) in peripheral blood and increased serum IgM and IgG levels, and splenic macrophage ultrastructure indicated mitochondria swelling. p-MWCNTs inhibited humoral and cellular immunity function and were associated with decreased immune responses against sheep erythrocytes and serum hemolysis level. Natural killer (NK) activity was not modified by two types of MWCNTs. In comparison with two types of MWCNTs, for a same dose, p-MWCNTs caused higher levels of inflammation and immunosuppression than MWCNTs-PEG. The results of immunological function suggested that after intravenous administration with p-MWCNTs caused more damage to systemic immunity than MWCNTs-PEG. Here, we demonstrated that a surface functional modification on MWCNTs reduces their immune perturbations in vivo. The chemistry-modified MWCNTs change their preferred immune response in vivo and reduce the immunotoxicity of p-MWCNTs.

  13. Genetic alterations and tumor immune attack in Yo paraneoplastic cerebellar degeneration.

    PubMed

    Small, Mathilde; Treilleux, Isabelle; Couillault, Coline; Pissaloux, Daniel; Picard, Géraldine; Paindavoine, Sandrine; Attignon, Valery; Wang, Qing; Rogemond, Véronique; Lay, Stéphanie; Ray-Coquard, Isabelle; Pfisterer, Jacobus; Joly, Florence; Du Bois, Andreas; Psimaras, Dimitri; Bendriss-Vermare, Nathalie; Caux, Christophe; Dubois, Bertrand; Honnorat, Jérôme; Desestret, Virginie

    2018-04-01

    Paraneoplastic cerebellar degenerations with anti-Yo antibodies (Yo-PCD) are rare syndromes caused by an auto-immune response against neuronal antigens (Ags) expressed by tumor cells. However, the mechanisms responsible for such immune tolerance breakdown are unknown. We characterized 26 ovarian carcinomas associated with Yo-PCD for their tumor immune contexture and genetic status of the 2 onconeural Yo-Ags, CDR2 and CDR2L. Yo-PCD tumors differed from the 116 control tumors by more abundant T and B cells infiltration occasionally organized in tertiary lymphoid structures harboring CDR2L protein deposits. Immune cells are mainly in the vicinity of apoptotic tumor cells, revealing tumor immune attack. Moreover, contrary to un-selected ovarian carcinomas, 65% of our Yo-PCD tumors presented at least one somatic mutation in Yo-Ags, with a predominance of missense mutations. Recurrent gains of the CDR2L gene with tumor protein overexpression were also present in 59% of Yo-PCD patients. Overall, each Yo-PCD ovarian carcinomas carried at least one genetic alteration of Yo-Ags. These data demonstrate an association between massive infiltration of Yo-PCD tumors by activated immune effector cells and recurrent gains and/or mutations in autoantigen-encoding genes, suggesting that genetic alterations in tumor cells trigger immune tolerance breakdown and initiation of the auto-immune disease.

  14. Activation of colo-rectal high-threshold afferent nerves by Interleukin-2 is tetrodotoxin-sensitive and upregulated in a mouse model of chronic visceral hypersensitivity.

    PubMed

    Campaniello, M A; Harrington, A M; Martin, C M; Ashley Blackshaw, L; Brierley, S M; Hughes, P A

    2016-01-01

    Chronic visceral pain is a defining feature of irritable bowel syndrome (IBS). IBS patients often show alterations in innate and adaptive immune function which may contribute to symptoms. Immune mediators are known to modulate the activity of viscero-sensory afferent nerves, but the focus has been on the innate immune system. Interleukin-2 (IL-2) is primarily associated with adaptive immune responses but its effects on colo-rectal afferent function in health or disease are unknown. Myeloperoxidase (MPO) activity determined the extent of inflammation in health, acute trinitrobenzene-sulfonic acid (TNBS) colitis, and in our post-TNBS colitis model of chronic visceral hypersensitivity (CVH). The functional effects of IL-2 on high-threshold colo-rectal afferents and the expression of IL-2R and NaV 1.7 mRNA in colo-rectal dorsal root ganglia (DRG) neurons were compared between healthy and CVH mice. MPO activity was increased during acute colitis, but subsided to levels comparable to health in CVH mice. IL-2 caused direct excitation of colo-rectal afferents that was blocked by tetrodotoxin. IL-2 did not affect afferent mechanosensitivity in health or CVH. However, an increased proportion of afferents responded directly to IL-2 in CVH mice compared with controls (73% vs 33%; p < 0.05), and the abundance of IL-2R and NaV 1.7 mRNA was increased 3.5- and 2-fold (p < 0.001 for both) in colo-rectal DRG neurons. IL-2, an immune mediator from the adaptive arm of the immune response, affects colo-rectal afferent function, indicating these effects are not restricted to innate immune mediators. Colo-rectal afferent sensitivity to IL-2 is increased long after healing from inflammation. © 2015 John Wiley & Sons Ltd.

  15. Effect of in ovo exposure to an organochlorine mixture extracted from double crested cormorant eggs (Phalacrocorax auritus) and PCB 126 on immune function of juvenile chickens

    USGS Publications Warehouse

    Lavoie, E.T.; Wiley, F.; Grasman, K.A.; Tillitt, D.E.; Sikarskie, J.G.; Bowerman, W.W.

    2007-01-01

    Organochlorine (OC) contaminants including polychlorinated biphenyls (PCBs) and p, p'-dichlorodiphenyldichloroethylene (DDE) have been associated with immune modulation in wild fish-eating birds from the Great Lakes. The objective of this study was to evaluate the immune function of juvenile chickens after in ovo exposure to PCB 126 or an environmentally relevant OC mixture extracted from eggs of double crested cormorants (Phalacrocorax auritus) from Green Bay, Lake Michigan, USA. Fertile white leghorn chicken (Gallus domesticus) eggs were injected before incubation with 0.55-1.79 ng TCDD equivalents (TEQ)/egg PCB 126 and 1.2-4.9 ng TEQs/egg of cormorant egg extract into the air cell in two separate experiments. After hatching, the immune function was tested using in vivo phytohemagglutinin (PHA) skin response in 11-day-old chicks, antibody titers to immunization with sheep red blood cells (SRBC) in 28-day-old chicks, and, at necropsy, thymus and bursal mass and cellularity. PCB 126 decreased antibody titers at all doses and decreased the thymus and bursa index but not cellularity at 1.79 ng TEQ/egg. The cormorant egg extract caused no significant alterations in immune function even though it has been demonstrated as immunotoxic in chicken embryos. However, twofold to threefold increases in total anti-SRBC titers in 28-day-old chicks exposed to 1.2 or 2.4 ng TEQ/egg of cormorant extract were similar to elevations in anti-SRBC titer observed in Caspian tern (Sterna caspia) chicks from a highly OC-contaminated site in Saginaw Bay, Lake Huron. Posthatch exposure to OC through fish consumption in addition to in ovo OC exposure might be associated with the immune modulation reported in wild birds. Chicks in this study might have begun to compensate for embryonic immunotoxicity by the ages at which we studied them. ?? 2007 Springer Science+Business Media, LLC.

  16. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice

    PubMed Central

    Smith, Carli J.; Emge, Jacob R.; Berzins, Katrina; Lung, Lydia; Khamishon, Rebecca; Shah, Paarth; Rodrigues, David M.; Sousa, Andrew J.; Reardon, Colin; Sherman, Philip M.; Barrett, Kim E.

    2014-01-01

    The gut-brain-microbiota axis is increasingly recognized as an important regulator of intestinal physiology. Exposure to psychological stress causes activation of the hypothalamic-pituitary-adrenal (HPA) axis and causes altered intestinal barrier function, intestinal dysbiosis, and behavioral changes. The primary aim of this study was to determine whether the effects of psychological stress on intestinal physiology and behavior, including anxiety and memory, are mediated by the adaptive immune system. Furthermore, we wanted to determine whether treatment with probiotics would normalize these effects. Here we demonstrate that B and T cell-deficient Rag1−/− mice displayed altered baseline behaviors, including memory and anxiety, accompanied by an overactive HPA axis, increased intestinal secretory state, dysbiosis, and decreased hippocampal c-Fos expression. Both local (intestinal physiology and microbiota) and central (behavioral and hippocampal c-Fos) changes were normalized by pretreatment with probiotics, indicating an overall benefit on health conferred by changes in the microbiota, independent of lymphocytes. Taken together, these findings indicate a role for adaptive immune cells in maintaining normal intestinal and brain health in mice and show that probiotics can overcome this immune-mediated deficit in the gut-brain-microbiota axis. PMID:25190473

  17. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice.

    PubMed

    Smith, Carli J; Emge, Jacob R; Berzins, Katrina; Lung, Lydia; Khamishon, Rebecca; Shah, Paarth; Rodrigues, David M; Sousa, Andrew J; Reardon, Colin; Sherman, Philip M; Barrett, Kim E; Gareau, Mélanie G

    2014-10-15

    The gut-brain-microbiota axis is increasingly recognized as an important regulator of intestinal physiology. Exposure to psychological stress causes activation of the hypothalamic-pituitary-adrenal (HPA) axis and causes altered intestinal barrier function, intestinal dysbiosis, and behavioral changes. The primary aim of this study was to determine whether the effects of psychological stress on intestinal physiology and behavior, including anxiety and memory, are mediated by the adaptive immune system. Furthermore, we wanted to determine whether treatment with probiotics would normalize these effects. Here we demonstrate that B and T cell-deficient Rag1(-/-) mice displayed altered baseline behaviors, including memory and anxiety, accompanied by an overactive HPA axis, increased intestinal secretory state, dysbiosis, and decreased hippocampal c-Fos expression. Both local (intestinal physiology and microbiota) and central (behavioral and hippocampal c-Fos) changes were normalized by pretreatment with probiotics, indicating an overall benefit on health conferred by changes in the microbiota, independent of lymphocytes. Taken together, these findings indicate a role for adaptive immune cells in maintaining normal intestinal and brain health in mice and show that probiotics can overcome this immune-mediated deficit in the gut-brain-microbiota axis. Copyright © 2014 the American Physiological Society.

  18. Cytokines and immune surveillance in humans

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1994-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. Among the parameters shown, by us and others, to be affected is the production of interferons. Interferons are a family of cytokines that are antiviral and play a major role in regulating immune responses that control resistance to infection. Alterations in interferon and other cytokine production and activity could result in changes in immunity and a possible compromise of host defenses against both opportunistic and external infections. The purpose of the present study is to explore further the effects of space flight on cyotokines and cytokine-directed immunological function. Among the tests carried out are interferon-alpha production, interferon-gamma production, interleukin-1 and -2 production, signal transduction in neutrophils, signal transduction in monocytes, and monocyte phagocytic activity. The experiments will be performed using peripheral blood obtained from human subjects. It is our intent to eventually carry out these experiments using astronauts as subjects to determine the effects of space flight on cytokine production and activity. However, these subjects are not currently available. Until they become available, we will carry out these experiments using subjects maintained in the bed-rest model for microgravity.

  19. Diet-induced obesity attenuates endotoxin-induced cognitive deficits.

    PubMed

    Setti, Sharay E; Littlefield, Alyssa M; Johnson, Samantha W; Kohman, Rachel A

    2015-03-15

    Activation of the immune system can impair cognitive function, particularly on hippocampus dependent tasks. Several factors such as normal aging and prenatal experiences can modify the severity of these cognitive deficits. One additional factor that may modulate the behavioral response to immune activation is obesity. Prior work has shown that obesity alters the activity of the immune system. Whether diet-induced obesity (DIO) influences the cognitive deficits associated with inflammation is currently unknown. The present study explored whether DIO alters the behavioral response to the bacterial endotoxin, lipopolysaccharide (LPS). Female C57BL/6J mice were fed a high-fat (60% fat) or control diet (10% fat) for a total of five months. After consuming their respective diets for four months, mice received an LPS or saline injection and were assessed for alterations in spatial learning. One month later, mice received a second injection of LPS or saline and tissue samples were collected to assess the inflammatory response within the periphery and central nervous system. Results showed that LPS administration impaired spatial learning in the control diet mice, but had no effect in DIO mice. This lack of a cognitive deficit in the DIO female mice is likely due to a blunted inflammatory response within the brain. While cytokine production within the periphery (i.e., plasma, adipose, and spleen) was similar between the DIO and control mice, the DIO mice failed to show an increase in IL-6 and CD74 in the brain following LPS administration. Collectively, these data indicate that DIO can reduce aspects of the neuroinflammatory response as well as blunt the behavioral reaction to an immune challenge. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. The Bidirectional Relationship between Sleep and Immunity against Infections

    PubMed Central

    Ibarra-Coronado, Elizabeth G.; Pantaleón-Martínez, Ana Ma.; Velazquéz-Moctezuma, Javier; Prospéro-García, Oscar; Méndez-Díaz, Mónica; Pérez-Tapia, Mayra; Pavón, Lenin; Morales-Montor, Jorge

    2015-01-01

    Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed. PMID:26417606

  1. The Bidirectional Relationship between Sleep and Immunity against Infections.

    PubMed

    Ibarra-Coronado, Elizabeth G; Pantaleón-Martínez, Ana Ma; Velazquéz-Moctezuma, Javier; Prospéro-García, Oscar; Méndez-Díaz, Mónica; Pérez-Tapia, Mayra; Pavón, Lenin; Morales-Montor, Jorge

    2015-01-01

    Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed.

  2. Dietary supplementation with purified citrus limonin glucoside does not alter ex vivo functions of circulating T lymphocytes or monocytes in overweight/obese human adults

    USDA-ARS?s Scientific Manuscript database

    Overweight/obesity is associated with chronic inflammation and impairs both innate and adaptive immune responses. Limonoids found in citrus fruits have shown health benefits in human and animal studies. In a double-blind, randomized, crossover study, 10 overweight/obese human subjects were fed pur...

