Textural constraints on the formation of alteration phases in CM chondrites
NASA Technical Reports Server (NTRS)
Joseph, L. H.; Browning, L. B.; Zolensky, M. E.
1994-01-01
Although it is generally believed that the secondary alteration phases observed in CM chondrites resulted from parent body reactions, the influence of nebular processing can not yet be dismissed. We have analyzed 5 CM falls using optical and electron microscopy to construct a comprehensive pictorial reference set of textural and mineralogical associations bearing on the origin of alteration products in these meteorites. Our analyses support pervasive aqueous alteration on the CM parent body, but they do not exclude the possibility of minor nebular alteration.
I-Xe Dating: The Time Line of Chondrule Formation and Metamorphism in LL Chondrites
NASA Technical Reports Server (NTRS)
Pravdivtseva, O. V.; Hohenberg, C. M.; Meshik, A. P.
2005-01-01
Refractory inclusions, considered to be the oldest solids formed in the solar nebula. (4567.2 0.6 Ma) [1], are common in many carbonaceous and in some ordinary and enstatite chondrites. High-precision Pb- Pb ages for CAI s and chondrules (from different meteorites) suggested that chondrule formation appeared to have started about 2 Ma later than that of CAIs [1]. However, recent 26Al/26Mg data suggest simultaneous formation of CAI s and chondrules in Allende [2]. The I-Xe ages of CAI s in Allende are about 2 Ma younger than the I-Xe ages of Allende chondrules [3] but, like all chronometers, the I-Xe system records closure time of its particular host phase. In the case of Allende CAI s, the major iodine-bearing phase is sodalite, a secondary phase presumably formed by aqueous alteration, so I-Xe reflects the post-formational processes in these objects. In chondrules the iodine host phases vary and can reflect formation and/or alteration but, to put chondrule ages on a quantative basis, some problems should first be addressed.
NASA Astrophysics Data System (ADS)
Branagan, D. J.; McCallum, R. W.
In order to evaluate the effects of additions on the solidification behavior of Nd 2Fe 14B, a stoichiometric alloy was modified with elemental additions of Ti or C and a compound addition of Ti with C. For each alloy, a series of wheel speed runs was undertaken, from which the optimum wheel speeds and optimum energy products were determined. On the BHmax versus wheel speed plots, regions were identified in order to analyze the changes with cooling rates leading to phase formation brought about by the alloy modifications. The compilation of the regional data of the modified alloys showed their effects on altering the cooling rate dependence of phase formation. It was found that the regions of properitectic iron formation, glass formation, and the optimum cooling rate can be changed by more than a factor of two through appropriate alloying additions. The effects of the alloy modifications can be visualized in a convenient fashion through the use of a model continuous cooling transformation (CCT) diagram which represents phase formation during the solidification process under continuous cooling conditions for a wide range of cooling rates from rapid solidification to equilibrium cooling.
Amorphous Phases on the Surface of Mars
NASA Technical Reports Server (NTRS)
Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.
2014-01-01
Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made up of mixed phases (e.g., palagonite) and synthetic single phases to determine their short-range order structures and calculate their XRD patterns to use in models of CheMin data. Finally, to address the timing of the alteration, we need to study rocks on the martian surface of different ages that may contain glass (volcanic or impact) with MSL and future rovers to better understand how glass alters on the martian surface, if that alteration mechanism is universal, and if alteration spans across long periods of time or if there is a time past which unaltered glass remains.
A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.
Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan
2015-06-01
In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.
Thermodynamic Models for Aqueous Alteration Coupled with Volume and Pressure Changes in Asteroids
NASA Technical Reports Server (NTRS)
Mironenko, M. V.; Zolotov, M. Y.
2005-01-01
All major classes of chondrites show signs of alteration on their parent bodies (asteroids). The prevalence of oxidation and hydration in alteration pathways implies that water was the major reactant. Sublimation and melting of water ice, generation of gases, formation of aqueous solutions, alteration of primary minerals and glasses and formation of secondary solids in interior parts of asteroids was likely to be driven by heat from the radioactive decay of short-lived radionuclides. Progress of alteration reactions should have affected masses and volumes of solids, and aqueous and gas phases. In turn, pressure evolution should have been controlled by changes in volumes and temperatures, escape processes, and production/ consumption of gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamontov, Eugene; Tyagi, M.; Qian, Shuo
Here we discuss that the mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature nomore » longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.« less
Mamontov, Eugene; Tyagi, M.; Qian, Shuo; ...
2016-05-27
Here we discuss that the mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature nomore » longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.« less
NASA Technical Reports Server (NTRS)
Zolotov, M. Y.; Mironenko, M. V.; Shock, E. L.
2005-01-01
Ordinary chondrites are the most abundant class of meteorites that could represent rocky parts of solar system bodies. However, even the most primitive unequilibrated ordinary chondrites (UOC) reveal signs of mild alteration that affected the matrix and peripheral zones of chondrules. Major chemical changes include oxidation of kamacite, alteration of glass, removal of alkalis, Al, and Si from chondrules, and formation of phases enriched in halogens, alkalis, and hydrogen. Secondary mineralogical changes include formation of magnetite, ferrous olivine, fayalite, pentlandite, awaruite, smectites, phosphates, carbonates, and carbides. Aqueous alteration is consistent with the oxygen isotope data for magnetite. The presence of secondary magnetite, Ni-rich metal alloys, and ferrous silicates in UOC implies that H2O was the oxidizing agent. However, oxidation by H2O means that H2 is produced in each oxidative pathway. In turn, production of H2, and its redistribution and possible escape should have affected total pressure, as well as the oxidation state of gas, aqueous and mineral phases in the parent body. Here we use equilibrium thermodynamic modeling to explore water-rock reactions in UOC. The chemical composition of gas, aqueous, and mineral phases is considered.
Axelrod's model with surface tension
NASA Astrophysics Data System (ADS)
Pace, Bruno; Prado, Carmen P. C.
2014-06-01
In this work we propose a subtle change in Axelrod's model for the dissemination of culture. The mechanism consists of excluding from the set of potentially interacting neighbors those that would never possibly exchange. Although the alteration proposed does not alter the state space topologically, it yields significant qualitative changes, specifically the emergence of surface tension, driving the system in some cases to metastable states. The transient behavior is considerably richer, and cultural regions become stable leading to the formation of different spatiotemporal patterns. A metastable "glassy" phase emerges between the globalized phase and the disordered, multicultural phase.
NASA Astrophysics Data System (ADS)
Gumus, Lokman; Öztürk, Sercan; Yalçın, Cihan; Abdelnasser, Amr; Hanilçi, Nurullah; Kumral, Mustafa
2016-04-01
This study is to determine the mass/volume gain and loss of the major and trace elements during the alteration processes on Dedeninyurdu, Yergen and Fındıklıyar Fe-Cu mineralizations of the area. Fe-Cu mineralization occurred in the spilitic volcanic a rock of Saraycık Formation is associated with the different types of alteration zones which are pyritization, silicification and sericitization. The study area comprises Bekirli Formation, Saraycık Formation, Beşpınar Formation, and Ilgaz Formation. Saraycık formation consists of spilitic volcanic rocks with pelagic limestone, siltstone and chert. The ore mineralogical data show that the pyrite, chalcopyrite, covellite, hematite, malachite and goethite formed during three phases of mineralization. As well as the geologic and petrographic studies reveal three alteration zones with definite mineral assemblages; phyllic alteration (quartz + sericite + pyrite) that represents the main alteration and mineralized zone; propylitic alteration; and carbonatized sericitic alteration zone. The boundaries between these zones are gradual. Mass balance calculations suggested that the phyllic alteration zone represented by gain in Si, Fe, K, S, and LOI and loss in Mg, Ca, and Na refers to silicification, sericitization and pyritization as well as replacement of Fe-Mg silicate and plagioclase. While, in the propylitic alteration zone, enrichment of Si, Fe, Mg, LOI and S occurred with depletions of Ca, Na, and K reflecting chloritization alteration type. On the other hand, carbonatized sericitic alteration zone shows local gain in Si, CaO and K reflects the occurrence of calc-silicate alteration. All alteration zones contain a large proportion of sulfide minerals (gain in S) with increase in loss on ignition (LOI). Keywords: Alteration geochemistry; Mass balance calculation, Fe-Cu mineralization; phyllic alteration, propylitic alteration.
NASA Technical Reports Server (NTRS)
Kondrachuk, Alexander V.; Boyle, Richard D.
2005-01-01
The variety of the effects of altered gravity (AG) on development and function of gravireceptors cannot be explained by simple feedback mechanism that correlates gravity level and weight of test mass. The reaction of organisms to the change of gravity depends on the phase of their development. To predict this reaction we need to know the details of the mechanisms of gravireceptor formation
NASA Astrophysics Data System (ADS)
Alias, J.; Zhou, X.; Das, Sanjeev; El-Fakir, Omer; Thompson, G. E.
2017-12-01
The present study on the microstructure evolution of hot form-quench (HFQ) AZ31 twin roll cast magnesium alloy attempt to provide an understanding on the grain structure and heterogeneous intermetallic phase formation in the alloy and texture development following the HFQ process. Grain recrystallization and partial dissolution of eutectic β-Mg17Al12 phase particles were occurred during the solution heat treatment at 450°C, leaving the alloy consists of recrystallized grains and discontinuous or random β-Mg17Al12 phase particles distribution with small volume fraction. The particles act as effective nucleation sites for new grains during recrystallization and variation of recrystallization occurrence contributed to texture alteration. The partial or full β-Mg17Al12 phase dissolution following the HFQ induces void formation that act as fracture nucleation site and the corresponding texture alteration in the recrystallized grains led to poor formability in TRC alloy.
NASA Astrophysics Data System (ADS)
Baker, R. G. A.; Rehkämper, M.; Ihlenfeld, C.; Oates, C. J.; Coggon, R.
2010-08-01
Thallium is a highly incompatible element and a large fraction of the bulk silicate Earth Tl budget is, therefore, expected to reside in the continental crust. Nonetheless, the Tl isotope systematics of continental rocks are essentially unexplored at present. Here, we present new Tl isotope composition and concentration data for a suite of 36 intrusive and extrusive igneous rocks from the vicinity of porphyry Cu deposits in the Collahuasi Formation of the Central Andes in northern Chile. The igneous lithologies of the rocks are variably affected by the hydrothermal alteration that accompanied the formation of the Cu deposits. The samples display Tl concentrations that vary by more than an order of magnitude, from 0.1 to 3.2 μg/g, whilst ɛ 205Tl ranges between -5.1 and +0.1 (ɛ 205Tl is the deviation of the 205Tl/ 203Tl isotope ratio of a sample from a standard in parts per 10 4). These variations are primarily thought to be a consequence of hydrothermal alteration processes, including metasomatic transport of Tl, and formation/breakdown of Tl-bearing minerals, which are associated with small but significant Tl isotope effects. The Tl abundances show excellent correlations with both K and Rb concentrations but no co-variation with Cu. This demonstrates that Tl displays only limited chalcophile affinity in the continental crust of the Collahuasi Formation, but behaves as a lithophile element with a distribution that is primarily governed by partitioning of Tl + into K +-bearing phases. Collahuasi samples with propylitic alteration features, which are derived from the marginal parts of the hydrothermal systems, have, on average, slightly lighter Tl isotope compositions than rocks from the more central sericitic and argillic alteration zones. This small but statistically significant difference most likely reflects preferential retention of isotopically heavy Tl in alteration phases, such as white micas and clays, which formed during sericitic and argillic alteration.
Short Range-Ordered Minerals: Insight into Aqueous Alteration Processes on Mars
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Morris, R. V.; Golden, D. C.
2011-01-01
Short range-ordered (SRO) aluminosilicates (e.g., allophane) and nanophase ferric oxides (npOx) are common SRO minerals derived during aqueous alteration of basaltic materials. NpOx refers to poorly crystalline or amorphous alteration products that can be any combination of superparamagnetic hematite and/or goethite, akaganeite, schwertmannite, ferrihydrite, iddingsite, and nanometer-sized ferric oxide particles that pigment palagonitic tephra. Nearly 30 years ago, SRO phases were suggested as alteration phases on Mars based on similar spectral properties for altered basaltic tephra on the slopes of Mauna Kea in Hawaii and Martian bright regions measured by Earth-based telescopes. Detailed characterization of altered basaltic tephra on Mauna Kea have identified a variety of alteration phases including allophane, npOx, hisingerite, jarosite, alunite, hematite, goethite, ferrihydrite, halloysite, kaolinite, smectite, and zeolites. The presence of npOx and other Fe-bearing minerals (jarosite, hematite, goethite) was confirmed by the M ssbauer Spectrometer onboard the Mars Exploration Rovers. Although the presence of allophane has not been definitely identified on Mars robotic missions, chemical analysis by the Spirit and Opportunity rovers and thermal infrared spectral orbital measurements suggest the presence of allophane or allophane-like phases on Mars. SRO phases form under a variety of environmental conditions on Earth ranging from cold and arid to warm and humid, including hydrothermal conditions. The formation of SRO aluminosilicates such as allophane (and crystalline halloysite) from basaltic material is controlled by several key factors including activity of water, extent of leaching, Si activity in solution, and available Al. Generally, a low leaching index (e.g., wet-dry cycles) and slightly acidic to alkaline conditions are necessary. NpOx generally form under aqueous oxidative weathering conditions, although thermal oxidative alteration may occasional be involved. The style of aqueous alteration (hydrolytic vs. acid sulfate) impacts which phases will form (e.g., oxides, oxysulfates, and oxyhydroxides). Knowledge on the formation processes of SRO phases in basaltic materials on Earth has allowed significant enhancement in our understanding of the aqueous processes at work on Mars. The 2011 Mars Science Laboratory (MSL) will provide an instrument suite that should improve our understanding of the mineralogical and chemical compositions of SRO phases. CheMin is an X-ray diffraction instrument that may provide broad X-ray diffraction peaks for SRO phases; e.g., broad peaks around 0.33 and 0.23 nm for allophane. Sample Analysis at Mars (SAM) heats samples and detects evolved gases of volatile-bearing phases including SRO phases (i.e., carbonates, sulfates, hydrated minerals). The Alpha Particle X-ray Spectrometer (APXS) and ChemCam element analyzers will provide chemical characterization of samples. The identification of SRO phases in surface materials on MSL will be challenging due to their nanocrystalline properties; their detection and identification will require utilizing the MSL instrument suite in concert. Ultimately, sample return missions will be required to definitively identify and fully characterize SRO minerals with state-of-the-art laboratory instrumentation back on Earth.
NASA Technical Reports Server (NTRS)
Thomas-Keprta, Kathie L.; Wentworth, Susan J.; McKay, David S.; Gibson, Everett K.
2000-01-01
Here we document the occurrence of phyllosilicates and alteration phases in three martian meteorites, suggest formation conditions required for phyllosilicate formation and speculate on the extent of fluid:rock interactions during the past history of Mars.
NASA Technical Reports Server (NTRS)
Hausrath, Elisabeth; Ralston, Stephanie J.; Bamisile, Toluwalope; Ming, Douglas; Peretyazhko, Tanya; Rampe, Elizabeth; Gainey, Seth
2017-01-01
Recent observations from Gale Crater, Mars document past aqueous alteration both in the formation of the Stimson sandstone unit, as well as in the formation of altered fractures within that unit. Geochemical and mineralogical data from Curiosity also suggest Fe-rich amorphous weathering products are present in most samples measured to date. Here we interpret conditions of possible past weathering in Gale Crater using a combination of field, laboratory, and modeling work. In order to better understand secondary Fe-rich phases on Mars, we are examining formation of weathering products in high Fe and Mg and low Al serpentine soils in the Klamath Mountains, CA. We have isolated potential weathering products from these soils, and are analyzing them using synchrotron µXRF and µXRD as well as FullPat for a direct comparison to analyses from Gale Crater. In order to interpret the implications of the persistence of potential secondary Fe-containing phases on Mars, we are also measuring the dissolution rates of the secondary weathering products allophane, Fe-rich allophane, and hisingerite. Ongoing dissolution experiments of these materials suggest that they dissolve significantly more rapidly than more crystalline secondary minerals with similar chemical compositions. Finally, to quantify the specific conditions of past aqueous alteration in Gale Crater we are performing reactive transport modeling of a range of possible past environmental conditions. Specifically, we are testing the conditions under which a Stimson unit-like material forms from a parent material similar to Rocknest or Bagnold eolian deposits, and the conditions under which observed altered fracture zones form from a Stimson unit-like parent material. Our modeling results indicate that the formation of the Stimson unit is consistent with leaching of an eolian deposit with a solution of pH = 6-8, and that formation of the altered fracture zones is consistent with leaching with a very acidic (pH = 2-3) high sulfate solution containing Ca. These results suggest circumneutral pH conditions during authigenesis or early diagenesis in the Stimson formation sediments followed by diagenetic alteration by very acidic solutions along fracture zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina, J., E-mail: judit.medina@cenim.csic.es
The effects of calcium, manganese and cerium-rich mischmetal additions on the microstructure and texture of the extruded Mg−6Zn−1Y (wt.%) alloy have been investigated. The microstructure of the alloys consisted of a magnesium matrix embedding second phase particles aligned along the extrusion direction. The nature and volume fraction of the second phases depended on the alloying element. Thus, Ce-rich mischmetal promoted the formation of T-phase while calcium additions resulted in the formation of a ternary Mg−Zn−Ca compound. Only, manganese additions did not affect the existence of the I-phase present in the ternary alloy. The texture was measured and it was foundmore » that calcium addition has a significant effect weakening the extrusion texture. - Highlights: •In-situ HEXRD and DSC techniques are employed to identify phase transformations. •The existence of I-phase is not altered by manganese addition to Mg93Zn6Y1 (wt.%). •Calcium addition promotes Mg{sub 6}Zn{sub 3}Ca{sub 2} formation instead of I-phase. •Mischmetal addition induces the formation of coarse T-phase particles. •Texture depends on the nature of second phases and therefore of the extrusion pressure.« less
Membrane curvature stress and antibacterial activity of lactoferricin derivatives.
Zweytick, Dagmar; Tumer, Sabine; Blondelle, Sylvie E; Lohner, Karl
2008-05-02
We have studied correlation of non-lamellar phase formation and antimicrobial activity of two cationic amphipathic peptides, termed VS1-13 and VS1-24 derived from a fragment (LF11) of human lactoferricin on Escherichia coli total lipid extracts. Compared to LF11, VS1-13 exhibits minor, but VS1-24 significantly higher antimicrobial activity. X-ray experiments demonstrated that only VS1-24 decreased the onset of cubic phase formation of dispersions of E. coli lipid extracts, significantly, down to physiological relevant temperatures. Cubic structures were identified to belong to the space groups Pn3m and Im3m. Formation of latter is enhanced in the presence of VS1-24. Additionally, the presence of this peptide caused membrane thinning in the fluid phase, which may promote cubic phase formation. VS1-24 containing a larger hydrophobic volume at the N-terminus than its less active counterpart VS1-13 seems to increase curvature stress in the bilayer and alter the behaviour of the membrane significantly enhancing disruption.
Chen, Yan; Rangasamy, Ezhiylmurugan; dela Cruz, Clarina R.; ...
2015-09-28
Doped Li 7La 3Zr 2O 12 garnets, oxide-based solids with good Li + conductivity and compatibility, show great potential as leading electrolyte material candidates for all-solid-state lithium ion batteries. Still yet, the conductive bulk usually suffers from the presence of secondary phases and the transition towards a low-conductivity tetragonal phase during synthesis. Dopants are designed to stabilize the high-conductive cubic phase and suppress the formation of the low-conductivity phases. In situ neutron diffraction enables a direct observation of the doping effects by monitoring the phase evolutions during garnet synthesis. It reveals the reaction mechanism involving the temporary presence of intermediatemore » phases. The off-stoichiometry due to the liquid Li 2CO 3 evaporation leads to the residual of the low-conductivity intermediate phase in the as-synthesized bulk. Appropriate doping of an active element may alter the component of the intermediate phases and promote the completion of the reaction. While the dopants aid to stabilize most of the cubic phase, a small amount of tetragonal phase tends to form under a diffusion process. Lastly, the in situ observations provide the guideline of process optimization to suppress the formation of unwanted low-conductivity phases.« less
Berger, Byron R.; Henley, Richard W.
2011-01-01
High-sulfidation copper–gold lode deposits such as Chinkuashih, Taiwan, Lepanto, Philippines, and Goldfield, Nevada, formed within 1500 m of the paleosurface in volcanic terranes. All underwent an early stage of extensive advanced argillic silica–alunite alteration followed by an abrupt change to spatially much more restricted stages of fracture-controlled sulfide–sulfosalt mineral assemblages and gold–silver mineralization. The alteration as well as ore mineralization stages of these deposits were controlled by the dynamics and history of syn-hydrothermal faulting.At the Sulfate Stage, aggressive advanced argillic alteration and silicification were consequent on the in situ formation of acidic condensate from magmatic vapor as it expanded through secondary fracture networks alongside active faults. The reduction of permeability at this stage due to alteration decreased fluid flow to the surface, and progressively developed a barrier between magmatic-vapor expansion constrained by the active faults and peripheral hydrothermal activity dominated by hot-water flow. In conjunction with the increased rock strength resulting from alteration, subsequent fault-slip inversion in response to an increase in compressional stress generated new, highly permeable fractures localized by the embrittled, altered rock. The new fractures focused magmatic-vapor expansion with much lower heat loss so that condensation occurred. Sulfide Stage sulfosalt, sulfide, and gold–silver deposition then resulted from destabilization of vapor phase metal species due to vapor decompression through the new fracture array. The switch from sulfate to sulfide assemblages is, therefore, a logical consequence of changes in structural permeability due to the coupling of alteration and fracture dynamics rather than to changes in the chemistry of the fluid phase at its magmatic source.
Enhancing the Properties of Carbon and Gold Substrates by Surface Modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harnisch, Jennifer Anne
2001-01-01
The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performancemore » both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol (BHT) SAMs. BHT chemisorbs to the gold surface in a previously unprecedented planar fashion. Carbon and gold substrates can be chemically altered by several methodologies resulting in new surface properties. The development of modification protocols and their application in the analytical arena is considered herein.« less
Madankumar, Arumugam; Jayakumar, Subramaniyan; Gokuladhas, Krishnan; Rajan, Balan; Raghunandhakumar, Subramanian; Asokkumar, Selvamani; Devaki, Thiruvengadam
2013-04-05
Xenobiotic metabolizing enzymes are chief determinants in both the susceptibility to mutagenic effect of chemical carcinogens and in the response of tumors to chemotherapy. The present study was aimed to analyze the effect of geraniol administration on the activity of phase I and phase II carcinogen metabolizing enzymes through the nuclear factor erythroid 2-related factor-2 (Nrf2) activation against 4-niroquinoline-1-oxide (4NQO) induced oral carcinogenesis. The well-known chemical carcinogen 4NQO (50 ppm) was used to induce oral carcinogenesis through drinking water for 4, 12, and 20 weeks. The degree of cancer progression at each stage was confirmed by histological examination. At the end of the experimental period, 100% tumor formation was observed in the oral cavity of 4NQO induced animals with significant (P<0.05) alteration in the status of tumor markers, tongue and liver phase I and phase II drug metabolizing enzymes indicating progression of disease. Oral administration of geraniol at the dose of 200 mg/kg b.wt., thrice a week to 4NQO induced animals was able to inhibit tumor formation and thereby delayed the progression of oral carcinogenesis by modulating tongue and liver phase I and phase II drug metabolizing enzymes, as substantiated further by the histological and transmission electron microscopic studies. Our results demonstrate that geraniol exerts its chemopreventive potential by altering activities of phases I and II drug metabolizing enzymes to achieve minimum bioactivation of carcinogen and maximum detoxification. Copyright © 2013 Elsevier B.V. All rights reserved.
Structural Effects of Lanthanide Dopants on Alumina
Patel, Ketan; Blair, Victoria; Douglas, Justin; Dai, Qilin; Liu, Yaohua; Ren, Shenqiang; Brennan, Raymond
2017-01-01
Lanthanide (Ln3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications. PMID:28059121
Structural Effects of Lanthanide Dopants on Alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Ketan; Blair, Victoria; Douglas, Justin
Lanthanide (Ln 3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO 3, Ln 2O 3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. In addition, the delay in phase transition (θ → α),more » and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. Lastly, this study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less
Structural Effects of Lanthanide Dopants on Alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Ketan; Blair, Victoria; Douglas, Justin
Lanthanide (Ln 3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology,more » particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less
Structural Effects of Lanthanide Dopants on Alumina
Patel, Ketan; Blair, Victoria; Douglas, Justin; ...
2017-01-06
Lanthanide (Ln 3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO 3, Ln 2O 3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. In addition, the delay in phase transition (θ → α),more » and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. Lastly, this study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less
NASA Astrophysics Data System (ADS)
Yen, A. S.; Ming, D. W.; Vaniman, D. T.; Gellert, R.; Blake, D. F.; Morris, R. V.; Morrison, S. M.; Bristow, T. F.; Chipera, S. J.; Edgett, K. S.; Treiman, A. H.; Clark, B. C.; Downs, R. T.; Farmer, J. D.; Grotzinger, J. P.; Rampe, E. B.; Schmidt, M. E.; Sutter, B.; Thompson, L. M.; MSL Science Team
2017-08-01
The Mars rover Curiosity in Gale crater conducted the first-ever direct chemical and mineralogical comparisons of samples that have clear parent (unaltered) and daughter (altered) relationships. The mineralogy and chemistry of samples within and adjacent to alteration halos in a sandstone formation were established by the Chemistry and Mineralogy (CheMin) X-ray diffraction (XRD) instrument and the Alpha Particle X-ray Spectrometer (APXS), respectively. The Stimson formation sandstones unconformably overlie the Murray mudstone formation and represent the youngest stratigraphic unit explored by Curiosity to date. Aqueous alteration of the parent sandstone resulted in a loss of half of the original crystalline mineral phases and a three-fold increase in X-ray amorphous material. Aqueous fluids extensively leached Mg, Al, Mn, Fe, Ni, Zn and other elements from the parent material, decreased the pyroxene to feldspar ratio by a factor of two, introduced Ca and mixed-cation sulfates, and both passively and actively enriched the silica content. Leaching of Mg, Al, Mn, Fe, Ni and Zn and enrichment of Si and S are also observed in alteration halos in the underlying mudstone. These observations are consistent with infiltration of subsurface fluids, initially acidic and then alkaline, propagating along fractures crosscutting the Stimson sandstone and Murray mudstone. The geochemistry and mineralogy suggest a complicated diagenetic history with multiple stages of aqueous alteration under a variety of environmental conditions (e.g. both low and moderate pH). The formation of these alteration halos post-dates lithification of the sandstones and mudstones and represents one of the youngest hydrogeologic events presently known to have occurred in Gale crater.
Mineral abundances at the final four curiosity study sites and implications for their formation
NASA Astrophysics Data System (ADS)
Poulet, F.; Carter, J.; Bishop, J. L.; Loizeau, D.; Murchie, S. M.
2014-03-01
A component of the landing site selection process for the Mars Science Laboratory (MSL) involved the presence of phyllosilicates as the main astrobiological targets. Gale crater was selected as the MSL landing site from among 4 down selected study sites (Gale, Eberswalde and Holden craters, Mawrth Vallis) that addressed the primary scientific goal of assessing the past habitability of Mars. A key constraint on the formation process of these phyllosilicate-bearing deposits is in the precise mineralogical composition. We present a reassessment of the mineralogy of the sites combined with a determination of the modal mineralogy of the major phyllosilicate-bearing deposits of the four final study sites from the modeling of near-infrared spectra using a radiative transfer model. The largest abundance of phyllosilicates (30-70%) is found in Mawrth Vallis, the lowest one in Eberswalde (<25%). Except for Mawrth Vallis, the anhydrous phases (plagioclase, pyroxenes and martian dust) are the dominant phases, suggesting formation conditions with a lower alteration grade and/or a post-formation mixing with anhydrous phases. The composition of Holden layered deposits (mixture of saponite and micas with a total abundance in the range of 25-45%) suggests transport and deposition of altered basalts of the Noachian crust without major chemical transformation. For Eberswalde, the modal mineralogy is also consistent with detrital clays, but the presence of opaline silica indicates that an authigenic formation occurred during the deposition. The overall composition including approximately 20-30% smectite detected by MSL in the rocks of Yellow-knife Bay area interpreted to be material deposited on the floor of Gale crater by channels (http://www.nasa.gov/mission_pages/msl/news/msl20130312.html).
NASA Astrophysics Data System (ADS)
Peretyazhko, T. S.; Niles, P. B.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.
2018-01-01
The excess of orbital detection of smectite deposits compared to carbonate deposits on the martian surface presents an enigma because smectite and carbonate formations are both favored alteration products of basalt under neutral to alkaline conditions. We propose that Mars experienced acidic events caused by sulfuric acid (H2SO4) that permitted phyllosilicate, but inhibited carbonate, formation. To experimentally verify this hypothesis, we report the first synthesis of smectite from Mars-analogue glass-rich basalt simulant (66 wt% glass, 32 wt% olivine, 2 wt% chromite) in the presence of H2SO4 under hydrothermal conditions (∼200 °C). Smectites were analyzed by X-ray diffraction, Mössbauer spectroscopy, visible and near-infrared reflectance spectroscopy and electron microprobe to characterize mineralogy and chemical composition. Solution chemistry was determined by Inductively Coupled Plasma Mass Spectrometry. Basalt simulant suspensions in 11-42 mM H2SO4 were acidic with pH ≤ 2 at the beginning of incubation and varied from acidic (pH 1.8) to mildly alkaline (pH 8.4) at the end of incubation. Alteration of glass phase during reaction of the basalt simulant with H2SO4 led to formation of the dioctahedral smectite at final pH ∼3 and trioctahedral smectite saponite at final pH ∼4 and higher. Anhydrite and hematite formed in the final pH range from 1.8 to 8.4 while natroalunite was detected at pH 1.8. Hematite was precipitated as a result of oxidative dissolution of olivine present in Adirondack basalt simulant. Formation of secondary phases, including smectite, resulted in release of variable amounts of Si, Mg, Na and Ca while solubilization of Al and Fe was low. Comparison of mineralogical and solution chemistry data indicated that the type of smectite (i.e., dioctahedral vs trioctahedral) was likely controlled by Mg leaching from altering basalt and substantial Mg loss created favorable conditions for formation of dioctahedral smectite. We present a model for global-scale smectite formation on Mars via acid-sulfate conditions created by the volcanic outgassing of SO2 in the Noachian and early Hesperian.
NASA Astrophysics Data System (ADS)
Maher, K.; Harrison, A. L.; Jew, A. D.; Dustin, M. K.; Kiss, A. M.; Kohli, A. H.; Thomas, D.; Joe-Wong, C. M.; Brown, G. E.; Bargar, J.
2016-12-01
The extraction of oil and gas resources from low permeability shale reservoirs using hydraulic fracturing techniques has increased significantly in recent years. During hydraulic fracturing, large volumes of fluid are injected into subsurface shale formations, which drives substantial fluid-rock interaction that can release contaminants and alter rock permeability. Here, a combined experimental, imaging, and modeling approach was employed to systematically evaluate the impact of shale mineralogy on its physical and chemical alteration when exposed to fracturing fluids of different composition. Batch reactor experiments contained different shales with unique mineralogical compositions that were exposed to simulated hydraulic fracturing fluid. Experiments revealed that the balance between fluid acidity and acid neutralizing capacity of the rock was the strongest control on the evolution of fluid and rock chemistry. Carbonate mineral-rich shales rapidly recovered solution pH to circum-neutral conditions, whereas fluids in contact with carbonate mineral-poor shales remained acidic. The dissolution of shale minerals released metal contaminants, yet the precipitation of Fe(III)-bearing secondary phases helped to attenuate their release via co-precipitation or sorption. Post-reaction imaging illustrated that selective dissolution of carbonate minerals generated secondary porosity, the connectivity of which was dictated by initial carbonate distribution. Conversely, the precipitation of secondary Al- and Fe-bearing phases may occlude porosity, potentially inhibiting transport of water, contaminants, and hydrocarbons. The maturation of secondary Fe-bearing phases from amorphous to crystalline over time suggests that porosity will continue to evolve even after oxidation reactions have effectively ceased. These experiments reveal that the relative abundance and distribution of carbonate minerals is the master variable dictating both porosity alteration and contaminant release from shale formations, implying that the response of a reservoir to hydraulic fracturing can be better assessed using robust mineralogical data.
NASA Technical Reports Server (NTRS)
Bell, M. S.
2014-01-01
Major occurrences of hydrous alteration minerals on Mars have been found in Noachian impact craters formed in basaltic targets and detected using visible/near infrared (VNIR) spectroscopy. Until recently phyllosilicates were detected only in craters in the southern hemisphere [1, 2]. However, it has been reported that at least nine craters in the northern plains apparently excavated thick layers of lava and sediment to expose phyllosilicates [3] as well. The MER (Mars Exploration Rovers) rovers previously reported results of in situ measurement indicating the presence of alteration minerals on Mars [4,5] and it was recently reported that the Mars Curiosity rover has detected alteration phases in situ at Yellowknife Bay in Gale crater as well [6,7]. An important discovery for Mars geochronology is that the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument on Curiosity detected phyllosilicates indicating that phyllosilicate formation on Mars extended beyond the Noachian Epoch [8]. These discoveries indicate that Mars was globally altered by water in the past but does not constrain formation conditions for alteration phase occurrences, which have important implications for the evolution of the surface and the biological potential on Mars. Understanding the alteration assemblages produced by a range of conditions is vital for the interpretation of phyllosilicate spectral signatures as well as in situ measurements and to decipher the environment and evolution of early Mars. The martian surface has been intensely altered by meteorite impacts whose effects include brecciation and melting of target materials as well as the initiation of hydrothermal circulation in a hydrous target [9,10,11,12]. Impact effects may facilitate aqueous alteration of a basaltic target because the rate of silicate dissolution is a function of the degree of crystallinity, surface area, and temperature. The resultant alteration mineralogies from shocked basaltic target material are a function of the original mineral assemblage in the parent rocks, the chemistry of fluids that interacted with the rocks, and physico-chemical conditions (pH, temperatures, and pressure) during the time of mineral formation. Understanding the alteration assemblages produced by a range of conditions is vital for the interpretation of phyllosilicate spectral signatures and to decipher the environment and evolution of early Mars, and especially for identifying habitable niches in which life could be initiated and sustained. No experimentally controlled and well characterized analog materials that simulate martian shock metamorphism and alteration conditions currently exist for calibrating either remote sensing or in situ measurements of Mars. A series of experiments was initiated to assess the effects of systematic changes in the physico-chemical conditions on Mars analog materials thereby providing samples to ground-truth Mars remote sensing observations from CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) and in situ measurements from Opportunity's Mössbauer and Curiosity's CHEMIN (Chemistry and Mineralogy X-Ray Diffraction/XRay Fluorescence) instruments. Results of initial experimental runs as analysed by SEM-EDS (Secondary Electron Microscopy -Energy Dispersive Spectroscopy) and X-ray Diffraction (XRD) analysis are reported here and lay the foundation for comparison with shocked and altered samples that will be characterized in the next phase of this work.
Zhu, Xiaohong; Pattathil, Sivakumar; Mazumder, Koushik; Brehm, Amanda; Hahn, Michael G; Dinesh-Kumar, S P; Joshi, Chandrashekhar P
2010-09-01
Virus-induced gene silencing (VIGS) is a powerful genetic tool for rapid assessment of plant gene functions in the post-genomic era. Here, we successfully implemented a Tobacco Rattle Virus (TRV)-based VIGS system to study functions of genes involved in either primary or secondary cell wall formation in Nicotiana benthamiana plants. A 3-week post-VIGS time frame is sufficient to observe phenotypic alterations in the anatomical structure of stems and chemical composition of the primary and secondary cell walls. We used cell wall glycan-directed monoclonal antibodies to demonstrate that alteration of cell wall polymer synthesis during the secondary growth phase of VIGS plants has profound effects on the extractability of components from woody stem cell walls. Therefore, TRV-based VIGS together with cell wall component profiling methods provide a high-throughput gene discovery platform for studying plant cell wall formation from a bioenergy perspective.
NASA Astrophysics Data System (ADS)
Jain, Syadwad
In this study, the localized corrosion and conversion coating on cast alloys 356 (Al-7.0Si-0.3Mg) and 380 (Al-8.5Si-3.5Cu-1.6Fe) were characterized. The intermetallic phases presence in the permanent mold cast alloy 356 are primary-Si, Al5FeSi, Al8Si6Mg3Fe and Mg2Si. The die cast alloy 380 is rich in Cu and Fe elements. These alloying elements result in formation of the intermetallic phases Al 5FeSi, Al2Cu and Al(FeCuCr) along with primary-Si. The Cu- and Fe-rich IMPS are cathodic with respect to the matrix phase and strongly govern the corrosion behavior of the two cast alloys in an aggressive environment due to formation of local electrochemical cell in their vicinity. Results have shown that corrosion behavior of permanent mould cast alloy 356 is significantly better than the die cast aluminum alloy 380, primarily due to high content of Cu- and Fe-rich phases such as Al2Cu and Al 5FeSi in the latter. The IMPS also alter the protection mechanism of the cast alloys in the presence of inhibitors in an environment. The presence of chromate in the solution results in reduced cathodic activity on all the phases. Chromate provides some anodic inhibition by increasing pitting potentials and altering corrosion potentials for the phases. Results have shown that performance of CCC was much better on 356 than on 380, primarily due to inhomogeneous and incomplete coating deposition on Cu- and Fe- phases present in alloy 380. XPS and Raman were used to characterize coating deposition on intermetallics. Results show evidence of cyanide complex formation on the intermetallic phases. The presence of this complex is speculated to locally suppress CCC formation. Formation and breakdown of cerium conversion coatings on 356 and 380 was also analyzed. Results showed that deposition of cerium hydroxide started with heavy precipitation on intermetallic particles with the coatings growing outwards onto the matrix. Electrochemical analysis of synthesized intermetallics compounds in the presence of soluble cerium cations showed that of anodic and cathodic activity was not as strongly inhibited as was observed for chromate ions. Overall cerium conversion coating showed good performance on Al-Si (356) ally, but poor performance on Fe- and Cu-rich alloy (380).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yuhao; Aman, Michael; Espinoza, D. Nicolas
CO2 injection into geological formations disturbs the geochemical equilibrium between water and minerals. Thus, some mineral phases are prone to dissolution and precipitation with ensuing changes of petrophysical and geomechanical properties of the host formations. Chemically-assisted degradation of mechanical properties can endanger the structural integrity of the storage formation and must be carefully studied and considered to guarantee safe long-term trapping. Few experimental data sets involving CO2 alteration and mechanical testing of rock samples are available since these experiments are length, expensive, and require specialized equipment and personnel. Autoclave experiments are easier to perform and control but result in amore » limited 'skin depth' of chemically-altered zone near the surface of the sample. This article presents the validation of micro-indentation and micro-scratch tests as efficient tools to assess the alteration of mechanical properties of rocks geochemically altered by CO2-water mixtures. Results from tests on sandstone and siltstone from Crystal Geyser, Utah naturally altered by CO2-acidified water show that mechanical parameters measured with indentation (indentation hardness, Young's modulus and contact creep compliance rate) and scratching (scratch hardness and fracture toughness) consistently indicated weakening of the rock after CO2-induced alteration. Decreases of measured parameters vary from 14% to 87%. Experimental results and analyses show that micromechanical tests are potentially quick and reliable tools to determine the change of mechanical properties of rocks subject to exposure to CO2-acidified water, particularly in well-controlled autoclave experiments. Measured parameters are not intended to provide inputs for coupled reservoir simulation with geomechanics but rather to inform the execution of larger scale tests investigating the susceptibility of rock facies to chemical alteration by CO2-water mixtures. Recognizing this susceptibility of rock facies of CO2 geological storage target formations is critical to controlling undesired emergent behavior associated with CO2 sequestration.« less
Nature of Reduced Carbon in Martian Meteorites
NASA Technical Reports Server (NTRS)
Gibson, Everett K., Jr.; McKay, D. S.; Thomas-Keprta, K. L.; Clemett, S. J.; White, L. M.
2012-01-01
Martian meteorites provide important information on the nature of reduced carbon components present on Mars throughout its history. The first in situ analyses for carbon on the surface of Mars by the Viking landers yielded disappointing results. With the recognition of Martian meteorites on Earth, investigations have shown carbon-bearing phases exist on Mars. Studies have yielded presence of reduced carbon, carbonates and inferred graphitic carbon phases. Samples ranging in age from the first approximately 4 Ga of Mars history [e.g. ALH84001] to nakhlites with a crystallization age of 1.3 Ga [e.g. Nakhla] with aqueous alteration processes occurring 0.5-0.7 Ga after crystallizaton. Shergottites demonstrate formation ages around 165-500 Ma with younger aqueous alterations events. Only a limited number of the Martian meteorites do not show evidence of significance terrestrial alterations. Selected areas within ALH84001, Nakhla, Yamato 000593 and possibly Tissint are suitable for study of their indigenous reduced carbon bearing phases. Nakhla possesses discrete, well-defined carbonaceous phases present within iddingsite alteration zones. Based upon both isotopic measurements and analysis of Nakhla's organic phases the presence of pre-terrestrial organics is now recognized. The reduced carbon-bearing phases appear to have been deposited during preterrestrial aqueous alteration events that produced clays. In addition, the microcrystalline layers of Nakhla's iddingsite have discrete units of salt crystals suggestive of evaporation processes. While we can only speculate on the origin of these unique carbonaceous structures, we note that the significance of such observations is that it may allow us to understand the role of Martian carbon as seen in the Martian meteorites with obvious implications for astrobiology and the pre-biotic evolution of Mars. In any case, our observations strongly suggest that reduced organic carbon exists as micrometer- size, discrete structures on Mars associated with clay and salt minerals. The Mars Science Laboratory s investigators should be aware of reduced organic carbon components within clay-bearing phases.
On the Behavior of Phosphorus During the Aqueous Alteration of CM2 Carbonaceous Chondrites
NASA Technical Reports Server (NTRS)
Brearley, Adrian J.; Chizmadia, Lysa J.
2005-01-01
During the earliest period of solar system formation, water played an important role in the evolution of primitive dust, both after accretion of planetesimals and possible before accretion within the protoplanetary disk. Many chondrites show evidence of variable degrees of aqueous alteration, the CM2 chondrites being among the most studied [1]. This group of chondrites is characterized by mineral assemblages of both primary and secondary alteration phases. Hence, these meteorites retain a particularly important record of the reactions that occurred between primary high temperature nebular phases and water. Studies of these chondrites can provide information on the conditions and environments of aqueous alteration and the mobility of elements during alteration. This latter question is at the core of a debate concerning the location of aqueous alteration, i.e. whether alteration occurred predominantly within a closed system after accretion (parent body alteration) or whether some degree of alteration occurred within the solar nebula or on ephemeral protoplanetary bodies prior to accretion. At the core of the parent body alteration model is the hypothesis that elemental exchange between different components, principally chondrules and matrix, must have occurred. chondrules and matrix, must have occurred. In this study, we focus on the behavior of the minor element, phosphorus. This study was stimulated by observations of the behavior of P during the earliest stages of alteration in glassy mesostasis in type II chondrules in CR chondrites and extends the preliminary observations of on Y791198 to other CM chondrites.
Degradation processes of reinforced concretes by combined sulfate–phosphate attack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Secco, Michele, E-mail: michele.secco@unipd.it; Department of Civil, Environmental and Architectural Engineering; Lampronti, Giulio Isacco, E-mail: gil21@cam.ac.uk
2015-02-15
A novel form of alteration due to the interaction between hydrated cement phases and sulfate and phosphate-based pollutants is described, through the characterization of concrete samples from an industrial reinforced concrete building. Decalcification of the cement matrices was observed, with secondary sulfate and phosphate-based mineral formation, according to a marked mineralogical and textural zoning. Five alteration layers may be detected: the two outermost layers are characterized by the presence of gypsum–brushite solid solution phases associated with anhydrous calcium sulfates and phosphates, respectively, while a progressive increase in apatite and ammonium magnesium phosphates is observable in the three innermost layers, associatedmore » with specific apatite precursors (brushite, octacalcium phosphate and amorphous calcium phosphate, respectively). The heterogeneous microstructural development of secondary phases is related to the chemical, pH and thermal gradients in the attacked cementitious systems, caused by different sources of pollutants and the exposure to the sun's radiation.« less
Alteration and formation of rims on the CM parent body
NASA Technical Reports Server (NTRS)
Browning, Lauren B.; Mcsween, Harry Y., Jr.; Zolensky, Michael
1994-01-01
All types of coarse-grained components in CM chondrites are surrounded by fine-grained dust coatings, but the origin of these rims is not yet clear. Although a strictly nebular origin seems likely for rims in the relatively unaltered type 3 chondrites, the rims in CM chondrites are dominated by secondary alteration phases. It has been argued that either the coarse-grained cores accreted altered rim materials while still in the nebula or that alteration of primary rim phases occurred on the CM parent body. To constrain the origin of alteration phases in rim material, we have analyzed the textures and mineral associations from 10 CM chondritic falls by optical and scanning electron microscopy. Our results indicate that the secondary phases in CM chondritic rims were produced by parent body fluid-rock interactions which redefined some primary rim textures and may have produced, in some cases, both coarse-grained components and the rims that surround them. Textural features demonstrate the interactive exchange of alteration fluids between rims, matrix, and chondrules on the CM parent body. For example, most matrix-rim contacts are gradational, suggesting the synchronous alteration of both components. Several observations suggest the possibility of in situ rim production. For example, tochilinite and phyllosilicates commonly form rims around matrix carbonates, which are generally believed to have precipitated from alteration fluids on the CM parent body. This suggests that the rims surrounding matrix carbonates may also have been produced by alteration processes. Partially replaced chondrule olivines bear a striking resemblance to many rimmed olivines in the matrix which suggests, by analogy, that site-specific precipitation of S-bearing phases may also be responsible for the occurrence of many tochilinite-rich rims around isolated matrix olivines. Non-silicate rims precipitate around olivines of any composition, but the process is most effective for fayalitic olivines. Most of the remaining olivines in CM chondrites are relatively Mg-rich, which suggests that the precipitation of S-bearing rims on olivines may not have been an important process in the aqueous alteration of CM chondrites. We conclude that: (1) precursor rim materials in CM chondrites were subjected to pervasive aqueous alteration on the CM parent body; and (2) textures and mineral associations observed in CM chondrites also suggest the possibility of in situ rim production.
Effect of lattice-mismatch-induced strains on coupled diffusive and displacive phase transformations
NASA Astrophysics Data System (ADS)
Bouville, Mathieu; Ahluwalia, Rajeev
2007-02-01
Materials which can undergo slow diffusive transformations as well as fast displacive transformations are studied using the phase-field method. The model captures the essential features of the time-temperature-transformation (TTT) diagrams, continuous cooling transformation (CCT) diagrams, and microstructure formation of these alloys. In some material systems there can exist an intrinsic volume change associated with these transformations. We show that these coherency strains can stabilize mixed microstructures (such as retained austenite-martensite and pearlite-martensite mixtures) by an interplay between diffusive and displacive mechanisms, which can alter TTT and CCT diagrams. Depending on the conditions there can be competitive or cooperative nucleation of the two kinds of phases. The model also shows that small differences in volume changes can have noticeable effects on the early stages of martensite formation and on the resulting microstructures.
NASA Astrophysics Data System (ADS)
Eris, F. R.; Hambali, E.; Suryani, A.; Permadi, P.
2017-05-01
Asphaltene, paraffin, wax and sludge deposition, emulsion and water blocking are kinds ofprocess that results in a reduction of the fluid flow from the reservoir into formation which causes a decrease of oil wells productivity. Oil well Stimulation can be used as an alternative to solve oil well problems. Oil well stimulation technique requires applying of surfactant. Sodium Methyl Ester Sulphonate (SMES) of palm oil is an anionic surfactant derived from renewable natural resource that environmental friendly is one of potential surfactant types that can be used in oil well stimulation. This study was aimed at formulation SMES as well stimulation agent that can identify phase transitions to phase behavior in a brine-surfactant-oil system and altered the wettability of rock sandstone and limestone. Performance of SMES solution tested by thermal stability test, phase behavioral examination and rocks wettability test. The results showed that SMES solution (SMES 5% + xylene 5% in the diesel with addition of 1% NaCl at TJformation water and SMES 5% + xylene 5% in methyl ester with the addition of NaCl 1% in the TJ formation water) are surfactant that can maintain thermal stability, can mostly altered the wettability toward water-wet in sandstone reservoir, TJ Field.
NASA Astrophysics Data System (ADS)
Youn, Jeong Il; Shin, Yong Kwan; Kang, Byung Il; Kim, Young Jig; Suk, Jhin Ik; Ryu, Seok Hyeon
The alloys required for fossil power plants are altered from stainless steel that has been used below 600 °C to Ni-based alloy that can operate over 700 °C for advanced ultra super critical (A-USC) steam turbine. The IN 740 alloy is proposed for improved rupture strength and corrosion resistance at high temperature. However, previous studies with experiments and simulations on stable phases at over 700 °C have indicated the formation of the eta phase with the wasting of the gamma prime phase, which is the most important reinforced phase in precipitation hardened Ni alloys. This results in the formation of precipitation free zones to decrease the strength. LESS 1 alloy designed through some modifications of IN 740 was suggested in this study. LESS 1 showed the phase stability more than IN 740 due to the optimum composition of Cr, Mo, Ti and Al. The experimental results established that a needle-shaped eta phase was formed in the grain boundary and it grew to intra-grain, and a precipitation free zone was also observed in IN 740, but these defects were entirely controlled in LESS 1.
Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting
NASA Astrophysics Data System (ADS)
Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.
2012-04-01
Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning fluid-rock interaction processes in geothermal reservoirs, and their effects on rock properties, that will aid improved understanding of the evolution of high-temperature geothermal systems, provide constraints to parameterization of reservoir models and assist future well planning and design through prediction of rock properties in the context of drilling strategies.
Fenske, Annabelle E; Glaesener, Stephanie; Bokemeyer, Carsten; Thomale, Juergen; Dahm-Daphi, Jochen; Honecker, Friedemann; Dartsch, Dorothee C
2012-11-28
To identify factors involved in cisplatin (CDDP) resistance of germ cell tumours (GCTs), we exposed NTERA-2 cells, and the platinum-adapted subline NTERA-2R to CDDP and compared their response. While both cell lines showed comparable proliferation, NTERA-2R cells were clearly more resistant to the drug than the parental NTERA-2 cell line. Interestingly, the two lines showed identical extent of DNA adduct formation and elimination, indicating that neither changes in CDDP uptake, nor altered drug efflux, DNA binding, or repair caused the difference in resistance. Similarly, no difference occurred in the time-course of γH2AX formation, which was not linked to 53BP1 accumulation. In contrast, NTERA-2R cells showed a more pronounced dose-dependent S phase delay, a transient G(2)/M-block, and subsequent release into immediate cell death. We thus conclude that the enhanced resistance against CDDP is linked to reduced susceptibility to cell death rather than to an altered DNA adduct formation or adduct removal. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Mineralogy, textures and mode of formation of a hibonite-bearing Allende inclusion
NASA Technical Reports Server (NTRS)
Allen, J. M.; Grossman, L.; Davis, A. M.; Hutcheon, I. D.
1978-01-01
The origin of a Type A, hibonite-rich, coarse-grained inclusion is investigated with the electron microprobe and petrographic and scanning electron microscopes. The primary phases are hibonite, rhonite, Ti-Al-pyroxene, spinel, perovskite and melilite. Evidence for the crystallization of the bulk of the primary phases, hibonite and melilite, from a melt is lacking, suggesting that they may have condensed directly from a solar nebular gas instead. Primary phases were intensely altered during a later condensation event which deposited grossular, anorthite, nepheline and wollastonite in veins and cavities. Four or five condensate rims were deposited as successive layers on the outside of the inclusion. From inside to outside, they consist of perovskite + spinel, nepheline + anorthite, Ti-Al-pyroxene + diopside, hedenbergite + or - wollastonite + or - andradite and, finally, prisms of diopside and hedenbergite with wollastonite and andradite. Reverse zoning in melilite; alteration phases and rim phases, which are not stable condensates from a gas of solar composition; and details of the sequence of rim condensates all suggest that the entire condensation history of this inclusion was interrupted by changes in pressure and/or temperature and/or gas phase composition.
Carbon solids in oxygen-deficient explosives (LA-UR-13-21151)
NASA Astrophysics Data System (ADS)
Peery, Travis
2013-06-01
The phase behavior of excess carbon in oxygen-deficient explosives has a significant effect on detonation properties and product equations of state. Mixtures of fuel oil in ammonium nitrate (ANFO) above a stoichiometric ratio demonstrate that even small amounts of graphite, on the order of 5% by mole fraction, can substantially alter the Chapman-Jouget (CJ) state properties, a central ingredient in modeling the products equation of state. Similar effects can be seen for Composition B, which borders the carbon phase boundary between graphite and diamond. Nano-diamond formation adds complexity to the product modeling because of surface adsorption effects. I will discuss these carbon phase issues in our equation of state modeling of detonation products, including our statistical mechanics description of carbon clustering and surface chemistry to properly treat solid carbon formation. This work is supported by the Advanced Simulation and Computing Program, under the NNSA.
Clay alteration and gold deposition in the genesis and blue star deposits, Eureka County, Nevada
Drews-Armitage, S. P.; Romberger, S.B.; Whitney, C.G.
1996-01-01
The Genesis and Blue Star sedimentary rock-hosted gold deposits occur within the 40-mile-long Carlin trend and are located in Eureka County, Nevada. The deposits are hosted within the Devonian calcareous Popovich Formation, the siliciclastic Rodeo Creek unit and the siliciclastic Vinini Formation. The host rocks have undergone contact metamorphism, decalcification, silicification, argillization, and supergene oxidation. Detailed characterization of the alteration patterns, mineralogy, modes of occurrence, and associated geochemistry of clay minerals resulted in the following classifications: least altered rocks, found distal to the orebody, consisting of both metamorphosed and unmetamorphosed host rock that has not been completely decalcified; and altered rocks, found proximal to the orebody that have been decalcified. Altered rocks are classified further into the following groups based on clay mineral content: silicic, 1 to 10 percent clay; silicicargillic, 10 to 35 percent clay; and argillic, 35 to 80 percent clay. Clay species identified are 1M illite, 2M1 illite, kaolinite, halloysite, and dioctahedral smectite. An early hydrothermal event resulted in the precipitation of euhedral kaolinite and at least one generation of silica. This event occurred contemporaneously with decalcification which increased rock permeability and porosity. A second clay alteration event resulted in the precipitation of hydrothermal 1M illite which replaced hydrothermal kaolinite and is associated with gold deposition. Silver and silica deposition is also associated with this phase of hydrothermal alteration. Hydrothermal alteration was followed by supergene alteration which resulted in the formation of supergene kaolinite, halloysite, and smectite as well as the oxidation of iron-bearing minerals. Supergene clays are concentrated along faults, dike margins, and within rocks containing carbonate. Gold mineralization is not associated with supergene clay minerals within the Genesis and Blue Star deposits. Rocks classified as silicic-argillic in the Popovich Formation represent the most significant gold host. Silicicargillic rocks commonly exhibit bedding-parallel alteration zones. This pattern of alteration indicates that stratigraphy as well as northwest-trending structures played a significant role in the migration of gold-bearing fluids. Based on K-Ar age determinations of hydrothermal 1M illite associated with gold, the main event of mineralization in the Genesis and Blue Star deposits occurred between 93 and 100 Ma, during mid-Cretaceous time.
NASA Astrophysics Data System (ADS)
Sun, Zhuang; Espinoza, D. Nicolas; Balhoff, Matthew T.; Dewers, Thomas A.
2017-12-01
The injection of CO2 into geological formations leads to geochemical re-equilibrium between the pore fluid and rock minerals. Mineral-brine-CO2 reactions can induce alteration of mechanical properties and affect the structural integrity of the storage formation. The location of alterable mineral phases within the rock skeleton is important to assess the potential effects of mineral dissolution on bulk geomechanical properties. Hence, although often disregarded, the understanding of particle-scale mechanisms responsible for alterations is necessary to predict the extent of geomechanical alteration as a function of dissolved mineral amounts. This study investigates the CO2-related rock chemo-mechanical alteration through numerical modeling and matching of naturally altered rocks probed with micro-scratch tests. We use a model that couples the discrete element method (DEM) and the bonded particle model (BPM) to perform simulations of micro-scratch tests on synthetic rocks that mimic Entrada sandstone. Experimental results serve to calibrate numerical scratch tests with DEM-BPM parameters. Sensitivity analyses indicate that the cement size and bond shear strength are the most sensitive microscopic parameters that govern the CO2-induced alteration in Entrada sandstone. Reductions in cement size lead to decrease in scratch toughness and an increase in ductility in the rock samples. This work demonstrates how small variations of microscopic bond properties in cemented sandstone can lead to significant changes in macroscopic large-strain mechanical properties.
Lo/Ld phase coexistence modulation induced by GM1.
Puff, Nicolas; Watanabe, Chiho; Seigneuret, Michel; Angelova, Miglena I; Staneva, Galya
2014-08-01
Lipid rafts are assumed to undergo biologically important size-modulations from nanorafts to microrafts. Due to the complexity of cellular membranes, model systems become important tools, especially for the investigation of the factors affecting "raft-like" Lo domain size and the search for Lo nanodomains as precursors in Lo microdomain formation. Because lipid compositional change is the primary mechanism by which a cell can alter membrane phase behavior, we studied the effect of the ganglioside GM1 concentration on the Lo/Ld lateral phase separation in PC/SM/Chol/GM1 bilayers. GM1 above 1mol % abolishes the formation of the micrometer-scale Lo domains observed in GUVs. However, the apparently homogeneous phase observed in optical microscopy corresponds in fact, within a certain temperature range, to a Lo/Ld lateral phase separation taking place below the optical resolution. This nanoscale phase separation is revealed by fluorescence spectroscopy, including C12NBD-PC self-quenching and Laurdan GP measurements, and is supported by Gaussian spectral decomposition analysis. The temperature of formation of nanoscale Lo phase domains over an Ld phase is determined, and is shifted to higher values when the GM1 content increases. A "morphological" phase diagram could be made, and it displays three regions corresponding respectively to Lo/Ld micrometric phase separation, Lo/Ld nanometric phase separation, and a homogeneous Ld phase. We therefore show that a lipid only-based mechanism is able to control the existence and the sizes of phase-separated membrane domains. GM1 could act on the line tension, "arresting" domain growth and thereby stabilizing Lo nanodomains. Copyright © 2014 Elsevier B.V. All rights reserved.
Authigenesis/Diagenesis of the Murray Formation Mudstone in Gale Crater, Mars
NASA Technical Reports Server (NTRS)
Ming, D. W.; Rampe, E. B.; Grotzinger, J. P.; Hurowitz, J. A.; Morris, R. V.; Yen, A. S.; Blake, D. B.; Geller, R.; Sutter, B.
2016-01-01
The Mars Science Laboratory rover Curiosity has been exploring sedimentary deposits in Gale crater since August, 2012. The rover has traversed up section through approximately 150 m of sedimentary rocks deposited in fluvial, deltaic, and lacustrine environments (Bradbury group and overlying Mount Sharp group). The Murray formation lies at the base of the Mt. Sharp group and has been interpreted to be a finely laminated mudstone likely deposited in a subaqueous lacustrine environment. Four drill samples from several elevations in the Murray fm have been acquired by the rover's sampling system and delivered to the CheMin XRD instrument. The lower section of the Murray fm contains 2:1 phyllosilicate(s), hematite, jarosite, XRD amorphous materials, and primary basaltic minerals. Further up section, the Murray fm contains magnetite, cristobalite, tridymite, abundant Si-rich XRD amorphous materials along with plagioclase and K-feldspars. Murray formation materials appear to have been altered under an open hydrologic system based on the bulk chemistry of these materials measured by the Alpha Particle X-ray Spectrometer (APXS). The 2:1 phyllosilicate only occurs in the lowermost section of the Murray fm and may be detrital or formed during authigenesis of Murray fm materials, similar to the Fe-saponite and magnetite detected in a mudstone in the Yellowknife Bay fm near Curiosity's landing site (stratigraphically at the base of the Bradbury group). The occurrence of jarosite and hematite in the lower section indicates an acidic diagenetic event. These phases may have formed via several acidic alteration mechanisms, including (1) oxidative weathering of mafic igneous rocks containing sulfides; (2) sulfuric acid weathering of Fe-bearing phases; and (3) near-neutral pH subsurface solutions rich in Fe2(+) that were rapidly oxidized to Fe3(+), which produced excess acidity. The transition from abundant hematite in the lowermost Murray fm to magnetite moving up section may indicate changes in lake chemistry, i.e., variable redox conditions, possibly during authigenesis or subsequent diagenetic events. Tridymite, a high temperature mineral, (and possibly cristobalite) is detrital, potentially deposited in a lake from a distal silicic volcanic rock source or from crustal materials present prior to the Gale Crater impact event. Abundant Si-rich XRD amorphous materials in the upper sections of the Murray fm may be detrital or an aqueous alteration product of primary igneous phases and phyllosilicates. Curiosity's science team is still deciphering the authigenesis and diagenetic events that formed the Murray fm. The mineralogy and geochemistry of the formation suggest a complicated history with several (many?) episodes of aqueous alteration under a variety of environmental conditions.
Stability enhancement of Cu2S against Cu vacancy formation by Ag alloying
NASA Astrophysics Data System (ADS)
Barman, Sajib K.; Huda, Muhammad N.
2018-04-01
As a potential solar absorber material, Cu2S has proved its importance in the field of renewable energy. However, almost all the known minerals of Cu2S suffer from spontaneous Cu vacancy formation in the structure. The Cu vacancy formation causes the structure to possess very high p-type doping that leads the material to behave as a degenerate semiconductor. This vacancy formation tendency is a major obstacle for this material in this regard. A relatively new predicted phase of Cu2S which has an acanthite-like structure was found to be preferable than the well-known low chalcocite Cu2S. However, the Cu-vacancy formation tendency in this phase remained similar. We have found that alloying silver with this structure can help to reduce Cu vacancy formation tendency without altering its electronic property. The band gap of silver alloyed structure is higher than pristine acanthite Cu2S. In addition, Cu diffusion in the structure can be reduced with Ag doped in Cu sites. In this study, a systematic approach is presented within the density functional theory framework to study Cu vacancy formation tendency and diffusion in silver alloyed acanthite Cu2S, and proposed a possible route to stabilize Cu2S against Cu vacancy formations by alloying it with Ag.
Stability enhancement of Cu2S against Cu vacancy formation by Ag alloying.
Barman, Sajib K; Huda, Muhammad N
2018-04-25
As a potential solar absorber material, Cu 2 S has proved its importance in the field of renewable energy. However, almost all the known minerals of Cu 2 S suffer from spontaneous Cu vacancy formation in the structure. The Cu vacancy formation causes the structure to possess very high p-type doping that leads the material to behave as a degenerate semiconductor. This vacancy formation tendency is a major obstacle for this material in this regard. A relatively new predicted phase of Cu 2 S which has an acanthite-like structure was found to be preferable than the well-known low chalcocite Cu 2 S. However, the Cu-vacancy formation tendency in this phase remained similar. We have found that alloying silver with this structure can help to reduce Cu vacancy formation tendency without altering its electronic property. The band gap of silver alloyed structure is higher than pristine acanthite Cu 2 S. In addition, Cu diffusion in the structure can be reduced with Ag doped in Cu sites. In this study, a systematic approach is presented within the density functional theory framework to study Cu vacancy formation tendency and diffusion in silver alloyed acanthite Cu 2 S, and proposed a possible route to stabilize Cu 2 S against Cu vacancy formations by alloying it with Ag.
Bone formation within alumina tubes: effect of calcium, manganese, and chromium dopants.
Pabbruwe, Moreica B; Standard, Owen C; Sorrell, Charles C; Howlett, C Rolfe
2004-09-01
Alumina tubes (1.3mm outer diameter, 0.6mm inner diameter, 15 mm length) doped with Ca, Mn, or Cr at nominal concentrations of 0.5 and 5.0 mol% were implanted into femoral medullary canals of female rats for 16 weeks. Tissue formation within tubes was determined by histology and histomorphometry. Addition of Ca to alumina promoted hypertrophic bone formation at the advancing tissue fronts and tube entrances, and appeared to retard angiogenesis by limiting ongoing cellular migration into the tube. It is speculated that the presence of a secondary phase of calcium hexaluminate, probably having a solubility greater than that of alumina, possibly increased the level of extracellular Ca and, consequently, stimulated osteoclastic activity at the bone-ceramic interface. Addition of Mn significantly enhanced osteogenesis within the tubes. However, it is not possible to determine whether phase composition or microstructure of the ceramic was responsible for this because both were significantly altered by Mn addition. Addition of Cr to the alumina apparently stimulated bone remodelling as indicated by increased cellular activity and bone resorption at the tissue-implant interface. Cr was incorporated into the alumina as a solid solution and the tissue response was speculated to be an effect of surface chemistry rather than microstructure. The work demonstrates that doping a bioinert ceramic with small amounts of specific elements can significantly alter tissue ingrowth, differentiation, and osteogenesis within a porous implant.
Mineralogy and petrology of comet 81P/wild 2 nucleus samples
Zolensky, M.E.; Zega, T.J.; Yano, H.; Wirick, S.; Westphal, A.J.; Weisberg, M.K.; Weber, I.; Warren, J.L.; Velbel, M.A.; Tsuchiyama, A.; Tsou, P.; Toppani, A.; Tomioka, N.; Tomeoka, K.; Teslich, N.; Taheri, M.; Susini, J.; Stroud, R.; Stephan, T.; Stadermann, F.J.; Snead, C.J.; Simon, S.B.; Simionovici, A.; See, T.H.; Robert, F.; Rietmeijer, F.J.M.; Rao, W.; Perronnet, M.C.; Papanastassiou, D.A.; Okudaira, K.; Ohsumi, K.; Ohnishi, I.; Nakamura-Messenger, K.; Nakamura, T.; Mostefaoui, S.; Mikouchi, T.; Meibom, A.; Matrajt, G.; Marcus, M.A.; Leroux, H.; Lemelle, L.; Le, L.; Lanzirotti, A.; Langenhorst, F.; Krot, A.N.; Keller, L.P.; Kearsley, A.T.; Joswiak, D.; Jacob, D.; Ishii, H.; Harvey, R.; Hagiya, K.; Grossman, L.; Grossman, J.H.; Graham, G.A.; Gounalle, M.; Gillet, P.; Genge, M.J.; Flynn, G.; Ferroir, T.; Fallon, S.; Ebel, D.S.; Dai, Z.R.; Cordier, P.; Clark, B.; Chi, M.; Butterworth, Anna L.; Brownlee, D.E.; Bridges, J.C.; Brennan, S.; Brearley, A.; Bradley, J.P.; Bleuet, P.; Bland, P.A.; Bastien, R.
2006-01-01
The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk.
NASA Astrophysics Data System (ADS)
Osnes, A. N.; Vartdal, M.; Pettersson Reif, B. A.
2018-05-01
The formation of jets from a shock-accelerated cylindrical shell of particles, confined in a Hele-Shaw cell, is studied by means of numerical simulation. A number of simulations have been performed, systematically varying the coupling between the gas and solid phases in an effort to identify the primary mechanism(s) responsible for jet formation. We find that coupling through drag is sufficient for the formation of jets. Including the effect of particle volume fraction and particle collisions did not alter the general behaviour, but had some influence on the length, spacing and number of jets. Furthermore, we find that the jet selection process starts early in the dispersal process, during the initial expansion of the particle layer.
NASA Astrophysics Data System (ADS)
Kiran Yildirim, Demet; Abdelnasser, Amr; Doner, Zeynep; Kumral, Mustafa
2016-04-01
The Halilar Cu-Pb (-Zn) mineralization that is formed in the volcanogenic metasediments of Bagcagiz Formation at Balikesir province, NW Turkey, represents locally vein-type deposit as well as restricted to fault gouge zone directed NE-SW along with the lower boundary of Bagcagiz Formation and Duztarla granitic intrusion in the study area. Furthermore, This granite is traversed by numerous mineralized sheeted vein systems, which locally transgress into the surrounding metasediments. Therefore, this mineralization closely associated with intense hydrothermal alteration within brecciation, and quartz stockwork veining. The ore mineral assemblage includes chalcopyrite, galena, and some sphalerite with covellite and goethite formed during three phases of mineralization (pre-ore, main ore, and supergene) within an abundant gangue of quartz and calcite. The geologic and field relationships, petrographic and mineralogical studies reveal two alteration zones occurred with the Cu-Pb (-Zn) mineralization along the contact between the Bagcagiz Formation and Duztarla granite; pervasive phyllic alteration (quartz, sericite, and pyrite), and selective propylitic alteration (albite, calcite, epidote, sericite and/or chlorite). This work, by using the mass balance calculations, reports the mass/volume changes (gain and loss) of the chemical components of the hydrothermal alteration zones associated with Halilar Cu-Pb (-Zn) mineralization at Balikesir area (Turkey). It revealed that the phyllic alteration has enrichments of Si, Fe, K, Ba, and LOI with depletion of Mg, Ca, and Na reflect sericitization of alkali feldspar and destruction of ferromagnesian minerals. This zone has high Cu and Pb with Zn contents represents the main mineralized zone. On the other hand, the propylitic zone is characterized by addition of Ca, Na, K, Ti, P, and Ba with LOI and Cu (lower content) referring to the replacement of plagioclase and ferromagnesian minerals by albite, calcite, epidote, and sericite with chlorite. Keywords: Mass balance calculations; hydrothermal alterations; Cu-Pb (-Zn) mineralization; Halilar area; NW Turkey
Chemical and Physical Interactions of Martian Surface Material
NASA Astrophysics Data System (ADS)
Bishop, J. L.
1999-09-01
A model of alteration and maturation of the Martian surface material is described involving both chemical and physical interactions. Physical processes involve distribution and mixing of the fine-grained soil particles across the surface and into the atmosphere. Chemical processes include reaction of sulfate, salt and oxidizing components of the soil particles; these agents in the soils deposited on rocks will chew through the rock minerals forming coatings and will bind surface soils together to form duricrust deposits. Formation of crystalline iron oxide/oxyhydroxide minerals through hydrothermal processes and of poorly crystalline and amorphous phases through palagonitic processes both contribute to formation of the soil particles. Chemical and physical alteration of these soil minerals and phases contribute to producing the chemical, magnetic and spectroscopic character of the Martian soil as observed by Mars Pathfinder and Mars Global Surveyor. Minerals such as maghemite/magnetite and jarosite/alunite have been observed in terrestrial volcanic soils near steam vents and may be important components of the Martian surface material. The spectroscopic properties of several terrestrial volcanic soils containing these minerals have been analyzed and evaluated in terms of the spectroscopic character of the surface material on Mars.
Effect of natural and synthetic iron corrosion products on silicate glass alteration processes
NASA Astrophysics Data System (ADS)
Dillmann, Philippe; Gin, Stéphane; Neff, Delphine; Gentaz, Lucile; Rebiscoul, Diane
2016-01-01
Glass long term alteration in the context of high-level radioactive waste (HLW) storage is influenced by near-field materials and environmental context. As previous studies have shown, the extent of glass alteration is strongly related to the presence of iron in the system, mainly provided by the steel overpack around surrounding the HLW glass package. A key to understanding what will happen to the glass-borne elements in the geological disposal lies in the relationship between the iron-bearing phases and the glass alteration products formed. In this study, we focus on the influence of the formation conditions (synthetized or in-situ) and the age of different iron corrosion products on SON68 glass alteration. Corrosion products obtained from archaeological iron artifacts are considered here to be true analogues of the corrosion products in a waste disposal system due to the similarities in formation conditions and physical properties. These representative corrosion products (RCP) are used in the experiment along with synthetized iron anoxic corrosion products and pristine metallic iron. The model-cracks of SON68 glass were altered in cell reactors, with one of the different iron-sources inserted in the crack each time. The study was successful in reproducing most of the processes observed in the long term archaeological system. Between the different systems, alteration variations were noted both in nature and intensity, confirming the influence of the iron-source on glass alteration. Results seem to point to a lesser effect of long term iron corrosion products (RCP) on the glass alteration than that of the more recent products (SCP), both in terms of general glass alteration and of iron transport.
NASA Astrophysics Data System (ADS)
Büttner, Steffen; Costin, Gelu
2010-05-01
Brittle intra-crystal fracturing occurred during a microseismic event in migmatites of the Ordovician Sierras Pampeanas (NW Argentina), forming micro-shear zones and brittle fragments in cordierite. The seismic event occurred at amphibolite facies P-T conditions under high strain rates (≥ 10-7 s-1). During post-seismic recovery and coarsening of crystal fragments, primary cordierite (XMg=0.65) underwent partial breakdown along the deformation zone, forming a secondary mineral assemblage in an alteration zone along grain boundaries of coarsened crystal fragments. The secondary assemblage is restricted to the recovery zone. The breakdown of primary cordierite (CrdP) is accompanied by the formation of secondary sillimanite, magnetite, staurolite (XMg=0.24, ~0.5 wt% ZnO), quartz, and secondary cordierite (CrdS; XMg=0.70-0.80). CrdS, volumetrically the most important secondary phase, forms by diffusion of Mg and Fe, altering CrdP by Fe loss and uptake of Mg. All other secondary phases form by nucleation. Two simultaneous cordierite breakdown reactions have been balanced using CSpace 1.01: 100 CrdP (XMg 0.65) = 21.8 Sil +12.8 Mag + 33.5 Qtz + 5.6 H2O + 89.1 CrdS (XMg 0.75) 100 CrdP (XMg0.65) = 8.1 Mag + 53.6 Qtz + 4.5 H2O + 8.1 St (XMg0.24) + 83.3 CrdS (XMg 0.75) The bulk chemical major element composition of the alteration zone is nearly identical to the composition of primary cordierite, suggesting that elemental exchange between the alteration zone and the cordierite matrix is limited. However, minor fluid influx, supplying Zn, K, Si, and O is indicated by the composition of staurolite, minor formation of biotite and quartz, and by the oxidation of Fe2+ within the alteration zone. The modal composition of the alteration zone has been determined by point counting, which yields similar results like CSpace results (converted into vol%), and MODAN calculations, which calculates modes based on the average alteration zone composition, and the compositions of secondary phases. The average modal composition of the alteration zone is: 2.3 Sil + 2.0 Mag + 4.3 Qtz + 3.9 St+ 87.5 CrdS (vol%) Thermodynamic modelling of primary cordierite breakdown using Theriak Domino shows that the observed breakdown is possible only in a small P -T window around P =450 MPa and T =555 ° C, which is in good agreement with the retrograde P - T path of the Sierra de Quilmes migmatites. Modes calculated using Theriak Domino are similar to results using descriptive methods (point counting), or methods based on chemistry and petrography (MODAN, CSpace). Since modes predicted on the assumption of petrological equilibrium are close to the observed modes, the breakdown reaction seen in the alteration zone most likely represents conditions of, or close to, thermodynamic equilibrium. The formation of the secondary mineral assemblage in the alteration zone depends upon the efficient supply of cations, essentially Si, Al, Fe and Mg. The bulk composition of new secondary minerals (Qtz, St, Mag, Sil) is enriched in Fe compared to CrdP, whereas CrdS is Fe depleted. The provision of Si and Al required for Sil, Qtz, and St can be assigned to partial cordierite breakdown. The excess Fe needed for Mag and St, and the removal of surplus Mg from CrdP breakdown, depends on Fe-Mg diffusion within CrdS. Since CrdS forms exclusively in the post-seismic recovery zone, we interpret dislocation creep, and hence cation diffusion related to plastic deformation, as the key process for the formation of reaction products reflecting thermodynamic equilibrium.
Książek, Maria; Kusz, Joachim; Białońska, Agata; Bronisz, Robert; Weselski, Marek
2015-11-14
2D structurally related iron(ii) coordination networks {[Fe(hbtz)2(RCN)2](ClO4)2}∞ featuring, besides tetrazol-2-yl rings in the first coordination sphere, also axially coordinated propionitrile or allyl cyanide molecules (R = C3H5-, 1; R = C2H5-, 2) were synthesized. Thermally induced spin crossover (SCO) in 1 takes place in two poorly resolved stages (T(1)1/2(↓) = T(1)1/2(↑) = 198 K, T(2)1/2(↓) = 170 K, T(2)1/2(↑) = 171 K) whereas in 2 complete and relatively gradual one step SCO (T1/2(↓) = T1/2(↑) = 160 K) occurs. Diversification of the SCO properties of the complexes originates from the ability of coordinated allyl cyanide in 1 to undergo conformational alterations, which is not observed for propionitrile molecules in 2. SCO in 1 is accompanied by a non-monotonic change of the contribution of allyl cyanide conformers which is related to reconstruction of the network of intermolecular contacts established between polymeric layers. The coordination network 1 exhibits extraordinary elasticity and in the second stage SCO, accompanied by conformational changes of allyl cyanide, triggers a crystallographic phase transition which leads to the formation of a superstructure. What is important, the formation of the superstructure is not caused by long range ordering of HS and LS iron(ii) ions. The structural alteration is associated with corrugation of the polymeric skeleton and disappearance of nitrile disorder. Irradiation of a single crystal of 1 at 15 K with laser light (520 nm) allowed producing a novel low temperature HS phase of 1 in which, contrary to the high temperature HS phase, disordering of anion and allyl cyanide molecules is not observed and the corrugated nature of the polymeric layer, characteristic of the LS phase, is preserved.
Nanoscale assembly of lanthanum silica with dense and porous interfacial structures.
Ballinger, Benjamin; Motuzas, Julius; Miller, Christopher R; Smart, Simon; Diniz da Costa, João C
2015-02-03
This work reports on the nanoscale assembly of hybrid lanthanum oxide and silica structures, which form patterns of interfacial dense and porous networks. It was found that increasing the molar ratio of lanthanum nitrate to tetraethyl orthosilicate (TEOS) in an acid catalysed sol-gel process alters the expected microporous metal oxide silica structure to a predominantly mesoporous structure above a critical lanthanum concentration. This change manifests itself by the formation of a lanthanum silicate phase, which results from the reaction of lanthanum oxide nanoparticles with the silica matrix. This process converts the microporous silica into the denser silicate phase. Above a lanthanum to silica ratio of 0.15, the combination of growth and microporous silica consumption results in the formation of nanoscale hybrid lanthanum oxides, with the inter-nano-domain spacing forming mesoporous volume. As the size of these nano-domains increases with concentration, so does the mesoporous volume. The absence of lanthanum hydroxide (La(OH)3) suggests the formation of La2O3 surrounded by lanthanum silicate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, Kenneth M.; Mustard, John F.; Salvatore, Mark R.
The rock alteration and rind formation in analog environments like Antarctica may provide clues to rock alteration and therefore paleoclimates on Mars. Clastic sedimentary rocks derived from basaltic sources have been studied in situ by martian rovers and are likely abundant on the surface of Mars. Moreover, how such rock types undergo alteration when exposed to different environmental conditions is poorly understood compared with alteration of intact basaltic flows. Here we characterize alteration in the chemically immature Carapace Sandstone from Antarctica, a terrestrial analog for martian sedimentary rocks. We employ a variety of measurements similar to those used on previousmore » and current Mars missions. Laboratory techniques included bulk chemistry, powder X-ray diffraction (XRD), hyperspectral imaging and X-ray absorption spectroscopy. Through these methods we find that primary basaltic material in the Carapace Sandstone is pervasively altered to hydrated clay minerals and palagonite as a result of water–rock interaction. A thick orange rind is forming in current Antarctic conditions, superimposing this previous aqueous alteration signature. The rind exhibits a higher reflectance at visible-near infrared wavelengths than the rock interior, with an enhanced ferric absorption edge likely due to an increase in Fe 3+ of existing phases or the formation of minor iron (oxy)hydroxides. This alteration sequence in the Carapace Sandstone results from decreased water–rock interaction over time, and weathering in a cold, dry environment, mimicking a similar transition early in martian history. This transition may be recorded in sedimentary rocks on Mars through a similar superimposition mechanism, capturing past climate changes at the hand sample scale. These results also suggest that basalt-derived sediments could have sourced significant volumes of hydrated minerals on early Mars due to their greater permeability compared with intact igneous rocks.« less
NASA Astrophysics Data System (ADS)
Smith, M.; Kynicky, J.; Xu, Cheng; Song, Wenlei; Spratt, J.; Jeffries, T.; Brtnicky, M.; Kopriva, A.; Cangelosi, D.
2018-05-01
The silico‑carbonatite dykes of the Huanglongpu area, Lesser Qinling, China, are unusual in that they are quartz-bearing, Mo-mineralised and enriched in the heavy rare earth elements (HREE) relative to typical carbonatites. The textures of REE minerals indicate crystallisation of monazite-(Ce), bastnäsite-(Ce), parisite-(Ce) and aeschynite-(Ce) as magmatic phases. Burbankite was also potentially an early crystallising phase. Monazite-(Ce) was subsequently altered to produce a second generation of apatite, which was in turn replaced and overgrown by britholite-(Ce), accompanied by the formation of allanite-(Ce). Bastnäsite and parisite where replaced by synchysite-(Ce) and röntgenite-(Ce). Aeschynite-(Ce) was altered to uranopyrochlore and then pyrochlore with uraninite inclusions. The mineralogical evolution reflects the evolution from magmatic carbonatite, to more silica-rich conditions during early hydrothermal processes, to fully hydrothermal conditions accompanied by the formation of sulphate minerals. Each alteration stage resulted in the preferential leaching of the LREE and enrichment in the HREE. Mass balance considerations indicate hydrothermal fluids must have contributed HREE to the mineralisation. The evolution of the fluorcarbonate mineral assemblage requires an increase in aCa2+ and aCO32- in the metasomatic fluid (where a is activity), and breakdown of HREE-enriched calcite may have been the HREE source. Leaching in the presence of strong, LREE-selective ligands (Cl-) may account for the depletion in late stage minerals in the LREE, but cannot account for subsequent preferential HREE addition. Fluid inclusion data indicate the presence of sulphate-rich brines during alteration, and hence sulphate complexation may have been important for preferential HREE transport. Alongside HREE-enriched magmatic sources, and enrichment during magmatic processes, late stage alteration with non-LREE-selective ligands may be critical in forming HREE-enriched carbonatites.
NASA Astrophysics Data System (ADS)
Bronnikova, M. A.; Konoplianikova, Yu. V.; Agatova, A. R.; Zazovskaya, E. P.; Lebedeva, M. P.; Turova, I. V.; Nepop, R. K.; Shorkunov, I. G.; Cherkinsky, A. E.
2017-02-01
An assemblage of coatings in cryoaridic soils (Skeletic Cambisols Protocalcic) of southwestern Tyva is considered as a key block of soil memory, which is an intrasoil archive of landscape and climate changes in regional geosystems in the Holocene. The results of hierarchical macro-, meso-, and micromorphological studies of a large assemblage of coatings and the data on the X-ray microanalysis of coatings and composition of stable carbon and oxygen isotopes, as well as on radiocarbon dating of coatings are presented. The synthesis of the results made it possible to reconstruct the main evolutionary phases of cryoaridic soils in the Holocene and landscape and climate changes that induced their alteration. The following climatogenic evolutionary phases of pedogenesis were distinguished: (1) formation of microsparite-micritic dense silica-containing coatings due to short-term fluctuations of the shallow alkaline bicarbonate groundwater level in the semiarid-arid climate; (2) formation of sparitic dense coatings under the slow accumulation of carbonates from low-mineralized bicarbonate water at the higher lake level as compared to the present one in the less arid conditions; (3) the eluvial-illuvial formation of micritic loose coatings under stable automorphic semiarid conditions; (4) formation of Fe-humus coatings in cool humid climate (Al-Fe-humus phase of pedogenesis); (5) the recommencement of the eluvial-illuvial formation of micritic loose coatings under aridization of the last thousand years of the Holocene.
NASA Astrophysics Data System (ADS)
Cassingham, N. J.; Corkhill, C. L.; Stennett, M. C.; Hand, R. J.; Hyatt, N. C.
2016-10-01
The UK high level nuclear waste glass modified with CaO/ZnO was investigated using the vapour phase hydration test, performed at 200 °C, with the aim of understanding the impact of the modification on the chemical composition and microstructure of the alteration layer. Experiments were undertaken on non-modified and CaO/ZnO-modified base glass, with or without 25 wt% of simulant Magnox waste calcine. The modification resulted in a dramatic reduction in gel layer thickness and also a reduction in the reaction rate, from 3.4 ± 0.3 g m-2 d-1 without CaO/ZnO modification to 0.9 ± 0.1 g m-2 d-1 with CaO/ZnO. The precipitated phase assemblage for the CaO/ZnO-modified compositions was identified as hydrated Ca- and Zn-bearing silicate phases, which were absent from the non-modified counterpart. These results are in agreement with other recent studies showing the beneficial effects of ZnO additions on glass durability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan-Rong, Zhang; School of Civil Engineering, Beijing Key Laboratory of Track Engineering, Beijing Jiaotong University, Beijing 100044; Xiang-Ming, Kong
The influences of triethanolamine (TEA) on the portlandite in hardened cement pastes (HCPs) were systematically investigated. Results show that the addition of TEA in cement pastes leads to a visible reduction of Ca(OH){sub 2} (CH) content and considerably alters the morphology of CH crystals from large and parallel-stacked lamellar shape to smaller and distorted actinomorphic one. For the first time, the CH micro-crystals and even non-crystalline CH in HCPs were observed in the presence of TEA. Due to integration of CH micro-crystals in C–S–H phase, remarkable higher Ca/Si ratio of C–S–H phase was found. The formation of TEA-Ca{sup 2+} complexmore » via the interaction between Ca{sup 2+} and the oxygen atoms in TEA molecule was evidenced by the results of NMR and UV. It is believed that TEA can be introduced into the crystallization process of portlandite and thus significantly alters the morphology of CH crystals and even the content of the crystalline CH phase.« less
Fe/Mg smectite formation under acidic conditions on early Mars
NASA Astrophysics Data System (ADS)
Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.
2016-01-01
Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars have been hypothesized to form under neutral to alkaline conditions. These pH conditions would also be favorable for formation of widespread carbonate deposits which have not been detected on Mars. We propose that smectite deposits on Mars formed under moderately acidic conditions inhibiting carbonate formation. We report here the first synthesis of Fe/Mg smectite in an acidic hydrothermal system [200 °C, pHRT ∼ 4 (pH measured at room temperature) buffered with acetic acid] from Mars-analogue, glass-rich, basalt simulant with and without aqueous Mg or Fe(II) addition under N2-purged anoxic and ambient oxic redox conditions. Synthesized Fe/Mg smectite was examined by X-ray-diffraction, Mössbauer spectroscopy, visible and near-infrared reflectance spectroscopy, scanning electron microscopy and electron microprobe to characterize mineralogy, morphology and chemical composition. Alteration of the glass phase of basalt simulant resulted in formation of the Fe/Mg smectite mineral saponite with some mineralogical and chemical properties similar to the properties reported for Fe/Mg smectite on Mars. Our experiments are evidence that neutral to alkaline conditions on early Mars are not necessary for Fe/Mg smectite formation as previously inferred. Phyllosilicate minerals could instead have formed under mildly acidic pH conditions. Volcanic SO2 emanation and sulfuric acid formation is proposed as the major source of acidity for the alteration of basaltic materials and subsequent formation of Fe/Mg smectite.
NASA Astrophysics Data System (ADS)
Bestemianova, K. V.; Grinev, O. M.
2017-12-01
Zmeinogorsky ore district is located in the northwest part of Ore Altai megatrough, which has long-lasting history of its development and complicated geological structure. Within the ore district, which is the northwest part of the devonian Zmeinogorsk-Bystrushinsky trough, ore mineralization is associated with the system of northwest border faults and cross branch faults. There were four main stages and five phases of minerogenesis. The first stage is the stage of oregenesis beginning and quartz-chlorite-sericite wall-rock alteration rocks formation. Ore deposition and intense tectonics took place during the second stage. The third stage is the most longstanding and productive ore formation stage. There are five distinct minerogenesis phases within this stage. The fourth stage expressed in erosion development and supergene alteration of already formed ore bodies with oxidation zone formation. Main ore minerals are pyrite, chalcopyrite, sphalerite and galena. Minor minerals are tetrahedrite, bornite, tennantite and chalcocite. Precious metals minerals are acanthite, gold, electrum, gold and silver amalgams. Barren minerals are barite, quartz, calcite, gypsum. According to obtained data average isotopic composition of third stage sulphides is: pyrite -0,2‰, chalcopyrite 0‰, galena +0,5‰, sphalerite -1,2‰ for the first complex; chalcopyrite -1,9‰, galena -3,4‰, sphalerite -2,3‰, tetrahedrite -3,7‰ for the second complex; tennantite -12,8‰, bornite -8,9‰ for the third complex. Sulfur isotopic compoisiton variations indicate source inhomogeneity. Thus, there was dominant source change from mantle one in the beginning to crustal one in the end. Main oregenesis stages took place in the range of temperatures between 170 and 210°С and in the mineral-forming solutions salinity range between 3 and 10 wt % NaCl equiv.
Srinivasa, Narayan; Jiang, Qin
2013-01-01
This study describes a spiking model that self-organizes for stable formation and maintenance of orientation and ocular dominance maps in the visual cortex (V1). This self-organization process simulates three development phases: an early experience-independent phase, a late experience-independent phase and a subsequent refinement phase during which experience acts to shape the map properties. The ocular dominance maps that emerge accommodate the two sets of monocular inputs that arise from the lateral geniculate nucleus (LGN) to layer 4 of V1. The orientation selectivity maps that emerge feature well-developed iso-orientation domains and fractures. During the last two phases of development the orientation preferences at some locations appear to rotate continuously through ±180° along circular paths and referred to as pinwheel-like patterns but without any corresponding point discontinuities in the orientation gradient maps. The formation of these functional maps is driven by balanced excitatory and inhibitory currents that are established via synaptic plasticity based on spike timing for both excitatory and inhibitory synapses. The stability and maintenance of the formed maps with continuous synaptic plasticity is enabled by homeostasis caused by inhibitory plasticity. However, a prolonged exposure to repeated stimuli does alter the formed maps over time due to plasticity. The results from this study suggest that continuous synaptic plasticity in both excitatory neurons and interneurons could play a critical role in the formation, stability, and maintenance of functional maps in the cortex. PMID:23450808
Cristobalite in the 2011-13 Cordón Caulle Eruption (Chile)
NASA Astrophysics Data System (ADS)
Schipper, C.; Castro, J. M.; Tuffen, H.
2013-12-01
The volcanic formation of cristobalite and other silica polymorphs is of great concern from a public health perspective, because they are known carcinogens and pose prominent respiratory hazards. Cristobalite is common in volcanic domes and other products, but its mode of formation is not completely understood. Firstly, it is enigmatic that the low-pressure stability field of cristobalite lies outside normal volcanic temperature conditions. Secondly, it is unclear if crystobalite forms by devitrification of volcanic glass, or by precipitation from a locally (e.g., immediately adjacent to porous networks) or deeply (e.g., from depth within the conduit) derived vapour phase, or by an intimate and necessary combination of both of these processes. The 2011-13 eruption of Puyehue-Cordón Caulle (Chile) has provided an excellent opportunity to track cristobalite formation during the full progression of a rhyolite eruption. The eruption included a short opening Plinian phase, a protracted period of hybrid explosive-effusive activity that included the emplacement of a compound obsidian flow, and the endogenous advance of the obsidian flow after the magma supply had been cut off. Together, these yield an ideal framework and sample suite for testing hypotheses of cristobalite formation, because samples were produced in different phases of the eruption, and were all collected very fresh with little to no alteration or devitrification. Immediately noteworthy is the presence of vapour phase crystallization products lining the vesicles in samples from the obsidian lava flow. Examination by SEM shows these precipitates to be rich in prismatic cristobalite. The relative proportions of vapour phase precipitates appears to be correlated to the degree of interconnectivity of the lava's vesicle network; where sheared, coalesced and collapsed vesicle networks show little-to-no vapour phase precipitates, and isolated vesicles show intensive vapour phase crystallization. Theses textures immediately argue for cristobalite formation from a Si-saturated vapour phase, and since the samples are derived from lava lobes far from the vent, argue that the vapour was locally derived from within the flow. Ongoing quantification using various analytical tools (μ-cT; XRD; EBSD; ICPMS; SEM; EMPA; Cl-SEM) aim to pinpoint the timing and mechanisms of cristobalite formation during the progression of the Cordón Caulle eruption.
Maps, Models and Data from Southeastern Great Basin PFA, Phase II Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, Greg
This submission includes composite risk segment models in raster format for permeability, heat of the earth, and MT, as well as the final PFA model of geothermal exploration risk in Southwestern Utah, USA. Additionally, this submission has data regarding hydrothermally altered areas, and opal sinter deposits in the study area. All of this information lends to the understanding and exploration for hidden geothermal systems in the area.
Farnam, Yaghoob; Dick, Sarah; Wiese, Andrew; Davis, Jeffrey; Bentz, Dale; Weiss, Jason
2015-11-01
The conventional CaCl 2 -H 2 O phase diagram is often used to describe how calcium chloride behaves when it is used on a concrete pavement undergoing freeze-thaw damage. However, the chemistry of the concrete can alter the appropriateness of using the CaCl 2 -H 2 O phase diagram. This study shows that the Ca(OH) 2 present in a hydrated portland cement can interact with CaCl 2 solution creating a behavior that is similar to that observed in isoplethal sections of a ternary phase diagram for a Ca(OH) 2 -CaCl 2 -H 2 O system. As such, it is suggested that such isoplethal sections provide a reasonable model that can be used to describe the behavior of concrete exposed to CaCl 2 solution as the temperature changes. Specifically, the Ca(OH) 2 can react with CaCl 2 and H 2 O resulting in the formation of calcium oxychloride. The formation of the calcium oxychloride is expansive and can produce damage in concrete at temperatures above freezing. Its formation can also cause a significant decrease in fluid ingress into concrete. For solutions with CaCl 2 concentrations greater than about 11.3 % (by mass), it is found that calcium oxychloride forms rapidly and is stable at room temperature (23 °C).
Farnam, Yaghoob; Dick, Sarah; Wiese, Andrew; Davis, Jeffrey; Bentz, Dale; Weiss, Jason
2015-01-01
The conventional CaCl2-H2O phase diagram is often used to describe how calcium chloride behaves when it is used on a concrete pavement undergoing freeze-thaw damage. However, the chemistry of the concrete can alter the appropriateness of using the CaCl2-H2O phase diagram. This study shows that the Ca(OH)2 present in a hydrated portland cement can interact with CaCl2 solution creating a behavior that is similar to that observed in isoplethal sections of a ternary phase diagram for a Ca(OH)2-CaCl2-H2O system. As such, it is suggested that such isoplethal sections provide a reasonable model that can be used to describe the behavior of concrete exposed to CaCl2 solution as the temperature changes. Specifically, the Ca(OH)2 can react with CaCl2 and H2O resulting in the formation of calcium oxychloride. The formation of the calcium oxychloride is expansive and can produce damage in concrete at temperatures above freezing. Its formation can also cause a significant decrease in fluid ingress into concrete. For solutions with CaCl2 concentrations greater than about 11.3 % (by mass), it is found that calcium oxychloride forms rapidly and is stable at room temperature (23 °C). PMID:26692655
López Zavala, Miguel Ángel; Lozano Morales, Samuel Alejandro; Ávila-Santos, Manuel
2017-11-01
Effect of hydrothermal treatment, acid washing and annealing temperature on the structure and morphology of TiO 2 nanotubes during the formation process was assessed. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy analysis were conducted to describe the formation and characterization of the structure and morphology of nanotubes. Hydrothermal treatment of TiO 2 precursor nanoparticles and acid washing are fundamental to form and define the nanotubes structure. Hydrothermal treatment causes a change in the crystallinity of the precursor nanoparticles from anatase phase to a monoclinic phase, which characterizes the TiO 2 nanosheets structure. The acid washing promotes the formation of high purity nanotubes due to Na + is exchanged from the titanate structure to the hydrochloric acid (HCl) solution. The annealing temperature affects the dimensions, structure and the morphology of the nanotubes. Annealing temperatures in the range of 400 °C and 600 °C are optimum to maintain a highly stable tubular morphology of nanotubes. Additionally, nanotubes conserve the physicochemical properties of the precursor Degussa P25 nanoparticles. Temperatures greater than 600 °C alter the morphology of nanotubes from tubular to an irregular structure of nanoparticles, which are bigger than those of the precursor material, i.e., the crystallinity turn from anatase phase to rutile phase inducing the collapse of the nanotubes.
NASA Astrophysics Data System (ADS)
Soares, Caroline Cibele Vieira; Varajão, Angélica Fortes Drummond Chicarino; Varajão, César Augusto Chicarino; Boulangé, Bruno
2014-12-01
X-ray diffraction (XRD), X-ray Fluorescence (XRF), optical microscopy, Scanning Electron Microscopy coupled with Energy Dispersive Spectrometry (SEM-EDS) and Electron Probe micro-analyser (EPMA) and Wavelength-Dispersive Spectroscopy (WDS) were conducted on charnockite from the Caparaó Suite and its alteration cortex to determine the mineralogical, micromorphological and geochemical transformations resulting from the weathering process. The hydrolysis of the charnockite occurred in different stages, in accordance with the order of stability of the minerals with respect to weathering: andesine/orthopyroxene, pargasite and alkali feldspar. The rock modifications had begun with the formation of a layer of incipient alteration due to the percolation of weathering solutions first in the pressure relief fractures and then in cleavage and mineral edges. The iron exuded from ferromagnesian minerals precipitated in the intermineral and intramineral discontinuities. The layer of incipient alteration evolves into an inner cortex where the plagioclase changes into gibbsite by direct alitisation, the ferromagnesian minerals initiate the formation of goethitic boxworks with kaolinitic cores, and the alkali feldspar initiates indirect transformation into gibbsite, forming an intermediate phase of illite and kaolinite. In the outer cortex, mostly traces of alkali feldspar remain, and they are surrounded by goethite and gibbsite as alteromorphics, characterising the formation of the isalteritic horizon that occurs along the slope and explains the bauxitization process at the Caparaó Range, SE Brazil.
Evolution of Morphology and Crystallinity of Silica Minerals Under Hydrothermal Conditions
NASA Astrophysics Data System (ADS)
Isobe, H.
2011-12-01
Silica minerals are quite common mineral species in surface environment of the terrestrial planets. They are good indicator of terrestrial processes including hydrothermal alteration, diagenesis and soil formation. Hydrothermal quartz, metastable low temperature cristobalite and amorphous silica show characteristic morphology and crystallinity depending on their formation processes and kinetics under wide range of temperature, pressure, acidity and thermal history. In this study, silica minerals produced by acidic hydrothermal alteration related to volcanic activities and hydrothermal crystallization experiments from diatom sediment are examined with crystallographic analysis and morphologic observations. Low temperature form of cistobalite is a metastable phase and a common alteration product occured in highly acidic hydrothermal environment around fumaroles in geothermal / volcanic areas. XRD analysis revealed that the alteration degree of whole rock is represented by abundance of cristobalite. Detailed powder XRD analysis show that the primary diffraction peak of cristobalite composed with two or three phases with different d-spacing and FWHM by peak profile fitting analysis. Shorter d-spacing and narrower FWHM cristobalite crystallize from precursor materials with less-crystallized, longer d-spacing and wider FWHM cristobalite. Textures of hydrothermal cristobalite in altered rock shows remnant of porphylitic texture of the host rock, pyroxene-amphibole andesite. Diatom has amorphous silica shell and makes diatomite sediment. Diatomite found in less diagenetic Quarternary formation keeps amorphous silica diatom shells. Hydrothermal alteration experiments of amorphous silica diatomite sediment are carried out from 300 °C to 550 °C. Mineral composition of run products shows crystallization of cristobalite and quartz progress depending on temperature and run durations. Initial crystallization product, cristobalite grains occur as characteristic lepispheres and granules with various surface structures. At the very initial stage of cristobalite crystallization within 2 days run duration, cristobalite shows lepispheres a few micron meters in diameter with irregular, submicron scale ridges and grooves on the surface. With the run duration up to 7 days, lepispheres change to granules with smooth surface remaining a few micron meters in diameter. Crystallinity of cristobalite lepispheres and granules corresponds to opal-CT. Euhedral quartz crystals grow with dissolution of cristobalite grains. Growth rate of cristobalite and quartz is controlled by crystallization kinetics with induction period strongly depending on temperature. Induction period of cristobalite crystallization from amorphous silica may exceed several million years at temperature below 100 °C. Crystallinity, morphology and growth rate of silica minerals occurred in various terrestrial and planetary processes are controlled by temperature and acidity of hydrothermal fluid and nucleation and growth kinetics of silica minerals.
Origin of high Coulombic loss during sodiation in Na-Sn battery
NASA Astrophysics Data System (ADS)
Byeon, Young-Woon; Choi, Yong-Seok; Ahn, Jae-Pyoung; Lee, Jae-Chul
2017-03-01
Electrochemical sodiation is performed in crystalline Sn foil using in situ scanning electron microscopy (SEM) to simultaneously measure the changes in the electrical resistivity and volume of the Sn anode in a Na-Sn battery. We observe that sodiation causes an increase in the Sn anode resistivity by six orders of magnitude. Ab initio molecular dynamics simulations of the Na-Sn alloy system demonstrate that the increased resistivity of the anode is caused by the formation of an electrically resistive amorphous NaSn phase (a-NaSn) with a pseudogap. It is also observed that the formation of a-NaSn is always accompanied by a large volume expansion of ∼200%, causing the development of residual tensile stress. The residual stress in turn alters the electronic structure of the a-NaSn phase, further increasing the resistivity of a-NaSn and thus decreasing the energy efficiency of the Na-Sn battery.
Wikström, Evalena; Ryan, Shawn; Touati, Abderrahmane; Telfer, Marnie; Tabor, Dennis; Gullett, Brian K
2003-03-15
The role of chlorine speciation on de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs) has been studied thoroughly in an entrained flow reactor during simulated waste combustion. The effects of gas-phase chlorine species such as chlorine (Cl2), hydrogen chloride (HCl), and chlorine radicals (Cl*), as well as ash-bound chlorine, on PCDD/F de novo formation were isolated for investigation. The ash-bound chlorine alone was observed to be a sufficient chlorine source for PCDD/F formation. The addition of HCl to the system did not influence the yields of the PCDDs/Fs nor the degree of chlorination due to its poor chlorinating ability. Addition of 200 ppm of Cl2 to the ash-feed system resulted in increased PCDD/F yields, especially for the octa- and hepta-chlorinated congeners. Altering the reaction temperature to enable the presence of only Cl2 to the system did not change the yields of PCDD/F compared to those when both Cl2/Cl* were present. However, comparison between ash-bound and gas-phase chlorine, the latter at a concentration typical of a realistic combustion process, revealed ash-bound chlorine to be the more important chlorine source for de novo formation of PCDD/F in a full-scale incinerator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gould, Benjamin; Greco, Aaron; Stadler, Kenred
Crack surrounded by areas of microstructural alteration deemed "White etching cracks" (WECs) lead to premature failures within a multitude applications. While the exact cause of these failures remains unknown, a large number of hypotheses exist as to how and why these cracks form. The aim of the current work is to study newly initiated WEC networks using X-ray tomography followed by selective sectioning, in an attempt to elucidate the formation mechanisms of these cracks. The results obtained show that, for the presented bearing, WECs form preferentially around multi-phase inclusions containing aluminum, manganese, and sulfur. Additionally the results support the ideamore » that the microstructural alterations form secondary to any cracking, suggesting that the alterations are simply a symptom of a preexisting failure.« less
Liu, Shuangge; Hua, Teng; Xin, Xiaoyan; Shi, Rui; Chi, Shuqi; Wang, Hongbo
2017-04-01
To invistigate estrogen receptor (ER), progesterone receptor (PR), integrin β3, and pinopode expression in luteal phase deficiency (LPD) women. There were 52 nulligravidas consecutive infertile patients undergoing a routine assistant reproduction consultation included in this study. An endometrial biopsy sample was randomly obtained between days 4 and 10 of the luteal phase. Endometrial morphology was examined with scanning electron microscopy. Expressions of ER, PR, integrin β3 were determined in the endometrium of LPD patients with immunohistochemistry. The incidence of LPD was 15.3% (8/52) in this study. On day luteinizing hormone (LH) surge + 9∼LH + 10, noted regressing pinopodes resembling a day LH + 7∼LH + 8 in the endometrium of the control group. The expressions of ER and PR in glandular epithelium were significantly increased in endometrium of LPD than that in the control group (p < 0.05). In contrast, there was a statistically significant decrease expression of the integrin β3 in women from the group of LPD (p < 0.05). The altered expression of ER and PR may be associated with the expression variation of integrin and pinopode formation in endometrium of LPD women. This alteration may imply the association of low rates of cycle fecundity and high rates of embryonic loss in LPD women.
Loiselle, Alayna E.; Lloyd, Shane A. J.; Paul, Emmanuel M.; Lewis, Gregory S.; Donahue, Henry J.
2013-01-01
Connexin 43 (Cx43) is the most abundant gap junction protein in bone and is required for osteoblastic differentiation and bone homeostasis. During fracture healing, Cx43 is abundantly expressed in osteoblasts and osteocytes, while Cx43 deficiency impairs bone formation and healing. In the present study we selectively deleted Cx43 in the osteoblastic lineage from immature osteoblasts through osteocytes and tested the hypothesis that Cx43 deficiency results in delayed osteoblastic differentiation and impaired restoration of biomechanical properties due to attenuated β-catenin expression relative to wild type littermates. Here we show that Cx43 deficiency results in alterations in the mineralization and remodeling phases of healing. In Cx43 deficient fractures the mineralization phase is marked by delayed expression of osteogenic genes. Additionally, the decrease in the RankL/ Opg ratio, osteoclast number and osteoclast size suggest decreased osteoclast bone resorption and remodeling. These changes in healing result in functional deficits as shown by a decrease in ultimate torque at failure. Consistent with these impairments in healing, β-catenin expression is attenuated in Cx43 deficient fractures at 14 and 21 days, while Sclerostin (Sost) expression, a negative regulator of bone formation is increased in Cx43cKO fractures at 21 days, as is GSK-3β, a key component of the β-catenin proteasomal degradation complex. Furthermore, we show that alterations in healing in Cx43 deficient fractures can be rescued by inhibiting GSK-3β activity using Lithium Chloride (LiCl). Treatment of Cx43 deficient mice with LiCl restores both normal bone formation and mechanical properties relative to LiCl treated WT fractures. This study suggests that Cx43 is a potential therapeutic target to enhance fracture healing and identifies a previously unknown role for Cx43 in regulating β-catenin expression and thus bone formation during fracture repair. PMID:24260576
Low-energy positron scattering upon endohedrals
NASA Astrophysics Data System (ADS)
Amusia, M. Ya.; Chernysheva, L. V.
2017-07-01
We investigate positron scattering upon endohedrals and compare it with electron-endohedral scattering. We show that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects both the positron and electron elastic scattering phases as well as corresponding cross sections. Of great importance is also the interaction between the incoming positron and the target electrons that leads to formation of the virtual positronium P˜s. We illustrate the general trend by concrete examples of positron and electron scattering upon endohedrals He@C60 and Ar@C60, and compare it to scattering upon fullerene C60. To obtain the presented results, we have employed new simplified approaches that permit to incorporate the effect of fullerenes polarizability into the He@C60 and Ar@C60 polarization potential and to take into account the virtual positronium formation. Using these approaches, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross sections due to effect of endohedral polarization and P˜s formation.
Fundamental Mvssbauer Parameters of Hydrous Iron Sulfates
NASA Technical Reports Server (NTRS)
Rothstein, Y.; Dyar, M. D.; Schaefer, M. W.; Lane, M. D.; Bishop, J. L.
2005-01-01
Hydrous iron sulfates, which form as alteration products of sulfides, are rare on Earth. On Mars, the low temperature and pH found in the martian permafrost create ideal conditions for the formation of this group of minerals [1], which includes such phases as coquimbite (Fe2(SO4) 9H2O) and amarantite (FeSO4(OH) 3H2O). Viking, Mars Pathfinder, MER and OMEGA data [e.g., [2
NASA Astrophysics Data System (ADS)
Greenberger, Rebecca N.; Mustard, John F.; Cloutis, Edward A.; Mann, Paul; Wilson, Janette H.; Flemming, Roberta L.; Robertson, Kevin M.; Salvatore, Mark R.; Edwards, Christopher S.
2015-12-01
We investigate an outcrop of ∼187 Ma lacustrine pillow basalts of the Talcott Formation exposed in Meriden, Connecticut, USA, focusing on coordinated analyses of one pillow lava to characterize the aqueous history of these basalts in the Hartford Basin. This work uses a suite of multidisciplinary measurements, including hyperspectral imaging, other spectroscopic techniques, and chemical and mineralogical analyses, from the microscopic scale up to the scale of an outcrop. The phases identified in the sample are albite, large iron oxides, and titanite throughout; calcite in vesicles; calcic clinopyroxene, aegirine, and Fe/Mg-bearing clay in the rind; and fine-grained hematite and pyroxenes in the interior. Using imaging spectroscopy, the chemistry and mineralogy results extend to the hand sample and larger outcrop. From all of the analyses, we suggest that the pillow basalts were altered initially after emplacement, either by heated lake water or magmatic fluids, at temperatures of at least 400-600 °C, and the calcic clinopyroxenes and aegirine identified in the rind are a preserved record of that alteration. As the hydrothermal system cooled to slightly lower temperatures, clays formed in the rind, and, during this alteration, the sample oxidized to form hematite in the matrix of the interior and Fe3+ in the pyroxenes in the rind. During the waning stages of the hydrothermal system, calcite precipitated in vesicles within the rind. Later, diagenetic processes albitized the sample, with albite replacing plagioclase, lining vesicles, and accreting onto the exterior of the sample. This albitization or Na-metasomatism occurred when the lake within the Hartford Basin evaporated during a drier past climatic era, resulting in Na-rich brines. As Ca-rich plagioclase altered to albite, Ca was released into solution, eventually precipitating as calcite in previously-unfilled vesicles, dominantly in the interior of the pillow. Coordinated analyses of this sample permit identification of the alteration phases and help synthesize the aqueous history of pillow lavas of the Talcott Formation. These results are also relevant to Mars, where volcanically-resurfaced open basin lakes have been found, and this Hartford Basin outcrop may be a valuable analog for any potential volcano-lacustrine interactions. The results can also help to inform the utility and optimization of potentially complementary, synergistic, and uniquely-suited techniques for characterization of hydrothermally-altered terrains.
Major and trace element chemistry of separated fragments from a hibonite-bearing Allende inclusion
NASA Technical Reports Server (NTRS)
Davis, A. M.; Grossman, L.; Allen, J. M.
1978-01-01
The major and trace elements of separated fragments and a bulk sample from CG-11, a hibonite-bearing inclusion in the Allende meteorite, were analyzed. Major element abundances were used to determine the minerology of separated fragments. The high degree of correlation between Eu/Sm ratios and Lu/Yb ratios for the samples studied indicates that their rare earth element (REE) distributions are governed by two components. One, Lu-, Eu-rich, is probably hibonite; the other, depleted in these elements, seems to be associated with the secondary alteration phases, grossular, nepheline and anorthite. The REE distribution in CG-11 precludes melting events after formation of the secondary alteration phases, but a melting event involving the primary minerals cannot be excluded. The enrichment of Lu with respect to other measured REE in hibonite can be explained by present REE condensation models. Two Hf-bearing components, most likely hibonite and perovskite, are necessary to account for variations in Sc/Hf ratios in the fragments studied. The lithophile volatiles Na, Mn, Fe, Zn, and probably Cr increase in the same order as the amount of secondary alteration minerals; the volatile siderophile elements Co and Au, however, do not.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hun Bok; Um, Wooyong
2013-08-16
Hydrated Portland cement was reacted with carbon dioxide (CO2) in supercritical, gaseous, and aqueous phases to understand the potential cement alteration processes along the length of a wellbore, extending from deep CO2 storage reservoir to the shallow subsurface during geologic carbon sequestration. The 3-D X-ray microtomography (XMT) images displayed that the cement alteration was significantly more extensive by CO2-saturated synthetic groundwater than dry or wet supercritical CO2 at high P (10 MPa)-T (50°C) conditions. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis also exhibited a systematic Ca depletion and C enrichment in cement matrix exposed to CO2-saturated groundwater. Integratedmore » XMT, XRD, and SEM-EDS analyses identified the formation of extensive carbonated zone filled with CaCO3(s), as well as the porous degradation front and the outermost silica-rich zone in cement after exposure to CO2-saturated groundwater. The cement alteration by CO2-saturated groundwater for 2-8 months overall decreased the porosity from 31% to 22% and the permeability by an order of magnitude. Cement alteration by dry or wet supercritical CO2 was slow and minor compared to CO2-saturated groundwater. A thin single carbonation zone was formed in cement after exposure to wet supercritical CO2 for 8 months or dry supercritical CO2 for 15 months. Extensive calcite coating was formed on the outside surface of a cement sample after exposure to wet gaseous CO2 for 1-3 months. The chemical-physical characterization of hydrated Portland cement after exposure to various phases of carbon dioxide indicates that the extent of cement carbonation can be significantly heterogeneous depending on CO2 phase present in the wellbore environment. Both experimental and geochemical modeling results suggest that wellbore cement exposure to supercritical, gaseous, and aqueous phases of CO2 during geologic carbon sequestration is unlikely to damage the wellbore integrity because cement alteration by all phases of CO2 is dominated by carbonation reaction. This is consistent with previous field studies of wellbore cement with extensive carbonation after exposure to CO2 for 3 decades. However, XMT imaging indicates that preferential cement alteration by supercritical CO2 or CO2-saturated groundwater can occur along the cement-steel or cement-rock interfaces. This highlights the importance of further investigation of cement degradation along the interfaces of wellbore materials to ensure permanent geologic carbon storage.« less
Grazziotin-Soares, Renata; Nekoofar, Mohammad H; Davies, Thomas; Hübler, Roberto; Meraji, Naghmeh; Dummer, Paul M H
2017-08-30
Chemical comparisons of powder and hydrated forms of calcium silicate cements (CSCs) and calculation of alterations in tricalcium silicate (Ca 3 SiO 5 ) calcium hydroxide (Ca(OH) 2 ) are essential for understanding their hydration processes. This study aimed to evaluate and compare these changes in ProRoot MTA, Biodentine and CEM cement. Powder and hydrated forms of tooth coloured ProRoot MTA, Biodentine and CEM cement were subjected to X-ray diffraction (XRD) analysis with Rietveld refinement to semi-quantitatively identify and quantify the main phases involved in their hydration process. Data were reported descriptively. Reduction in Ca 3 SiO 5 and formation of Ca(OH) 2 were seen after the hydration of ProRoot MTA and Biodentine; however, in the case of CEM cement, no reduction of Ca 3 SiO 5 and no formation of Ca(OH) 2 were detected. The highest percentages of amorphous phases were seen in Biodentine samples. Ettringite was detected in the hydrated forms of ProRoot MTA and CEM cement but not in Biodentine. © 2017 Australian Society of Endodontology Inc.
Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors
Lin, Ye; Fang, Shumin; Su, Dong; ...
2015-04-10
Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce 0.8Gd 0.2O 2₋δ–CoFe 2O 4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopantmore » and depletion of oxygen vacancies at the Ce 0.8Gd 0.2O 2₋δ–Ce 0.8Gd 0.2O 2₋δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. Lastly, this work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution.« less
NASA Astrophysics Data System (ADS)
Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.
2018-04-01
Using first principle calculations, we study the atomic arrangement and bonding mechanism in the crystalline phase of Ge2Sb2Te5 (GST). It is found that the stability of GST depends on the gradual ordering of Ge/Sb atoms. The configurations with different concentration of Ge/Sb in layers have been analyzed by the partial density of state, electron localization function and Bader charge distribution. The s and p-states of Ge atom alter with different stacking configurations but there is no change in Sb and Te atom states. Our findings show that the bonding between Ge-Te is not only responsible for the stability of GST alloy but can also predict which composition can show generic features of phase change material. As the number of Ge atoms near to vacancy layer decreases, Ge donates more charge. A growth model has been proposed for the formation of crystalline phase which justifies the structure models proposed in the literature.
Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors
Lin, Ye; Fang, Shumin; Su, Dong; Brinkman, Kyle S; Chen, Fanglin
2015-01-01
Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2−δ–CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacancies at the Ce0.8Gd0.2O2−δ–Ce0.8Gd0.2O2−δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. This work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution. PMID:25857355
Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors.
Lin, Ye; Fang, Shumin; Su, Dong; Brinkman, Kyle S; Chen, Fanglin
2015-04-10
Mixed ionic-electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2-δ-CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacancies at the Ce0.8Gd0.2O2-δ-Ce0.8Gd0.2O2-δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. This work illustrates the control of mesoscale level transport properties in mixed ionic-electronic conductor composites through processing induced modifications of the grain boundary defect distribution.
Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ye; Fang, Shumin; Su, Dong
Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce 0.8Gd 0.2O 2₋δ–CoFe 2O 4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopantmore » and depletion of oxygen vacancies at the Ce 0.8Gd 0.2O 2₋δ–Ce 0.8Gd 0.2O 2₋δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. Lastly, this work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution.« less
Diagenesis and clay mineral formation at Gale Crater, Mars
Bridges, J C; Schwenzer, S P; Leveille, R; Westall, F; Wiens, R C; Mangold, N; Bristow, T; Edwards, P; Berger, G
2015-01-01
The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ∽7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component. PMID:26213668
Diagenesis and clay mineral formation at Gale Crater, Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, J. C.; Schwenzer, S. P.; Leveille, R.
The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO₂-poor and oxidizing, dilute aqueous solution (Gale Portage Water)more » in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ~7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.« less
Diagenesis and clay mineral formation at Gale Crater, Mars
Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; ...
2015-01-18
The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO₂-poor and oxidizing, dilute aqueous solution (Gale Portage Water)more » in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ~7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.« less
NASA Astrophysics Data System (ADS)
Hill, Kristina M.
Modified imbibition tests were performed on 69 subsurface samples from Monterey Formation reservoirs in the San Joaquin Valley to measure wettability variation as a result of composition and silica phase change. Contact angle tests were also performed on 6 chert samples from outcrop and 3 nearly pure mineral samples. Understanding wettability is important because it is a key factor in reservoir fluid distribution and movement, and its significance rises as porosity and permeability decrease and fluid interactions with reservoir grain surface area increase. Although the low permeability siliceous reservoirs of the Monterey Formation are economically important and prolific, a greater understanding of factors that alter their wettability will help better develop them. Imbibition results revealed a strong trend of decreased wettability to oil with increased detrital content in opal-CT phase samples. Opal-A phase samples exhibited less wettability to oil than both opal-CT and quartz phase samples of similar detrital content. Subsurface reservoir samples from 3 oil fields were crushed to eliminate the effect of capillary pressure and cleansed of hydrocarbons to eliminate wettability alterations by asphaltene, then pressed into discs of controlled density. Powder discs were tested for wettability by dispensing a controlled volume of water and motor oil onto the surface and measuring the time required for each fluid to imbibe into the sample. The syringe and software of a CAM101 tensiometer were used to control the amount of fluid dispensed onto each sample, and imbibition completion times were determined by high-speed photography for water drops; oil drop imbibition was significantly slower and imbibition was timed and determined visually. Contact angle of water and oil drops on polished chert and mineral sample surfaces was determined by image analysis and the Young-Laplace equation. Oil imbibition was significantly slower with increased detrital composition and faster with increased silica content in opal-CT and quartz phase samples, implying decreased wettability to oil with increased detrital (clay) content. However, contact angle tests showed that opal-CT is more wetting to oil with increased detritus and results for oil on quartz-phase samples were inconsistent between different proxies for detritus over their very small compositional range. Water contact angle trends also showed inconsistent wetting trends compared to imbibition tests. We believe this is because the small range in bulk detrital composition between the "pure" samples used in contact angle tests was close to analytical error and because small-scale spatial compositional variability may be significant enough to effect wettability. These experiments show that compositional variables significantly affect wettability, outweighing the effect of silica phase.
NASA Technical Reports Server (NTRS)
Greenwood, R. C.; Morse, A.; Long, J. V. P.
1993-01-01
Thermodynamic calculations predict that Ca-dialuminate (CaAl4O7) condenses from a cooling gas of solar composition after hibonite and before melilite. Although Ca-dialuminate has now been recorded from Ca Al-rich inclusions (CAI's) in at least 9 meteorites, compared to hibonite it is a relatively rare phase. As pointed out by Michel-Levy et al., the absence of Ca-dialuminate from most hibonite-bearing inclusions poses a serious problem for the condensation model of CAI formation. Here we describe an inclusion which contains abundant CA-dialuminate partially altered to a hercynite-rich (FeAl2O4) assemblage. The evidence from VICTA indicates that compared to all other phases in type A inclusions, Ca-dialuminate is the most susceptible to secondary alteration; a feature which may explain its restricted occurrence. Unaltered Ca-dialuminate and melilite in VICTA display excess Mg-26 indicative of in situ decay of Al-26.
Lithologic Control on Secondary Clay Mineral Formation in the Valles Caldera, New Mexico
NASA Astrophysics Data System (ADS)
Caylor, E.; Rasmussen, C.; Dhakal, P.
2015-12-01
Understanding the transformation of rock to soil is central to landscape evolution and ecosystem function. The objective of this study was to examine controls on secondary mineral formation in a forested catchment in the Catalina-Jemez CZO. We hypothesized landscape position controls the type of secondary minerals formed in that well-drained hillslopes favor Si-poor secondary phases such as kaolinite, whereas poorly drained portions of the landscape that collect solutes from surrounding areas favor formation of Si-rich secondary phases such as smectite. The study focused on a catchment in Valles Caldera in northern New Mexico where soils are derived from a mix of rhyolitic volcanic material, vegetation includes a mixed conifer forest, and climate is characterized by a mean annual precipitation of ~800 mm yr-1 and mean annual temperature of 4.5°C. Soils were collected at the soil-saprolite boundary from three landscape positions, classified as well drained hillslope, poorly drained convergent area, and poorly drained hill slope. Clay fractions were isolated and analyzed using a combination of quantitative and qualitative x-ray diffraction (XRD) analyses and thermal analysis. Quantitative XRD of random powder mounts indicated the presence of both primary phases such as quartz, and alkali and plagioclase feldspars, and secondary phases that include illite, Fe-oxyhydroxides including both goethite and hematite, kaolinite, and smectite. The clay fractions were dominated by smectite ranging from 36-42%, illite ranging from 21-35%, and kaolinite ranging from 1-8%. Qualitative XRD of oriented mounts confirmed the presence of smectite in all samples, with varying degrees of interlayering and interstratification. In contrast to our hypothesis, results indicated that secondary mineral assemblage was not strongly controlled by landscape position, but rather varied with underlying variation in lithology. The catchment is underlain by a combination of porphorytic rhyolite and hydrothermally altered rhyolitic tuff, with an intrusion of Paleozoic sandstone. Smectite content was generally greater in areas underlain by the tuff and likely represent a combination of both diagenic smectite formed by hydrothermal alteration of volcanic glass and authigenic smectites formed in the soils via chemical weathering.
NASA Astrophysics Data System (ADS)
McCollom, T. M.; Hynek, B. M.
2012-12-01
The Mars Exploration Rover (MER) Opportunity has extensively characterized sulfate-rich, hematite-bearing bedrock exposed at Meridiani Planum, Mars. Based on various measurements, the mineral composition of the bedrocks has been interpreted to include: amorphous silica/glass/phyllosilicates, Mg-, Ca-, and Fe-bearing sulfates including jarosite, minor amounts of igneous phases including plagioclase, pyroxene, olivine, and magnetite, and hematite [1,2]. Chemically, the bedrocks closely resemble the composition of pristine martian basalt with addition of S and O, and minor variations of Mg and Cl with depth [3,4]. Based on these and other observations, the MER team has proposed that the bedrocks represent chemically altered siliciclastic sediments combined with sulfate salts formed by evaporation of sulfate-bearing fluids, modified by transport and multiple stages of infiltrating groundwater [3,5]. Several alternative scenarios have been proposed for the origin of the rocks including large impacts [6], evaporating glacial deposits [7], acid-fog alteration [8], and hydrothermal acid-sulfate alteration of basalt [4]. In order to further evaluate the potential contribution of hydrothermal proceeses to the deposits, we performed numerical geochemical models of acid-sulfate alteration of martian basalt based on constraints provided by recent laboratory experiments. Experimental studies of alteration of basalt conducted in our lab [9] indicate that the initial stages of acid-sulfate alteration of pyroclastic basalt are characterized by rapid decomposition of igneous crystalline phases including plagioclase, pyroxene, and olivine, while the glass (and igneous phases protected within the glass) remain unreactive. Elements released by dissolving minerals are precipitated primarily as amorphous silica and Ca-, Al-, Fe- and Mg-bearing sulfates, while precipitation of phyllosilicates and Fe-oxides/oxyhydroxides (FeOx) is kinetically inhibited. Based on these constraints, models of acid-sulfate alteration of martian pyroclastic basalt predict that the early stages of alteration will produce amorphous silica, anhydrite (or gypsum at lower temperature), Fe-bearing natroalunite, and kieserite as predominant secondary phases, along with relict glass and silicates protected within the glass. Hematite may form with continued heating through partial decomposition of Fe-bearing natroalunite [9], and some of the glass phase may partially devitrify to form minor phyllosilicates such as nontronite and nanophase Fe oxides. The resulting rock would have a chemical and mineralogical composition closely resembling that observed at Meridiani Planum. We conclude that hydrothermal acid-sulfate alteration of pyroclastic basalt provides the most parsimonious explanation for the composition of the sulfate deposits. References: [1] Glotch et al., JGR (2006). [2] Klingelhöfer et al. Science (2004). [3] McLennan et al., EPSL (2005). [4] McCollom & Hynek, Nature (2005). [5] Squyres et al. Science (2006). [6] Knauth et al. Nature (2005). [7] Niles & Michalski, Nat. Geosci. (2009). [8] Berger et al. Am. Mineral. (2009). [9] McCollom et al. JGR-Planets (submitted ms.)
NASA Astrophysics Data System (ADS)
Filimonova, L. G.; Trubkin, N. V.; Chugaev, A. V.
2014-05-01
The paper considers the localization of potassic and propylitic hydrothermal alteration zones in the domal volcanic-plutonic structure controlling the position of the Dukat ore field with the eponymous unique epithermal Au-Ag deposit. Comprehensive mineralogical and geochemical data on rocks and minerals in hydrothermal alteration zones and associated intrusions have shown that quartz-jarosite-sericite, quartz-pyrite-sericite, and quartz-adularia-chlorite alterations were formed with the participation of fluid flows related to a fingerlike projection of a high-K leucogranite porphyry intrusion with large phenocrysts. These hydrothermal alterations developed in the rifted graben under conditions of divergent plate boundaries, whereas quartz-clinozoisite-calcite, epidote-chlorite, and garnet-calcite-chlorite alterations were linked to K-Na leucogranite intrusive bodies and developed under conditions of convergent plate boundaries reactivated as a result of formation of the marginal Okhotsk-Chukotka volcanic belt. Phase separation and coagulation of specific portions of ascending fluids resulted in the formation and stabilization of small-sized particles of native silver and other ore components, which enabled involvement in flows of secondary geothermal solutions and ore-forming fluids. The Sr, Nd, and Pb isotopic compositions of rocks and minerals from the hydrothermal alteration zones, associated intrusions, and economic orebodies at the Dukat deposit indicate that their components have been derived from the juvenile continental crust, which was altered in pre-Cretaceous periods of endogenic activity. The components of gangue minerals of potassic and propylitic hydrothertmal alterations and associated intrusions have been taken from deep sources differing in 87Sr/86Sr and 143Nd/144Nd at similar U/Pb and Th/Pb ratios. Chalcophile lead in products of hydrothermal activity and melanocratic inclusions in leucogranite has been taken from regions with elevated U/Pb and Th/Pb ratios.
Ghaeli, Ima; de Moraes, Mariana A; Beppu, Marisa M; Lewandowska, Katarzyna; Sionkowska, Alina; Ferreira-da-Silva, Frederico; Ferraz, Maria P; Monteiro, Fernando J
2017-08-18
Miscibility is an important issue in biopolymer blends for analysis of the behavior of polymer pairs through the detection of phase separation and improvement of the mechanical and physical properties of the blend. This study presents the formulation of a stable and one-phase mixture of collagen and regenerated silk fibroin (RSF), with the highest miscibility ratio between these two macromolecules, through inducing electrostatic interactions, using salt ions. For this aim, a ternary phase diagram was experimentally built for the mixtures, based on observations of phase behavior of blend solutions with various ratios. The miscibility behavior of the blend solutions in the miscible zones of the phase diagram was confirmed quantitatively by viscosimetric measurements. Assessing the effects of biopolymer mixing ratio and salt ions, before and after dialysis of blend solutions, revealed the importance of ion-specific interactions in the formation of coacervate-based materials containing collagen and RSF blends that can be used in pharmaceutical, drug delivery, and biomedical applications. Moreover, the conformational change of silk fibroin from random coil to beta sheet, in solution and in the final solid films, was detected by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), respectively. Scanning electron microscopy (SEM) exhibited alterations of surface morphology for the biocomposite films with different ratios. Surface contact angle measurement illustrated different hydrophobic properties for the blended film surfaces. Differential scanning calorimetry (DSC) showed that the formation of the beta sheet structure of silk fibroin enhances the thermal stability of the final blend films. Therefore, the novel method presented in this study resulted in the formation of biocomposite films whose physico-chemical properties can be tuned by silk fibroin conformational changes by applying different component mixing ratios.
NASA Astrophysics Data System (ADS)
Greenberger, Rebecca N.; Mustard, John F.; Osinski, Gordon R.; Tornabene, Livio L.; Pontefract, Alexandra J.; Marion, Cassandra L.; Flemming, Roberta L.; Wilson, Janette H.; Cloutis, Edward A.
2016-12-01
Meteorite impacts on Earth and Mars can generate hydrothermal systems that alter the primary mineralogies of rocks and provide suitable environments for microbial colonization. We investigate a calcite-marcasite-bearing vug at the 23 km diameter Haughton impact structure, Devon Island, Nunavut, Canada, using imaging spectroscopy of the outcrop in the field (0.65-1.1 μm) and samples in the laboratory (0.4-2.5 μm), point spectroscopy (0.35-2.5 μm), major element chemistry, and X-ray diffraction analyses. The mineral assemblages mapped at the outcrop include marcasite; marcasite with minor gypsum and jarosite; fibroferrite and copiapite with minor gypsum and melanterite; gypsum, Fe3+ oxides, and jarosite; and calcite, gypsum, clay, microcline, and quartz. Hyperspectral mapping of alteration phases shows spatial patterns that illuminate changes in alteration conditions and formation of specific mineral phases. Marcasite formed from the postimpact hydrothermal system under reducing conditions, while subsequent weathering oxidized the marcasite at low temperatures and water/rock ratios. The acidic fluids resulting from the oxidation collected on flat-lying portions of the outcrop, precipitating fibroferrite + copiapite. That assemblage then likely dissolved, and the changing chemistry and pH resulting from interaction with the calcite-rich host rock formed gypsum-bearing red coatings. These results have implications for understanding water-rock interactions and habitabilities at this site and on Mars.
Hydrothermal Signatures at Gale Crater, Mars, and Possible In-Situ Formation of Tridymite
NASA Astrophysics Data System (ADS)
Yen, A. S.; Morris, R. V.; Gellert, R.; Berger, J. A.; Sutter, B.; Downs, R. T.; Bristow, T.; Treiman, A. H.; Ming, D. W.; Achilles, C.; Blake, D. F.; Chipera, S.; Clark, B. C.; Craig, P.; Morrison, S. M.; Rampe, E. B.; Schmidt, M. E.; Schwenzer, S. P.; Thompson, L. M.; Vaniman, D.
2017-12-01
The occurrence of tridymite, a high temperature SiO2 polymorph definitively identified by the Curiosity rover in the Buckskin mudstone sample at Gale crater, Mars, has been attributed to detrital accumulation of rhyolitic material. This interpretation of a detrital origin is revisited in light of the observation that the tridymite-hosting sediments appear to have interacted with the same fluids that produced alteration halos in the overlying sandstone. The alteration halos in the Stimson sandstone are light-toned, elevated silica zones within 50 cm of a central fracture. They have likely experienced chemical leaching under acidic conditions resulting in depletion of metals (including Al), retention of Ti, formation of amorphous iron sulfates, 50% reduction of the pyroxene:plagioclase ratio, a factor of two increase in the Fe/Mn ratio, and passive enrichment of Si. This alteration is not constrained (nor precluded) to have occurred at elevated temperatures, but there are abundant indicators of hydrothermal activity within Gale crater. High concentrations of Ge, Zn, Ni, Pb, Cu, Se and Ga in a variety of samples analyzed by the Alpha Particle X-ray Spectrometer are indicative of mobility in hydrothermal solutions. Mineralogy of Gale crater samples determined by the CheMin X-ray diffraction instrument includes phases which may be associated with hydrothermal activity (smectites, anhydrite, hematite), but definitive detections of mineral assemblages that are necessarily hydrothermal in origin remain absent. The nearly identical patterns of enriched and depleted elements of the Stimson alteration halos (relative to parent rocks) and the tridymite-bearing unit (relative to typical mudstone samples) require the consideration of co-genetic origins. Cristobalite, a SiO2 polymorph stable above 1470°C found in the Buckskin sample, is known to form in hydrothermal solutions at temperatures well below its stability field (Henderson et al., 1971). Formation of well-crystalline tridymite at temperatures below its thermodynamic stability range (870-1470°C) has not been established, but cannot be excluded. Thus, the possibility that the fluids responsible for the passive enrichment of silica in the Stimson alteration halos also resulted in the in-situ formation of tridymite deserves further consideration.
A 2.5D Reactive Transport Model for Fracture Alteration Simulation
Deng, Hang; Molins, Sergi; Steefel, Carl; ...
2016-06-30
Understanding fracture alteration resulting from geochemical reactions is critical in predicting fluid migration in the subsurface and is relevant to multiple environmental challenges. Here in this paper, we present a novel 2.5D continuum reactive transport model that captures and predicts the spatial pattern of fracture aperture change and the development of an altered layer in the near-fracture region. The model considers permeability heterogeneity in the fracture plane and updates fracture apertures and flow fields based on local reactions. It tracks the reaction front of each mineral phase and calculates the thickness of the altered layer. Given this treatment, the modelmore » is able to account for the diffusion limitation on reaction rates associated with the altered layer. The model results are in good agreement with an experimental study in which a CO 2-acidified brine was injected into a fracture in the Duperow Dolomite, causing dissolution of calcite and dolomite that result in the formation of a preferential flow channel and an altered layer. Finally, with an effective diffusion coefficient consistent with the experimentally observed porosity of the altered layer, the model captures the progressive decrease in the dissolution rate of the fast-reacting mineral in the altered layer.« less
Isotope and fluid inclusion studies of geological and hydrothermal processes, northern Peru
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacFarlane, A.W.; Prol-Ledesma, R.M.; Conrad, M.E.
1994-07-01
Mineralization in the Hualgayoc district of northern Peru occurs in altered Miocene felsic intrusions and in mid-Cretaceous platform sedimentary rocks of the Goyllarisquizga, Inca, and Chulec formations. The ores occur both as stratiform and stratabound pyritiferous base-metal deposits (mantos), and as steeply dipping, sedimentary and intrusive rock-hosted base-metal veins. Igneous rocks in the district are affected by propylytic, sericitic-argillic, sericitic, potassic, and acid-sulfate alteration. K-Ar and Rb-Sr dating and geological evidence indicate multiple stages of intrusive activity and hydrothermal alteration, including close spatial emplacement of two or more separate Miocene magmatic-hydrothermal systems. K-Ar dates on sericite, hydrothermal biotite, and alunitemore » indicate that the most important hydrothermal episodes in the district took place {approx}13.24 and 12.4 Ma. Other K-Ar dates on altered rocks in the district may reflect various amounts of resetting by the emplacement of the 9.05 {+-} 0.2 Ma Hualgayoc rhyodacite. A five-point Rb-Sr isochron for the San Miguel intrusion at Cerro Coymolache yields an age of 45 {+-} 3.4 Ma, which indicates much earlier magmatic activity in this area than recognized previously. Fluid inclusion and paragenetic studies reveal a clear temporal evolution of fluid temperature and chemistry in the San Agustin area at Hualgayoc. Gradually, ore formation shifted to precipitation of vein minerals in the brittle fractures as the mantos became less permeable and were sealed off. Vein formation continued from progressively cooler and more diluted fluids (down to {approx}150{degrees}C and 4.3 wt% NaCl equivalent) as the system waned. No evidence for phase separation is observed in the fluids until the very last paragenetic stage, which contributed no economic mineralization. 53 refs., 15 figs., 7 tabs.« less
NASA Astrophysics Data System (ADS)
Matsuo, Eriko Sato; Tanaka, Toyoichi
1992-08-01
POLYMER gels can undergo a volume phase transition (either continuous or discontinuous) when an external condition, such as temperature or solvent composition, is altered1-3. During this transition, the volume may change by a factor of several thousand, and various patterns develop in the gel. The patterns arising from swelling and shrinking differ in both their appearance and their physical mechanisms. The mechanism for the formation and evolution of patterns on swelling gels has been established as being due to a single kind of mechanical instability4-7 in contrast, the shrinking patterns seem to be sensitive to both the initial and final states of the transition. Here we classify the various shrinking patterns in the form of a phase diagram, and explain the poly-morphism in terms of macroscopic phase separation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yong; Pan, Xuan; Bernussi, Ayrton A.
We demonstrate that catalyst-assisted hydrogen spillover doping of VO{sub 2} thin films significantly alters the metal-insulator transition characteristics and stabilizes the metallic rutile phase at room temperature. With hydrogen inserted into the VO{sub 2} lattice, high resolution X-ray diffraction reveals expansion of the V-V chain separation when compared to the VO{sub 2}(R) phase. The donated free electrons, possibly from O-H bond formation, stabilize the VO{sub 2}(R) to low temperatures. By controlling the amount of dopants to obtain mixed insulating and metallic phases, VO{sub 2} resistivity can be continuously tuned until a critical condition is achieved that suppresses Fabry-Perot resonances. Ourmore » results demonstrate that hydrogen spillover is an effective technique to tune the electrical and optical properties of VO{sub 2} thin films.« less
Features of surface phase formation during case-hardening of iron- and titanium-based alloys
NASA Astrophysics Data System (ADS)
Vintaikin, B. E.; Kamynin, A. V.; Kraposhin, V. S.; Smirnov, A. E.; Terezanova, K. V.; Cherenkova, S. A.; Sheykina, V. I.
2017-11-01
The article provides a detailed analysis of formation features for surface phases in technical iron and Cr20-Ni80 alloy samples that undergo case-hardening at a temperature of 850°C for 2, 4 and 6 hours of saturation in two different environments: acetylene, and molten salt consisting of sodium tetraborate and amorphous boron. We carried out an X-ray phase analysis to determine the phase structure of surface material layers that formed as a result of the case-hardening process. We discovered that after carburising it was possible to detect Fe3C and Fe-α phases on the surface of technical iron samples, and after boriding we found FeB, Fe2B and Fe3B phases; we noted a lack of characteristic Fe-α and Fe-γ peaks on the X-ray diffraction pattern. We detected many different phases in the Cr20-Ni80 alloy after the same type of case-hardening. Titanium oxides appeared after case-hardening of titanium in air at 800°C. We provide data on surface structure of samples subjected to vacuum carburising: over a 2 to 6 hour interval, the layer thickness is a parabolic function of time. When carrying out electrolysis-free liquid boriding, increasing exposure time from 2 to 6 hours alters the thickness of the strengthened layer only slightly, so, when carrying out case-hardening, it is less efficient to increase saturation time in molten salt containing sodium tetraborate and amorphous boron.
Acid Sulfate Weathering on Mars: Results from the Mars Exploration Rover Mission
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Morris, R. V.; Golden, D. C.
2006-01-01
Sulfur has played a major role in the formation and alteration of outcrops, rocks, and soils at the Mars Exploration Rover landing sites on Meridiani Planum and in Gusev crater. Jarosite, hematite, and evaporite sulfates (e.g., Mg and Ca sulfates) occur along with siliciclastic sediments in outcrops at Meridiani Planum. The occurrence of jarosite is a strong indicator for an acid sulfate weathering environment at Meridiani Planum. Some outcrops and rocks in the Columbia Hills in Gusev crater appear to be extensively altered as suggested by their relative softness as compared to crater floor basalts, high Fe(3+)/FeT, iron mineralogy dominated by nanophase Fe(3+) oxides, hematite and/or goethite, corundum-normative mineralogies, and the presence of Mg- and Casulfates. One scenario for aqueous alteration of these rocks and outcrops is that vapors and/or fluids rich in SO2 (volcanic source) and water interacted with rocks that were basaltic in bulk composition. Ferric-, Mg-, and Ca-sulfates, phosphates, and amorphous Si occur in several high albedo soils disturbed by the rover's wheels in the Columbia Hills. The mineralogy of these materials suggests the movement of liquid water within the host material and the subsequent evaporation of solutions rich in Fe, Mg, Ca, S, P, and Si. The presence of ferric sulfates suggests that these phases precipitated from highly oxidized, low-pH solutions. Several hypotheses that invoke acid sulfate weathering environments have been suggested for the aqueous formation of sulfate-bearing phases on the surface of Mars including (1) the oxidative weathering of ultramafic igneous rocks containing sulfides; (2) sulfuric acid weathering of basaltic materials by solutions enriched by volcanic gases (e.g., SO2); and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials.
Influence of charge and flexibility on smectic phase formation in filamentous virus suspensions
NASA Astrophysics Data System (ADS)
Purdy, Kirstin R.; Fraden, Seth
2007-07-01
We present experimental measurements of the cholesteric-smectic phase transition of suspensions of charged semiflexible rods as a function of rod flexibility and surface charge. The rod particles consist of the bacteriophage M13 and closely related mutants, which are structurally identical to M13, but vary either in contour length and therefore ratio of persistence length to contour length, or surface charge. Surface charge is altered in two ways; by changing solution pH and by comparing M13 with fd virus, a virus which differs from M13 only by the substitution of a single charged amino acid for a neutral one per viral coat protein. Phase diagrams are measured as a function of particle length, particle charge, and ionic strength. The experimental results are compared with existing theoretical predictions for the phase behavior of flexible rods and charged rods.
Thermal Infrared Emission Spectroscopy of Synthetic Allophane and its Potential Formation on Mars
NASA Technical Reports Server (NTRS)
Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Golden, D. C.; Ming, Douglas W.
2010-01-01
Allophane is a poorly-crystalline, hydrous aluminosilicate with variable Si/Al ratios approx.0.5-1 and a metastable precursor of clay minerals. On Earth, it forms rapidly by aqueous alteration of volcanic glass under neutral to slightly acidic conditions [1]. Based on in situ chemical measurements and the identification of alteration phases [2-4], the Martian surface is interpreted to have been chemically weathered on local to regional scales. Chemical models of altered surfaces detected by the Mars Exploration Rover Spirit in Gusev crater suggest the presence of an allophane-like alteration product [3]. Thermal infrared (TIR) spectroscopy and spectral deconvolution models are primary tools for determining the mineralogy of the Martian surface [5]. Spectral models of data from the Thermal Emission Spectrometer (TES) indicate a global compositional dichotomy, where high latitudes tend to be enriched in a high-silica material [6,7], interpreted as high-silica, K-rich volcanic glass [6,8]. However, later interpretations proposed that the high-silica material may be an alteration product (such as amorphous silica, clay minerals, or allophane) and that high latitude surfaces are chemically weathered [9-11]. A TIR spectral library of pure minerals is available for the public [12], but it does not contain allophane spectra. The identification of allophane on the Martian surface would indicate high water activity at the time of its formation and would help constrain the aqueous alteration environment [13,14]. The addition of allophane to the spectral library is necessary to address the global compositional dichotomy. In this study, we characterize a synthetic allophane by IR spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) to create an IR emission spectrum of pure allophane for the Mars science community to use in Martian spectral models.
NASA Astrophysics Data System (ADS)
Aman, M.; Sun, Y.; Ilgen, A.; Espinoza, N.
2015-12-01
Injection of large volumes of CO2 into geologic formations can help reduce the atmospheric CO2 concentration and lower the impact of burning fossil fuels. However, the injection of CO2 into the subsurface shifts the chemical equilibrium between the mineral assemblage and the pore fluid. This shift will situationally facilitate dissolution and reprecipitation of mineral phases, in particular intergranular cements, and can potentially affect the long term mechanical stability of the host formation. The study of these coupled chemical-mechanical reservoir rock responses can help identify and control unexpected emergent behavior associated with geological CO2 storage.Experiments show that micro-mechanical methods are useful in capturing a variety of mechanical parameters, including Young's modulus, hardness and fracture toughness. In particular, micro-mechanical measurements are well-suited for examining thin altered layers on the surfaces of rock specimens, as well as capturing variability on the scale of lithofacies. We performed indentation and scratching tests on sandstone and siltstone rocks altered in natural CO2-brine environments, as well as on analogous samples altered under high pressure, temperature, and dissolved CO2 conditions in a controlled laboratory experiment. We performed geochemical modeling to support the experimental observations, in particular to gain the insight into mineral dissolution/precipitation as a result of the rock-water-CO2reactions. The comparison of scratch measurements performed on specimens both unaltered and altered by CO2 over geologic time scales results in statistically different values for fracture toughness and scratch hardness, indicating that long term exposure to CO2 caused mechanical degradation of the reservoir rock. Geochemical modeling indicates that major geochemical change caused by CO2 invasion of Entrada sandstone is dissolution of hematite cement, and its replacement with siderite and dolomite during the alteration process.
Aqueous Alteration of Basalts: Earth, Moon, and Mars
NASA Technical Reports Server (NTRS)
Ming, Douglas W.