  3. Functional Implications of the IL-23/IL-17 Immune Axis in Schizophrenia.

    PubMed

    Debnath, Monojit; Berk, Michael

    2017-12-01

    The aetiology of schizophrenia seems to stem from complex interactions amongst environmental, genetic, metabolic, immunologic and oxidative components. Chronic low-grade inflammation has been persistently linked to schizophrenia, and this has primarily been based on the findings derived from Th1/Th2 cytokine balance. While the IL-23/IL-17 axis plays crucial role in the pathogenesis of several immune-mediated disorders, it has remained relatively unexplored in neuropsychiatric disorders. Altered levels of cytokines related to IL-23/IL-17 axis have been observed in schizophrenia patients in a few studies. In addition, other indirect factors known to confer schizophrenia risk like complement activation and altered gut microbiota are shown to modulate the IL-23/IL-17 axis. These preliminary observations provide crucial clues about the functional implications of IL-23/IL-17 axis in schizophrenia. In this review, an attempt has been made to highlight the biology of IL-23/IL-17 axis and its relevance to schizophrenia risk and pathogenesis. Given the pathogenic potential of the IL-23/IL-17 axis, therapeutic targeting of this axis may be a promising approach to benefit patients suffering from this devastating disorder.

  4. Cosmos 2229 immunology study (Experiment K-8-07)

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1993-01-01

    The purpose of the current study was to further validate use of the rhesus monkey as a model for humans in future space flight testing. The areas of immunological importance examined in the Cosmos 2229 flight were represented by two sets of studies. The first set of studies determined the effect of space flight on the ability of bone marrow cells to respond to granulocyte/monocyte colony stimulating factor (GM-CSF). GM-CSF is an important regulator in the differentiation of bone marrow cells of both monocyte/macrophage and granulocyte lineages and any change in the ability of these cells to respond to GM-CSF can result in altered immune function. A second set of studies determined space flight effects on the expression of cell surface markers on both spleen and bone marrow cells. Immune cell markers included in this study were those for T-cell, B-cell, natural killer cell, and interleukin-2 populations. Variations from a normal cell population percentage, as represented by these markers, can be correlated with alterations in immunological function. Cells were stained with fluorescein-labelled antibodies directed against the appropriate antigens, and then analyzed using a flow cytometer.

  5. Innate Immunity and Biomaterials at the Nexus: Friends or Foes.

    PubMed

    Christo, Susan N; Diener, Kerrilyn R; Bachhuka, Akash; Vasilev, Krasimir; Hayball, John D

    2015-01-01

    Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical "antigen." In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a "combined" immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.

  6. Cell mechanics and immune system link up to fight infections

    NASA Astrophysics Data System (ADS)

    Ekpenyong, Andrew; Man, Si Ming; Tourlomousis, Panagiotis; Achouri, Sarra; Cammarota, Eugenia; Hughes, Katherine; Rizzo, Alessandro; Ng, Gilbert; Guck, Jochen; Bryant, Clare

    2015-03-01

    Infectious diseases, in which pathogens invade and colonize host cells, are responsible for one third of all mortality worldwide. Host cells use special proteins (immunoproteins) and other molecules to fight viral and bacterial invaders. The mechanisms by which immunoproteins enable cells to reduce bacterial loads and survive infections remain unclear. Moreover, during infections, some immunoproteins are known to alter the cytoskeleton, the structure that largely determines cellular mechanical properties. We therefore used an optical stretcher to measure the mechanical properties of primary immune cells (bone marrow derived macrophages) during bacterial infection. We found that macrophages become stiffer upon infection. Remarkably, macrophages lacking the immunoprotein, NLR-C4, lost the stiffening response to infection. This in vitro result correlates with our in vivo data whereby mice lacking NLR-C4 have more lesions and hence increased bacterial distribution and spread. Thus, the immune-protein-dependent increase in cell stiffness in response to bacterial infection (in vitro result) seems to have a functional role in the system level fight against pathogens (in vivo result). We will discuss how this functional link between cell mechanical properties and innate immunity, effected by actin polymerization, reduces the spread of infection.

  7. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus.

    PubMed

    Momtazi-Borojeni, Amir Abbas; Haftcheshmeh, Saeed Mohammadian; Esmaeili, Seyed-Alireza; Johnston, Thomas P; Abdollahi, Elham; Sahebkar, Amirhossein

    2018-02-01

    Curcumin is a polyphenol natural product isolated from turmeric, interacting with different cellular and molecular targets and, consequently, showing a wide range of pharmacological effects. Recent preclinical and clinical trials have revealed immunomodulatory properties of curcumin that arise from its effects on immune cells and mediators involved in the immune response, such as various T-lymphocyte subsets and dendritic cells, as well as different inflammatory cytokines. Systemic lupus erythematosus (SLE) is an inflammatory, chronic autoimmune-mediated disease characterized by the presence of autoantibodies, deposition of immune complexes in various organs, recruitment of autoreactive and inflammatory T cells, and excessive levels of plasma proinflammatory cytokines. The function and numbers of dendritic cells and T cell subsets, such as T helper 1 (Th1), Th17, and regulatory T cells have been found to be significantly altered in SLE. In the present report, we reviewed the results of in vitro, experimental (pre-clinical), and clinical studies pertaining to the modulatory effects that curcumin produces on the function and numbers of dendritic cells and T cell subsets, as well as relevant cytokines that participate in SLE. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior

    PubMed Central

    Wohleb, Eric S.; McKim, Daniel B.; Sheridan, John F.; Godbout, Jonathan P.

    2015-01-01

    HIGHLIGHTS Psychological stress activates neuroendocrine pathways that alter immune responses.Stress-induced alterations in microglia phenotype and monocyte priming leads to aberrant peripheral and central inflammation.Elevated pro-inflammatory cytokine levels caused by microglia activation and recruitment of monocytes to the brain contribute to development and persistent anxiety-like behavior.Mechanisms that mediate interactions between microglia, endothelial cells, and macrophages and how these contribute to changes in behavior are discussed.Sensitization of microglia and re-distribution of primed monocytes are implicated in re-establishment of anxiety-like behavior. Psychological stress causes physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD), revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain and how dynamic interactions between microglia, endothelial cells, and brain macrophages lead to maladaptive behavioral responses. PMID:25653581

  9. ALTERATIONS OF MACROPHAGE FUNCTIONS BY MEDIATORS FROM LYMPHOCYTES

    PubMed Central

    Nathan, Carl F.; Karnovsky, Manfred L.; David, John R.

    1971-01-01

    Sensitized lymphocytes were incubated in vitro with the specific antigen Supernatants from these cultures were chromatographed on Sephadex G-100 columns. Supernatant fractions containing MIF, chemotactic factor, and lymphotoxin, but free of antigen and antibody, were incubated with normal peritoneal exudate macrophages. Macrophage adherence, phagocytosis, spreading, motility, and direct hexose monophosphate oxidation were enhanced, while protein synthesis was unaffected. Thus, antigen-stimulated lymphocytes secrete a factor or factors which enhance certain macrophage functions. Implications for models of cellular immunity and cellular hypersensitivity are discussed. PMID:5576335

  10. Getting an Insight into the Complexity of Major Chronic Inflammatory and Degenerative Diseases: A Potential New Systemic Approach to Their Treatment.

    PubMed

    Biava, Pier M; Norbiato, Guido

    2015-01-01

    As the modern society is troubled by multi-factorial diseases, research has been conducted on complex realities including chronic inflammation, cancer, obesity, HIV infection, metabolic syndrome and its detrimental cardiovascular complications as well as depression and other brain disorders. Deterioration of crucial homeostatic mechanisms in such diseases invariably results in activation of inflammatory mediators, chronic inflammation, loss in immunological function, increased susceptibility to diseases, alteration of metabolism, decrease of energy production and neuro-cognitive decline. Regulation of genes expression by epigenetic code is the dominant mechanism for the transduction of environmental inputs, such as stress and inflammation to lasting physiological changes. Acute and chronic stress determines DNA methylation and histone modifications in brain regions which may contribute to neuro-degenerative disorders. Nuclear glucocorticoids receptor interacts with the epigenoma resulting in a cortisol resistance status associated with a deterioration of the metabolic and immune functions. Gonadal steroids receptors have a similar capacity to produce epigenomic reorganization of chromatine structure. Epigenomic-induced reduction in immune cells telomeres length has been observed in many degenerative diseases, including all types of cancer. The final result of these epigenetic alterations is a serious damage to the neuro-endocrine-immune-metabolic adaptive systems. In this study, we propose a treatment with stem cells differentiation stage factors taken from zebrafish embryos which are able to regulate the genes expression of normal and pathological stem cells in a different specific way.

  11. IDO2 is critical for IDO1-mediated T-cell regulation and exerts a non-redundant function in inflammation.

    PubMed

    Metz, Richard; Smith, Courtney; DuHadaway, James B; Chandler, Phillip; Baban, Babak; Merlo, Lauren M F; Pigott, Elizabeth; Keough, Martin P; Rust, Sonja; Mellor, Andrew L; Mandik-Nayak, Laura; Muller, Alexander J; Prendergast, George C

    2014-07-01

    IDO2 is implicated in tryptophan catabolism and immunity but its physiological functions are not well established. Here we report the characterization of mice genetically deficient in IDO2, which develop normally but exhibit defects in IDO-mediated T-cell regulation and inflammatory responses. Construction of this strain was prompted in part by our discovery that IDO2 function is attenuated in macrophages from Ido1 (-/-) mice due to altered message splicing, generating a functional mosaic with implications for interpreting findings in Ido1 (-/-) mice. No apparent defects were observed in Ido2 (-/-) mice in embryonic development or hematopoietic differentiation, with wild-type profiles documented for kynurenine in blood serum and for immune cells in spleen, lymph nodes, peritoneum, thymus and bone marrow of naive mice. In contrast, upon immune stimulation we determined that IDO1-dependent T regulatory cell generation was defective in Ido2 (-/-) mice, supporting Ido1-Ido2 genetic interaction and establishing a functional role for Ido2 in immune modulation. Pathophysiologically, both Ido1 (-/-) and Ido2 (-/-) mice displayed reduced skin contact hypersensitivity responses, but mechanistic distinctions were apparent, with only Ido2 deficiency associated with a suppression of immune regulatory cytokines that included GM-CSF, G-CSF, IFN-γ, TNF-α, IL-6 and MCP-1/CCL2. Different contributions to inflammation were likewise indicated by the finding that Ido2 (-/-) mice did not phenocopy Ido1 (-/-) mice in the reduced susceptibility of the latter to inflammatory skin cancer. Taken together, our results offer an initial glimpse into immune modulation by IDO2, revealing its genetic interaction with IDO1 and distinguishing its non-redundant contributions to inflammation. © The Japanese Society for Immunology. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. IDO2 is critical for IDO1-mediated T-cell regulation and exerts a non-redundant function in inflammation

    PubMed Central

    Metz, Richard; Smith, Courtney; DuHadaway, James B.; Chandler, Phillip; Baban, Babak; Merlo, Lauren M. F.; Pigott, Elizabeth; Keough, Martin P.; Rust, Sonja; Mellor, Andrew L.; Mandik-Nayak, Laura; Muller, Alexander J.

    2014-01-01

    IDO2 is implicated in tryptophan catabolism and immunity but its physiological functions are not well established. Here we report the characterization of mice genetically deficient in IDO2, which develop normally but exhibit defects in IDO-mediated T-cell regulation and inflammatory responses. Construction of this strain was prompted in part by our discovery that IDO2 function is attenuated in macrophages from Ido1 −/− mice due to altered message splicing, generating a functional mosaic with implications for interpreting findings in Ido1 –/– mice. No apparent defects were observed in Ido2 –/– mice in embryonic development or hematopoietic differentiation, with wild-type profiles documented for kynurenine in blood serum and for immune cells in spleen, lymph nodes, peritoneum, thymus and bone marrow of naive mice. In contrast, upon immune stimulation we determined that IDO1-dependent T regulatory cell generation was defective in Ido2 −/− mice, supporting Ido1–Ido2 genetic interaction and establishing a functional role for Ido2 in immune modulation. Pathophysiologically, both Ido1 −/− and Ido2 −/− mice displayed reduced skin contact hypersensitivity responses, but mechanistic distinctions were apparent, with only Ido2 deficiency associated with a suppression of immune regulatory cytokines that included GM-CSF, G-CSF, IFN-γ, TNF-α, IL-6 and MCP-1/CCL2. Different contributions to inflammation were likewise indicated by the finding that Ido2 −/− mice did not phenocopy Ido1 −/− mice in the reduced susceptibility of the latter to inflammatory skin cancer. Taken together, our results offer an initial glimpse into immune modulation by IDO2, revealing its genetic interaction with IDO1 and distinguishing its non-redundant contributions to inflammation. PMID:24402311

  13. Current insights into the innate immune system dysfunction in irritable bowel syndrome.

    PubMed

    Lazaridis, Nikolaos; Germanidis, Georgios

    2018-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder associated with abdominal pain and alterations in bowel habits. The presence of IBS greatly impairs patients' quality of life and imposes a high economic burden on the community; thus, there is intense pressure to reveal its elusive pathogenesis. Many etiological mechanisms have been implicated, but the pathophysiology of the syndrome remains unclear. As a result, novel drug development has been slow and no pharmacological intervention is universally accepted. A growing evidence implicates the role of low-grade inflammation and innate immune system dysfunction, although contradictory results have frequently been presented. Mast cells (MC), eosinophils and other key immune cells together with their mediators seem to play an important role, at least in subgroups of IBS patients. Cytokine imbalance in the systematic circulation and in the intestinal mucosa may also characterize IBS presentation. Toll-like receptors and their emerging role in pathogen recognition have also been highlighted recently, as dysregulation has been reported to occur in patients with IBS. This review summarizes the current knowledge regarding the involvement of any immunological alteration in the development of IBS. There is substantial evidence to support innate immune system dysfunction in several IBS phenotypes, but additional studies are required to better clarify the underlying pathogenetic pathways. IBS heterogeneity could potentially be attributed to multiple causes that lead to different disease phenotypes, thus explaining the variability found between study results.

  14. Cell-to-cell interactions in changed gravity: Ground-based and flight experiments

    NASA Astrophysics Data System (ADS)

    Buravkova, L.; Romanov, Yu.; Rykova, M.; Grigorieva, O.; Merzlikina, N.

    2005-07-01

    Cell-to-cell interactions play an important role in all physiological processes and are mediated by humoral and mechanical factors. Mechanosensitive cells (e.g., osteocytes, chondrocytes, and fibroblasts) can be studied ex vivo to understand the effects of an altered gravity environment. In particular, cultured endothelial cells (EC) are very sensitive to a broad spectrum of mechanical and biochemical stimuli. Earlier, we demonstrated that clinorotation leads to cytoskeletal remodeling in cultured ECs. Long-term gravity vector changes also modulate the expression of surface adhesion molecules (ICAM-1, E-selectin, VCAM-1) on cultured ECs. To study the interactions of geterological cells, we cocultured endothelial monolayers and human lymphocytes, immune cells and myeloleucemic (K-560) cells. It was found that, although clinorotation did not alter the basal adhesion level of non-activated immune cells on endothelial monolayers, the adhesion of PMA-activated lymphocytes was increased. During flight experiments onboard the Russian segment of the International Space Station, we measured the cytotoxic activity of natural killer (NK) cells incubated with labeled target cells. It was found that immune cells in microgravity retained their ability to contact, recognize, and destroy oncogenic cells in vitro. Together, our data concerning the effects of simulated and real microgravity suggest that, despite changes in the cytoskeleton, cell motility, and expression of adhesion molecules, cell-cell interactions are not compromised, thus preserving the critical physiological functions of immune and endothelial cells.

  15. B cell biology: implications for treatment of systemic lupus erythematosus.

    PubMed

    Anolik, J H

    2013-04-01

    B cells are critical players in the orchestration of properly regulated immune responses, normally providing protective immunity without autoimmunity. Balance in the B cell compartment is achieved through the finely regulated participation of multiple B cell populations with different antibody-dependent and independent functions. Both types of functions allow B cells to modulate other components of the innate and adaptive immune system. Autoantibody-independent B cell functions include antigen presentation, T cell activation and polarization, and dendritic cell modulation. Several of these functions are mediated by the ability of B cells to produce immunoregulatory cytokines and chemokines and by their critical contribution to lymphoid tissue development and organization including the development of ectopic tertiary lymphoid tissue. Additionally, the functional versatility of B cells enables them to play either protective or pathogenic roles in autoimmunity. In turn, B cell dysfunction has been critically implicated in the pathophysiology of systemic lupus erythematosus (SLE), a complex disease characterized by the production of autoantibodies and heterogeneous clinical involvement. Thus, the breakdown of B cell tolerance is a defining and early event in the disease process and may occur by multiple pathways, including alterations in factors that affect B cell activation thresholds, B cell longevity, and apoptotic cell processing. Once tolerance is broken, autoantibodies contribute to autoimmunity by multiple mechanisms including immune-complex mediated Type III hypersensitivity reactions, type II antibody-dependent cytotoxicity, and by instructing innate immune cells to produce pathogenic cytokines including IFNα, TNF and IL-1. The complexity of B cell functions has been highlighted by the variable success of B cell-targeted therapies in multiple autoimmune diseases, including those conventionally viewed as T cell-mediated conditions. Given the widespread utilization of B cell depletion therapy in autoimmune diseases and the need for new therapeutic approaches in SLE, a better understanding of human B cell subsets and the balance of pathogenic and regulatory functions is of the essence.

  16. Tolerogenic dendritic cells in autoimmune diseases: crucial players in induction and prevention of autoimmunity.

    PubMed

    Torres-Aguilar, Honorio; Blank, Miri; Jara, Luis J; Shoenfeld, Yehuda

    2010-11-01

    The immune system has evolved to coordinate responses against numerous invading pathogens and simultaneously remain silent facing self-antigens and those derived from commensal organisms. But, if both processes are not maintained in strict balance, a potential threat can emerge due to the risk of chronic inflammation and/or autoimmunity development. Therefore, there is a negative immune regulation where tolerogenic dendritic cells (tDCs) participate actively. Under steady-state conditions, tDC are notably involved in the elimination of autoreactive T cells at the thymus, and in the control of T cells specific to self and harmless antigens in the periphery. But in the presence of foreign antigens in an inflammatory milieu, dendritic cells (DCs) mature and induce T cells activation and their migration to B cell areas to assist in antibody production. Additionally, there are other factors such as infections, anti tumoral immune responses, trauma-mediated disruption, etc. that may induce alterations in the balance between tolerogenic and immunogenic functions of DCs and instigate the development of autoimmune diseases (ADs). Therefore, in recent years, DCs have emerged as therapeutic targets to control of ADs. Diverse strategies in vitro and/or in animal models of ADs have explored the tolerogenic functions of DCs and demonstrated their feasibility to prevent or control an autoimmune process, but still leaving a void in their application in clinical assays. The purpose of this paper is to give a general overview of the current literature on the significance of tDCs in tolerance maintenance to self and innocuous antigens, the most relevant alterations involved in the pathophysiology of ADs, the cellular and molecular mechanisms involved in their tolerogenic function and the current strategies used to exploit their tolerogenic potential. Published by Elsevier B.V.

  17. CD11c(hi) Dendritic Cells Regulate Ly-6C(hi) Monocyte Differentiation to Preserve Immune-privileged CNS in Lethal Neuroinflammation.

    PubMed

    Kim, Jin Hyoung; Choi, Jin Young; Kim, Seong Bum; Uyangaa, Erdenebelig; Patil, Ajit Mahadev; Han, Young Woo; Park, Sang-Youel; Lee, John Hwa; Kim, Koanhoi; Eo, Seong Kug

    2015-12-02

    Although the roles of dendritic cells (DCs) in adaptive defense have been defined well, the contribution of DCs to T cell-independent innate defense and subsequent neuroimmunopathology in immune-privileged CNS upon infection with neurotropic viruses has not been completely defined. Notably, DC roles in regulating innate CD11b(+)Ly-6C(hi) monocyte functions during neuroinflammation have not yet been addressed. Using selective ablation of CD11c(hi)PDCA-1(int/lo) DCs without alteration in CD11c(int)PDCA-1(hi) plasmacytoid DC number, we found that CD11c(hi) DCs are essential to control neuroinflammation caused by infection with neurotropic Japanese encephalitis virus, through early and increased infiltration of CD11b(+)Ly-6C(hi) monocytes and higher expression of CC chemokines. More interestingly, selective CD11c(hi) DC ablation provided altered differentiation and function of infiltrated CD11b(+)Ly-6C(hi) monocytes in the CNS through Flt3-L and GM-CSF, which was closely associated with severely enhanced neuroinflammation. Furthermore, CD11b(+)Ly-6C(hi) monocytes generated in CD11c(hi) DC-ablated environment had a deleterious rather than protective role during neuroinflammation, and were more quickly recruited into inflamed CNS, depending on CCR2, thereby exacerbating neuroinflammation via enhanced supply of virus from the periphery. Therefore, our data demonstrate that CD11c(hi) DCs provide a critical and unexpected role to preserve the immune-privileged CNS in lethal neuroinflammation via regulating the differentiation, function, and trafficking of CD11b(+)Ly-6C(hi) monocytes.

  18. Exposure to chorioamnionitis alters the monocyte transcriptional response to the neonatal pathogen Staphylococcus epidermidis.

    PubMed

    de Jong, Emma; Hancock, David G; Wells, Christine; Richmond, Peter; Simmer, Karen; Burgner, David; Strunk, Tobias; Currie, Andrew J

    2018-03-13

    Preterm infants are uniquely susceptible to late-onset sepsis that is frequently caused by the skin commensal Staphylococcus epidermidis. Innate immune responses, particularly from monocytes, are a key protective mechanism. Impaired cytokine production by preterm infant monocytes is well described, but few studies have comprehensively assessed the corresponding monocyte transcriptional response. Innate immune responses in preterm infants may be modulated by inflammation such as prenatal exposure to histologic chorioamnionitis which complicates 40-70% of preterm pregnancies. Chorioamnionitis alters the risk of late-onset sepsis, but its effect on monocyte function is largely unknown. Here, we aimed to determine the impact of exposure to chorioamnionitis on the proportions and phenotype of cord blood monocytes using flow cytometry, as well as their transcriptional response to live S. epidermidis. RNA-seq was performed on purified cord blood monocytes from very preterm infants (<32 weeks gestation, with and without chorioamnionitis-exposure) and term infants (37-40 weeks), pre- and postchallenge with live S. epidermidis. Preterm monocytes from infants without chorioamnionitis-exposure did not exhibit an intrinsically deficient transcriptional response to S. epidermidis compared to term infants. In contrast, chorioamnionitis-exposure was associated with hypo-responsive transcriptional phenotype regarding a subset of genes involved in antigen presentation and adaptive immunity. Overall, our findings suggest that prenatal exposure to inflammation may alter the risk of sepsis in preterm infants partly by modulation of monocyte responses to pathogens. © 2018 Australasian Society for Immunology Inc.

  19. Impairment of blood brain barrier is related with the neuroinflammation induced peripheral immune status in intracerebroventricular colchicine injected rats: An experimental study with mannitol.

    PubMed

    Sil, Susmita; Ghosh, Arijit; Ghosh, Tusharkanti

    2016-09-01

    The neurodegeneration in AD patients may be associated with changes of peripheral immune responses. Some peripheral immune responses are altered due to neuroinflammation in colchicine induced AD (cAD) rats. The leaky blood brain barrier (BBB) in cAD-rats may be involved in inducing peripheral inflammation, though there is no report in this regard. Therefore, the present study was designed to investigate the role of BBB in cADrats by altering the BBB in a time dependent manner with injection (i.v.) of mannitol (BBB opener). The inflammatory markers in the brain and serum along with the peripheral immune responses were measured after 30 and 60min of mannitol injection in cAD rats. The results showed higher inflammatory markers in the hippocampus and serum along with alterations in peripheral immune parameters in cAD rats. Although the hippocampal inflammatory markers did not further change after mannitol injection in cAD rats, the serum inflammatory markers and peripheral immune responses were altered and these changes were greater after 60min than that of 30min of mannitol injection. The present study shows that the peripheral immune responses in cAD rats after 30 and 60min of mannitol injection are related to magnitude of impairment of BBB in these conditions. It can be concluded from this study that impairment of BBB in cAD rats is related to the changes of peripheral immune responses observed in that condition. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. In vitro immune functions in thiamine-replete and -depleted lake trout (Salvelinus namaycush).

    PubMed

    Ottinger, Christopher A; Honeyfield, Dale C; Densmore, Christine L; Iwanowicz, Luke R

    2014-05-01

    In this study we examined the impacts of in vivo thiamine deficiency on lake trout leukocyte function measured in vitro. When compared outside the context of individual-specific thiamine concentrations no significant differences were observed in leukocyte bactericidal activity or in concanavalin A (Con A), and phytohemagglutinin-P (PHA-P) stimulated leukocyte proliferation. Placing immune functions into context with the ratio of in vivo liver thiamine monophosphate (TMP--biologically inactive form) to thiamine pyrophosphate (TPP--biologically active form) proved to be the best indicator of thiamine depletion impacts as determined using regression modeling. These observed relationships indicated differential effects on the immune measures with bactericidal activity exhibiting an inverse relationship with TMP to TPP ratios, Con A stimulated mitogenesis exhibiting a positive relationship with TMP to TPP ratios and PHA-P stimulated mitogenesis exhibiting no significant relationships. In addition, these relationships showed considerable complexity which included the consistent observation of a thiamine-replete subgroup with characteristics similar to those seen in the leukocytes from thiamine-depleted fish. When considered together, our observations indicate that lake trout leukocytes experience cell-type specific impacts as well as an altered physiologic environment when confronted with a thiamine-limited state. Published by Elsevier Ltd.

  1. In vitro immune functions in thiamine-replete and -depleted lake trout (Salvelinus namaycush)

    USGS Publications Warehouse

    Ottinger, Christopher A.; Honeyfield, Dale C.; Densmore, Christine L.; Iwanowicz, Luke R.

    2014-01-01

    In this study we examined the impacts of in vivo thiamine deficiency on lake trout leukocyte function measured in vitro. When compared outside the context of individual-specific thiamine concentrations no significant differences were observed in leukocyte bactericidal activity or in concanavalin A (Con A), and phytohemagglutinin-P (PHA-P) stimulated leukocyte proliferation. Placing immune functions into context with the ratio of in vivo liver thiamine monophosphate (TMP – biologically inactive form) to thiamine pyrophosphate (TPP – biologically active form) proved to be the best indicator of thiamine depletion impacts as determined using regression modeling. These observed relationships indicated differential effects on the immune measures with bactericidal activity exhibiting an inverse relationship with TMP to TPP ratios, Con A stimulated mitogenesis exhibiting a positive relationship with TMP to TPP ratios and PHA-P stimulated mitogenesis exhibiting no significant relationships. In addition, these relationships showed considerable complexity which included the consistent observation of a thiamine-replete subgroup with characteristics similar to those seen in the leukocytes from thiamine-depleted fish. When considered together, our observations indicate that lake trout leukocytes experience cell-type specific impacts as well as an altered physiologic environment when confronted with a thiamine-limited state.

  2. Leaky gut and diabetes mellitus: what is the link?

    PubMed

    de Kort, S; Keszthelyi, D; Masclee, A A M

    2011-06-01

    Diabetes mellitus is a chronic disease requiring lifelong medical attention. With hundreds of millions suffering worldwide, and a rapidly rising incidence, diabetes mellitus poses a great burden on healthcare systems. Recent studies investigating the underlying mechanisms involved in disease development in diabetes point to the role of the dys-regulation of the intestinal barrier. Via alterations in the intestinal permeability, intestinal barrier function becomes compromised whereby access of infectious agents and dietary antigens to mucosal immune elements is facilitated, which may eventually lead to immune reactions with damage to pancreatic beta cells and can lead to increased cytokine production with consequent insulin resistance. Understanding the factors regulating the intestinal barrier function will provide important insight into the interactions between luminal antigens and immune response elements. This review analyses recent advances in the mechanistic understanding of the role of the intestinal epithelial barrier function in the development of type 1 and type 2 diabetes. Given our current knowledge, we may assume that reinforcing the intestinal barrier can offer and open new therapeutic horizons in the treatment of type 1 and type 2 diabetes. © 2011 The Authors. obesity reviews © 2011 International Association for the Study of Obesity.