2007-01-01
The geologic processes responsible for aqueous alteration of basaltic materials on Mars are modeled beginning with our knowledge of analog processes on Earth, i.e., characterization of elemental and mineralogical compositions of terrestrial environments where the alteration and weathering pathways related to aqueous activity are better understood. A key ingredient to successful modeling of aqueous processes on Mars is identification of phases that have formed by those processes. The purpose of this paper is to describe what is known about the elemental and mineralogical composition of aqueous alteration products of basaltic materials on Mars and their implications for specific aqueous environments based upon our knowledge of terrestrial systems. Although aqueous alteration has not occurred on the Moon, it is crucial to understand the behaviors of basaltic materials exposed to aqueous environments in support of human exploration to the Moon over the next two decades. Several methods or indices have been used to evaluate the extent of basalt alteration/weathering based upon measurements made at Mars by the Mars Exploration Rover (MER) Moessbauer and Alpha Particle X-Ray Spectrometers. The Mineralogical Alteration Index (MAI) is based upon the percentage of total Fe (Fe(sub T)) present as Fe(3+) in alteration products (Morris et al., 2006). A second method is the evaluation of compositional trends to determine the extent to which elements have been removed from the host rock and the likely formation of secondary phases (Nesbitt and Young, 1992; Ming et al., 2007). Most of the basalts that have been altered by aqueous processes at the two MER landing sites in Gusev crater and on Meridiani Planum have not undergone extensive leaching in an open hydrolytic system with the exception of an outcrop in the Columbia Hills. The extent of aqueous alteration however ranges from relatively unaltered to pervasively altered materials. Several experimental studies have focused upon the aqueous alteration of lunar materials and simulants (e.g., Keller and Huang, 1971; Eick et al., 1996). Lunar basalts are void of water and highly reduced, hence, these materials are initially very reactive when exposed to water under oxidizing conditions.
Waller, Timothy J; Vaiciunas, Jennifer; Constantelos, Christine; Oudemans, Peter V
2018-05-01
Blueberry anthracnose, caused by Colletotrichum fioriniae, is a pre- and postharvest disease of cultivated highbush blueberry (Vaccinium corymbosum). During disease development, the pathogen undergoes several lifestyle changes during host colonization, including epiphytic, quiescent, and necrotrophic phases. It is not clear, however, what if any host signals alter the pattern of colonization during the initial epiphytic phase and infection. This research investigated the role of blueberry floral extracts (FE) on fungal development. Results show that FE significantly increased both the quantity and rate of secondary conidiation and appressorial formation in vitro, suggesting that floral components could decrease the minimum time required for infection. Activity of FE was readily detected in water collected from field samples, where secondary conidiation and appressorial formation decreased as rainwater collections were further removed from flowers. A comparison of FE from four blueberry cultivars with different levels of field susceptibility revealed that appressorial formation but not secondary conidiation significantly increased with the FE from susceptible cultivars versus resistant cultivars. Inoculum supplemented with FE produced higher levels of disease on ripe blueberry fruit as compared with inoculum with water only. Flowers from other ericaceous species were found to also induce secondary conidiation and appressorial formation of C. fioriniae. This research provides strong evidence that flowers can contribute substantially to the infection process of C. fioriniae, signifying the importance of the bloom period for developing effective disease management strategies.
An Overview of Orbital Detections of Hydrated Silica and Silica-Rich Rocks on Mars
NASA Astrophysics Data System (ADS)
Sun, V. Z.; Milliken, R.
2016-12-01
Early predictions of high-silica phases on Mars have been confirmed by numerous orbital observations throughout the past 15 years and supported by recent rover and meteorite investigations. Orbital spectroscopy at visible-near-IR (CRISM/OMEGA) and thermal IR (TES/THEMIS) wavelengths has established the presence of aqueously formed hydrated silica across the planet as well as regional silica-rich rocks of igneous origin. TES data provided the first indications of widespread silica enrichment in the northern lowlands, which were debated to represent either andesite or altered basalt on the basis of spectral and geologic arguments. Since then, more localized occurrences of primary silicic lithologies have suggested that igneous processes on Mars may have been more diverse and complex than previously recognized. CRISM and OMEGA data also reveal numerous occurrences of hydrated silica on the Martian surface, likely reflecting primary chemical precipitates or secondary processes such as aqueous alteration or diagenesis. These detections have been associated with fluvial landforms, volcanic settings, uplifted central peak rocks, and mobile sediments, suggesting a variety of formation mechanisms. These silica phases and their colocation with other alteration products such as clays and sulfates reveal aqueous environments that may have been acidic, alkaline, or alternatingly both through space and time. Although there is an apparent prevalence of geochemically immature silica (e.g., glass or opal-A) indicating limited aqueous alteration, several instances of more mature silica (e.g., opal-CT or quartz) point to locales that may have experienced periods of prolonged water-rock interaction. This presentation will give an overview of the distribution and variety of these high-silica phases as seen from orbital datasets and discuss their implications for the magmatic and aqueous history of Mars.
New Constraints on the Deposition and Alteration History of Mt. Sharp in Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Rice, M. S.; Horgan, B. H. N.; Fraeman, A.; Ackiss, S. E.
2015-12-01
The Mars Science Laboratory (MSL) rover is currently investigating the lower stratigraphy of northwestern Mt. Sharp, the 5 km thick stack of layered rock that makes up the central mound of Gale Crater. Previous near-infrared spectral investigations from orbit using CRISM have shown that this portion of the mound exhibits a diverse mineralogy that may indicate changing aqueous environments on early Mars. The relationship of these mineralogic units to stratigraphic units across the full extent of Mt. Sharp is not well understood, although such relationships are key to interpreting the depositional and digenetic history. Here we present new mineral maps derived from CRISM data, as well as detailed stratigraphic columns from around the mound, and we use these new results to constrain hypotheses for the modes of aqueous alteration. Our new CRISM mineral maps are projected and co-registered to HiRISE imagery and DEMs, and include Fe/Mg-smectites, poly- and mono-hydrated sulfates, iron oxides, high-Ca pyroxene, and a ferrous phase with a strong red spectral slope between 1.1-1.8 μm, which is consistent with ferrous alteration phases like ferrous clays. This latter unit consistently overlies Fe/Mg-smectites in NW and SW Mt. Sharp, and is located in topographic benches that are either immediately stratigaphically above hematite-bearing ridges. The presence of ferrous alteration phases supports previous interpretations that hematite formed when an Fe2+-bearing fluid encountered an oxidizing environment. In this scenario, the reducing fluids were created by long-term oxygen limited alteration of Fe-bearing minerals in the near-surface. Downward movement of these fluids may have been limited by the underlying clay layer, forcing lateral flow. On emergence at the surface, the iron was oxidized by photochemical or other redox reactions. On Earth, similar pedogenic processes form hematite ironpans on slopes surrounding poorly-drained hilltops, as well as ancient banded iron formations in shallow coastal waters. The reducing environment inferred from the ferrous phases could be a site of high organic preservation potential, and the redox gradient inferred from the ferric/ferrous mineral relationship could have served as an energy source for chemolithotrophic microbes.
Aqueous Alteration on Mars: Evidence from Landed Missions
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Morris, Richard V.; Clark, Benton C., III; Yen, Albert S.; Gellert, Ralf
2015-01-01
Mineralogical and geochemical data returned by orbiters and landers over the past 15 years have substantially enhanced our understanding of the history of aqueous alteration on Mars. Here, we summarize aqueous processes that have been implied from data collected by landed missions. Mars is a basaltic planet. The geochemistry of most materials has not been “extensively” altered by open-system aqueous processes and have average Mars crustal compositions. There are few examples of open-system alteration, such as Gale crater’s Pahrump Hills mudstone. Types of aqueous alteration include (1) acid-sulfate and (2) hydrolytic (circum-neutral/alkaline pH) with varying water-to-rock ratios. Several hypotheses have been suggested for acid-sulfate alteration including (1) oxidative weathering of ultramafic igneous rocks containing sulfides; (2) sulfuric acid weathering of basaltic materials; (3) acid fog weathering of basaltic materials; and (4) near-neutral pH subsurface solutions rich in Fe (sup 2 plus) that rapidly oxidized to Fe (sup 3 plus) producing excess acidity. Meridiani Planum’s sulfate-rich sedimentary deposit containing jarosite is the most “famous” acid-sulfate environment visited on Mars, although ferric sulfate-rich soils are common in Gusev crater’s Columbia Hills and jarosite was recently discovered in the Pahrump Hills. An example of aqueous alteration under circum-neutral pH conditions is the formation of Fe-saponite with magnetite in situ via aqueous alteration of olivine in Gale crater’s Sheepbed mudstone. Circum-neutral pH, hydrothermal conditions were likely required for the formation of Mg-Fe carbonate in the Columbia Hills. Diagenetic features (e.g., spherules, fracture filled veins) indicate multiple episodes of aqueous alteration/diagenesis in most sedimentary deposits. However, low water-to-rock ratios are prominent at most sites visited by landed missions (e.g., limited water for reaction to form crystalline phases possibly resulting in large amounts of short-range ordered materials and little physical separation of primary and secondary materials). Most of the aqueous alteration appears to have occurred early in the planet’s history; however, minor aqueous alteration may be occurring at the surface today (e.g., thin films of water forming carbonates akin to those discovered by Phoenix).
NASA Astrophysics Data System (ADS)
Calagari, Ali Asghar
2004-05-01
The porphyry copper deposit (PCD) at Sungun is located in East Azarbaidjan, in the NW of Iran.The Sungun porphyries occur as stocks and dikes ranging in composition from quartz monzodiorite through quartz monzonite and granodiorite to granite. The stocks are divided into two groups (1) Porphyry Stocks I and (2) Porphyry Stock II. Porphyry Stock II, hosting the copper ore, experienced intense hydro-fracturing leading to the formation of stockwork-type and anastomozing veinlets and micro-veinlets of quartz, sulfides, carbonates, and sulfates. Three distinct types of hydrothermal alteration and sulfide mineralization are recognized at Sungun (1) hypogene, (2) contact metasomatic (skarn), and (3) supergene. Four types of hypogene alteration are developed at Sungun, potassic, propylitic, potassic-phyllic, and phyllic. Four types of inclusion are common at Sungun based upon their phase content (1) mono-phase vapor, (2) vapor-rich 2-phase, (3) liquid-rich 2-phase, and (4) multi-phase solid. Halite is the principal solid phase. The distribution pattern, shape, and phase contents of fluid inclusions in quartz veinlets at Sungun are analogous to those from Bingham and Globe-Miami in western USA. The fluid inclusion data at Sungun showed that the liquid-vapor homogenization temperature [ TH(L-V)] values for liquid-rich 2-phase, vapor-rich 2-phase, and halite-bearing inclusions vary from 160 to 580 °C, from 200 to 600 °C, and from 160 to 580 °C, respectively. The ascending unboiled fluid at the onset of the phyllic alteration episode had temperatures ˜580 °C and was moderately saline (˜15 wt%). With the gradual decrease in temperature, the salinity of this fluid gradually decreased, so that its salinity at temperatures of ˜370 and <270 °C were ˜7 and <2 wt%, respectively. Multiple boiling events occurred in Porphyry Stock II during phyllic alteration. With each boiling event the salinity of the residual fluid increased substantially. The first boiling event occurred at temperatures 540-560 °C, and increased the salinity of the residual fluid up to ˜50 wt%. At temperatures >350 °C the residual fluid remained undersaturated (with respect to NaCl) however, at temperatures <350 °C they became saturated. The minimum internal pressures calculated for the inclusions having Ts(NaCl)≈ TH(L-V) showed that they were developed under the maximum hydrostatic pressure head of ˜1500 m during the boiling events.
Maharana, Vivek; Gaur, Deepanjali; Nayak, Suraj K; Singh, Vinay K; Chakraborty, Subhabrata; Banerjee, Indranil; Ray, Sirsendu S; Anis, Arfat; Pal, Kunal
2017-11-01
The study reports the synthesis and characterization of gelatin-tamarind gum (TG) based filled hydrogels for drug delivery applications. In this study, three different types of carbon nanotubes (CNTs) were incorporated within the dispersed TG phase of the filled hydrogels. The prepared hydrogels were thoroughly characterised using bright field microscope, FESEM, FTIR spectroscopy, differential scanning calorimeter, and mechanical tester. The swelling and the drug (salicylic acid) release properties of the filled hydrogels were also evaluated. The micrographs revealed the formation of biphasic systems. The internal phase appeared as agglomerates, and the CNTs were confined within the dispersed TG phase. FTIR and XRD studies revealed that CNTs promoted associative interactions among the components of the hydrogel, which promoted the formation of large crystallite size. The mechanical study indicated better resistance to the breakdown of the architecture of the CNT-containing filled hydrogels. Drug release studies, both passive and iontophoretic, suggested that the non-Fickian diffusion of the drug was prevalent during its release from hydrogel matrices. The prepared hydrogels were cytocompatible with human keratinocytes. The results suggested the probable use of such hydrogels in wound healing, tissue engineering and drug delivery applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Role of magnesium on the biomimetic deposition of calcium phosphate
NASA Astrophysics Data System (ADS)
Sarma, Bimal K.; Sarma, Bikash
2016-10-01
Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.
NASA Astrophysics Data System (ADS)
Elmaleh, Agnès; Bourdelle, Franck; Caste, Florent; Benzerara, Karim; Leroux, Hugues; Devouard, Bertrand
2015-06-01
Fe-rich serpentines are an abundant product of the early aqueous alteration events that affected the parent bodies of CM carbonaceous chondrites. Alteration assemblages in these meteorites show a large chemical variability and although water-rock interactions occurred under anoxic conditions, serpentines contain high amounts of ferric iron. To date very few studies have documented Fe valence variations in alteration assemblages of carbonaceous chondrites, limiting the understanding of the oxidation mechanisms. Here, we report results from a nanoscale study of a calcium-aluminum-rich inclusion (CAI) from the Murray chondrite, in which alteration resulted in Fe import and Ca export by the fluid phase and in massive Fe-rich serpentines formation. We combined scanning and transmission electron microscopies and scanning transmission X-ray microscopy for characterizing the crystal chemistry of Fe-serpentines. We used reference minerals with known crystallographic orientations to quantify the Fe valence state in Fe-rich serpentines using X-ray absorption spectroscopy at the Fe L2,3-edges, yielding a robust methodology that would prove valuable for studying oxidation processes in other terrestrial or extra-terrestrial cases of serpentinization. We suggest that aqueous Fe2+ was transported to the initially Fe-depleted CAI, where local changes in pH conditions, and possibly mineral catalysis by spinel promoted the partial oxidation of Fe2+ into Fe3+ by water and the formation of Fe-rich serpentines close to the cronstedtite endmember. Such mechanisms produce H2, which opens interesting perspectives as hydrogen may have reacted with carbon species, or escaped and yield increasingly oxidizing conditions in the parent asteroid. From the results of this nanoscale study, we also propose transformations of the initial cronstedtite, destabilized by later input of Al- and Mg-rich solutions, leading to Fe2+ leaching from serpentines, as well as to random serpentine-chlorite interstratifications. Such transformations towards polysomatic assemblages that are un-equilibrated from the structural, chemical and redox point of views are probably controlled by the various rates of alteration of primary minerals, but also by porosity gradients, as in terrestrial hydrothermal systems. We suggest that the proposed mechanisms may have played a role in the early formation of (Fe2+,Fe3+)-rich serpentines documented in CM chondrites, as well as in their transformation with on-going alteration towards Fe-poorer compositions inferred from previous petrologic, mineralogical and magnetic studies of CM chondrites.
Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture
Wei, Wei; Davis, Robert Edward; Nuss, Donald L.; Zhao, Yan
2013-01-01
In the life cycle of higher plants, it is the fate of meristem cells that determines the pattern of growth and development, and therefore plant morphotype and fertility. Floral transition, the turning point from vegetative growth to reproductive development, is achieved via genetically programmed sequential changes in meristem fate from vegetative to inflorescence, and to floral, leading to flower formation and eventual seed production. The transition is rarely reversible once initiated. In this communication, we report that a bacterial infection can derail the genetically programmed fate of meristem cells, thereby drastically altering the growth pattern of the host plant. We identified four characteristic symptoms in tomato plants infected with a cell wall-less bacterium, phytoplasma. The symptoms are a manifestation of the pathogen-induced alterations of growth pattern, whereas each symptom corresponds to a distinct phase in the derailment of shoot apical meristem fate. The phases include premature floral meristem termination, suppressed floral meristem initiation, delayed conversion of vegetative meristem to inflorescence meristem, and repetitive initiation and outgrowth of lateral vegetative meristems. We further found that the pathogen-induced alterations of growth pattern were correlated with transcriptional reprogramming of key meristem switching genes. Our findings open an avenue toward understanding pathological alterations in patterns of plant growth and development, thus aiding identification of molecular targets for disease control and symptom alleviation. The findings also provide insights for understanding stem cell pluripotency and raise a tantalizing possibility for using phytoplasma as a tool to dissect the course of normal plant development and to modify plant morphogenesis by manipulating meristem fate. PMID:24191032
Wu, Yih-Jer; Sala-Newby, Graciela B.; Shu, Kuo-Tung; Yeh, Hung-I.; Nakayama, Keiichi I.; Nakayama, Keiko; Newby, Andrew C.; Bond, Mark
2009-01-01
Objective Vascular smooth muscle cell (VSMC) proliferation plays an important role in the development of postangioplasty or in-stent restenosis, venous graft failure, and atherosclerosis. Our previous work has demonstrated S-phase kinase-associated protein-2 (Skp2), an F-box subunit of SCFSkp2 ubiquitin ligase, as an important mediator and common final pathway for growth factors, extracellular matrices, and cyclic-nucleotides to regulate VSMC proliferation in vitro. However, whether alteration of Skp2 function also regulates VSMC proliferation in vivo and neointimal thickening postvascular injury remains unclear. We investigated the effect of Skp2 on VSMC proliferation and neointimal formation in vivo. Methods and Results Firstly, we demonstrated that Skp2-null mice developed significantly smaller neointimal areas than wild-type mice after carotid ligation. Secondly, to further identify a local rather than a systemic effect of Skp2 alteration, we demonstrated that adenovirus-mediated expression of dominant-negative Skp2 in the balloon-injured rat carotid artery significantly increased medial p27Kip1 levels, inhibited VSMC proliferation, and the subsequent neointimal thickening. Lastly, to determine if Skp2 alone is sufficient to drive VSMC proliferation and lesion development in vivo, we demonstrated that adenovirus-delivery of wild-type Skp2 to the minimally-injured rat carotids is sufficient to downregulate p27Kip1 protein levels, enhanced medial VSMC proliferation, and the neointimal thickening. Conclusion This data provides, we believe for the first time, a more comprehensive understanding of Skp2 in the regulation of VSMC proliferation and neointimal formation and suggests that Skp2 is a promising target in the treatment of vasculoproliferative diseases. PMID:19878790
The self-healing of defects induced by the hydriding phase transformation in palladium nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulvestad, A.; Yau, A.
Nanosizing can dramatically alter material properties by enhancing surface thermodynamic contributions, shortening diffusion lengths, and increasing the number of catalytically active sites per unit volume. These mechanisms have been used to explain the improved properties of catalysts, battery materials, plasmonic materials, etc. Here we show that Pd nanoparticles also have the ability to self-heal defects in their crystal structures. Using Bragg coherent diffractive imaging, we image dislocations nucleated deep in a Pd nanoparticle during the forward hydriding phase transformation that heal during the reverse transformation, despite the region surrounding the dislocations remaining in the hydrogen-poor phase. We show that defectivemore » Pd nanoparticles exhibit sloped isotherms, indicating that defects act as additional barriers to the phase transformation. Our results resolve the formation and healing of structural defects during phase transformations at the single nanoparticle level and offer an additional perspective as to how and why nanoparticles differ from their bulk counterparts.« less
USA Science and Engineering Festival 2014
2014-04-25
An attendee of the USA Science and Engineering Festival examines how glass blocks some heat, altering the infrared image of himself. The James Webb Space Telescope will be a large infrared telescope with a 6.5 meter primary mirror and will study every phase in the history of our Universe ranging from the Big Bang to the formation of our Solar System. The USA Science and Engineering Festival took place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)
NASA Astrophysics Data System (ADS)
Betkowski, Wladyslaw B.; Rakovan, John; Harlov, Daniel E.
2017-09-01
Petrographic and geochemical characterization of phosphate accessory minerals represents a powerful tool in understanding the mineralization and metasomatic history of one of the world's biggest tin deposits, the Siglo XX mine, Salvadora stock, Llallagua, Bolivia. The Llallagua tin deposit lies in a hydrothermally altered porphyry stock that is part of the subduction-related Bolivian tin belt. Despite numerous studies, there is still a debate over the timing and characteristics of mineralization history of the deposit. Primary igneous fluorapatite and monazite (for the first time) were recognized in the altered porphyry. The igneous monazite is enriched in Th, unlike the hydrothermal monazite that is recognized for its low Th concentration. Fluorapatite, monazite, and xenotime also coexist with cassiterite within the hydrothermal vein assemblage. Fluorapatite and xenotime are essentially pristine. Monazite, however, shows various degrees of alteration in the form of regenerative mineral replacement (RMR). This exemplifies differential reactivity and selective mineral replacement/alteration of three accessory phosphate minerals, that are all important geochemical tracers of magmatic and hydrothermal processes, and which can all be used as geochronometers. Mineral textures and composition in the altered porphyry and vein assemblages have been evaluated. Monazite-xenotime geothermometry indicates monazite crystallization beginning around 550 °C. Monazite continues to grow as temperatures gradually decrease to about 300 °C, when most of cassiterite precipitation occurred in the samples studied. The primary mechanism of phosphate alteration has been identified as a coupled dissolution-reprecipitation process, which led to REE exchange in the igneous fluorapatite and hydrothermal monazite. In Type I local alteration, La and Pr-Nd show continuity across the pre- and post- alteration concentric zones indicating that they were not affected by alteration. This is an example of a selective elemental exchange during coupled dissolution-precipitation. Type II, pervasive post-growth alteration, is evident by the presence of micro-porosity and the formation of secondary, reaction induced minerals. Release of HREE from the monazite goes into the formation of void filling xenotime inclusions; the first documentation of this metasomatic alteration product in monazite. A well-documented discrepancy exists among ages determined from the zircon, fluorapatite, monazite, and altered porphyry minerals. These observations, regarding selective alteration of fluorapatite and monazite, may help to elucidate the reasons for this discrepancy.
Impact-Induced Chondrule Deformation and Aqueous Alteration of CM2 Murchison
NASA Technical Reports Server (NTRS)
Hanna, R. D.; Zolensky, M.; Ketcham, R. A.; Behr, W. M.; Martinez, J. E.
2014-01-01
Deformed chondrules in CM2 Murchison have been found to define a prominent foliation [1,2] and lineation [3] in 3D using X-ray computed tomography (XCT). It has been hypothesized that chondrules in foliated chondrites deform by "squeezing" into surrounding pore space [4,5], a process that also likely removes primary porosity [6]. However, shock stage classification based on olivine extinction in Murchison is consistently low (S1-S2) [4-5,7] implying that significant intracrystalline plastic deformation of olivine has not occurred. One objective of our study is therefore to determine the microstructural mechanisms and phases that are accommodating the impact stress and resulting in relative displacements within the chondrules. Another question regarding impact deformation in Murchison is whether it facilitated aqueous alteration as has been proposed for the CMs which generally show a positive correlation between degree of alteration and petrofabric strength [7,2]. As pointed out by [2], CM Murchison represents a unique counterpoint to this correlation: it has a strong petrofabric but a relatively low degree of aqueous alteration. However, Murchison may not represent an inconsistency to the proposed causal relationship between impact and alteration, if it can be established that the incipient aqueous alteration post-dated chondrule deformation. Methods: Two thin sections from Murchison sample USNM 5487 were cut approximately perpendicular to the foliation and parallel to lineation determined by XCT [1,3] and one section was additionally polished for EBSD. Using a combination of optical petrography, SEM, EDS, and EBSD several chondrules were characterized in detail to: determine phases, find microstructures indicative of strain, document the geometric relationships between grain-scale microstructures and the foliation and lineation direction, and look for textural relationships of alteration minerals (tochilinite and Mg-Fe serpentine) that indicate timing of their formation relative to deformation event(s). Preliminary Results: Deformed chondrules are dominated by forsterite and clinoenstatite with lesser amounts of Fe-Mg serpentine, sulfides, and low calcium pyroxene. Olivine grains are commonly fractured but generally show sharp optical extinction. The pyroxene, in contrast, is not only fractured but also often displays undulose extinction. In addition, the clinoenstatite is frequently twinned but it is unclear whether the twins are the result of mechanical deformation or inversion from protoenstatite [8]. EBSD work is currently ongoing to determine if areas of higher crystallographic strain can be imaged and mapped, and to determine the pyroxene twin orientations. In regards to alteration, we have found evidence for post-deformation formation of tochilinite and Mg-Fe serpentine indicating that aqueous alteration has indeed post-dated the deformation of the chondrules.
Experimental study of carbonate formation in oceanic peridotite
NASA Astrophysics Data System (ADS)
Grozeva, Niya G.; Klein, Frieder; Seewald, Jeffrey S.; Sylva, Sean P.
2017-02-01
Interactions of CO2-rich aqueous fluids with mantle peridotite have major implications for geochemical budgets and microbial life in the shallow oceanic lithosphere through the formation of carbonate minerals and reduced carbon species. However, the underlying mechanisms controlling the transformation of CO2 to carbonates in ultramafic-hosted hydrothermal systems remain incompletely understood. A long-term laboratory experiment was conducted at 300 °C and 35 MPa to investigate serpentinization and carbonate formation pathways during hydrothermal alteration of peridotite. Powdered harzburgite was initially reacted with a Ca-rich aqueous fluid for 14,592 h (608 days) and changes in fluid composition were monitored with time. Once the system reached a steady state, a CO2(aq)-rich fluid was injected and allowed to react with the system for 5907 h (246 days). Fluid speciation and mineral analyses suggest that serpentinization of harzburgite in the CO2-poor system led to the precipitation of serpentine, brucite, magnetite, and minor calcite, in addition to other minor phases including chlorite and sulfur-poor Ni sulfides. The addition of the CO2(aq)-rich fluid caused dolomite, Ca-rich dolomite, and high-Mg calcite to form at the expense of olivine, calcite, and brucite, while serpentine remained unreactive. Replacement textures and mineral assemblages mimic those documented in carbonate-altered seafloor serpentinites, particularly those from the Mid-Atlantic Ridge and the Iberia Margin. In contrast to thermodynamic predictions, magnesite did not form in the experiment because the dissolution of clinopyroxene, in combination with the lack of serpentine reactivity, maintained low Mg/Ca ratios in solution. Clinopyroxene dissolution and unreactive serpentine may similarly maintain low Mg/Ca ratios in submarine serpentinization systems and limit magnesite formation in subseafloor environments. Results of this study suggest that the formation of Ca-Mg carbonates by mineral carbonation is favorable in subseafloor serpentinization systems and likely represents a significant, but poorly quantified, carbon sink in hydrothermally altered oceanic lithosphere at slow-spreading mid-ocean ridges.
Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzkes, Brian J.
2004-01-01
Meteoric sphaerosiderite lines (MSLs), defined by invariant ??18O and variable ??13C values, are obtained from ancient wetland palaeosol sphaerosiderites (millimetre-scale FeCO3 nodules), and are a stable isotope proxy record of terrestrial meteoric isotopic compositions. The palaeoclimatic utility of sphaerosiderite has been well tested; however, diagenetically altered horizons that do not yield simple MSLs have been encountered. Well-preserved sphaerosiderites typically exhibit smooth exteriors, spherulitic crystalline microstructures and relatively pure (> 95 mol% FeCO3) compositions. Diagenetically altered sphaerosiderites typically exhibit corroded margins, replacement textures and increased crystal lattice substitution of Ca2+, Mg2+ and Mn2+ for Fe2+. Examples of diagenetically altered Cretaceous sphaerosiderite-bearing palaeosols from the Dakota Formation (Kansas), the Swan River Formation (Saskatchewan) and the Success S2 Formation (Saskatchewan) were examined in this study to determine the extent to which original, early diagenetic ??18O and ??13C values are preserved. All three units contain poikilotopic calcite cements with significantly different ??18O and ??13C values from the co-occurring sphaerosiderites. The complete isolation of all carbonate phases is necessary to ensure that inadvertent physical mixing does not affect the isotopic analyses. The Dakota and Swan River samples ultimately yield distinct MSLs for the sphaerosiderites, and MCLs (meteoric calcite lines) for the calcite cements. The Success S2 sample yields a covariant ??18O vs. ??13C trend resulting from precipitation in pore fluids that were mixtures between meteoric and modified marine phreatic waters. The calcite cements in the Success S2 Formation yield meteoric ??18O and ??13C values. A stable isotope mass balance model was used to produce hyperbolic fluid mixing trends between meteoric and modified marine end-member compositions. Modelled hyperbolic fluid mixing curves for the Success S2 Formation suggest precipitation from fluids that were < 25% sea water. ?? 2004 International Association of Sedimentologists.
St George-Hyslop, Peter; Lin, Julie Qiaojin; Miyashita, Akinori; Phillips, Emma C; Qamar, Seema; Randle, Suzanne J; Wang, GuoZhen
2018-04-30
Many RNA binding proteins, including FUS, contain moderately repetitive, low complexity, intrinsically disordered domains. These sequence motifs have recently been found to underpin reversible liquid: liquid phase separation and gelation of these proteins, permitting them to reversibly transition from a monodispersed state to liquid droplet- or hydrogel-like states. This function allows the proteins to serve as scaffolds for the formation of reversible membraneless intracellular organelles such as nucleoli, stress granules and neuronal transport granules. Using FUS as an example, this review examines the biophysics of this physiological process, and reports on how mutations and changes in post-translational state alter phase behaviour, and lead to neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Copyright © 2018. Published by Elsevier B.V.
Highly destabilized Mg-Ti-Ni-H system investigated by density functional theory and hydrogenography
NASA Astrophysics Data System (ADS)
Broedersz, C. P.; Gremaud, R.; Dam, B.; Griessen, R.; Løvvik, O. M.
2008-01-01
Using hydrogenography, we recently mapped the thermodynamic properties of a large range of compositions in the quaternary Mg-Ti-Ni-H system. The enthalpy of hydride formation of Mg-Ni alloys is significantly altered upon Ti doping. For a small range of compositions, we find a hydrogenation enthalpy ΔH=-40kJ (molH2)-1 , which is the desired enthalpy for hydrogen storage at moderate temperature and pressure. This enthalpy value is surprising since it is significantly less negative than the ΔH of the Mg-Ni and Mg-Ti hydrides. The nanostructure of the Mg-Ti-Ni-H films hinders a direct determination of the hydride phases involved by x-ray diffraction. Using density functional theory calculations for various hydrogenation reaction paths, we establish that the destabilization of the Mg-Ni-H system by Ti doping is due to the formation of Mg2Ni and Ti-Ni intermetallics in the as-deposited state, which transform into a metastable Ti-doped Mg2NiH4 phase upon hydrogenation. The Ti-doped Mg2NiH4 phase can be considered as a heavily doped semiconductor.
NASA Astrophysics Data System (ADS)
Koo, T. H.; Kim, J. Y.; Park, K. R.; Jung, D. H.; Geesey, G. G.; Kim, J. W.
2015-12-01
Redox reaction associated with microbial elemental respiration is a ubiquitous process in sediments and suspended particles at various temperatures or pH/Eh conditions. Particularly, changes in elemental redox states (structural or dissolved elemental form) induced by microbial respiration result in the unexpected biogeochemical reactions in the light of biotic/abiotic mineralization. The objective of the present study is, therefore to investigate the secondary phase mineralization through a-/biogeochemical Fe and As redox cycling in the acido-hyperhtermal Norris Geyser Basin (NGB) in Yellowstone National Park, USA, typical of the extreme condition. X-ray diffraction, scanning electron microscope with energy dispersive x-ray spectroscopy, X-ray absorption near edge structure, inductively coupled plasma-atomic emission spectrometer and liquid chromatography with ICP-mass spectroscopy with filtrated supernatant were performed for the mineralogical and hydro-geochemical analysis. The clay slurry collected from the active hot-spring of the NGB area (pH=3.5 and Temperature=78 ℃) was incubated with ("enrichment") or without the growth medium ("natural"). The control was prepared in the same condition except adding the glutaraldehyde to eliminate the microbial activity. The secondary phase mineral formation of the oxidative phase of Fe and As, and K identified as 'Pharmacosiderite' only appeared in the enrichment set suggesting a role of extremophiles in the mineral formation. The considerable population of Fe-oxidizer (Metallosphera yellowstonensis MK-1) and As-oxidizer (Sulfurihydrogenibium sp.) was measured by phylogenetic analysis in the present study area. The inhibition of As-oxidation in the low pH conditions was reported in the previous study, however the As-redox reaction was observed and consequently, precipitated the Pharmacosiderite only in the enrichment set suggesting a biotic mineralization. The present study collectively suggests that the microbial activity may bypass the chemical or thermodynamical reaction barriers and promote the secondary phase mineral formation through the elemental respiration. The possible biotic/abiotic mechanism or process in mineral alteration/formation in extreme environment will be discussed.
The Formation of Boundary Clinopyroxenes and Associated Glass Veins in Type B1 CAIs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paque, J M; Beckett, J R; Ishii, H A
2008-05-18
We used focused ion beam thin section preparation and scanning transmission electron microscopy (FIB/STEM) to examine the interfacial region between spinel and host melilite for three spinel grains, two from the mantle and one from the core of an Allende type B1 inclusion, and a second pair of spinel grains from a type B1 inclusion from the Leoville carbonaceous chondrite. The compositions of boundary clinopyroxenes decorating spinel surfaces are generally consistent with those of coarser clinopyroxenes from the same region of the inclusion, suggesting little movement of spinels between mantle and core regions after the formation of boundary clinopyroxenes. Themore » host melilite displays no anomalous compositions near the interface, and anorthite or other late-stage minerals are not observed, suggesting that crystallization of residual liquid was not responsible for the formation of boundary clinopyroxenes. Allende spinels display either direct spinel-melilite contact or an intervening boundary clinopyroxene between the two phases. In the core, boundary clinopyroxene is mantled by a thin (1-2 {micro}m thick) layer of normally zoned (X{sub Ak} increasing away from the melilite-clinopyroxene contact) melilite with X{sub Ak} matching that of the host melilite at the melilite-melilite contact. In the mantle, X{sub Ak} near boundary spinels is constant. Spinels in a Leoville type B1 inclusion are more complex with boundary clinopyroxene, as observed in Allende, but also variable amounts of glass ({approx}1 {micro}m width), secondary calcite, perovskite, and an unknown Mg-, Al-, OH-rich and Ca-, Si-poor crystalline phase that may be a layered double hydrate. Glass compositions are consistent to first order with a precursor consisting mostly of Mg-carpholite or sudoite with some aluminous diopside. One possible scenario of formation for the glass veins is that open system alteration of melilite produced a porous, hydrated aggregate of Mg-carpholite or sudoite + aluminous diopside that was shock melted and quenched to a glass. The unknown crystalline phase may be a shocked remnant of the precursor phase assemblage but is more likely to have formed later by alteration of the glass. Calcite appears to be an opportunistic fracture filling that postdated all major shock events. Boundary clinopyroxenes probably share a common origin with coarser-grained pyroxenes from the same region of the inclusion. In the mantle, these crystals may represent clinopyroxene crystallized in Ti-rich liquids caused by the direct dissolution of perovskite and an associated Sc-Zr-rich phase or as a reaction product between dissolving perovskite and liquid (i.e., indirect dissolution of perovskite). In the core, any perovskite and associated Ti-enriched liquids that may have originally been present disappeared before the growth of boundary clinopyroxene.« less
Resumption of nuclear glass alteration: State of the art
NASA Astrophysics Data System (ADS)
Fournier, Maxime; Gin, Stéphane; Frugier, Pierre
2014-05-01
Studies of nuclear glass alteration kinetics have shown that after the beginning of a rate drop due to the approach of silica saturation of the solution and the formation of a passivating layer, a resumption of alteration is possible. This phenomenon corresponding to an acceleration of the glass dissolution rate is systematically associated with the precipitation of zeolites and, to a lesser extent, calcium silicate hydrates. Secondary phases which precipitate from the major glass network-forming elements (Si, Al) strongly impact the dissolution kinetics. The literature data are generally consistent and the results are reproducible, showing that the resumption of alteration is observed at high pH, temperature, and S/V ratio during laboratory experiments. The studies also show that the resumption of alteration is strongly dependent on the composition of the glass and the leaching solutions. The wide range of glass compositions studied (about 60 glasses in the articles reviewed) and the variable test conditions (temperature, pH, and solution composition) make it extremely difficult to compare and compile the data, or to decorrelate the effects of the composition on the time before the resumption of alteration and on its magnitude. The observations to date have led to a proposed macroscopic mechanism based on the loss of the passivating properties of the alteration layer after consumption of a fraction of the network-forming elements by precipitation of zeolites. No multiscale mechanistic approach exists, however, to account for the nucleation and growth of zeolites at the expense of the glass. For example, the effect of aluminum in the gel or in solution on the glass alteration kinetics is not sufficiently understood today. Although thermodynamic models have been proposed to delimit the ranges of glass compositions subject to a resumption of alteration, their development is hampered by inadequate knowledge of the newly formed phases and their nucleation-growth mechanism, and by gaps in the thermodynamic databases. Their development is also constrained by the capability of the models to take Si-Al-Ca interactions into account in the alteration gels.
NASA Technical Reports Server (NTRS)
Graff, Trevor G.; Morris, R. V.; Archilles C. N.; Agresti, D. G.; Ming, D. W.; Hamilton, J. C.; Mertzman, S. A.; Smith, J.
2012-01-01
Sulfates have been identified on the martian surface during robotic surface exploration and by orbital remote sensing. Measurements at Meridiani Planum (MP) by the Alpha-Particle X-ray Spectrometer (APXS) and Mossbauer (MB) instruments on the Mars Exploration Rover Opportunity document the presence of a ubiquitous sulfate-rich outcrop (20-40% SO3) that has jarosite as an anhydrous Fe3+-sulfate [1- 3]. The presence of jarosite implies a highly acidic (pH <3) formation environment [4]. Jarosite and other sulfate minerals, including kieserite, gypsum, and alunite have also been identified in several locations in orbital remote sensing data from the MEx OMEGA and MRO CRISM instruments [e.g. 5-8]. Acid sulfate weathering of basaltic materials is an obvious pathway for formation of sulfate-bearing phases on Mars [e.g. 4, 9, 10]. In order to constrain acid-sulfate pathways on Mars, we are studying the mineralogical and chemical manifestations of acid-sulfate alteration of basaltic compositions in terrestrial environments. We have previously shown that acidsulfate alteration of tephra under hydrothermal conditions on the Puu Poliahu cone (summit region of Mauna Kea volcano, Hawaii) resulted in jarosite and alunite as sulfate-bearing alteration products [11-14]. Other, more soluble, sulfates may have formed, but were leached away by rain and melting snow. Acidsulfate processes on Puu Poliahu also formed hematite spherules similar (except in size) to the hematite spherules observed at MP as an alteration product [14]. Phyllosilicates, usually smectite }minor kaolinite are also present as alteration products [13]. We discuss here an occurrence of acid-sulfate alteration on Mauna Kea Volcano (Hawaii). We report VNIR spectra (0.35-2.5 microns ASD spectrometer), Mossbauer spectra (MER-like ESPI backscatter spectrometer), powder XRD (PANalytical), and major element chemical compositions (XRF with LOI and Fe redox) for comparison to similar data acquired or to be acquired by MRO-CRISM and MEx OMEGA, MERMB, MSL-CheMin, and MER and MSL APXS, respectively.
Transmission electron microscope analyses of alteration phases in martian meteorite MIL 090032
NASA Astrophysics Data System (ADS)
Hallis, L. J.; Ishii, H. A.; Bradley, J. P.; Taylor, G. J.
2014-06-01
The nakhlite group of martian meteorites found in the Antarctic contain varying abundances of both martian and terrestrial secondary alteration phases. The aim of this study was to use transmission electron microscopy (TEM) to compare martian and terrestrial alteration embodied within a single nakhlite martian meteorite find - MIL 090032. Martian alteration veins in MIL 090032 are composed of poorly ordered Fe-smectite phyllosilicate. This poorly-ordered smectite appears to be equivalent to the nanocrystalline phyllosilicate/hydrated amorphous gel phase previously described in the martian alteration veins of other nakhlites. Chemical differences in this nanocrystalline phyllosilicate between different nakhlites imply localised alteration, which occurred close to the martian surface in MIL 090032. Both structurally and compositionally the nakhlite nanocrystalline phyllosilicate shows similarities to the amorphous/poorly ordered phase recently discovered in martian soil by the Mars Curiosity Rover at Rocknest, Gale Crater. Terrestrially derived alteration phases in MIL 090032 include jarosite and gypsum, amorphous silicates, and Fe-oxides and hydroxides. Similarities between the mineralogy and chemistry of the MIL 090032 terrestrial and martian alteration phases suggest the alteration conditions on Mars were similar to those in the Antarctic. At both sites a small amount of fluid at low temperatures infiltrated the rock and became acidic as a result of the conversion of Fe2+ to Fe3+ under oxidising conditions.
MN Carbonates in the Martian Meteorite Nakhla: Possible Evidence of Brine Evaporation
NASA Technical Reports Server (NTRS)
Bailey, J. V.; McKay, D. S.; Wentworth, S. J.
2003-01-01
The importance of secondary phases in martian meteorites lies in their potential to provide clues about the martian environments responsible for their formation. During this study, we analyzed a number of carbonate-bearing fracture surfaces from the Nakhla meteorite. Here we describe the physical and chemical properties of several manganese-calcium-rich siderites. Additionally, we describe a potential model for the formation and alteration of these carbonates, and we suggest constraints on the conditions responsible for their precipitation. Nakhla is an olivine-bearing clinopyroxenite with minor amounts of feldspar, FeS, and Fe oxides. Secondary mineral assemblages include vein filling clay with embedded iron oxides, a calcium sulfate, amorphous silica, chlorapatite, halite and carbonates. Bridges and Grady suggested that the carbonates in Nakhla formed from brine evaporation. Isotope studies of the Mn rich siderite are also consistent with formation from hydrothermal fluids with an upper T constraint of 170 C.
Greenberger, Rebecca N; Mustard, John F; Cloutis, Edward A; Mann, Paul; Wilson, Janette H.; Flemming, Roberta L; Robertson, Kevin; Salvatore, Mark R; Edwards, Christopher
2015-01-01
The phases identified in the sample are albite, large iron oxides, and titanite throughout; calcite in vesicles; calcic clinopyroxene, aegirine, and Fe/Mg-bearing clay in the rind; and fine-grained hematite and pyroxenes in the interior. Using imaging spectroscopy, the chemistry and mineralogy results extend to the hand sample and larger outcrop. From all of the analyses, we suggest that the pillow basalts were altered initially after emplacement, either by heated lake water or magmatic fluids, at temperatures of at least 400-600°C, and the calcic clinopyroxenes and aegirine identified in the rind are a preserved record of that alteration. As the hydrothermal system cooled to slightly lower temperatures, clays formed in the rind, and, during this alteration, the sample oxidized to form hematite in the matrix of the interior and Fe3+ in the pyroxenes in the rind. During the waning stages of the hydrothermal system, calcite precipitated in vesicles within the rind. Later, diagenetic processes albitized the sample, with albite replacing plagioclase, lining vesicles, and accreting onto the exterior of the sample. This albitization or Na-metasomatism occurred when the lake within the Hartford Basin evaporated during a drier past climatic era, resulting in Na-rich brines. As Ca-rich plagioclase altered to albite, Ca was released into solution, eventually precipitating as calcite in previously-unfilled vesicles, dominantly in the interior of the pillow. Coordinated analyses of this sample permit identification of the alteration phases and help synthesize the aqueous history of pillow lavas of the Talcott formation. These results are also relevant to Mars, where volcanically-resurfaced open basin lakes have been found, and this Hartford Basin outcrop may be a valuable analog for any potential volcano-lacustrine interactions. The results can also help to inform the utility and optimization of potentially complementary, synergistic, and uniquely-suited techniques for characterization of hydrothermally-altered terrains.
A rotating arm using shape-memory alloy
NASA Technical Reports Server (NTRS)
Jenkins, Phillip P.; Landis, Geoffrey A.
1995-01-01
NASA's Mars Pathfinder mission, to be launched in 1996, reflects a new philosophy of exploiting new technologies to reduce mission cost and accelerate the pace of space exploration. One of the experiments on board Pathfinder will demonstrate the first use in space of a multi-cycle, electrically-activated, shape-memory alloy (SMA) actuator. SMA's are metal alloys which, when heated, undergo a crystalline phase change. This change in phase alters the alloy lattice-constant, resulting in a change of dimension. Upon cooling, the alloy returns to its original lattice formation. Wire drawn from an SMA contracts in length when heated. The reversible change in length is 3 percent to 5 percent. The wire used in this actuator is a nickel-titanium alloy known as nitinol.
Cho, Eun Jin; Kim, Jun Soo
2012-01-01
The physics of structure formation and maintenance of nuclear bodies (NBs), such as nucleoli, Cajal bodies, promyelocytic leukemia bodies, and speckles, in a crowded nuclear environment remains largely unknown. We investigate the role of macromolecular crowding in the formation and maintenance of NBs using computer simulations of a simple spherical model, called Lennard-Jones (LJ) particles. LJ particles form a one-phase, dilute fluid when the intermolecular interaction is weaker than a critical value, above which they phase separate and form a condensed domain. We find that when volume-exclusive crowders exist in significant concentrations, domain formation is induced even for weaker intermolecular interactions, and the effect is more pronounced with increasing crowder concentration. Simulation results show that a previous experimental finding that promyelocytic leukemia bodies disappear in the less-crowded condition and reassemble in the normal crowded condition can be interpreted as a consequence of the increased intermolecular interactions between NB proteins due to crowding. Based on further analysis of the simulation results, we discuss the acceleration of macromolecular associations that occur within NBs, and the delay of diffusive transport of macromolecules within and out of NBs when the crowder concentration increases. This study suggests that in a polydisperse nuclear environment that is enriched with a variety of macromolecules, macromolecular crowding not only plays an important role in the formation and maintenance of NBs, but also may perform some regulatory functions in response to alterations in the crowding conditions. PMID:22947858
On the star-forming ability of Molecular Clouds
NASA Astrophysics Data System (ADS)
Anathpindika, S.; Burkert, A.; Kuiper, R.
2018-02-01
The star-forming ability of a molecular cloud depends on the fraction of gas it can cycle into the dense-phase. Consequently, one of the crucial questions in reconciling star formation in clouds is to understand the factors that control this process. While it is widely accepted that the variation in ambient conditions can alter significantly the ability of a cloud to spawn stars, the observed variation in the star-formation rate in nearby clouds that experience similar ambient conditions, presents an interesting question. In this work, we attempted to reconcile this variation within the paradigm of colliding flows. To this end we develop self-gravitating, hydrodynamic realizations of identical flows, but allowed to collide off-centre. Typical observational diagnostics such as the gas-velocity dispersion, the fraction of dense-gas, the column density distribution (N-PDF), the distribution of gas mass as a function of K-band extinction and the strength of compressional/solenoidal modes in the post-collision cloud were deduced for different choices of the impact parameter of collision. We find that a strongly sheared cloud is terribly inefficient in cycling gas into the dense phase and that such a cloud can possibly reconcile the sluggish nature of star formation reported for some clouds. Within the paradigm of cloud formation via colliding flows this is possible in case of flows colliding with a relatively large impact parameter. We conclude that compressional modes - though probably essential - are insufficient to ensure a relatively higher star-formation efficiency in a cloud.
The Origin of Dark Inclusions in Allende: New Evidence from Lithium Isotopes
NASA Technical Reports Server (NTRS)
Sephton, Mark A.; James, Rachael H.; Zolensky, Michael E.
2006-01-01
Aqueous and thermal processing of primordial material occurred prior to and during planet formation in the early solar system. A record of how solid materials were altered at this time is present in the carbonaceous chondrites, which are naturally delivered fragments of primitive asteroids. It has been proposed that some materials, such as the clasts termed dark inclusions found in type III chondrites, suggest a sequence of aqueous and thermal events. Lithium isotopes (Li-6 and Li-7) can reveal the role of liquid water in dark inclusion history. During aqueous alteration, Li-7 passes preferentially into solution leaving Li-6 behind in the solid phase and, consequently, any relatively extended periods of interaction with Li-7-rich fluids would have left the dark inclusions enriched in the heavier isotope when compared to the meteorite as a whole. Our analyses of lithium isotopes in Allende and its dark inclusions reveal marked isotopic homogeneity and no evidence of greater levels of aqueous alteration in dark inclusion history.
NASA Astrophysics Data System (ADS)
Goldstein, A. H.; Isaacman, G. A.; Misztal, P. K.; Yee, L.; Olson, K. F.; Moss, J.; Kreisberg, N. M.; Hering, S. V.; Park, J. H.; Kaser, L.; Seco, R.; Guenther, A. B.; Su, L.; Mak, J. E.; Holzinger, R.; Hu, W.; Campuzano Jost, P.; Palm, B. B.; Day, D. A.; Jimenez, J. L.; Koss, A.; De Gouw, J. A.
2014-12-01
Our overarching goals in the SOAS 2013 campaign were to 1) quantify biogenic VOC emission and VOC deposition to understand the processes controlling these bi-directional exchanges, 2) observe a broad suite of primary VOC and their oxidation products in the field and in controlled laboratory experiments, and 3) investigate their fate to understand how anthropogenic pollution alters oxidation pathways and secondary organic aerosol (SOA) formation. We pursued these goals through measurement of atmospheric organics ranging from very volatile (using in-situ GC-MS and proton transfer reaction time-of-flight MS, PTR-ToF-MS) to semi-volatile gas and particle phase compounds (using the Semi-Volatile Thermal desorption Aerosol Gas chromatograph, SV-TAG). Measured concentrations and fluxes of VOCs at the top of the SEARCH tower were coordinated with concentration gradients and fluxes at the AABC flux tower site, and vertical profiles using the Long-EZ aircraft to provide equivalent observations across sites. These results are informed through measurements using the same instrument during the FIXIT controlled laboratory oxidation study at CalTech that investigated oxidation pathways of BVOC with varying levels of anthropogenic pollutants. Measurements by SV-TAG of particle-phase and total gas-plus-particle-phase compounds at the SEARCH tower provide hourly quantification of semi-volatile compounds, including the oxidation products of measured VOCs. Derivatization of hydroxyl groups prior to GC analysis allows analysis of highly oxidized chemicals, including most known tracers. Methyl tetrols, an oxidation product of isoprene, had a significant day-time gas-phase component, and their abundance was strongly correlated with particle-phase sulfate, indicative of anthropogenic influence on the formation or partitioning processes. Similar observations of pinic acid (monterpene oxidation product) and many other BVOC oxidation products were made in both the gas and particle phases. Through measurements of specific chemical tracers across a wide range of volatilities, we explore the chemical lifecycle of BVOCs to understand anthropogenic-biogenic interactions in aerosol formation.
NASA Astrophysics Data System (ADS)
He, Jie; Zhang, Xiaoxian; Gao, Yong; Li, Shuijie; Sun, Yeqing
Some researchers suggest that the changes of cell cycle under the effect of microgravity may be associated with many serious adverse physiological changes. In the search for underlying mechanisms and possible new countermeasures, we used the slime mold Physarum polycephalum in which all the nuclei traverse the cell cycle in natural synchrony to study the effects of altered gravity on the cell cycle, actin cytoskeleton and proteome. In parallel, the cell cycle was analyzed in Physarum incubated (1) in altered gravity for 20 h, (2) in altered gravity for 40 h, (3) in altered gravity for 80 h, and (4) in ground controls. The cell cycle, the actin cytoskeleton, and proteome in the altered gravity and ground controls were examined. The results indicated that the duration of the G2 phase was lengthened 20 min in high aspect ratio vessel (HARV) for 20 h, and prolonged 2 h in altered gravity either for 40 h or for 80 h, whereas the duration of other phases in the cell cycle was unchanged with respect to the control. The microfilaments in G2 phase had a reduced number of fibers and a unique abnormal morphology in altered gravity for 40 h, whereas the microfilaments in other phases of cell cycle were unchanged when compared to controls. Employing classical two-dimensional electrophoresis (2-DE), we examined the effect of the altered gravity on P. polycephalum proteins. The increase in the duration of G2 phase in altered gravity for 40 h was accompanied by changes in the 2-DE protein profiles, over controls. Out of a total of 200 protein spots investigated in G2 phase, which were reproducible in repeated experiments, 72 protein spots were visually identified as specially expressed, and 11 proteins were up-regulated by 2-fold and 28 proteins were down-regulated by 2-fold over controls. Out of a total of three low-expressed proteins in G2 phase in altered gravity for 40 h, two proteins were unknown proteins, and one protein was spherulin 3b by MALDI-TOF mass spectrometry (MS). Our results suggest that a low level of spherulin 3b in G2 phase, which may lead to a reduction of Poly(b-L-malate) (PMLA), may contribute to the lengthened duration of G2 phase in altered gravity for 40 h. Present results indicate that altered gravity results in the prolongation of G2 phase with significantly altered actin cytoskeleton and proteome in P. polycephalum.
Mineralogy of ash of some American coals: variations with temperature and source
Mitchell, R.S.; Gluskoter, H.J.
1976-01-01
Ten samples of mineral-matter residue were obtained by the radio-frequency low-temperature ashing of subbituminous and bituminous coals. The low-temperature ash samples were then heated progressively from 400 ??C to 1400 ??C at 100 ??C intervals. Mineral phases present at each temperature interval were determined by X-ray diffraction analyses. The minerals originally present in the coals (quartz, kaolinite, illite, pyrite, calcite, gypsum, dolomite, and sphalerite) were all altered to higher temperature phases. Several of these phases, including kaolinite, metakaolinite, mullite, anhydrite, and anorthite, were found only in limited temperature ranges. Therefore the temperature of formation of the ashes in which they occur may be determined. Mineralogical differences were observed between coal samples from the Rocky Mountain Province, the Illinois Basin, and the Appalachians; and as a result of these mineralogical differences, different high-temperature phases resulted as the samples were heated. However, regional generalizations cannot be made until a greater number of samples have been studied. ?? 1976.
Si-Metasomatism During Serpentinization of Jurassic Ultramafic Sea-floor: a Comparative Study
NASA Astrophysics Data System (ADS)
Vogel, M.; Frueh-Green, G. L.; Boschi, C.; Schwarzenbach, E. M.
2014-12-01
The Bracco-Levanto ophiolitic complex (northwestern Italy) represents one of the largest and better-exposed ophiolitic successions in the Northern Apennines. It is considered to be a fragment of heterogeneous Jurassic lithosphere that records tectono-magmatic and alteration histories similar to those documented along the Mid-Atlantic Ridge (MAR), such as at the 15°20'N area and the Atlantis Massif at 30°N. Structural and petrological studies on these rocks provide constraints on metamorphic/deformation processes during formation and hydrothermal alteration of the Jurassic oceanic lithosphere. We present a petrological and geochemical study of serpentinization processes and fluid-rock interaction in the Bracco-Levanto ophiolitic complex and compare these to published data from modern oceanic hydrothermal systems, such as the Lost City hydrothermal field hosted in serpentinites on the Atlantis Massif. Major element and mineral compositional data allow us to distinguish a multiphase history of alteration characterized by: (1) widespread Si-metasomatism during progressive serpentinization, and (2) multiple phases of veining and carbonate precipitation associated with circulation of seawater in the shallow ultramafic-dominated portions of the Jurassic seafloor, resulting in the formation of ophicalcites. In detail, regional variations in Si, Mg and Al content are observed in zones of ophicalcite formation, indicating metasomatic reactions and Si-Al transport during long-lived fluid-rock interaction and channelling of hydrothermal fluids. Rare earth element and isotopic analysis indicate that the Si-rich fluids are derived from alteration of pyroxenes to talc and tremolite in ultramafic rocks at depth. Comparison with serpentinites from the Atlantis Massif and 15°20'N indicates a similar degree of Si-enrichment in the modern seafloor and suggests that Si-metasomatism may be a fundamental process associated with serpentinization at slow-spreading ridge environments. However, in contrast to metasomatic processes at the MAR, we find no geochemical evidence for a gabbroic source of the fluids, and thus, processes leading to Si-rich fluids can be variable in these environments.
Flat (0 0 1) surfaces of II-VI semiconductors: a lattice gas model
NASA Astrophysics Data System (ADS)
Ahr, Martin; Biehl, Michael
2002-05-01
We present a two-dimensional lattice gas with anisotropic interactions which model the known properties of the surface reconstructions of CdTe and ZnSe. In contrast to an earlier publication [M. Biehl, M. Ahr, W. Kinzel, M. Sokolowski, T. Volkmann, Europhys. Lett. 53 (2001) 169] the formation of anion dimers is considered. This alters the behaviour of the model considerably. We determine the phase diagram of this model by means of transfer matrix calculations and Monte Carlo simulations. We find qualitative agreement with the results of various experimental investigations.
NASA Astrophysics Data System (ADS)
Su, Kung-Yi; Hopkins, Philip F.; Hayward, Christopher C.; Faucher-Giguère, Claude-André; Kereš, Dušan; Ma, Xiangcheng; Robles, Victor H.
2017-10-01
Using high-resolution simulations with explicit treatment of stellar feedback physics based on the FIRE (Feedback In Realistic Environments) project, we study how galaxy formation and the interstellar medium (ISM) are affected by magnetic fields, anisotropic Spitzer-Braginskii conduction and viscosity, and sub-grid metal diffusion from unresolved turbulence. We consider controlled simulations of isolated (non-cosmological) galaxies but also a limited set of cosmological 'zoom-in' simulations. Although simulations have shown significant effects from these physics with weak or absent stellar feedback, the effects are much weaker than those of stellar feedback when the latter is modelled explicitly. The additional physics have no systematic effect on galactic star formation rates (SFRs). In contrast, removing stellar feedback leads to SFRs being overpredicted by factors of ˜10-100. Without feedback, neither galactic winds nor volume-filling hot-phase gas exist, and discs tend to runaway collapse to ultra-thin scaleheights with unphysically dense clumps congregating at the galactic centre. With stellar feedback, a multi-phase, turbulent medium with galactic fountains and winds is established. At currently achievable resolutions and for the investigated halo mass range 1010-1013 M⊙, the additional physics investigated here (magnetohydrodynamic, conduction, viscosity, metal diffusion) have only weak (˜10 per cent-level) effects on regulating SFR and altering the balance of phases, outflows or the energy in ISM turbulence, consistent with simple equipartition arguments. We conclude that galactic star formation and the ISM are primarily governed by a combination of turbulence, gravitational instabilities and feedback. We add the caveat that active galactic nucleus feedback is not included in the present work.
Bilirubin Inhibits Neointima Formation and Vascular Smooth Muscle Cell Proliferation and Migration
Peyton, Kelly J.; Shebib, Ahmad R.; Azam, Mohammad A.; Liu, Xiao-ming; Tulis, David A.; Durante, William
2012-01-01
Bilirubin is a heme metabolite generated by the concerted action of the enzymes heme oxygenase and biliverdin reductase. Although long considered a toxic byproduct of heme catabolism, recent preclinical, and clinical studies indicate the bilirubin exerts beneficial effects in the circulation. In the present study, we determined whether local administration of bilirubin attenuates neointima formation following injury of rat carotid arteries. In addition, the ability of bilirubin to regulate the proliferation and migration of human arterial smooth muscle cells (SMCs) was investigated. Local perivascular administration of bilirubin immediately following balloon injury of rat carotid arteries significantly attenuated neointima formation. Bilirubin-mediated inhibition of neointimal thickening was associated with a significant decrease in ERK activity and cyclin D1 and A protein expression, and an increase in p21 and p53 protein expression in injured blood vessels. Treatment of human aortic SMCs with bilirubin inhibited proliferation and migration in a concentration-dependent manner without affecting cell viability. In addition, bilirubin resulted in a concentration-dependent increase in the percentage of cells in the G0/G1 phase of the cell cycle and this was paralleled by a decrease in the fraction of cells in the S and G2M phases of the cell cycle. Finally, bilirubin had no effect on mitochondrial function and ATP content of vascular SMCs. In conclusion, these studies demonstrate that bilirubin inhibits neointima formation after arterial injury and this is associated with alterations in the expression of cell cycle regulatory proteins. Furthermore, bilirubin blocks proliferation and migration of human arterial SMCs and arrests SMCs in the G0/G1 phase of the cell cycle. Bilirubin represents an attractive therapeutic agent in treating occlusive vascular disease. PMID:22470341
Crean, Daniel E; Livens, Francis R; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C
2014-01-01
Use of depleted uranium (DU) munitions has resulted in contamination of the near-surface environment with penetrator residues. Uncertainty in the long-term environmental fate of particles produced by impact of DU penetrators with hard targets is a specific concern. In this study DU particles produced in this way and exposed to the surface terrestrial environment for longer than 30 years at a U.K. firing range were characterized using synchrotron X-ray chemical imaging. Two sites were sampled: a surface soil and a disposal area for DU-contaminated wood, and the U speciation was different between the two areas. Surface soil particles showed little extent of alteration, with U speciated as oxides U3O7 and U3O8. Uranium oxidation state and crystalline phase mapping revealed these oxides occur as separate particles, reflecting heterogeneous formation conditions. Particles recovered from the disposal area were substantially weathered, and U(VI) phosphate phases such as meta-ankoleite (K(UO2)(PO4) · 3H2O) were dominant. Chemical imaging revealed domains of contrasting U oxidation state linked to the presence of both U3O7 and meta-ankoleite, indicating growth of a particle alteration layer. This study demonstrates that substantial alteration of DU residues can occur, which directly influences the health and environmental hazards posed by this contamination.
Iceland as a Model for Chemical Alteration on Mars
NASA Technical Reports Server (NTRS)
Bishop, Janice L.; Schiffman, P.; Murad, E.; Southard, R.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Subglacial volcanic activity on Iceland has led to the formation of a variety of silicate and iron oxide-rich alteration products that may serve as a model for chemical alteration on Mars. Multiple palagonitic tuffs, altered pillow lavas, hydrothermal springs and alteration at glacial run-off streams were observed during a recent field trip in Iceland. Formation of alteration products and ferrihydrite in similar environments on Mars may have contributed to the ferric oxide-rich surface material there. The spectral and chemical properties of Icelandic alteration products and ferrihydrites are presented here.
Formation and resulfidization of a South Texas roll-type uranium deposit
Goldhaber, Martin B.; Reynolds, Richard L.; Rye, Robert O.
1979-01-01
Core samples from a roll type uranium deposit in Live Oak County, south Texas have been studied and results are reported for Se, Mo, FeS2 and organic-carbon distribution, sulfide mineral petrology, and sulfur isotopic composition of iron-disulfide phases. In addition, sulfur isotopic compositions of dissolved sulfate and sulfide from the modern ground water within the ore bearing sand have been studied. The suite of elements in the ore sand and their geometric relationships throughout the deposit are those expected for typical roll-type deposits with well-developed oxidation-reduction interfaces. However, iron-disulfide minerals are abundant in the altered tongue, demonstrating that this interval has been sulfidized after mineralization (resulfidized or rereduced). Iron disulfide minerals in the rereduced interval differ mineralogically and isotopically from those throughout the remainder of the deposit. The resulfidized sand contains dominantly pyrite that is enriched in 34S, whereas the sand beyond the altered tongue contains abundant marcasite that is enriched in the light isotope, 32S. Textural relationships between pyrite and marcasite help to establish relative timing of iron disulfide formation. In reduced rock outside the altered tongue, three distinct generations of iron disulfide are present. The oldest of these generations consists largely of pyrite with lesser amounts of marcasite. A major episode of marcasite formation contemporaneous with ore genesis postdates the oldest pyrite generation but predates a younger pyrite generation. Resulfidization probably led to the final pyrite stage recognized beyond the altered tongue. Stable isotope data establish that the source of sulfur for the resulfidization was fault-leaked H2S probably derived from the Edwards Limestone of Cretaceous age which underlies the deposit. The deposit formed in at least two stages: (1) a pre-ore process of host rock sulfidization which produced disseminated pyrite as the dominant iron disulfide phase; and (2) an ore-stage process which led to the development of the uranium roll with emplacement of the characteristic suite of minor and accessory elements and which produced abundant isotopically light marcasite. The host rock was modified by a post-ore stage of resulfidization which precipitated isotopically heavy pyrite. Sulfur isotopic compositions of sulfide and sulfate present in modern ground water within the host sand differ greatly from sulfur isotopic composition of iron disulfides formed during the resulfidization episode. Iron disulfide minerals formed from the sulfur species of modern ground water have not been unequivocally identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, A., E-mail: a.hartmann@baustoff.uni-hannover.de; Buhl, J.-Ch.
2010-04-15
Hydrothermal synthesis in the presence of sucrose has been carried out at 200 {sup o}C and autogeneous pressure in the system CaO-SiO{sub 2}-C{sub 12}H{sub 22}O{sub 11}-H{sub 2}O to investigate the influence of C{sub 12}H{sub 22}O{sub 11} on phase formation and the crystal habit of calcium silicate hydrates (CSH-phases). A sucrose/lime ratio of 0.5 was utilized in all experiments and the reactivity of the SiO{sub 2} source was varied using educts of different grain size of {approx}40 mesh and >230 mesh. CaO/SiO{sub 2} concentration ratios of 0.5 and 0.8 have been selected, the latter with respect to the composition of themore » important CSH-phase 11 A tobermorite. The results were compared with experiments under similar but sucrose-free conditions. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX-analysis) as well as Fourier transform infrared spectroscopy (FTIR-spectroscopy) have been applied for analyses. A retarding effect of sucrose on CSH-phase formation has been observed. Only minor amount of CSH without regular morphology was observed instead of typically fibrous 11 A tobermorite formed in the sucrose-free system. Sucrose altered the reaction mechanism in the CSH-system and hydrothermal process started with rapid reaction of sucrose and lime. The further course of crystallization was dominated by an extended precipitation of calcium carbonate and small amounts of calcium oxalate hydrate. Formation of these stable hydrothermal decomposition products of saccharated lime is strongly suppressing the CSH-crystallization.« less
Conformation-Specific Infrared and Ultraviolet Spectroscopy of Cold [YAPAA +H]+ and [YGPAA +H]+ Ions
NASA Astrophysics Data System (ADS)
Deblase, Andrew; Harrilal, Christopher; Lawler, John; Burke, Nicole; McLuckey, Scott; Timothy, Zwier
Incorporation of the unnatural D-proline stereoisomer into a peptide sequence is a typical strategy to synthesize model β-hairpin loops. Using conformation-specific IR and UV spectroscopy of cold ( 10 K) gas-phase ions, we unravel the inherent conformational preferences of the DP and LP diastereomers in the protonated peptide [YAPAA +H]+ because only intramolecular interactions are possible in this isolated regime. Consistent with the solution phase studies, one of the conformers of [YADPAA +H]+ is folded into a β-hairpin turn. However, a second predominant γ-turn conformer family is identified. The [YALPAA +H]+ stereoisomer discourages β-hairpin formation. We show that the trans(DP) ->cis (LP) isomerization is sterically driven and can be reversed by substituting [YGLPAA +H]+ for [YALPAA +H]+. Therefore, we provide a basis for understanding residue-specific alterations in the potential energy surface and reveal new insights into the origin of β-hairpin formation from the bottom-up. National Science Foundation (NSF CHE 1213289) and the U.S. Department of Energy (Office of Basic Energy Sciences under Award Number FG02-00ER15105).
Analysis of Radiation Effects in Silicon using Kinetic Monte Carlo Methods
Hehr, Brian Douglas
2014-11-25
The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. Neutron irradiation can instigate the formation of quasi-stable defect structures, thereby introducing new energy levels into the bandgap that alter carrier lifetimes and give rise to such phenomena as gain degradation in bipolar junction transistors. Normally, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. A kinetic Monte Carlo (KMC) code has been developed to model both thermal and carrier injection annealing of initial defect structures in semiconductor materials.more » The code is employed to investigate annealing in electron-irradiated, p-type silicon as well as the recovery of base current in silicon transistors bombarded with neutrons at the Los Alamos Neutron Science Center (LANSCE) “Blue Room” facility. Our results reveal that KMC calculations agree well with these experiments once adjustments are made, within the appropriate uncertainty bounds, to some of the sensitive defect parameters.« less
NASA Astrophysics Data System (ADS)
Janssen, C.; Wirth, R.; Kienast, M.; Yabe, Y.; Sulem, J.; Dresen, G. H.
2015-12-01
Chemical and mechanical effects of fluids influence the fault mechanical behavior. We analyzed fresh fault rocks from several scientific drilling projects to study the effects of fluids on fault strength. For example, in drill core samples on a rupture plane of an Mw 2.2 earthquake in a deep gold mine in South Africa the main shock occurred on a preexisting plane of weakness that was formed by fluid-rock interaction (magnesiohornblende was intensively altered to chlinochlore). The plane acted as conduit for hydrothermal fluids at some time in the past. The chemical influence of fluids on mineralogical alteration and geomechanical processes in fault core samples from SAFOD (San Andreas Fault Observatory at Depth) is visible in pronounced dissolution-precipitation processes (stylolites, solution seams) as well as in the formation of new phases. Detrital quartz and feldspar grains are partially dissolved and replaced by authigenic illite-smectite (I-S) mixed-layer clay minerals. Transmission Electron Microscopy (TEM) imaging of these grains reveals that the alteration processes and healing were initiated within pores and small intra-grain fissures. Newly formed phyllosilicates growing into open pore spaces likely reduced the fluid permeability. The mechanical influence of fluids is indicated by TEM observations, which document open pores that formed in-situ in the gouge material during or after deformation. Pores were possibly filled with formation water and/or hydrothermal fluids suggesting elevated fluid pressure preventing pore collapse. Fluid-driven healing of fractures in samples from SAFOD and the DGLab Gulf of Corinth project is visible in cementation. Cathodoluminescence microscopy (CL) reveals different generations of calcite veins. Differences in CL-colors suggest repeated infiltration of fluids with different chemical composition from varying sources (formation and meteoric water).
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Mertzman, A.
2006-01-01
Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.
Opaline silica in young deposits on Mars
Milliken, Ralph E.; Swayze, Gregg A.; Arvidson, Raymond E.; Bishop, Janice L; Clark, Roger N.; Ehlmann, Bethany L.; Green, Robert O.; Grotzinger, John P.; Morris, R.V.; Murchie, Scott L.; Mustard, John F.; Weitz, C.
2008-01-01
High spatial and spectral resolution reflectance data acquired by the Mars Reconnaissance Orbiter Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument reveal the presence of H2O- and SiOH-bearing phases on the Martian surface. The spectra are most consistent with opaline silica and glass altered to various degrees, confirming predictions based on geochemical experiments and models that amorphous silica should be a common weathering product of the basaltic Martian crust. These materials are associated with hydrated Fe sulfates, including H3O-bearing jarosite, and are found in finely stratified deposits exposed on the floor of and on the plains surrounding the Valles Marineris canyon system. Stratigraphic relationships place the formation age of these deposits in the late Hesperian or possibly the Amazonian, implying that aqueous alteration continued to be an important and regionally extensive process on Mars during that time.
Micro-scale displacement of NAPL by surfactant and microemulsion in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Javanbakht, Gina; Arshadi, Maziar; Qin, Tianzhu; Goual, Lamia
2017-07-01
Industrial processes such as remediation of oil-contaminated aquifers and enhanced oil recovery (EOR) often utilize chemical additives to increase the removal of non-aqueous phase liquids (NAPLs) from subsurface formations. Although the majority of crude oils are classified as LNAPLs, they often contain heavy molecules (DNAPLs) such as asphaltenes that tend to adsorb on minerals and alter their wettability. Effective additives are therefore those that can reduce the threshold capillary pressure, thus mobilizing LNAPL inside pore spaces and solubilizing DNAPL from rock surfaces. Nonionic surfactants in brine have often been injected to oil or contaminated aquifer formations in order to enhance NAPL displacement through IFT reduction. Recent studies revealed that surfactant-based microemulsions have a higher tendency to alter the wettability of surfaces, compared to surfactants alone, leading to more effective NAPL removal. However, the impact of these additives on pore-scale displacement mechanisms and multi-phase fluid occupancy in porous media is, to date, still unclear. In this study, x-ray microtomography experiments were performed to investigate the impact of surfactants and microemulsions on the mobilization and solubilization of NAPL in heterogeneous rocks. Saturation profiles indicated that an incremental NAPL removal was attained by addition of microemulsion to brine, compared with surfactant. Residual cluster size distributions revealed that microemulsions could break up large clusters into smaller disconnected ones, improving their mobilization in the rock. In-situ contact angle measurements showed that microemulsions could reverse the wettability of rough contaminated surfaces to a higher extent than surfactants. Unlike surfactant alone, the surfactant-solvent blend in the carrier fluid of microemulsions was able to penetrate rough grain surfaces, particularly those of dolomite cement, and desorb asphaltenes in the form of small-emulsified NAPL droplets, which were eventually washed away by the continuous flow process. The greater wettability alteration caused by microemulsions resulted in a lower threshold capillary pressure, which in turn promoted the mobilization of NAPL ganglia more than surfactant alone.
Hatch, J.R.; Morey, G.B.
1984-01-01
In the type section (Lonsdale 65-1 core, Rice County, Minnesota) the Solor Church Formation (Middle Proterozoic, Keweenawan Supergroup) consists primarily of reddish-brown mudstone and siltstone and pale reddish-brown sandstone. The sandstone and siltstone are texturally and mineralogically immature. Hydrocarbon source-rock evaluation of bluish-gray, greenish-gray and medium-dark-gray to grayish-black beds, which primarily occur in the lower 104 m (340 ft) of this core, shows: (1) the rocks have low organic carbon contents (<0.5 percent for 22 of 25 samples); (2) the organic matter is thermally very mature (Tmax = 494°C, sample 19) and is probably near the transition between the wet gas phase of catagenesis and metagenesis (dry gas zone); and (3) the rocks have minimal potential for producing additional hydrocarbons (genetic potential <0.30 mgHC/gm rock). Although no direct evidence exists from which to determine maximum depths of burial, the observed thermal maturity of the organic matter requires significantly greater depths of burial and(or) higher geothermal gradients. It is likely, at least on the St. Croix horst, that thermal alteration of the organic matter in the Solor Church took place relatively early, and that any hydrocarbons generated during this early thermal alteration were probably lost prior to deposition of the overlying Fond du Lac Formation (Middle Proterozoic, Keweenawan Supergroup).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatch, J.R.; Morey, G.B.
In the type section (Lonsdale 65-1 core, Rice County, Minnesota) the Solar Church Formation (Middle Proterozoic, Keweenawan Supergroup) consists primarily of reddish-brown mudstone and siltstone and pale reddish-brown sandstone. The sandstone and siltstone are texturally and mineralogically immature. Hydrocarbon source-rock evaluation of bluish-gray, greenish-gray and medium-dark-gray to grayish-black beds, which primarily occur in the lower 104 m (340 ft) of this core, shows: (1) the rocks have low organic carbon contents (<0.5% for 22 of 25 samples); (2) the organic matter is thermally very mature (T/sub max/ = 494/sup 0/C, sample 19) and is probably near the transition between themore » wet gas phase of catagenesis and metagenesis (dry gas zone); and (3) the rocks have minimal potential for producing additional hydrocarbons (genetic potential <0.30 mgHC/gm rock). Although no direct evidence exists from which to determine maximum depths of burial, the observed thermal maturity of the organic matter requires significantly greater depths of burial and(or) higher geothermal gradients. It is likely, at least on the St. Croix horst, that thermal alteration of the organic matter in the Solor Church took place relatively early, and that any hydrocarbons generated during this early thermal alteration were probably lost prior to deposition of the overlying Fond du Lac Formation (Middle Proterozoic, Keweenawan Supergroup). 5 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Gin, S.; Jollivet, P.; Barba Rossa, G.; Tribet, M.; Mougnaud, S.; Collin, M.; Fournier, M.; Cadel, E.; Cabie, M.; Dupuy, L.
2017-04-01
Significant efforts have been made into understanding the dissolution of silicate glasses and minerals, but there is still debate about the formation processes and the properties of surface layers. Here, we investigate glass coupons of ISG glass - a 6 oxide borosilicate glass of nuclear interest - altered at 90 °C in conditions close to saturation and for durations ranging from 1 to 875 days. Altered glass coupons were characterized from atomic to macroscopic levels to better understand how surface layers become protective. With this approach, it was shown that a rough interface, whose physical characteristics have been modeled, formed in a few days and then propagated into the pristine material at a rate controlled by the reactive transport of water within the growing alteration layer. Several observations such as stiff interfacial B, Na, and Ca profiles and damped profiles within the rest of the alteration layer are not consistent with the classical inter-diffusion model, or with the interfacial dissolution-precipitation model. A new paradigm is proposed to explain these features. Inter-diffusion, a process based on water ingress into the glass and ion-exchange, may only explain the formation of the rough interface in the early stage of glass corrosion. A thin layer of altered glass is formed by this process, and as the layer grows, the accessibility of water to the reactive interface becomes rate-limiting. As a consequence, only the most easily accessible species are dissolved. The others remain undissolved in the alteration layer, probably fixed in highly hydrolysis resistant clusters. A new estimation of water diffusivity in the glass when covered by the passivating layer was determined from the shift between B and H profiles, and was 10-23 m2.s-1, i.e. approximately 3 orders of magnitude lower than water diffusivity in the pristine material. Overall, in the absence of secondary crystalline phases that could consume the major components of the alteration layer (Si, Al), it is assumed that the glass dissolution rate continuously decreases due to the growth of the transport limiting alteration layer, in good agreement with residual rates reported in the literature for this glass. According to our results it can be expected that new kinetic models should emerge from an accurate time dependent budget of water within the nanoporous alteration layer.
Liandratite from Karkonosze pegmatites, Sudetes, Southwestern Poland
NASA Astrophysics Data System (ADS)
Matyszczak, Witold
2018-06-01
The chemical composition of liandratite, U6+(Nb,Ta)2O8, was determined from material collected in Niobium, Yttrium, Fluorine type (NYF) pegmatites of the Karkonosze intrusion (Sudetes, SW Poland). Liandratite occurs mainly as rims, up to 40 µm thick, and fracture infillings in fergusonite-(Y) and other Nb-Ta-Ti minerals. Its formation was related to the fluid-driven alteration of primary minerals by three potential mechanisms: (i) direct replacement of a primary mineral by liandratite; (ii) breakdown of the primary mineral to liandratite and a product with the composition of minerals of the pyrochlore group; (iii) multistage alteration, which involved: removal of A-site cations (mostly Y + REE with the exception of U4+) and formation of phases with the composition of pyrochlore group minerals; then crystallization of U-, Bi-, Pb-rich pyrochlores and their replacement by liandratite. The chemical compositions of liandratite formed by the breakdown of different primary minerals are also different, mainly in their U, Ti and Nb contents. Excess Ti, relative to the U6+Nb2O8 end-member, is incorporated into the structure together with additional U. The Ti content of liandratite, and partially through this the U content, are dependent on the nature of the precursor mineral.
Iliakis, George; Murmann, Tamara; Soni, Aashish
2015-11-01
DNA double strand breaks (DSB) are the most deleterious lesions for the integrity of the genome, as their misrepair can lead to the formation of chromosome translocations. Cells have evolved two main repair pathways to suppress the formation of these genotoxic lesions: homology-dependent, error-free homologous recombination repair (HRR), and potentially error-prone, classical, DNA-PK-dependent non-homologous end-joining (c-NHEJ). The most salient feature of c-NHEJ, speed, will largely suppress chromosome translocation formation, while sequence alterations at the junction remain possible. It is now widely accepted that when c-NHEJ is inactivated, globally or locally, an alternative form of end-joining (alt-EJ) removes DSBs. Alt-EJ operates with speed and fidelity markedly lower than c-NHEJ, causing thus with higher probability chromosome translocations, and generating more extensive sequence alterations at the junction. Our working hypothesis is that alt-EJ operates as a backup to c-NHEJ. Recent results show that alt-EJ can also backup abrogated HRR in G2 phase cells, again at the cost of elevated formation of chromosome translocations. These observations raise alt-EJ to a global rescuing mechanism operating on ends that have lost their chromatin context in ways that compromise processing by HRR or c-NHEJ. While responsible for eliminating from the genome highly cytotoxic DNA ends, alt-EJ provides this function at the price of increased translocation formation. Here, we analyze recent literature on the mechanisms of chromosome translocation formation and propose a functional hierarchy among DSB processing pathways that makes alt-EJ the global backup pathway. We discuss possible ramifications of this model in cellular DSB management and pathway choice, and analyze its implications in radiation carcinogenesis and the design of novel therapeutic approaches. Copyright © 2015 Elsevier B.V. All rights reserved.
Alteration of Hormonal Levels in a Rootless Epiphytic Bromeliad in Different Phenological Phases.
Mercier; Endres
1999-11-01
Major changes in indole-3-acetic acid (IAA) and cytokinin (CK) levels occur at different phenological phases of Tillandsia recurvata shoots. This epiphytic rootless bromeliad was chosen as suitable material for hormonal analysis because CK synthesis is restricted to the shoots, thus avoiding problems in the interpretation of results caused by translocation and interconversion of CK forms between roots and leaves encountered in plants with both organs. Young plants of T. recurvata have weak apical dominance because side shoots appeared early in development, and branch growth was correlated with a strong increase in the level of zeatin. The flowering phase was characterized by a significant increase in free base CKs, zeatin, and isopentenyladenine compared with the levels found in adult vegetative shoots. In contrast, both free-base CKs declined in the fruiting phenological phase, and the IAA level increased dramatically. It was concluded that in phases characterized by intense organ formation, such as in the juvenile and flowering stages, there was an enhancement of CK content, mainly caused by zeatin, leading to a lower IAA/CK ratio. Higher ratios were correlated with phases that showed no organogenesis, such as adult and fruiting phenologies.
Fields, Joshua A; Li, Jiaqi; Gulbronson, Connor J; Hendrixson, David R; Thompson, Stuart A
2016-01-01
Campylobacter jejuni infection is a leading bacterial cause of gastroenteritis and a common antecedent leading to Gullian-Barré syndrome. Our previous data suggested that the RNA-binding protein CsrA plays an important role in regulating several important phenotypes including motility, biofilm formation, and oxidative stress resistance. In this study, we compared the proteomes of wild type, csrA mutant, and complemented csrA mutant C. jejuni strains in an effort to elucidate the mechanisms by which CsrA affects virulence phenotypes. The putative CsrA regulon was more pronounced at stationary phase (111 regulated proteins) than at mid-log phase (25 regulated proteins). Proteins displaying altered expression in the csrA mutant included diverse metabolic functions, with roles in amino acid metabolism, TCA cycle, acetate metabolism, and various other cell processes, as well as pathogenesis-associated characteristics such as motility, chemotaxis, oxidative stress resistance, and fibronectin binding. The csrA mutant strain also showed altered autoagglutination kinetics when compared to the wild type. CsrA specifically bound the 5' end of flaA mRNA, and we demonstrated that CsrA is a growth-phase dependent repressor of FlaA expression. Finally, the csrA mutant exhibited reduced ability to colonize in a mouse model when in competition with the wild type, further underscoring the role of CsrA in C. jejuni colonization and pathogenesis.
Fields, Joshua A.; Li, Jiaqi; Gulbronson, Connor J.; Hendrixson, David R.
2016-01-01
Campylobacter jejuni infection is a leading bacterial cause of gastroenteritis and a common antecedent leading to Gullian-Barré syndrome. Our previous data suggested that the RNA-binding protein CsrA plays an important role in regulating several important phenotypes including motility, biofilm formation, and oxidative stress resistance. In this study, we compared the proteomes of wild type, csrA mutant, and complemented csrA mutant C. jejuni strains in an effort to elucidate the mechanisms by which CsrA affects virulence phenotypes. The putative CsrA regulon was more pronounced at stationary phase (111 regulated proteins) than at mid-log phase (25 regulated proteins). Proteins displaying altered expression in the csrA mutant included diverse metabolic functions, with roles in amino acid metabolism, TCA cycle, acetate metabolism, and various other cell processes, as well as pathogenesis-associated characteristics such as motility, chemotaxis, oxidative stress resistance, and fibronectin binding. The csrA mutant strain also showed altered autoagglutination kinetics when compared to the wild type. CsrA specifically bound the 5’ end of flaA mRNA, and we demonstrated that CsrA is a growth-phase dependent repressor of FlaA expression. Finally, the csrA mutant exhibited reduced ability to colonize in a mouse model when in competition with the wild type, further underscoring the role of CsrA in C. jejuni colonization and pathogenesis. PMID:27257952
NASA Astrophysics Data System (ADS)
Saperstein, E.; Arnoult, K. M.; Wdowiak, T. J.; Gerakines, P. A.
2002-09-01
Polycyclic aromatic hydrocarbons (PAHs) have been proposed as a component of interstellar dust. PAHs have also been positively identified in interplanetary dust particles (IDPs) and in carbonaceous meteorites. Many such meteorites show strong evidence for aqueous alteration of their mineral phases, which can be spatially correlated to the presence of organics. This suggests the possibility that PAHs, incorporated into a meteorite parent body, may have been altered along with neighboring minerals and other constituents in the presence of liquid water. We present preliminary results of the alteration of a laboratory analog of interstellar carbonaceous dust, produced by processing naphthalene in a hydrogen plasma, by exposing it to water at elevated temperature (100, 150, and 200 C) and pressure in a sealed container for 24 hours. This is a simulation of pressure capping during the accretion of the parent body. The high temperatures chosen here bring water near its critical point, at which it becomes extremely reactive. One sign of this reactivity is seen in the observed color of the aqueously altered product, changing from golden yellow (original color) to black at 200 C. Comparison of the infrared spectra of the original dust analog with those of the aqueously altered product show an oxidation feature at 1700 cm-1, present in all three products but absent in the dust analog. High performance liquid chromatography (HPLC) of the aqueously altered product, refluxed in tetrahydrafuran, shows a variety of low retention peaks (<600 s), absent in the original dust analog.
Point defect formation in optical materials expos ed to the space environment
NASA Astrophysics Data System (ADS)
Allen, J. L.; Seifert, N.; Yao, Y.; Albridge, R. G.; Barnes, A. V.; Tolk, N. H.; Strauss, A. M.; Linton, Roger C.; Kamenetzky, R. R.; Vaughn, Jason A.
1995-02-01
Point defect formation associated with early stages of optical damage was observed unexpectedly in two, and possibly three, different optical materials subjected to short-duration space exposure. Three calcium fluoride, two lithium fluoride, and three magnesium fluoride samples were flown on Space Shuttle flight STS-46 as part of the Evaluation of Oxygen Interactions with Materials - Third Phase experiment. One each of the calcium and magnesium fluoride samples was held at a fixed temperature of 60 C during the space exposure, while the temperatures of the other samples were allowed to vary with the ambient temperature of the shuttle cargo bay. Pre-flight and post-flight optical absorption measurements were performed on all of the samples. With the possible exception of the magnesium fluoride samples, every sample clearly showed the formation of F-centers in that section of the sample that was exposed to the low earth orbit environment. Solar vacuum ultraviolet radiation is the most probable primary cause of the defect formation; however, the resulting surface metallization may be synergistically altered by the atomic oxygen environment.
NASA Technical Reports Server (NTRS)
Ming, D. W.; Morris, R. V.; Rampe, E. B.; Golden, D. C.; Quinn, J. E.
2015-01-01
The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Curiosity rover has detected abundant amounts (approx. 25-30 weight percentage) of X-ray amorphous materials in a windblown deposit (Rocknest) and in a sedimentary mudstone (Cumberland and John Klein) in Gale crater, Mars. On Earth, X-ray amorphous components are common in soils and sediments, but usually not as abundant as detected in Gale crater. One hypothesis for the abundant X-ray amorphous materials on Mars is limited interaction of liquid water with surface materials, kinetically inhibiting maturation to more crystalline phases. The objective of this study was to characterize the chemistry and mineralogy of soils formed in the Antarctica Dry Valleys, one of the driest locations on Earth. Two soils were characterized from different elevations, including a low elevation, coastal, subxerous soil in Taylor Valley and a high elevation, ultraxerous soil in University Valley. A variety of techniques were used to characterize materials from each soil horizon, including Rietveld analysis of X-ray diffraction data. For Taylor Valley soil, the X-ray amorphous component ranged from about 4 weight percentage in the upper horizon to as high as 15 weight percentage in the lowest horizon just above the permafrost layer. Transmission electron microscopy indicated that the presence of short-range ordered (SRO) smectite was the most likely candidate for the X-ray amorphous materials in the Taylor Valley soils. The SRO smectite is likely an aqueous alteration product of mica inherited from granitic materials during glaciation of Taylor Valley. The drier University Valley soils had lower X-ray amorphous contents of about 5 weight percentage in the lowest horizon. The X-ray amorphous materials in University Valley are attributed to nanoparticles of TiO2 and possibly amorphous SiO2. The high abundance of X-ray amorphous materials in Taylor Valley is surprising for one of the driest places on Earth. These materials may have been physically and chemical altered during soil formation, however, the limited interaction with water and low temperatures may result in the formation of "immature" X-ray amorphous or SRO materials. Perhaps, a similar process contributes to the formation of the high content of X-ray amorphous materials detected on Mars.
NASA Astrophysics Data System (ADS)
Trigo-Rodriguez, J. M.
2011-05-01
Several sample return missions are being planned by different space agencies for in situ sampling of undifferentiated bodies. Such missions wish to bring back to Earth pristine samples from C-class asteroids and comets to obtain clues on solar system formation conditions. A careful selection of targeted areas is required as many C-class asteroids and periodic comets have been subjected to collisional and space weathering processing since their formation. Their surfaces have been reworked by impacts as pointed out by the brecciated nature of many chondrites arrived to Earth, exhibiting different levels of thermal and aqueous alteration. It is not surprising that pristine chondrites can be considered quite rare in meteorite collections because they were naturally sampled in collisions, but several groups of carbonaceous chondrites contain a few members with promising unaltered properties. The CI and CM groups suffered extensive aqueous alteration [1], but for the most part escaped thermal metamorphism (only a few CMs evidence heating temperature over several hundred K). Both chondrite groups are water-rich, containing secondary minerals as consequence of the pervasive alteration of their primary mineral phases [2]. CO, CV, and CR chondrite groups suffered much less severe aqueous alteration, but some CRs are moderately aqueously altered. All five groups are good candidates to find unequilibrated materials between samples unaffected by aqueous alteration or metamorphism. The water was incorporated during accretion, and was released as consequence of shock after impact compaction, and/or by mild radiogenic heating. Primary minerals were transformed by water into secondary ones. Water soaking the bodies participated in chemical homogenization of the different components [1]. Hydrothermal alteration and collisional metamorphism changed the abundances of isotopically distinguishable presolar silicates [3]. Additional instruments in the landers to identify aqueous alteration signatures could help to get samples unbiased by parent body processes. Future work in this regard could be essential to successfully getting back to Earth samples to unveil the conditions in which the solar system formed. REF: [1] Trigo-Rodriguez J.M. & Blum J. 2009. Plan. Space Sci.57,243; [2] Rubin et al. (2007) GCA 71,2361; [3] Trigo-Rodriguez J.M. & Blum J. (2009). Pub.Ast.Soc.Aust.26,289
NASA Astrophysics Data System (ADS)
Zribi, A.; Clark, A.; Zavalij, L.; Borgesen, P.; Cotts, E. J.
2001-09-01
The evolution of intermetallics at and near SnAgCu/Cu and SnAgCu/Ni interfaces was examined, and compared to the behavior, near PbSn/metal and Sn/metal interfaces. Two different solder compositions were considered, Sn93.6Ag4.7Cu1.7 and Sn95.5Ag3.5Cu1.0 (Sn91.8Ag5.1 Cu3.1 and Sn94.35Ag3.8Cu1.85 in atomic percent). In both cases, phase formation and growth at interfaces with Cu were very similar to those commonly observed for eutectic SnPb solder. However, the evolution of intermetallics at SnAgCu/Ni interfaces proved much more complex. The presence of the Cu in the solder dramatically altered the phase selectivity at the solder/Ni interface and affected the growth kinetics of intermetallics. As long as sufficient Cu was available, it would combine with Ni and Sn to form (Cu,Ni)6)Sn5 which grew instead of the Ni3Sn4 usually observed in PbSn/Ni and Sn/Ni diffusion couples. This growing phase would, however, eventually consume essentially all of the available Cu in the solder. Because the mechanical properties of Sn-Ag-Cu alloys, depend upon the Cu content, this consumption can be expected to alter the mechanical properties of these Pb-free solderjoints. After depletion of the Cu from the solder, further annealing then gradually transformed the (Cu,Ni)6Sn5 phase into a (Ni,Cu)3Sn4 phase.
Steady state solutions to dynamically loaded periodic structures
NASA Technical Reports Server (NTRS)
Kalinowski, A. J.
1980-01-01
The general problem of solving for the steady state (time domain) dynamic response (i.e., NASTRAN rigid format-8) of a general elastic periodic structure subject to a phase difference loading of the type encountered in traveling wave propagation problems was studied. Two types of structural configurations were considered; in the first type, the structure has a repeating pattern over a span that is long enough to be considered, for all practical purposes, as infinite; in the second type, the structure has structural rotational symmetry in the circumferential direction. The theory and a corresponding set of DMAP instructions which permits the NASTRAN user to automatically alter the rigid format-8 sequence to solve the intended class of problems are presented. Final results are recovered as with any ordinary rigid format-8 solution, except that the results are only printed for the typical periodic segment of the structure. A simple demonstration problem having a known exact solution is used to illustrate the implementation of the procedure.
Uptake of Alkylamines on Dicarboxylic Acids Relevant to Secondary Organic Aerosol Formation
NASA Astrophysics Data System (ADS)
Marrero-Ortiz, W.; Secrest, J.; Zhang, R.
2017-12-01
Aerosols play a critical role in climate directly by scattering and absorbing solar radiation, and indirectly by functioning as cloud condensation nuclei (CCN); both represent the largest uncertainties in climate predictions. New particle formation contributes significantly to CCN production; however, the mechanisms related to particle nucleation and growth processes are not well understood. Organic acids are atmospherically abundant, and their neutralization by low molecular weight amines may result in the formation of stable low volatility aminium salt products contributing to the growth of secondary organic aerosols and even the alteration of the aerosol properties. The acid-base neutralization of particle phase succinic acid and tartaric acid by low molecular weight aliphatic amines, i.e. methylamine, dimethylamine, and trimethylamine, has been investigated by employing a low-pressure fast flow reactor at 298K with an ion drift - chemical ionization mass spectrometer (ID-CIMS). The heterogeneous uptake is time dependent and influenced by organic acids functionality, alkylamines basicity, and steric effect. The implications of our results to atmospheric nanoparticle growth will be discussed.
Double emulsion formation through hierarchical flow-focusing microchannel
NASA Astrophysics Data System (ADS)
Azarmanesh, Milad; Farhadi, Mousa; Azizian, Pooya
2016-03-01
A microfluidic device is presented for creating double emulsions, controlling their sizes and also manipulating encapsulation processes. As a result of three immiscible liquids' interaction using dripping instability, double emulsions can be produced elegantly. Effects of dimensionless numbers are investigated which are Weber number of the inner phase (Wein), Capillary number of the inner droplet (Cain), and Capillary number of the outer droplet (Caout). They affect the formation process, inner and outer droplet size, and separation frequency. Direct numerical simulation of governing equations was done using volume of fluid method and adaptive mesh refinement technique. Two kinds of double emulsion formation, the two-step and the one-step, were simulated in which the thickness of the sheath of double emulsions can be adjusted. Altering each dimensionless number will change detachment location, outer droplet size and droplet formation period. Moreover, the decussate regime of the double-emulsion/empty-droplet is observed in low Wein. This phenomenon can be obtained by adjusting the Wein in which the maximum size of the sheath is discovered. Also, the results show that Cain has significant influence on the outer droplet size in the two-step process, while Caout affects the sheath in the one-step formation considerably.
Role of CT scanning in formation evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergosh, J.L.; Dibona, B.G.
1988-01-01
The use of the computerized tomographic (CT) scanner in formation evaluation of difficult to analyze core samples has moved from the research and development phase to daily, routine use in the core-analysis laboratory. The role of the CT scanner has become increasingly important as geologists try to obtain more representative core material for accurate formation evaluation. The most common problem facing the core analyst when preparing to measure petrophysical properties is the selection of representative and unaltered core samples for routine and special core testing. Recent data have shown that heterogeneous reservoir rock can be very difficult, if not impossible,more » to assess correctly when using standard core examination procedures, because many features, such as fractures, are not visible on the core surface. Another problem is the invasion of drilling mud into the core sample. Flushing formation oil and water from the core can greatly alter the saturation and distribution of fluids and lead to serious formation evaluation problems. Because the quality and usefulness of the core date are directly tied to proper sample selection, it has become imperative that the CT scanner be used whenever possible.« less
A powerful enhancement to the DMAP alter capability
NASA Technical Reports Server (NTRS)
Pamidi, P. R.
1989-01-01
A powerful enhancement to the DMAP alter capability was developed and is available on all RPK-supported versions of COSMIC/NASTRAN. This enhancement involves the addition of two alter control cards, called INSERT and DELETE, to the Executive Control Deck. These cards allow for DMAP alters to be made by referencing DMAP statements by their module names rather than by their statement numbers in the rigid format DMAP sequence. This allows for increased user convenience and flexibility and makes alters more meaningful to the user. In addition, DMAP alter packages employing the alter control cards will be much less susceptible to future changes in rigid format DMAPs than alter packages employing the standard ALTER control cards. The usage of the cards is illustrated by examples.
Geology of the Lake Mary quadrangle, Iron County, Michigan
Bayley, Richard W.
1959-01-01
The Lake Mary quadrangle is in eastern Iron County, in the west part of the Upper Peninsula of Michigan. The quadrangle is underlain by Lower and Middle Precambrian rocks, formerly designated Archean and Algonkian rocks, and is extensively covered by Pleistocene glacial deposits. A few Upper Precambrian (Keweenawan) diabase dikes and two remnants of sandstone and dolomite of early Paleozoic age are also found in the area. The major structural feature is the Holmes Lake anticline, the axis of which strikes northwest through the northeast part of the quadrangle. Most of the quadrangle, therefore, is underlain by rock of the west limb of the anticline. To the northwest along the fold axis, the Holmes Lake anticline is separated from the Amasa oval by a saddle of transverse folds in the vicinity of Michigamme Mountain in the Kiernan quadrangle. The Lower Precambrian rocks are represented by the Dickinson group and by porphyritic red granite whose relation to the Dickinson group is uncertain, but which may be older. The rocks of the Dickinson group are chiefly green to black metavolcanic schist and red felsite, some of the latter metarhyolite. The dark schist is commonly magnetic. The Dickinson group underlies the core area of the Holmes Lake anticline, which is flanked by steeply dipping Middle Precambrian formations of the Animikie series. A major unconformity separates the Lower Precambrian rocks from the overlying Middle Precambrian rocks. In ascending order the formations of the Middle Precambrian are the Randville dolomite, the Hemlock formation, which includes the Mansfield iron-bearing slate member, and the Michigamme slate. An unconformity occurs between the Hemlock formation and Michigamme slate. The post-Hemlock unconformity is thought to be represented in the Lake Mary quadrangle by the absence of iron-formation of the Amasa formation, which is known to lie between the Hemlock and the Michigamme to the northwest of the Lake Mary quadrangle in the Crystal Falls quadrangle. Post-Hemlock erosion may account also for the absence of iron-formation of the Fence River formation on the east limb of the Holmes Lake anticline within the Lake Mary quadrangle. The Randville dolomite is not exposed and is known only from diamond drilling in the northeast part of the area where it occurs in the east and west limbs of the Holmes Lake anticline. The formation has a maximum thickness of about 2,100 feet; this includes a lower arkosic phase, some of which is quartz pebble conglomerate, a medial dolomitic phase, and an upper slate phase. The triad is gradational. Included within the formation are a few beds of chloritic schist thought to be of volcanic origin. An unconformity between the Randville and the succeeding Hemlock is not indicated in the quadrangle, but is probably present. The Hemlock formation is best exposed in the northwest and south-central parts of the area. The apparent thickness of the formation is 10,000- 17,000 feet. It is composed mainly of mafic metavolcanic rocks and intercalated slate and iron-formation. In the north part of the quadrangle the volcanic rocks are greenstone, which includes altered basaltic flow rocks, volcanic breccia, tuff, and slate. Pillow structures are common in the metabasalt. It is not certain if any Hemlock rocks are present in the east limb of the Holmes Lake anticline. In the south part of the quadrangle, the rocks of the Hemlock are chiefly chlorite and hornblende schist and hornfels. Pyroxene hornfels is sparingly present. At least two sedimentary slate belts are included in the Hemlock formation. One of these, the Mansfield iron-bearing slate member, includes in its upper part an altered chert-siderite iron-formation 30 to over 150 feet thick from which iron ore has been mined at the Mansfield location. The position of the iron-bearing rocks has been determined magnetically, and past explorations for iron ore are discussed. Though probably; unconformable, the contact between the Hemlock and the Michigamme formations appears conformable. The Michigamme slate consists of at least 4,000 feet of interbedded mica schist and granulite, the altered equivalents of the slate and graywacke characteristic of the Michigamme in adjacent areas. The Michigamme rocks are best exposed in the south part of the quadrangle in the vicinity of Peavy Pond. Two periods of regional metamorphism have resulted in the alteration of almost all of the rocks of the quadrangle. The Lower Precambrian rocks underwent at least one period of metamorphism, uplift, and erosion before the deposition of the Randville dolomite. After the deposition of the Michigamme slate, a post-Middle Precambrian period of regional metamorphism occurred with attending deformation and igneous intrusion. The grade of metamorphism rises toward the south in the area. The rocks in the northern two-thirds of the quadrangle are representative of greenschist facies of regional metamorphism, whereas the rocks in the southern onethird of the quadrangle are representative of the albite-epidote-amphibolite, the amphibolite, and the pyroxene hornfels facies, the metamorphic node centering about the intrusive Peavy Pond complex in the Peavy Pond area. The Precambrian sedimentary and volcanic rocks are cut by intrusive igneous rocks of different types and several different ages. Gabbroic sills and dikes invaded the Hemlock rocks at some time after the Hemlock was deposited and before the post-Middle Precambrian orogeny and metamorphism. Some contact metamorphism attended the intrusion of the major sills. One of the sills, the West Kiernan sill, is well differentiated. A syntectonic igneous body, composed of gabbro and minor ultramafic parts and fringed with intermediate and felsic differentiates and hybrids, the Peavy; Pond complex, was intruded into the Hemlock and Michigamme formations during the post-Middle Precambrian orogeny. The complex is situated in the Peavy Pond area at the crest of the regional metamorphic node. Contact-altered sedimentary and volcanic rocks margin the complex. The effects of regional metamorphism have been superposed on the contact metamorphic rocks peripheral to the complex and on the igneous rocks of the complex as well. The mafic augite-bearing rocks of the complex emplaced early in the orogeny were deformed by granulation at the peak of the deformation and subsequently metamorphosed to hornblende rocks. Some of the intermediate and felsic rocks of the complex were foliated by the deformation, while the more fluid, felsic parts of the complex were intruded under orogenic stress and crystallized after the peak of deformation. The deformation culminated in major faulting during which the formations were dislocated, and some of the granite of the complex was extremely brecciated. A few diabase dikes, probably of Keweenawan age, have intruded the deformed and altered Animikie rocks. The only known metallic resource is iron ore. The Mansfield mine produced 1¥2 million tons of high-grade iron ore between the years 1890 and 1913. Sporadic exploration since 1913 has failed to reveal other ore deposits of economic importance.
NASA Astrophysics Data System (ADS)
Ozturk, Sercan; Gumus, Lokman; Abdelnasser, Amr; Yalçin, Cihan; Kumral, Mustafa; Hanilçi, Nurullah
2016-04-01
This study deals with the rare earth element (REE) geochemical behavior the alteration zonesassociated with the volcanic-hosted Cu-Femineralization at the northern part of Gökçedoǧan village, Çorum-Kargi region (N Turkey) which are Dedeninyurdu, Yergen and Fındıklıyar mineralization. The study areacomprises Bekirli Formation, Saraycık Formation, Beşpınar Formation, and Ilgaz Formation. Saraycık Formation consists ofUpper Cretaceous KargıOphiolites, pelagic limestone, siltstone, chert and spilitic volcanic rocks. Fe-Cu mineralization occurred in the spiliticvolcanic rocks of Saraycık Formation representing the host rockand is related with the silicification and sericitizationalteration zones. Dedeninyurdu and Yergen mineralization zone directed nearly N75-80oEis following structural a line but Fındıklıyar mineralization zone has nearly NW direction. The ore mineralogy in these zonesinclude pyrite, chalcopyrite, covellite, hematite with malachite, goethite and a limonite as a result of oxidation. The geochemical characteristics of REE of the least altered spiliticbasalt show flat light and heavy REE with slight positive Eu- and Sr-anomalies according to their chondrite-, N-type MORB, and primitive mantle-normalized REE patterns. While the REE geochemical features of the altered rocks collected from the different alteration zones show that there are negative Eu and Sr anomalies as a result of leaching during the alteration processes.There are positive and negative correlations between K2O index with LREE and HREE, respectively. This is due to the additions of K and La during the alteration processes referring to the pervasive sericitization alteration is the responsible for the Cu-Fe mineralization at the study area. Keywords: Cu-Fe mineralization, Spilitic volcanic rocks, alteration, Rare earth elements (REE) geochemistry.
Fishman, Neil S.; Turner, Christine E.; Peterson, Fred
2013-01-01
The presence of discrete minerals associated with coal—whether (1) detrital or authigenic constituents of the coals or in thin mudstone or siltstone units interbedded with coals, or (2) authigenic phases that formed along cleats—might influence its utilization as an energy resource. The build-up of sintered ash deposits on the surfaces of heat exchangers in coal-fired power plants, due to the alteration of minerals during combustion of the coal, can seriously affect the functioning of the boiler and enhance corrosion of combustion equipment. In particular, the presence of sodium in coals has been considered a key factor in the fouling of boilers; however, other elements (such as calcium or magnesium) and the amount of discrete minerals burned with coal can also play a significant role in the inefficiency of and damage to boilers. Previous studies of the quality of coals in the Cretaceous (Campanian) Blackhawk Formation of the Wasatch Plateau, Utah, revealed that the sodium content of the coals varied across the region. To better understand the origin and distribution of sodium in these coals, petrologic studies were undertaken within a sedimentological framework to evaluate the timing and geochemical constraints on the emplacement of sodium-bearing minerals, particularly analcime, which previously had been identified in coals in the Blackhawk Formation. Further, the study was broadened to include not just coals in the Blackhawk Formation from various localities across the Wasatch Plateau, but also sandstones interbedded with the coals as well as sandstones in the underlying Star Point Sandstone. The alteration history of the sandstones in both formations was considered a key component of this study because it records the nature and timing of fluids passing through them and the associated precipitation of sodium-bearing minerals; thus, the alteration history could place constraints on the distribution and timing of sodium mineralization in the interbedded or overlying Blackhawk coals. Although some preliminary results were previously presented at scientific meetings, the petrologic and geochemical data have not been fully compiled and reported. The purpose of this report is to present the methods of data acquisition and the results of petrologic and isotopic analyses on coal and sandstone samples from the Blackhawk Formation as well as sandstones of the underlying Star Point Sandstone.
Otoconia biogenesis, phylogeny, composition and functional attributes
NASA Technical Reports Server (NTRS)
Fermin, C. D.; Lychakov, D.; Campos, A.; Hara, H.; Sondag, E.; Jones, T.; Jones, S.; Taylor, M.; Meza-Ruiz, G.; Martin, D. S.
1998-01-01
This work consolidates data about these interesting organic crystals of vertebrate inner ears. It addresses 5 aspects of inner ear otoliths not completely understood to date: 1) embryological data that explains the formation of the crystals, 2) the significance of the organic and the inorganic phase of the otolith and the changing patterns of otoconia formation along the evolutionary tree, 3) otoliths contribution for detecting linear acceleration, 4) the effect that altered gravity and aminoglycosides have on the development and adult shape of the crystals, and the evolutionary significance of a changing shape of the crystals from primitive forms (lamprey) to high vertebrate birds and mammals is discussed, 5) functional attributes of the otolithic organs and morphological modifications of the otoliths by physical and chemical insults are presented with an extensive discussion of the most relevant literature published and available to us.
EVALUATION OF SPECIFICATION RANGES FOR CREEP STRENGTH ENHANCED FERRITIC STEELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shingledecker, John P; Santella, Michael L; Wilson, Keely A
2008-01-01
Creep Strength Enhanced Ferritic Steels (CSEF) such as Gr. 91, 911, 92, and 122 require a fully martensitic structure for optimum properties, mainly good creep strength. However, broad chemical compositional ranges are specified for these steel grades which can strongly influence the microstructures obtained. In this study, we have produced chemical compositions within the specification ranges for these alloys which intentionally cause the formation of ferrite or substantially alter the lower intercritical temperatures (A1) so as to affect the phase transformation behavior during tempering. Thermodynamic modeling, thermo-mechanical simulation, tensile testing, creep testing, and microstructural analysis were used to evaluate thesemore » materials. The results show the usefulness of thermodynamic calculations for setting rational chemical composition ranges for CSEF steels to control the critical temperatures, set heat-treatment temperature limits, and eliminate the formation of ferrite.« less
NASA Technical Reports Server (NTRS)
Barkatt, Aaron; Saad, E. E.; Adiga, R. B.; Sousanpour, W.; Barkatt, AL.; Feng, X.; O'Keefe, J. A.; Alterescu, S.
1988-01-01
This paper discusses mechanisms involving saturation and reactions that lead to the formation of altered phases in silicate glasses considered for use in geologic repositories for nuclear waste. It is shown that the rate of dissolution of silicate glasses exposed to a broad range of contact times, leachant compositions, and surface-to-volume ratios is strongly affected by the presence of reactive species such as Al, Mg, and Fe. The reactive materials may originate in the leachant or, under conditions of high surface-to-volume ratio, in the glass itself. The effects of glass composition on the course of the corrosion process can be viewed in terms of the formation of a surface layer on the leached glass; the type, composition, and structure of this layer control the dissolution behavior of the glass.
Lee, Alex K Y; Ling, T Y; Chan, Chak K
2008-01-01
Hygroscopic growth is one of the most fundamental properties of atmospheric aerosols. By absorbing or evaporating water, an aerosol particle changes its size, morphology, phase, chemical composition and reactivity and other parameters such as its refractive index. These changes affect the fate and the environmental impacts of atmospheric aerosols, including global climate change. The ElectroDynamic Balance (EDB) has been widely accepted as a unique tool for measuring hygroscopic properties and for investigating phase transformation of aerosols via single particle levitation. Coupled with Raman spectroscopy, an EDB/Raman system is a powerful tool that can be used to investigate both physical and chemical changes associated with the hygroscopic properties of individually levitated particles under controlled environments. In this paper, we report the use of an EDB/Raman system to investigate (1) contact ion pairs formation in supersaturated magnesium sulfate solutions; (2) phase transformation in ammonium nitrate/ammonium sulfate mixed particles; (3) hygroscopicity of organically coated inorganic aerosols; and (4) heterogeneous reactions altering the hygroscopicity of organic aerosols.
NASA Astrophysics Data System (ADS)
Wang, Heping; Li, Xiaoguang; Lin, Kejun; Geng, Xingguo
2018-05-01
This paper explores the effect of the shear frequency and Prandtl number ( Pr) on the procedure and pattern formation of phase separation in symmetric and asymmetric systems. For the symmetric system, the periodic shear significantly prolongs the spinodal decomposition stage and enlarges the separated domain in domain growth stage. By adjusting the Pr and shear frequency, the number and orientation of separated steady layer structures can be controlled during domain stretch stage. The numerical results indicate that the increase in Pr and decrease in the shear frequency can significantly increase in the layer number of the lamellar structure, which relates to the decrease in domain size. Furthermore, the lamellar orientation parallel to the shear direction is altered into that perpendicular to the shear direction by further increasing the shear frequency, and also similar results for larger systems. For asymmetric system, the quantitative analysis shows that the decrease in the shear frequency enlarges the size of separated minority phases. These numerical results provide guidance for setting the optimum condition for the phase separation under periodic shear and slow cooling.
Lyotropic chromonic liquid crystals as materials for optical and biosensing applications
NASA Astrophysics Data System (ADS)
Tortora, L.; Park, H.-S.; Antion, K.; Finotello, D.; Lavrentovich, O. D.
2007-02-01
Lyotropic chromonic liquid crystals (LCLCs) are formed by molecules with rigid polyaromatic cores and ionic groups at the periphery that form aggregates while in water. Most of the LCLCs are not toxic to the biological cells and can be used as an amplifying medium in real-time biosensors. The detector is based on the principle that the immune aggregates growing in the LCLC bulk trigger the director distortions. Self-assembly of LCLC molecules into oriented structures allows one to use them in various structured films. For example, layer-by-layer electrostatic deposition produces monomolecular layers and stacks of layers of LCLC with long-range in-plane orientational order which sets them apart from the standard Langmuir-Blodgett films. We demonstrate that divalent and multivalent salts as well as acidic and basic materials that alter pH of the LCLC water solutions, are drastically modifying the phase diagrams of LCLC, from shifting the phase transition temperatures by tens of degrees, to causing condensation of the LCLC aggregates into more compact structures, such as birefringent bundles or formation of a columnar hexagonal phase from the nematic phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcus, Matthew A.; Edwards, Katrina J.; Gueguen, Bleuenn
Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over ~3.7Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from 9 Be/ 10 Be concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patternsmore » and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from 9 Be/ 10 Be accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (μXRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy and micro-X-ray diffraction (μXRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (μXANES) spectroscopy. Iron isotope composition (δ 56/54 Fe) in subsamples of 1-3mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0±0.4mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (δ-FeOOH), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were spatially correlated with Fe and found to be adsorbed to Fe-bearing minerals. Ti/Fe and V/Fe ratios, and Ti and V speciation, did not vary along the nodule radius. The δ 56/54 Fe values, when averaged over sample increments representing 0.25-0.75Ma, were homogeneous within uncertainty along the nodule radius, at -0.12±0.07‰ (2sd, n=10). Our results indicate that the Fe isotope composition of the nodule remained constant during nodule growth and that mineral alteration did not affect the primary Fe isotope composition of the nodule. Furthermore, the average δ 56/54 Fe value of -0.12‰ we find is consistent with Fe sourced from continental eolian particles (dust). Despite mineral alteration, the trace element partitioning of Ti and V, and Fe isotope composition, do not appear to change within the sensitivity of our measurements. These findings suggest that Fe oxyhydroxides within hydrogenetic ferromanganese nodules are out of geochemical contact with seawater once they are covered by subsequent concentric mineral layers. Even though Fe-bearing minerals are altered, trace element ratios, speciation and Fe isotope composition are preserved within the nodule.« less
Marcus, Matthew A.; Edwards, Katrina J.; Gueguen, Bleuenn; ...
2015-09-05
Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over ~3.7Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from 9 Be/ 10 Be concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patternsmore » and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from 9 Be/ 10 Be accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (μXRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy and micro-X-ray diffraction (μXRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (μXANES) spectroscopy. Iron isotope composition (δ 56/54 Fe) in subsamples of 1-3mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0±0.4mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (δ-FeOOH), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were spatially correlated with Fe and found to be adsorbed to Fe-bearing minerals. Ti/Fe and V/Fe ratios, and Ti and V speciation, did not vary along the nodule radius. The δ 56/54 Fe values, when averaged over sample increments representing 0.25-0.75Ma, were homogeneous within uncertainty along the nodule radius, at -0.12±0.07‰ (2sd, n=10). Our results indicate that the Fe isotope composition of the nodule remained constant during nodule growth and that mineral alteration did not affect the primary Fe isotope composition of the nodule. Furthermore, the average δ 56/54 Fe value of -0.12‰ we find is consistent with Fe sourced from continental eolian particles (dust). Despite mineral alteration, the trace element partitioning of Ti and V, and Fe isotope composition, do not appear to change within the sensitivity of our measurements. These findings suggest that Fe oxyhydroxides within hydrogenetic ferromanganese nodules are out of geochemical contact with seawater once they are covered by subsequent concentric mineral layers. Even though Fe-bearing minerals are altered, trace element ratios, speciation and Fe isotope composition are preserved within the nodule.« less
De Micco, V; De Pascale, S; Paradiso, R; Aronne, G
2014-01-01
Human inhabitation of Space requires the efficient realisation of crop cultivation in bioregenerative life-support systems (BLSS). It is well known that plants can grow under Space conditions; however, perturbations of many biological phenomena have been highlighted due to the effect of altered gravity and its possible interactions with other factors. The mechanisms priming plant responses to Space factors, as well as the consequences of such alterations on crop productivity, have not been completely elucidated. These perturbations can occur at different stages of plant life and are potentially responsible for failure of the completion of the seed-to-seed cycle. After brief consideration of the main constraints found in the most recent experiments aiming to produce seeds in Space, we focus on two developmental phases in which the plant life cycle can be interrupted more easily than in others also on Earth. The first regards seedling development and establishment; we discuss reasons for slow development at the seedling stage that often occurs under microgravity conditions and can reduce successful establishment. The second stage comprises gametogenesis and pollination; we focus on male gamete formation, also identifying potential constraints to subsequent fertilisation. We finally highlight how similar alterations at cytological level can not only be common to different processes occurring at different life stages, but can be primed by different stress factors; such alterations can be interpreted within the model of 'stress-induced morphogenic response' (SIMR). We conclude by suggesting that a systematic analysis of all growth and reproductive phases during the plant life cycle is needed to optimise resource use in plant-based BLSS. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Mansoor, M.; Salam, I.; Tauqir, A.
2016-08-01
Eutectic Al-Si alloys find their applications in moderate to severe tribological conditions, for example: pistons, casings of high speed pumps and slide sleeves. The higher hardness, so the better tribological properties, are originated by the formation of a silicon rich secondary phase, however, the morphology of the secondary phase drastically influence the toughness of the alloy. Microstructural modifiers are used to control the toughness which modifies the Si rich secondary phase into dispersed spherical structure instead of needle-like network. In the present study, a mixture of chemical fluxes was used to modify the Si phase. The alloy was cast into a sand mold and characterized by scanning electron microscopy, energy dispersive spectroscopy, hardness testing and tensile testing. It was found that the morphology of the Si phase was altered to acicular structure due to the modification process. In comparison, the un-modified alloy contained Si phase in needle-like structure. The effect of modifier was also pronounced on the mechanical properties, where increase of 50% in yield strength, 56% in tensile strength and 200% in elongation occurred. A discernable raise in strain hardening component indicated the improved strain harden ability and formability of the modified alloy.
Defense Mechanisms of Empathetic Players in the Spatial Ultimatum Game
NASA Astrophysics Data System (ADS)
Szolnoki, Attila; Perc, Matjaž; Szabó, György
2012-08-01
Experiments on the ultimatum game have revealed that humans are remarkably fond of fair play. When asked to share an amount of money, unfair offers are rare and their acceptance rate small. While empathy and spatiality may lead to the evolution of fairness, thus far considered continuous strategies have precluded the observation of solutions that would be driven by pattern formation. Here we introduce a spatial ultimatum game with discrete strategies, and we show that this simple alteration opens the gate to fascinatingly rich dynamical behavior. In addition to mixed stationary states, we report the occurrence of traveling waves and cyclic dominance, where one strategy in the cycle can be an alliance of two strategies. The highly webbed phase diagram, entailing continuous and discontinuous phase transitions, reveals hidden complexity in the pursuit of human fair play.
Dust Production and Mass Loss in Cool Evolved Stars
NASA Technical Reports Server (NTRS)
Boyer, M. L.
2013-01-01
Following the red giant branch phase and the subsequent core He-burning phase, the low- to intermediate-mass stars (0.8
Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavda, Mehul A.; Bernal, Susan A.; Apperley, David C.
The conversion of hexagonal calcium aluminate hydrates to cubic phases in hydrated calcium aluminate cements (CAC) can involve undesirable porosity changes and loss of strength. Modification of CAC by phosphate addition avoids conversion, by altering the nature of the reaction products, yielding a stable amorphous gel instead of the usual crystalline hydrate products. Here, details of the environments of aluminium and phosphorus in this gel were elucidated using solid-state NMR and complementary techniques. Aluminium is identified in both octahedral and tetrahedral coordination states, and phosphorus is present in hydrous environments with varying, but mostly low, degrees of crosslinking. A {supmore » 31}P/{sup 27}Al rotational echo adiabatic passage double resonance (REAPDOR) experiment showed the existence of aluminium–phosphorus interactions, confirming the formation of a hydrated calcium aluminophosphate gel as a key component of the binding phase. This resolves previous disagreements in the literature regarding the nature of the disordered products forming in this system.« less
Slade, Jonathan H.; Shiraiwa, Manabu; Arangio, Andrea; ...
2017-02-04
Chemical aging of organic aerosol (OA) through multiphase oxidation reactions can alter their cloud condensation nuclei (CCN) activity and hygroscopicity. However, the oxidation kinetics and OA reactivity depend strongly on the particle phase state, potentially influencing the hydrophobic-to-hydrophilic conversion rate of carbonaceous aerosol. Here, amorphous Suwannee River fulvic acid (SRFA) aerosol particles, a surrogate humic-like substance (HULIS) that contributes substantially to global OA mass, are oxidized by OH radicals at different temperatures and phase states. When oxidized at low temperature in a glassy solid state, the hygroscopicity of SRFA particles increased by almost a factor of two, whereas oxidation ofmore » liquid-like SRFA particles at higher temperatures did not affect CCN activity. Low-temperature oxidation appears to promote the formation of highly-oxygenated particle-bound fragmentation products with lower molar mass and greater CCN activity, underscoring the importance of chemical aging in the free troposphere and its influence on the CCN activity of OA.« less
NASA Technical Reports Server (NTRS)
Ming, D. W.; Yen, A. S.; Gellert, R.; Sutter, B.; Berger, J. A.; Thompson, L. M.; Schmidt, M. E.; Morris, R. V.; Treiman, A. H.
2016-01-01
The Mars Science Laboratory rover Curiosity has traversed up section through approximately 100 m of sedimentary rocks deposited in fluvial, deltaic, lacustrine, and eolian environments (Bradbury group and overlying Mount Sharp group). The Stimson formation unconformably overlies a lacustrine mudstone at the base of the Mount Sharp group and has been interpreted to be a cross-bedded sandstone of lithified eolian dunes. Unaltered Stimson sandstone has a basaltic composition similar to the average Mars crustal composition, but is more variable and ranges to lower K and higher Al. Fluids passing through alteration "halos" adjacent to fractures have altered the chemistry and mineralogy of the sandstone. Elemental mass gains and losses in the alteration halos were quantified using immobile element concentrations, i.e., Ti (taus). Alteration halos have elemental gains in Si, Ca, S, and P and large losses in Al, Fe, Mn, Mg, Na, K, Ni, and Zn. Mineralogy of the altered Stimson is dominated by Ca-sulfates, Si-rich X-ray amorphous materials along with plagioclase feldspar, magnetite, and pyroxenes. The igneous phases were less abundant in the altered sandstone with a lower pyroxene/plagioclase feldspar. Large elemental losses suggest acidic fluids initially removed these elements (Al mobile under acid conditions). Enrichments in Si, Ca, and S suggest secondary fluids (possibly alkaline) passed through these fractures leaving behind X-ray amorphous Si and Ca-sulfates. The mechanism for the large elemental gains in P is unclear. The geochemistry and mineralogy of the altered sandstone suggests a complicated diagenetic history with multiple episodes of aqueous alteration under a variety of environmental conditions (e.g., acidic, alkaline).
Cholinergic Plasticity of Oscillating Neuronal Assemblies in Mouse Hippocampal Slices
Zylla, Maura M.; Zhang, Xiaomin; Reichinnek, Susanne; Draguhn, Andreas; Both, Martin
2013-01-01
The mammalian hippocampus expresses several types of network oscillations which entrain neurons into transiently stable assemblies. These groups of co-active neurons are believed to support the formation, consolidation and recall of context-dependent memories. Formation of new assemblies occurs during theta- and gamma-oscillations under conditions of high cholinergic activity. Memory consolidation is linked to sharp wave-ripple oscillations (SPW-R) during decreased cholinergic tone. We hypothesized that increased cholinergic tone supports plastic changes of assemblies while low cholinergic tone favors their stability. Coherent spatiotemporal network patterns were measured during SPW-R activity in mouse hippocampal slices. We compared neuronal activity within the oscillating assemblies before and after a transient phase of carbachol-induced gamma oscillations. Single units maintained their coupling to SPW-R throughout the experiment and could be re-identified after the transient phase of gamma oscillations. However, the frequency of SPW-R-related unit firing was enhanced after muscarinic stimulation. At the network level, these changes resulted in altered patterns of extracellularly recorded SPW-R waveforms. In contrast, recording of ongoing SPW-R activity without intermittent cholinergic stimulation revealed remarkably stable repetitive activation of assemblies. These results show that activation of cholinergic receptors induces plasticity at the level of oscillating hippocampal assemblies, in line with the different role of gamma- and SPW-R network activity for memory formation and –consolidation, respectively. PMID:24260462
Cytoskeletal Components Define Protein Location to Membrane Microdomains*
Szymanski, Witold G.; Zauber, Henrik; Erban, Alexander; Gorka, Michal; Wu, Xu Na; Schulze, Waltraud X.
2015-01-01
The plasma membrane is an important compartment that undergoes dynamic changes in composition upon external or internal stimuli. The dynamic subcompartmentation of proteins in ordered low-density (DRM) and disordered high-density (DSM) membrane phases is hypothesized to require interactions with cytoskeletal components. Here, we systematically analyzed the effects of actin or tubulin disruption on the distribution of proteins between membrane density phases. We used a proteomic screen to identify candidate proteins with altered submembrane location, followed by biochemical or cell biological characterization in Arabidopsis thaliana. We found that several proteins, such as plasma membrane ATPases, receptor kinases, or remorins resulted in a differential distribution between membrane density phases upon cytoskeletal disruption. Moreover, in most cases, contrasting effects were observed: Disruption of actin filaments largely led to a redistribution of proteins from DRM to DSM membrane fractions while disruption of tubulins resulted in general depletion of proteins from the membranes. We conclude that actin filaments are necessary for dynamic movement of proteins between different membrane phases and that microtubules are not necessarily important for formation of microdomains as such, but rather they may control the protein amount present in the membrane phases. PMID:26091700
NASA Astrophysics Data System (ADS)
Chakravarthy, Sunada; Gonthier, Keith A.
2016-07-01
Variations in the microstructure of granular explosives (i.e., particle packing density, size, shape, and composition) can affect their shock sensitivity by altering thermomechanical fields at the particle-scale during pore collapse within shocks. If the deformation rate is fast, hot-spots can form, ignite, and interact, resulting in burn at the macro-scale. In this study, a two-dimensional finite and discrete element technique is used to simulate and examine shock-induced dissipation and hot-spot formation within low density explosives (68%-84% theoretical maximum density (TMD)) consisting of large ensembles of HMX (C4H8N8O8) and aluminum (Al) particles (size ˜ 60 -360 μm). Emphasis is placed on identifying how the inclusion of Al influences effective shock dissipation and hot-spot fields relative to equivalent ensembles of neat/pure HMX for shocks that are sufficiently strong to eliminate porosity. Spatially distributed hot-spot fields are characterized by their number density and area fraction enabling their dynamics to be described in terms of nucleation, growth, and agglomeration-dominated phases with increasing shock strength. For fixed shock particle speed, predictions indicate that decreasing packing density enhances shock dissipation and hot-spot formation, and that the inclusion of Al increases dissipation relative to neat HMX by pressure enhanced compaction resulting in fewer but larger HMX hot-spots. Ensembles having bimodal particle sizes are shown to significantly affect hot-spot dynamics by altering the spatial distribution of hot-spots behind shocks.
Clark, Melinda E; He, Zhili; Redding, Alyssa M; Joachimiak, Marcin P; Keasling, Jay D; Zhou, Jizhong Z; Arkin, Adam P; Mukhopadhyay, Aindrila; Fields, Matthew W
2012-04-16
Desulfovibrio vulgaris Hildenborough is a sulfate-reducing bacterium (SRB) that is intensively studied in the context of metal corrosion and heavy-metal bioremediation, and SRB populations are commonly observed in pipe and subsurface environments as surface-associated populations. In order to elucidate physiological changes associated with biofilm growth at both the transcript and protein level, transcriptomic and proteomic analyses were done on mature biofilm cells and compared to both batch and reactor planktonic populations. The biofilms were cultivated with lactate and sulfate in a continuously fed biofilm reactor, and compared to both batch and reactor planktonic populations. The functional genomic analysis demonstrated that biofilm cells were different compared to planktonic cells, and the majority of altered abundances for genes and proteins were annotated as hypothetical (unknown function), energy conservation, amino acid metabolism, and signal transduction. Genes and proteins that showed similar trends in detected levels were particularly involved in energy conservation such as increases in an annotated ech hydrogenase, formate dehydrogenase, pyruvate:ferredoxin oxidoreductase, and rnf oxidoreductase, and the biofilm cells had elevated formate dehydrogenase activity. Several other hydrogenases and formate dehydrogenases also showed an increased protein level, while decreased transcript and protein levels were observed for putative coo hydrogenase as well as a lactate permease and hyp hydrogenases for biofilm cells. Genes annotated for amino acid synthesis and nitrogen utilization were also predominant changers within the biofilm state. Ribosomal transcripts and proteins were notably decreased within the biofilm cells compared to exponential-phase cells but were not as low as levels observed in planktonic, stationary-phase cells. Several putative, extracellular proteins (DVU1012, 1545) were also detected in the extracellular fraction from biofilm cells. Even though both the planktonic and biofilm cells were oxidizing lactate and reducing sulfate, the biofilm cells were physiologically distinct compared to planktonic growth states due to altered abundances of genes/proteins involved in carbon/energy flow and extracellular structures. In addition, average expression values for multiple rRNA transcripts and respiratory activity measurements indicated that biofilm cells were metabolically more similar to exponential-phase cells although biofilm cells are structured differently. The characterization of physiological advantages and constraints of the biofilm growth state for sulfate-reducing bacteria will provide insight into bioremediation applications as well as microbially-induced metal corrosion.
2012-01-01
Background Desulfovibrio vulgaris Hildenborough is a sulfate-reducing bacterium (SRB) that is intensively studied in the context of metal corrosion and heavy-metal bioremediation, and SRB populations are commonly observed in pipe and subsurface environments as surface-associated populations. In order to elucidate physiological changes associated with biofilm growth at both the transcript and protein level, transcriptomic and proteomic analyses were done on mature biofilm cells and compared to both batch and reactor planktonic populations. The biofilms were cultivated with lactate and sulfate in a continuously fed biofilm reactor, and compared to both batch and reactor planktonic populations. Results The functional genomic analysis demonstrated that biofilm cells were different compared to planktonic cells, and the majority of altered abundances for genes and proteins were annotated as hypothetical (unknown function), energy conservation, amino acid metabolism, and signal transduction. Genes and proteins that showed similar trends in detected levels were particularly involved in energy conservation such as increases in an annotated ech hydrogenase, formate dehydrogenase, pyruvate:ferredoxin oxidoreductase, and rnf oxidoreductase, and the biofilm cells had elevated formate dehydrogenase activity. Several other hydrogenases and formate dehydrogenases also showed an increased protein level, while decreased transcript and protein levels were observed for putative coo hydrogenase as well as a lactate permease and hyp hydrogenases for biofilm cells. Genes annotated for amino acid synthesis and nitrogen utilization were also predominant changers within the biofilm state. Ribosomal transcripts and proteins were notably decreased within the biofilm cells compared to exponential-phase cells but were not as low as levels observed in planktonic, stationary-phase cells. Several putative, extracellular proteins (DVU1012, 1545) were also detected in the extracellular fraction from biofilm cells. Conclusions Even though both the planktonic and biofilm cells were oxidizing lactate and reducing sulfate, the biofilm cells were physiologically distinct compared to planktonic growth states due to altered abundances of genes/proteins involved in carbon/energy flow and extracellular structures. In addition, average expression values for multiple rRNA transcripts and respiratory activity measurements indicated that biofilm cells were metabolically more similar to exponential-phase cells although biofilm cells are structured differently. The characterization of physiological advantages and constraints of the biofilm growth state for sulfate-reducing bacteria will provide insight into bioremediation applications as well as microbially-induced metal corrosion. PMID:22507456
NASA Astrophysics Data System (ADS)
Filiberto, J.; Schwenzer, S. P.
2012-12-01
Home Plate is a plateau in the Columbia Hills of Gusev Crater. It is dominated by igneous minerals (olivine, pyroxene, and magnetite) with small amounts of alteration minerals (hematite and nanophase oxides). Surrounding Home Plate are deposits containing diverse secondary mineral assemblages: Fe3+-sulfates deposits at Paso Robles, Dead Sea, Shredded, Arad, Tyrone, and Troy; Hematite-rich outcrops between Home Plate and Tyrone; SiO2-rich deposits possibly containing pyrite and/or marcasite at Fuzzy Smith; SiO2-rich, possibly opaline silica, deposits at Northern Valley, Eastern Valley, and Tyrone; and Mg-Fe-carbonate outcrops at Comanche in the Columbia Hills [1-4]. Here, we focus on using thermochemical modeling to understand the secondary alteration mineralogy at the Home Plate outcrop and surrounding Columbia Hills region in Gusev Crater. We use CHILLER [5] to evaluate mineral assemblages that are likely to form from the Martian Home Plate, Barn-Hill class rock Fastball in contact with a dilute fluid at various pressures, temperatures, and water-rock ratios. For details see [6]. In our models, hematite dominates the alteration assemblage at high W/R at 150°C, but is generally produced at W/R above 10. Goethite only forms at low temperature and W/R above 40 with a maximum around 100 and again around 100,000. Pyrite is produced at all temperatures but only at relatively high W/R. These results imply intermediate to high W/R and low to intermediate temperatures during alteration of the Home Plate region. Additional acidic brine, while not strictly excluded, is not required to form many of the observed phases. In contrast, the phyllosilicates recently invoked from orbital observations [4] indicate neutral to alkaline conditions - either accompanying the silica precipitation or as a separate event. For future exploration, our results emphasize that the observation of assemblages is critically important to understand mineral formation conditions and that minor phases such as fluorite can give valuable insights into host rock chemistry and alteration conditions. REFS: [1] Ruff S.W. et al. (2011) JGR 116, doi.10.1029/2010je003767. [2] Morris R.V. et al. (2008) JGR 113, doi.10.1029/2008je003201. [3] Morris R.V. et al. (2010) Science 329, 421-424. [4] Carter J. and Poulet F. (2012) Icarus 219, 250-253. [5] Reed M.H. and Spycher N.F. (2006) User Guide for CHILLER: A Program for Computing Water-Rock Reactions, Boiling, Mixing, and Other Reaction Processes in Squeous-Mineral-Gas Systems and Minplot Guide (3rd ed.), Eugene, Oregon: University of Oregon. [6] Schwenzer S.P. and Kring D.A. (2009) Geology 37, 1091-1094.
Park, Taehyung; Joo, Hyun-Woo; Kim, Gyeong-Yeong; Kim, Seunghee; Yoon, Sukhwan; Kwon, Tae-Hyuk
2017-01-01
Injecting and storing of carbon dioxide (CO 2 ) in deep geologic formations is considered as one of the promising approaches for geologic carbon storage. Microbial wettability alteration of injected CO 2 is expected to occur naturally by microorganisms indigenous to the geologic formation or microorganisms intentionally introduced to increase CO 2 storage capacity in the target reservoirs. The question as to the extent of microbial CO 2 wettability alteration under reservoir conditions still warrants further investigation. This study investigated the effect of a lipopeptide biosurfactant-surfactin, on interfacial tension (IFT) reduction and contact angle alteration in CO 2 /water/quartz systems under a laboratory setup simulating in situ reservoir conditions. The temporal shifts in the IFT and the contact angle among CO 2 , brine, and quartz were monitored for different CO 2 phases (3 MPa, 30°C for gaseous CO 2 ; 10 MPa, 28°C for liquid CO 2 ; 10 MPa, 37°C for supercritical CO 2 ) upon cultivation of Bacillus subtilis strain ATCC6633 with induced surfactin secretion activity. Due to the secreted surfactin, the IFT between CO 2 and brine decreased: from 49.5 to 30 mN/m, by ∼39% for gaseous CO 2 ; from 28.5 to 13 mN/m, by 54% for liquid CO 2 ; and from 32.5 to 18.5 mN/m, by ∼43% for supercritical CO 2 , respectively. The contact angle of a CO 2 droplet on a quartz disk in brine increased: from 20.5° to 23.2°, by 1.16 times for gaseous CO 2 ; from 18.4° to 61.8°, by 3.36 times for liquid CO 2 ; and from 35.5° to 47.7°, by 1.34 times for supercritical CO 2 , respectively. With the microbially altered CO 2 wettability, improvement in sweep efficiency of injected and displaced CO 2 was evaluated using 2-D pore network model simulations; again the increment in sweep efficiency was the greatest in liquid CO 2 phase due to the largest reduction in capillary factor. This result provides novel insights as to the role of naturally occurring biosurfactants in CO 2 storage and suggests that biostimulation of biosurfactant production may be a feasible technique for enhancement of CO 2 storage capacity.
Park, Taehyung; Joo, Hyun-Woo; Kim, Gyeong-Yeong; Kim, Seunghee; Yoon, Sukhwan; Kwon, Tae-Hyuk
2017-01-01
Injecting and storing of carbon dioxide (CO2) in deep geologic formations is considered as one of the promising approaches for geologic carbon storage. Microbial wettability alteration of injected CO2 is expected to occur naturally by microorganisms indigenous to the geologic formation or microorganisms intentionally introduced to increase CO2 storage capacity in the target reservoirs. The question as to the extent of microbial CO2 wettability alteration under reservoir conditions still warrants further investigation. This study investigated the effect of a lipopeptide biosurfactant—surfactin, on interfacial tension (IFT) reduction and contact angle alteration in CO2/water/quartz systems under a laboratory setup simulating in situ reservoir conditions. The temporal shifts in the IFT and the contact angle among CO2, brine, and quartz were monitored for different CO2 phases (3 MPa, 30°C for gaseous CO2; 10 MPa, 28°C for liquid CO2; 10 MPa, 37°C for supercritical CO2) upon cultivation of Bacillus subtilis strain ATCC6633 with induced surfactin secretion activity. Due to the secreted surfactin, the IFT between CO2 and brine decreased: from 49.5 to 30 mN/m, by ∼39% for gaseous CO2; from 28.5 to 13 mN/m, by 54% for liquid CO2; and from 32.5 to 18.5 mN/m, by ∼43% for supercritical CO2, respectively. The contact angle of a CO2 droplet on a quartz disk in brine increased: from 20.5° to 23.2°, by 1.16 times for gaseous CO2; from 18.4° to 61.8°, by 3.36 times for liquid CO2; and from 35.5° to 47.7°, by 1.34 times for supercritical CO2, respectively. With the microbially altered CO2 wettability, improvement in sweep efficiency of injected and displaced CO2 was evaluated using 2-D pore network model simulations; again the increment in sweep efficiency was the greatest in liquid CO2 phase due to the largest reduction in capillary factor. This result provides novel insights as to the role of naturally occurring biosurfactants in CO2 storage and suggests that biostimulation of biosurfactant production may be a feasible technique for enhancement of CO2 storage capacity. PMID:28744272
Investigating the effects of abyssal peridotite alteration on Si, Mg and Zn isotopes
NASA Astrophysics Data System (ADS)
Savage, P. S.; Wimpenny, J.; Harvey, J.; Yin, Q.; Moynier, F.
2013-12-01
Around 1/3 of Earth's divergent ridge system is now classified as "slow" spreading [1], exposing ultramafic rocks (abyssal peridotites) at the seafloor. Such material is often highly altered by serpentinisation and steatisation (talc formation). It is crucial to understand such processes in order to access the original composition of the mantle, and to quantify any impact on ocean composition. Here we examine the effect of both serpentinisation and steatisation on Si, Mg and Zn isotopes. Hydrothermal alteration and seafloor weathering are both sources of oceanic Si [2] and weathering of abyssal peridotites is a source of oceanic Mg [3]; hence isotopic fractionation as a result of seafloor alteration could affect oceanic Si and Mg isotope composition. Zinc isotopes can provide complimentary information; the magnitude and direction of fractionation is highly dependent on complexing ligand [4] and can provide compositional information on the fluids driving metasomatism. For this study, two cores from the well-characterised abyssal peridotites recovered on ODP Leg 209 were examined [5]. Hole 1274a peridotites exhibit variable serpentinisation at ~200°C, whereas samples from Hole 1268a have been comprehensively serpentinised and then subsequently steatised to talc facies at ~350°C, by a low Mg/Si, low pH fluid. The Si, Mg and Zn isotope compositions of 1274a samples are extremely homogeneous, identical to that of pristine mantle rocks (BSE) i.e., serpentinisation at this locality was predominantly isochemical [5]. In contrast, samples from 1268a show greater isotopic variability. In all samples, Mg is enriched in the heavier isotopes relative to BSE, consistent with formation of isotopically heavy secondary phases [6]. For Si, serpentinised samples are slightly enriched in the lighter isotopes compared to BSE, again consistent with the behaviour of Si during formation of secondary phases [7]. Within the steatised samples, some exhibit enrichments in the lighter Si isotopes (similar to the serpentinites), however, some are isotopically heavy, relative to BSE. Such samples were found to have abundant chlorite, whose formation requires fluid with high Al activity, likely sourced from late-emplaced gabbroic dykes. The Zn of all 1268a samples are enriched in the lighter isotopes, implying the involvement of isotopically light sulfide precipitation during metasomatism [4]. The consistently heavy Mg isotope data suggest that seafloor alteration of peridotites can input an isotopically light Mg-bearing fluid to the ocean. Fluid composition is less easy to determine from the more complex behaviour observed in Si isotopes, although it is unlikely to substantially deviate from BSE, consistent with previous observations [8]. Finally, the strong enrichment in the lighter isotopes of Zn confirms that this isotope system could be used as a tracer of recycled serpentinised material at arc settings, as suggested in [4]. [1] Dick et al. (2003) Nature 426, 405-412; [2] Treguer and De La Rocha (2013) Ann. Rev. Mar. Sci. 5, 477-501; [3] Snow & Dick (1995) GCA, 59, 4219-4235; [4] Pons et al. (2011) PNAS 108(43) 17639-17643; [5] Bach et al., (2004) G3 5; [6] Tipper et al. (2006) EPSL 247, 267-279; [7] Opfergelt et al. (2012) Chem. Geol. 326, 113-122; [8] De La Rocha et al. (2000) GCA 64, 2467-2477.
Wagner, Doris; Meyerowitz, Elliot M.
2011-01-01
Developmental fate decisions in cell populations fundamentally depend on at least two parameters: a signal that is perceived by the cell and the intrinsic ability of the cell to respond to the signal. The same regulatory logic holds for phase transitions in the life cycle of an organism, for example the switch to reproductive development in flowering plants. Here we have tested the response of the monocarpic plant species Arabidopsis thaliana to a signal that directs flower formation, the plant-specific transcription factor LEAFY (LFY). Using transient steroid-dependent LEAFY (LFY) activation in lfy null mutant Arabidopsis plants, we show that the plant’s competence to respond to the LFY signal changes during development. Very early in the life cycle, the plant is not competent to respond to the signal. Subsequently, transient LFY activation can direct primordia at the flanks of the shoot apical meristem to adopt a floral fate. Finally, the plants acquire competence to initiate the flower-patterning program in response to transient LFY activation. Similar to a perennial life strategy, we did not observe reprogramming of all primordia after perception of the transient signal, instead only a small number of meristems responded, followed by reversion to the prior developmental program. The ability to initiate flower formation and to direct flower patterning in response to transient LFY upregulation was dependent on the known direct LFY target APETALA1 (AP1). Prolonged LFY or activation could alter the developmental gradient and bypass the requirement for AP1. Prolonged high AP1 levels, in turn, can also alter the plants’ competence. Our findings shed light on how plants can fine-tune important phase transitions and developmental responses. PMID:22639600
NASA Astrophysics Data System (ADS)
Farnam, Yaghoob
Recently, there has been a dramatic increase in premature deterioration in concrete pavements and flat works that are exposed to chloride based salts. Chloride based salts can cause damage and deterioration in concrete due to the combination of factors which include: increased saturation, ice formation, salt crystallization, osmotic pressure, corrosion in steel reinforcement, and/or deleterious chemical reactions. This thesis discusses how chloride based salts interact with cementitious materials to (1) develop damage in concrete, (2) create new chemical phases in concrete, (3) alter transport properties of concrete, and (4) change the concrete freeze-thaw performance. A longitudinal guarded comparative calorimeter (LGCC) was developed to simultaneously measure heat flow, damage development, and phase changes in mortar samples exposed to sodium chloride (NaCl), calcium chloride (CaCl 2), and magnesium chloride (MgCl2) under thermal cycling. Acoustic emission and electrical resistivity measurements were used in conjunction with the LGCC to assess damage development and electrical response of mortar samples during cooling and heating. A low-temperature differential scanning calorimetry (LT-DSC) was used to evaluate the chemical interaction that occurs between the constituents of cementitious materials (i.e., pore solution, calcium hydroxide, and hydrated cement paste) and salts. Salts were observed to alter the classical phase diagram for a salt-water system which has been conventionally used to interpret the freeze-thaw behavior in concrete. An additional chemical phase change was observed for a concrete-salt-water system resulting in severe damage in cementitious materials. In a cementitious system exposed to NaCl, the chemical phase change occurs at a temperature range between -6 °C and 8 °C due to the presence of calcium sulfoaluminate phases in concrete. As a result, concrete exposed to NaCl can experience additional freeze-thaw cycles due to the chemical phase change creating cracks and damage to concrete under freezing and thawing. In a cementitious system exposed to CaCl2, the chemical phase change is mainly due to the presence of calcium hydroxide (CH) in concrete. Calcium hydroxide can react with CaCl2 solution producing calcium oxychloride. Calcium oxychloride forms at room temperature (i.e., 23 °C) for CaCl 2 salt concentrations at or above ~ 12 % by mass in the solution creating expansion and degradation in concrete. In a cementitious system exposed to MgCl2, it was observed that MgCl2 can be entirely consumed in concrete by reacting with CH and produce CaCl2. As such, it followed a response that is more similar to the concrete-CaCl2-water system than that of the MgCl2-water phase diagram. Formation of calcium/magnesium oxychloride is most likely the main source of the chemical phase change (which can cause damage) in concrete exposed to MgCl2. During the LGCC testing for CaCl2 and MgCl2 salts, it was found that the chemical reactions occur rapidly (~ 10 min) and can cause a significant decrease in subsequent fluid ingress into exposed concrete in comparison to NaCl. Isothermal calorimetry, fluid absorption, oxygen permeability, oxygen diffusivity, and X-ray fluorescence testing showed that the formation of calcium oxychloride in concrete exposed to CaCl2 and MgCl 2 can block or fill in the concrete pores on the surface of the specimen; thereby decreasing the CaCl2 and MgCl2 fluid ingress into the concrete. To mitigate the damage and degradation due to the chemical phase transition, two approaches were evaluated: (1) use of a cementitious binder that does not react with salts, and (2) use of a new practical technology to melt ice and snow, thereby decreasing the demand for deicing salt usage. For the first approach, carbonated calcium silicate based cement (CCSC) was used and the CCSC mortar showed a promising performance and resistance to salt degradation than an ordinary portland mortar does. For the second approach, phase change materials (PCM), including paraffin oil and methyl laurate, were used to store heat in concrete elements and release the stored heat during cooling to reduce ice formation and snow accumulation on the surface of concrete. PCM approach also showed a promising performance in melting ice and snow, thereby decreasing the demand for salt usage.
Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans.
Lee, Jeeyong; Kim, Kwang-Youl; Paik, Young-Ki
2014-02-01
Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian G(o) and G(q) homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans.
Transcriptomic analysis of wound xylem formation in Pinus canariensis.
Chano, V; Collada, C; Soto, A
2017-12-04
Woody plants, especially trees, usually must face several injuries caused by different agents during their lives. Healing of injuries in stem and branches, affecting the vascular cambium and xylem can take several years. In conifers, healing takes place mainly from the remaining vascular cambium in the margin of the wound. The woundwood formed in conifers during healing usually presents malformed and disordered tracheids as well as abundant traumatic resin ducts. These characteristics affect its functionality as water conductor and its technological properties. In this work we analyze for the first time the transcriptomic basis of the formation of traumatic wood in conifers, and reveal some differences with normal early- and late-wood. Microarray analysis of the differentiating traumatic wood, confirmed by quantitative RT-PCR, has revealed alterations in the transcription profile of up to 1408 genes during the first period of healing. We have grouped these genes in twelve clusters, according to their transcription profiles, and have distinguished accordingly two main phases during this first healing. Wounding induces a complete rearrangement of the transcriptional program in the cambial zone close to the injuries. At the first instance, radial growth is stopped, and a complete set of defensive genes, mostly related to biotic stress, are induced. Later on, cambial activity is restored in the lateral borders of the wound, even at a high rate. During this second stage certain genes related to early-wood formation, including genes involved in cell wall formation and transcription factors, are significantly overexpressed, while certain late-wood related genes are repressed. Additionally, significant alterations in the transcription profile of abundant non annotated genes are reported.
Role of chirality in peptide-induced formation of cholesterol-rich domains
2005-01-01
The chiral specificity of the interactions of peptides that induce the formation of cholesterol-rich domains has not been extensively investigated. Both the peptide and most lipids are chiral, so there is a possibility that interactions between peptide and lipid could require chiral recognition. On the other hand, in our models with small peptides, the extent of folding of the peptide to form a specific binding pocket is limited. We have determined that replacing cholesterol with its enantiomer, ent-cholesterol, alters the modulation of lipid organization by peptides. The phase-transition properties of SOPC (1-stearoyl-2-oleoylphosphatidylcholine):cholesterol [in a 6:4 ratio with 0.2 mol% PtdIns(4,5)P2] are not significantly altered when ent-cholesterol replaces cholesterol. However, in the presence of 10 mol% of a 19-amino-acid, N-terminally myristoylated fragment (myristoyl-GGKLSKKKKGYNVNDEKAK-amide) of the protein NAP-22 (neuronal axonal membrane protein), the lipid mixture containing cholesterol undergoes separation into cholesterol-rich and cholesterol-depleted domains. This does not occur when ent-cholesterol replaces cholesterol. In another example, when N-acetyl-Leu-Trp-Tyr-Ile-Lys-amide (N-acetyl-LWYIK-amide) is added to SOPC:cholesterol (7:3 ratio), there is a marked increase in the transition enthalpy of the phospholipid, indicating separation of a cholesterol-depleted domain of SOPC. This phenomenon completely disappears when ent-cholesterol replaces cholesterol. The all-D-isomer of N-acetyl-LWYIK-amide also induces the formation of cholesterol-rich domains with natural cholesterol, but does so to a lesser extent with ent-cholesterol. Thus specific peptide chirality is not required for interaction with cholesterol-containing membranes. However, a specific chirality of membrane lipids is required for peptide-induced formation of cholesterol-rich domains. PMID:15929726
Lipp, M M; Lee, K Y; Waring, A; Zasadzinski, J A
1997-01-01
Fluorescence, polarized fluorescence, and Brewster angle microscopy reveal that human lung surfactant protein SP-B and its amino terminus (SP-B[1-25]) alter the phase behavior of palmitic acid monolayers by inhibiting the formation of condensed phases and creating a new fluid protein-rich phase. This fluid phase forms a network that separates condensed phase domains at coexistence and persists to high surface pressures. The network changes the monolayer collapse mechanism from heterogeneous nucleation/growth and fracturing processes to a more homogeneous process through isolating individual condensed phase domains. This results in higher surface pressures at collapse, and monolayers easier to respread on expansion, factors essential to the in vivo function of lung surfactant. The network is stabilized by a low-line tension between the coexisting phases, as confirmed by the observation of extended linear domains, or "stripe" phases, and a Gouy-Chapman analysis of protein-containing monolayers. Comparison of isotherm data and observed morphologies of monolayers containing SP-B(1-25) with those containing the full SP-B sequence show that the shortened peptide retains most of the native activity of the full-length protein, which may lead to cheaper and more effective synthetic replacement formulations. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 PMID:9168053
Zhang, Yan; Jiao, Shengyin; Lv, Jia; Du, Renjia; Yan, Xiaoni; Wan, Caixia; Zhang, Ruijuan; Han, Bei
2017-01-01
Clostridium beijerinckii DG-8052, derived from NCIMB 8052, cannot produce solvent or form spores, a phenomenon known as degeneration. To explore the mechanisms of degeneration at the gene level, transcriptomic profiles of the wild-type 8052 and DG-8052 strains were compared. Expression of 5168 genes comprising 98.6% of the genome was assessed. Interestingly, 548 and 702 genes were significantly up-regulated in the acidogenesis and solventogenesis phases of DG-8052, respectively, and mainly responsible for the phosphotransferase system, sugar metabolic pathways, and chemotaxis; meanwhile, 699 and 797 genes were significantly down-regulated, respectively, and mainly responsible for sporulation, oxidoreduction, and solventogenesis. The functions of some altered genes, including 286 and 333 at the acidogenesis and solventogenesis phases, respectively, remain unknown. Dysregulation of the fermentation machinery was accompanied by lower transcription levels of glycolysis rate-limiting enzymes (pfk and pyk), and higher transcription of cell chemotaxis genes (cheA, cheB, cheR, cheW, and cheY), controlled mainly by σ54 at acidogenesis. Meanwhile, abnormal spore formation was associated with repressed spo0A, sigE, sigF, sigG, and sigK which are positively regulated by σ70, and correspondingly inhibited expression of CoA-transferase at the solventogenesis phase. These findings indicated that morphological and physiological changes in the degenerated Clostridium strain may be related to altered expression of sigma factors, providing valuable targets for strain development of Clostridium species. PMID:28194137
Reprint of "How do components of real cloud water affect aqueous pyruvate oxidation?"
NASA Astrophysics Data System (ADS)
Boris, Alexandra J.; Desyaterik, Yury; Collett, Jeffrey L.
2015-01-01
Chemical oxidation of dissolved volatile or semi-volatile organic compounds within fog and cloud droplets in the atmosphere could be a major pathway for secondary organic aerosol (SOA) formation. This proposed pathway consists of: (1) dissolution of organic chemicals from the gas phase into a droplet; (2) reaction with an aqueous phase oxidant to yield low volatility products; and (3) formation of particle phase organic matter as the droplet evaporates. The common approach to simulating aqueous SOA (aqSOA) reactions is photo-oxidation of laboratory standards in pure water. Reactions leading to aqSOA formation should be studied within real cloud and fog water to determine whether additional competing processes might alter apparent rates of reaction as indicated by rates of reactant loss or product formation. To evaluate and identify the origin of any cloud water matrix effects on one example of observed aqSOA production, pyruvate oxidation experiments simulating aqSOA formation were monitored within pure water, real cloud water samples, and an aqueous solution of inorganic salts. Two analysis methods were used: online electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR-ToF-MS), and offline anion exchange chromatography (IC) with quantitative conductivity and qualitative ESI-HR-ToF-MS detection. The apparent rate of oxidation of pyruvate was slowed in cloud water matrices: overall measured degradation rates of pyruvate were lower than in pure water. This can be at least partially accounted for by the observed formation of pyruvate from reactions of other cloud water components. Organic constituents of cloud water also compete for oxidants and/or UV light, contributing to the observed slowed degradation rates of pyruvate. The oxidation of pyruvate was not significantly affected by the presence of inorganic anions (nitrate and sulfate) at cloud-relevant concentrations. Future bulk studies of aqSOA formation reactions using simplified simulated cloud solutions and model estimates of generated aqSOA mass should take into account possible generation of, or competition for, oxidant molecules by organic components found in the complex matrices typically associated with real atmospheric water droplets. Additionally, it is likely that some components of real atmospheric waters have not yet been identified as aqSOA precursors, but could be distinguished through further simplified bulk oxidations of known atmospheric water components.
Lack of Expression of EGF and TGF in the Fetal Mouse Alters Formation of Prostatic Epithelial Buds and Responsiveness to TCDD-Induced Impairment of Prostatic Bud Formation.
Barbara D. Abbott, Tien-Min Lin, Nathan T. Rasmussen, Robert W. Moore,
Ralph M. Albrecht, Judi...
Ramírez-Aldaba, Hugo; Valles, O Paola; Vazquez-Arenas, Jorge; Rojas-Contreras, J Antonio; Valdez-Pérez, Donato; Ruiz-Baca, Estela; Meraz-Rodríguez, Mónica; Sosa-Rodríguez, Fabiola S; Rodríguez, Ángel G; Lara, René H
2016-10-01
Bioleaching of arsenopyrite presents a great interest due to recovery of valuable metals and environmental issues. The current study aims to evaluate the arsenopyrite oxidation by Acidithiobacillus thiooxidans during 240h at different time intervals, in the presence and absence of supplementary arsenic. Chemical and electrochemical characterizations are carried out using Raman, AFM, SEM-EDS, Cyclic Voltammetry, EIS, electrophoretic and adhesion forces to comprehensively assess the surface behavior and biooxidation mechanism of this mineral. These analyses evidence the formation of pyrite-like secondary phase on abiotic control surfaces, which contrast with the formation of pyrite (FeS2)-like, orpiment (As2S3)-like and elementary sulfur and polysulfide (Sn(2-)/S(0)) phases found on biooxidized surfaces. Voltammetric results indicate a significant alteration of arsenopyrite due to (bio)oxidation. Resistive processes determined with EIS are associated with chemical and electrochemical reactions mediated by (bio)oxidation, resulting in the transformation of arsenopyrite surface and biofilm direct attachment. Charge transfer resistance is increased when (bio)oxidation is performed in the presence of supplementary arsenic, in comparison with lowered abiotic control resistances obtained in its absence; reinforcing the idea that more stable surface products are generated when As(V) is in the system. Biofilm structure is mainly comprised of micro-colonies, progressively enclosed in secondary compounds. A more compact biofilm structure with enhanced formation of secondary compounds is identified in the presence of supplementary arsenic, whereby variable arsenopyrite reactivity is linked and attributed to these secondary compounds, including Sn(2-)/S(0), pyrite-like and orpiment-like phases. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A
2017-08-10
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.
Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.; ...
2017-07-14
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.« less
Temperature-Triggered Protein Adsorption on Polymer-Coated Nanoparticles in Serum.
Koshkina, Olga; Lang, Thomas; Thiermann, Raphael; Docter, Dominic; Stauber, Roland H; Secker, Christian; Schlaad, Helmut; Weidner, Steffen; Mohr, Benjamin; Maskos, Michael; Bertin, Annabelle
2015-08-18
The protein corona, which forms on the nanoparticle's surface in most biological media, determines the nanoparticle's physicochemical characteristics. The formation of the protein corona has a significant impact on the biodistribution and clearance of nanoparticles in vivo. Therefore, the ability to influence the formation of the protein corona is essential to most biomedical applications, including drug delivery and imaging. In this study, we investigate the protein adsorption on nanoparticles with a hydrodynamic radius of 30 nm and a coating of thermoresponsive poly(2-isopropyl-2-oxazoline) in serum. Using multiangle dynamic light scattering (DLS) we demonstrate that heating of the nanoparticles above their phase separation temperature induces the formation of agglomerates, with a hydrodynamic radius of 1 μm. In serum, noticeably stronger agglomeration occurs at lower temperatures compared to serum-free conditions. Cryogenic transmission electron microscopy (cryo-TEM) revealed a high packing density of agglomerates when serum was not present. In contrast, in the presence of serum, agglomerated nanoparticles were loosely packed, indicating that proteins are intercalated between them. Moreover, an increase in protein content is observed upon heating, confirming that protein adsorption is induced by the alteration of the surface during phase separation. After cooling and switching the surface back, most of the agglomerates were dissolved and the main fraction returned to the original size of approximately 30 nm as shown by asymmetrical flow-field flow fractionation (AF-FFF) and DLS. Furthermore, the amounts of adsorbed proteins are similar before and after heating the nanoparticles to above their phase-separation temperature. Overall, our results demonstrate that the thermoresponsivity of the polymer coating enables turning the corona formation on nanoparticles on and off in situ. As the local heating of body areas can be easily done in vivo, the thermoresponsive coating could potentially be used to induce the agglomeration of nanoparticles and proteins and the accumulation of nanoparticles in a targeted body region.
NASA Astrophysics Data System (ADS)
Macdonald, Ray; Bagiński, Bogusław; Zozulya, Dmitry
2017-09-01
A quartzolite from the Rova occurrence, Keivy alkali granite province, Kola Peninsula, Russia, is used to examine the differing responses of certain rare-metal minerals during interaction with hydrothermal fluids. The minerals are two silicates [chevkinite-(Ce) and zircon], a phosphate [monazite-(Ce)] and an oxide [fergusonite-(Y)]. Textural evidence is taken to show that the dominant alteration mechanism was interface-coupled dissolution-reprecipitation. Zircon was the most pervasively altered, possibly by broadening of cleavage planes or fractures; the other minerals were altered mainly on their rims and along cracks. The importance of cracks in promoting fluid access is stressed. The compositional effects of the alteration of each phase are documented. The hydrothermal fluids carried few ligands capable of transporting significant amounts of rare-earth elements (REE), high field strength elements (HFSE) and actinides; alteration is inferred to have been promoted by mildly alkaline, Ca-bearing fluids. Expansion cracks emanating from fergusonite-(Y) are filled with unidentified material containing up to 35 wt% UO2 and 25 wt% REE2O3, indicating late-stage, short-distance mobility of these elements. Electron microprobe chemical dating of monazite yielded an age of 1665 ± 22 Ma, much younger than the formation age of the Keivy province (2.65-2.67 Ga) but comparable to that of the Svecofennian metamorphic event which affected the area (1.9-1.7 Ga) or during fluid-thermal activation of the region during rapakivi granite magmatism (1.66-1.56 Ga). Dates for altered monazite range from 2592 ± 244 Ma to 773 ± 88 Ma and reflect disturbance of the U-Th-Pb system during alteration.
Supervolcanoes Within an Ancient Volcanic Province in Arabia Terra, Mars
NASA Technical Reports Server (NTRS)
Michalski, Joseph. R.; Bleacher, Jacob E.
2014-01-01
Several irregularly shaped craters located within Arabia Terra, Mars represent a new type of highland volcanic construct and together constitute a previously unrecognized martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae display a range of geomorphic features related to structural collapse, effusive volcanism, and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulfur and erupted fine-grained pyroclastics from these calderas likely fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. Discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.
Probing Gas Stripping with Resolved Star-Formation Maps of Virgo Filament Galaxies
NASA Astrophysics Data System (ADS)
Collova, Natasha
2018-01-01
We are conducting a multi-wavelength study of the gas in galaxies at a variety of positions in the cosmic web surrounding the Virgo cluster, one of the best studied regions of high density in the Universe. Galaxies are very likely pre-processed in filaments before falling into clusters, and our goal is to understand how galaxies are altered as they move through the cosmic web and enter the densest regions. We present spatially-resolved H-alpha imaging results from the KPNO 0.9-m and INT 2.54-m telescopes for a preliminary sample of 30 galaxies. We will combine the star-formation maps with observations of molecular and atomic gas to calculate gas consumption timescales, characterize multiple phases of the galactic gas, and look for signatures of environmentally-driven depletion. This work is supported in part by NSF grant AST-1716657.
Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars.
Michalski, Joseph R; Bleacher, Jacob E
2013-10-03
Several irregularly shaped craters located within Arabia Terra, Mars, represent a new type of highland volcanic construct and together constitute a previously unrecognized Martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae possess a range of geomorphic features related to structural collapse, effusive volcanism and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulphur and erupted fine-grained pyroclastics from these calderas probably fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. The discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.
Understanding Gas-Phase Ammonia Chemistry in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Chambers, Lauren; Oberg, Karin I.; Cleeves, Lauren Ilsedore
2017-01-01
Protoplanetary disks are dynamic regions of gas and dust around young stars, the remnants of star formation, that evolve and coagulate over millions of years in order to ultimately form planets. The chemical composition of protoplanetary disks is affected by both the chemical and physical conditions in which they develop, including the initial molecular abundances in the birth cloud, the spectrum and intensity of radiation from the host star and nearby systems, and mixing and turbulence within the disk. A more complete understanding of the chemical evolution of disks enables a more complete understanding of the chemical composition of planets that may form within them, and of their capability to support life. One element known to be essential for life on Earth is nitrogen, which often is present in the form of ammonia (NH3). Recent observations by Salinas et al. (2016) reveal a theoretical discrepancy in the gas-phase and ice-phase ammonia abundances in protoplanetary disks; while observations of comets and protostars estimate the ice-phase NH3/H2O ratio in disks to be 5%, Salinas reports a gas-phase NH3/H2O ratio of ~7-84% in the disk surrounding TW Hydra, a young nearby star. Through computational chemical modeling of the TW Hydra disk using a reaction network of over 5000 chemical reactions, I am investigating the possible sources of excess gas-phase NH3 by determining the primary reaction pathways of NH3 production; the downstream chemical effects of ionization by ultraviolet photons, X-rays, and cosmic rays; and the effects of altering the initial abundances of key molecules such as N and N2. Beyond providing a theoretical explanation for the NH3 ice/gas discrepancy, this new model may lead to fuller understanding of the gas-phase formation processes of all nitrogen hydrides (NHx), and thus fuller understanding of the nitrogen-bearing molecules that are fundamental for life as we know it.
H2S Injection and Sequestration into Basalt - The SulFix Project
NASA Astrophysics Data System (ADS)
Gudbrandsson, S.; Moola, P.; Stefansson, A.
2014-12-01
Atmospheric H2S emissions are among major environmental concern associated with geothermal energy utilization. It is therefore of great importance for the geothermal power sector to reduce H2S emissions. Known solutions for H2S neutralization are both expensive and include production of elemental sulfur and sulfuric acid that needs to be disposed of. Icelandic energy companies that utilize geothermal power for electricity production have decided to try to find an environmentally friendly and economically feasible solution to reduce the H2S emission, in a joint venture called SulFix. The aim of SulFix project is to explore the possibilities of injecting H2S dissolved in water into basaltic formations in close proximity to the power plants for permanent fixation as sulfides. The formation of sulfides is a natural process in geothermal systems. Due to basalt being rich in iron and dissolving readily at acidic conditions, it is feasible to re-inject the H2S dissolved in water, into basaltic formations to form pyrite. To estimate the mineralization rates of H2S, in the basaltic formation, flow through experiments in columns were conducted at various H2S concentrations, temperatures (100 - 240°C) and both fresh and altered basaltic glass. The results indicate that pyrite rapidly forms during injection into fresh basalt but the precipiation in altered basalt is slower. Three different alteration stages, as a function of distance from inlet, can be observed in the column with fresh basaltic glass; (1) dissolution features along with precipitation, (2) precipitation increases, both sulfides and other secondary minerals and (3) the basalt looks to be unaltered and little if any precipitation is observed. The sulfur has precipitated in the first half of the column and thereafter the solution is possibly close to be supersaturated with respect to the rock. These results indicate that the H2S sequestration into basalt is possible under geothermal conditions. The rate limiting step is the availability of iron released from the dissolving rock. The rapid precipitation of secondary phases in the column suggests the possibility of decreased porosity in the vicinity of the injection well.
NASA Technical Reports Server (NTRS)
Jamieson, C. S.; Guo, Y.; Gu, X.; Zhang, F.; Bennett, C. J.; Kaiser, R. I.
2006-01-01
A detailed knowledge of the formation of carbon-bearing molecules in interstellar ices and in the gas phase of the interstellar medium is of paramount interest to understand the astrochemical evolution of extraterrestrial environments (1). This research also holds strong implications to comprehend the chemical processing of Solar System environments such as icy planets and their moons together with the atmospheres of planets and their satellites (2). Since the present composition of each interstellar and Solar System environment reflects the matter from which it was formed and the processes which have changed the chemical nature since the origin (solar wind, planetary magnetospheres, cosmic ray exposure, photolysis, chemical reactions), a detailed investigation of the physicochemical mechanisms altering the pristine environment is of paramount importance to grasp the contemporary composition. Once these underlying processes have been unraveled, we can identify those molecules, which belonged to the nascent setting, distinguish molecular species synthesized in a later stage, and predict the imminent chemical evolution of, for instance, molecular clouds. Laboratory experiments under controlled physicochemical conditions (temperature, pressure, chemical composition, high energy components) present ideal tools for simulating the chemical evolution of interstellar and Solar System environments. Here, laboratory experiments can predict where and how (reaction mechanisms; chemicals necessary) in extraterrestrial environments and in the interstellar medium complex, carbon bearing molecules can be formed on interstellar grains and in the gas phase. This paper overviews the experimental setups utilized in our laboratory to mimic the chemical processing of gas phase and solid state (ices) environments. These are a crossed molecular beams machine (3) and a surface scattering setup (4). We also present typical results of each setup (formation of amino acids, aldehydes, epoxides; synthesis of hydrogen terminated carbon chains as precursors to complex PAHs and to carbonaceous dust grains in general; nitriles as precursor to amino acids).
Hydrothermal Alteration Products as Key to Formation of Duricrust and Rock Coatings on Mars
NASA Astrophysics Data System (ADS)
Bishop, J. L.
1999-03-01
A model is presented for the formation of duricrust and rock coatings on Mars. Hydrothermal alteration of volcanic tephra may produce a corrosive agent that attacks rock surfaces and binds dust particles to form duricrust.
Aqueous Alteration on Mars. Chapter 23
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Morris, Richard V.; Clark, Benton C.
2007-01-01
Aqueous alteration is the change in composition of a rock, produced in response to interactions with H2O-bearing ices, liquids, and vapors by chemical weathering. A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Mineralogical indicators for aqueous alteration include goethite (lander), jarosite (lander), kieserite (orbiter), gypsum (orbiter) and other Fe-, Mg-, and Ca-sulfates (landers), halides (meteorites, lander), phyllosilicates (orbiter, meteorites), hematite and nanophase iron oxides (telescopic, orbiter, lander), and Fe-, Mg-, and Ca-carbonates (meteorites). Geochemical indicators (landers only) for aqueous alteration include Mg-, Ca-, and Fe-sulfates, halides, and secondary aluminosilicates such as smectite. Based upon these indicators, several styles of aqueous alteration have been suggested on Mars. Acid-sulfate weathering (e.g., formation of jarosite, gypsum, hematite, and goethite), may occur during (1) the oxidative weathering of ultramafic igneous rocks containing sulfides, (2) sulfuric acid weathering of basaltic materials, and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials. Near-neutral or alkaline alteration occurs when solutions with pH near or above 7 move through basaltic materials and form phases such as phyllosilicates and carbonates. Very low water:rock ratios appear to have been prominent at most of the sites visited by landed missions because there is very little alteration (leaching) of the original basaltic composition (i.e., the alteration is isochemical or in a closed hydrologic system). Most of the aqueous alteration appears to have occurred early in the history of the planet (3 to 4.5 billion years ago); however, minor aqueous alteration may be occurring at the surface even today (e.g., in thin films of water or by acid fog).
Ruhl, Aki S; Jekel, Martin
2013-10-15
Permeable reactive barriers are successfully applied for the removal of various contaminants. The concomitant reduction of hydrogen ions and the subsequent formation of hydrogen gas by anaerobic corrosion lead to decreased pore volume filled with water and thus residence times, so called gas clogging. Long term column experiments were conducted to elucidate the impact of ubiquitous water constituents on the formation of hydrogen gas and potential passivation due to corrosion products. The collected gas volumes revealed a relation to the hydronium concentration (pH) but were only slightly increased in the presence of chloride and sulfate and not significantly influenced in the presence of phosphate, silicate, humic acid and ammonium compared to deionized water. Significant gas volumes within the reactive filling were verified by gravimetry. The presence of nitrate completely eliminated hydrogen formation by competition for electrons. Solid phase analyses revealed that neither chloride nor sulfate was incorporated in corrosion products in concentrations above 0.1 weight percent, and they did not alter the formation of mainly magnetite in comparison to deionized water. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahangir, S.; Cheng, Xuan; Huang, H. H.
2014-10-28
Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materialsmore » characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.« less
Numerical and neutron diffraction measurement of residual stress distribution in dissimilar weld
Eisazadeh, Hamid; Bunn, Jeffrey R.; Aidun, Daryush K.
2017-01-01
In this study, a model considering an asymmetric power heat distribution, temperature-dependent material properties, strain hardening and phase transformation was developed to predict temperature field and residual stress distribution in GTA dissimilar weld between austenitic stainless steel (304) and low carbon steel (1018). The effect of martensite formation on longitudinal and transverse residual stress distributions were investigated using both FE model and neutron diffraction measurement. The results indicate that martensitic phase has a significant influence on both residual stress components, i.e., transverse and longitudinal, and it not only can change the distribution shape of residual stress near the weld centermore » line but, also, can alter the peak value of the residual stresses. The calculated temperature and weld zone profile were in agreement with the experimental results. Favorable general agreement was also found between the calculated residual stress distribution and residual stress measurements by the neutron diffraction method.« less
Numerical and neutron diffraction measurement of residual stress distribution in dissimilar weld
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisazadeh, Hamid; Bunn, Jeffrey R.; Aidun, Daryush K.
In this study, a model considering an asymmetric power heat distribution, temperature-dependent material properties, strain hardening and phase transformation was developed to predict temperature field and residual stress distribution in GTA dissimilar weld between austenitic stainless steel (304) and low carbon steel (1018). The effect of martensite formation on longitudinal and transverse residual stress distributions were investigated using both FE model and neutron diffraction measurement. The results indicate that martensitic phase has a significant influence on both residual stress components, i.e., transverse and longitudinal, and it not only can change the distribution shape of residual stress near the weld centermore » line but, also, can alter the peak value of the residual stresses. The calculated temperature and weld zone profile were in agreement with the experimental results. Favorable general agreement was also found between the calculated residual stress distribution and residual stress measurements by the neutron diffraction method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Yingge; Gu, Meng; Varga, Tamas
2014-08-27
In this paper, we show that compared to other BO6 octahedra in ABO3 structured perovskite oxides, the WO6 octahedra in tungsten trioxide (WO3) can withstand a much larger degree of distortion and tilting to accommodate interfacial strain, which in turn strongly impact the nucleation, structure, and defect formation during the epitaxial growth of WO3 on SrTiO3(001). A meta-stable tetragonal phase can be stabilized by epitaxy and a thickness dependent phase transition (tetragonal to monoclinic) is observed. In contrast to misfit dislocations to accommodate the interfacial stain, the facial WO6 octahedral distortion and tilting give rise to three types of planarmore » defects that affect more than 15 monolayers from the interface. These atomically resolved, unusual interfacial defects may significantly alter the electronic, electrochromic, and mechanical properties of the epitaxial films.« less
Origins of saline fluids at convergent margins
NASA Astrophysics Data System (ADS)
Martin, Jonathan B.; Kastner, Miriam; Egeberg, Per Kr.
The compositions of pore and venting fluids at convergent margins differ from seawater values, reflecting mixing and diagenesis. Most significantly, the concentration of Cl-, assumed to be a conservative ion, differs from its seawater value. Chloride concentrations could be elevated by four processes, although two, the formation of gas hydrate and ion filtration by clay membranes, are insignificant in forming saline fluids at convergent margins. During the formation of gas hydrate, the resulting Cl--rich fluids, estimated to contain an average excess of ˜140 mM Cl- over seawater value, probably would be flushed from the sediment when the pore fluids vent to seawater. Ion filtration by clay membranes requires compaction pressures typical of >2 km burial depths. Even at these depths, the efficiency of ion filtration will be negligible because (1) fluids will flow through fractures, thereby bypassing clay membranes, (2) concentrations of clay minerals are diluted by other phases, and (3) during burial, smectite converts to illite, which has little capacity for ion filtration. A third process, mixing with subaerially evaporated seawater, elevates Cl- concentrations to 1043 mM in forearc basins along the Peru margin. Evaporation of seawater, however, will be important only in limited geographic regions that are characterized by enclosed basins, arid climates, and permeable sediments. At the New Hebrides and Izu-Bonin margins, Cl- concentrations are elevated to a maximum of 1241 mM. The process responsible for this increase is the alteration of volcanic ash to hydrous clay and zeolite minerals. Mass balance calculations, based on the decrease in δ18O values to -9.5‰ (SMOW), suggest that the Cl- concentrations could increase solely from the formation of smectite in a closed system. The diagenesis of volcanic ash also alters the concentrations of most dissolved species in addition to Cl-. Depending on the volume of this altered fluid, it could influence seawater chemistry when vented from the sediment.
Kodosky, L.G.; Keith, T.E.C.
1993-01-01
Factor and canonical correlation analysis of geochemical data from eight fossil fumaroles suggest that six major factors controlled the formation and evolution of fumarolic encrustations on the 1912 ash-flow sheet in the Valley of Ten Thousand Smokes (VTTS). The six-factor solution model explains a large proportion (low of 74% for Ni to high of 99% for Si) of the individual element data variance. Although the primary fumarolic deposits have been degraded by secondary alteration reactions and up to 75 years of weathering, the relict encrustations still preserve a signature of vapor-phase element transport. This vapor-phase transport probably occurred as halide or oxyhalide species and was significant for As, Sb and Br. At least three, and possibly four, varied temperature leaching events affected the fumarolic deposits. High-temperature gases/liquids heavily altered the ejecta glass and mineral phases adjacent to the fumarolic conduit. As the fumaroles cooled. Fe-rich acidic condensate leached the ejecta and primary fumarolic deposits and resulted in the subsequent precipitation of Fe-hydroxides and/or Fe-oxides. Low- to ambient-temperature leaching and hydration reactions generated abundant hydrated amorphous phases. Up to 87% of the individual element data variance is apparently controlled by the chemistry of the ejecta on which the relict encrustations are found. This matrix chemistry factor illustrates that the primary fumarolic minerals surrounding the active VTTS vents observed by earlier workers have been effectively removed by the dissolution reactions. Element enrichment factors calculated for the VTTS relict encrustations support the statistical factor interpretations. On the average, the relict encrustations are enriched, relative to visibly unaltered matrix protolith, in As, Br, Cr, Sb, Cu, Ni, Pb, Fe, and LOI (an indirect measure of sample H2O content). ?? 1993.
Immunomodulatory effects of amniotic membrane matrix incorporated into collagen scaffolds.
Hortensius, Rebecca A; Ebens, Jill H; Harley, Brendan A C
2016-06-01
Adult tendon wound repair is characterized by the formation of disorganized collagen matrix which leads to decreases in mechanical properties and scar formation. Studies have linked this scar formation to the inflammatory phase of wound healing. Instructive biomaterials designed for tendon regeneration are often designed to provide both structural and cellular support. In order to facilitate regeneration, success may be found by tempering the body's inflammatory response. This work combines collagen-glycosaminoglycan scaffolds, previously developed for tissue regeneration, with matrix materials (hyaluronic acid and amniotic membrane) that have been shown to promote healing and decreased scar formation in skin studies. The results presented show that scaffolds containing amniotic membrane matrix have significantly increased mechanical properties and that tendon cells within these scaffolds have increased metabolic activity even when the media is supplemented with the pro-inflammatory cytokine interleukin-1 beta. Collagen scaffolds containing hyaluronic acid or amniotic membrane also temper the expression of genes associated with the inflammatory response in normal tendon healing (TNF-α, COLI, MMP-3). These results suggest that alterations to scaffold composition, to include matrix known to decrease scar formation in vivo, can modify the inflammatory response in tenocytes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1332-1342, 2016. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Singh, Mahima; Rajesh, V. J.; Sajinkumar, K. S.; Sajeev, K.; Kumar, S. N.
2016-11-01
Coastal cliffs fringing the Arabian Sea near Varkala exhibits the Warkalli Formation of the Tertiary sequence of Kerala, South India, with well-marked occurrence of jarosite associated with other hydrous mineral phases of phyllosilicate family in a palaeo-lacustrine depositional environment. Sandy phyllosilicates dominate the mineral assemblage, but jarosite occurs as a prominent secondary phase formed during acid-sulphate alteration of iron sulphide in this area. Here, we discuss about the potentiality of spectroscopic techniques to identify the possible mineral phases in the collected samples. The samples from the coastal cliffs have been characterized by hyperspectral analysis (VIS-NIR-SWIR), X-ray Diffraction (XRD), Fourier Transform Infra-red Reflectance (FTIR), Electron Probe Microanalysis (EPMA) and Laser Raman spectroscopy. The spectral and chemical analyses have confirmed the jarosite as natrojarosite and phyllosilicate as kaolinite. Other accessory phases have also been identified through XRD. FTIR spectroscopy has played a major role in identifying the major hydrous bonds between the minerals. VIS-NIR-SWIR spectra show several optimum spectral features at 910 nm, 1470 nm, 1849-1864 nm (in the form of a doublet), 1940 nm and 2270 nm, which could be utilised to locate jarosite in the remotely-sensed data. X-ray diffraction peaks helped in the identification of maximum number of minerals (kaolinite, smectite, quartz, feldspar, pyrite, marcasite and hematite) and the variation in jarosite content in the samples. We propose the formation of jarosite in the region by a seasonal, local and temporary development of acidic conditions. Abundance of organic matter in a fluvio-lacustrine environment has developed anaerobic conditions by removing available oxygen through decomposition of organic matter containing sulphur compounds. The sulphur thus liberated combines with hydrogen from water to develop acidic conditions and resulted in the formation of jarosite. The occurrence of jarosite in Warkalli Formation suggests on and off supply of water during diagenesis. Jarosite has been detected as a prominent deposit in several regions on Mars by Mars Exploration rover Opportunity and Mars Reconnaissance Orbiter-Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). This study of jarosite formation in terrestrial environment will influence our understanding on the mineral precipitation, diagenesis and hydration processes on Mars. Additionally, it also shows the importance of spectroscopic techniques like Raman spectrometry to be used in future missions to Mars to further validate the results of orbital spectroscopy.
Nanomechanics of Ferroelectric Thin Films and Heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang Y.; Chen , L.Q.
2016-08-31
The focus of this chapter is to provide basic concepts of how external strains/stresses altering ferroelectric property of a material and how to evaluate quantitatively the effect of strains/stresses on phase stability, domain structure, and material ferroelectric properties using the phase-field method. The chapter starts from a brief introduction of ferroelectrics and the Landau-Devinshire description of ferroelectric transitions and ferroelectric phases in a homogeneous ferroelectric single crystal. Due to the fact that ferroelectric transitions involve crystal structure change and domain formation, strains and stresses can be produced inside of the material if a ferroelectric transition occurs and it is confined.more » These strains and stresses affect in turn the domain structure and material ferroelectric properties. Therefore, ferroelectrics and strains/stresses are coupled to each other. The ferroelectric-mechanical coupling can be used to engineer the material ferroelectric properties by designing the phase and structure. The followed section elucidates calculations of the strains/stresses and elastic energy in a thin film containing a single domain, twinned domains to complicated multidomains constrained by its underlying substrate. Furthermore, a phase field model for predicting ferroelectric stable phases and domain structure in a thin film is presented. Examples of using substrate constraint and temperature to obtain interested ferroelectric domain structures in BaTiO3 films are demonstrated b phase field simulations.« less
Valley plugs, land use, and phytogeomorphic response: Chapter 14
Pierce, Aaron R.; King, Sammy L.; Shroder, John F.
2013-01-01
Anthropogenic alteration of fluvial systems can disrupt functional processes that provide valuable ecosystem services. Channelization alters fluvial parameters and the connectivity of river channels to their floodplains which is critical for productivity, nutrient cycling, flood control, and biodiversity. The effects of channelization can be exacerbated by local geology and land-use activities, resulting in dramatic geomorphic readjustments including the formation of valley plugs. Considerable variation in the response of abiotic processes, including surface hydrology, subsurface hydrology, and sedimentation dynamics, to channelization and the formation of valley plugs. Altered abiotic processes associated with these geomorphic features and readjustments influence biotic processes including species composition, abundance, and successional processes. Considerable interest exists for restoring altered fluvial systems and their floodplains because of their social and ecological importance. Understanding abiotic and biotic responses of channelization and valley-plug formation within the context of the watershed is essential to successful restoration. This chapter focuses on the primary causes of valley-plug formation, resulting fluvial-geomorphic responses, vegetation responses, and restoration and research needs for these systems.
NASA Astrophysics Data System (ADS)
Curti, Enzo; Dähn, Rainer; Farges, François; Vespa, Marika
2009-04-01
Microscopic distribution and speciation of Na, Mg, Ni and Cs in a simulated (inactive) nuclear waste glass were studied using micro X-ray fluorescence (μ-XRF) and micro X-ray absorption spectroscopy (μ-XAS), after aqueous leaching during 12 years at 90 °C. Na and Mg are major constituents of the glass that can be used to determine the progress of the glass corrosion process and the nature of secondary alteration phases. Ni and Cs represent dose determining long-lived radionuclides ( 59Ni, 135Cs) in vitrified nuclear waste. The Na-Mg μ-XRF maps revealed that the core regions of the glass fragments are apparently unaltered and compositionally homogeneous, whereas rims and interstitial spaces are enriched with Mg-rich smectite formed during the leaching process. The micro X-ray absorption near edge structure (μ-XANES) spectra collected at the Mg K-edge in the altered zones show three sharp resonances typical for crystalline Mg-silicates. These resonances are distinctive of Mg occupying undistorted octahedral positions. In contrast, the μ-XANES spectra collected in the core zones of the glass fragments lack this resonance pattern and are identical to the spectra measured on the pristine (unleached) MW glass. Micro extended X-ray absorption fine structure (μ-EXAFS) and μ-XANES analyses at the Ni K-edge revealed three distinct Ni(II) species: (a) Ni uniformly distributed in the glass matrix, (b) micro-inclusions with high Ni concentrations and (c) Ni associated to the Mg-clay. The comparison with reference spectra of unleached MW and other Ni-bearing silicate glasses indicated that species (a) represents the original coordinative environment of Ni in the glass. The μ-EXAFS analyses revealed that species (b) is structural Ni in trevorite (NiFe 2O 4), which probably formed through unmixing processes during the cooling of the glass melt. The μ-EXAFS of species (c) could be successfully modeled assuming specific adsorption or incorporation of Ni into the lattice of trioctahedral Mg-clay minerals. Alternative models assuming other elements (Ni, Al, Fe) in addition to Mg in the second shell could not be fitted successfully. Aqueous concentration data were used to calculate the speciation of the leaching solutions. Saturation index (SI) calculations indicate undersaturation with respect to NiCO 3 and NiSO 4·7H 2O, but oversaturation with respect to β-Ni(OH) 2. The latter result is probably due to the omission of Ni borate and Ni silicate complexes in the speciation calculations, for which formation constants are not available. With the help of estimation techniques, we could infer that such complexes would dominate the Ni speciation and consequently reduce the SI below the saturation of β-Ni(OH) 2. The μ-XRF maps show that Cs is uniformly distributed in the MW glass, since no region with high Cs concentration could be detected. The Cs L III-edge μ-XAS spectra were all very similar independently of the degree of alteration, indicating similar coordination environments of Cs in the core regions of the glass as well as in the secondary clays. These spectra largely differ from that measured for pollucite (a potential secondary Cs-phase in altered glasses) implying that the coordination environments of Cs in the MW glass and in pollucite are fundamentally different. The present study shows that μ-XRF and μ-XAS are essential tools in determining the fate and the retention mechanisms of radionuclides released from nuclear waste during aqueous alteration. Our spectroscopic analyses allowed us to exclude formation of specific Ni and Cs secondary solids (e.g. nepouite, β-Ni(OH) 2, pollucite) during the aqueous alteration. Ni and Cs are instead distributed as trace elements in the alteration phases formed by major elements during the leaching process. Our results imply that solid solution and/or adsorption equilibria, rather than pure phase solubility equilibria, are the adequate chemical models to determine Ni and Cs aqueous concentrations in performance assessments for radioactive waste repositories.
Beyer, Lydia; Doberenz, Claudia; Falke, Dörte; Hunger, Doreen; Suppmann, Bernhard
2013-01-01
Enterobacteria such as Escherichia coli generate formate, lactate, acetate, and succinate as major acidic fermentation products. Accumulation of these products in the cytoplasm would lead to uncoupling of the membrane potential, and therefore they must be either metabolized rapidly or exported from the cell. E. coli has three membrane-localized formate dehydrogenases (FDHs) that oxidize formate. Two of these have their respective active sites facing the periplasm, and the other is in the cytoplasm. The bidirectional FocA channel translocates formate across the membrane delivering substrate to these FDHs. FocA synthesis is tightly coupled to synthesis of pyruvate formate-lyase (PflB), which generates formate. In this study, we analyze the consequences on the fermentation product spectrum of altering FocA levels, uncoupling FocA from PflB synthesis or blocking formate metabolism. Changing the focA translation initiation codon from GUG to AUG resulted in a 20-fold increase in FocA during fermentation and an ∼3-fold increase in PflB. Nevertheless, the fermentation product spectrum throughout the growth phase remained similar to that of the wild type. Formate, acetate, and succinate were exported, but only formate was reimported by these cells. Lactate accumulated in the growth medium only in mutants lacking FocA, despite retaining active PflB, or when formate could not be metabolized intracellularly. Together, these results indicate that FocA has a strong preference for formate as a substrate in vivo and not other acidic fermentation products. The tight coupling between FocA and PflB synthesis ensures adequate substrate delivery to the appropriate FDH. PMID:23335413
NASA Astrophysics Data System (ADS)
Minet, Y.; Bonin, B.; Gin, S.; Frugier, P.
2010-09-01
The Glass Reactivity with Allowance for the Alteration Layer Model (GRAAL) was proposed in 2008 to describe borosilicate nuclear glass alteration based on coupling an affinity law with the formation and dissolution of a passivating reactive interface. It is examined here in a simplified form in which only the affinity with respect to silicon is taken into account with a concentration at saturation Csat, and the precipitation of neoformed phases is described by an affine relation for silicon above a precipitation threshold Csat'. This simplified "analytical GRAAL" model is capable of predicting the quantities of altered glass and the silicon and boron concentration variations in analytical or semi-analytical form, and thereby identify the main characteristic quantities of the system. The model was tested against a series of laboratory experiments lasting from a few days to a few years; its sensitivity to the parameter values was examined, and the model was validated with respect to SON68 glass alteration in initially pure water. It was then applied to the alteration of a glass package in a repository over periods of up to a million years, by means of exploratory calculations comprising a sensitivity study of the internal model parameters and extrapolation to the temperatures expected in a geological repository in order to identify the parameters and mechanisms having the greatest impact on the residual alteration rate. Alteration is controlled by the precipitation of neoformed phases in every case. The transient conditions are of very limited duration with respect to either silicon or boron (no more than a 100 years, with less than 0.01% alteration of the package). In the precipitation law used in the model, the residual alteration rate and total package lifetime are determined primarily by two parameters: k' (the precipitation kinetics) and σ' (the precipitate surface area per unit volume in the geological barrier). The package lifetime is about 3 × 10 5 years at 30 °C assuming a reasonable value for σ' (10 6 m -1), and would be increased by a factor 3-6 if precipitation in the barrier were disregarded. This cursory description of precipitation will be validated and refined through specific laboratory tests at 50 °C and lower temperatures, coordinated with the development of the "geochemical GRAAL" model and with integral tests in contact with clay and canister corrosion products.
NASA Astrophysics Data System (ADS)
Lévy, Léa; Páll Hersir, Gylfi; Flóvenz, Ólafur; Gibert, Benoit; Pézard, Philippe; Sigmundsson, Freysteinn; Briole, Pierre
2016-04-01
Rock permeability and fluid temperature are the two most decisive factors for a successful geothermal drilling. While those parameters are only measured from drilling, they might be estimated on the basis of their impact on electrical resistivity that might be imaged from surface soundings, for example through TEM (Transient Electro Magnetic) down to one km depth. The electrical conductivity of reservoir rocks is the sum of a volume term depending on fluid parameters and a surface term related to rock alteration. Understanding the link between electrical resistivity and geothermal key parameters requires the knowledge of hydrothermal alteration and its petrophysical signature with the Cation Exchange Capacity (CEC). Fluid-rock interactions related to hydrothermal circulation trigger the precipitation of alteration minerals, which are both witnesses of the temperature at the time of reaction and new paths for the electrical current. Alteration minerals include zeolites, smectites, chlorites, epidotes and amphiboles among which low temperatures parageneses are often the most conductive. The CEC of these mineral phases contributes to account for surface conductivity occuring at the water-rock interface. In cooling geothermal systems, these minerals constitute in petrophysical terms and from surface electrical conduction a memory of the equilibrium phase revealed from electrical probing at all scales. The qualitative impact of alteration minerals on resistivity structure has been studied over the years in the Icelandic geothermal context. In this work, the CEC impact on pore surfaces electrical conductivity is studied quantitatively at the borehole scale, where several types of volcanic rocks are mixed together, with various degrees of alteration and porosity. Five boreholes located within a few km at the Krafla volcano, Northeast Iceland, constitute the basis for this study. The deepest and reference hole, KJ-18, provides cuttings of rock and logging data down to 2215 m depth; CEC measurements performed on cuttings show. KH-1 and KH-3 have cores and logs in the top 200 m only. Boreholes KH-5 and KH-6 sample cores with higher temperature alteration minerals down to 600 m. Together, these 4 shallow holes cover the diversity of rock types and alterations facies found in KJ-18. The petrophysical calibration obtained from cores will then be upscaled to log data analysis in KJ-18: porosity, formation factor, permeability, acoustic velocity, electrical surface conduction at different temperatures and CEC. This research is supported by the IMAGE FP7 EC project (Integrated Methods for Advanced Geothermal Exploration, grant agreement No. 608553).
Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi
2015-09-15
Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format.
NASA Astrophysics Data System (ADS)
Scott, Spencer M.; Yao, Tiankai; Lu, Fengyuan; Xin, Guoqing; Zhu, Weiguang; Lian, Jie
2017-03-01
High-energy ball milling was used to synthesize Th1-xLaxO2-0.5x (x = 0.09, 0.23) solid solutions, as well as improve the sinterability of ThO2 powders. Dense La-doped ThO2 pellets with theoretical density above 94% were consolidated by spark plasma sintering at temperatures above 1400 °C for 20 min, and the densification behavior and the non-equilibrium effects on phase and structure were investigated. A lattice contraction of the SPS-densified pellets occurred with increasing ball milling duration, and a secondary phase with increased La-content was observed in La-doped pellets. A dependence on the La-content and sintering duration for the onset of localized phase segregation has been proposed. The effects of high-energy ball milling, La-content, and phase formation on the thermal diffusivity were also studied for La-doped ThO2 pellets by laser flash measurement. Increasing La-content and high energy ball milling time decreases thermal diffusivity; while the sintering peak temperature and holding time beyond 1600 °C dramatically altered the temperature dependence of the thermal diffusivity beyond 600 °C.
NASA Astrophysics Data System (ADS)
Saheb, Mandana; Chabas, Anne; Mertz, Jean-Didier; Rozenbaum, Olivier; Verney-Carron, Aurélie
2015-04-01
This project belongs to a specific work aiming at developing isotopic tools to better understand the alteration of materials used in the built cultural heritage. It is focused on the study of the alteration of limestone used in the facades of historic buildings subject to atmospheric polluted environment. Actually in the elevated parts of the buildings, water as rainfall (runoff or wet deposition) or in vapor form (condensation or dry deposition) is the main agent of alteration. Thus, the rock/water interactions need to be well understood to propose adapted solution to better preserve the buildings. To identify the water transfer within the porous limestone and locate the reaction preferential sites, two isotopic tracers (D and 18O) are used to monitor the alteration solution (D) and locate the zones containing the secondary phases (18O). The Saint-Maximin limestone used in many monuments in the suburbs of Paris (France) as a building and restoration stone has been specifically studied. Pristine materials, stones from monuments (monuments in the Paris area) and samples altered in laboratory constitute the analytical corpus to compare different stages of alteration. In a first step the stones are characterized at different scales to identify the alteration pattern (SEM-EDS, Raman microspectrometry, XRD, rugosimetry) and study the water transfers (X-ray tomography, mercury porosimetry, imbibition kinetics). The samples are then altered in the laboratory by realistic and controlled wet or dry deposition using isotopically labeled solutions to locate the reaction zones by SIMS. The multiscale characterization of the alteration pattern has allowed proposing alteration mechanisms linked to the properties of the stones and their location inside the building. Moreover, the location of the reactive zones inside the materials determined by the isotopic experiments helps examining the role of the evolution of porosity and formation of alteration products within the material, in order to estimate the alteration rate. This innovative methodology will contribute to improve the knowledge of stone alteration processes in order to develop appropriate conservation strategies for the buildings.
Walker, R.J.; Böhlke, J.K.; McDonough, W.F.; Li, Ji
2007-01-01
Osmium isotope compositions and concentrations of Re, platinum group elements (PGE), and Au were determined for host peridotites (serpentinites and barzburgites) and hydrothermally altered ultramafic wall rocks associated with Mother Lode-type hydrothermal gold-quartz vein mineralization in the Alleghany district, California. The host peridotites have Os isotope compositions and Re, PGE, and Au abundances typical of the upper mantle at their presumed formation age during the late Proterozoic or early Paleozoic. The hydrothermally altered rocks have highly variable initial Os isotope compositions with ??os, values (% deviation of 187OS/188OS from the chondritic average calculated for the approx. 120 Ma time of mineralization) ranging from -1.4 to -8.3. The lowest Os isotope compositions are consistent with Re depletion of a chondritic source (e.g., the upper mantle) at ca. 1.6 Ga. Most of the altered samples are enriched in Au and have depleted and fractionated abundances of Re and PGE relative to their precursor peridotites. Geoehemical characteristics of the altered samples suggest that Re and some PGE were variably removed from the ultramafic rocks during the mineralization event. In addition to Re, the Pt and Pd abundances of the most intensely altered rocks appear to have been most affected by mineralization. The 187Os-depleted isotopic compositions of some altered rocks are interpreted to be a result of preferential 187Os loss via destruction of Re-rich phases during the event. For these rocks, Os evidently is not a useful tracer of the mineralizing fluids. The results do, however, provide evidence for differential mobility of these elements, and mobility of 187Os relative to the initial bulk Os isotope composition during hydrothermal metasomatic alteration of ultramafic rocks. ?? 2007 Society of Economic Geologists, Inc.
Patel, Karishma B; Boizot, Bruno; Facq, Sébastien P; Lampronti, Giulio I; Peuget, Sylvain; Schuller, Sophie; Farnan, Ian
2017-02-06
Molybdenum solubility is a limiting factor to actinide loading in nuclear waste glasses, as it initiates the formation of water-soluble crystalline phases such as alkali molybdates. To increase waste loading efficiency, alternative glass ceramic structures are sought that prove resistant to internal radiation resulting from radioisotope decay. In this study, selective formation of water-durable CaMoO 4 in a soda lime borosilicate is achieved by introducing up to 10 mol % MoO 3 in a 1:1 ratio to CaO using a sintering process. The resulting homogeneously dispersed spherical CaMoO 4 nanocrystallites were analyzed using electron microscopy, X-ray diffraction (XRD), Raman and electron paramagnetic resonance (EPR) spectroscopies prior to and post irradiation, which replicated internal β-irradiation damage on an accelerated scale. Following 0.77 to 1.34 GGy of 2.5 MeV electron radiation CaMoO 4 does not exhibit amorphization or significant transformation. Nor does irradiation induce glass-in-glass phase separation in the surrounding amorphous matrix, or the precipitation of other molybdates, thus proving that excess molybdenum can be successfully incorporated into a structure that it is resistant to β-irradiation proportional to 1000 years of storage without water-soluble byproducts. The CaMoO 4 crystallites do however exhibit a nonlinear Scherrer crystallite size pattern with dose, as determined by a Rietveld refinement of XRD patterns and an alteration in crystal quality as deduced by anisotropic peak changes in both XRD and Raman spectroscopy. Radiation-induced modifications in the CaMoO 4 tetragonal unit cell occurred primarily along the c-axis indicating relaxation of stacked calcium polyhedra. Concurrently, a strong reduction of Mo 6+ to Mo 5+ during irradiation is observed by EPR, which is believed to enhance Ca mobility. These combined results are used to hypothesize a crystallite size alteration model based on a combination of relaxation and diffusion-based processes initiated by added energy from β-impingement and second-order structural modifications induced by defect accumulation.
NASA Astrophysics Data System (ADS)
Conrad, Georges; Lappartient, Jean-René
The 'Continental Terminal' in the Senegalo-Mauritanian basin is a Cenozoic and detrital formation, presenting signs of an intense ferralitic alteration with formation of ferruginous concretions and crustings, neo-formation of kaolinite and significant silica movements. Sedimentary structures are generally obliterated by alteration in the formation's summit. However, some fossil layers which have undergone epigenesis by geothite make it possible to establish the sea origin of the eocene and miocene deposits in this 'Continental Terminal'. A better idea of Cenozoic transgressions and regressions can be achieved by a reconstitution of fossil river beds through alterations on the edge of the African continent. The new elements in the 'Continental Terminal' and the Senegalo-Mauritanian Cenozoic paleoclimates are: The 'Continental Terminal' clearly represents an alteration fringe developed at the expense of marine formations (Tessier et al. 1975 Actes 9ème Congr. Int. Sédim., Nice, pp. 207-211), but this concept cannot be generalized to all of the coastal Cenozoic or interior Iullemmeden Nigerian basins. The ferrallitic alterations mostly occurred in the Pliocene period after the sinking of the basin, as in the Miocene margino-littoral facies, and are still highly dominant. The ferruginous crusting can be seen in this period and also during the lower Pleistocene, because of the latitudinal migration of the basin northwards starting from the upper Cretaceous period.
Digital holographic microscopy of phase separation in multicomponent lipid membranes
NASA Astrophysics Data System (ADS)
Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat
2016-12-01
Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.
Aqueous alteration and brecciation in Bells, an unusual, saponite-bearing, CM chondrite
NASA Astrophysics Data System (ADS)
Brearley, Adrian J.
1995-06-01
The petrological and mineralogical characteristics of the unusual CM2 chondrite, Bells, have been investigated in detail by scanning electron microscopy (SEM), electron microprobe analysis (EPMA), and transmission electron microscopy (TEM). Bells is a highly brecciated chondrite which contains few intact chondrules, a very low abundance of refractory inclusions, and is notable in having an unusually high abundance of magnetite, which is disseminated throughout the fine-grained matrix. Fragmental olivines and pyroxenes are common and, based on compositional data, appear to have been derived from chondrules as a result of extensive brecciation. The fine-grained mineralogy of matrix in Bells differs considerably from other CM chondrites and has closer affinities to matrix in CI chondrites. The dominant phases are fine-grained saponite interlayered with serpentine, and phases such as tochilinite and cronstedtite, which are typical of CM chondrite matrices, are entirely absent. Pentlandite, pyrrhotite, magnetite, anhydrite, calcite, and rare Ti-oxides also occur as accessory phases. Based on its oxygen and noble gas isotopic compositions (Zadnik, 1985; Rowe et al., 1994), Bells can be considered to be a CM2 chondrite, although its bulk composition shows some departures from the typical range exhibited by this group. However, these variations in bulk chemistry are entirely consistent with the observed mineralogy of Bells. The unusual fine-grained mineralogy of Bells matrix can be reasonably attributed to the combined effects of aqueous alteration and advanced brecciation in a parent body environment. Extensive brecciation has assisted aqueous alteration by reducing chondrules and mineral grains into progressively smaller grains with high surface areas, which are more susceptible to dissolution reactions involving aqueous fluids. This has resulted in the preferential dissolution of Fe-rich chondrule olivines, which are now completely absent in Bells although present in other CM chondrites. The formation of saponite in Bells probably resulted from the dissolution of relatively silica-rich phases, such as pyroxene and olivine, that were derived from chondrules. The result of such dissolution reactions would be to increase the activity of silica in the fluid phase, at least on a localized scale, stabilizing saponite in preference to serpentine. An increase in aSiO 2 would also have destabilized preexisting cronstedtite which may have reacted to form magnetite and MgFe serpentine under conditions of constant ƒO 2 .
Observation of > 5 wt % zinc at the Kimberley outcrop, Gale crater, Mars
Lasue, J.; Clegg, Samuel M.; Forni, O.; ...
2016-03-12
Zinc-enriched targets have been detected at the Kimberley formation, Gale crater, Mars, using the Chemistry Camera (ChemCam) instrument. The Zn content is analyzed with a univariate calibration based on the 481.2 nm emission line. The limit of quantification for ZnO is 3 wt % (at 95% confidence level) and 1 wt % (at 68% confidence level). The limit of detection is shown to be around 0.5 wt %. As of sol 950, 12 targets on Mars present high ZnO content ranging from 1.0 wt % to 8.4 wt % (Yarrada, sol 628). Those Zn-enriched targets are almost entirely located atmore » the Dillinger member of the Kimberley formation, where high Mn and alkali contents were also detected, probably in different phases. Zn enrichment does not depend on the textures of the rocks (coarse-grained sandstones, pebbly conglomerates, and resistant fins). The lack of sulfur enhancement suggests that Zn is not present in the sphalerite phase. Zn appears somewhat correlated with Na 2O and the ChemCam hydration index, suggesting that it could be in an amorphous clay phase (such as sauconite). On Earth, such an enrichment would be consistent with a supergene alteration of a sphalerite gossan cap in a primary siliciclastic bedrock or a possible hypogene nonsulfide zinc deposition where Zn, Fe, Mn would have been transported in a reduced sulfur-poor fluid and precipitated rapidly in the form of oxides.« less
Observation of > 5 wt % zinc at the Kimberley outcrop, Gale crater, Mars
NASA Astrophysics Data System (ADS)
Lasue, J.; Clegg, S. M.; Forni, O.; Cousin, A.; Wiens, R. C.; Lanza, N.; Mangold, N.; Le Deit, L.; Gasnault, O.; Maurice, S.; Berger, J. A.; Stack, K.; Blaney, D.; Fabre, C.; Goetz, W.; Johnson, J.; Le Mouélic, S.; Nachon, M.; Payré, V.; Rapin, W.; Sumner, D. Y.
2016-03-01
Zinc-enriched targets have been detected at the Kimberley formation, Gale crater, Mars, using the Chemistry Camera (ChemCam) instrument. The Zn content is analyzed with a univariate calibration based on the 481.2 nm emission line. The limit of quantification for ZnO is 3 wt % (at 95% confidence level) and 1 wt % (at 68% confidence level). The limit of detection is shown to be around 0.5 wt %. As of sol 950, 12 targets on Mars present high ZnO content ranging from 1.0 wt % to 8.4 wt % (Yarrada, sol 628). Those Zn-enriched targets are almost entirely located at the Dillinger member of the Kimberley formation, where high Mn and alkali contents were also detected, probably in different phases. Zn enrichment does not depend on the textures of the rocks (coarse-grained sandstones, pebbly conglomerates, and resistant fins). The lack of sulfur enhancement suggests that Zn is not present in the sphalerite phase. Zn appears somewhat correlated with Na2O and the ChemCam hydration index, suggesting that it could be in an amorphous clay phase (such as sauconite). On Earth, such an enrichment would be consistent with a supergene alteration of a sphalerite gossan cap in a primary siliciclastic bedrock or a possible hypogene nonsulfide zinc deposition where Zn, Fe, Mn would have been transported in a reduced sulfur-poor fluid and precipitated rapidly in the form of oxides.
Observation of > 5 wt % zinc at the Kimberley outcrop, Gale crater, Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasue, J.; Clegg, Samuel M.; Forni, O.
Zinc-enriched targets have been detected at the Kimberley formation, Gale crater, Mars, using the Chemistry Camera (ChemCam) instrument. The Zn content is analyzed with a univariate calibration based on the 481.2 nm emission line. The limit of quantification for ZnO is 3 wt % (at 95% confidence level) and 1 wt % (at 68% confidence level). The limit of detection is shown to be around 0.5 wt %. As of sol 950, 12 targets on Mars present high ZnO content ranging from 1.0 wt % to 8.4 wt % (Yarrada, sol 628). Those Zn-enriched targets are almost entirely located atmore » the Dillinger member of the Kimberley formation, where high Mn and alkali contents were also detected, probably in different phases. Zn enrichment does not depend on the textures of the rocks (coarse-grained sandstones, pebbly conglomerates, and resistant fins). The lack of sulfur enhancement suggests that Zn is not present in the sphalerite phase. Zn appears somewhat correlated with Na 2O and the ChemCam hydration index, suggesting that it could be in an amorphous clay phase (such as sauconite). On Earth, such an enrichment would be consistent with a supergene alteration of a sphalerite gossan cap in a primary siliciclastic bedrock or a possible hypogene nonsulfide zinc deposition where Zn, Fe, Mn would have been transported in a reduced sulfur-poor fluid and precipitated rapidly in the form of oxides.« less
Primers of glycosaminoglycan biosynthesis from Peruvian rain forest plants.
Taylor, W H; Sinha, A; Khan, I A; McDaniel, S T; Esko, J D
1998-08-28
We have developed a rapid, high throughput screening assay for compounds that alter the assembly of glycosaminoglycan chains in Chinese hamster ovary cells. The assay uses autoradiography to measure the binding of newly synthesized [35S]proteoglycans and [35S]glycosaminoglycans to a positively charged membrane. Screening over 1000 extracts from a random plant collection obtained from the Amazon rain forest yielded five plants that stimulated glycosaminoglycan assembly in both wild-type cells and a mutant cell line defective in xylosyltransferase (the first committed enzyme involved in glycosaminoglycan biosynthesis). Fractionation of an extract of Maieta guianensis by silica gel and reverse-phase chromatography yielded two pure compounds with stimulatory activity. Spectroscopic analysis by NMR and mass spectrometry revealed that the active principles were xylosides of dimethylated ellagic acid. One of the compounds also contained a galloyl group at C-3 of the xylose moiety. These findings suggest that plants and other natural products may be a source of agents that can potentially alter glycosaminoglycan and proteoglycan formation in animal cells.
Precipitation of Secondary Phases from the Dissolution of Silicate Glasses
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Golden, D. C.
2004-01-01
Basaltic and anorthositic glasses were subjected to aqueous weathering conditions in the laboratory where the variables were pH, temperature, glass composition, solution composition, and time. Leached layers formed at the surfaces of glasses followed by the precipitation of X-ray amorphous iron and titanium oxides in acidic and neutral solutions at 25 C over time. Glass under oxidative hydrothermal treatments at 150 C yielded a three-layered surface; which included an outer smectite layer, a Fe-Ti oxide layer and an innermost thin leached layer. The introduction of Mg into solutions facilitated the formation of phyllosilicates. Aqueous hydrothermal treatment of anorthositic glasses (high Ca, low Ti) at 200 C readily formed smectite, whereas, the basaltic glasses (high Ti) were more resistant to alteration and smectite was not observed. Alkaline hydrothermal treatment at 2000e produced zeolites and smectites; only smectites formed at 200 C in neutral solutions. These mineralogical changes, although observed under controlled conditions, have direct applications in interpreting planetary (e.g., meteorite parent bodies) and terrestrial aqueous alteration processes.
NASA Astrophysics Data System (ADS)
Schindler, Michael; Legrand, Christine A.; Hochella, Michael F.
2015-03-01
Nano-scale processes on the solid-water interface of clay minerals control the mobility of metals in the environment. These processes can occur in confined pore spaces of clay buffers and barriers as well as in contaminated sediments and involve a combination of alteration, adsorption and nucleation processes of multiple species and phases. This study characterizes nano-scale processes on the interface between clay minerals and uranyl-bearing solution near neutral pH. Samples of clay minerals with a contact pH of ∼6.7 are collected from a U mill and mine tailings at Key Lake, Saskatchewan, Canada. The tailings material contains Cu-, As-, Co-, Mo-, Ni-, Se-bearing polymetallic phases and has been deposited with a surplus of Ca(OH)2 and Na2CO3 slaked lime. Small volumes of mill-process solutions containing sulfuric acid and U are occasionally discharged onto the surface of the tailings and are neutralized after discharge by reactions with the slaked lime. Transmission electron microscopy (TEM) in combination with the focused ion beam (FIB) technique and other analytical methods (SEM, XRD, XRF and ICP-OES) are used to characterize the chemical and mineralogical composition of phases within confined pore spaces of the clay minerals montmorillonite and kaolinite and in the surrounding tailings material. Alteration zones around the clay minerals are characterized by different generations of secondary silicates containing variable proportions of adsorbed uranyl- and arsenate-species and by the intergrowth of the silicates with the uranyl-minerals cuprosklodowskite, Cu[(UO2)2(SiO3OH)2](H2O)6 and metazeunerite, Cu[(UO2)(AsO4)2](H2O)8. The majority of alteration phases such as illite, illite-smectite, kaolinite and vermiculite have been most likely formed in the sedimentary basin of the U-ore deposit and contain low amounts of Fe (<5 at.%). Iron-enriched Al-silicates or illite-smectites (Fe >10 at.%) formed most likely in the limed tailings at high contact pH (∼10.5) and their structure is characterized by a low degree of long-range order. Adsorption of U and nucleation of metazeunerite and cuprosklodowskite are strongly controlled by the presence of the adsorbed oxy-anion species arsenate and silica on the Fe-enriched silicates. Heterogeneous nucleation of nano-crystals of the uranyl minerals occurs most likely on adsorption sites of binary uranyl-, arsenate- and silica-complexes as well as on ternary uranyl-arsenate or uranyl-silicate complexes. The uranyl minerals occur as aggregates of misoriented nano-size crystals and are the result of supersaturated solutions and a high number of nucleation sites that prevented the formation of larger crystals through Oswald ripening. The results of this study provide an understanding of interfacial nano-scale processes between uranyl species and altered clay buffers in a potential Nuclear Waste repository as similar alteration conditions of clays may occur in a multi-barrier system.
NASA Astrophysics Data System (ADS)
Kapri, Anil; Zaidi, M. G. H.; Goel, Reeta
2009-06-01
Plastic waste biodegradation studies have seen several developmental phases from the discovery of potential microbial cultures, inclusion of photo-oxidizable additives into the polymer chain, to the creation of starch-embedded biodegradable plastics. The present study deals with the supplementation of nanobarium titanate (NBT) in the minimal broth in order to alter the growth-profiles of the Low-density polyethylene (LDPE) degrading consortia. The pro-bacterial influence of the nanoparticles could be seen by substantial changes such as shortening of the lag phase and elongation of the exponential as well as stationary growth phases, respectively, which eventually increase the biodegradation efficiency. In-vitro biodegradation studies revealed better dissolution of LDPE in the presence of NBT as compared to control. Significant shifting in λ-max values was observed in the treated samples through UV-Vis spectroscopy, while Fourier transform infrared spectroscopy (FTIR) and simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) further confirmed the breakage and formation of bonds in the polymer backbone. Therefore, this study suggests the implementation of NBT as nutritional additive for plastic waste management through bacterial growth acceleration.
Transformation of Cs-IONSIV® into a ceramic wasteform by hot isostatic pressing
NASA Astrophysics Data System (ADS)
Chen, Tzu-Yu; Maddrell, Ewan R.; Hyatt, Neil C.; Gandy, Amy S.; Stennett, Martin C.; Hriljac, Joseph A.
2018-01-01
A simple method to directly convert Cs-exchanged IONSIV® IE-911 into a ceramic wasteform by hot isostatic pressing (1100 °C/190 MPa/2 hr) is presented. Two major Cs-containing phases, Cs2TiNb6O18 and Cs2ZrSi6O15, and a series of mixed oxides form. The microstructure and phase assemblage of the samples as a function of Cs content were examined using XRD, XRF, SEM and TEM/EDX. The chemical aqueous durability of the materials was investigated using the MCC-1 and PCT-B standard test methods. For HIPed Cs-IONSIV® samples, the MCC-1 normalised release rates of Cs were <1.57 × 10-1 g m-2 d-1 at 0-28 days, and <3.78 × 10-2 g m-2 d-1 for PCT-B at 7 days. The low rates are indicative of a safe long-term immobilisation matrix for Cs formed directly from spent IONSIV®. It was also demonstrated that the phase formation can be altered by adding Ti metal due to a controlled redox environment.
NASA Astrophysics Data System (ADS)
Stammeier, Jessica; Hippler, Dorothee; Mavromatis, Vasileios; Sacher, Stephan; Dietzel, Martin
2016-04-01
Amorphous calcium phosphate (Ca3(PO4)2*nH2O; ACP) is often a precursor phase of the mineral (hydroxy-) apatite (Ca5(PO4)3(OH)) that can be formed in natural settings during both authigenic and biogenic mineral formation. Particularly, in the biomineralization process of fish tissue, ACP has shown to be an important transient phase. In solution ACP rapidly transforms into the crystalline phase. The transformation rate highly depends on the physico-chemical conditions of the solution: Ca & P availability, pH and temperature. In natural settings Ca can be provided by different sources: from (1) seawater, (2) porewater, or (3) diagenetically-altered carbonates, whereas local supersaturation of P can be induced by microbial activity. In this study, we performed phosphate precipitation experiments in order to monitor the transformation process of the ACP to crystalline hydroxyapatite (HAP) using in-situ Raman spectroscopy. During the experiments the temperature was kept constant at 20.0 ± 0.01 ° C and pH at 9 ± 0.1. 50 ml of 0.3 CaCl 2H2O was titrated at a rate of 5 ml/min to an equal volume of 0.2 M Na2HPO4. The pH was kept constant by titration of 1 M NaOH. During the experiment samples were taken from the solution and instantly filtered. The obtained solid samples were lyophilized and analyzed with XRD, ATR and SEM. The respective solution samples were analyzed using ion chromatography and ICP OES, coupling the spectroscopic data with detailed solution chemistry data. We observed transformation of ACP to HAP to occur within 14 hours, illustrated in a clear peak shift in Raman spectra from 950 cm-1 to 960 cm-1. The obtained results are discussed in the aspects of distribution of major elements during the formation of phosphates and/or the diagenetic alteration of carbonates to phosphates in geologic settings. Financial support by DFG-FG 736 and NAWI Graz is kindly acknowledged.
The contribution of hydrothermally altered ocean crust to the mantle halogen and noble gas cycles
NASA Astrophysics Data System (ADS)
Chavrit, Déborah; Burgess, Ray; Sumino, Hirochika; Teagle, Damon A. H.; Droop, Giles; Shimizu, Aya; Ballentine, Chris J.