  3. Modulation of occluding junctions alters the hematopoietic niche to trigger immune activation

    PubMed Central

    Khadilkar, Rohan J; Vogl, Wayne; Goodwin, Katharine

    2017-01-01

    Stem cells are regulated by signals from their microenvironment, or niche. During Drosophila hematopoiesis, a niche regulates prohemocytes to control hemocyte production. Immune challenges activate cell-signalling to initiate the cellular and innate immune response. Specifically, certain immune challenges stimulate the niche to produce signals that induce prohemocyte differentiation. However, the mechanisms that promote prohemocyte differentiation subsequent to immune challenges are poorly understood. Here we show that bacterial infection induces the cellular immune response by modulating occluding-junctions at the hematopoietic niche. Occluding-junctions form a permeability barrier that regulates the accessibility of prohemocytes to niche derived signals. The immune response triggered by infection causes barrier breakdown, altering the prohemocyte microenvironment to induce immune cell production. Moreover, genetically induced barrier ablation provides protection against infection by activating the immune response. Our results reveal a novel role for occluding-junctions in regulating niche-hematopoietic progenitor signalling and link this mechanism to immune cell production following infection. PMID:28841136

  4. Abnormal Barrier Function in Gastrointestinal Disorders.

    PubMed

    Farré, Ricard; Vicario, María

    2017-01-01

    There is increasing concern in identifying the mechanisms underlying the intimate control of the intestinal barrier, as deregulation of its function is strongly associated with digestive (organic and functional) and a number of non-digestive (schizophrenia, diabetes, sepsis, among others) disorders. The intestinal barrier is a complex and effective defensive functional system that operates to limit luminal antigen access to the internal milieu while maintaining nutrient and electrolyte absorption. Intestinal permeability to substances is mainly determined by the physicochemical properties of the barrier, with the epithelium, mucosal immunity, and neural activity playing a major role. In functional gastrointestinal disorders (FGIDs), the absence of structural or biochemical abnormalities that explain chronic symptoms is probably close to its end, as recent research is providing evidence of structural gut alterations, at least in certain subsets, mainly in functional dyspepsia (FD) and irritable bowel syndrome (IBS). These alterations are associated with increased permeability, which seems to reflect mucosal inflammation and neural activation. The participation of each anatomical and functional component of barrier function in homeostasis and intestinal dysfunction is described, with a special focus on FGIDs.

  5. The immune system in space, including Earth-based benefits of space-based research.

    PubMed

    Sonnenfeld, Gerald

    2005-08-01

    Exposure to space flight conditions has been shown to result in alterations in immune responses. Changes in immune responses of humans and experimental animals have been shown to be altered during and after space flight of humans and experimental animals or cell cultures of lymphoid cells. Exposure of subjects to ground-based models of space flight conditions, such as hindlimb unloading of rodents or chronic bed rest of humans, has also resulted in changes in the immune system. The relationship of these changes to compromised resistance to infection or tumors in space flight has not been fully established, but results from model systems suggest that alterations in the immune system that occur in space flight conditions may be related to decreases in resistance to infection. The establishment of such a relationship could lead to the development of countermeasures that could prevent or ameliorate any compromises in resistance to infection resulting from exposure to space flight conditions. An understanding of the mechanisms of space flight conditions effects on the immune response and development of countermeasures to prevent them could contribute to the development of treatments for compromised immunity on earth.

  6. Non-digestible oligosaccharides directly regulate host kinome to modulate host inflammatory responses without alterations in the gut microbiota.

    PubMed

    Wu, Richard Y; Määttänen, Pekka; Napper, Scott; Scruten, Erin; Li, Bo; Koike, Yuhki; Johnson-Henry, Kathene C; Pierro, Agostino; Rossi, Laura; Botts, Steven R; Surette, Michael G; Sherman, Philip M

    2017-10-10

    Prebiotics are non-digestible food ingredients that enhance the growth of certain microbes within the gut microbiota. Prebiotic consumption generates immune-modulatory effects that are traditionally thought to reflect microbial interactions within the gut. However, recent evidence suggests they may also impart direct microbe-independent effects on the host, though the mechanisms of which are currently unclear. Kinome arrays were used to profile the host intestinal signaling responses to prebiotic exposures in the absence of microbes. Identified pathways were functionally validated in Caco-2Bbe1 intestinal cell line and in vivo model of murine endotoxemia. We found that prebiotics directly regulate host mucosal signaling to alter response to bacterial infection. Intestinal epithelial cells (IECs) exposed to prebiotics are hyporesponsive to pathogen-induced mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) activations, and have a kinome profile distinct from non-treated cells pertaining to multiple innate immune signaling pathways. Consistent with this finding, mice orally gavaged with prebiotics showed dampened inflammatory response to lipopolysaccharide (LPS) without alterations in the gut microbiota. These findings provide molecular mechanisms of direct host-prebiotic interactions to support prebiotics as potent modulators of host inflammation.

  7. Calcium Pumps and Interacting BON1 Protein Modulate Calcium Signature, Stomatal Closure, and Plant Immunity1[OPEN

    PubMed Central

    Bao, Yongmei; Yang, Ziyuan; Yu, Huiyun; Li, Yun; Wang, Shu; Zou, Baohong; Xu, Dachao; Ma, Zhiqi

    2017-01-01

    Calcium signaling is essential for environmental responses including immune responses. Here, we provide evidence that the evolutionarily conserved protein BONZAI1 (BON1) functions together with autoinhibited calcium ATPase10 (ACA10) and ACA8 to regulate calcium signals in Arabidopsis. BON1 is a plasma membrane localized protein that negatively regulates the expression of immune receptor genes and positively regulates stomatal closure. We found that BON1 interacts with the autoinhibitory domains of ACA10 and ACA8, and the aca10 loss-of-function (LOF) mutants have an autoimmune phenotype similar to that of the bon1 LOF mutants. Genetic evidences indicate that BON1 positively regulates the activities of ACA10 and ACA8. Consistent with this idea, the steady level of calcium concentration is increased in both aca10 and bon1 mutants. Most strikingly, cytosolic calcium oscillation imposed by external calcium treatment was altered in aca10, aca8, and bon1 mutants in guard cells. In addition, calcium- and pathogen-induced stomatal closure was compromised in the aca10 and bon1 mutants. Taken together, this study indicates that ACA10/8 and BON1 physically interact on plasma membrane and function in the generation of cytosol calcium signatures that are critical for stomatal movement and impact plant immunity. PMID:28701352

  8. Immune biomarkers in older adults: Role of physical activity.

    PubMed

    Valdiglesias, Vanessa; Sánchez-Flores, María; Maseda, Ana; Lorenzo-López, Laura; Marcos-Pérez, Diego; López-Cortón, Ana; Strasser, Barbara; Fuchs, Dietmar; Laffon, Blanca; Millán-Calenti, José C; Pásaro, Eduardo

    2017-01-01

    Aging is associated with a decline in the normal functioning of the immune system. Several studies described the relationship between immunological alterations, including immunosenescence and inflammation, and aging or age-related outcomes, such as sarcopenia, depression, and neurodegenerative disorders. Physical activity is known to improve muscle function and to exert a number of benefits on older adult health, including reduced risk for heart and metabolic system chronic diseases. However, the positive influence of physical activity on the immune system has not been elucidated. In order to shed light on the role of physical activity in immune responses of older individuals, a number of immunological parameters comprising % lymphocyte subsets (CD3 + , CD4 + , CD8 + , CD19 + , and CD16 + 56 + ) and serum levels of neopterin and tryptophan metabolism products were evaluated in peripheral blood samples of older adults performing normal (N = 170) or reduced (N = 89) physical activity. In addition, the potential influence of other clinical and epidemiological factors was also considered. Results showed that subjects with reduced physical activity displayed significantly higher levels of CD4 + /CD8 + ratio, kynurenine/tryptophan ratio, and serum neopterin, along with lower %CD19 + cells and tryptophan concentrations. Further, some immunological biomarkers were associated with cognitive impairment and functional status. These data contribute to reinforce the postulation that physical activity supports healthy aging, particularly by helping to protect the immunological system from aging-related changes.

  9. Influence of diabetes mellitus on immunity to human tuberculosis.

    PubMed

    Kumar Nathella, Pavan; Babu, Subash

    2017-09-01

    Type 2 diabetes mellitus(DM) is a major risk factor for the development of active pulmonary tuberculosis (TB), with development of DM pandemic in countries where TB is also endemic. Understanding the impact of DM on TB and the determinants of co-morbidity is essential in responding to this growing public health problem with improved therapeutic approaches. Despite the clinical and public health significance posed by the dual burden of TB and DM, little is known about the immunological and biochemical mechanisms of susceptibility. One possible mechanism is that an impaired immune response in patients with DM facilitates either primary infection with Mycobacterium tuberculosis or reactivation of latent TB. Diabetes is associated with immune dysfunction and alterations in the components of the immune system, including altered levels of specific cytokines and chemokines. Some effects of DM on adaptive immunity that are potentially relevant to TB defence have been identified in humans. In this review, we summarize current findings regarding the alterations in the innate and adaptive immune responses and immunological mechanisms of susceptibility of patients with DM to M. tuberculosis infection and disease. © 2017 John Wiley & Sons Ltd.

  10. Effect of space flight on cytokine production

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald

    Space flight has been shown to alter many immunological responses. Among those affected are the production of cytokines, Cytokines are the messengers of the immune system that facilitate communication among cells that allow the interaction among cells leading to the development of immune responses. Included among the cytokines are the interferons, interleukins, and colony stimulating factors. Cytokines also facilitate communication between the immune system and other body systems, such as the neuroendocrine and musculoskeletal systems. Some cytokines also have direct protective effects on the host, such as interferon, which can inhibit the replication of viruses. Studies in both humans and animals indicate that models of space flight as well as actual space flight alter the production and action of cytokines. Included among these changes are altered interferon production, altered responsiveness of bone marrow cells to granulocyte/monocyte-colony stimulating factor, but no alteration in the production of interleukin-3. This suggests that there are selective effects of space flight on immune responses, i.e. not all cytokines are affected in the same fashion by space flight. Tissue culture studies also suggest that there may be direct effects of space flight on the cells responsible for cytokine production and action. The results of the above study indicate that the effects of space flight on cytokines may be a fundamental mechanism by which space flight not only affects immune responses, but also other biological systems of the human.

  11. GDSL lipases modulate immunity through lipid homeostasis in rice

    PubMed Central

    Lam, Sin Man; Tong, Xiaohong; Liu, Jiyun; Wang, Xin; Shui, Guanghou

    2017-01-01

    Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA) treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER) membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity. PMID:29131851

  12. Suprachiasmatic astrocytes modulate the circadian clock in response to TNF-α1

    PubMed Central

    Duhart, José M.; Leone, María Juliana; Paladino, Natalia; Evans, Jennifer A.; Castanon-Cervantes, Oscar; Davidson, Alec J.; Golombek, Diego A.

    2013-01-01

    The immune and the circadian systems interact in a bidirectional fashion. The master circadian oscillator, located in the suprachiasmatic nuclei of the hypothalamus (SCN), responds to peripheral and local immune stimuli, such as proinflammatory cytokines and bacterial endotoxin. Astrocytes exert several immune functions in the central nervous system and there is growing evidence that points towards a role of these cells in the regulation of circadian rhythms. The aim of this work was to assess the response of SCN astrocytes to immune stimuli, particularly to the proinflammatory cytokine TNF-α. TNF-α applied to cultures of SCN astrocytes from Per2luc knock in mice altered both the phase and amplitude of PER2 expression rhythms, in a phase dependent manner. Furthermore, conditioned media from SCN astrocytes cultures transiently challenged with TNF-α induced an increase in Per1 expression in NIH 3T3 cells, that was blocked by TNF-α antagonism. In addition, these conditioned media could induce phase shifts in SCN PER2 rhythms and, when administered intracerebroventricularly, induced phase delays in behavioral circadian rhythms and SCN activation in control mice, but not in TNF-Receptor-1 mutants. In summary, our results show that TNF-α modulates the molecular clock of SCN astrocytes in vitro and also that, in response to this molecule, SCN astrocytes can modulate clock gene expression in other cells and tissues, and induce phase shifts in a circadian behavioral output in vivo. These findings suggest a role for astroglial cells in the alteration of circadian timing by immune activation. PMID:24062487

  13. Immune response to 60-day head-down bed rest

    NASA Astrophysics Data System (ADS)

    Song, Jinping; Guo, Aihua; Zhong, Ping; Zhang, Hongyu; Wu, Feng; Wan, Yumin; Bai, Yanqiang; Chen, Shanguang; Li, Yinghui

    Introduction: Exposure of humans to spaceflight has resulted in disregulation of the immune system. Head-down bed rest (HDBR) has been extensively used as an earth-bound analog to study physiologic effects mimicking those occurring in weightlessness during spaceflight. It is uncertain how a prolonged period of bed rest affect human immune responses. The objective of this study was to investigate the effects of 60-day HDBR on immune function and EB virus reactivation in seven male volunteers. Methods: There were seven healthy male volunteers who were subjected to HDBR for 60d. Immunological parameters including leukocyte subset distribution, lymphocyte proliferation to mitogens, secreted cytokine profiles and EB virus reactivation were monitored. Results: Total WBC conunts increased significantly 10d post-HDBR as compared with pre-HDBR. At the same time, the relative percentage of neutrophils was also higher than pre-HDBR but not significant. MFI of CD11b in neutrophils was reduced obviously at thd end of HDBR. T Lymphocyte proliferations to PHA reduced at HDBR 30, HDBR 60 and 10d post-HDBR while IL-2 production decreased significantly at the same time. IFN-and IL-4 production trended to decrease at HDBR 30 and HDBR 60. The relative percentage of T lymphocyte subset, B lymphocyte and NK cells were not altered. EBV EA (early antigen) were negative and EBV VCA titers had no changes through HDBR. Conclusion: The results indicate that several immunological parameters (mainly cellular immunity) are altered significantly by prolonged HDBR, and these changes were similar to those happened in spaceflight.