2016-06-01
Recent studies suggest that seawater-derived noble gases and halogens are recycled into the deep mantle by the subduction of oceanic crust. To understand the processes controlling the availability of halogens and noble gases for subduction, we determined the noble gas elemental and isotopic ratios and halogen (Cl, Br, I) concentrations in 28 igneous samples from the altered oceanic crust (AOC) from 5 ODP sites in the Eastern and Western Pacific Ocean. Crushing followed by heating experiments enabled determination of noble gases and halogens in fluid inclusions and mineral phases respectively. Except for He and Ar, Ne, Kr and Xe isotopic ratios were all air-like suggesting that primary MORB signatures have been completely overprinted by air and/or seawater interaction. In contrast, 3He/4He ratios obtained by crushing indicate that a mantle helium component is still preserved, and 40Ar/36Ar values are affected by radiogenic decay in the mineral phases. The 130Xe/36Ar and 84Kr/36Ar ratios are respectively up to 15 times and 5 times higher than those of seawater and the highest ratios are found in samples affected by low temperature alteration (shallower than 800-900 m sub-basement). We consider three possible processes: (i) adsorption onto the clays present in the samples; (ii) fluid inclusions with a marine pore fluid composition; and (iii) fractionation of seawater through phase separation caused by boiling. Ninety percent of the Cl, Br and I were released during the heating experiments, showing that halogens are dominantly held in mineral phases prior to subduction. I/Cl ratios vary by 4 orders of magnitude, from 3 × 10-6 to 2 × 10-2. The mean Br/Cl ratio is 30% lower than in MORB and seawater. I/Cl ratios lower than MORB values are attributed to Cl-rich amphibole formation caused by hydrothermal alteration at depths greater than 800-900 m sub-basement together with different extents of I loss during low and high temperature alteration. At shallower depths, I/Cl ratios higher than MORB values can be explained by the addition of organic-rich sediments or the presence of organic detritus, both known to efficiently sequester I. Concentrations of 36Ar of the pre-subducting materials are sufficient to account for the 36Ar and composition of the mantle in the context of existing subduction-flux models. We find the Cl subduction flux of the oceanic crust to be about three times higher than the previous estimates and that sufficient Cl and Br can potentially be delivered by subduction over the last 3 Ga to account for mantle source compositions.
Target tracking and pointing for arrays of phase-locked lasers
NASA Astrophysics Data System (ADS)
Macasaet, Van P.; Hughes, Gary B.; Lubin, Philip; Madajian, Jonathan; Zhang, Qicheng; Griswold, Janelle; Kulkarni, Neeraj; Cohen, Alexander; Brashears, Travis
2016-09-01
Arrays of phase-locked lasers are envisioned for planetary defense and exploration systems. High-energy beams focused on a threatening asteroid evaporate surface material, creating a reactionary thrust that alters the asteroid's orbit. The same system could be used to probe an asteroid's composition, to search for unknown asteroids, and to propel interplanetary and interstellar spacecraft. Phased-array designs are capable of producing high beam intensity, and allow beam steering and beam profile manipulation. Modular designs allow ongoing addition of emitter elements to a growing array. This paper discusses pointing control for extensible laser arrays. Rough pointing is determined by spacecraft attitude control. Lateral movement of the laser emitter tips behind the optical elements provides intermediate pointing adjustment for individual array elements and beam steering. Precision beam steering and beam formation is accomplished by coordinated phase modulation across the array. Added cells are incorporated into the phase control scheme by precise alignment to local mechanical datums using fast, optical relative position sensors. Infrared target sensors are also positioned within the datum scheme, and provide information about the target vector relative to datum coordinates at each emitter. Multiple target sensors allow refined determination of the target normal plane, providing information to the phase controller for each emitter. As emitters and sensors are added, local position data allows accurate prediction of the relative global position of emitters across the array, providing additional constraints to the phase controllers. Mechanical design and associated phase control that is scalable for target distance and number of emitters is presented.
NASA Technical Reports Server (NTRS)
Peretyazhko, Tanya; Sutter, Brad; Ming, Douglas W.
2014-01-01
Phyllosilicates of the smectite group including Mg- and Fe-saponite and Fe(III)-rich nontronite have been identified on Mars. Smectites are believed to be formed under neutral to alkaline conditions that prevailed on early Mars. This hypothesis is supported by the observation of smectite and carbonate deposits in Noachian terrain on Mars. However, smectite may have formed under mildly acidic conditions. Abundant smectite formations have been detected as layered deposits hundreds of meters thick in intracrater depositional fans and plains sediments, while no large deposits of carbonates are found. Development of mildly acidic conditions at early Mars might allow formation of smectite but inhibit widespread carbonate precipitation. Little is known regarding the mechanisms of smectite formation from basaltic glass under acidic conditions. The objective of this study was to test a hypothesis that Mars-analogue basaltic glass alters to smectite minerals under acidic conditions (pH 4). The effects of Mg and Fe concentrations and temperature on smectite formation from basaltic glass were evaluated. Phyllosilicate synthesis was performed in batch reactors (Parr acid digestion vessel) under reducing hydrothermal conditions at 200 C and 100 C. Synthetic basaltic glass with a composition similar to that of the Gusev crater rock Adirondack (Ground surface APXS measurement) was used in these experiments. Basaltic glass was prepared by melting and quenching procedures. X-ray diffraction (XRD) analysis indicated that the synthesized glass was composed of olivine, magnetite and X-ray amorphous phase. Samples were prepared by mixing 250 mg Adirondack with 0.1 M acetic acid (final pH 4). In order to study influence of Mg concentration on smectite formation, experiments were performed with addition of 0, 1 and 10 mM MgCl2. After 1, 7 and 14 day incubations the solution composition was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the altered glass and formed phyllosilicates were examined by XRD analysis. Mineralogical changes were significant in Adirondack incubated with 10 mM MgCl2 at pH 4 and heated at 200 C. X-ray diffraction analysis revealed formation of phyllosilicate during 14 day incubation (Figure 1). Smectite was confirmed as the phyllosilicate after treatments with glycerol and KCl and heating to 550 C. The position of 02l (4.60 A) and 060 (1.54 A) diffraction bands were indicative of trioctahedral smectite such as saponite. Analysis of solution composition demonstrated that aqueous concentration of Mg decreased from 10 mM to approx.4 mM after 7 day incubation likely due to saponite formation. Smectite also formed in Adirondack incubated with 0 mM MgCl2 at pH 4 and heated at 200 C. However, diffraction peak positions of 02l (4.52 A) and 060 (1.51 A) suggested formation of dioctahedral nontronite. The 100degC Mg and Fe(II) treated basaltic glass experiments are ongoing and results will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterpenich, Jerome
2008-07-01
Alteration products of vitrified wastes coming from the incineration of household refuse (MSW) are described. Two vitrified wastes containing 50% and 70% of fly ash and a synthetic stained-glass with a composition close to that of an ancient glass (medieval stained-glass) were altered under different pH conditions (1, 5.5 corresponding to demineralized water and 10) during 181 days. Under acidic condition, the alteration layer is made of an amorphous hydrated silica gel impoverished in most of the initial elements. A minor phase MPO{sub 4} . nH{sub 2}O, where M represents Fe, Ti, Al, Ca and K cations, also constitutes themore » altered layer of the synthetic stained-glass. Under neutral and basic conditions, the altered layer is made of an amorphous hydrated silica gel and a crystallized calcium phosphate phase. The silica gel is depleted in alkalis and alkali-earth elements but contains significant amounts of aluminium, magnesium and transition elements, whereas the calcium phosphate is a hydroxylapatite-like phase with P-Si substitutions and a Ca/P ratio depending on the pH of the solution. This study shows: (i) the strong influence of pH conditions on the crystal-chemistry of alteration products and thus on the mechanisms of weathering resulting in different trapping of polluting elements, and (ii) that glass alteration does not necessary produce thermodynamically stable phases which has to be taken into account for the prediction of the long-term behavior.« less
NASA Technical Reports Server (NTRS)
Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.
2012-01-01
Ca-Fe and alkali-halide alteration of CAIs is often attributed to aqueous alteration by fluids circulating on asteroidal parent bodies after the various chondritic components have been assembled, although debate continues about the roles of asteroidal vs. nebular modification processes [1-7]. Here we report de-tailed observations of alteration products in a large Type B2 CAI, TS4 from Allende, one of the oxidized subgroup of CV3s, and propose a speculative model for aqueous alteration of CAIs in a nebular setting. Ca-Fe alteration in this CAI consists predominantly of end-member hedenbergite, end-member andradite, and compositionally variable, magnesian high-Ca pyroxene. These phases are strongly concentrated in an unusual "nodule" enclosed within the interior of the CAI (Fig. 1). The Ca, Fe-rich nodule superficially resembles a clast that pre-dated and was engulfed by the CAI, but closer inspection shows that relic spinel grains are enclosed in the nodule, and corroded CAI primary phases interfinger with the Fe-rich phases at the nodule s margins. This CAI also contains abundant sodalite and nepheline (alkali-halide) alteration that occurs around the rims of the CAI, but also penetrates more deeply into the CAI. The two types of alteration (Ca-Fe and alkali-halide) are adjacent, and very fine-grained Fe-rich phases are associated with sodalite-rich regions. Both types of alteration appear to be replacive; if that is true, it would require substantial introduction of Fe, and transport of elements (Ti, Al and Mg) out of the nodule, and introduction of Na and Cl into alkali-halide rich zones. Parts of the CAI have been extensively metasomatized.
2009-01-01
Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30−3000 μM) and the presence of acidic sulfate (0−840 μM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 μM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA. PMID:19924930
The formation of technic soil in a revegetated uranium ore waste rock pile (Limousin, France)
NASA Astrophysics Data System (ADS)
Boekhout, Flora; Gérard, Martine; Kanzari, Aisha; Calas, Georges; Descostes, Michael
2014-05-01
Mining took place in France between 1945 and 2001 during which time ~210 different sites were exploited and/or explored. A total of 76 Kt of uranium was produced, 52 Mt of ore was extracted, but also 200 Mt of waste rocks was produced, the majority of which, with uranium levels corresponding to the natural environment. So far, the processes of arenisation and technic soil formation in waste rock piles are not well understood but have important implications for understanding the environmental impact and long-term speciation of uranium. Understanding weathering processes in waste rock piles is essential to determine their environmental impact. The main objectives of this work are to assess 1) the micromorphological features and neo-formed U-bearing phases related to weathering and 2) the processes behind arenisation of the rock pile. The site that was chosen is the Vieilles Sagnes waste rock pile in Fanay (Massif Central France) that represents more or less hydrothermally altered granitic rocks that have been exposed to weathering since the construction of the waste rock pile approximately 50 years ago. Two trenches were excavated to investigate the vertical differentiation of the rock pile. This site serves as a key location for studying weathering processes of waste rock piles, as it has not been reworked after initial construction and has therefore preserved information on the original mineralogy of the waste rock pile enabling us to access post emplacement weathering processes. The site is currently overgrown by moss, meter high ferns and small trees. At present day the rock pile material can be described as hydrothermally altered rocks and rock fragments within a fine-grained silty clay matrix exposed to surface conditions and weathering. A sandy "paleo" technic soil underlies the waste rock pile and functions as a natural liner by adsorption of uranium on clay minerals. Post-mining weathering of rock-pile material is superimposed on pre-mining hydrothermal and possible supergene alteration. Clay minerals present are kaolinite, smectite and chlorite. The formation of these minerals is however ambiguous, and can form during both hydrothermal as weathering processes, calling for a detailed micromorphological study. Micromorphological investigations on undisturbed samples by microscopic and ultramicroscopic techniques allow us to interpretate the processes behind the formation of technic soil in the matrix of the waste rock pile, as well as the rate and chronology of mineral formation and arenisation related to weathering (formation of protosoil and saprolitisation). By studying the formation of weathering aureaoles in between the different granitic blocks, we quantify the anthropogenic influence on weathering of this rock pile and their impacts on local ecosystem by comparing our site with natural occuring outcrops of granites currently subjected to weathering. Electron microscope imaging and microgeochemical mapping permits us to make detailed micromorphological observations linking nanoscale processes to petrolographical macroscopic features and field observations. Different petrographic and electronic images of the mineral paragenesis in the micromass associated to their microgeochemical characteristics will be presented. Also, the impact of previous hydrothermal alteration will be highlighted.
NASA Astrophysics Data System (ADS)
Lumpkin, Gregory R.; Gieré, Reto; Williams, C. Terry; McGlinn, Peter J.; Payne, Timothy E.
2017-09-01
Tungsten-rich oxycalciobetafite occurs in complex Ti-rich hydrothermal veins emplaced within dolomite marble in the contact aureole of the Adamello batholith, northern Italy, where it occurs as overgrowths on zirconolite. The betafite is weakly zoned and contains 29-34 wt% UO2. In terms of end-members, the betafite contains approximately 50 mol% CaUTi2O7 and is one of the closest known natural compositions to the pyrochlore phase proposed for use in titanate nuclear waste forms. Amorphization and volume expansion of the betafite caused cracks to form in the enclosing silicate mineral grains. Backscattered electron images reveal that betafite was subsequently altered along crystal rims, particularly near the cracks. Electron probe microanalyses reveal little difference in composition between altered and unaltered areas, except for lower totals, suggesting that alteration is primarily due to hydration. Zirconolite contains up to 18 wt% ThO2 and 24 wt% UO2, and exhibits strong compositional zoning, but no internal cracking due to differential (and anisotropic) volume expansion and no visible alteration. The available evidence demonstrates that both oxycalciobetafite and zirconolite retained actinides for approximately 40 million years after the final stage of vein formation. During this time, oxycalciobetafite and zirconolite accumulated a total alpha-decay dose of 3.0-3.6 × 1016 and 0.2-2.0 × 1016 α/mg, respectively.
O'Reilly, S Erin; Watkins, Janet; Furukawa, Yoko
2005-01-01
Experimental batch and miscible-flow cultures were studied in order to determine the mechanistic pathways of microbial Fe(III) respiration in ferruginous smectite clay, NAu-1. The primary purpose was to resolve if alteration of smectite and release of Fe precedes microbial respiration. Alteration of NAu-1, represented by the morphological and mineralogical changes, occurred regardless of the extent of microbial Fe(III) reduction in all of our experimental systems, including those that contained heat-killed bacteria and those in which O2, rather than Fe(III), was the primary terminal electron acceptor. The solid alteration products observed under transmission electron microscopy included poorly crystalline smectite with diffuse electron diffraction signals, discrete grains of Fe-free amorphous aluminosilicate with increased Al/Si ratio, Fe-rich grains, and amorphous Si globules in the immediate vicinity of bacterial cells and extracellular polymeric substances. In reducing systems, Fe was also found as siderite. The small amount of Fe partitioned to the aqueous phase was primarily in the form of dissolved Fe(III) species even in the systems in which Fe(III) was the primary terminal electron acceptor for microbial respiration. From these observations, we conclude that microbial respiration of Fe(III) in our laboratory systems proceeded through the following: (1) alteration of NAu-1 and concurrent release of Fe(III) from the octahedral sheets of NAu-1; and (2) subsequent microbial respiration of Fe(III).
Modeling of metastable phase formation diagrams for sputtered thin films.
Chang, Keke; Music, Denis; To Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M
2016-01-01
A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.
Zuo, Yi Y.; Keating, Eleonora; Zhao, Lin; Tadayyon, Seyed M.; Veldhuizen, Ruud A. W.; Petersen, Nils O.; Possmayer, Fred
2008-01-01
Monolayers of a functional pulmonary surfactant (PS) can reach very low surface tensions well below their equilibrium value. The mechanism by which PS monolayers reach such low surface tensions and maintain film stability remains unknown. As shown previously by fluorescence microscopy, phospholipid phase transition and separation seem to be important for the normal biophysical properties of PS. This work studied phospholipid phase transitions and separations in monolayers of bovine lipid extract surfactant using atomic force microscopy. Atomic force microscopy showed phospholipid phase separation on film compression and a monolayer-to-multilayer transition at surface pressure 40–50 mN/m. The tilted-condensed phase consisted of domains not only on the micrometer scale, as detected previously by fluorescence microscopy, but also on the nanometer scale, which is below the resolution limits of conventional optical methods. The nanodomains were embedded uniformly within the liquid-expanded phase. On compression, the microdomains broke up into nanodomains, thereby appearing to contribute to tilted-condensed and liquid-expanded phase remixing. Addition of surfactant protein A altered primarily the nanodomains and promoted the formation of multilayers. We conclude that the nanodomains play a predominant role in affecting the biophysical properties of PS monolayers and the monolayer-to-multilayer transition. PMID:18212010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Righettoni, Marco; Pratsinis, Sotiris E., E-mail: sotiris.pratsinis@ptl.mavt.ethz.ch
Highlights: • Flame-made WO{sub 3} nanoparticles with closely controlled crystal and grain size. • Dynamic phase transition of annealing of pure and Si-doped WO{sub 3} by in situ XRD. • Irreversible evolution of WO{sub 3} crystallinity by heating/cooling during its annealing. • Si-doping alters the WO{sub 3} crystallinity dynamics and stabilizes nanosized WO{sub 3}. • Flame-made nano-WO{sub 3} can sense NO at the ppb level. - Abstract: Tungsten trioxide is a semiconductor with distinct applications in gas sensors, catalysis, batteries and pigments. As such the transition between its different crystal structures during its annealing are of interest, especially for sensormore » applications. Here, WO{sub 3} nanoparticles with closely controlled crystal and grain size (9–15 nm) and phase composition are made by flame spray pyrolysis and the formation of different WO{sub 3} phases during annealing is investigated. Most notably, the dynamic phase transition and crystal size evolution of WO{sub 3} during heating and cooling is monitored by in situ X-ray diffraction revealing how metastable WO{sub 3} phases can be captured stably. The effect of Si-doping is studied since it is used in practise to control crystal growth and phase transition during metal oxide synthesis and processing. Finally the influence of annealing on the WO{sub 3} sensing performance of NO, a lung inflammation tracer in the human breath, is explored at the ppb-level.« less
CD4(+) T-cell help amplifies innate signals for primary CD8(+) T-cell immunity.
Bedoui, Sammy; Heath, William R; Mueller, Scott N
2016-07-01
CD8(+) T cells provide an important component of protection against intracellular infections and cancer. Immune responses by these T cells involve a primary phase of effector expansion and differentiation, followed by a contraction phase leading to memory formation and, if antigen is re-encountered, a secondary expansion phase with more rapid differentiation. Both primary and secondary phases of CD8(+) T-cell immunity have been shown to depend on CD4(+) T-cell help, although during certain infections the primary phase is variable in this requirement. One explanation for such variability relates to the strength of associated inflammatory signals, with weak signals requiring help. Here, we focus on our studies that have dissected the requirements for help in the primary phase of the CTL response to herpes simplex virus, elucidating intricate interactions and communications between CD4(+) T cells, various dendritic cell subsets, and CD8(+) T cells. We place our studies in the context of others and describe a simple model of help where CD40 signaling amplifies innate signals to enable efficient CD8(+) T-cell expansion and differentiation. This model facilitates CTL induction to various different agents, without altering the qualitative innate signals that direct other important arms of immunity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Iron Mineralogy and Aqueous Alteration on Mars from the MER Moessbauer Spectrometers. Chapter 15
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Klingelhoefer, Goestar
2007-01-01
The twin Mars Exploration Rovers Spirit (Gusev crater) and Opportunity (Meridiani Planum) used MIMOS II Moessbauer spectrometers to analyze martian surface materials in the first application of extraterrestrial Moessbauer spectroscopy. The instruments acquired spectra that identified the speciation of Fe according to oxidation state, coordination state, and mineralogical composition and provided quantitative information about the distribution of Fe among oxidation states, coordination states, and Fe-bearing phases. A total of 12 unique Fe-bearing phases were identified: Fe(2+) in olivine, pyroxene, and ilmenite; Fe(2+) and Fe(3+) in magnetite and chromite; Fe(3+) in nanophase ferric oxide (npOx), hematite, goethite, jarosite, an unassigned Fe3+ sulfate, and an unassigned Fe(3+) phase associated with jarosite; and Fe(0) in kamacite. Weakly altered basalts at Gusev crater (SO3 = 2.5 +/- 1.4 wt.% and Fe(3+)/Fe(sub T) = 0.24 +/- 0.11) are widespread on the Gusev plains and occur in less abundance on West Spur and Husband Hill in the Columbia Hills. Altered low-S rocks (SO3 = 5.2 +/- 2.0 wt.% and Fe(3+)/Fe(sub T) = 0.63 +/- 0.18) are the most common type of rock in the Columbia Hills. Ilm-bearing, weakly altered basalts were detected only in the Columbia Hills, as was the only occurrence of chromite in an altered low-S rock named Assemblee. Altered high-S rocks (SO3 > 14.2 wt.% and Fe(3+)/Fe(sub T) = 0.83 +/- 0.05) are the outcrop rocks of the ubiquitous Burns formation at Meridiani Planum. Two Fe(0)-bearing rocks at Meridiani Planum (Barberton and Heat Shield Rock) are meteorites. Laguna Class soil is weakly altered (SO3 = 6 +/- 2 wt.% and Fe(3+)/Fe(sub T) = 0.29 +/- 0.08) and widely distributed at both Gusev crater and Meridiani Planum, implying efficient global mixing processes or a global distribution of precursor rocks with comparable Fe mineralogical compositions. Paso Robles Class soil is heavily altered (SO3 approx. 31 wt.% and Fe(3+)/Fe(sub T) = 0.83 +/- 0.05), is relatively uncommon, and occurs as subsurface deposits in the Columbia Hills. Berry Class soil is also heavily altered (SO3 = 5 +/- 1 wt.% and Fe(3+)/Fe(sub T) = 0.60 +/- 0.13) and occurs at Meridiani Planum as lag deposits, at the crests of aeolian bedforms, and as isolated pockets on outcrop surfaces. Magnetite is identified as the strongly magnetic component in martian soil. Jarosite (in the Burns outcrop at Meridiani Planum) and goethite (in Clovis Class rocks at Gusev crater) are mineralogical markers for aqueous processes because they contain the hydroxide anion (OH(-)) as an essential part of their structure. Each yields approx.10 wt.% H2O upon dehydroxylation. The presence of Fe sulfates on opposite sides of Mars is evidence that aqueous processes under acid sulfate conditions are or were common. Except for Independence Class rocks in the Columbia Hills, the overall Fe mineralogical compositions and similar basaltic bulk chemical compositions (calculated with respect to S = Cl = 0) of the population of altered rocks analyzed by MER imply isochemical alteration of basaltic precursors at low water-to-rock ratios.
Eibofner, Frank; Martirosian, Petros; Würslin, Christian; Graf, Hansjörg; Syha, Roland; Clasen, Stephan
2015-11-01
In interventional magnetic resonance imaging, instruments can be equipped with conducting wires for visualization by current application. The potential of sequence triggered application of transient direct currents in balanced steady-state free precession (bSSFP) imaging is demonstrated. A conductor and a modified catheter were examined in water phantoms and in an ex vivo porcine liver. The current was switched by a trigger pulse in the bSSFP sequence in an interval between radiofrequency pulse and signal acquisition. Magnitude and phase images were recorded. Regions with transient field alterations were evaluated by a postprocessing algorithm. A phase mask was computed and overlaid with the magnitude image. Transient field alterations caused continuous phase shifts, which were separated by the postprocessing algorithm from phase jumps due to persistent field alterations. The overlaid images revealed the position of the conductor. The modified catheter generated visible phase offset in all orientations toward the static magnetic field and could be unambiguously localized in the ex vivo porcine liver. The application of a sequence triggered, direct current in combination with phase imaging allows conspicuous localization of interventional devices with a bSSFP sequence.
NASA Astrophysics Data System (ADS)
Pe-Piper, Georgia; Dolansky, Lila; Piper, David J. W.
2005-07-01
The Lower Cretaceous fluvial sandstone-mudstone succession of the Chaswood Formation is the proximal equivalent of offshore deltaic rocks of the Scotian Basin that are reservoirs for producing gas fields. This study interprets the mineralogical consequences of Cretaceous weathering and early diagenesis in a 130-m core from the Chaswood Formation in order to better understand detrital and diagenetic minerals in equivalent rocks offshore. Mineralogy was determined by X-ray diffraction, electron microprobe analysis and scanning electron microscopy. The rocks can be divided into five facies associations: light gray mudstone, dark gray mudstone, silty mudstone and muddy sandstone, sorted sandstone and conglomerate, and paleosols. Facies transitions in coarser facies are related to deposition in and near fluvial channels. In the mudstones, they indicate an evolutionary progression from the dark gray mudstone facies association (swamps and floodplain soils) to mottled paleosols (well-drained oxisols and ultisols following syntectonic uplift). Facies transitions and regional distribution indicate that the light gray mudstone facies association formed from early diagenetic oxidation and alteration of the dark gray mudstone facies association, probably by meteoric water. Principal minerals in mudstones are illite/muscovite, kaolinite, vermiculite and quartz. Illite/muscovite is of detrital origin, but variations in abundance show that it has altered to kaolinite in the light gray mudstone facies association and in oxisols. Vermiculite developed from the weathering of biotite and is present in ultisols. The earliest phase of sandstone cementation in reducing conditions in swamps and ponds produced siderite nodules and framboidal pyrite, which were corroded and oxidized during subsequent development of paleosols. Kaolinite is an early cement, coating quartz grains and as well-crystallized, pore-filling booklets that was probably synchronous with the formation of the light gray mudstone facies association. Later illite and barite cement indicate a source of abundant K and Ba from formation water. This late diagenesis of sandstone took place when the Chaswood Formation was in continuity with the main Scotian Basin, prior to Oligocene uplift of the eastern Scotian Shelf. Findings of this study are applicable to other mid-latitude Cretaceous weathering and early diagenetic environments.
Aqueous Alteration of Endeavour Crater Rim Apron Rocks
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Ming, Douglas W.; Gellert, Ralf; Clark, Benton C.; Morris, Richard V.; Yen, Albert S.; Arvidson, Raymond E.; Crumpler, Larry S.; Farrand, William H.; Grant, John A.;
2014-01-01
Mars Exploration Rover Opportunity is exploring Noachian age rocks of the rim of 22 km diameter Endeavour crater. Overlying the pre-impact lithologies and rim breccias is a thin apron of fine-grained sediments, the Grasberg fm, forming annuli on the lower slopes of rim segments. Hesperian Burns fm sandstones overly the Grasberg fm. Grasberg rocks have major element compositions that are distinct from Burns fm sandstones, especially when comparing interior compositions exposed by the Rock Abrasion Tool. Grasberg rocks are also different from Endeavour rim breccias, but have general compositional similarities to them. Grasberg sediments are plausibly fine-grained materials derived from the impact breccias. Veins of CaSO4 transect Grasberg fm rocks demonstrating post-formation aqueous alteration. Minor/trace elements show variations consistent with mobilization by aqueous fluids. Grasberg fm rocks have low Mn and high Fe/Mn ratios compared to the other lithologies. Manganese likely was mobilized and removed from the Grasberg host rock by redox reactions. We posit that Fe2+ from acidic solutions associated with formation of the Burns sulfate-rich sandstones acted as an electron donor to reduce more oxidized Mn to Mn2+. The Fe contents of Grasberg rocks are slightly higher than in other rocks suggesting precipitation of Fe phases in Grasberg materials. Pancam spectra show that Grasberg rocks have a higher fraction of ferric oxide minerals than other Endeavour rim rocks. Solutions transported Mn2+ into the Endeavour rim materials and oxidized and/or precipitated it in them. Grasberg has higher contents of the mobile elements K, Zn, Cl, and Br compared to the rim materials. Similar enrichments of mobile elements were measured by the Spirit APXS on West Spur and around Home Plate in Gusev crater. Enhancements in these elements are attributed to interactions of hydrothermal acidic fluids with the host rocks. Interactions of fluids with the Grasberg fm postdate the genesis of the Endeavour rim phyllosilicates. The aqueous alteration history of Endeavour rim rocks is complicated by different styles of alteration that have spanned the Noachian and Hesperian. Late stage acidic aqueous alteration of Grasberg fm materials is likely penecontemporaneous with the diagenesis of the sulfate-rich sediments of Meridiani Planum.
Aqueous Alteration of Endeavour Crater Rim Apron Rocks
NASA Astrophysics Data System (ADS)
Ming, D. W.; Mittlefehldt, D. W.; Gellert, R.; Clark, B. C.; Morris, R. V.; Yen, A. S.; Arvidson, R. E.; Crumpler, L. S.; Farrand, W. H.; Grant, J. A., III; Jolliff, B. L.; Parker, T. J.; Peretyazhko, T.
2014-12-01
Mars Exploration Rover Opportunity is exploring Noachian age rocks of the rim of 22 km diameter Endeavour crater. Overlying the pre-impact lithologies and rim breccias is a thin apron of fine-grained sediments, the Grasberg fm, forming annuli on the lower slopes of rim segments. Hesperian Burns fm sandstones overly the Grasberg fm. Grasberg rocks have major element compositions that are distinct from Burns fm sandstones, especially when comparing interior compositions exposed by the Rock Abrasion Tool. Grasberg rocks are also different from Endeavour rim breccias, but have general compositional similarities to them. Grasberg sediments are plausibly fine-grained materials derived from the impact breccias. Veins of CaSO4 transect Grasberg fm rocks demonstrating post-formation aqueous alteration. Minor/trace elements show variations consistent with mobilization by aqueous fluids. Grasberg fm rocks have low Mn and high Fe/Mn ratios compared to the other lithologies. Manganese likely was mobilized and removed from the Grasberg host rock by redox reactions. We posit that Fe2+ from acidic solutions associated with formation of the Burns sulfate-rich sandstones acted as an electron donor to reduce more oxidized Mn to Mn2+. The Fe contents of Grasberg rocks are slightly higher than in other rocks suggesting precipitation of Fe phases in Grasberg materials. Pancam spectra show that Grasberg rocks have a higher fraction of ferric oxide minerals than other Endeavour rim rocks. Solutions transported Mn2+ into the Endeavour rim materials and oxidized and/or precipitated it in them. Grasberg has higher contents of the mobile elements K, Zn, Cl, and Br compared to the rim materials. Similar enrichments of mobile elements were measured by the Spirit APXS on West Spur and around Home Plate in Gusev crater. Enhancements in these elements are attributed to interactions of hydrothermal acidic fluids with the host rocks. Interactions of fluids with the Grasberg fm postdate the genesis of the Endeavour rim phyllosilicates. The aqueous alteration history of Endeavour rim rocks is complicated by different styles of alteration that have spanned the Noachian and Hesperian. Late stage acidic aqueous alteration of Grasberg fm materials is likely penecontemporaneous with the diagenesis of the sulfate-rich sediments of Meridiani Planum.
Le Henaff, Carole; Faria Da Cunha, Mélanie; Hatton, Aurélie; Tondelier, Danielle; Marty, Caroline; Collet, Corinne; Zarka, Mylène; Geoffroy, Valérie; Zatloukal, Kurt; Laplantine, Emmanuel; Edelman, Aleksander; Sermet-Gaudelus, Isabelle; Marie, Pierre J
2016-04-01
Patients with cystic fibrosis (CF) display low bone mass and alterations in bone formation. Mice carrying the F508del genetic mutation in the cystic fibrosis conductance regulator (Cftr) gene display reduced bone formation and decreased bone mass. However, the underlying molecular mechanisms leading to these skeletal defects are unknown, which precludes the development of an efficient anti-osteoporotic therapeutic strategy. Here we report a key role for the intermediate filament protein keratin 8 (Krt8), in the osteoblast dysfunctions in F508del-Cftr mice. We found that murine and human osteoblasts express Cftr and Krt8 at low levels. Genetic studies showed that Krt8 deletion (Krt8(-/-)) in F508del-Cftr mice increased the levels of circulating markers of bone formation, corrected the expression of osteoblast phenotypic genes, promoted trabecular bone formation and improved bone mass and microarchitecture. Mechanistically, Krt8 deletion in F508del-Cftr mice corrected overactive NF-κB signaling and decreased Wnt-β-catenin signaling induced by the F508del-Cftr mutation in osteoblasts. In vitro, treatment with compound 407, which specifically disrupts the Krt8-F508del-Cftr interaction in epithelial cells, corrected the abnormal NF-κB and Wnt-β-catenin signaling and the altered phenotypic gene expression in F508del-Cftr osteoblasts. In vivo, short-term treatment with 407 corrected the altered Wnt-β-catenin signaling and bone formation in F508del-Cftr mice. Collectively, the results show that genetic or pharmacologic targeting of Krt8 leads to correction of osteoblast dysfunctions, altered bone formation and osteopenia in F508del-Cftr mice, providing a therapeutic strategy targeting the Krt8-F508del-CFTR interaction to correct the abnormal bone formation and bone loss in cystic fibrosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Al-Mg isotopic evidence for episodic alteration of Ca-Al-rich inclusions from Allende
NASA Astrophysics Data System (ADS)
Fagan, T. J.; Guan, Y.; MacPherson, G. J.
2007-08-01
Textures, mineral assemblages, and Al-Mg isotope systematics indicate a protracted, episodic secondary mineralization history for Allende Ca-Al-rich inclusions (CAIs). Detailed observations from one type B1 CAI, one B2, one compact type A (CTA), and one fluffy type A (FTA) indicate that these diverse types of CAIs are characterized by two distinct textural and mineralogic types of secondary mineralization: (1) grossular-rich domains, concentrated along melilite grain boundaries in CAI interiors, and (2) feldspathoid-bearing domains, confined mostly to CAI margins just interior to the Wark-Lovering rim sequence. The Al-Mg isotopic compositions of most secondary minerals in the type B1 CAI, and some secondary minerals in the other CAIs, show no resolvable excesses of 26Mg, whereas the primary CAI phases mostly yield correlated excesses of 26Mg with increasing Al/Mg corresponding to "canonical" initial 26Al/27Al ˜ 4.5-5 × 10-5. These secondary minerals formed at least 3 Ma after the primary CAI minerals. All but two analyses of secondary minerals from the fluffy type-A CAI define a correlated increase in 26Mg/24Mg with increasing Al/Mg, yielding (26Al/27Al)0 = (4.9 ± 2.8) × 10-6. The secondary minerals in this CAI formed 1.8-3.2 Ma after the primary CAI minerals. In both cases, the timing of secondary alteration is consistent with, but does not necessarily require, alteration in an asteroidal setting. One grossular from the type B2 CAI, and several grossular and secondary feldspar analyses from the compact type A CAI, have excesses of 26Mg consistent with initial 26Al/27Al ˜ 4.5 × 10-5. Especially in the compact type A CAI, where 26Mg/24Mg in grossular correlates with increasing Al/Mg, these 26Mg excesses are almost certainly due to in situ decay of 26Al. They indicate a nebular setting for formation of the grossular. The preservation of these diverse isotopic patterns indicates that heating on the Allende parent body was not pervasive enough to reset isotopic systematics of fine-grained secondary minerals. Secondary mineralization clearly was not restricted to a short time interval, and at least some alteration occurred coincident with CAI formation and melting events (chondrule formation) in the nebula. This observation supports the possibility that alteration followed by melting affected the compositional evolution of CAIs.
Effects of gravity reduction on phase equilibria. Part 1: Unary and binary isostructural solids
NASA Technical Reports Server (NTRS)
Larson, D. J., Jr.
1975-01-01
Analysis of the Skylab II M553 Experiment samples resulted in the hypothesis that the reduced gravity environment was altering the melting and solidification reactions. A theoretical study was conducted to define the conditions under which such alteration of phase relations is feasible, determine whether it is restricted to space processing, and, if so, ascertain which alloy systems or phase reactions are most likely to demonstrate such effects. Phase equilibria of unary and binary systems with a single solid phase (unary and isomorphous) were considered.
Analysis of Mineral Assemblages Containing Unstable Hydrous Phases
NASA Astrophysics Data System (ADS)
Vaniman, D. T.; Wilson, S. A.; Bish, D. L.; Chipera, S.
2011-12-01
Minerals in many environments can be treated as durable phases that preserve a record of their formation. However many minerals, especially those with hydrogen-bonded H2O molecules as part of their structure, are ephemeral and are unlikely to survive disturbance let alone removal from their environment of formation. Minerals with exceptionally limited stability such as meridianiite (Mg-sulfate 11 hydrate), ikaite (Ca-carbonate 6 hydrate), and mirabilite (Na-sulfate 10 hydrate) are very susceptible to destabilization during analysis, and even modest changes in temperature or relative humidity can lead to change in hydration state or deliquescence. The result may be not only loss of the salt hydrate but dissolution of other salts present, precipitation of new phases, and ion exchange between the concentrated solution and otherwise unaffected phases. Exchange of H2O molecules can also occur in solid-vapor systems without any liquid involvement; moreover, recent work has shown that cation exchange between smectite and sulfate hydrates can occur without any liquid phase present other than a presumed thin film at the salt-silicate interface. Among hydrous silicates, clay minerals are susceptible to cation exchange and similar alteration can be expected for zeolites, palagonite, and possibly other hydrous silicate alteration products. Environmentally sensitive phases on Mars, such as meridianiite, may occur at higher latitudes or in the subsurface where permafrost may be present. Accurate determination of the presence and paragenesis of such minerals will be important for understanding the near-surface hydrogeology of Mars, and in situ analysis may be the only way to obtain this information. Access to the subsurface may be required, yet the act of exposure by excavation or drilling can itself lead to rapid degradation as the sample is exposed or brought to the surface for analysis. Mars is not the only body with which to be concerned, for similar concerns can be raised for sampling cold-environment deposits at the lunar poles, at the poles of Mercury, on icy satellites, and on many other bodies that may host hydrous minerals. The problem of adequate in situ analysis of such mutable assemblages extends to Earth as well, for example in the need for improved understanding of polar and permafrost regions, deep sea clathrates, cave minerals, and mine dump efflorescence. Advanced methods of in situ analysis are needed, including but not limited to contact instruments and instrumentation that can be inserted by probe or operated within a borehole that could be advanced with minimal thermal disturbance. One of the lessons of robotic analysis is that field instruments, which by necessity are less capable than laboratory equivalents, provide greatly improved interpretations if data from several different instruments can be compared.
Formation of the molecular crystal structure during the vacuum sublimation of paracetamol
NASA Astrophysics Data System (ADS)
Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.
2015-04-01
The results from structural and thermal studies on the formation of molecular crystals during the vacuum sublimation of paracetamol from its vapor phase are given. It is established that the vapor-crystal phase transition proceeds in a complicated way as the superposition of two phase transitions: a first-order phase transition with a change in density, and a second-order phase transition with a change in ordering. It is shown that the latter is a smeared phase transition that proceeds with the formation of a pretransitional phase that is irreversibly dissipated during phase transformation, leading to the formation of crystals of the rhombic syngony. Data from differential scanning calorimetry and X-ray diffraction analysis are presented along with microphotographs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durocher, S.; Al-Aasm, I.S.
1997-06-01
Petrographic, chemical, and isotopic studies of the Mississippian (Visean) upper Debolt Formation in the Blueberry field, British Columbia, Canada, reveal that dolomitization was the result of several diagenetic events and that neomorphic alteration of these dolomites significantly modified their original chemical signatures. These studies also demonstrate how tectonics play an important role in controlling and modifying reservoir dolomites in the area. Petrographic investigations have documented two early dolomite phases, (1) early matrix dolomite and (2) pervasive dolomite, and two later generations, (3) coarse cement and (4) pseudomorphic replacement of crinoids. Early matrix dolomite occurs as small (average 25 {mu}m) subhedralmore » to euhedral crystals that replace the matrix of carbonate mudstones, wackestones, and packstones. Petrographic evidence suggests that early matrix dolomite had a relatively early, precompaction origin, possibly from marine fluids. However, geochemical evidence indicates that later fluids have altered their original geochemical signatures. Pervasive dolomite, which forms the reservoir intercrystalline porosity, occurs with planar-s and planar-e textures. Planar-s crystals typically have a dirty appearance and exhibit homogeneous dull brown/red cathodoluminescence colors. Planar-e crystals may appear with a cloudy core and a clear rim, and under cathodoluminescence display an irregular dull brown/red core and a thin, bright red rim. Due to the spatial distribution pattern of pervasive dolomite with respect to the overlying unconformity surface, its paleogeographic distribution and close temporal relationship with meteoric diagenetic events, pervasive dolomite formed from a mixture of seawater and meteoric fluids. However, alteration of their primary chemistry by later fluids is indicated by their depleted {delta}{sup 18}O values and radiogenic {sup 87}Sr/{sup 86}Sr ratios.« less
NASA Astrophysics Data System (ADS)
Banerjee, S. K.; Smale, J.; Bilardello, D.; Feinberg, J. M.; Soltis, J. A.
2016-12-01
In spite of the empirical success of the correlation between rainfall and magnetic mineral enhancement in soils across China, Russia and elsewhere, a generally acceptable model of enhancement has eluded our community. Recent field and laboratory studies demonstrate the importance of both strongly magnetic (magnetite, maghemite) as well as weakly magnetic (goethite, hematite) nano-phase minerals forming in response to rainfall and temperature. In particular, the ferrihydrite -> (hydro) maghemite -> hematite pathway of Torrent et al. (2003, et seq.) and formation of magnetite or hematite from nano-goethite under reducing or oxidizing atmosphere by Till et al. (2014) are particularly instructive. Here we report ferrihydrite alteration in constant pH=6.8 at 90°C even without the presence of any strongly adsorbing organic ligand. Aging of an initially pure 2-line ferrihydrite over 4 hours, and freeze-drying the specimens to prevent further alteration, produces small amounts of a mixture of maghemite, hematite and a small amount of partially oxidized magnetite, as identified by its isotropic point, detected by cooling an SIRM imparted at 300K. The details of the precise pathways of initial, intermediate and final products and their relative amounts are difficult to estimate in mixtures, but in future experiments we will attempt to do just that. However, since both the strongly and weakly magnetic products were formed from the same ferrihydrite starting material, it may not be necessary to assume that magnetite -> maghemite, or maghemite -> hematite, or hematite -> magnetite are unique pathways for production of magnetic enhancement in soils. Instead, it appears that multiple, simultaneously active pathways may allow ferrihydrite to directly produce weakly and strongly magnetic iron oxides in soil at the same near normal pH.
Vanini, Giancarlo; Nemanis, Kriste; Baghdoyan, Helen A.; Lydic, Ralph
2014-01-01
The oral part of the pontine reticular formation (PnO) contributes to the regulation of sleep, anesthesia, and pain. The role of PnO GABA in modulating these states remains incompletely understood. The present study used time to Loss and time to Resumption of Righting Response (LoRR and RoRR) as surrogate measures of loss and resumption of consciousness. This study tested three hypotheses: (1) pharmacologically manipulating GABA levels in rat PnO alters LoRR, RoRR, and nociception; (2) propofol decreases GABA levels in the PnO; and (3) inhibiting GABA synthesis in the PnO blocks hyperalgesia caused by sleep deprivation. Administering a GABA synthesis inhibitor (3-MPA) or a GABA uptake inhibitor (NPA) into rat PnO significantly altered LoRR caused by propofol. 3-MPA significantly decreased LoRR for propofol (−18%). NPA significantly increased LoRR during administration of propofol (36%). Neither 3-MPA nor NPA altered RoRR following cessation of propofol or isoflurane delivery. The finding that LoRR was decreased by 3-MPA and increased by NPA is consistent with measures showing that extracellular GABA levels in the PnO were decreased (41%) by propofol. Thermal nociception was significantly decreased by 3-MPA and increased by NPA, and 3-MPA blocked the hyperalgesia caused by sleep deprivation. The results demonstrate that GABA levels in the PnO regulate the time for loss of consciousness caused by propofol, extend the concept that anesthetic induction and emergence are not inverse processes, and suggest that GABAergic transmission in the PnO mediates hyperalgesia caused by sleep loss. PMID:24674578
Vanini, Giancarlo; Nemanis, Kriste; Baghdoyan, Helen A; Lydic, Ralph
2014-07-01
The oral part of the pontine reticular formation (PnO) contributes to the regulation of sleep, anesthesia and pain. The role of PnO γ-aminobutyric acid (GABA) in modulating these states remains incompletely understood. The present study used time to loss and time to resumption of righting response (LoRR and RoRR) as surrogate measures of loss and resumption of consciousness. This study tested three hypotheses: (i) pharmacologically manipulating GABA levels in rat PnO alters LoRR, RoRR and nociception; (ii) propofol decreases GABA levels in the PnO; and (iii) inhibiting GABA synthesis in the PnO blocks hyperalgesia caused by sleep deprivation. Administering a GABA synthesis inhibitor [3-mercaptopropionic acid (3-MPA)] or a GABA uptake inhibitor [nipecotic acid (NPA)] into rat PnO significantly altered LoRR caused by propofol. 3-MPA significantly decreased LoRR for propofol (-18%). NPA significantly increased LoRR during administration of propofol (36%). Neither 3-MPA nor NPA altered RoRR following cessation of propofol or isoflurane delivery. The finding that LoRR was decreased by 3-MPA and increased by NPA is consistent with measures showing that extracellular GABA levels in the PnO were decreased (41%) by propofol. Thermal nociception was significantly decreased by 3-MPA and increased by NPA, and 3-MPA blocked the hyperalgesia caused by sleep deprivation. The results demonstrate that GABA levels in the PnO regulate the time for loss of consciousness caused by propofol, extend the concept that anesthetic induction and emergence are not inverse processes, and suggest that GABAergic transmission in the PnO mediates hyperalgesia caused by sleep loss. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Single-beam, dark toroidal optical traps for cold atoms
NASA Astrophysics Data System (ADS)
Fatemi, Fredrik K.; Olson, Spencer E.; Bashkansky, Mark; Dutton, Zachary; Terraciano, Matthew
2007-02-01
We demonstrate the generation of single-beam dark toroidal optical intensity distributions, which are of interest for neutral atom storage and atom interferometry. We demonstrate experimentally and numerically optical potentials that contain a ring-shaped intensity minimum, bounded in all directions by higher intensity. We use a spatial light modulator to alter the phase of an incident laser beam, and analyze the resulting optical propagation characteristics. For small toroidal traps (< 50 μm diameter), we find an optimal superposition of Laguerre-Gaussian modes that allows the formation of single-beam toroidal traps. We generate larger toroidal bottle traps by focusing hollow beams with toroidal lenses imprinted onto the spatial light modulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddens, Lisbeth K.; Larkin, Andrew; Superfund Research Center, Oregon State University
2012-11-01
The polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), was compared to dibenzo[def,p]chrysene (DBC) and combinations of three environmental PAH mixtures (coal tar, diesel particulate and cigarette smoke condensate) using a two stage, FVB/N mouse skin tumor model. DBC (4 nmol) was most potent, reaching 100% tumor incidence with a shorter latency to tumor formation, less than 20 weeks of 12-O-tetradecanoylphorbol-13-acetate (TPA) promotion compared to all other treatments. Multiplicity was 4 times greater than BaP (400 nmol). Both PAHs produced primarily papillomas followed by squamous cell carcinoma and carcinoma in situ. Diesel particulate extract (1 mg SRM 1650b; mix 1) did notmore » differ from toluene controls and failed to elicit a carcinogenic response. Addition of coal tar extract (1 mg SRM 1597a; mix 2) produced a response similar to BaP. Further addition of 2 mg of cigarette smoke condensate (mix 3) did not alter the response with mix 2. PAH-DNA adducts measured in epidermis 12 h post initiation and analyzed by {sup 32}P post‐labeling, did not correlate with tumor incidence. PAH‐dependent alteration in transcriptome of skin 12 h post initiation was assessed by microarray. Principal component analysis (sum of all treatments) of the 922 significantly altered genes (p < 0.05), showed DBC and BaP to cluster distinct from PAH mixtures and each other. BaP and mixtures up-regulated phase 1 and phase 2 metabolizing enzymes while DBC did not. The carcinogenicity with DBC and two of the mixtures was much greater than would be predicted based on published Relative Potency Factors (RPFs). -- Highlights: ► Dibenzo[def,p]chrysene (DBC), 3 PAH mixtures, benzo[a]pyrene (BaP) were compared. ► DBC and 2 PAH mixtures were more potent than Relative Potency Factor estimates. ► Transcriptome profiles 12 hours post initiation were analyzed by microarray. ► Principle components analysis of alterations revealed treatment-based clustering. ► DBC gave a unique pattern of gene alterations compared to BaP and PAH mixtures.« less
Quantification of elements essential for habitability: the case of the nakhlite hydrothermal brine
NASA Astrophysics Data System (ADS)
Schwenzer, S. P.; Bridges, J.
2013-12-01
Hypervelocity impact events deposit a high amount of energy in the target - devastating to the existing environment in a few seconds, but in the long term aftermath the morphological changes and the deposited heat offer new habitable environments. If water is available in the target, impact-generated hydrothermal activity will result. To assess the habitability of this new site, information on fluid chemistry is critical, but not readily available by observing final products of rock alteration. The nakhlite Martian meteorites contain such impact-generated alteration mineral assemblages, which reveal detailed information about their formation conditions (Changela and Bridges, 2010, MAPS, 45: 1847-1865). Combining the mineralogical observations with thermochemical modeling (code: CHILLER, Mark Reed and co-workers, U Oregon) we quantify the solution concentration of a variety of elements essential for habitability: C, P, S, Na, K, Ca, Mg. For this we use our previous model (Bridges and Schwenzer, 2012, EPSL, 359-360: 117-123) at W/R of 100, T of 50 °C and 0.1 mole CO2. This leads to the formation of nontronite (77 wt%), carbonate (14 wt%), quartz (5 wt%) and kaolinite (4 wt%). Of the 0.1 mole CO2, 97% is precipitated as carbonates using cations from the 10 g of altered Lafayette in the presence of 1 kg of water, and this is equivalent to 4 g CO2 being sequestered. While the CO2 is sourced from the fluid, S and P are contained in Lafayette, leading to 27 x 10-9 g of P and 0.06 g of S available in the fluid after dissolution and precipitation of alteration minerals. Other cations important for habitability, e.g., Na, K, Ca, and Mg, are present in solution in varying amounts. 100 % of Na and K, equal to 0.004 and 0.001 moles of Na and K, respectively, from the dissolving rock stay in solution. In contrast, Fe dissolved from the host rock does not stay in solution, but is almost entirely precipitated in the nontronite and carbonate. The situation is more complex for other cations: 1.4 % of Ca (0.0003 moles), and 3.3 % of Mg (0.003 moles) are available in dissolved form. As this specific example shows, with accurate mineralogical information on the dissolving host rock and most importantly alteration minerals, it is possible to determine formation conditions of the alteration phases. With that it is then possible to quantify the sinks and mobility of key elements for habitability. This is especially interesting for near- and subsurface environments on Mars, where a multitude of processes from diagenesis to hydrothermal alteration has occurred in the past and could have provided habitable sites, if life ever existed on Mars (Cockell et al. 2012, Icarus, 217: 184-193). Further, those results are applicable to other medium- to high-temperature hydrous processes and also transferrable to other celestial bodies with (basaltic) rock-water interaction.
Stratigraphic development and hydrothermal activity in the central western Cascade Range, Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummings, M.L.; Bull, M.K.; Pollock, J.M.
1990-11-10
Two volcanic sequences bounded by erosional unconformities compose the stratigraphy of the North Santiam mining district, Western Cascade Range, Oregon. Diorite, grandodiorite, and leucocratic quartz porphyry dikes, stocks, and sills intrude the breccias, flows, and tuffs of a volcanic center in the older Sardine Formation. Tourmaline-bearing breccia pipes are associated with the porphyritic granodiorite intrusions. An erosional unconformity separates the Sardine Formation from the overlying Elk Lake formation. The alteration patterns in the two formations are consistent with the development of hydrothermal systems during the eruption of each formation. However, the development of the two hydrothermal systems is separated bymore » a period of erosion of the older volcanic pile. Early formation of mineralization that resembles porphyry copper deposits occurred within the Sardine Formation, and later, after eruption of the Elk Lake formation, epithermal veins and alteration developed along faults, fractures, and the margins of dikes in the Sardine Formation.« less
Gomes, Dayane Santos; Lopes, Maíza Alves; Menezes, Sara Pereira; Ribeiro, Lidiane Figueredo; Dias, Cristiano Villela; Andrade, Bruno Silva; de Jesus, Raildo Mota; Pires, Acassia Benjamin Leal; Goes-Neto, Aristóteles; Micheli, Fabienne
2016-01-01
We identified and characterized two chitinases, named MpCHIT1 and MpCHIT2, from the fungus Moniliophthora perniciosa - the etiologic agent of witches' broom disease in cacao tree (Theobroma cacao L.) - during its development, mainly in the mycelia phases preceding the basidioma formation. The expression of MpCHIT1 and MpCHIT2, together with MpCHS and MpATG8 (chitin synthase and autophagy genes, respectively), was analyzed during the M. perniciosa growth and development on bran-based solid medium as well as in liquid medium containing H2O2 or rapamycin (oxidative and nutritional related-autophagy stress agents, respectively). In order to link the expression of chitin metabolism-related genes to nutritional composition influencing fungus development, we also quantified total and reduced sugars, as well as macro- and micronutrients in the bran-based solid medium. The expression analysis showed that the MpCHS expression increased through mycelial development and then decreased in the primordium and basidioma phases, while the expression of MpCHIT1 and MpCHIT2 was higher in basidioma and primordium phases, respectively. Moreover, the expression pattern of MpCHIT1 and MpCHIT2 is distinct, the second correlated with the MpATG8 expression pattern and possibly with autophagy process, while the first may be related to the basidioma formation. The quantification of total and reduced sugars, as well as macro- and micronutrients supported the idea that the cell wall restructuration due to MpCHS, MpCHIT1 and MpCHIT2 is related to stress and fungal nutrient reallocation, allowing the formation and development of the basidioma. Experiments involving M. perniciosa growth on liquid medium containing H2O2 or rapamycin showed that MpCHIT1 and MpCHIT2 were over-expressed in response to oxidative but also to nutritional related-autophagy stresses. Interestingly, the expression level of MpCHS, MpCHIT1 and MpCHIT2 in presence of rapamycin is similar to the one observed in the primordium and basidioma from bran-based solid medium. The analysis of the overall data allowed designing a general scheme of chitin metabolism and autophagy during M. perniciosa development, focusing on the mycelium phases as crucial and environmentally influenced steps preceding the primordium and basidioma formation. These data support the idea that the nutritional environment of M. perniciosa influences its development and life cycle. Copyright © 2015 Elsevier Inc. All rights reserved.
Investigation of bone formation using calcium phosphate glass cement in beagle dogs
Lee, Seung-Bum; Jung, Ui-Won; Choi, Youna; Jamiyandorj, Otgonbold; Kim, Chang-Sung; Lee, Yong-Keun; Chai, Jung-Kiu
2010-01-01
Purpose Among available biomaterials, bioceramics have drawn special interest due to their bioactivity and the possibility of tailoring their composition. The degradation rate and formulation of bioceramics can be altered to mimic the compositions of the mineral phase of bone. The aim of this study was to investigate the bone formation effect of amorphous calcium phosphate glass cement (CPGC) synthesized by a melting and quenching process. Methods In five male beagle dogs, 4 × 4 mm 1-wall intrabony defects were created bilaterally at the mesial or distal aspect of the mandibular second and fourth premolars. Each of the four defects was divided according to graft materials: CPGC with collagen membrane (CM), biphasic calcium phosphate (BCP) with CM, CM alone, or a surgical flap operation only. The dogs were sacrificed 8 weeks post-surgery, and block sections of the defects were collected for histologic and histometric analysis. Results There were significant differences in bone formation and cementum regeneration between the experimental and control groups. In particular, the CPGC and BCP groups showed greater bone formation than the CM and control groups. Conclusions In conclusion, CPGC was replaced rapidly with an abundant volume of new bone; CPGC also contributed slightly to regeneration of the periodontal apparatus. PMID:20607057
Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates.
Shimizu, Masayuki; Zhou, Jihai; Schröder, Christian; Obst, Martin; Kappler, Andreas; Borch, Thomas
2013-01-01
Organic matter (OM) is present in most terrestrial environments and is often found coprecipitated with ferrihydrite (Fh). Sorption or coprecipitation of OM with Fe oxides has been proposed to be an important mechanism for long-term C preservation. However, little is known about the impact of coprecipitated OM on reductive dissolution and transformation of Fe(III) (oxyhydr)oxides. Thus, we study the effect of humic acid (HA) coprecipitation on Fh reduction and secondary mineral formation by the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens strain CN32. Despite similar crystal structure for all coprecipitates investigated, resembling 2-line Fh, the presence of coprecipitated HA resulted in lower specific surface areas. In terms of reactivity, coprecipitated HA resulted in slower Fh bioreduction rates at low C/Fe ratios (i.e., C/Fe ≤ 0.8), while high C/Fe ratios (i.e., C/Fe ≥ 1.8) enhanced the extent of bioreduction compared to pure Fh. The coprecipitated HA also altered the secondary Fe mineralization pathway by inhibiting goethite formation, reducing the amount of magnetite formation, and increasing the formation of a green rust-like phase. This study indicates that coprecipitated OM may influence the rates, pathway, and mineralogy of biogeochemical Fe cycling and anaerobic Fe respiration within soils.
NASA Astrophysics Data System (ADS)
Chen, F.; Coggon, R. M.; Teagle, D. A. H.; Turchyn, A. V.
2016-12-01
Calcium carbonate vein formation in the oceanic crust has been proposed as a climate-sensitive feedback mechanism that regulates the carbon cycle on million-year timescales. The suggestion has been that higher pCO2 levels may drive changes in ocean temperature and pH that increase seafloor alteration, releasing more calcium from oceanic basalt. This results in more removal of carbon from Earth's surface through calcium carbonate formation, which includes calcium carbonate vein formation in oceanic crust. The importance of this feedback mechanism remains enigmatic. Measurements of the δ44Ca of calcium carbonate veins in the oceanic crust may constrain the sources of calcium and timing of vein formation. Seawater and basalt are the only sources present shortly after crustal formation, whereas other sources, such as anhydrite dissolution and sedimentary carbonates become available when the crust ages, at which point carbonate veins may form far from the ridge axis. We report the calcium isotopic composition of 65 calcium carbonate veins, ranging from 108 to 1.2 million years old, in hydrothermally altered basalt from the Mid-Atlantic and Juan de Fuca ridges. We also present 43 δ44Ca measurements of 5.9 million year old basalts and dikes from the Costa Rica Rift that have undergone hydrothermal alteration over a range of conditions in upper crust. The δ44Ca of the calcium carbonate veins ranges from -1.59 to 1.01‰ (versus Bulk Silicate Earth), whereas the δ44Ca of altered basalts ranges from -0.18 to 0.28‰. Depth and temperature of formation seem to be major influences on calcium carbonate vein δ44Ca, with veins formed at cool, shallower depths having higher δ44Ca, closer to seawater. In contrast, we note no temporal variation in δ44Ca of calcium carbonate veins when comparing samples from older and younger crust. The majority of veins (54 out of 65) have δ44Ca between that of seawater and basalt, which implies that they may have formed quite soon after crustal formation before other sources of calcium became available. We conclude that calcium carbonate vein formation may derive a significant fraction of calcium from seafloor alteration of basalts. This may cause rates of carbonate vein formation to be sensitive to aspects of ocean chemistry that vary due to changing climate conditions.
Jessica E. Hancock; Wendy M. Loya; Christian P. Giardina; Laigeng Li; Vincent L. Chiang; Kurt S. Pregitzer
2007-01-01
We conducted a glasshouse mesocosm study that combined 13C isotope techniques with wild-type and transgenic aspen (Populus tremuloides) in order to examine how altered lignin biosynthesis affects plant production and soil carbon formation. Our transgenic aspen lines expressed low stem lignin concentration but normal cellulose...
NASA Astrophysics Data System (ADS)
Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry
2011-12-01
Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8.7. The presence of nitrogen-containing inorganic salts strongly impact the formation of novel organosulfur products, whereas no organonitrates were observed. A detailed characterization of these products with the triple-quadruple negative electrospray mass spectrometry (-)ESI-MS/MS revealed oxygenated polar species with C-5 skeleton bearing SO3H (MW 182, 180) and SO2H (MW 166, 164) moieties on the hydroxyl group. The structures of these products were firmly confirmed by comparison of their liquid chromatography and mass spectrometry behaviors with that corresponding to the synthesized model compounds. It is believed that newly discovered highly polar low molecular weight compounds may contribute to the growth of wet aerosol particles by the formation of higher molecular weight species.
Stewart, Douglas I; Bray, Andrew W; Udoma, Gideon; Hobson, Andrew J; Mayes, William M; Rogerson, Mike; Burke, Ian T
2018-04-01
Alkalinity generation and toxic trace metal (such as vanadium) leaching from basic oxygen furnace (BOF) steel slag particles must be properly understood and managed by pre-conditioning if beneficial reuse of slag is to be maximised. Water leaching under aerated conditions was investigated using fresh BOF slag at three different particle sizes (0.5-1.0, 2-5 and 10 × 10 × 20 mm blocks) and a 6-month pre-weathered block. There were several distinct leaching stages observed over time associated with different phases controlling the solution chemistry: (1) free-lime (CaO) dissolution (days 0-2); (2) dicalcium silicate (Ca 2 SiO 4 ) dissolution (days 2-14) and (3) Ca-Si-H and CaCO 3 formation and subsequent dissolution (days 14-73). Experiments with the smallest size fraction resulted in the highest Ca, Si and V concentrations, highlighting the role of surface area in controlling initial leaching. After ~2 weeks, the solution Ca/Si ratio (0.7-0.9) evolved to equal those found within a Ca-Si-H phase that replaced dicalcium silicate and free-lime phases in a 30- to 150-μm altered surface region. V release was a two-stage process; initially, V was released by dicalcium silicate dissolution, but V also isomorphically substituted for Si into the neo-formed Ca-Si-H in the alteration zone. Therefore, on longer timescales, the release of V to solution was primarily controlled by considerably slower Ca-Si-H dissolution rates, which decreased the rate of V release by an order of magnitude. Overall, the results indicate that the BOF slag leaching mechanism evolves from a situation initially dominated by rapid hydration and dissolution of primary dicalcium silicate/free-lime phases, to a slow diffusion limited process controlled by the solubility of secondary Ca-Si-H and CaCO 3 phases that replace and cover more reactive primary slag phases at particle surfaces.
Aqueous Alteration of Tridymite: Implications for its Discovery at Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Rampe, E. B.; Morris, R. V.; Ming, D. W.; Graff, T. G.; Downs, R. T.; Peretyazhko, T.
2016-12-01
Tridymite is a high-temperature, low-pressure polymorph of SiO2. It is relatively uncommon on Earth and can form by vapor phase alteration of silicic tuffs [e.g., 1], in silicic volcanic fumaroles [e.g., 2], and from contact metamorphism of opaline silica [e.g., 3]. The martian crust is generally mafic, and minerals that form in silicic volcanic environments are rarely observed from orbit [e.g., 4]. The Mars Science Laboratory Curiosity has been investigating an ancient fluviolacustrine sequence in Gale crater since its landing in August 2012. Monoclinic tridymite was recently discovered with X-ray diffraction data measured by the CheMin instrument in a target called Buckskin drilled from the Murray formation in the Marias Pass area [5,6]. The Murray fm is dominated by finely horizontally laminated mudstone, suggesting subaqueous sediment deposition in a lake. Buckskin contains substantial amounts of tridymite (13.6 wt.% of the bulk sample) and abundant X-ray amorphous materials (60 wt.%), primarily made up of high-silica phases (opal-A, opal-CT, obsidian) [5]. Other samples drilled from the Murray fm contain minerals consistent with diagenesis by acid-sulfate solutions (e.g., jarosite, hematite) [7], and geochemical trends in the Marias Pass and Pahrump Hills sections suggest these sediments were altered by acidic fluids in an open system [7]. The stability and alteration products of tridymite in acid-sulfate alteration environments are not well characterized. To investigate the behavior of tridymite in these environments, we performed a series of laboratory experiments in which we exposed synthetic tridymite (monoclinic) to 0.5 and 2 M solutions of H2SO4 for up to three weeks at 25 °C and 150 °C. Our experiments show that tridymite is stable in these environments, suggesting that tridymite in the lacustrine sediments found in Marias Pass would have survived diagenesis in acidic solutions. Future experiments will include alteration under neutral and alkaline conditions to further explore the stability of tridymite in aqueous environments. [1] Broxton et al. (1995) LANL Lab Rept. LA-12934-MS. [2] Hamasaki (2002) Earth Planet Sp, 54. [3] Del Moro et al. (2011) J. Petrol., 52. [4] Smith and Bandfield (2012) JGR, 117. [5] Morris et al. (2016) PNAS, 113. [6] Morris et al., this meeting. [7] Rampe et al. (2016) LPS XLVII.
Hydrothermal Alteration of the Mt Unzen Conduit (Shimabara/Japan)
NASA Astrophysics Data System (ADS)
Yilmaz, T. I.; Mayer, K.; Hess, K. U.; Janots, E.; Gilg, H. A.; Dingwell, D. B.
2016-12-01
Investigations were carried out on hydrothermally altered coherent dacitic dykes samples from (USDP-4) drill core at Mt Unzen stratovolcano (Shimabara/Japan). XRF, XRD, EMPA, and C-O-isotope analysis led to insights concerning chemistry, mineralogy, and intensity of alteration as well as the origin of carbonate-precipitating fluids. Additionally a textural characterization of the occurring replacement features in the magma conduit zone was performed. The occurrence of the main secondary phases such as chlorite, pyrite, carbonates, and R1 (Reichweite parameter) illite-smectite indicate a weak to moderate propylitic to phyllic hydrothermal alteration. The dacitic samples of the dykes show different hydrothermal alteration features: (i) carbonate pseudomorphs after hornblende as well as core and zonal textures due to replacement of plagioclase by R1 illite-smectite, (ii) colloform banded fracture fillings and fillings in dissolution vugs, and (iii) chlorite and R1 illite-smectite in the groundmass. Carbonates in fractures comprise iron-rich dolomite solid solutions ("ankerite") and calcite. Isotopic values of d13Cvpdb = -4.59 ± 0.6‰ and d18Ovpdb = -21.73 ± 0.5‰ indicate a hydrothermal-magmatic origin for the carbonate formation. The chlorite-carbonate-pyrite index (CCPI) and the Ishikawa alteration index (AI), applied to the investigated samples show significant differences (CCPI=52.7-57.8; AI=36.1-40.6) indicating their different degree of alteration. According to Nakada et al., 2005, the C13 to C16 dykes represent the feeder dyke from the latest eruption (1991-1995) whereas C8 represents an earlier dyke feeder dyke from an older eruption. Weakest conduit alteration, which was obtained in samples C16-1-5 and C13-2-5, correlates with the alteration degree of the pristine dome rocks. Highest CCPI value was determined for sample C14-1-5 and the highest AI value was determined for sample C15-2-6. The degrees of alteration do not indicate highest alteration of the samples C8-1-2 and C8-2-1 from the older dykes.
NASA Astrophysics Data System (ADS)
Bennett, James; Nakano, Anna; Nakano, Jinichiro; Thomas, Hugh
Gasification is a high-temperature/high-pressure process that converts carbonaceous materials such as coal and/or petcoke into CO and H2, feedstock materials used in power generation and chemical production. Gasification is considered an important technology because of its high process efficiency and the ability to capture environmental pollutants such as CO2, SO3 and Hg. Ash impurities in the carbon feedstock materials melt and coalesce during gasification (1325-1575 °C), becoming slag that attaches to and flows down the gasifier sidewall, corroding and eroding the high Cr2O3 refractory liner used to protect the gasification chamber. Phosphate additions to high Cr2O3 refractory have been found to alter slag/refractory interactions and dramatically reduce refractory wear by the following mechanisms: a) spinel formation, b) slag chemistry changes, c) two phase liquid formation, and d) oxidation state changes. The mechanisms and how they work together to impact material wear/corrosion will be discussed.
Na, K-Rich Rim Around a Chondrule in Unequilibrated Ordinary Chondrite Lew 86018 (L3.1)
NASA Technical Reports Server (NTRS)
Mishra, R. K.; Simon, J. I.; Ross, D. K.; Needham, A. W.; Messenger, S.; Keller, L. P.; Han, J.; Marhas, K. K.
2015-01-01
Ordinary chondrites represent the most abundant early Solar system extra-terrestrial (approximately 85% abundance) material available for laboratory studies and expectedly record the most extensive range of alterations effects from unmetamorphosed chondritic material to the highest temperatures of thermal metamorphism. The least metamorphosed chondrites belonging to petrologic type 3, the so called unequili-brated ordinary chondrites (UOCs), provide insights into alteration that happened during the primeval, ear-liest stage of Solar system formation. The higher grade petrologic types 4-6 ordinary chondrites on the other hand document up to near textural equilibrium (in type 6) extensive thermal metamorphism consisting of minerals and phases providing evidence of equilibration of heterogeneous mineral composition, solid-state recrystallization. Despite being the most abundant, the effect of alteration is less explicitly understood in ordinary chondrites (even less in UOCs) compared to other groups (e.g. CV, CO, CR). Additionally, the relationship between metasomatism (also referred as aqueous alteration or fluid-assisted metamorphism) and metamorphism (primarily thermal driven) has not been studied and alterations in the ordinary chondrites have been considered to have occurred in absence of fluids in general. Despite this conventional view, UOCs of lowest grades (3.0-3.2) show some evidence of low temperature (approximately 200 C), fluid assisted metamorphism in the form of the presence of phyllosilicates, ferroan olivine, and magnetites in their matrices and occasionally in chondrules. Here, we present petrographic and mineralogical studies of UOC, Lewis Hills (LEW) 86018 to further our understanding of the extent and relative importance of metasomatism and/or metamorphism in UOCs.
Shang, Andrea; Bylipudi, Sooraz; Bieszczad, Kasia M
2018-05-31
Epigenetic mechanisms are key for regulating long-term memory (LTM) and are known to exert control on memory formation in multiple systems of the adult brain, including the sensory cortex. One epigenetic mechanism is chromatin modification by histone acetylation. Blocking the action of histone de-acetylases (HDACs) that normally negatively regulate LTM by repressing transcription has been shown to enable memory formation. Indeed, HDAC inhibition appears to facilitate memory by altering the dynamics of gene expression events important for memory consolidation. However, less understood are the ways in which molecular-level consolidation processes alter subsequent memory to enhance storage or facilitate retrieval. Here we used a sensory perspective to investigate whether the characteristics of memory formed with HDAC inhibitors are different from naturally-formed memory. One possibility is that HDAC inhibition enables memory to form with greater sensory detail than normal. Because the auditory system undergoes learning-induced remodeling that provides substrates for sound-specific LTM, we aimed to identify behavioral effects of HDAC inhibition on memory for specific sound features using a standard model of auditory associative cue-reward learning, memory, and cortical plasticity. We found that three systemic post-training treatments of an HDAC3-inhibitor (RGPF966, Abcam Inc.) in rats in the early phase of training facilitated auditory discriminative learning, changed auditory cortical tuning, and increased the specificity for acoustic frequency formed in memory of both excitatory (S+) and inhibitory (S-) associations for at least 2 weeks. The findings support that epigenetic mechanisms act on neural and behavioral sensory acuity to increase the precision of associative cue memory, which can be revealed by studying the sensory characteristics of long-term associative memory formation with HDAC inhibitors. Published by Elsevier B.V.
Experimental Investigation of White Layer formation in Hard Turning
NASA Astrophysics Data System (ADS)
Umbrello, D.; Rotella, G.; Crea, F.
2011-05-01
Hard turning with super hard cutting tools, like PCBN or Ceramics inserts, represents an interesting advance in the manufacturing industry, regarding the finishing of hardened steels. This innovative machining technique is considered an attractive alternative to traditional finish grinding operations because of the high flexibility, the ability to achieve higher metal removal rates, the possibility to operate without the use of coolants, and the capability to achieve comparable workpiece quality. However, the surface integrity effects of hard machining need to be taken into account due to their influence on the life of machined components. In particular, the formation of a usually undesirable white layer at the surface needs further investigation. Three different mechanisms have been proposed as main responsible of the white layer genesis: (i) microstructural phase transformation due to a rapid heating and quenching, (ii) severe plastic deformation resulting in a homogenous structure and/or a very fine grain size microstructure; (iii) surface reaction with the environment. In this research, an experimental campaign was carried out and several experimental techniques were used in order to analyzed the machined surface and to understand which of the above mentioned theories is the main cause of the white layer formation when AISI 52100 hardened steel is machined by PCBN inserts. In particular, the topography characterization has obtained by means of optical and scanning electron microscope (SEM) while microstructural phase composition and chemical characterization have been respectively detected using X-ray Diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDS) techniques. The results prove that the white layer is the result of microstructural alteration, i.e. the generation of a martensitic structure.
Granular-front formation in free-surface flow of concentrated suspensions
NASA Astrophysics Data System (ADS)
Leonardi, Alessandro; Cabrera, Miguel; Wittel, Falk K.; Kaitna, Roland; Mendoza, Miller; Wu, Wei; Herrmann, Hans J.
2015-11-01
A granular front emerges whenever the free-surface flow of a concentrated suspension spontaneously alters its internal structure, exhibiting a higher concentration of particles close to its front. This is a common and yet unexplained phenomenon, which is usually believed to be the result of fluid convection in combination with particle size segregation. However, suspensions composed of uniformly sized particles also develop a granular front. Within a large rotating drum, a stationary recirculating avalanche is generated. The flowing material is a mixture of a viscoplastic fluid obtained from a kaolin-water dispersion with spherical ceramic particles denser than the fluid. The goal is to mimic the composition of many common granular-fluid materials, such as fresh concrete or debris flow. In these materials, granular and fluid phases have the natural tendency to separate due to particle settling. However, through the shearing caused by the rotation of the drum, a reorganization of the phases is induced, leading to the formation of a granular front. By tuning the particle concentration and the drum velocity, it is possible to control this phenomenon. The setting is reproduced in a numerical environment, where the fluid is solved by a lattice-Boltzmann method, and the particles are explicitly represented using the discrete element method. The simulations confirm the findings of the experiments, and provide insight into the internal mechanisms. Comparing the time scale of particle settling with the one of particle recirculation, a nondimensional number is defined, and is found to be effective in predicting the formation of a granular front.