  14. Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE.

    PubMed

    Christy, Alison L; Walker, Margaret E; Hessner, Martin J; Brown, Melissa A

    2013-05-01

    The meninges are often considered inert tissues that house the CSF and provide protection for the brain and spinal cord. Yet emerging data demonstrates that they are also active sites of immune responses. Furthermore, the blood-CSF barrier surrounding meningeal blood vessels, together with the blood-brain barrier (BBB), is postulated to serve as a gateway for the pathological infiltration of immune cells into the CNS in multiple sclerosis (MS). Our previous studies using mast cell-deficient (Kit(W/Wv)) mice demonstrated that mast cells resident in the dura mater and pia mater exacerbate experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, by facilitating CNS inflammatory cell influx. Here we examined the underlying mechanisms that mediate these effects. We demonstrate that there are dramatic alterations in immune associated gene expression in the meninges in pre-clinical disease, including those associated with mast cell and neutrophil function. Meningeal mast cells are activated within 24 h of disease induction, but do not directly compromise CNS vascular integrity. Rather, through production of TNF, mast cells elicit an early influx of neutrophils, cells known to alter vascular permeability, into the meninges. These data add to the growing evidence that inflammation in the meninges precedes CNS immune cell infiltration and establish that mast cells are among the earliest participants in these disease-initiating events. We hypothesize that mast cell-dependent neutrophil recruitment and activation in the meninges promotes early breakdown of the local BBB and CSF-blood barrier allowing initial immune cell access to the CNS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Current topics in HIV pathogenesis, part 2: Inflammation drives a Warburg-like effect on the metabolism of HIV-infected subjects.

    PubMed

    Aounallah, Mouna; Dagenais-Lussier, Xavier; El-Far, Mohamed; Mehraj, Vikram; Jenabian, Mohammad-Ali; Routy, Jean-Pierre; van Grevenynghe, Julien

    2016-04-01

    HIV-1 infection leads to a depletion of CD4 T-cells associated with a persistent immune inflammation and changes in cellular metabolism. Most effort of managing HIV infection with combination of antiretroviral therapies (ART) has been focused on CD4 T-cell recovery, while control of persistent immune inflammation and metabolism were relatively underappreciated in the past. Recent discoveries on the interplay between innate immunity, inflammation (especially the inflammasome) and metabolic changes in the context of cancer and autoimmunity provide an emerging field for chronic viral infections including HIV-1. In a previous review, we described the deregulated metabolism contributing to immune dysfunctions such as alteration of memory T-cell responses, mucosal protection, and dendritic cell-related antigen presentation. Here, we summarize the latest knowledge on the detrimental influence of long-lasting inflammation and inflammasome activation induced by HIV-1, gut dysbiosis, and bacterial translocation, on metabolism during the course of viral infection. We also report on the inability of ART to fully counteract inflammation, resulting in partial metabolic improvement and leading to an insufficient decrease in the risk of non-AIDS events. Further advances in our understanding of the relationship between inflammation, altered metabolism, and long-term ART is warranted. Additionally, there is a critical need for developing new strategies to regulate the pro-inflammatory signals to enhance cellular metabolism and immune functions in order to improve the quality of life of individuals living with HIV-1. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. Are the Gut Bacteria Telling Us to Eat or Not to Eat? Reviewing the Role of Gut Microbiota in the Etiology, Disease Progression and Treatment of Eating Disorders

    PubMed Central

    Lam, Yan Y.; Maguire, Sarah; Palacios, Talia; Caterson, Ian D.

    2017-01-01

    Traditionally recognized as mental illnesses, eating disorders are increasingly appreciated to be biologically-driven. There is a growing body of literature that implicates a role of the gut microbiota in the etiology and progression of these conditions. Gut bacteria may act on the gut–brain axis to alter appetite control and brain function as part of the genesis of eating disorders. As the illnesses progress, extreme feeding patterns and psychological stress potentially feed back to the gut ecosystem that can further compromise physiological, cognitive, and social functioning. Given the established causality between dysbiosis and metabolic diseases, an altered gut microbial profile is likely to play a role in the co-morbidities of eating disorders with altered immune function, short-chain fatty acid production, and the gut barrier being the key mechanistic links. Understanding the role of the gut ecosystem in the pathophysiology of eating disorders will provide critical insights into improving current treatments and developing novel microbiome-based interventions that will benefit patients with eating disorders. PMID:28613252

  17. Are the Gut Bacteria Telling Us to Eat or Not to Eat? Reviewing the Role of Gut Microbiota in the Etiology, Disease Progression and Treatment of Eating Disorders.

    PubMed

    Lam, Yan Y; Maguire, Sarah; Palacios, Talia; Caterson, Ian D

    2017-06-14

    Traditionally recognized as mental illnesses, eating disorders are increasingly appreciated to be biologically-driven. There is a growing body of literature that implicates a role of the gut microbiota in the etiology and progression of these conditions. Gut bacteria may act on the gut-brain axis to alter appetite control and brain function as part of the genesis of eating disorders. As the illnesses progress, extreme feeding patterns and psychological stress potentially feed back to the gut ecosystem that can further compromise physiological, cognitive, and social functioning. Given the established causality between dysbiosis and metabolic diseases, an altered gut microbial profile is likely to play a role in the co-morbidities of eating disorders with altered immune function, short-chain fatty acid production, and the gut barrier being the key mechanistic links. Understanding the role of the gut ecosystem in the pathophysiology of eating disorders will provide critical insights into improving current treatments and developing novel microbiome-based interventions that will benefit patients with eating disorders.

  18. Nutrition and the gut microbiome in the elderly

    PubMed Central

    Salazar, Nuria; Valdés-Varela, Lorena; González, Sonia; Gueimonde, Miguel; de los Reyes-Gavilán, Clara G.

    2017-01-01

    ABSTRACT The gut microbiota is the assembly of microorganisms living in our intestine and their genomes are known as the microbiome. The correct composition and functionality of this microbiome is essential for maintaining a “healthy status.” Aging is related to changes in the gut microbiota which are frequently associated with physiological modifications of the gastrointestinal tract, as well as, to changes in dietary patterns, together with a concomitant decline in cognitive and immune function, all together contributing to frailty. Therefore, nutritional strategies directed at restoring the microbiota in the elderly have to be addressed from a global perspective, considering not only the microbiota but also other extra-intestinal targets of action. The present review aims at summarizing the current knowledge on intestinal microbiota alterations and other functions impaired in the elderly and to analyze tools for implementing nutritional strategies, through the use of probiotics, prebiotics or specific nutrients in order to counterbalance such alterations. PMID:27808595

  19. Altered host resistance to Listeria monocytogenes in mice exposed to 1-chloroacetophenone (CN) vapours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, P.; Kumar, P.; Zachariah, K.

    1992-06-01

    Short term repeated exposure of 1-chloroacetophenone (CN) vapours at a concentration of 0.153 mg per litre for 15 minutes daily on 10 consecutive days in Swiss albino male mice resulted in increased mortality to Listeria monocytogenes. Significantly elevated bacterial growth was observed in the spleen and liver of the CN exposed animals. The increased bacterial count in these organs was evident within 4-6 days post challenge as compared to vehicle exposed infected and unexposed infected animals. Increased susceptibility to infection has been considered to be the function of immune alteration due to cumulative short term effects of CN vapour inhalation.more » This may be attributed to immunotoxic effects of CN on T-cells mediated macrophage functions.« less

  20. Potential adverse effects of omega-3 Fatty acids in dogs and cats.

    PubMed

    Lenox, C E; Bauer, J E

    2013-01-01

    Fish oil omega-3 fatty acids, mainly eicosapentaenoic acid and docosahexaenoic acid, are used in the management of several diseases in companion animal medicine, many of which are inflammatory in nature. This review describes metabolic differences among omega-3 fatty acids and outlines potential adverse effects that may occur with their supplementation in dogs and cats with a special focus on omega-3 fatty acids from fish oil. Important potential adverse effects of omega-3 fatty acid supplementation include altered platelet function, gastrointestinal adverse effects, detrimental effects on wound healing, lipid peroxidation, potential for nutrient excess and toxin exposure, weight gain, altered immune function, effects on glycemic control and insulin sensitivity, and nutrient-drug interactions. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  1. PGE2 suppresses intestinal T cell function in thermal injury: a cause of enhanced bacterial translocation.

    PubMed

    Choudhry, M A; Fazal, N; Namak, S Y; Haque, F; Ravindranath, T; Sayeed, M M

    2001-09-01

    Increased gut bacterial translocation in burn and trauma patients has been demonstrated in a number of previous studies, however, the mechanism for such an increased gut bacterial translocation in injured patients remains poorly understood. Utilizing a rat model of burn injury, in the present study we examined the role of intestinal immune defense by analyzing the T cell functions. We investigated if intestinal T cells dysfunction contributes to bacterial translocation after burn injury. Also our study determined if burn-mediated alterations in intestinal T cell functions are related to enhanced release of PGE2. Finally, we examined whether or not burn-related alterations in intestinal T cell function are due to inappropriate activation of signaling molecule P59fyn, which is required for T cell activation and proliferation. The results presented here showed an increase in gut bacterial accumulation in mesenteric lymph nodes after thermal injury. This was accompanied by a decrease in the intestinal T cell proliferative responses. Furthermore, the treatments of burn-injured animals with PGE2 synthesis blocker (indomethacin or NS398) prevented both the decrease in intestinal T cell proliferation and enhanced bacterial translocation. Finally, our data suggested that the inhibition of intestinal T cell proliferation could result via PGE2-mediated down-regulation of the T cell activation-signaling molecule P59fyn. These findings support a role of T cell-mediated immune defense against bacterial translocation in burn injury.

  2. Genetically Engineered Poxviruses for Recombinant Gene Expression, Vaccination, and Safety

    NASA Astrophysics Data System (ADS)

    Moss, Bernard

    1996-10-01

    Vaccinia virus, no longer required for immunization against smallpox, now serves as a unique vector for expressing genes within the cytoplasm of mammalian cells. As a research tool, recombinant vaccinia viruses are used to synthesize and analyze the structure--function relationships of proteins, determine the targets of humoral and cell-mediated immunity, and investigate the types of immune response needed for protection against specific infectious diseases and cancer. The vaccine potential of recombinant vaccinia virus has been realized in the form of an effective oral wild-life rabies vaccine, although no product for humans has been licensed. A genetically altered vaccinia virus that is unable to replicate in mammalian cells and produces diminished cytopathic effects retains the capacity for high-level gene expression and immunogenicity while promising exceptional safety for laboratory workers and potential vaccine recipients.

  3. Coexpression network analysis identifies transcriptional modules associated with genomic alterations in neuroblastoma.

    PubMed

    Yang, Liulin; Li, Yun; Wei, Zhi; Chang, Xiao

    2018-06-01

    Neuroblastoma is a highly complex and heterogeneous cancer in children. Acquired genomic alterations including MYCN amplification, 1p deletion and 11q deletion are important risk factors and biomarkers in neuroblastoma. Here, we performed a co-expression-based gene network analysis to study the intrinsic association between specific genomic changes and transcriptome organization. We identified multiple gene coexpression modules which are recurrent in two independent datasets and associated with functional pathways including nervous system development, cell cycle, immune system process and extracellular matrix/space. Our results also indicated that modules involved in nervous system development and cell cycle are highly associated with MYCN amplification and 1p deletion, while modules responding to immune system process are associated with MYCN amplification only. In summary, this integrated analysis provides novel insights into molecular heterogeneity and pathogenesis of neuroblastoma. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017. Published by Elsevier B.V.

  4. Altered homeostatic regulation of innate and adaptive immunity in lower gastrointestinal tract GVHD pathogenesis.

    PubMed

    Ferrara, James Lm; Smith, Christopher M; Sheets, Julia; Reddy, Pavan; Serody, Jonathan S

    2017-06-30

    Lower gastrointestinal (GI) tract graft-versus-host disease (GVHD) is the predominant cause of morbidity and mortality from GVHD after allogeneic stem cell transplantation. Recent data indicate that lower GI tract GVHD is a complicated process mediated by donor/host antigenic disparities. This process is exacerbated by significant changes to the microbiome, and innate and adaptive immune responses that are critical to the induction of disease, persistence of inflammation, and a lack of response to therapy. Here, we discuss new insights into the biology of lower GI tract GVHD and focus on intrinsic pathways and regulatory mechanisms crucial to normal intestinal function. We then describe multiple instances in which these homeostatic mechanisms are altered by donor T cells or conditioning therapy, resulting in exacerbation of GVHD. We also discuss data suggesting that some of these mechanisms produce biomarkers that could be informative as to the severity of GVHD and its response to therapy. Finally, novel therapies that might restore homeostasis in the GI tract during GVHD are highlighted.

  5. Microbial translocation and microbiome dsybiosis in HIV-associated immune activation

    PubMed Central

    Zevin, Alexander S.; McKinnon, Lyle; Burgener, Adam; Klatt, Nichole R.

    2016-01-01

    Purpose of Review To describe the mechanisms and consequences of both microbial translocation and microbial dysbiosis in HIV infection. Recent Findings Microbes in HIV are likely playing a large role in contributing to HIV pathogenesis, morbidities and mortality. Two major disruptions to microbial systems in HIV infection include microbial translocation and microbiome dysbiosis. Microbial translocation occurs when the bacteria (or bacterial products) that should be in the lumen of the intestine translocate across the tight epithelial barrier into systemic circulation, where they contribute to inflammation and pathogenesis. This is associated with poorer health outcomes in HIV infected individuals. In addition, microbial populations in the GI tract are also altered after HIV infection, resulting in microbiome dysbiosis, which further exacerbates microbial translocation, epithelial barrier disruption, inflammation, and mucosal immune functioning. Summary Altered microbial regulation in HIV infection can lead to poor health outcomes, and understanding the mechanisms underlying microbial dysbiosis and translocation may result in novel pathways for therapeutic interventions. PMID:26679414

  6. HMBPP-deficient Listeria mutant immunization alters pulmonary/systemic responses, effector functions, and memory polarization of Vγ2Vδ2 T cells

    PubMed Central

    Frencher, James T.; Shen, Hongbo; Yan, Lin; Wilson, Jessica O.; Freitag, Nancy E.; Rizzo, Alicia N.; Chen, Crystal Y.; Chen, Zheng W.

    2014-01-01

    Whereas infection or immunization of humans/primates with microbes coproducing HMBPP/IPP can remarkably activate Vγ2Vδ2 T cells, in vivo studies have not been done to dissect HMBPP- and IPP-driven expansion, pulmonary trafficking, effector functions, and memory polarization of Vγ2Vδ2 T cells. We define these phosphoantigen-host interplays by comparative immunizations of macaques with the HMBPP/IPP-coproducing Listeria ΔactA prfA* and HMBPP-deficient Listeria ΔactAΔgcpE prfA* mutant. The HMBPP-deficient ΔgcpE mutant shows lower ability to expand Vγ2Vδ2 T cells in vitro than the parental HMBPP-producing strain but displays comparably attenuated infectivity or immunogenicity. Respiratory immunization of macaques with the HMBPP-deficient mutant elicits lower pulmonary and systemic responses of Vγ2Vδ2 T cells compared with the HMBPP-producing vaccine strain. Interestingly, HMBPP-deficient mutant reimmunization or boosting elicits enhanced responses of Vγ2Vδ2 T cells, but the magnitude is lower than that by HMBPP-producing listeria. HMBPP-deficient listeria differentiated fewer Vγ2Vδ2 T effector cells capable of coproducing IFN-γ and TNF-α and inhibiting intracellular listeria than HMBPP-producing listeria. Furthermore, HMBPP deficiency in listerial immunization influences memory polarization of Vγ2Vδ2 T cells. Thus, both HMBPP and IPP production in listerial immunization or infection elicit systemic/pulmonary responses and differentiation of Vγ2Vδ2 T cells, but a role for HMBPP is more dominant. Findings may help devise immune intervention. PMID:25114162

  7. Helminths and Intestinal Flora Team Up to Improve Gut Health.

    PubMed

    Giacomin, Paul; Agha, Zainab; Loukas, Alex

    2016-09-01

    Inflammatory bowel diseases (IBD) are associated with impaired intestinal barrier function, chronic inflammation, and microbial dysbiosis. In a recent publication in Science, Ramanan et al. used murine and human studies to demonstrate that infections with gastrointestinal helminths can protect against IBD by provoking immune responses that alter the balance of commensal and pathogenic bacteria in the intestine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal.

    PubMed

    Mills, Evanna L; O'Neill, Luke A

    2016-01-01

    Mitochondria are master regulators of metabolism. Mitochondria generate ATP by oxidative phosphorylation using pyruvate (derived from glucose and glycolysis) and fatty acids (FAs), both of which are oxidized in the Krebs cycle, as fuel sources. Mitochondria are also an important source of reactive oxygen species (ROS), creating oxidative stress in various contexts, including in the response to bacterial infection. Recently, complex changes in mitochondrial metabolism have been characterized in mouse macrophages in response to varying stimuli in vitro. In LPS and IFN-γ-activated macrophages (M1 macrophages), there is decreased respiration and a broken Krebs cycle, leading to accumulation of succinate and citrate, which act as signals to alter immune function. In IL-4-activated macrophages (M2 macrophages), the Krebs cycle and oxidative phosphorylation are intact and fatty acid oxidation (FAO) is also utilized. These metabolic alterations in response to the nature of the stimulus are proving to be determinants of the effector functions of M1 and M2 macrophages. Furthermore, reprogramming of macrophages from M1 to M2 can be achieved by targeting metabolic events. Here, we describe the role that metabolism plays in macrophage function in infection and immunity, and propose that reprogramming with metabolic inhibitors might be a novel therapeutic approach for the treatment of inflammatory diseases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection.

    PubMed

    Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R; Chen, Feng

    2017-01-01

    The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host-virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 ( ne219 ) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 ( ne219 ) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 ( ne219 ) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  10. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection

    PubMed Central

    Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R.; Chen, Feng

    2017-01-01

    The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host–virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 (ne219) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 (ne219) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 (ne219) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response. PMID:28611740

  11. Respiratory and Metabolic Impacts of Crustacean Immunity: Are there Implications for the Insects?

    PubMed

    Burnett, Karen G; Burnett, Louis E

    2015-11-01

    Extensive similarities in the molecular architecture of the crustacean immune system to that of insects give credence to the current view that the Hexapoda, including Insecta, arose within the clade Pancrustacea. The crustacean immune system is mediated largely by hemocytes, relying on suites of pattern recognition receptors, effector functions, and signaling pathways that parallel those of insects. In crustaceans, as in insects, the cardiovascular system facilitates movement of hemocytes and delivery of soluble immune factors, thereby supporting immune surveillance and defense along with other physiological functions such as transport of nutrients, wastes, and hormones. Crustaceans also rely heavily on their cardiovascular systems to mediate gas exchange; insects are less reliant on internal circulation for this function. Among the largest crustaceans, the decapods have developed a condensed heart and a highly arteriolized cardiovascular system that supports the metabolic demands of their often large body size. However, recent studies indicate that mounting an immune response can impair gas exchange and metabolism in their highly developed vascular system. When circulating hemocytes detect the presence of potential pathogens, they aggregate rapidly with each other and with the pathogen. These growing aggregates can become trapped in the microvasculature of the gill where they are melanized and may be eliminated at the next molt. Prior to molting, trapped aggregates of hemocytes also can impair hemolymph flow and oxygenation at the gill. Small shifts to anaerobic metabolism only partially compensate for this decrease in oxygen uptake. The resulting metabolic depression is likely to impact other energy-expensive cellular processes and whole-animal performance. For crustaceans that often live in microbially-rich, but oxygen-poor aquatic environments, there appear to be distinct tradeoffs, based on the gill's multiple roles in respiration and immunity. Insects have developed a separate tracheal system for the delivery of oxygen to tissues, so this particular tradeoff between oxygen transport and immune function is avoided. Few studies in crustaceans or insects have tested whether mounting an immune response might impact other functions of the cardiovascular system or alter integrity of the gut, respiratory, and reproductive epithelia where processes of the attack on pathogens, defense by the host, and physiological functions play out. Such tradeoffs might be fruitfully addressed by capitalizing on the ease of molecular and genetic manipulation in insects. Given the extensive similarities between the insect and the crustacean immune systems, such models of epithelial infection could benefit our understanding of the physiological consequences of immune defense in all of the Pancrustacea. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  12. AMPK and mTOR: sensors and regulators of immunometabolic changes during Salmonella infection in the chicken.

    PubMed

    Kogut, Michael H; Genovese, Kenneth J; He, Haiqi; Arsenault, Ryan J

    2016-02-01

    Non-typhoidal Salmonella enterica induce an early pro-inflammatory response in chickens, but the response is short-lived, asymptomatic of clinical disease, results in a persistent colonization of the gastrointestinal (GI) tract, and can transmit infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that facilitate this persistent colonization of the ceca of chickens by Salmonella are unknown. We have begun to concentrate on the convergence of metabolism and immune function as playing a major role in regulating the host responsiveness to infection. It is now recognized that the immune system monitors the metabolic state of tissues and responds by modulating metabolic function. The aim in this review is to summarize the literature that has defined a series of genotypic and phenotypic alterations in the regulatory host immune-metabolic signaling pathways in the local cecal microenvironment during the first 4 d following infection with Salmonella enterica serovar Enteritidis. Using chicken-specific kinomic immune-metabolism peptide arrays and quantitative real-time-PCR of cecal tissue during the early (4 to 48 h) and late stages (4 to 17 d) of a Salmonella infection in young broiler chickens, the local immunometabolic microenvironment has been ascertained. Distinct immune and metabolic pathways are altered between 2 to 4 d post-infection that dramatically changed the local immunometabolic environment. Thus, the tissue immunometabolic phenotype of the cecum plays a major role in the ability of the bacterium to establish a persistent cecal colonization. In general, our findings show that AMPK and mTOR are key players linking specific extracellular milieu and intracellular metabolism. Phenotypically, the early response (4 to 48 h) to Salmonella infection is pro-inflammatory, fueled by glycolysis and mTOR-mediated protein synthesis, whereas by the later phase (4 to 5 d), the local environment has undergone an immune-metabolic reprogramming to an anti-inflammatory state driven by AMPK-directed oxidative phosphorylation. Therefore, metabolism appears to provide a potential critical control point that can impact infection. Further understanding of metabolic control of immunity during infection should provide crucial information of the development of novel therapeutics based on metabolic modulators that enhance protection or inhibit infection. Published by Oxford University Press on behalf of Poultry Science Association 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Inflammatory Mediators Alter the Astrocyte Transcriptome and Calcium Signaling Elicited by Multiple G-Protein-Coupled Receptors

    PubMed Central

    Hamby, Mary E.; Coppola, Giovanni; Ao, Yan; Geschwind, Daniel H.; Khakh, Baljit S.; Sofroniew, Michael V.

    2012-01-01

    Inflammation features in CNS disorders such as stroke, trauma, neurodegeneration, infection, and autoimmunity in which astrocytes play critical roles. To elucidate how inflammatory mediators alter astrocyte functions, we examined effects of transforming growth factor-β1 (TGF-β1), lipopolysaccharide (LPS), and interferon-gamma (IFNγ), alone and in combination, on purified, mouse primary cortical astrocyte cultures. We used microarrays to conduct whole-genome expression profiling, and measured calcium signaling, which is implicated in mediating dynamic astrocyte functions. Combinatorial exposure to TGF-β1, LPS, and IFNγ significantly modulated astrocyte expression of >6800 gene probes, including >380 synergistic changes not predicted by summing individual treatment effects. Bioinformatic analyses revealed significantly and markedly upregulated molecular networks and pathways associated in particular with immune signaling and regulation of cell injury, death, growth, and proliferation. Highly regulated genes included chemokines, growth factors, enzymes, channels, transporters, and intercellular and intracellular signal transducers. Notably, numerous genes for G-protein-coupled receptors (GPCRs) and G-protein effectors involved in calcium signaling were significantly regulated, mostly down (for example, Cxcr4, Adra2a, Ednra, P2y1, Gnao1, Gng7), but some up (for example, P2y14, P2y6, Ccrl2, Gnb4). We tested selected cases and found that changes in GPCR gene expression were accompanied by significant, parallel changes in astrocyte calcium signaling evoked by corresponding GPCR-specific ligands. These findings identify pronounced changes in the astrocyte transcriptome induced by TGF-β1, LPS, and IFNγ, and show that these inflammatory stimuli upregulate astrocyte molecular networks associated with immune- and injury-related functions and significantly alter astrocyte calcium signaling stimulated by multiple GPCRs. PMID:23077035

  14. Inflammation in adult women with a history of child maltreatment: The involvement of mitochondrial alterations and oxidative stress.

    PubMed

    Boeck, Christina; Koenig, Alexandra Maria; Schury, Katharina; Geiger, Martha Leonie; Karabatsiakis, Alexander; Wilker, Sarah; Waller, Christiane; Gündel, Harald; Fegert, Jörg Michael; Calzia, Enrico; Kolassa, Iris-Tatjana

    2016-09-01

    The experience of maltreatment during childhood is associated with chronic low-grade inflammation in adulthood. However, the molecular mechanisms underlying this pro-inflammatory phenotype remain unclear. Mitochondria were recently found to principally coordinate inflammatory processes via both inflammasome activation and inflammasome-independent pathways. To this end, we hypothesized that alterations in immune cell mitochondrial functioning and oxidative stress might be at the interface between the association of maltreatment experiences during childhood and inflammation. We analyzed pro-inflammatory biomarkers (levels of C-reactive protein, cytokine secretion by peripheral blood mononuclear cells (PBMC) in vitro, PBMC composition, lysophosphatidylcholine levels), serum oxidative stress levels (arginine:citrulline ratio, l-carnitine and acetylcarnitine levels) and mitochondrial functioning (respiratory activity and density of mitochondria in PBMC) in peripheral blood samples collected from 30 women (aged 22-44years) with varying degrees of maltreatment experiences in form of abuse and neglect during childhood. Exposure to maltreatment during childhood was associated with an increased ROS production, higher levels of oxidative stress and an increased mitochondrial activity in a dose-response relationship. Moreover, the increase in mitochondrial activity and ROS production were positively associated with the release of pro-inflammatory cytokines by PBMC. Decreased serum levels of lysophosphatidylcholines suggested higher inflammasome activation with increasing severity of child maltreatment experiences. Together these findings offer preliminary evidence for the association of alterations in immune cell mitochondrial functioning, oxidative stress and the pro-inflammatory phenotype observed in individuals with a history of maltreatment during childhood. The results emphasize that the early prevention of child abuse and neglect warrants more attention, as the experience of maltreatment during childhood might have life-long consequences for physical health. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  15. Early-Life Host–Microbiome Interphase: The Key Frontier for Immune Development

    PubMed Central

    Amenyogbe, Nelly; Kollmann, Tobias R.; Ben-Othman, Rym

    2017-01-01

    Human existence can be viewed as an “animal in a microbial world.” A healthy interaction of the human host with the microbes in and around us heavily relies on a well-functioning immune system. As development of both the microbiota and the host immune system undergo rapid changes in early life, it is not surprising that even minor alterations during this co-development can have profound consequences. Scrutiny of existing data regarding pre-, peri-, as well as early postnatal modulators of newborn microbiota indeed suggest strong associations with several immune-mediated diseases with onset far beyond the newborn period. We here summarize these data and extract overarching themes. This same effort in turn sets the stage to guide effective countermeasures, such as probiotic administration. The objective of our review is to highlight the interaction of host immune ontogeny with the developing microbiome in early life as a critical window of susceptibility for lifelong disease, as well as to identify the enormous potential to protect and promote lifelong health by specifically targeting this window of opportunity. PMID:28596951

  16. Regulatory T Cells in Allergy and Asthma

    PubMed Central

    Martín-Orozco, Elena; Norte-Muñoz, María; Martínez-García, Javier

    2017-01-01

    The immune system’s correct functioning requires a sophisticated balance between responses to continuous microbial challenges and tolerance to harmless antigens, such as self-antigens, food antigens, commensal microbes, allergens, etc. When this equilibrium is altered, it can lead to inflammatory pathologies, tumor growth, autoimmune disorders, and allergy/asthma. The objective of this review is to show the existing data on the importance of regulatory T cells (Tregs) on this balance and to underline how intrauterine and postnatal environmental exposures influence the maturation of the immune system in humans. Genetic and environmental factors during embryo development and/or early life will result in a proper or, conversely, inadequate immune maturation with either beneficial or deleterious effects on health. We have focused herein on Tregs as a reflection of the maturity of the immune system. We explain the types, origins, and the mechanisms of action of these cells, discussing their role in allergy and asthma predisposition. Understanding the importance of Tregs in counteracting dysregulated immunity would provide approaches to diminish asthma and other related diseases in infants. PMID:28589115

  17. Early Nutrition as a Major Determinant of 'Immune Health': Implications for Allergy, Obesity and Other Noncommunicable Diseases.