Granular-front formation in free-surface flow of concentrated suspensions.
Leonardi, Alessandro; Cabrera, Miguel; Wittel, Falk K; Kaitna, Roland; Mendoza, Miller; Wu, Wei; Herrmann, Hans J
2015-11-01
A granular front emerges whenever the free-surface flow of a concentrated suspension spontaneously alters its internal structure, exhibiting a higher concentration of particles close to its front. This is a common and yet unexplained phenomenon, which is usually believed to be the result of fluid convection in combination with particle size segregation. However, suspensions composed of uniformly sized particles also develop a granular front. Within a large rotating drum, a stationary recirculating avalanche is generated. The flowing material is a mixture of a viscoplastic fluid obtained from a kaolin-water dispersion with spherical ceramic particles denser than the fluid. The goal is to mimic the composition of many common granular-fluid materials, such as fresh concrete or debris flow. In these materials, granular and fluid phases have the natural tendency to separate due to particle settling. However, through the shearing caused by the rotation of the drum, a reorganization of the phases is induced, leading to the formation of a granular front. By tuning the particle concentration and the drum velocity, it is possible to control this phenomenon. The setting is reproduced in a numerical environment, where the fluid is solved by a lattice-Boltzmann method, and the particles are explicitly represented using the discrete element method. The simulations confirm the findings of the experiments, and provide insight into the internal mechanisms. Comparing the time scale of particle settling with the one of particle recirculation, a nondimensional number is defined, and is found to be effective in predicting the formation of a granular front.
Microphysical processing of aerosol particles in orographic clouds
NASA Astrophysics Data System (ADS)
Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.
2015-08-01
An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice crystal number concentration.
NASA Astrophysics Data System (ADS)
Gkatzelis, G.; Hohaus, T.; Tillmann, R.; Schmitt, S. H.; Yu, Z.; Schlag, P.; Wegener, R.; Kaminski, M.; Kiendler-Scharr, A.
2015-12-01
Atmospheric aerosol can alter the Earth's radiative budget and global climate but can also affect human health. A dominant contributor to the submicrometer particulate matter (PM) is organic aerosol (OA). OA can be either directly emitted through e.g. combustion processes (primary OA) or formed through the oxidation of organic gases (secondary organic aerosol, SOA). A detailed understanding of SOA formation is of importance as it constitutes a major contribution to the total OA. The partitioning between the gas and particle phase as well as the volatility of individual components of SOA is yet poorly understood adding uncertainties and thus complicating climate modelling. In this work, a new experimental methodology was used for compound-specific analysis of organic aerosol. The Aerosol Collection Module (ACM) is a newly developed instrument that deploys an aerodynamic lens to separate the gas and particle phase of an aerosol. The particle phase is directed to a cooled sampling surface. After collection particles are thermally desorbed and transferred to a detector for further analysis. In the present work, the ACM was coupled to a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS) to detect and quantify organic compounds partitioning between the gas and particle phase. This experimental approach was used in a set of experiments at the atmosphere simulation chamber SAPHIR to investigate SOA formation. Ozone oxidation with subsequent photochemical aging of β-pinene, limonene and real plant emissions from Pinus sylvestris (Scots pine) were studied. Simultaneous measurement of the gas and particle phase using the ACM-PTR-ToF-MS allows to report partitioning coefficients of important BVOC oxidation products. Additionally, volatility trends and changes of the SOA with photochemical aging are investigated and compared for all systems studied.
NASA Astrophysics Data System (ADS)
Chan, A. W. H.; Kroll, J. H.; Ng, N. L.; Seinfeld, J. H.
2007-08-01
The distinguishing mechanism of formation of secondary organic aerosol (SOA) is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics), of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.
NASA Astrophysics Data System (ADS)
Chan, A. W. H.; Kroll, J. H.; Ng, N. L.; Seinfeld, J. H.
2007-05-01
The distinguishing mechanism of formation of secondary organic aerosol (SOA) is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics), of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.
Monahan, Pamela; Himes, Ashley D.; Parfieniuk, Agata; Raetzman, Lori T.
2011-01-01
A delicate balance between proliferation and differentiation must be maintained in the developing pituitary to ensure the formation of the appropriate number of hormone producing cells. In the adult, proliferation is actively restrained to prevent tumor formation. The cyclin dependent kinase inhibitors (CDKIs) of the CIP/KIP family, p21, p27 and p57, mediate cell cycle inhibition. Although p21 is induced in the pituitary upon loss of Notch signaling or initiation of tumor formation to halt cell cycle progression, its role in normal pituitary organogenesis has not been explored. In wildtype pituitaries, expression of p21 is limited to a subset of cells embryonically as well as during the postnatal proliferative phase. Mice lacking p21 do not have altered cell proliferation during early embryogenesis, but do show a slight delay in separation of proliferating progenitors from the oral ectoderm. By embryonic day 16.5, p21 mutants have an alteration in the spatial distribution of proliferating pituitary progenitors, however there is no overall change in proliferation. At postnatal day 21, there appears to be no change in proliferation, as assessed by cells expressing Ki67 protein. However, p21 mutant pituitaries have significantly less mRNA of Myc and the cyclins Ccnb1, Ccnd1, Ccnd2 and Ccne1 than wildtype pituitaries. Interestingly, unlike the redundant role in cell cycle inhibition uncovered in p27/p57 double mutants, the pituitary of p21/p27 double mutants has a similar proliferation profile to p27 single mutants at the time points examined. Taken together, these studies demonstrate that unlike p27 or p57, p21 does not play a major role in control of progenitor proliferation in the developing pituitary. However, p21 may be required to maintain normal levels of cell cycle components. PMID:22154697
Super-hard cubic BN layer formation by nitrogen ion implantation
NASA Astrophysics Data System (ADS)
Komarov, F. F.; Pilko, V. V.; Yakushev, V. A.; Tishkov, V. S.
1994-11-01
Microcrystalline and amorphous boron thin films were implanted with nitrogen ions at energies from 25 to 125 keV and with doses from 2 × 10 17 to 1 × 10 18 at.cm 2 at temperatures below 200°C. The structure of boron nitride phases after ion implantation, formation of phases and phase transformations were investigated by TEM and TED methods. The cubic boron nitride phase is revealed. The microhardness of the formed films was satisfactorily explained in terms of chemical compound formation by polyenergetic ion implantation. The influence of the copper impurity on the formation of the cubic boron nitride phase is demonstrated. It has also been shown that low concentrations of copper promote cubic BN boundary formation.
Parker, Kimberly M; Zeng, Teng; Harkness, Jennifer; Vengosh, Avner; Mitch, William A
2014-10-07
The disposal and leaks of hydraulic fracturing wastewater (HFW) to the environment pose human health risks. Since HFW is typically characterized by elevated salinity, concerns have been raised whether the high bromide and iodide in HFW may promote the formation of disinfection byproducts (DBPs) and alter their speciation to more toxic brominated and iodinated analogues. This study evaluated the minimum volume percentage of two Marcellus Shale and one Fayetteville Shale HFWs diluted by fresh water collected from the Ohio and Allegheny Rivers that would generate and/or alter the formation and speciation of DBPs following chlorination, chloramination, and ozonation treatments of the blended solutions. During chlorination, dilutions as low as 0.01% HFW altered the speciation toward formation of brominated and iodinated trihalomethanes (THMs) and brominated haloacetonitriles (HANs), and dilutions as low as 0.03% increased the overall formation of both compound classes. The increase in bromide concentration associated with 0.01-0.03% contribution of Marcellus HFW (a range of 70-200 μg/L for HFW with bromide = 600 mg/L) mimics the increased bromide levels observed in western Pennsylvanian surface waters following the Marcellus Shale gas production boom. Chloramination reduced HAN and regulated THM formation; however, iodinated trihalomethane formation was observed at lower pH. For municipal wastewater-impacted river water, the presence of 0.1% HFW increased the formation of N-nitrosodimethylamine (NDMA) during chloramination, particularly for the high iodide (54 ppm) Fayetteville Shale HFW. Finally, ozonation of 0.01-0.03% HFW-impacted river water resulted in significant increases in bromate formation. The results suggest that total elimination of HFW discharge and/or installation of halide-specific removal techniques in centralized brine treatment facilities may be a better strategy to mitigate impacts on downstream drinking water treatment plants than altering disinfection strategies. The potential formation of multiple DBPs in drinking water utilities in areas of shale gas development requires comprehensive monitoring plans beyond the common regulated DBPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bingbing; O'Brien, Rachel E.; Univ. of the Pacific, Stockton, CA
2015-05-14
Constituents of secondary organic carbon (SOC) in atmospheric aerosols are often mixed with inorganic components and compose a significant mass fraction of fine particulate matter in the atmosphere. Interactions between SOC and other condensed-phase species are not well understood. Here, we investigate the reactions of liquid-like and semi-solid SOC from ozonolysis of limonene (LSOC) and α-pinene (PSOC) with NaCl using a set of complementary micro-spectroscopic analyses. These reactions result in chloride depletion in the condensed phase, release of gaseous HCl, and formation of organic salts. The reactions attributed to acid displacement by SOC acidic components are driven by the highmore » volatility of HCl. Similar reactions can take place in SOC/NaNO₃ particles. The results show that an increase in SOC mass fraction in the internally mixed SOC/NaCl particles leads to higher chloride depletion. Glass transition temperatures and viscosity of PSOC were estimated for atmospherically relevant conditions. Data show that the reaction extent depends on SOC composition, particle phase state and viscosity, mixing state, temperature, relative humidity (RH), and reaction time. LSOC shows slightly higher potential to deplete chloride than PSOC. Higher particle viscosity at low temperatures and RH can hinder these acid displacement reactions. Formation of organic salts from these overlooked reactions can alter particle physiochemical properties and may affect their reactivity and ability to act as cloud condensation and ice nuclei. The release and potential recycling of HCl and HNO₃ from reacted aerosol particles may have important implications for atmospheric chemistry.« less
Vuillard, L; Rabilloud, T; Goldberg, M E
1998-08-15
Non-detergent sulfobetaines (NDSB) are a family of solubilizing and stabilizing agents for proteins. In a previous study [Goldberg, M. E., Expert-Bezancon, N., Vuillard, L. & Rabilloud, T. (1996) Folding & Design 1, 21-27] we showed that the amount of active protein recovered in in vitro folding experiments could be significantly increased by some NDSBS. In this work we investigated the mechanisms by which these molecules facilitate protein renaturation. Stopped-flow and manual-mixing fluorescence and enzyme activity measurements were used to compare the kinetics of protein folding in the presence and absence of N-phenyl-methyl-N,N-dimethylammonium-propane-sulfonate (NDSB 256). Hen lysozyme and the beta2 subunit of Escherichia coli tryptophan synthase were chosen as model systems since their folding pathways had been previously investigated in detail. It is shown that, massive aggregation of tryptophan synthase occurs within less than 2.5 s after dilution in the renaturation buffer, but can be prevented by NDSB 256; only very early folding phases (such as the formation of a loosely packed hydrophobic core able to bind 8-anilino-1-naphthalenesulphonic acid, and the initial burying of tryptophan 177) are significantly altered by NDSB 256; none of the later phases is affected. Furthermore, NDSB 256 did not significantly affect any of the kinetic phases observed during the refolding of denatured lysozyme retaining intact disulphide bonds. This shows that NDSB 256 only interferes with very early steps in the folding process and acts by limiting the abortive interactions that could lead to the formation of inactive aggregates.
Wang, Bingbing; O'Brien, Rachel E; Kelly, Stephen T; Shilling, John E; Moffet, Ryan C; Gilles, Mary K; Laskin, Alexander
2015-05-14
Constituents of secondary organic carbon (SOC) in atmospheric aerosols are often mixed with inorganic components and compose a significant mass fraction of fine particulate matter in the atmosphere. Interactions between SOC and other condensed-phase species are not well understood. Here, we investigate the reactions of liquid-like and semisolid SOC from ozonolysis of limonene (LSOC) and α-pinene (PSOC) with NaCl using a set of complementary microspectroscopic analyses. These reactions result in chloride depletion in the condensed phase, release of gaseous HCl, and formation of organic salts. The reactions attributed to acid displacement by SOC acidic components are driven by the high volatility of HCl. Similar reactions can take place in SOC/NaNO3 particles. The results show that an increase in SOC mass fraction in the internally mixed SOC/NaCl particles leads to higher chloride depletion. Glass transition temperatures and viscosity of PSOC were estimated for atmospherically relevant conditions. Data show that the reaction extent depends on SOC composition, particle phase state and viscosity, mixing state, temperature, relative humidity (RH), and reaction time. LSOC shows slightly higher potential to deplete chloride than PSOC. Higher particle viscosity at low temperatures and RH can hinder these acid displacement reactions. Formation of organic salts from these overlooked reactions can alter particle physiochemical properties and may affect their reactivity and ability to act as cloud condensation and ice nuclei. The release and potential recycling of HCl and HNO3 from reacted aerosol particles may have important implications for atmospheric chemistry.
Modeling of Fine-Particle Formation in Turbulent Flames
NASA Astrophysics Data System (ADS)
Raman, Venkat; Fox, Rodney O.
2016-01-01
The generation of nanostructured particles in high-temperature flames is important both for the control of emissions from combustion devices and for the synthesis of high-value chemicals for a variety of applications. The physiochemical processes that lead to the production of fine particles in turbulent flames are highly sensitive to the flow physics and, in particular, the history of thermochemical compositions and turbulent features they encounter. Consequently, it is possible to change the characteristic size, structure, composition, and yield of the fine particles by altering the flow configuration. This review describes the complex multiscale interactions among turbulent fluid flow, gas-phase chemical reactions, and solid-phase particle evolution. The focus is on modeling the generation of soot particles, an unwanted pollutant from automobile and aircraft engines, as well as metal oxides, a class of high-value chemicals sought for specialized applications, including emissions control. Issues arising due to the numerical methods used to approximate the particle number density function, the modeling of turbulence-chemistry interactions, and model validation are also discussed.
Guzzon, Raffaele; Widmann, Giacomo; Bertoldi, Daniela; Nardin, Tiziana; Callone, Emanuela; Nicolini, Giorgio; Larcher, Roberto
2015-02-01
The paper presents a new approach, covering wood with silica-based material in order to protect it from spoilage due to microbial colonisation and avoiding the loss of the natural features of the wood. Wood specimens derived from wine barrels were treated with methyltriethoxysilane in gas phase, leading to the deposition of a silica nanofilm on the surface. (29)Si and (13)C solid state Nuclear Magnetic Resonance and Scanning Electron Microscope-Energy Dispersive X-ray analysis observations showed the formation of a silica polymeric film on the wood samples, directly bonding with the wood constituents. Inductively Coupled Plasma-Mass Spectroscopy quantification of Si showed a direct correlation between the treatment time and silica deposition on the surface of the wood. The silica-coated wood counteracted colonisation by the main wine spoilage microorganisms, without altering the migration from wood to wine of 21 simple phenols measured using a HPLC-Electrochemical Coulometric Detection. Copyright © 2013 Elsevier Ltd. All rights reserved.
Synthesis and characterization of PbTiO3 based glass ceramics
NASA Astrophysics Data System (ADS)
Shankar, J.; Rani, G. Neeraja; Mamatha, B.; Deshpande, V. K.
2017-05-01
Glass samples with composition (50 - X) PbO - XCaO - 25 TiO2 - 25 B2O3 (where = 0, .5, 10 and 15 mol %) were prepared using conventional quenching technique. It was observed that with the addition of alkaline earth oxides to lead borate glass containing TiO2 alters the network (conversion of BO3 to BO4) increasing the rigidity of the glass which enhances the Tg. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The density values of glass ceramic samples are higher than those of corresponding glass samples. It was observed that there was good correlation between the density and CTE results of the glass-ceramics. The XRD results in the glass ceramics revealed the formation of tetragonal lead titanate as a major crystalline phase and Ca3Ti2O7 as minor crystalline phase. The ferroelectric nature of all the glass ceramic samples is confirmed by P - E hysteresis measurements.
Collagen and hyaluronic acid hydrogel in water-in-oil microemulsion delivery systems.
Kupper, Sylwia; Kłosowska-Chomiczewska, Ilona; Szumała, Patrycja
2017-11-01
The increase in skin related health issues has promoted interest in research on the efficacy of microemulsion in dermal and transdermal delivery of active ingredients. Here, we assessed the water-in-oil microemulsion capacity to incorporate two natural polymers, i.e. collagen and hyaluronic acid with low and high molecular weight. Systems were extensively characterized in terms of conductivity, phase inversion studies, droplet diameter, polydispersity index and rheological properties. The results of this research indicate that the structure and extent of water phase in microemulsions is governed by ratio and amount of surfactant mixture (sorbitan ester derivatives). However, results have also shown that collagen, depending upon the weight of the molecule and its surface activity, influence the droplet size of the microemulsions. While the hyaluronic acid, especially with high molecular weight, due to the water-binding ability and hydrogel formation alters the rheological properties of the microemulsion, thus providing viscous consistency of the formulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Real-Time Investigation of Solidification of Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Kaukler, William; Sen, Subhayu
1999-01-01
Casting of metal matrix composites can develop imperfections either as non- uniform distributions of the reinforcement phases or as outright defects such as porosity. The solidification process itself initiates these problems. To identify or rectify the problems, one must be able to detect and to study how they form. Until, recently this was only possible by experiments that employed transparent metal model organic materials with glass beads to simulate the reinforcing phases. Recent results obtained from a Space Shuttle experiment (using transparent materials) will be used to illustrate the fundamental physics that dictates the final distribution of agglomerates in a casting. We have further extended this real time investigation to aluminum alloys using X-ray microscopy. A variety of interface-particle interactions will be discussed and how they alter the final properties of the composite. A demonstration of how a solid-liquid interface is distorted by nearby voids or particles, particle pushing or engulfment by the interface, formations of wormholes, Aggregation of particles, and particle-induced segregation of alloying elements will be presented.
Dynamic observation on the growth behaviors in manganese silicide/silicon nanowire heterostructures.
Hsieh, Yu-Hsun; Chiu, Chung-Hua; Huang, Chun-Wei; Chen, Jui-Yuan; Lin, Wan-Jhen; Wu, Wen-Wei
2015-02-07
Metal silicide nanowires (NWs) are very interesting materials with diverse physical properties. Among the silicides, manganese silicide nanostructures have attracted wide attention due to their several potential applications, including in microelectronics, optoelectronics, spintronics and thermoelectric devices. In this work, we exhibited the formation of pure manganese silicide and manganese silicide/silicon nanowire heterostructures through solid state reaction with line contacts between manganese pads and silicon NWs. Dynamical process and phase characterization were investigated by in situ transmission electron microscopy (in situ TEM) and spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM), respectively. The growth dynamics of the manganese silicide phase under thermal effects were systematically studied. Additionally, Al2O3, serving as the surface oxide, altered the growth behavior of the MnSi nanowire, enhancing the silicide/Si epitaxial growth and effecting the diffusion process in the silicon nanowire as well. In addition to fundamental science, this significant study has great potential in advancing future processing techniques in nanotechnology and related applications.
The Rapid Distortion of Two-Way Coupled Particle-Laden Turbulence
NASA Astrophysics Data System (ADS)
Kasbaoui, Mohamed; Koch, Donald; Desjardins, Olivier
2017-11-01
The modulation of sheared turbulence by dispersed particles is addressed in the two-way coupling regime. The preferential sampling of the straining regions of the flow by inertial particles in turbulence leads to the formation of clusters. These fast sedimenting particle structures cause the anisotropic alteration of turbulence at small scales in the direction of gravity. These effects are investigated in a revisited Rapid Distortion Theory (RDT), extended for two-way coupled particle-laden flows. To make the analysis tractable, we assume that particles have small but non-zero inertia. In the classical results for single-phase flows, the RDT assumption of fast shearing compared to the turbulence time scales leads to the distortion of ``frozen'' turbulence. In particle-laden turbulence, the coupling between the two phases remains strong even under fast shearing and leads to a dynamic modulation of the turbulence spectrum. Turbulence statistics obtained from RDT are compared with Euler-Lagrange simulations of homogeneously sheared particle-laden turbulence.
Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery.
Tewes, Frederic; Gobbo, Oliviero L; Ehrhardt, Carsten; Healy, Anne Marie
2016-01-20
Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution.
Chemistry and Mineralogy of Antarctica Dry Valley Soils: Implications for Mars
NASA Technical Reports Server (NTRS)
Quinn, J. E.; Golden, D. C.; Graff, T. G.; Ming, D. W.; Morris, R. V.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Tamppari, L, K.; Smith, P. H.;
2011-01-01
The Antarctic Dry Valleys (ADV) comprise the largest ice-free region of Antarctica. Precipitation almost always occurs as snow, relative humidity is frequently low, and mean annual temperatures are about -20 C. The ADV soils have previously been categorized into three soil moisture regimes: subxerous, xerous and ultraxerous, based on elevation and climate influences. The subxerous regime is predominately a coastal zone soil, and has the highest average temperature and precipitation, while the ultraxerous regime occurs at high elevation (>1000 m) and have very low temperature and precipitation. The amounts and types of salts present in the soils vary between regions. The nature, origin and significance of salts in the ADV have been previously investigated. Substantial work has focused on soil formation in the ADVs, however, little work has focused on the mineralogy of secondary alteration phases. The dominant weathering process in the ADV region is physical weathering, however, chemical weathering has been well documented. The objective of this study was to characterize the chemistry and mineralogy, including the alteration mineralogy, of soils from two sites, a subxerous soil in Taylor Valley, and an ultraxerous soil in University Valley. The style of aqueous alteration in the ADVs may have implications for pedogenic processes on Mars.
Rastogi, Shivangi; Singh, Amit Kumar; Chandra, Gyan; Kushwaha, Pragati; Pant, Garima; Singh, Kavita; Mitra, Kalyan; Sashidhara, Koneni V; Krishnan, Manju Y
2017-05-01
Triacylglycerol (TAG) is important to mycobacteria both as cell envelope component and energy reservoir. Mycobacterium tuberculosis (Mtb) genome encodes at least 15 putative TAG synthase (tgs)s. We report that one of these genes, Rv3371, specific to pathogenic mycobacteria, when expressed in M. smegmatis leads to modifications in colony morphotype, bacterial architecture, cell surface properties and elevated TAG levels. Rv3371 was found to largely localize in the cell membrane. The Rv3371 promoter is minimally active during exponential growth in vitro, however, is up-regulated under stationary phase, hypoxia, nutrient starvation, nitrosative stress, low iron, in IFN-γ activated macrophages and infected mice. The low iron-induced expression of Rv3371 is likely due to the de-repression by Rv1404, which is probably activated by ideR. An Rv3371 deletion mutant of Mtb showed impaired non-replicating persistence in vitro and altered sensitivity to anti-mycobacterial drugs. In low iron medium, the Rv3371 deletion mutant showed reduced formation of TAG containing extracellular vesicles. Therefore Rv3371 is likely involved in Mtb growth arrest and cell wall alterations during persistence. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of gypsum alteration on marble and limestone
McGee, E.S.
1996-01-01
Blackened alteration crusts of gypsum plus particulates that form on sheltered areas on marble and limestone buildings pose a challenge for rehabilitation and cleaning. Fresh marble and limestone samples exposed at monitored exposure sites present conditions of simple geometry and well-documented exposures but have short exposure histories (one to five years). The gypsum alteration crusts that develop on these samples provide insight into the early stages and rate of alteration crust formation. Alteration crusts from buildings give a longer, but less well known exposure history and present much more complex surfaces for gypsum accumulation. Integrated observations and measurements of alteration crusts from exposure samples and from buildings identify four factors that are important in the formation and development of alteration crusts on marble and limestone: (1) pollution levels, (2) exposure to rain or washing, (3) geometry of exposure of the stone surface, and (4) permeability of the stone. The combination of these factors contributes to both the distribution and the physical characteristics of the gypsum crusts which may affect cleaning decisions.
Hausrath, Elisabeth M; Tschauner, Oliver
2013-11-01
Fumaroles represent a very important potential habitat on Mars because they contain water and nutrients. Global deposition of volcanic sulfate aerosols may also have been an important soil-forming process affecting large areas of Mars. Here we identify alteration from the Senator fumarole, northwest Nevada, USA, and in low-temperature environments near the fumarole to help interpret fumarolic and acid vapor alteration of rocks and soils on Mars. We analyzed soil samples and fluorapatite, olivine, and basaltic glass placed at and near the fumarole in in situ mineral alteration experiments designed to measure weathering under natural field conditions. Using synchrotron X-ray diffraction, we clearly observe hydroxyl-carbonate-bearing fluorapatite as a fumarolic alteration product of the original material, fluorapatite. The composition of apatites as well as secondary phosphates has been previously used to infer magmatic conditions as well as fumarolic conditions on Mars. To our knowledge, the observations reported here represent the first documented instance of formation of hydroxyl-carbonate-bearing apatite from fluorapatite in a field experiment. Retreat of olivine surfaces, as well as abundant NH4-containing minerals, was also characteristic of fumarolic alteration. In contrast, alteration in the nearby low-temperature environment resulted in formation of large pits on olivine surfaces, which were clearly distinguishable from the fumarolic alteration. Raman signatures of some fumarolically impacted surfaces are consistent with detection of the biological molecules chlorophyll and scytenomin, potentially useful biosignatures. Observations of altered minerals on Mars may therefore help identify the environment of formation and understand the aqueous history and potential habitability of that planet.
Formation kinetics and abundance of organic nitrates in α-pinene ozonolysis
NASA Astrophysics Data System (ADS)
Berkemeier, Thomas; Ammann, Markus; Pöschl, Ulrich; Shiraiwa, Manabu
2016-04-01
Formation of organic nitrates affects the total atmospheric budget of oxidized nitrogen (NOy) and alters the total aerosol mass yield from secondary sources. We investigated the formation of organic nitrate species during ozonolysis of α-pinene and subsequent formation of secondary organic aerosols (SOA) using the short-lived radioactive tracer 13N inside an aerosol flow reactor (Ammann et al., 2001). The results represent direct measurements of the organic nitrate content of α-pinene secondary aerosol and give insight into the kinetics of organic nitrate formation. Organic nitrates constituted up to 40 % of aerosol mass with a pronounced influence during the initial period of particle growth. Kinetic modelling, as well as additional experiments using OH scavengers and UV irradiation, suggests that organic peroxy radicals (RO2) from the reaction of α-pinene with secondarily produced OH are important intermediates in the organic nitrate formation process. Direct oxidation of α-pinene by NO3 was found to be a less efficient pathway for formation of particle phase nitrate. The organic nitrate content decreased very slightly with an increase of relative humidity on the experimental time scale. The experiments show a tight correlation between organic nitrate content and SOA number concentrations, implying that organic nitrates play an important role in nucleation and growth of nanoparticles. Since present in large amounts in organic aerosol, organic nitrates deposited in the lung might have implications for human health as they release nitric acid upon hydrolysis, especially in regions influenced by urban pollution and large sources of monoterpene SOA precursors. References Ammann et al. (2001) Radiochimica Acta 89, 831.
NASA Astrophysics Data System (ADS)
Hausrath, E. M.; Ming, D. W.; Peretyazhko, T. S.; Rampe, E. B.
2018-06-01
On a planet as cold and dry as present-day Mars, evidence of multiple aqueous episodes offers an intriguing view into very different past environments. Fluvial, lacustrine, and eolian depositional environments are being investigated by the Mars Science Laboratory Curiosity in Gale crater, Mars. Geochemical and mineralogical observations of these sedimentary rocks suggest diagenetic processes affected the sediments. Here, we analyze diagenesis of the Stimson formation eolian parent material, which caused loss of olivine and formation of magnetite. Additional, later alteration in fracture zones resulted in preferential dissolution of pyroxene and precipitation of secondary amorphous silica and Ca sulfate. The ability to compare the unaltered parent material with the reacted material allows constraints to be placed on the characteristics of the altering solutions. In this work we use a combination of a mass balance approach calculating the fraction of a mobile element lost or gained, τ, with fundamental geochemical kinetics and thermodynamics in the reactive transport code CrunchFlow to examine the characteristics of multiple stages of aqueous alteration at Gale crater, Mars. Our model results indicate that early diagenesis of the Stimson sedimentary formation is consistent with leaching of an eolian deposit by a near-neutral solution, and that formation of the altered fracture zones is consistent with a very acidic, high sulfate solution containing Ca, P and Si. These results indicate a range of past aqueous conditions occurring at Gale crater, Mars, with important implications for past martian climate and environments.
NASA Astrophysics Data System (ADS)
John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.
2005-12-01
Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and geophysical data, as well as analog fossil hydrothermal systems in volcanoes elsewhere, constrain hydrothermal alteration geometry on the pre-Osceola-collapse edifice of Mount Rainier. Relatively narrow zones of acid magmatic-hydrothermal alteration in the central core of the volcano grade to more widely distributed smectite-pyrite alteration farther out on the upper flanks, capped by steam-heated alteration with a large component of alteration resulting from condensation of fumarolic vapor above the water table. Alteration was polygenetic in zones formed episodically, and was strongly controlled by fluxes of heat and magmatic fluid and by local permeability.
Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kelly, Jesse C.
Electrochemical double layer capacitors (EDLCs), supercapacitors and Li-ion batteries have emerged as premier candidates to meet the rising demands in energy storage; however, such systems are limited by thermal hazards, thermal runaway, fires and explosions, all of which become increasingly more dangerous in large-format devices. To prevent such scenarios, thermally-responsive polymer electrolytes (RPEs) that alter properties in electrochemical energy storage devices were designed and tested. These RPEs will be used to limit or halt device operation when temperatures increase beyond a predetermined threshold, therefore limiting further heating. The development of these responsive systems will offer an inherent safety mechanism in electrochemical energy storage devices, while preserving the performance, lifetimes, and versatility that large-format systems require. Initial work focused on the development of a model system that demonstrated the concept of RPEs in an electrochemical device. Aqueous electrolyte solutions of polymers exhibiting properties that change in response to temperature were developed for applications in EDLCs and supercapacitors. These "smart materials" provide a means to control electrochemical systems where polymer phase separation at high temperatures affects electrolyte properties and inhibits device performance. Aqueous RPEs were synthesized using N-isopropylacrylamide, which governs the thermal properties, and fractions of acrylic acid or vinyl sulfonic acids, which provide ions to the solution. The molecular properties of these aqueous RPEs, specifically the ionic composition, were shown to influence the temperature-dependent electrolyte properties and the extent to which these electrolytes control the energy storage characteristics of a supercapacitor device. Materials with high ionic content provided the highest room temperature conductivity and electrochemical activity; however, RPEs with low ionic content provided the highest "on-off" ratio in electrochemical activity at elevated temperatures. Overall, solution pH and conductivity were altered by an order of magnitude and device performance (ability to store charge) decreased by over 70%. After demonstration of a model responsive electrolyte in an aqueous system, ionic liquid (IL) based electrolytes were developed as a means of controlling the electrochemical performance in the non-aqueous environments that batteries, specifically Li-ion, require. Here, two systems were developed: (1) an electrolyte comprising poly(ethylene oxide) (PEO), the IL, [EMIM][BF4], and a lithium salt and (2) an electrolyte comprising poly(benzyl methacrylate) (PBzMA), the IL, [EMIM][TFSI], and a lithium salt. In each system, the polymer-IL phase separation inhibited device operation at elevated temperatures. For the PEO/IL electrolyte, the thermally induced liquid-liquid phase separation was shown to decrease the ionic conductivity, thereby affecting the concentration of ions at the electrode. Additionally, an increasing charge transfer resistance associated with the phase separated polymer coating the porous electrode was shown to limit electrochemical activity significantly. For the PBzMA/IL electrolyte, the solid-liquid phase separation did not show a change in conductivity, but did cause a drastic increase in charge transfer resistance, effectively shutting off Li-ion battery operation at high temperatures. Such responsive mixtures provide a transformative approach to regulating electrochemical processes, which is necessary to achieve inherently safe operation in large format energy storage with EDLCs, supercapacitors and Li-ion batteries.
Effects of alteration product precipitation on glass dissolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strachan, Denis M.; Neeway, James J.
2014-06-01
Understanding the mechanisms that control the durability of nuclear waste glass is paramount if reliable models are to be constructed so that the glass dissolution rate in a given geological repository can be calculated. Presently, it is agreed that (boro)silicate glasses dissolve in water at a rate dependent on the solution concentration of orthosilicic acid (H 4SiO 4) with higher [H 4SiO 4] leading to lower dissolution rates. Once the reaction has slowed as a result of the buildup of H 4SiO 4, another increase in the rate has been observed that corresponds to the precipitation of certain silica-bearing alterationmore » products. However, it has also been observed that the concentration of silica-bearing solution species does not significantly decrease, indicating saturation, while other glass tracer elements concentrations continue to increase, indicating that the glass is still dissolving. In this study, we have used the Geochemist’s Workbench code to investigate the relationship between glass dissolution rates and the precipitation rate of a representative zeolitic silica-bearing alteration product, analcime [Na(AlSi 2O 6)∙H 2O]. To simplify the calculations, we suppressed all alteration products except analcime, gibbsite (Al(OH) 3), and amorphous silica. The pseudo-equilibrium-constant matrix for amorphous silica was substituted for the glass pseudo-equilibrium-constant matrix because it has been shown that silicate glasses act as a silica-only solid with respect to kinetic considerations. In this article, we present the results of our calculations of the glass dissolution rate at different values for the analcime precipitation rate constant and the effects of varying the glass dissolution rate constant at a constant analcime precipitation rate constant. From the simulations we conclude, firstly, that the rate of glass dissolution is dependent on the kinetics of formation of the zeolitic phase. Therefore, the kinetics of secondary phase formation is an important parameter that should be taken into account in future glass dissolution modeling efforts. Secondly, the results indicate that, in the absence of a gel layer, the glass dissolution rate controls the rate of analcime precipitation in the long term. Finally, the meaning of these results pertinent to long-term glass durability is discussed.« less
NASA Astrophysics Data System (ADS)
Liu, Ziyao; Zhan, Xiaohui; Yang, Minggang; Yang, Qi; Xu, Xianghui; Lan, Fang; Wu, Yao; Gu, Zhongwei
2016-03-01
In recent years, it is becoming increasingly evident that once nanoparticles come into contact with biological fluids, a protein corona surely forms and critically affects the biological behaviors of nanoparticles. Herein, we investigate whether the formation of protein corona on the surface of superparamagnetic iron oxides (SPIOs) is influenced by static magnetic field. Under static magnetic field, there is no obvious variation in the total amount of protein adsorption, but the proportion of adsorbed proteins significantly changes. Noticeably, certain proteins including apolipoproteins, complement system proteins and acute phase proteins, increase in the protein corona of SPIOs in the magnetic field. More importantly, the magnetic-dependent protein corona of SPIOs enhances the cellular uptake of SPIOs into the normal cell line (3T3 cells) and tumor cell line (HepG2 cells), due to increased adsorption of apolipoprotein. In addition, SPIOs with the magnetic-dependent protein corona cause high cytotoxicity to 3T3 cells and HepG2 cells. This work discloses that superparamagnetism as a key feature of SPIOs affects the composition of protein corona to a large extent, which further alters the biological behaviors of SPIOs.In recent years, it is becoming increasingly evident that once nanoparticles come into contact with biological fluids, a protein corona surely forms and critically affects the biological behaviors of nanoparticles. Herein, we investigate whether the formation of protein corona on the surface of superparamagnetic iron oxides (SPIOs) is influenced by static magnetic field. Under static magnetic field, there is no obvious variation in the total amount of protein adsorption, but the proportion of adsorbed proteins significantly changes. Noticeably, certain proteins including apolipoproteins, complement system proteins and acute phase proteins, increase in the protein corona of SPIOs in the magnetic field. More importantly, the magnetic-dependent protein corona of SPIOs enhances the cellular uptake of SPIOs into the normal cell line (3T3 cells) and tumor cell line (HepG2 cells), due to increased adsorption of apolipoprotein. In addition, SPIOs with the magnetic-dependent protein corona cause high cytotoxicity to 3T3 cells and HepG2 cells. This work discloses that superparamagnetism as a key feature of SPIOs affects the composition of protein corona to a large extent, which further alters the biological behaviors of SPIOs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08447d
Hydrothermal alteration of felsic volcanic rocks at the Helen Siderite Deposit, Wawa, Ontario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, R.L.; Nebel, M.L.
1984-09-01
Felsic lavas and pyroclastic rocks, underlying the Archean Helen iron-formation, have been variably altered by hydrothermal solutions which, when discharged onto the sea floor, formed the Helen siderite deposit. Within the footwall volcanic sequence five chemically and mineralogically distinct alteration types have been defined: least altered, sericite, chlorite chloritoid, and ankerite. Based on mineralogy and chemistry of the altered rocks and on the geometry of the alteration zones, an alteration model is proposed.
NASA Astrophysics Data System (ADS)
Zazzo, A.; Smith, G. R.; Patterson, W. P.; Dufour, E.
2006-09-01
We evaluate the use of oxygen isotope values of biogenic apatite for tracking freshwater to marine migration in modern and fossil Pacific sockeye salmon. Oxygen isotope analyses of otoliths, vertebrae, and teeth of three anadromous modern sockeye salmon from Alaska establish a basis for the interpretation of fossil vertebrae and tooth apatite from Pleistocene sockeye salmon of the Skokomish River Valley, Washington. High resolution δ18O profiles in salmon otoliths provide, at a monthly resolution, a detailed record of individual history including continental rearing, migration to sea, seasonal variation in sea surface temperatures during marine life, and spawning migration before capture. Pacific salmon teeth are constantly renewed with the last set of teeth forming under the influence of freshwater. Therefore, they do not allow inference concerning sea-run versus landlocked life history in fossil salmon. Salmon vertebrae are also ambiguous indicators of life history regarding fresh versus marine water because centra are minimally ossified in the freshwater stages of life and the outermost layer of vertebral bone might be resorbed to provide nutrients during the non-feeding phase of the spawning migration. Therefore, δ18O values of accretionary growth rings in sea-run salmon vertebrae are dominated by the marine signal only if they are not diagenetically altered in freshwater deposits. In Pleistocene sockeye reported here, neither the teeth nor vertebral apatite present clear marine δ18O values due to the combined effects of tooth replacement and diagenetic alteration of bone and dentine. δ18O(PO 4) values of fossil vertebrae are intermediate between δ18O(PO 4) values of enamel and basal tooth dentin. Assuming a similar rate of isotope exchange of vertebrae and dentine with freshwater during diagenesis, these results are interpreted to reflect formation of the teeth under the influence of freshwater, and formation of the vertebrae under the influence of oceanic water. Our approach demonstrates that when appropriate knowledge of tissue formation is available, isotopic differences between altered and unaltered tissue holds promise of distinguishing between marine and freshwater origin of the tissues.
Columnar jointing in vapor-phase-altered, non-welded Cerro Galán Ignimbrite, Paycuqui, Argentina
Wright, Heather M.; Lesti, Chiara; Cas, Ray A.F.; Porreca, Massimiliano; Viramonte, Jose G.; Folkes, Christopher B.; Giordano, Guido
2011-01-01
Columnar jointing is thought to occur primarily in lavas and welded pyroclastic flow deposits. However, the non-welded Cerro Galán Ignimbrite at Paycuqui, Argentina, contains well-developed columnar joints that are instead due to high-temperature vapor-phase alteration of the deposit, where devitrification and vapor-phase crystallization have increased the density and cohesion of the upper half of the section. Thermal remanent magnetization analyses of entrained lithic clasts indicate high emplacement temperatures, above 630°C, but the lack of welding textures indicates temperatures below the glass transition temperature. In order to remain below the glass transition at 630°C, the minimum cooling rate prior to deposition was 3.0 × 10−3–8.5 × 10−2°C/min (depending on the experimental data used for comparison). Alternatively, if the deposit was emplaced above the glass transition temperature, conductive cooling alone was insufficient to prevent welding. Crack patterns (average, 4.5 sides to each polygon) and column diameters (average, 75 cm) are consistent with relatively rapid cooling, where advective heat loss due to vapor fluxing increases cooling over simple conductive heat transfer. The presence of regularly spaced, complex radiating joint patterns is consistent with fumarolic gas rise, where volatiles originated in the valley-confined drainage system below. Joint spacing is a proxy for cooling rates and is controlled by depositional thickness/valley width. We suggest that the formation of joints in high-temperature, non-welded deposits is aided by the presence of underlying external water, where vapor transfer causes crystallization in pore spaces, densifies the deposit, and helps prevent welding.
NASA Astrophysics Data System (ADS)
Reichow, M. K.; Brewer, T. S.; Marvin, L. G.; Lee, S. V.
2008-12-01
Little information presently exists on the heterogeneity of hydrothermal alteration in the oceanic crust or the variability of the associated thermal, fluid, and chemical fluxes. Formation porosities are important controls on these fluxes and porosity measurements are routinely collected during wireline logging operations. These estimates on the formation porosity are measures of the moderating power of the formation in response to bombardment by neutrons. The neutron absorption macroscopic cross-section (Σ = σρ) is a representation of the ability of the rock to slow down neutrons, and as such can be used to invert the porosity of a sample. Boron, lithium and other trace elements are important controls on σ-values, and the distribution of these is influenced by secondary low-temperature alteration processes. Consequently, computed σ-values may be used to discriminate between various basalt types and to identify areas of secondary alteration. Critical in this analysis is the degree of alteration, since elements such as B and Li can dramatically affect the sigma value and leading to erroneous porosity values. We analysed over 150 'pool-samples' for S, Li, Be and B element concentrations to estimate their contribution to the measured neutron porosity. These chemical analyses allow the calculation of the model sigma values for individual samples. Using a range of variably altered samples recovered during IODP Expeditions 309 and 312 we provide bulk estimates of alteration within the drilled section using the measured neutron porosity. B concentration in Hole 1256D increases with depth, with sharp rises at 959 and 1139 mbsf. Elevated wireline neutron porosities cannot always be directly linked with high B content. However, our preliminary results imply that increased neutron porosity (~15) at depths below 1100 mbsf may reflect hydrothermal alteration rather than formation porosity. This interpretation is supported when compared with generally lower computed porosity estimates derived from resistivity measurements for the same intervals.
Zhou, Yi; Yu, Feilong; Deng, Hua; Huang, Yajiang; Li, Guangxian; Fu, Qiang
2017-06-29
The morphology evolution under shear during different processing is indeed an important issue regarding the phase morphology control as well as final physical properties of immiscible polymer blends. High-speed thin wall injection molding (HSTWIM) has recently been demonstrated as an effective method to prepare alternating multilayered structure. To understand the formation mechanism better and explore possible phase morphology for different blends under HSTWIM, the relationship between the morphology evolution of polymer blends based on polypropylene (PP) under HSTWIM and some intrinsic properties of polymer blends, including viscosity ratio, interfacial tension, and melt elasticity, is systematically investigated in this study. Blends based on PP containing polyethylene (PE), ethylene vinyl alcohol copolymer (EVOH), and polylactic acid (PLA) are used as examples. Compatibilizer has also been added into respective blends to alter their interfacial interaction. It is demonstrated that dispersed phase can be deformed into a layered-like structure if interfacial tension, viscosity ratio, and melt elasticity are relatively small. While some of these values are relatively large, these dispersed droplets are not easily deformed under HSTWIM, forming ellipsoidal or fiber-like structure. The addition of a moderate amount of compatibilizer into these blends is shown to be able to reduce interfacial tension and the size of dispersed phase, thus, allowing more deformation on the dispersed phase. Such a study could provide some guidelines on phase morphology control of immiscible polymer blends under shear during various processing methods.
NASA Technical Reports Server (NTRS)
Maestrello, Lucio
2002-01-01
Acoustic and turbulent boundary layer flow loadings over a flexible structure are used to study the spatial-temporal dynamics of the response of the structure. The stability of the spatial synchronization and desynchronization by an active external force is investigated with an array of coupled transducers on the structure. In the synchronous state, the structural phase is locked, which leads to the formation of spatial patterns while the amplitude peaks exhibit chaotic behaviors. Large amplitude, spatially symmetric loading is superimposed on broadband, but in the desynchronized state, the spectrum broadens and the phase space is lost. The resulting pattern bears a striking resemblance to phase turbulence. The transition is achieved by using a low power external actuator to trigger broadband behaviors from the knowledge of the external acoustic load inducing synchronization. The changes are made favorably and efficiently to alter the frequency distribution of power, not the total power level. Before synchronization effects are seen, the panel response to the turbulent boundary layer loading is discontinuously spatio-temporally correlated. The stability develops from different competing wavelengths; the spatial scale is significantly shorter than when forced with the superimposed external sound. When the external sound level decreases and the synchronized phases are lost, changes in the character of the spectra can be linked to the occurrence of spatial phase transition. These changes can develop broadband response. Synchronized responses of fuselage structure panels have been observed in subsonic and supersonic aircraft; results from two flights tests are discussed.
Leaching behaviour of and Cs disposition in a UMo powellite glass-ceramic
NASA Astrophysics Data System (ADS)
Vance, E. R.; Davis, J.; Olufson, K.; Gregg, D. J.; Blackford, M. G.; Griffiths, G. R.; Farnan, I.; Sullivan, J.; Sprouster, D.; Campbell, C.; Hughes, J.
2014-05-01
A UMo powellite glass-ceramic designed by French workers to immobilise Mo-rich intermediate-level waste was found to be quite leach resistant in water at 90 °C with the dissolution of Cs, Mo, Na, B and Ca not exceeding 2 g/L in normalised PCT tests. 133Cs solid state nuclear magnetic resonance and scanning electron microscopy (SEM) showed the Cs to inhabit the glass phase. The microstructures were not greatly affected by cooling rates between 1 and 5 °C/min or by introducing 10 times as much Cs and Sr. Protracted leach tests at 90 °C showed surface alteration as evidenced by SEM and particularly transmission electron microscopy; the main alteration phase was a Zn aluminosilicate but several other alteration phases were evident. Voidage in the alteration layers was indicated from enhanced lifetimes in positron annihilation lifetime spectroscopy.
NASA Astrophysics Data System (ADS)
Lattanzi, Pierfranco; Da Pelo, Stefania; Musu, Elodia; Atzei, Davide; Elsener, Bernhard; Fantauzzi, Marzia; Rossi, Antonella
2008-01-01
Enargite, Cu 3AsS 4, is common in some deposit types, e.g. porphyry systems and high sulphidation epithermal deposits. It is of environmental concern as a potential source of arsenic. In this communication, we review the current knowledge of enargite oxidation, based on the existing literature and our own original data. Explicit descriptions of enargite oxidation in natural environments are scarce. The most common oxidized alteration mineral of enargite is probably scorodite, FeAsO 4.2H 2O, with iron provided most likely by pyrite, a phase almost ubiquitously associated with enargite. Other secondary minerals after enargite include arsenates such as chenevixite, Cu 2Fe 2(AsO 4) 2(OH) 4.H 2O, and ceruleite, Cu 2Al 7(AsO 4) 4.11.5H 2O, and sulphates such as brochantite, Cu 4(SO 4)(OH) 6, and posnjakite, Cu 4(SO 4)(OH) 6·H 2O. Detailed studies of enargite field alteration at Furtei, Sardinia, suggest that most alteration occurs through dissolution, as testified by the appearance of etch pits at the surface of enargite crystals. However, apparent replacement by scorodite and cuprian melanterite was observed. Bulk oxidation of enargite in air is a very slow process. However, X-ray photoelectron spectroscopy (XPS) reveals subtle surface changes. From synchrotron-based XPS it was suggested that surface As atoms react very fast, presumably by forming bonds with oxygen. Conventional XPS shows the formation, on aged samples, of a nanometer-size alteration layer with an appreciably distinct composition with respect to the bulk. Mechanical activation considerably increases enargite reactivity. In laboratory experiments at acidic to neutral pH, enargite oxidation/dissolution is slow, although it is accelerated by the presence of ferric iron and/or bacteria such as Acidithiobacillus ferrooxidans and Sulfolobus BC. In the presence of sulphuric acid and ferric iron, the reaction involves dissolution of Cu and formation of native sulphur, subsequently partly oxidized to sulphate. At alkaline pH, the reactivity of enargite is apparently slightly greater. XPS spectra of surfaces conditioned at pH 11 have been interpreted as evidence of formation of a number of surface species, including cupric oxide and arsenic oxide. Treatment with hypochlorite solutions at pH 12.5 quickly produces a coating of cupric oxide. Electrochemical oxidation of enargite typically involves low current densities, confirming that the oxidation process is slow. Important surface changes occur only at high applied potentials, e.g. + 0.74 V vs. SHE. It is confirmed that, at acidic pH, the dominant process is Cu dissolution, accompanied (at + 0.56 V vs. SHE, pH = 1) by formation of native sulphur. At alkaline pH, a number of surface products have been suggested, including copper and arsenic oxides, and copper arsenates. XPS studies of the reacted surfaces demonstrate the evolution of Cu from the monovalent to the divalent state, the formation of As-O bonds, and the oxidation of sulphur to polysulphide, sulphite and eventually sulphate. In most natural and quasi-natural (mining) situations, it is expected that enargite reactivity will be slow. Moreover, it is likely that the release of arsenic will be further slowed down by at least temporary trapping in secondary phases. Therefore, an adequate management of exposed surfaces and wastes should minimize the environmental impact of enargite-bearing deposits. In spite of an increasing body of data, there are several gaps in our knowledge of enargite oxidation. The exact nature of most mechanisms and products remains poorly constrained, and there is a lack of quantitative data on the dependence on parameters such as pH and dissolved oxygen.
Rodriguez-Gacio Md, María del Carmen; Matilla, Angel Jesús
2001-06-01
The involvement of ethylene in zygotic embryogenesis is a little known aspect of the growth and development in higher plants. In the present work, we study the alterations of the last step of the ethylene biosynthesis pathway during the formation period of turnip tops (Brassica rapa cv. Rapa) seeds and its repercussions in the germination process and post-germinative growth. For this, we chose 11 different phases of silique development, the first being the recently fertilized pistil and the last being the silique just prior to its dehiscence (ca. 2 months post-anthesis). In the 11 phases, ethylene production was detected in both whole silique (with or without seeds) and in the seeds enclosed by the silique wall. The levels of ACC, ACO and ethylene production proved high in seeds belonging to: (1) the pod in the very early phases, when the seeds were growing but without photosynthetic competence; (2) the silique at maximum growth, in which the seeds will initiate desiccation and loss of photosynthetic activity. During the phases prior to dehiscence, there was a marked inhibition in the last step of the ethylene biosynthesis pathway. In viable dry seeds, no ACO activity was detected and the ACC levels were 4-fold lower than at the onset of the silique senescence. Germination brings about a net synthesis of ACC with respect of the stores dry seed. This fact, together with other results presented in this work, point towards, as in other seeds, a dependence of ethylene synthesis for radicle emergence. The possible role played by the silique wall in the control of ethylene biosynthesis during zygotic embryogenesis, as well as the participation of ethylene as a hormonal signal in the triggering of seed desiccation in Brassica rapa cv. Rapa, are discussed in depth.
A fossil venting system in the Feragen Ultramafic Body, Norway?
NASA Astrophysics Data System (ADS)
Dunkel, Kristina G.; Jamtveit, Bjørn; Austrheim, Håkon
2017-04-01
Carbonation of ultramafic rocks in ophiolites and on the seafloor has recently been the focus of extensive research, as this alteration reaction not only influences the carbon flux between hydro- and lithosphere, but also provides natural analogues for industrial CO2 sequestration. It is a significant part of the hydrothermal circulation in the oceanic crust, as demonstrated by carbonate precipitation at hydrothermal vents. We provide microstructural and geochemical data from a previously little known ophicarbonate occurrence in the Feragen Ultramafic Body, Sør-Trøndelag, Norway. Along the northern edge of the Feragen Ultramafic Body, strongly serpentinised peridotites are carbonated. In places, the carbonation took place pervasively, leading to the formation of soapstones consisting mainly of talc and magnesite. More common is the carbonation of serpentinite breccias. Within the clasts, some of the serpentine mesh centres are replaced by magnesite, and, subordinately, dolomite or calcium carbonate. Four types of matrix have been identified in different localities: fine-grained magnesite, coarse-grained calcium carbonate, brucite occurring in large fans (up to 1 mm in diameter), and dolomite. Inclusion trails in the coarse-grained calcium carbonates record botryoidal growth, indicating crystallisation from a fluid in open space, and a hexagonal precursor phase, suggesting that aragonite was replaced by calcite. Brucite-cemented serpentinite breccias occur very locally in two outcrops with a size less than 10 m2. Many of the brucite fans have a similar arrangement of inclusions, with an area rich in dolomite inclusions in the centre of the brucite crystals, and magnetite inclusions concentrated in the tips. Dolomite as a matrix phase often grows inwards from hexagonal, rectangular, rhomboidal, or irregular pores. Many dolomite grains are probably cast pseudomorphs after (calcitised) aragonite. Some carbonate crystals are crosscut or replaced by serpentine. The carbonated serpentinites are discordantly overlain by carbonate-cemented ultramafic conglomerates. The clasts comprise variably serpentinised and carbonated peridotites as well as some fine-grained magnesite. The matrix phase is dominantly dolomite. Oxygen isotopes ratios record significantly lower temperatures for the cementation of the conglomerates than for the underlying in situ carbonated serpentinites and the carbonated ultramafic clasts in the conglomerate. The ophicarbonates in the Feragen Ultramafic Body record strong variations in fluid chemistry and/or pressure and temperature conditions, both spatially and temporally. The occurrence of different carbonate minerals in close proximity indicates heterogeneous alteration conditions and focussed fluid flow. Inclusions and replacement reactions record fluctuating alteration conditions. While the formation of magnesite is consistent with a fluid influenced by the dissolution of serpentinite, the growth of calcium carbonate and particularly of brucite may indicate a special fluid formed by the mixing of serpentinising fluids and seawater, as observed at hydrothermal venting systems.
Prediction of Phase Formation in Nanoscale Sn-Ag-Cu Solder Alloy
NASA Astrophysics Data System (ADS)
Wu, Min; Lv, Bailin
2016-01-01
In a dynamic nonequilibrium process, the effective heat of formation allows the heat of formation to be calculated as a function of concentrations of the reacting atoms. In this work, we used the effective heat of formation rule to predict the formation and size of compound phases in a nanoscale Sn-Ag-Cu lead-free solder. We calculated the formation enthalpy and effective formation enthalpy of compounds in the Sn-Ag, Sn-Cu, and Ag-Cu systems by using the Miedema model and effective heat of formation. Our results show that, considering the surface effect of the nanoparticle, the effective heat of formation rule successfully predicts the phase formation and sizes of Ag3Sn and Cu6Sn5 compounds, which agrees well with experimental data.
NASA Astrophysics Data System (ADS)
Magnin, M.; Jégou, C.; Caraballo, R.; Broudic, V.; Tribet, M.; Peuget, S.; Talip, Z.
2015-07-01
The (U,Pu)O2 matrix behavior of an irradiated MIMAS-type (MIcronized MASter blend) MOX fuel, under radiolytic oxidation in aerated pure water at pH 5-5.5 was studied by combining chemical and radiochemical analyses of the alteration solution with Raman spectroscopy characterizations of the surface state. Two leaching experiments were performed on segments of irradiated fuel under different conditions: with or without an external γ irradiation field, over long periods (222 and 604 days, respectively). The gamma irradiation field was intended to be representative of the irradiation conditions for a fuel assembly in an underwater interim storage situation. The data acquired enabled an alteration mechanism to be established, characterized by uranium (UO22+) release mainly controlled by solubility of studtite over the long-term. The massive precipitation of this phase was observed for the two experiments based on high uranium oversaturation indexes of the solution and the kinetics involved depended on the irradiation conditions. External gamma irradiation accelerated the precipitation kinetics and the uranium concentrations (2.9 × 10-7 mol/l) were lower than for the non-irradiated reference experiment (1.4 × 10-5 mol/l), as the quantity of hydrogen peroxide was higher. Under slightly acidic pH conditions, the formation of an oxidized UO2+x phase was not observed on the surface and did not occur in the radiolysis dissolution mechanism of the fuel matrix. The Raman spectroscopy performed on the heterogeneous MOX fuel matrix surface, showed that the fluorite structure of the mainly UO2 phase surrounding the Pu-enriched aggregates had not been particularly impacted by any major structural change compared to the data obtained prior to leaching. For the plutonium, its behavior in solution involved a continuous release up to concentrations of approximately 3 × 10-6 mol L-1 with negligible colloid formation. This data appears to support a predominance of the +V oxidation state for plutonium in solution under highly oxidizing conditions. Furthermore, the Raman spectroscopy monitoring of the sample surface oxidation states did not point to any significant effect from the high Pu content of the aggregates (10-15%) and therefore did not indicate a better aggregate stability under radiolysis compared to the mainly UO2 matrix. This is because acidic pH conditions do not favor the development of oxidized layers on a fuel surface, with the exception of secondary phases.
Getahun, A.; Reed, M.H.; Symonds, R.
1996-01-01
Intensely altered wall rock was collected from high-temperature (640??C) and low-temperature (375??C) vents at Augustine volcano in July 1989. The high-temperature altered rock exhibits distinct mineral zoning differentiated by color bands. In order of decreasing temperature, the color bands and their mineral assemblages are: (a) white to grey (tridymite-anhydrite); (b) pink to red (tridymite-hematite-Fe hydroxide-molysite (FeCl3) with minor amounts of anhydrite and halite); and (c) dark green to green (anhydrite-halite-sylvite-tridymite with minor amounts of molysite, soda and potash alum, and other sodium and potassium sulfates). The alteration products around the low-temperature vents are dominantly cristobalite and amorphous silica with minor potash and soda alum, aphthitalite, alunogen and anhydrite. Compared to fresh 1986 Augustine lava, the altered rocks exhibit enrichments in silica, base metals, halogens and sulfur and show very strong depletions in Al in all alteration zones and in iron, alkali and alkaline earth elements in some of the alteration zones. To help understand the origins of the mineral assemblages in altered Augustine rocks, we applied the thermochemical modeling program, GASWORKS, in calculations of: (a) reaction of the 1987 and 1989 gases with wall rock at 640 and 375??C; (b) cooling of the 1987 gas from 870 to 100??C with and without mineral fractionation; (c) cooling of the 1989 gas from 757 to 100??C with and without mineral fractionation; and (d) mixing of the 1987 and 1989 gases with air. The 640??C gas-rock reaction produces an assemblage consisting of silicates (tridymite, albite, diopside, sanidine and andalusite), oxides (magnetite and hercynite) and sulfides (bornite, chalcocite, molybdenite and sphalerite). The 375??C gas-rock reaction produces dominantly silicates (quartz, albite, andalusite, microcline, cordierite, anorthite and tremolite) and subordinate amounts of sulfides (pyrite, chalcocite and wurtzite), oxides (magnetite), sulfates (anhydrite) and halides (halite). The cooling calculations produce: (a) anhydrite, halite, sylvite; (b) Cu, Mo, Fe and Zn sulfides; (c) Mg fluoride at high temperature (> 370??C); (d) chlorides, fluorides and sulfates of Mn, Fe, Zn, Cu and Al at intermediate temperature (170-370??C); and (e) hydrated sulfates, liquid sulfur, crystalline sulfur, hydrated sulfuric acid and water at low temperature ( 0.41 (> 628??C). This is followed by precipitation of sulfates of Fe, Cu, Pb, Zn and Al at lg/a ratios between 0.41 and -0.4 (628-178??C). At a lg/r ratio of < - 0.4 (178??C), anhydrous sulfates are replaced by their hydrated forms and hygroscopic sulfuric acid forms. At these low g/a ratios, hydrated sulfuric acid becomes the dominant phase in the system. Comparison of the thermochemical modeling results with the natural samples suggests that the alteration assemblages include: (1) minerals that precipitate from direct cooling of the volcanic gas; (2) phases that form by volcanic gases mixing with air; and (3) phases that form by volcanic gas-air-rock reaction. A complex interplay of the three processes produces the observed mineral zoning. Another implication of the numerical simulation results is that most of the observed incrustation and sublimate minerals apparently formed below 700??C.
Lateral diffusion study of the Pt-Al system using the NAC nuclear microprobe.
NASA Astrophysics Data System (ADS)
de Waal, H.; Pretorius, R.
1999-10-01
In this study a nuclear microprobe (NMP) was used to analyse phase formation during reaction in Pt-Al lateral diffusion couples. Phase identification was done by Rutherford backscattering spectroscopy. These results were compared with phase formation during conventional thin film Pt-Al interactions. The co-existence of multiple phases in lateral diffusion couples is discussed with reference to the effective heat of formation (EHF) model.
Collapse of tall granular columns in fluid
NASA Astrophysics Data System (ADS)
Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves
2017-06-01
Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.
Malmborg, V B; Eriksson, A C; Shen, M; Nilsson, P; Gallo, Y; Waldheim, B; Martinsson, J; Andersson, Ö; Pagels, J
2017-02-07
To design diesel engines with low environmental impact, it is important to link health and climate-relevant soot (black carbon) emission characteristics to specific combustion conditions. The in-cylinder evolution of soot properties over the combustion cycle and as a function of exhaust gas recirculation (EGR) was investigated in a modern heavy-duty diesel engine. A novel combination of a fast gas-sampling valve and a soot particle aerosol mass spectrometer (SP-AMS) enabled online measurements of the in-cylinder soot chemistry. The results show that EGR reduced the soot formation rate. However, the late cycle soot oxidation rate (soot removal) was reduced even more, and the net effect was increased soot emissions. EGR resulted in an accumulation of polycyclic aromatic hydrocarbons (PAHs) during combustion, and led to increased PAH emissions. We show that mass spectral and optical signatures of the in-cylinder soot and associated low volatility organics change dramatically from the soot formation dominated phase to the soot oxidation dominated phase. These signatures include a class of fullerene carbon clusters that we hypothesize represent less graphitized, C 5 -containing fullerenic (high tortuosity or curved) soot nanostructures arising from decreased combustion temperatures and increased premixing of air and fuel with EGR. Altered soot properties are of key importance when designing emission control strategies such as diesel particulate filters and when introducing novel biofuels.
Iodine-Xenon Dating: Sensitive Chronometer for Reprocessing in the Primitive Solar System
NASA Technical Reports Server (NTRS)
Pravdivtseva, O. V.; Hohenberg, C. M.
1999-01-01
The I-Xe chronometer is based upon decay of I-129 to Xe-129 in the early Solar System. Recent comparison of I-Xe system in individual mineral separates from twelve different meteorites with independent Pb-Pb data has demonstrated that I-Xe clock is a reliable sensitive chronometer when applied to a single mineral system. Since most iodine hosts are secondary minerals, the I-Xe clock generally records post-formational processing, providing the information on early meteorite evolution. Absolute I-Xe ages can be found by normalization using the measured I-Xe and Pb-Pb ages of Acapulco phosphate (4.557 plus or minus 0.002 Ga). Absolute ages for the I-Xe internal standards Shallow water and Bjurbole, 4.566 plus or minus 0.002 Ga and 4.565 plus or minus 0.003 Ga, respectively, provide absolute I-Xe ages for all other samples. The I-Xe age of bulk meteorite is meaningful and interpretable only when the carrier of primordial iodine is a major mineral phase (e. g., enstatite chondrites). Using the "monomineral" approach, separated phases from the Richardton H5 chondrite provide a case history of post-formational alteration in this object. This work applies the I-Xe chronometer to determine the times of reprocessing of selected minerals in single meteorite types. A preliminary account of this work was recently reported. Additional information is contained in the original extended abstract.
Freethey, Geoffrey W.
1988-01-01
Permits for disposing of salty oil-production water have been issued for 19 wells in the Greater Altamont-Bluebell field. During 1986 more than 500 million gallons of production water were injected into the Duchesne River, Uinta, and Green River Formations through 18 of these wells. The physical and chemical effects of injecting this water into aquifers containing potable water are poorly understood. Interfingering and the structural configuration of these formations add complexity to the description of the geometry and hydrogeology of the ground-water system.A preliminary assessment of the problem indicates that numerical modeling may offer a method of determining the effects of injection. Modeling possibilities include variable-density, three-dimensional flow, sectionaltransport, and areal-transport models. Data needed to develop these models can be derived from a synthesis of geologic, hydrologic, and hydrochemical data already available in the files of State and Federal agencies, oil companies, and private companies. Results from each modeling phase would contribute information for implementing the following phase. The result will be a better understanding of how water moves naturally through the groundwater system, the extent of alterations of both vertical and horizontal flow near the disposal wells, and an overall concept of the effects of deep injection on near-surface aquifers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adil, Muhammad, E-mail: muhammadadil86@hotmail.com; Zaid, Hasnah Mohd, E-mail: hasnamz@petronas.com.my; Chuan, Lee Kean, E-mail: lee.kc@petronas.com.my
2015-07-22
Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify themore » formation of nanoparticles by revealing the presence of required elements.« less
NASA Technical Reports Server (NTRS)
Morris, R. V.; Ming, D. W.; Graff, T. G.; Arvidson, R. E.; Bell, J. F., III; Squyres, S. W.; Mertzman, S. A.; Gruener, J. E.; Golden, D. C.; Robinson, G. A.
2005-01-01
Iron-rich spherules (>90% Fe2O3 from electron microprobe analyses) approx.10-100 microns in diameter are found within sulfate-rich rocks formed by aqueous, acid-sulfate alteration of basaltic tephra on Mauna Kea volcano, Hawaii. Although some spherules are nearly pure Fe, most have two concentric compositional zones, with the core having a higher Fe/Al ratio than the rim. Oxide totals less than 100% (93-99%) suggest structural H2O and/or /OH. The transmission Moessbauer spectrum of a spherule-rich separate is dominated by a hematite (alpha-Fe2O3) sextet whose peaks are skewed toward zero velocity. Skewing is consistent with Al(3+) for Fe(3+) substitution and structural H2O and/or /OH. The grey color of the spherules implies specular hematite. Whole-rock powder X-ray diffraction spectra are dominated by peaks from smectite and the hydroxy sulfate mineral natroalunite as alteration products and plagioclase feldspar that was present in the precursor basaltic tephra. Whether spherule formation proceeded directly from basaltic material in one event (dissolution of basaltic material and precipitation of hematite spherules) or whether spherule formation required more than one event (formation of Fe-bearing sulfate rock and subsequent hydrolysis to hematite) is not currently constrained. By analogy, a formation pathway for the hematite spherules in sulfate-rich outcrops at Meridiani Planum on Mars (the Burns formation) is aqueous alteration of basaltic precursor material under acid-sulfate conditions. Although hydrothermal conditions are present on Mauna Kea, such conditions may not be required for spherule formation on Mars if the time interval for hydrolysis at lower temperatures is sufficiently long.
Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza
2014-01-01
To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.
Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza
2014-01-01
To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase. PMID:24978694
Microstructure of Mixed Surfactant Solutions by Electron Microscopy
NASA Astrophysics Data System (ADS)
Naranjo, Edward
1995-01-01
Surfactant mixtures add a new dimension to the design of complex fluid microstructure. By combining different surfactants it is not only possible to modify aggregate morphology and control the macrascopic properties of colloidal dispersions but also to produce a variety of novel synergistic phases. Mixed systems produce new microstructures by altering the intermolecular and interaggregate forces in ways impossible for single component systems. In this dissertation, we report on the phase behavior and microstructure of several synthetic and biological surfactant mixtures as elucidated by freeze-fracture and cryo-transmission electron microscopy. We have discovered that stable, spontaneous unilamellar vesicles can be prepared from aqueous mixtures of commercially available single-tailed cationic and anionic surfactants. Vesicle stability is determined by the length and volume of the hydrocarbon chains of the "catanionic" pairs. Mixtures containing bulky or branched surfactant pairs (C _{16}/C_{12 -14}) in water produce defect-free fairly monodisperse equilibrium vesicles at high dilution. In contrast, mixtures of catanionic surfactants with highly asymmetric tails (C_{16}/C_8 ) form phases of porous vesicles, dilute lamellar L_{alpha}, and anomalous isotropic L_3 phases. Images of the microstructure by freeze-fracture microscopy show that the L_3 phase consists of multiconnected self-avoiding bilayers with saddle shaped curvature. The forces between bilayers of vesicle-forming cationic and anionic surfactant mixtures were also measured using the Surface Force Apparatus (SFA). We find that the vesicles are stabilized by a long range electrostatic repulsion at large separations (>20 A) and an additional salt-independent repulsive force below 20 A. The measured forces correlate very well with the ternary phase diagram and the vesicle microstructures observed by electron microscopy. In addition to studying ionic surfactants, we have also done original work with biological surfactants. We have found that subtle changes by surfactant additives to phosphatidylcholines (PC) produce dramatic changes in the microstructure of the composite that are impossible to determine from simple scattering experiments. Novel microstructures were observed at mole ratios from 4/1 to 9/1 long chain (Di-C_{16}PC)/short chain lipid (Di-C_7PC), including disc-like micelles and rippled bilayers at room temperature. We have also observed for the first time the formation of single layered ripple phase bilayer fragments. The formation of such fragments eliminates a number of theories of formation of this unique structure that depend on coupling between bilayers. In a similar system, dimyristoyl phosphatidylcholine (DMPC) mixed with the branched alcohol geraniol produces a bluish and extremely viscoelastic phase of giant multilamellar wormy vesicles. This phase shows the Weissenberg effect under flow due to the distortion of the entangled vesicles and may be related to fluid lamellar phases and L _3 phases often seen in surfactant-alcohol -water systems. Lysophosphatidylcholine, the single-chain counterpart of the diacyl phospholipids, can also form bilayer phases when combined with long-chain fatty acids in water. The phase transition characteristics and appearance of the bilayers in equimolar mixtures of lysolipid and fatty acid are similar to those of the diacyl-PC. Electron microscopy reveals large extended multilayers in mixtures with excess lysolipid and multilamellar vesicles in mixtures with excess fatty acid.
Altered sensitivity of the mouse fetus to impaired prostatic bud formation by dioxin: Influence of genetic background and null expression of TGF and EGF.
Rasmussen, N.T., Lin T-M., Fenton, S.E., Abbott, B.D. and R.E. Peterson.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)...
Martin, Elodie; Blais, Mélody; Albaret, Jean-Michel; Pariente, Jérémie; Tallet, Jessica
2017-10-01
Little attention is paid to motor control in Alzheimer's disease (AD) although it is a relevant sign of central nervous system integrity and functioning. In particular, unimanual and bimanual tapping is a relevant paradigm because it requires intra- and inter-hemispheric transfer (IHT). Previous results indicate that both unimanual and anti-phase tapping requires more IHT than in-phase tapping, especially produced without external stimulation. The aim of the present study was to test the production of unimanual, bimanual in-phase and anti-phase tapping with a synchronization-continuation paradigm with and without visual stimulation in AD patients (N=9) and control participants (N=12). In accordance with our hypothesis, these results suggest that unimanual and anti-phase tapping is more altered in AD than in control participants. Moreover, performance is globally more variable in the AD group. These alterations are discussed in terms of possible IHT modulation, in line with functional and structural findings in AD, revealing changes in the connectivity of brain regions across hemispheres and white matter damage. Copyright © 2017 Elsevier B.V. All rights reserved.
Gingival wound healing: an essential response disturbed by aging?
Smith, P C; Cáceres, M; Martínez, C; Oyarzún, A; Martínez, J
2015-03-01
Gingival wound healing comprises a series of sequential responses that allow the closure of breaches in the masticatory mucosa. This process is of critical importance to prevent the invasion of microbes or other agents into tissues, avoiding the establishment of a chronic infection. Wound healing may also play an important role during cell and tissue reaction to long-term injury, as it may occur during inflammatory responses and cancer. Recent experimental data have shown that gingival wound healing is severely affected by the aging process. These defects may alter distinct phases of the wound-healing process, including epithelial migration, granulation tissue formation, and tissue remodeling. The cellular and molecular defects that may explain these deficiencies include several biological responses such as an increased inflammatory response, altered integrin signaling, reduced growth factor activity, decreased cell proliferation, diminished angiogenesis, reduced collagen synthesis, augmented collagen remodeling, and deterioration of the proliferative and differentiation potential of stem cells. In this review, we explore the cellular and molecular basis of these defects and their possible clinical implications. © International & American Associations for Dental Research 2014.
Phase selection during crystallization of undercooled liquid eutectic lead-tin alloys
NASA Technical Reports Server (NTRS)
Fecht, H. J.
1991-01-01
During rapid solidification substantial amounts of undercooling are in general required for formation of metastable phases. Crystallization at varying levels of undercooling and melting of metastable phases were studied during slow cooling and heating of emulsified PB-Sn alloys. Besides the experimental demonstration of the reversibility of metastable phase equilibra, two different principal solidification paths have been identified and compared with the established metastable phase diagram and predictions from classical nucleation theory. The results suggest that the most probable solidification path is described by the 'step rule' resulting in the formation of metastable phases at low undercooling, whereas the stable eutectic phase mixture crystallizes without metastable phase formation at high undercooling.
DNA methylation regulates neurophysiological spatial representation in memory formation
Roth, Eric D.; Roth, Tania L.; Money, Kelli M.; SenGupta, Sonda; Eason, Dawn E.; Sweatt, J. David
2015-01-01
Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment) known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation. PMID:25960947
Provisioning of bioavailable carbon between the wet and dry phases in a semi-arid floodplain.