    PubMed

    Prescott, Susan L

    2016-01-01

    Early-life nutritional exposures are significant determinants of the development and future health of all organ systems. The dramatic rise in infant immune diseases, most notably allergy, indicates the specific vulnerability of the immune system to early environmental changes. Dietary changes are at the center of the emerging epigenetic paradigms that underpin the rise in many modern inflammatory and metabolic diseases. There is growing evidence that exposures in pregnancy and the early postnatal period can modify gene expression and disease susceptibility. Although modern dietary changes are complex and involve changing patterns of many nutrients, there is also interest in the developmental effects of specific nutrients. Oligosaccharides (soluble fiber), antioxidants, polyunsaturated fatty acids, folate and other vitamins have documented effects on immune function as well as metabolism. Some have also been implicated in modified risk of allergic diseases in observational studies. Intervention studies are largely limited to trials with polyunsaturated fatty acids and oligosaccharides, showing preliminary but yet unconfirmed benefits in allergy prevention. Understanding how environmental influences disrupt the finely balanced development of immune and metabolic programming is of critical importance. Diet-sensitive pathways are likely to be crucial in these processes. While an epigenetic mechanism provides a strong explanation of how nutritional exposures can affect fetal gene expression and subsequent disease risk, other diet-induced tissue compositional changes may also contribute directly to altered immune and metabolic function--including diet-induced changes in the microbiome. A better understanding of nutritional programming of immune health, nutritional epigenetics and the biological processes sensitive to nutritional exposures early in life may lead to dietary strategies that provide more tolerogenic conditions during early immune programming and reduce the burden of many inflammatory diseases--not just allergy. © 2016 Nestec Ltd., Vevey/S. Karger AG, Basel.

  18. Alcohol exposure differentially effects anti-tumor immunity in females by altering dendritic cell function.

    PubMed

    Thompson, Matthew G; Navarro, Flor; Chitsike, Lennox; Ramirez, Luis; Kovacs, Elizabeth J; Watkins, Stephanie K

    2016-12-01

    Dendritic cells (DCs) are a critical component of anti-tumor immunity due to their ability to induce a robust immune response to antigen (Ag). Alcohol was previously shown to reduce DC ability to present foreign Ag and promote pro-inflammatory responses in situations of infection and trauma. However the impact of alcohol exposure on generation of an anti-tumor response, especially in the context of generation of an immune vaccine has not been examined. In the clinic, DC vaccines are typically generated from autologous blood, therefore prior exposure to substances such as alcohol may be a critical factor to consider regarding the effectiveness in generating an immune response. In this study, we demonstrate for the first time that ethanol differentially affects DC and tumor Ag-specific T cell responses depending on sex. Signaling pathways were found to be differentially regulated in DC in females compared to males and these differences were exacerbated by ethanol treatment. DC from female mice treated with ethanol were unable to activate Ag-specific cytotoxic T cells (CTL) as shown by reduced expression of CD44, CD69, and decreased production of granzyme B and IFNγ. Furthermore, although FOXO3, an immune suppressive mediator of DC function, was found to be upregulated in DC from female mice, ethanol related suppression was independent of FOXO3. These findings demonstrate for the first time differential impacts of alcohol on the immune system of females compared to males and may be a critical consideration for determining the effectiveness of an immune based therapy for cancer in patients that consume alcohol. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    PubMed Central

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  20. Cross-Linking of a CD4-Mimetic Miniprotein with HIV-1 Env gp140 Alters Kinetics and Specificities of Antibody Responses against HIV-1 Env in Macaques

    PubMed Central

    Bogers, Willy M.; Yates, Nicole L.; Ferrari, Guido; Dey, Antu K.; Williams, William T.; Jaeger, Frederick H.; Wiehe, Kevin; Sawant, Sheetal; Alam, S. Munir; LaBranche, Celia C.; Montefiori, David C.; Martin, Loic; Srivastava, Indresh; Heeney, Jonathan; Barnett, Susan W.

    2017-01-01

    ABSTRACT Evaluation of the epitope specificities, locations (systemic or mucosal), and effector functions of antibodies elicited by novel HIV-1 immunogens engineered to improve exposure of specific epitopes is critical for HIV-1 vaccine development. Utilizing an array of humoral assays, we evaluated the magnitudes, epitope specificities, avidities, and functions of systemic and mucosal immune responses elicited by a vaccine regimen containing Env cross-linked to a CD4-mimetic miniprotein (gp140-M64U1) in rhesus macaques. Cross-linking of gp140 Env to M64U1 resulted in earlier increases of both the magnitude and avidity of the IgG binding response than those with Env protein alone. Notably, IgG binding responses at an early time point correlated with antibody-dependent cellular cytotoxicity (ADCC) function at the peak immunity time point, which was higher for the cross-linked Env group than for the Env group. In addition, the cross-linked Env group developed higher IgG responses against a linear epitope in the gp120 C1 region of the HIV-1 envelope glycoprotein. These data demonstrate that structural modification of the HIV-1 envelope immunogen by cross-linking of gp140 with the CD4-mimetic M64U1 elicited an earlier increase of binding antibody responses and altered the specificity of the IgG responses, correlating with the rise of subsequent antibody-mediated antiviral functions. IMPORTANCE The development of an efficacious HIV-1 vaccine remains a global priority to prevent new cases of HIV-1 infection. Of the six HIV-1 efficacy trials to date, only one has demonstrated partial efficacy, and immune correlate analysis of that trial revealed a role for binding antibodies and antibody Fc-mediated effector functions. New HIV-1 envelope immunogens are being engineered to selectively expose the most vulnerable and conserved sites on the HIV-1 envelope, with the goal of eliciting antiviral antibodies. Evaluation of the humoral responses elicited by these novel immunogen designs in nonhuman primates is critical for understanding how to improve upon immunogen design to inform further testing in human clinical trials. Our results demonstrate that structural modifications of Env that aim to mimic the CD4-bound conformation can result in earlier antibody elicitation, altered epitope specificity, and increased antiviral function postimmunization. PMID:28490585

  1. Immune System Toxicity and Immunotoxicity Hazard Identification

    EPA Science Inventory

    Exposure to chemicals may alter immune system health, increasing the risk of infections, allergy and autoimmune diseases. The chapter provides a concise overview of the immune system, host factors that affect immune system heal, and the effects that xenobiotic exposure may have ...

  2. Circadian molecular clock in lung pathophysiology

    PubMed Central

    Sundar, Isaac K.; Yao, Hongwei; Sellix, Michael T.

    2015-01-01

    Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology. PMID:26361874

  3. Space Flight Immunodeficiency

    NASA Technical Reports Server (NTRS)

    Shearer, William T.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has had sufficient concern for the well-being of astronauts traveling in space to create the National Space Biomedical Research Institute (NSBRI), which is investigating several areas of biomedical research including those of immunology. As part of the Immunology, Infection, and Hematology Team, the co-investigators of the Space Flight Immunodeficiency Project began their research projects on April 1, 1998 and are now just into the second year of work. Two areas of research have been targeted: 1) specific immune (especially antibody) responses and 2) non-specific inflammation and adhesion. More precise knowledge of these two areas of research will help elucidate the potential harmful effects of space travel on the immune system, possibly sufficient to create a secondary state of immunodeficiency in astronauts. The results of these experiments are likely to lead to the delineation of functional alterations in antigen presentation, specific immune memory, cytokine regulation of immune responses, cell to cell interactions, and cell to endothelium interactions.

  4. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism

    PubMed Central

    Ceni, Elisabetta; Mello, Tommaso; Galli, Andrea

    2014-01-01

    Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases, resulting in fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma (HCC). Although the pathogenesis of alcoholic liver disease (ALD) involves complex and still unclear biological processes, the oxidative metabolites of ethanol such as acetaldehyde and reactive oxygen species (ROS) play a preeminent role in the clinical and pathological spectrum of ALD. Ethanol oxidative metabolism influences intracellular signaling pathways and deranges the transcriptional control of several genes, leading to fat accumulation, fibrogenesis and activation of innate and adaptive immunity. Acetaldehyde is known to be toxic to the liver and alters lipid homeostasis, decreasing peroxisome proliferator-activated receptors and increasing sterol regulatory element binding protein activity via an AMP-activated protein kinase (AMPK)-dependent mechanism. AMPK activation by ROS modulates autophagy, which has an important role in removing lipid droplets. Acetaldehyde and aldehydes generated from lipid peroxidation induce collagen synthesis by their ability to form protein adducts that activate transforming-growth-factor-β-dependent and independent profibrogenic pathways in activated hepatic stellate cells (HSCs). Furthermore, activation of innate and adaptive immunity in response to ethanol metabolism plays a key role in the development and progression of ALD. Acetaldehyde alters the intestinal barrier and promote lipopolysaccharide (LPS) translocation by disrupting tight and adherent junctions in human colonic mucosa. Acetaldehyde and LPS induce Kupffer cells to release ROS and proinflammatory cytokines and chemokines that contribute to neutrophils infiltration. In addition, alcohol consumption inhibits natural killer cells that are cytotoxic to HSCs and thus have an important antifibrotic function in the liver. Ethanol metabolism may also interfere with cell-mediated adaptive immunity by impairing proteasome function in macrophages and dendritic cells, and consequently alters allogenic antigen presentation. Finally, acetaldehyde and ROS have a role in alcohol-related carcinogenesis because they can form DNA adducts that are prone to mutagenesis, and they interfere with methylation, synthesis and repair of DNA, thereby increasing HCC susceptibility. PMID:25548474

  5. HDAC6 regulates the dynamics of lytic granules in cytotoxic T lymphocytes

    PubMed Central

    Núñez-Andrade, Norman; Iborra, Salvador; Trullo, Antonio; Moreno-Gonzalo, Olga; Calvo, Enrique; Catalán, Elena; Menasche, Gaël; Sancho, David; Vázquez, Jesús; Yao, Tso-Pang

    2016-01-01

    HDAC6 is a tubulin deacetylase involved in many cellular functions related to cytoskeleton dynamics including cell migration and autophagy. In addition, HDAC6 affects antigen-dependent CD4+ T cell activation. In this study, we show that HDAC6 contributes to the cytotoxic function of CD8+ T cells. Immunization studies revealed defective cytotoxic activity in vivo in the absence of HDAC6. Adoptive transfer of wild-type or Hdac6-/- CD8+ T cells to Rag1-/- mice demonstrated specific impairment in CD8+ T cell responses against vaccinia infection. Mechanistically, HDAC6-deficient cytotoxic T lymphocytes (CTLs) showed defective in vitro cytolytic activity related to altered dynamics of lytic granules, inhibited kinesin 1 – dynactin mediated terminal transport of lytic granules to the immune synapse and deficient exocytosis, but not to target cell recognition, T cell receptor (TCR) activation or interferon (IFNγ) production. Our results establish HDAC6 as an effector of the immune cytotoxic response that acts by affecting the dynamics, transport and secretion of lytic granules by CTLs. PMID:26869226

  6. HLA-G Expression Pattern: Reliable Assessment for Pregnancy Outcome Prediction

    PubMed Central

    Mosaferi, Elnaz; Majidi, Jafar; Mohammadian, Mojdeh; Babaloo, Zohreh; Monfaredan, Amir; Baradaran, Behzad

    2013-01-01

    Because mothers and fathers are more or less dissimilar at multiple HLA loci, mother considers her fetus as a semi-allograft. Mother's immune system may recognize paternal HLA as foreign antigen and may develop anti-paternal HLA antibodies and cytotoxic T lymphocyte. There are some mechanisms that modulate maternal immune responses during pregnancy, in order to make uterus an immune privileged site. This immunosuppression is believed to be mediated, at least partly, by HLA-G, non-classical class I human leukocyte antigen (HLA) molecule that is strongly expressed in cytotrophoblast and placenta. The major HLA-G function is its ability to inhibit T and B lymphocytes, NK cells and antigen-presenting cells (APC).Since HLA-G is expressed strongly at the maternofetal interface and has an essential role in immunosuppression, HLA-G polymorphism and altered expression of HLA-G seems to be associated with some complications of pregnancy, such as pre-eclampsia, recurrent misscariage and failure in IVF.This perspective discusses recent findings about HLA-G genetics, function, expression and polymorphism; and focus on HLA-G role in the etiology of recurrent miscarriage. PMID:24312875

  7. Role of collectins and complement protein C1q in pregnancy and parturition.

    PubMed

    Madhukaran, Shanmuga Priyaa; Alhamlan, Fatimah S; Kale, Kavita; Vatish, Manu; Madan, Taruna; Kishore, Uday

    2016-11-01

    Collectins such as surfactant proteins SP-A, SP-D, and mannan-binding lectin (MBL), as well as complement protein C1q are evolutionarily conserved innate immune molecules. They are known to opsonize a range of microbial pathogens (bacteria, fungi, virus, and parasites) and trigger effector clearance mechanisms involving phagocytosis and/or complement activation. Collectins and C1q have also attracted attention in studies involving pregnancy as they are expressed in the female reproductive tissues during pregnancy; a unique state of immune suppression with increased susceptibility to infectious diseases. Recent studies are beginning to unravel their functional significance in implantation, placentation, pregnancy maintenance and parturition in normal and adverse pregnancies. Collectins and C1q, expressed in gestational tissues during pregnancy, might alter the status of mother's immune response to the allogenic fetus and the microenvironment, thereby serving as important regulators of fetus-mother interaction. Here, we discuss the functional roles that have been assigned to SP-A, SP-D, MBL and C1q in pregnancy and parturition. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Waning and aging of cellular immunity to Bordetella pertussis.

    PubMed

    van Twillert, Inonge; Han, Wanda G H; van Els, Cécile A C M

    2015-11-01

    While it is clear that the maintenance of Bordetella pertussis-specific immunity evoked both after vaccination and infection is insufficient, it is unknown at which pace waning occurs and which threshold levels of sustained functional memory B and T cells are required to provide long-term protection. Longevity of human cellular immunity to B. pertussis has been studied less extensively than serology, but is suggested to be key for the observed differences between the duration of protection induced by acellular vaccination and whole cell vaccination or infection. The induction and maintenance of levels of protective memory B and T cells may alter with age, associated with changes of the immune system throughout life and with accumulating exposures to circulating B. pertussis or vaccine doses. This is relevant since pertussis affects all age groups. This review summarizes current knowledge on the waning patterns of human cellular immune responses to B. pertussis as addressed in diverse vaccination and infection settings and in various age groups. Knowledge on the effectiveness and flaws in human B. pertussis-specific cellular immunity ultimately will advance the improvement of pertussis vaccination strategies. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. The Transcriptional Response of Drosophila melanogaster to Infection with the Sigma Virus (Rhabdoviridae)

    PubMed Central

    Baines, John F.; Roller, Julia; Saminadin-Peter, Sarah S.; Parsch, John; Jiggins, Francis M.

    2009-01-01

    Background Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. Principal Findings We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. Conclusions These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus. PMID:19718442

  10. The transcriptional response of Drosophila melanogaster to infection with the sigma virus (Rhabdoviridae).

    PubMed

    Carpenter, Jennifer; Hutter, Stephan; Baines, John F; Roller, Julia; Saminadin-Peter, Sarah S; Parsch, John; Jiggins, Francis M

    2009-08-31

    Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus.

  11. The Spleen: A Hub Connecting Nervous and Immune Systems in Cardiovascular and Metabolic Diseases

    PubMed Central

    Lori, Andrea; Perrotta, Marialuisa; Lembo, Giuseppe; Carnevale, Daniela

    2017-01-01

    Metabolic disorders have been identified as major health problems affecting a large portion of the world population. In addition, obesity and insulin resistance are principal risk factors for the development of cardiovascular diseases. Altered immune responses are common features of both hypertension and obesity and, moreover, the involvement of the nervous system in the modulation of immune system is gaining even more attention in both pathophysiological contexts. For these reasons, during the last decades, researches focused their efforts on the comprehension of the molecular mechanisms connecting immune system to cardiovascular and metabolic diseases. On the other hand, it has been reported that in these pathological conditions, central neural pathways modulate the activity of the peripheral nervous system, which is strongly involved in onset and progression of the disease. It is interesting to notice that neural reflex can also participate in the modulation of immune functions. In this scenario, the spleen becomes the crucial hub allowing the interaction of different systems differently involved in metabolic and cardiovascular diseases. Here, we summarize the major findings that dissect the role of the immune system in disorders related to metabolic and cardiovascular dysfunctions, and how this could also be influenced by neural reflexes. PMID:28590409

  12. Minding the Calcium Store: Ryanodine Receptor Activation as a Convergent Mechanism of PCB Toxicity

    PubMed Central

    Pessah, Isaac N.; Cherednichenko, Gennady; Lein, Pamela J.

    2009-01-01

    Chronic low level polychlorinated biphenyls (PCB) exposures remain a significant public health concern since results from epidemiological studies indicate PCB burden is associated with immune system dysfunction, cardiovascular disease, and impairment of the developing nervous system. Of these various adverse health effects, developmental neurotoxicity has emerged as a particularly vulnerable endpoint in PCB toxicity. Arguably the most pervasive biological effects of PCBs could be mediated by their ability to alter the spatial and temporal fidelity of Ca2+ signals through one or more receptor mediated processes. This review will focus on our current knowledge of the structure and function of ryanodine receptors (RyRs) in muscle and nerve cells and how PCBs and related non-coplanar structures alter these functions. The molecular and cellular mechanisms by which non-coplanar PCBs and related structures alter local and global Ca2+ signaling properties and the possible short and long-term consequences of these perturbations on neurodevelopment and neurodegeneration are reviewed. PMID:19931307

  13. A systems model for immune cell interactions unravels the mechanism of inflammation in human skin.

    PubMed

    Valeyev, Najl V; Hundhausen, Christian; Umezawa, Yoshinori; Kotov, Nikolay V; Williams, Gareth; Clop, Alex; Ainali, Crysanthi; Ouzounis, Christos; Tsoka, Sophia; Nestle, Frank O

    2010-12-02

    Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.

  14. Current understanding of HIV-1 and T-cell adaptive immunity: progress to date.

    PubMed

    Mohan, Teena; Bhatnagar, Santwana; Gupta, Dablu L; Rao, D N

    2014-08-01

    The cellular immune response to human immunodeficiency virus (HIV) has different components originating from both the adaptive and innate immune systems. HIV cleverly utilizes the host machinery to survive by its intricate nature of interaction with the host immune system. HIV evades the host immune system at innate ad adaptive, allows the pathogen to replicate and transmit from one host to another. Researchers have shown that HIV has multipronged effects especially on the adaptive immunity, with CD4(+) cells being the worst effect T-cell populations. Various analyses have revealed that, the exposure to HIV results in clonal expansion and excessive activation of the immune system. Also, an abnormal process of differentiation has been observed suggestive of an alteration and blocks in the maturation of various T-cell subsets. Additionally, HIV has shown to accelerate immunosenescence and exhaustion of the overtly activated T-cells. Apart from causing phenotypic changes, HIV has adverse effects on the functional aspect of the immune system, with evidences implicating it in the loss of the capacity of T-cells to secrete various antiviral cytokines and chemokines. However, there continues to be many aspects of the immune- pathogenesis of HIV that are still unknown and thus required further research in order to convert the malaise of HIV into a manageable epidemic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Immune Selection In Vitro Reveals Human Immunodeficiency Virus Type 1 Nef Sequence Motifs Important for Its Immune Evasion Function In Vivo

    PubMed Central

    Lee, Patricia; Ng, Hwee L.; Yang, Otto O.

    2012-01-01

    Human immunodeficiency virus type 1 (HIV-1) Nef downregulates major histocompatibility complex class I (MHC-I), impairing the clearance of infected cells by CD8+ cytotoxic T lymphocytes (CTLs). While sequence motifs mediating this function have been determined by in vitro mutagenesis studies of laboratory-adapted HIV-1 molecular clones, it is unclear whether the highly variable Nef sequences of primary isolates in vivo rely on the same sequence motifs. To address this issue, nef quasispecies from nine chronically HIV-1-infected persons were examined for sequence evolution and altered MHC-I downregulatory function under Gag-specific CTL immune pressure in vitro. This selection resulted in decreased nef diversity and strong purifying selection. Site-by-site analysis identified 13 codons undergoing purifying selection and 1 undergoing positive selection. Of the former, only 6 have been reported to have roles in Nef function, including 4 associated with MHC-I downregulation. Functional testing of naturally occurring in vivo polymorphisms at the 7 sites with no previously known functional role revealed 3 mutations (A84D, Y135F, and G140R) that ablated MHC-I downregulation and 3 (N52A, S169I, and V180E) that partially impaired MHC-I downregulation. Globally, the CTL pressure in vitro selected functional Nef from the in vivo quasispecies mixtures that predominately lacked MHC-I downregulatory function at the baseline. Overall, these data demonstrate that CTL pressure exerts a strong purifying selective pressure for MHC-I downregulation and identifies novel functional motifs present in Nef sequences in vivo. PMID:22553319

  16. Spaceflight and Development of Immune Responses

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1996-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. The number of flight experiments has been small, and the full breadth of immunological alterations occurring after space flight remains to be established. Among the major effects on immune responses after space flight that have been reported are: alterations in lymphocyte blastogenesis and natural killer cell activity, alterations in production of cytokines, changes in leukocyte sub-population distribution, and decreases in the ability of bone marrow cells to respond to colony stimulating factors. Changes have been reported in immunological parameters of both humans and rodents. The significance of these alterations in relation to resistance to infection remains to be established. The objective of the studies contained in this project was to determine the effects of space flight on immune responses of pregnant rats and their offspring. The hypothesis was that space flight and the attendant period of microgravity will result in alteration of immunological parameters of both the pregnant rats as well as their offspring carried in utero during the flight. The parameters tested included: production of cytokines, composition of leukocyte sub- populations, response of bone marrow/liver cells to granulocyte/monocyte colony stimulating factor, and leukocyte blastogenesis. Changes in immune responses that could yield alterations in resistance to infection were determined. This yielded useful information for planning studies that could contribute to crew health. Additional information that could eventually prove useful to determine the potential for establishment of a permanent colony in space was obtained.

  17. Examination of immune parameters and host-resistance mechanisms in B6C3F1 mice following adult exposure to 2,3,7,8-tetrachlorodibenzo-'p'-dioxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    House, R.V.; Lauer, L.D.; Murray, M.J.

    1990-01-01

    Adult female B6C3F1 mice were given a single IP dose of 0, 0.1, 1.0, or 10.0 micrograms/kg TCDD and examined for immune function and host resistance seven to ten days later. Exposure to TCDD resulted in a significant dose-related decrease in induction of both IgM and IgG antibody-forming cells. The suppression was noted for both T-dependent and T-independent antigens. TCDD at a dosage of 10 micrograms/kg was shown to suppress production of viral hemagglutinin. In contrast, TCDD exposure had no significant effect on natural killer cell function, production of interferon, or various parameters of macrophage function. Host resistance assessment revealedmore » a significant increase in susceptibility to fatal infection with influenza virus, but no significant alteration in susceptibility to infection with the bacterium Listeria monocytogenes.« less

  18. Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes

    PubMed Central

    Semenkovich, Nicholas P.; Planer, Joseph D.; Ahern, Philip P.; Griffin, Nicholas W.; Lin, Charles Y.; Gordon, Jeffrey I.

    2016-01-01

    The gut microbiota impacts many aspects of host biology including immune function. One hypothesis is that microbial communities induce epigenetic changes with accompanying alterations in chromatin accessibility, providing a mechanism that allows a community to have sustained host effects even in the face of its structural or functional variation. We used Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) to define chromatin accessibility in predicted enhancer regions of intestinal αβ+ and γδ+ intraepithelial lymphocytes purified from germ-free mice, their conventionally raised (CONV-R) counterparts, and mice reared germ free and then colonized with CONV-R gut microbiota at the end of the suckling–weaning transition. Characterizing genes adjacent to traditional enhancers and super-enhancers revealed signaling networks, metabolic pathways, and enhancer-associated transcription factors affected by the microbiota. Our results support the notion that epigenetic modifications help define microbial community-affiliated functional features of host immune cell lineages. PMID:27911843

  19. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense.

    PubMed

    Hansdottir, Sif; Monick, Martha M; Hinde, Sara L; Lovan, Nina; Look, Dwight C; Hunninghake, Gary W

    2008-11-15

    The role of vitamin D in innate immunity is increasingly recognized. Recent work has identified a number of tissues that express the enzyme 1alpha-hydroxylase and are able to activate vitamin D. This locally produced vitamin D is believed to have important immunomodulatory effects. In this paper, we show that primary lung epithelial cells express high baseline levels of activating 1alpha-hydroxylase and low levels of inactivating 24-hydroxylase. The result of this enzyme expression is that airway epithelial cells constitutively convert inactive 25-dihydroxyvitamin D(3) to the active 1,25-dihydroxyvitamin D(3). Active vitamin D that is generated by lung epithelium leads to increased expression of vitamin D-regulated genes with important innate immune functions. These include the cathelicidin antimicrobial peptide gene and the TLR coreceptor CD14. dsRNA increases the expression of 1alpha-hydroxylase, augments the production of active vitamin D, and synergizes with vitamin D to increase expression of cathelicidin. In contrast to induction of the antimicrobial peptide, vitamin D attenuates dsRNA-induced expression of the NF-kappaB-driven gene IL-8. We conclude that primary epithelial cells generate active vitamin D, which then influences the expression of vitamin D-driven genes that play a major role in host defense. Furthermore, the presence of vitamin D alters induction of antimicrobial peptides and inflammatory cytokines in response to viruses. These observations suggest a novel mechanism by which local conversion of inactive to active vitamin D alters immune function in the lung.

  20. Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery.

    PubMed

    Pellegrino, R; Sunaga, D Y; Guindalini, C; Martins, R C S; Mazzotti, D R; Wei, Z; Daye, Z J; Andersen, M L; Tufik, S

    2012-11-01

    Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. Using high-resolution microarrays we evaluated the gene expression profiles of healthy male volunteers who underwent 60 h of prolonged wakefulness (PW) followed by 12 h of sleep recovery (SR). Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (Baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response, as well as diverse immune system responses, such as natural killer pathways including killer cell lectin-like receptors family, as well as granzymes and T-cell receptors, which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was downregulated following PW and upregulated after SR compared with PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC, and CEACAM genes confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.

Top