Baldwin, Darren S; Rees, Gavin N; Wilson, Jessica S; Colloff, Matthew J; Whitworth, Kerry L; Pitman, Tara L; Wallace, Todd A
2013-06-01
Ecosystem functioning on arid and semi-arid floodplains may be described by two alternate traditional paradigms. The pulse-reserve model suggests that rainfall is the main driver of plant growth and subsequent carbon and energy reserve formation in the soil of arid and semi-arid regions. The flood pulse concept suggests that periodic flooding facilitates the two-way transfer of materials between a river and its adjacent floodplain, but focuses mainly on the period when the floodplain is inundated. We compared the effects of both rainfall and flooding on soil moisture and carbon in a semi-arid floodplain to determine the relative importance of each for soil moisture recharge and the generation of a bioavailable organic carbon reserve that can potentially be utilised during the dry phase. Flooding, not rainfall, made a substantial contribution to moisture in the soil profile. Furthermore, the growth of aquatic macrophytes during the wet phase produced at least an order of magnitude more organic material than rainfall-induced pulse-reserve responses during the dry phase, and remained as recognizable soil carbon for years following flood recession. These observations have led us to extend existing paradigms to encompass the reciprocal provisioning of carbon between the wet and dry phases on the floodplain, whereby, in addition to carbon fixed during the dry phase being important for driving biogeochemical transformations upon return of the next wet phase, aquatic macrophyte carbon fixed during the wet phase is recognized as an important source of energy for the dry phase. Reciprocal provisioning presents a conceptual framework on which to formulate questions about the resistance and ecosystem resilience of arid and semi-arid floodplains in the face of threats like climate change and alterations to flood regimes.
NASA Astrophysics Data System (ADS)
Pignatelli, Isabella; Marrocchi, Yves; Mugnaioli, Enrico; Bourdelle, Franck; Gounelle, Matthieu
2017-07-01
The CM chondrites represent the largest group of hydrated meteorites and span a wide range of conditions, from less altered (i.e., CM2) down to heavily altered (i.e., CM1). The Paris chondrite is considered the least altered CM and thus enables the earliest stages of aqueous alteration processes to be deciphered. Here, we report results from a nanoscale study of tochilinite/cronstedtite intergrowths (TCIs) in Paris-TCIs being the emblematic secondary mineral assemblages of CM chondrites, formed from the alteration of Fe-Ni metal beads (type-I TCIs) and anhydrous silicates (type-II TCIs). We combined high-resolution transmission electron microscopy, scanning transmission X-ray microscopy and electron diffraction tomography to characterize the crystal structure, crystal chemistry and redox state of TCIs. The data obtained are useful to reconstruct the alteration conditions of Paris and to compare them with those of other meteorites. Our results show that tochilinite in Paris is characterized by a high hydroxide layer content (n = 2.1-2.2) regardless of the silicate precursors. When examined alongside other CMs, it appears that the hydroxide layer and iron contents of tochilinites correlate with the degree of alteration experienced by the chondrites. The Fe3+/ΣFe ratios of TCIs are high: 8-15% in tochilinite, 33-60% in cronstedtite and 70-80% in hydroxides. These observations suggest that alteration of CM chondrites took place under oxidizing conditions that could have been induced by significant H2 release during serpentinization. Similar results were recently reported in CR chondrites (Le Guillou et al., 2015), suggesting that the process(es) controlling the redox state of the secondary mineral assemblages were quite similar in the CM and CR parent bodies despite the different alteration conditions. According to our mineralogical and crystallographic survey, the formation of TCIs in Paris occurred at temperatures lower than 100 °C, under neutral, slightly alkaline conditions that favored the formation of both tochilinite and cronstedtite. During the course of alteration, the reduction in sulfur activity and/or the decrease of temperature prevented tochilinite crystallization and favoured the formation of cronstedtite and iron hydroxides. We suggest that iron hydroxides probably formed as ferrihydrite and then progressively converted to goethite between 50° and 80 °C, a temperature range that is also favorable for cronstedtite formation. The presence of cronstedtite plays a key role in the reconstruction of the alteration history, demonstrating that the alteration of Paris took place by way of serpentinization processes similar to those described on the Earth.
NASA Astrophysics Data System (ADS)
Carrillo-Rosúa, J.; Morales-Ruano, S.; Morata, D.; Boyce, A. J.; Belmar, M.; Fallick, A. E.; Fenoll Hach-Alí, P.
2008-03-01
The El Dorado Au-Cu deposit is located in an extensive intra-caldera zone of hydrothermal alteration affecting Upper Cretaceous andesites of the Los Elquinos Formation at La Serena (≈ 29°47'S Lat., 70°43'W Long., Chile). Quartz-sulfide veins of economic potential are hosted by N25W and N20E fault structures associated with quartz-illite alteration (+supergene kaolinite). The main ore minerals in the deposit are pyrite, chalcopyrite ± fahlore (As/(As + Sb): 0.06-0.98), with electrum, sphalerite, galena, bournonite-seligmanite (As/(As + Sb): 0.21-0.31), marcasite, pyrrhotite being accessory phases. Electrum, with an Ag content between 32 and 37 at.%, occurs interstitial to pyrite aggregates or along pyrite fractures. Pyrite commonly exhibits chemical zonation with some zones up to 1.96 at.% As. Electron probe microanalyses of pyrite indicate that As-rich zones do not exhibit detectable Au values. Fluid inclusion microthermometry shows homogenization temperatures between 130 and 352 °C and salinities between 1.6 and 6.9 wt.% NaCl eq. Isotope data for quartz, ankerite and phyllosilicates and estimated temperatures show that δ18O and δD for the hydrothermal fluids were between 3 and 10‰ and between -95 and -75‰, respectively. These results suggest the mineralizing fluids were a mixture of meteoric and magmatic waters. An epithermal intermediate-sulfidation model is proposed for the formation of the El Dorado deposit.
Chao, Yu-Hua; Lin, Chiao-Wen; Pan, Hui-Hsien; Yang, Shun-Fa; Weng, Te-Fu; Peng, Ching-Tien; Wu, Kang-Hsi
2018-06-05
Although immune-mediated pathogenesis is considered an important aspect of severe aplastic anemia (SAA), its underlying mechanisms remain unclear. Mesenchymal stem cells (MSCs) are essential to the formation of specialized microenvironments in the bone marrow (BM), and MSC insufficiency can trigger the development of SAA. To find MSC alterations in the SAA BM, we compared BM MSCs from five children with SAA and five controls. Peripheral blood mononuclear cells (PBMCs) were cocultured with MSCs to evaluate the supportive effects of MSCs on hematopoiesis. Cytometric bead array immunoassay was used to determine cytokine excretion by MSCs. The immune functions of MSCs and their conditioned medium (CM) were evaluated by PBMC proliferation assays. SAA MSCs were characterized by a high percentage of cells in the abnormal sub-G1 phase of the cell cycle, which suggests an increased rate of apoptosis in SAA MSCs. In comparison with control MSCs, PBMCs cocultured with SAA MSCs displayed significantly reduced PBMC proliferation (P = 0.009). Aberrant cytokine profiles were secreted by SAA MSCs, with increased concentrations of interleukin-6, interferon-γ, tumor necrosis factor-α, and interleukin-1β in the CM. PBMC proliferation assays demonstrated additional immunosuppressive effects of SAA MSCs (P = 0.016) and their CM (P = 0.013). Our data revealed increased apoptosis and PBMC suppression of SAA MSCs. The alterations of MSCs may contribute to the formation of functionally abnormal microenvironments in SAA BM. © 2018 Wiley Periodicals, Inc.
Ehlmann, Bethany L.; Mustard, John F; Clark, Roger N.; Swayze, Gregg A.; Murchie, Scott L.
2011-01-01
The enhanced spatial and spectral resolution provided by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter (MRO) has led to the discovery of numerous hydrated silicate minerals on Mars, particularly in the ancient, cratered crust comprising the southern highlands. Phases recently identified using visible/near-infrared spectra include: smectite, chlorite, prehnite, high-charge phyllosilicates (illite or muscovite), the zeolite analcime, opaline silica, and serpentine. Some mineral assemblages represent the products of aqueous alteration at elevated temperatures. Geologic occurrences of these mineral assemblages are described using examples from west of the Isidis basin near the Nili Fossae and with reference to differences in implied temperature, fluid composition, and starting materials during alteration. The alteration minerals are not distributed homogeneously. Rather, certain craters host distinctive alteration assemblages: (1) prehnite-chlorite-silica, (2) analcime-silica-Fe,Mg-smectite-chlorite, (3) chlorite-illite (muscovite), and (4) serpentine, which furthermore has been found in bedrock units. These assemblages contrast with the prevalence of solely Fe,Mg-smectites in most phyllosilicate-bearing terrains on Mars, and they represent materials altered at depth then exposed by cratering. Of the minerals found to date, prehnite provides the clearest evidence for subsurface, hydrothermal/metamorphic alteration, as it forms only under highly restricted conditions (T = 200–400ºC). Multiple mechanisms exist for forming the other individual minerals; however, the most likely formation mechanisms for the characteristic mineralogic assemblages observed are, for (1) and (2), low-grade metamorphism or hydrothermal (<400ºC) circulation of fluids in basalt; for (3), transformation of trioctahedral smectites to chlorite and dioctahedral smectites to illite during diagenesis; and for (4), low-grade metamorphism or hydrothermal (<400ºC) circulation of fluids in ultramafic rocks. Evidence for high-grade metamorphism at elevated pressures or temperatures >400ºC has not been found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aman, Michael; Espinoza, D. Nicolas; Ilgen, Anastasia G.
Here, the injection of carbon dioxide (CO 2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO 2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO 2 seepage alters portions of these geologic formations. Wemore » conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO 2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO 2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO 2-related chemical-mechanical alteration during long-term CO 2 storage.« less
Tschauner, Oliver
2013-01-01
Abstract Fumaroles represent a very important potential habitat on Mars because they contain water and nutrients. Global deposition of volcanic sulfate aerosols may also have been an important soil-forming process affecting large areas of Mars. Here we identify alteration from the Senator fumarole, northwest Nevada, USA, and in low-temperature environments near the fumarole to help interpret fumarolic and acid vapor alteration of rocks and soils on Mars. We analyzed soil samples and fluorapatite, olivine, and basaltic glass placed at and near the fumarole in in situ mineral alteration experiments designed to measure weathering under natural field conditions. Using synchrotron X-ray diffraction, we clearly observe hydroxyl-carbonate-bearing fluorapatite as a fumarolic alteration product of the original material, fluorapatite. The composition of apatites as well as secondary phosphates has been previously used to infer magmatic conditions as well as fumarolic conditions on Mars. To our knowledge, the observations reported here represent the first documented instance of formation of hydroxyl-carbonate-bearing apatite from fluorapatite in a field experiment. Retreat of olivine surfaces, as well as abundant NH4-containing minerals, was also characteristic of fumarolic alteration. In contrast, alteration in the nearby low-temperature environment resulted in formation of large pits on olivine surfaces, which were clearly distinguishable from the fumarolic alteration. Raman signatures of some fumarolically impacted surfaces are consistent with detection of the biological molecules chlorophyll and scytenomin, potentially useful biosignatures. Observations of altered minerals on Mars may therefore help identify the environment of formation and understand the aqueous history and potential habitability of that planet. Key Words: Fumaroles—Mars—Olivine—Acidophile—Geothermal—Search for life (biosignatures)—Synchrotron X-ray diffraction. Astrobiology 13, 1049–1064. PMID:24283927
Aman, Michael; Espinoza, D. Nicolas; Ilgen, Anastasia G.; ...
2017-09-22
Here, the injection of carbon dioxide (CO 2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO 2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO 2 seepage alters portions of these geologic formations. Wemore » conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO 2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO 2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO 2-related chemical-mechanical alteration during long-term CO 2 storage.« less
NASA Astrophysics Data System (ADS)
Duarte, L. C.; Hartmann, L. A.; Vasconcellos, M. A. Z.; Medeiros, J. T. N.; Theye, T.
2009-07-01
Giant geodes (up to 4 m long) in the massive central portions of altered basalt lavas from the Paraná Magmatic Province, southern Brazil and Uruguay, form a world-class source of amethyst and agate. Although the origin of the cavities has been ascribed to degassing of the lava at > 1150 °C, field evidence is conclusive that the giant amethyst-agate-filled geodes were formed by hydrothermal processes at low temperatures. We propose an epigenetic and hydrothermal model for the origin of giant geodes. This model includes hydrothermal brecciation during an early brittle stage and the late formation of the cavities (geodes). In the brittle stage an overpressured aqueous fluid affected the basalt in a P, T field delimited by temperatures between 100 and 150 °C and vapor pressures between 1.2 and 5.5 bar. The fluids were capable of lifting the roof and fracturing the host rock along new subhorizontal and subvertical fractures and breccias in the massive lava. The formation of these structures occurred at shallow depths, unit-by-unit. To open the cavities, dissolution of the now altered basalt to clay minerals is necessary. The process is closely linked to the highest alteration grade of mineralized lavas in Los Catalanes gemological district. Dissolution processes are observed in micrometer-scale in the studied basalts. The primary mineralogy, consisting of labradorite (± andesine) +augite + pigeonite + mesostasis (K-rich), was altered during the interaction of large volumes of hot aqueous fluid with the rock. The alteration of pigeonite and its replacement by smectite is observed around the cavities, followed by the precipitation of amorphous silica and microcrystalline quartz in clay-rich sites. Associated zeolites (heulandite + clinoptilolite) fill the newly formed cavities in progressive stages of hydrothermal alteration. Our data indicate that the temperatures were less than 200 °C and probably less than 150 °C; cavity formation occurred after alteration of the basalt to more than 60 vol.% clay minerals. We thus suggest that cavities related to geode formation are of epigenetic origin.
Beyer, Dániel; Tándor, Ildikó; Kónya, Zoltán; Bátori, Róbert; Roszik, Janos; Vereb, György; Erdődi, Ferenc; Vasas, Gábor; M-Hamvas, Márta; Jambrovics, Károly; Máthé, Csaba
2012-01-01
Background and Aims Microcystin-LR (MCY-LR) is a cyanobacterial toxin, a specific inhibitor of type 1 and 2A protein phosphatases (PP1 and PP2A) with significant impact on aquatic ecosystems. It has the potential to alter regulation of the plant cell cycle. The aim of this study was improved understanding of the mitotic alterations induced by cyanotoxin in Vicia faba, a model organism for plant cell biology studies. Methods Vicia faba seedlings were treated over the long and short term with MCY-LR purified in our laboratory. Short-term treatments were performed on root meristems synchronized with hydroxylurea. Sections of lateral root tips were labelled for chromatin, phosphorylated histone H3 and β-tubulin via histochemical and immunohistochemical methods. Mitotic activity and the occurrence of mitotic alterations were detected and analysed by fluorescence microscopy. The phosphorylation state of histone H3 was studied by Western blotting. Key Results Long-term MCY-LR exposure of lateral root tip meristems increased the percentage of either early or late mitosis in a concentration-dependent manner. We observed hypercondensed chromosomes and altered sister chromatid segregation (lagging chromosomes) leading to the formation of micronuclei, accompanied by the formation of disrupted, multipolar and monopolar spindles, disrupted phragmoplasts and the hyperphosphorylation of histone H3 at Ser10. Short-term MCY-LR treatment of synchronized cells showed that PP1 and PP2A inhibition delayed the onset of anaphase at 1 µg mL−1 MCY-LR, accelerated cell cycle at 10 µg mL−1 MCY-LR and induced the formation of lagging chromosomes. In this case mitotic microtubule alterations were not detected, but histone H3 was hyperphosphorylated. Conclusions MCY-LR delayed metaphase–anaphase transition. Consequently, it induced aberrant chromatid segregation and micronucleus formation that could be associated with both H3 hyperphosphorylation and altered microtubule organization. However, these two phenomena seemed to be independent. The toxin may be a useful tool in the study of plant cell cycle regulation. PMID:22819947
Beyer, Dániel; Tándor, Ildikó; Kónya, Zoltán; Bátori, Róbert; Roszik, Janos; Vereb, György; Erdodi, Ferenc; Vasas, Gábor; M-Hamvas, Márta; Jambrovics, Károly; Máthé, Csaba
2012-09-01
Microcystin-LR (MCY-LR) is a cyanobacterial toxin, a specific inhibitor of type 1 and 2A protein phosphatases (PP1 and PP2A) with significant impact on aquatic ecosystems. It has the potential to alter regulation of the plant cell cycle. The aim of this study was improved understanding of the mitotic alterations induced by cyanotoxin in Vicia faba, a model organism for plant cell biology studies. Vicia faba seedlings were treated over the long and short term with MCY-LR purified in our laboratory. Short-term treatments were performed on root meristems synchronized with hydroxylurea. Sections of lateral root tips were labelled for chromatin, phosphorylated histone H3 and β-tubulin via histochemical and immunohistochemical methods. Mitotic activity and the occurrence of mitotic alterations were detected and analysed by fluorescence microscopy. The phosphorylation state of histone H3 was studied by Western blotting. Long-term MCY-LR exposure of lateral root tip meristems increased the percentage of either early or late mitosis in a concentration-dependent manner. We observed hypercondensed chromosomes and altered sister chromatid segregation (lagging chromosomes) leading to the formation of micronuclei, accompanied by the formation of disrupted, multipolar and monopolar spindles, disrupted phragmoplasts and the hyperphosphorylation of histone H3 at Ser10. Short-term MCY-LR treatment of synchronized cells showed that PP1 and PP2A inhibition delayed the onset of anaphase at 1 µg mL(-1) MCY-LR, accelerated cell cycle at 10 µg mL(-1) MCY-LR and induced the formation of lagging chromosomes. In this case mitotic microtubule alterations were not detected, but histone H3 was hyperphosphorylated. MCY-LR delayed metaphase-anaphase transition. Consequently, it induced aberrant chromatid segregation and micronucleus formation that could be associated with both H3 hyperphosphorylation and altered microtubule organization. However, these two phenomena seemed to be independent. The toxin may be a useful tool in the study of plant cell cycle regulation.
NASA Technical Reports Server (NTRS)
Chizmadia, L. J.; Brearley, A. J.
2004-01-01
Carbonaceous chondrites are an important resource for understanding the physical and chemical conditions in the early solar system. In particular, a long-standing question concerns the role of water in the cosmochemical evolution of carbonaceous chondrites. It is well established that extensive hydration of primary nebular phases occurred in the CM and CI chondrites, but the location where this alteration occurred remains controversial. In the CM2 chondrites, hydration formed secondary phases such as serpentine, tochilinite, pentlandite, carbonate and PCP. There are several textural observations which suggest that alteration occurred before the accretion of the final CM parent asteroid, i.e. preaccretionary alteration. Conversely, there is a significant body of evidence that supports parent-body alteration. In order to test these two competing hypotheses further, we studied two CM chondrites, Y-791198 and ALH81002, two meteorites that exhibit widely differing degrees of aqueous alteration. In addition, both meteorites have primary accretionary textures, i.e. experienced minimal asteroidal brecciation. Brecciation significantly complicates the task of unraveling alteration histories, mixing components that have been altered to different degrees from different locations on the same asteroidal parent body. Alteration in Y-791198 is mostly confined to chondrule mesostases, FeNi metal and fine-grained matrix and rims. In comparison, the primary chondrule silicates in ALH81002 have undergone extensive replacement by secondary hydrous phases. This study focuses on compositional and textural relationships between chondrule mesostasis and the associated rim materials. Our hypothesis is: both these components are highly susceptible to aqueous alteration and should be sensitive recorders of the alteration process. For parent body alteration, we expect systematic coupled mineralogical and compositional changes in rims and altered mesostasis, as elemental exchange between these components occurs. Conversely, for preaccretionary alteration, there should be no clear relationships between the rims and mesostases.
NASA Astrophysics Data System (ADS)
Prante, M. R.; Evans, J. P.
2012-12-01
Description and identification of fault-related deformation products that are diagnostic of seismic slip have implications for the energy budget of earthquakes, fault strength, and fault-rock assemblages. We describe tectonic pseduotachylyte, cataclastic rocks, crystal-plastic deformation, and hydrothermal alteration form faults exhumed from seismogenic depths in the Volcanic Lakes area, in northern Sequoia and Kings Canyon National Park, CA, USA. Fault rock protoliths include Mesozoic granite and granodiorite plutonic and limited metasedimentary and metavolcanic rocks. These plutonic and metamorphic rocks are cross-cut by the E-W striking, steeply dipping, left-lateral strike-slip Granite Pass (GPF) and Glacier Lakes faults (GLF). Cross-cutting relationships and microstructural data suggest that the GPF is the oldest fault in the area and preserves evidence for coeval brittle and plastic crystal deformation, and hydrothermal fluid-flow. Tectonic pseudotachylyte from the area has been dated using the 40Ar/39Ar method at 76.6 ± 0.3 Ma; when placed into a thermochronologic framework for the plutonic host rock it can be inferred that the pseudotachylyte formed at depths between 2.4-6.0 km with ambient temperatures between 110-160°C. Exceptionally well preserved tectonic pseudotachylyte from the GLF and GPF contain evidence for a frictional melt origin including: 1) plagioclase spherulites and microlites, 2) injection vein morphology, 3) amygdules, 4) viscous flow banding and folds, and 5) embayed and corroded clasts. Pseudotachylyte from the GPF and GLF is associated with brittle and plastic deformation in the damage zone of the faults. Evidence for plastic deformation includes undulose extinction, deformation lamellae, subgrain development, and grain boundary bulging in quartz; and limited undulose extinction in feldspar. Additionally, abundant hydrothermal alteration and mineralization has been documented in the GPF and GLF fault zones, including, chlorite pseudomorphs after biotite and alteration of mafic phases to epidote, sericite and calcite alteration of albite, and calcite and chlorite filled veins. Cross-cutting calcite veins contain fine-grained calcite with abundant twins up to 20 μm-thick. Multiple pseudotachylyte injection veins and reworked pseudotachylyte in cataclastic rock suggest multiple earthquakes along the GPF and GLF at depths favorable to pseudotachylyte formation. Abundant hydrothermal alteration and cross-cutting calcite veins with thick (> 1 μm) twins is consistent with ambient temperatures between 170 and 200°C. These temperatures are generally consistent with the reported ambient temperature conditions during pseudotachylyte formation. Crystal-plastic deformation of quartz and feldspar in the GPF and GLF zones is consistent with deformation at temperatures between 200-400°C. Frictional melt and associated brittle and plastic deformation, and fluid alteration are presumed to have occurred at similar temperature conditions and may be coeval. These results have important implication for understanding energy sinks associated with seismic slip and the conditions of tectonic pseudotachylyte formation.
Banerjee, Sudip; Melnyk, Stepan B; Krager, Kimberly J; Aykin-Burns, Nukhet; McCullough, Sandra S; James, Laura P; Hinson, Jack A
2017-01-01
The hepatotoxicity of acetaminophen (APAP) occurs by initial metabolism to N-acetyl-p-benzoquinone imine which depletes GSH and forms APAP-protein adducts. Subsequently, the reactive nitrogen species peroxynitrite is formed from nitric oxide (NO) and superoxide leading to 3-nitrotyrosine in proteins. Toxicity occurs with inhibited mitochondrial function. We previously reported that in hepatocytes the nNOS (NOS1) inhibitor NANT inhibited APAP toxicity, reactive nitrogen and oxygen species formation, and mitochondrial dysfunction. In this work we examined the effect of trifluoperazine (TFP), a calmodulin antagonist that inhibits calcium induced nNOS activation, on APAP hepatotoxicity and reactive nitrogen formation in murine hepatocytes and in vivo . In freshly isolated hepatocytes TFP inhibited APAP induced toxicity, reactive nitrogen formation (NO, GSNO, and 3-nitrotyrosine in protein), reactive oxygen formation (superoxide), loss of mitochondrial membrane potential, decreased ATP production, decreased oxygen consumption rate, and increased NADH accumulation. TFP did not alter APAP induced GSH depletion in the hepatocytes or the formation of APAP protein adducts which indicated that reactive metabolite formation was not inhibited. Since we previously reported that TFP inhibits the hepatotoxicity of APAP in mice without altering hepatic APAP-protein adduct formation, we examined the APAP treated mouse livers for evidence of reactive nitrogen formation. 3-Nitrotyrosine in hepatic proteins and GSNO were significantly increased in APAP treated mouse livers and decreased in the livers of mice treated with APAP plus TFP. These data are consistent with a hypothesis that APAP hepatotoxicity occurs with altered calcium metabolism, activation of nNOS leading to increased reactive nitrogen formation, and mitochondrial dysfunction.
Layh-Schmitt, Gerlinde; Yang, Eva Y.; Kwon, Grace; Colbert, Robert A.
2013-01-01
Objective To determine whether HLA-B27 expression alters the response of bone marrow monocytes (BMMo) from HLA-B27/human β2-microglobulin transgenic (B27-Tg) rats to tumor necrosis factor-α (TNFα), and whether this affects cells involved in bone homeostasis. Methods BMMo were treated with receptor activator of NF-κB ligand or TNFα to promote osteoclast formation. Osteoclasts were quantified by counting. Gene expression was measured using quantitative polymerase chain reaction, and protein was detected by enzyme-linked immunosorbent assay, immunoblotting, or immunofluorescence. Effects of endogenously produced cytokines on osteoclast formation were determined with neutralizing antibodies. Results TNFα enhanced osteoclast formation 2.5-fold in HLA-B27-expressing cells compared to either wild type or HLA-B7/human β2-microglobulin expressing monocytes. TNFα induced approximately 4-fold upregulation of HLA-B27, which was associated with accumulation of misfolded heavy chains, binding of the ER chaperone BiP, and activation of an ER stress response, which was not seen with HLA-B7. No differences were seen with RANKL-induced osteoclastogenesis. Enhanced interleukin-1α (IL-1α) production from ER stressed B27-Tg BMMo was found to be necessary and sufficient for enhanced osteoclast formation. However, B27-Tg BMMo also produced more interferon-β (IFNβ), which attenuated the effect of IL-1α on osteoclast formation. Conclusions HLA-B27-induced ER stress alters the response of BMMo from B27-Tg rats to TNFα, which is associated with enhanced production of IL-1α and IFNβ, cytokines that exhibit opposing effects on osteoclast formation. The altered response of cells expressing HLA-B27 to pro-inflammatory cytokines suggests that this MHC class I allele may contribute to the pathogenesis of spondyloarthritis and its unique phenotype through downstream effects involving alterations in bone homeostasis. PMID:23666508
Mykland, Martin Syvertsen; Bjørk, Marte Helene; Stjern, Marit; Sand, Trond
2018-04-01
Background The migraine brain is believed to have altered cortical excitability compared to controls and between migraine cycle phases. Our aim was to evaluate post-activation excitability through post-movement beta event related synchronization (PMBS) in sensorimotor cortices with and without sensory discrimination. Subjects and methods We recorded EEG of 41 migraine patients and 31 healthy controls on three different days with classification of days in relation to migraine phases. During each recording, subjects performed one motor and one sensorimotor task with the right wrist. Controls and migraine patients in the interictal phase were compared with repeated measures (R-) ANOVA and two sample Student's t-test. Migraine phases were compared to the interictal phase with R-ANOVA and paired Student's t-test. Results The difference between PMBS at the contralateral and ipsilateral sensorimotor cortex was altered throughout the migraine cycle. Compared to the interictal phase, we found decreased PMBS at the ipsilateral sensorimotor cortex in the ictal phase and increased PMBS in the preictal phase. Lower ictal PMBS was found in bilateral sensorimotor cortices in patients with right side headache predominance. Conclusion The cyclic changes of PMBS in migraine patients may indicate that a dysfunction in deactivation and interhemispheric inhibition of the sensorimotor cortex is involved in the migraine attack cascade.
NASA Astrophysics Data System (ADS)
Hess, Kai-Uwe; Yilmaz, Tim; Gilg, H. Albert; Janots, Emilie; Mayer, Klaus; Nakada, Setsuya; Dingwell, Donald
2017-04-01
Investigations were carried out on hydrothermally altered coherent dacitic dykes samples from (USDP-4) drill core at Mt Unzen stratovolcano (Shimabara/Japan). XRF, XRD, EMPA, C-O-isotope, hot-cathode CL and SEM analysis led to insights concerning chemistry, mineralogy, and intensity and type of alteration as well as the origin of carbonate-precipitating fluids. Additionally a textural characterization of the occurring replacement features in the volcanic conduit rocks was performed. The occurrence of the main secondary phases such as chlorite, pyrite, carbonates, and R1 (Reichweite parameter) illite-smectite and kaolinite group minerals indicate a weak to moderate propylitic to phyllic hydrothermal alteration. The dacitic samples of the dykes show different hydrothermal alteration features: (i) carbonate and chlorite pseudomorphs after hornblende as well as core and zonal textures due to replacement of plagioclase by R1 illite-smectite as well as kaolinite group minerals, (ii) colloform banded fracture fillings and fillings in dissolution vugs, and (iii) chlorite, R1 illite-smectite as well as kaolinite group minerals in the groundmass. Late chlorite veins crosscut precipitates of R1 illite-smectite as well as kaolinite group minerals. Carbonates in fractures and in pseudomorphs after hornblende comprise iron-rich dolomite solid solutions ("ankerite") and calcite. Isotopic values indicate a hydrothermal-magmatic origin for the carbonate formation. The chlorite-carbonate-pyrite index (CCPI) and the Ishikawa alteration index (AI), applied to the investigated samples show significant differences (CCPI=52.7-57.8; AI=36.1-40.6) indicating their different degree of alteration. According to Nakada et al., 2005, the C13 to C16 dykes represent the feeder dyke from the latest eruption (1991-1995) whereas C8 represents an earlier dyke feeder dyke from an older eruption. Weakest alteration, which was obtained in samples C16-1-5 and C13-2-5, correlates with the alteration degree of the pristine dome rocks. The highest CCPI value was determined for sample C14-1-5 and the highest AI value was determined for sample C15-2-6. The degrees of alteration do not indicate highest alteration of the samples C8-1-2 and C8-2-1 from the older dykes.
USDA-ARS?s Scientific Manuscript database
This study evaluated whether three administrations of lipopolysaccharide (LPS) during gestation would alter the acute phase (APR) and metabolic responses to a postnatal LPS challenge in weaned heifers. Pregnant crossbred cows (n=50) were randomized into prenatal immune stimulation (PIS; n=24; admini...
NASA Astrophysics Data System (ADS)
Shi, Qianying; An, Ning; Huo, Jiajie; Ding, Xianfei; Zheng, Yunrong; Feng, Qiang
2017-11-01
In current study, two sets of Ni-based alloys (Ni-Cr-Mo and Ni-Cr-Re series) containing 0 to 15 at. pct of Co addition were investigated to understand the formation behavior of TCP phases. Significant difference on the formation behavior of TCP phases and corresponding Co effect was found in two series alloys. TCP precipitates ( P and µ phase) were observed in both grain interiors and boundaries in Ni-Cr-Mo series alloys. Higher levels of Co addition increased the supersaturation of Mo in the γ matrix, which explained that Co addition promoted µ phase formation. In contrast, the TCP precipitates ( σ phase) formed by the manner of discontinuous precipitation transformation in the grain boundaries in Ni-Cr-Re series alloys. More Co additions suppressed the formation of σ phase, which was mainly attributed to the decreased supersaturation of Re in thermodynamically metastable γ matrix. The information obtained from simplified alloy systems in this study is helpful for the design of multicomponent Ni-based superalloys.
Alteration of Al-rich inclusions inside amoeboid olivine aggregates in the Allende meteorite
NASA Technical Reports Server (NTRS)
Hashimoto, Akihiko; Grossman, Lawrence
1987-01-01
The primary phases of Al-rich inclusions in amoeboid olivine aggregates have undergone alteration reactions with the solar nebular gas. The simplest interpretation of the present observations is that melilite was the first primary phase to disappear with falling temperature, and was replaced by grossular + anorthite + feldspathoids, followed by fassaite; spinel was the last phase to be altered. Thermodynamic calculations suggest that Na-rich phlogopite could have formed at about 470 K and chlorite at about 328 K at a water fugacity of 0.000001, which is that of a gas of solar composition in this temperature range. The olivine around Al-rich inclusions is not serpentized, indicating the cessation of gas-solid equilibrium above 274 K.
Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory.
Lubin, Farah D; Roth, Tania L; Sweatt, J David
2008-10-15
Long-term memory formation requires selective changes in gene expression. Here, we determined the contribution of chromatin remodeling to learning-induced changes in brain-derived neurotrophic factor (bdnf) gene expression in the adult hippocampus. Contextual fear learning induced differential regulation of exon-specific bdnf mRNAs (I, IV, VI, IX) that was associated with changes in bdnf DNA methylation and altered local chromatin structure. Infusions of zebularine (a DNA methyltransferase inhibitor) significantly altered bdnf DNA methylation and triggered changes in exon-specific bdnf mRNA levels, indicating that altered DNA methylation is sufficient to drive differential bdnf transcript regulation in the hippocampus. In addition, NMDA receptor blockade prevented memory-associated alterations in bdnf DNA methylation, resulting in a block of altered bdnf gene expression in hippocampus and a deficit in memory formation. These results suggest epigenetic modification of the bdnf gene as a mechanism for isoform-specific gene readout during memory consolidation.
Alteration and mineralization of an oceanic forearc and the ophiolite-ocean crust analogy
Alt, J.C.; Teagle, D.A.H.; Brewer, T.; Shanks, Wayne C.; Halliday, A.
1998-01-01
Mineralogical, chemical, and isotopic (O, C, S, and Sr) analyses were performed on minerals and bulk rocks from a forearc basement section to understand alteration processes and compare with mid-ocean ridges (MOR) and ophiolites. Ocean Drilling Program Hole 786B in the Izu-Bonin forearc penetrates 103 m of sediment and 725 m into volcanic flows, breccias, and basal dikes. The rocks comprise boninites and andesites to rhyolites. Most of the section was affected by low-temperature (<100??C) seawater alteration, with temperatures increasing downward. The rocks are partly (5-25%) altered to smectite, Fe-oxyhydroxide, calcite, and phillipsite, and exhibit gains of K, Rb, and P, loss of Ca, variable changes in Si, Na, Mg, Fe, Sr, and Y, and elevated ??18O and 87Sr/86Sr. Higher temperatures (???150??C) in the basal dikes below 750 m led to more intense alteration and formation of chlorite-smectite, corrensite, albite, K-feldspar, and quartz (??chlorite). A 5 m thick hydrothermally altered and pyritized zone at 815 m in the basal dikes reacted with mixtures of seawater and hydrothermal fluids to Mg-chlorite, albite, and pyrite, and gained Mg and S and lost Si and Ca. Focused flow of hydrothermal fluids produced sericitization halos (Na-K sericite, quartz, pyrophyllite, K-feldspar, and pyrite) along quartz veins at temperatures of 200??-250??C. High 87Sr/86Sr ratios of chloritized (???0.7055) and sericitized (???0.7065) rocks indicate involvement of seawater via mixing with hydrothermal fluids. Low ??34S of sulfide (???2 to -5.5???) and sulfate (12.5???) are consistent with input of magmatic SO2 into hydrothermal fluids and disproportionation to sulfide and sulfate. Alteration processes were generally similar to those at MORs, but the arc section is more intensively altered, in part because of the presence of abundant glassy rocks and mafic phases. The increase in alteration grade below 750 m and the mineralization in the basal dikes are analogous to changes that occur near the base of the volcanic section in MOR and the Troodos ophiolite.
Ouedraogo, David W; Lenck-Santini, Pierre-Pascal; Marti, Geoffrey; Robbe, David; Crépel, Valérie; Epsztein, Jérôme
2016-01-01
The dentate gyrus, a major entry point to the hippocampus, gates (or filters) incoming information from the cortex. During sleep or anesthesia, the slow-wave oscillation (SWO) orchestrates hippocampus-neocortex communication, which is important for memory formation. The dentate gate is altered in temporal lobe epilepsy (TLE) early during epileptogenesis, which favors the propagation of pathological activities. Yet, whether the gating of physiological SWO by dentate granule cells (DGCs) is altered in TLE has remained unexplored. We combined intracellular recordings of membrane potential (V m) of DGCs and local field potential recordings of the SWO in parietal cortex in anesthetized rats early during epileptogenesis [post-status epilepticus (SE) rats]. As expected, in control rats, the V m of DGCs weakly and rarely oscillated in the SWO frequency range. In contrast, in post-SE rats, the V m of DGCs displayed strong and long-lasting SWO. In these cells, clear UP and DOWN states, in phase with the neocortical SWO, led to a bimodal V m distribution. In post-SE rats, the firing of DGCs was increased and more temporally modulated by the neocortical SWO. We conclude that UP/DOWN state dynamics dominate the V m of DGCs and firing early during epileptogenesis. This abnormally strong neocortical influence on the dynamics of DGCs may profoundly modify the hippocampus-neocortex dialogue during sleep and associated cognitive functions.
Aqueous Alteration of the Grosnaja CV3 Carbonaceous Chondrite
NASA Astrophysics Data System (ADS)
Keller, L. P.; McKay, D. S.
1993-07-01
Previous petrographic studies have shown that aqueous alteration products are locally well developed in some of the CV3 falls [e.g., 1-3]. In this abstract, we describe our transmission electron microscope (TEM) study of the extent of aqueous alteration in matrix and in chondrules in the Grosnaja CV3 carbonaceous chondrite. Grosnaja is an observed fall and belongs to the oxidized subgroup of the CV chondrites [4]. We obtained fragments of Grosnaja from the Naturhistorisches Museum in Vienna. Regions of interest were extracted from polished thin sections and prepared for TEM observation by ion milling. Quantitative energy-dispersive X-ray (EDX) analyses were obtained using a JEOL 2000FX TEM equipped with a LINK thin- window EDX detector. Grosnaja has undergone aqueous alteration, which has resulted in the formation of phyllosilicates in matrix and in chondrules. The suprising result from Grosnaja is that three different types of phyllosilicates are intimately intergrown. Serpentine is the most abundant phyllosilicate in matrix and occurs as fine-grained packets along grain boundaries and as fracture-fillings and veinlets that cross cut olivine and pyroxene grains. Mixed with the serpentine are packets of fine-grained phyllosilicates with a distinct 1.4-nm basal spacing that is probably a chlorite group mineral. Rare packets of smectite occur as epitaxial intergrowths with olivine, but are not interstratified with serpentine as observed in the CI chondrites. Phyllosilicates in Grosnaja matrix occur with Mg-rich carbonates, fine-grained magnetite, chromite and pentlandite, and poorly-crystalline FeNi- oxide/hydroxides, which stain the matrix a brownish-red color. Some of the rust may be of terrestrial origin (Grosnaja fell in 1861). Although the matrix phyllosilicates are too small to obtain single-phase chemical analyses in the TEM, quantitative EDX analyses suggest that the serpentine contains significant Fe (Mg/Mg + Fe ~0.5). The serpentine/chlorite forms as an alteration product of matrix olivine. Olivine in matrix is equilibrated (Fa(sub)50). The matrix olivines contain numerous planar defects along (100) planes, which results in strong streaking along a* in electron diffraction patterns. These planar defects in matrix olivines are common in other CV chondrites, including Bali [3] and Mokoia [1]. Chondrule mesostasis is extensively altered to coarse-grained Na-saponite that is coherently interstratified with a 1.4-nm phyllosilicate (as shown by selected-area electron diffraction patterns). The 1.4-nm layers occur individually and in groups up to five layers wide. Serpentine has not been observed in chondrules. The Mg/Mg + Fe (atomic) ratio for the saponite is ~0.9, the same as for the host chondrule olivines. The formation of phyllosilicates in Grosnaja was controlled by local bulk compositions. The abundance of Na and Al in chondrule mesostasis stabilized Na-saponite, while in matrix, the high olivine content resulted in formation of serpentine. Grosnaja is unusual for a CV chondrite in that the dominant phyllosilicates in matrix are serpentine and chlorite, whereas smectite is the dominant phyllosilicate for the other altered CV chondrites [3]. This result suggests that alteration conditions were different for Grosnaja relative to the other CV falls. We believe that the occurrence of chlorite in both matrix and chondrules indicates alteration at temperatures higher than those experienced by the other altered CV chondrites. The heat source for the alteration reactions may be related to the thermal event that equilibrated matrix olivines. Acknowledgements: We thank G. Kurat of the Naturhistorisches Museum for samples of Grosnaja. This work was supported by NASA RTOPs 152-17-40-23 and 199-52-11-02. References: [1] Tomeoka K. and Buseck P. R. (1990) GCA, 54, 1745. [2] Keller L. P. and Buseck P. R. (1990) GCA, 54, 2113. [3] Keller L. P. and Thomas K. L. (1991) LPS XXII, 705. [4] McSween H. Y. (1977) GCA, 41, 1777.
Molecular Simulation Models of Carbon Dioxide Intercalation in Hydrated Sodium Montmorillonite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myshakin, Evgeniy; Saidi, Wissam; Romanov, Vyacheslav
2016-11-22
In this study, classical molecular dynamics simulations and density functional theory (DFT)-based molecular dynamics are used to elucidate the process of CO 2 intercalation into hydrated Na-montmorillonite at P-T conditions relevant to geological formations suitable for CO 2 storage. Of particular interest are the structural and transport properties of interlayer species after CO 2 intercalation. The conducted simulations allowed the research team to quantify expansion/contraction of smectite as a function of CO 2 and H 2O compositions. The resulting swelling curves can be used to gauge the amount of stored CO 2, compare it to the experiment, and estimate changesmore » in geomechanical properties of the storage formation. The obtained results showed that the infrared signal of the asymmetric stretch vibration of CO 2 molecule is extremely sensitive to the solvent environment. The extent of the frequency shift relative to the gas-phase value can be used to probe hydration level in the interlayer with intercalated CO 2. Interaction of supercritical CO 2 with brine in deep geological formations promotes an increase of hydrophobicity of clay surfaces. As a result of wettability alteration, estimated diffusion constants of CO 2 and H 2O increase with the increased CO 2 load; this can contribute to faster migration of CO 2 throughout the formation.« less
Alterations of fibrin network structure mediated by dermatan sulfate.
Lauricella, Ana María; Castañon, María Mercedes; Kordich, Lucía C; Quintana, Irene L
2013-02-01
Dermatan sulfate (DS) is well-known for its anticoagulant activity through binding to heparin cofactor II (HCII) to enhance thrombin inhibition. It has also been reported that DS has a profibrinolytic effect. We have evaluated the effects of DS solutions (4-20 μg/mL) on the formation (by kinetic studies), structure (by electron microscopy and compaction assays) and lysis (with urokinase-type plasminogen activator) of plasma fibrin networks. The results showed that DS significantly prolonged the lag phase and decreased the fibrin formation rate and the optical density of the final networks versus control, in a concentration dependent way. DS-associated networks presented a minor network percentage compared with control, composed of lower number of fibers per field, which resulted significantly thinner and longer. Moreover, DS rendered gels more sensible to rupture by centrifugal force and more susceptible to lysis. When fibrin formation kinetic assays were performed with purified fibrinogen instead of plasma, in the absence of HCII, the optical density of final DS-associated networks was statistically lower than control. Therefore, a direct effect of DS on the thickness of fibers was observed. Since in all in vitro assays low DS concentrations were used, it could be postulated that the fibrin features described above are plausible to be found in in vivo thrombi and therefore, DS would contribute to the formation of less thrombogenic clots.
NASA Astrophysics Data System (ADS)
Belza, J.; Goderis, S.; Montanari, A.; Vanhaecke, F.; Claeys, P.
2017-04-01
The impact spherules from the distal K-Pg boundary sections are considered to represent silicate droplets condensed and solidified from a laterally expanding, cooling vapor plume formed upon hypervelocity impact. In the present-day Cretaceous-Paleogene boundary (K-Pg) spherule population of the Umbria-Marche region in Italy, three texturally and compositionally distinct types of impact spherules can be identified that are dominantly composed of (1) goethite, (2) K-feldspar or (3) glauconite. Although these phases represent the products of diagenetic alteration, the remnant textural characteristics of the spherules and the type of alteration product are indicative of the spherules' original compositions, which are important to constrain the physicochemical conditions prevalent throughout the impact vapor plume. The presence of relict ghost crystals and the identification of 'iddingsite' indicate that goethite likely represents pseudomorphic replacement after olivine. Goethite spherules contain numerous dendritic, euhedral and skeletal spinel crystals variably dispersed in the groundmass. In terms of textures, five types of goethite spherules can be distinguished, showing striking similarities to chondrules: (I) skeletal, (II) barred, (III) radial/barred, (IV) porphyritic and (V) relict/granular. The morphology of both spinel and olivine (pseudomorphs) is consistent with established formation conditions (peak temperature Tmax, degree of supercooling ΔT, cooling rate, presence of nucleation sites) for different chondrule textural types. As goethite spherules are anomalously enriched in moderately to highly refractory lithophile (Sc, V, Y, Zr, Nb, REE, Hf, Ta, Th) and siderophile (Cr, Co, Ni, W, Ir, Pt) elements, they are interpreted to represent (diagenetically altered) refractory (high-T) condensation products from a well-homogenized plume consisting of both vaporized target and projectile matter. Different from goethite spherules, K-feldspar spherules exhibit pseudomorphic textures after lower-liquidus silicates such as Ca-rich pyroxene and plagioclase. Furthermore, the K-feldspar spherules yield systematically lower abundances of the most refractory trace elements. This suggests that the pre-altered K-feldspar spherules are part of the same fractional condensation sequence of the target-impactor vapor plume, cooled during lateral expansion. Glauconite spherules are cryptocrystalline, exhibiting hemispherical lamellae that resemble the palagonite/smectite alteration layers of basaltic glasses and the K-Pg spherules (microtektites) found at proximal sites around the Gulf of Mexico region. Their trace element contents and REE patterns are strikingly similarity to those of (altered) K-Pg microtektites, suggesting that glauconite spherules represent former glass spherules without crystallites/microlites. Glauconite spherules are interpreted not to be part of the fractional condensation sequence of the impact vapor plume that led to the formation of the replaced goethite and K-felspar spherules. They were likely formed by entrainment of melt, expelled at the steepest angles and highest ejection velocities from the central melt sheet, within the edges of the vapor plume. This work is the first to create a geochemical foundation for vapor plume models, both at the major and trace element scale. In addition, it highlights the unique characteristics of the Chicxulub impact event and emphasizes the importance of its unusual target lithologies. The heterogeneous, layered, and volatile-rich target contributed significantly to the formation of a dust-rich environment, high oxygen fugacities and the preservation of some degree of heterogeneity in the vapor plume. In addition, striking similarities between distal (goethite-type) K-Pg spherules and chondrules may argue for a reevaluation of the impact model as a possible origin for the formation of certain types of cosmic chondrules.
Ovarian angiogenesis in polycystic ovary syndrome.
Di Pietro, Mariana; Pascuali, Natalia; Parborell, Fernanda; Abramovich, Dalhia
2018-05-01
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine pathology among women in reproductive age. Its main symptoms are oligo or amenorrhea, hyperandrogenism and the presence of ovarian cysts. It is also associated with infertility, obesity and insulin resistance. Mainly due to its heterogeneity, PCOS treatments are directed to manage its symptoms and to prevent associated diseases. The correct formation and regression of blood vessels during each ovarian cycle is indispensable for proper follicular development, ovulation and corpus luteum formation. The importance of these processes opened a new and promising field: ovarian angiogenesis. Vascular alterations characterize numerous pathologies, either with increased, decreased or abnormal angiogenesis. In the last years, several anomalies of ovarian angiogenesis have been described in women with PCOS. Therefore, it has been suggested that these alterations may be associated with the decreased - or lack of - ovulation rates and for the formation of cysts in the PCOS ovaries. Restoration of a proper vessel formation in the ovaries may lead to improved follicular development and ovulation in these patients. In the present review, we attempt to summarize the alterations in ovarian angiogenesis that have been described in women with PCOS. We also discuss the therapeutic approaches aimed to correct these alterations and their beneficial effects on the treatment of infertility in PCOS. © 2018 Society for Reproduction and Fertility.
NASA Technical Reports Server (NTRS)
Mishra, Ritesh Kumar; Marhas, Kuljeet Kaur; Simon, Justin I.; Ross, Daniel Kent
2015-01-01
Ordinary chondrites (OCs) represent the most abundant extraterrestrial materials and also record the widest range of alteration of primary, pristine minerals of early Solar system material available for study. Relatively few investigations, however, address: (1) the role of fluid alteration, and (2) the relationship between thermal metamorphism and metasomatism in OCs, issues that have been extensively studied in many other meteorite groups e.g., CV, CO, CR, and enstatite chondrites. Detailed elemental abundances profiles across individual chondrules, and mineralogical studies of Lewis Hills (LEW) 86018 (L3.1), an unequilibrated ordinary chondrite (UOC) of low petrographic type of 3.1 returned from Antarctica, provide evidence of extensive alteration of primary minerals. Some chondrules have Na(-), K(-), rich rims surrounded by nepheline, albite, and sodalite-like Na(-), Cl(-), Al-rich secondary minerals in the near vicinity within the matrices. Although, limited evidences of low temperature (approximately 250 C) fluid-assisted alteration of primary minerals to phyllosilicates, ferroanolivine, magnetite, and scapolite have been reported in the lowest grades (less than 3.2) Semarkona (LL3.00) and Bishunpur (LL3.10), alkali-rich secondary mineralization has previously only been seen in higher grade greater than 3.4 UOCs. This preliminary result suggests highly localized metamorphism in UOCs and widens the range of alteration in UOCs and complicates classification of petrographic type and extent of thermal metamorphism or metasomatism. The work in progress will document the micro-textures, geochemistry (Ba, Ca, REE), and isotopic composition (oxygen, Al(-)- 26 Mg-26) of mineral phases in chondrules and adjoining objects to help us understand the formation scenario and delineate possible modes of metamorphism in UOCs.
Alteration minerals in impact-generated hydrothermal systems - Exploring host rock variability
NASA Astrophysics Data System (ADS)
Schwenzer, Susanne P.; Kring, David A.
2013-09-01
Impact-generated hydrothermal systems have been previously linked to the alteration of Mars’ crust and the production of secondary mineral assemblages seen from orbit. The sensitivity of the resultant assemblages has not yet been evaluated as a function of precursor primary rock compositions. In this work, we use thermochemical modeling to explore the variety of minerals that could be produced by altering several known lithologies based on martian meteorite compositions. For a basaltic host rock lithology (Dhofar 378, Humphrey) the main alteration phases are feldspar, zeolite, pyroxene, chlorite, clay (nontronite, kaolinite), and hematite; for a lherzolithic host rock lithology (LEW 88516) the main alteration phases are amphibole, serpentine, chlorite, clay (nontronite, kaolinite), and hematite; and for an ultramafic host rock lithology (Chassigny) the main minerals are secondary olivine, serpentine, magnetite, quartz, and hematite. These assemblages and proportions of phases in each of those cases depend on W/R and temperature. Integrating geologic, hydrologic and alteration mineral evidence, we have developed a model to illustrate the distribution of alteration assemblages that occur in different levels of an impact structure. At the surface, hot, hydrous alteration affects the ejecta and melt sheet producing clay and chlorite. Deeper in the subsurface and depending on the permeability of the rock, a variety of minerals - smectite, chlorite, serpentine, amphiboles and hematite - are produced in a circulating hydrothermal system. These modeled mineral distributions should assist with interpretation of orbital observations and help guide surface exploration by rovers and sample return assets.
NASA Astrophysics Data System (ADS)
Kumar, Anil; Chopkar, Manoj
2018-05-01
Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.
Rodrigues-da-Silva, Rodrigo Nunes; Lima-Junior, Josué da Costa; Fonseca, Bruna de Paula Fonseca e; Antas, Paulo Renato Zuquim; Baldez, Arlete; Storer, Fabio Luiz; Santos, Fátima; Banic, Dalma Maria; Oliveira-Ferreira, Joseli de
2014-04-01
Haematological and cytokine alterations in malaria are a broad and controversial subject in the literature. However, few studies have simultaneously evaluated various cytokines in a single patient group during the acute and convalescent phases of infection. The aim of this study was to sequentially characterise alterations in haematological patters and circulating plasma cytokine and chemokine levels in patients infected with Plasmodium vivax or Plasmodium falciparum from a Brazilian endemic area during the acute and convalescent phases of infection. During the acute phase, thrombocytopaenia, eosinopaenia, lymphopaenia and an increased number of band cells were observed in the majority of the patients. During the convalescent phase, the haematologic parameters returned to normal. During the acute phase, P. vivax and P. falciparum patients had significantly higher interleukin (IL)-6, IL-8, IL-17, interferon-γ, tumour necrosis factor (TNF)-α, macrophage inflammatory protein-1β and granulocyte-colony stimulating factor levels than controls and maintained high levels during the convalescent phase. IL-10 was detected at high concentrations during the acute phase, but returned to normal levels during the convalescent phase. Plasma IL-10 concentration was positively correlated with parasitaemia in P. vivax and P. falciparum-infected patients. The same was true for the TNF-α concentration in P. falciparum-infected patients. Finally, the haematological and cytokine profiles were similar between uncomplicated P. falciparum and P. vivax infections.
Gas-Phase Infrared; JCAMP Format
National Institute of Standards and Technology Data Gateway
SRD 35 NIST/EPA Gas-Phase Infrared; JCAMP Format (PC database for purchase) This data collection contains 5,228 infrared spectra in the JCAMP-DX (Joint Committee for Atomic and Molecular Physical Data "Data Exchange") format.
Numerical evidence of liquid crystalline mesophases of a lollipop shaped model in two dimensions
NASA Astrophysics Data System (ADS)
Pérez-Lemus, G. R.; Armas-Pérez, J. C.; Chapela, G. A.; Quintana-H., J.
2017-12-01
Small alterations in the molecular details may produce noticeable changes in the symmetry of the resulting phase behavior. It is possible to produce morphologies having different n-fold symmetries by manipulating molecular features such as chirality, polarity or anisotropy. In this paper, a two dimensional hard molecular model is introduced to study the formation of liquid crystalline phases in low dimensionality. The model is similar to that reported by Julio C. Armas-Pérez and Jacqueline Quintana-H., Phys. Rev. E 83, 051709 (2011). The main difference is the lack of chirality in the model proposed, although they share some characteristics like the geometrical polarity. Our model is called a lollipop model, because its shape is constructed by a rounded section attached to the end of a stick. Contrary to what happens in three dimensions where chiral nematogens produce interesting and complex phases such as blue phases, the lack of molecular chirality of our model generates a richer phase diagram compared to the chiral system. We show numerical and some geometrical evidences that the lack of laterality of the non chiral model seems to provide more routes of molecular self-assembly, producing triatic, a random cluster and possibly a tetratic phase behavior which were not presented in the previous work. We support our conclusions using results obtained from isobaric and isochoric Monte Carlo simulations. Properties as the n-fold order parameters such as the nematic, tetratic and triatic as well as their correlation functions were used to characterize the phases. We also provide the Fourier transform of equilibrium configurations to analyze the n-fold symmetry characteristic of each phase.
Multi-Phase Field Models and Microstructural Evolution with Applications in Fuel Cell Technology
NASA Astrophysics Data System (ADS)
Davis, Ryan Scott
The solid oxide fuel cell (SOFC) has shown tremendous potential as an efficient energy conversion device that may be instrumental in the transition to renewable resources. However, commercialization is hindered by many degradation mechanisms that plague long term stability. In this dissertation, computation methods are used to explore the relationship between the microstructure of the fuel cell anode and performance critical metrics. The phase field method and standard modeling procedures are introduced using a classic model of spinodal decomposition. This is further developed into a complete, multi-phase modeling framework designed for the complex microstructural evolution of SOFC anode systems. High-temperature coarsening of the metallic phase in the state-of-the-art SOFC cermet anode is investigated using our phase field model. A systematic study into the effects of interface properties on microstructural evolution is accomplished by altering the contact angle between constituent phases. It is found that metrics of catalytic activity and conductivity display undesirable minima near the contact angle of conventional SOFC materials. These results suggest that tailoring the interface properties of the constituent phases could lead to a significant increase in the performance and lifetime of SOFCs. Supported-metal catalyst systems are investigated in the first detailed study of their long-term stability and application to SOFC anode design. Porous support structures are numerically sintered to mimic specific fabrication techniques, and these structures are then infiltrated with a nanoscale catalyst phase ranging from 2% to 21% loading. Initially, these systems exhibit enhanced potential for catalytic activity relative to conventional cells. However, extended evolution results in severe degradation, and we show that Ostwald ripening and particle migration are key kinetic processes. Strong geometric heterogeneity in the support structure via a novel approach to nanopore formation is proposed as a potential solution for catalyst stabilization.
NASA Astrophysics Data System (ADS)
Artini, C.; Castellero, A.; Baricco, M.; Buscaglia, M. T.; Carlini, R.
2018-05-01
Skutterudites are interesting compounds for thermoelectric applications. The main drawback in the synthesis of skutterudites by solidification of the melt is the occurrence of two peritectic reactions requiring long annealing times to form a single phase. Aim of this work is to investigate an alternative route for synthesis, based on rapid solidification by planar flow casting. The effect of cooling rate on phases formation and composition, as well as on structure, microstructure and mechanical properties of the filled Smy(FexNi1-x)4Sb12 (x = 0.45, 0.50, 0.70, 1) skutterudites was studied. Conversely to slowly cooled ingots, rapidly quenched ribbons show skutterudite as the main phase, suggesting that deep undercooling of the liquid prevents the nucleation of high temperature phases, such as (Fe,Ni)Sb and (Fe,Ni)Sb2. In as-quenched samples, a slightly out of equilibrium Sm content is revealed, which does not alter the position of the p/n boundary; nevertheless, it exerts an influence on crystallographic properties, such as the cell parameter and the shape of the Sb4 rings in the structure. As-quenched ribbons show a fine microstructure of the skutterudite phase (grain size of 2-20 μm), which only moderately coarsens after annealing at 873 K for 4 days. Vickers microhardness values (350-400 HV) of the skutterudite phase in as-quenched ribbons are affected by the presence of softer phases (i.e. Sb), which are homogeneously and finely dispersed within the sample. The skutterudite hardens after annealing as a consequence of a moderate grain growth, which limits the matrix effect due to the presence of additional phases.
Surface Phase Stability and Surfactant Behavior on InAsSb
NASA Astrophysics Data System (ADS)
Anderson, Evan M.
InAsSb and related III-As/III-Sb heterostructures are of technological interest for applications in long wavelength infrared optoelectronic devices. However, there remain challenges to growing high quality material for these devices due to the complex interaction between As and Sb. While this interaction has been the subject of intense study, little work has focused on how As and Sb behave at the material surface with even fewer investigations into the atomic scale details of the InAsSb surface. This is a major gap in current knowledge because these materials are typically grown via vapor deposition methods, one atomic layer at a time. Thus, all processes impacting the growth of the crystal and its resultant properties occur at the surface. Despite this, the atomic scale details of the surface phases and processes impacting the Sb-As interaction have not previously been reported. This dissertation investigates the surface As-Sb interaction at an atomistic scale and its modification through different surface chemistry to be used as a guide for future experiments to improve the quality InAsSb of heterostructures by manipulating the surface phase during growth. In order to accomplish this, first principles calculations and experiments are used to investigate this system from three complimentary vantage points. First, the influence of Sb on the InAs surface and the stable surface phases of this system are investigated. Next, a similar approach is used on the opposite compositional extreme of the InAsSb system: As on the surface of InSb. Finally, the interaction of As and Sb is modified by the use of Bi as a surfactant during growth of InAsSb films. The interaction between As and Sb is found to be driven through the formation of surface phases and Bi is found to alter this interaction. Phase diagrams of both Sb on InAs and As on InSb show that As and Sb are driven to intermix through the formation of alloyed surface phases. Additionally, these phases range from having bulk-like stoichiometry to being highly As or Sb rich for the full InAsSb compositional range, indicating that surface stoichiometry is a controllable parameter for InAsSb growth. Sb is shown to intermix with the InAs surface by roughening the surface in a process driven by a phase transition. This interaction between Sb and InAs is stronger than previously thought, which has implications for the crystal growth problem of compositional broadening of the interfaces of III-As/III-Sb heterostructures. Finally, applying Bi to the surface of InAsSb during growth shows that modifies the interaction between As and Sb by catalyzing the formation of InAs, which decreases Sb incorporation. The results of this dissertation lay the foundation for optimization of the crystal growth surface in order to improve the properties of InAsSb and arsenide/antimonide heterostructures.
1993-01-01
Xenopus egg extracts prepared before and after egg activation retain M- and S-phase specific activity, respectively. Staurosporine, a potent inhibitor of protein kinase, converted M-phase extracts into interphase- like extracts that were capable of forming nuclei upon the addition of sperm DNA. The nuclei formed in the staurosporine treated M-phase extract were incapable of replicating DNA, and they were unable to initiate replication upon the addition of S-phase extracts. Furthermore, replication was inhibited when the staurosporine-treated M- phase extract was added in excess to the staurosporine-treated S-phase extract before the addition of DNA. The membrane-depleted S-phase extract supported neither nuclear formation nor replication; however, preincubation of sperm DNA with these extracts allowed them to form replication-competent nuclei upon the addition of excess staurosporine- treated M-phase extract. These results demonstrate that positive factors in the S-phase extracts determined the initiation of DNA replication before nuclear formation, although these factors were unable to initiate replication after nuclear formation. PMID:8253833
Structural analysis of a fractured basement reservoir, central Yemen
NASA Astrophysics Data System (ADS)
Veeningen, Resi; Rice, Hugh; Schneider, Dave; Grasemann, Bernhard; Decker, Kurt
2013-04-01
The Pan-African Arabian-Nubian Shield (ANS), within which Yemen lies, formed as a result of Neoproterozoic collisional events between c. 870-550 Ma. Several subsequent phases of extension occurred, from the Mesozoic (due to the breakup of Gondwana) to the Recent (forming the Gulf of Aden and the Red Sea). These resulted in the formation of numerous horst- and-graben structures and the development of fractured basement reservoirs in the southeast part of the ANS. Two drill cores from the Mesozoic Marib-Shabwa Basin, central Yemen, penetrated the upper part of the Pan-African basement. The cores show both a lithological and structural inhomogeneity, with variations in extension-related deformation structures such as dilatational breccias, open fractures and closed veins. At least three deformation events have been recognized: D1) Ductile to brittle NW-SE directed faulting during cooling of a granitic pluton. U-Pb zircon ages revealed an upper age limit for granite emplacement at 627±3.5 Ma. As these structures show evidence for ductile deformation, this event must have occurred during the Ediacaran, shortly after intrusion, since Rb/Sr and (U-Th)/He analyses show that subsequent re-heating of the basement did not take place. D2) The development of shallow dipping, NNE-SSW striking extensional faults that formed during the Upper Jurassic, simultaneously with the formation of the Marib-Shabwa Basin. These fractures are regularly cross-cut by D3. D3) Steeply dipping NNE-SSW to ENE-WSW veins that are consistent with the orientation of the opening of the Gulf of Aden. These faults are the youngest structures recognized. The formation of ductile to brittle faults in the granite (D1) resulted in a hydrothermally altered zone ca. 30 cm wide replacing (mainly) plagioclase with predominantly chlorite, as well as kaolinite and heavy element minerals such as pyrite. The alteration- induced porosity has an average value of 20%, indicating that the altered zone is potentially a good fluid-flow pathway and also a suitable reservoir for hydrocarbons. The youngest faults (D3) are often filled with calcite, (saddle) dolomite and pyrite that formed at temperatures between 100 and 150° C. Fluid inclusions within calcite have abundant hydrocarbon-rich components indicating that these veins formed synchronously with hydrocarbon migration. The same minerals were deposited within the ductile to brittle faults within the granite (formed during D1). This resulted in significant porosity reduction, especially in the faults themselves, reducing the fluid flow efficiency within the altered granite, locking up hydrocarbons and reducing the reservoir quality.
NASA Astrophysics Data System (ADS)
Gailhanou, H.; Lerouge, C.; Debure, M.; Gaboreau, S.; Gaucher, E. C.; Grangeon, S.; Grenèche, J.-M.; Kars, M.; Madé, B.; Marty, N. C. M.; Warmont, F.; Tournassat, C.
2017-01-01
The physical and chemical properties of clay-rocks are, at least partly, controlled by the chemical composition of their pore water. In evaluating the concept of disposing of radioactive waste in clay-rock formations, determining pore water composition is an important step in predicting how a clay-rock will behave over time and as a function of external forces, such as chemical and thermal perturbations. This study aimed to assess experimental and modeling methodology to calculate pore water composition in a clay-rock as a function of temperature (up to 80 °C). Hydrothermal alteration experiments were carried out on clay-rock samples. We conducted comprehensive chemical and mineralogical characterization of the material before and after reaction, and monitored how the chemical parameters in the liquid and gas phases changed. We compared the experimental results with the a priori predictions made by various models that differed in their hypotheses on the reactivity of the minerals present in the system. Thermodynamic equilibrium could not be assessed unequivocally in these experiments and most of the predicted mineralogy changes were too subtle to be tracked quantitatively. However, from observing the neo-formation of minerals such as goethite we were able to assess the prominent role of Fe-bearing phases in the outcome of the experiments, especially for the measured pH and pCO2 values. After calibrating the amount of reacting Fe-bearing phases with our data, we proposed a thermodynamic model that was capable of predicting the chemical evolution of the systems under investigation as well as the evolution of other systems already published in the literature, with the same clay-rock material but with significant differences in experimental conditions.
Guada, Guillermo; Camarero, J. Julio; Sánchez-Salguero, Raúl; Cerrillo, Rafael M. Navarro
2016-01-01
Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine) located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width) and intra-annual (xylogenesis) scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized 3 years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die. PMID:27066053
Cassini’s Discoveries at Saturn and the Proposed Cassini Solstice Mission
NASA Astrophysics Data System (ADS)
Pappalardo, R. T.; Spilker, L. J.; Mitchell, R. T.; Cuzzi, J.; Gombosi, T. I.; Ingersoll, A. P.; Lunine, J. I.
2009-12-01
Understanding of the Saturn system has been greatly enhanced by the Cassini-Huygens mission. Fundamental discoveries have altered our views of Saturn, Titan and the other icy satellites, the rings, and magnetosphere of the system. Key discoveries include: water-rich plumes emanating from the south pole of Enceladus; hints of possible activity on Dione and of rings around Rhea; a methane hydrological cycle on Titan complete with fluvial erosion, lakes, and seas of liquid methane and ethane; non-axisymmetric ring microstructure in all moderate optical depth rings; south polar vortices on Saturn; and a unique magnetosphere that shares characteristics with both Earth’s and Jupiter’s magnetospheres. These new discoveries are directly relevant to current Solar System science goals including: planet and satellite formation processes, formation of gas giants, the nature of organic material, the history of volatiles, habitable zones and processes for life, processes that shape planetary bodies, and evolution of exoplanets. The proposed 7-year Cassini Solstice Mission would address new questions that have arisen during the Cassini Prime and Equinox Missions, and would observe seasonal and temporal change in the Saturn system to prepare for future missions to Saturn, Titan, and Enceladus. The proposed Cassini Solstice Mission would provide new science in three ways. First, it would observe seasonally and temporally dependent processes on Saturn, Titan and other icy satellites, and within the rings and magnetosphere, in a hitherto unobserved seasonal phase from equinox to solstice. Second, it would address new questions that have arisen during the mission thus far, providing qualitatively new measurements (e.g. of Enceladus and Titan) which could not be accommodated in the earlier mission phases. Tthird, it would conduct a close-in mission phase at Saturn that would provide unique science including comparison to the Juno observations at Jupiter.
Quantitative phase-contrast digital holographic microscopy for cell dynamic evaluation
NASA Astrophysics Data System (ADS)
Yu, Lingfeng; Mohanty, Samarendra; Berns, Michael W.; Chen, Zhongping
2009-02-01
The laser microbeam uses lasers to alter and/or to ablate intracellular organelles and cellular and tissue samples, and, today, has become an important tool for cell biologists to study the molecular mechanism of complex biological systems by removing individual cells or sub-cellular organelles. However, absolute quantitation of the localized alteration/damage to transparent phase objects, such as the cell membrane or chromosomes, was not possible using conventional phase-contrast or differential interference contrast microscopy. We report the development of phase-contrast digital holographic microscopy for quantitative evaluation of cell dynamic changes in real time during laser microsurgery. Quantitative phase images are recorded during the process of laser microsurgery and thus, the dynamic change in phase can be continuously evaluated. Out-of-focus organelles are re-focused by numerical reconstruction algorithms.
Bendersky, L. A.; Boettinger, W. J.
1993-01-01
Possible transformation paths that involve no long range diffusion and their corresponding microstructural details were predicted by Bendersky, Roytburd, and Boettinger [J. Res. Natl. Inst. Stand. Technol. 98, 561 (1993)] for Ti-Al-Nb alloys cooled from the high temperature BCC/B2 phase field into close-packed orthorhombic or hexagonal phase fields. These predictions were based on structural and symmetry relations between the known phases. In the present paper experimental TEM results show that two of the predicted transformation paths are indeed followed for different alloy compositions. For Ti-25Al-12.5Nb (at%), the path includes the formation of intermediate hexagonal phases, A3 and DO19, and subsequent formation of a metastable domain structure of the low-temperature O phase. For alloys close to Ti-25Al-25Nb (at%), the path involves an intermediate B19 structure and subsequent formation of a translational domain structure of the O phase. The path selection depends on whether B2 order forms in the high temperature cubic phase prior to transformation to the close-packed structure. The paper also analyzes the formation of a two-phase modulated microstructure during long term annealing at 700 °C. The structure forms by congruent ordering of the DO19 phase to the O phase, and then reprecipitation of the DO19 phase, possibly by a spinodal mechanism. The thermodynamics underlying the path selection and the two-phase formation are also discussed. PMID:28053488
Nanoparticle growth by particle-phase chemistry
NASA Astrophysics Data System (ADS)
Apsokardu, Michael J.; Johnston, Murray V.
2018-02-01
The ability of particle-phase chemistry to alter the molecular composition and enhance the growth rate of nanoparticles in the 2-100 nm diameter range is investigated through the use of a kinetic growth model. The molecular components included are sulfuric acid, ammonia, water, a non-volatile organic compound, and a semi-volatile organic compound. Molecular composition and growth rate are compared for particles that grow by partitioning alone vs. those that grow by a combination of partitioning and an accretion reaction in the particle phase between two organic molecules. Particle-phase chemistry causes a change in molecular composition that is particle diameter dependent, and when the reaction involves semi-volatile molecules, the particles grow faster than by partitioning alone. These effects are most pronounced for particles larger than about 20 nm in diameter. The modeling results provide a fundamental basis for understanding recent experimental measurements of the molecular composition of secondary organic aerosol showing that accretion reaction product formation increases linearly with increasing aerosol volume-to-surface-area. They also allow initial estimates of the reaction rate constants for these systems. For secondary aerosol produced by either OH oxidation of the cyclic dimethylsiloxane (D5) or ozonolysis of β-pinene, oligomerization rate constants on the order of 10-3 to 10-1 M-1 s-1 are needed to explain the experimental results. These values are consistent with previously measured rate constants for reactions of hydroperoxides and/or peroxyacids in the condensed phase.
NASA Technical Reports Server (NTRS)
Holley, D. C.; Winger, C. M.; Deroshia, C. W.; Heinold, M. P.; Edgar, D. M.; Kinney, N. E.; Langston, S. E.; Markley, C. L.; Anthony, J. A.
1981-01-01
The effects of environmental synchronizers upon circadian rhythmic stability in man and the deleterious alterations in performance and which result from changes in this stability are points of interest in a review of selected literature published between 1972 and 1980. A total of 2,084 references relevant to pilot performance and circadian phase alteration are cited and arranged in the following categories: (1) human performance, with focus on the effects of sleep loss or disturbance and fatigue; (2) phase shift in which ground based light/dark alteration and transmeridian flight studies are discussed; (3) shiftwork; (4)internal desynchronization which includes the effect of evironmental factors on rhythmic stability, and of rhythm disturbances on sleep and psychopathology; (5) chronotherapy, the application of methods to ameliorate desynchronization symptomatology; and (6) biorythm theory, in which the birthdate based biorythm method for predicting aircraft accident susceptability is critically analyzed. Annotations are provided for most citations.
Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage.
Wang, Hong; van Spyk, Elyse; Liu, Qiang; Geyfman, Mikhail; Salmans, Michael L; Kumar, Vivek; Ihler, Alexander; Li, Ning; Takahashi, Joseph S; Andersen, Bogi
2017-08-01
The epidermis is a highly regenerative barrier protecting organisms from environmental insults, including UV radiation, the main cause of skin cancer and skin aging. Here, we show that time-restricted feeding (RF) shifts the phase and alters the amplitude of the skin circadian clock and affects the expression of approximately 10% of the skin transcriptome. Furthermore, a large number of skin-expressed genes are acutely regulated by food intake. Although the circadian clock is required for daily rhythms in DNA synthesis in epidermal progenitor cells, RF-induced shifts in clock phase do not alter the phase of DNA synthesis. However, RF alters both diurnal sensitivity to UVB-induced DNA damage and expression of the key DNA repair gene, Xpa. Together, our findings indicate regulation of skin function by time of feeding and emphasize a link between circadian rhythm, food intake, and skin health. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dera, P.; Lavina, B.; Borkowski, L. A.; Downs, R. T.; Prewitt, C. T.; Prakapenka, V.; Rivers, M. L.; Sutton, S.; Boctor, N.
2008-12-01
Minerals with composition (Fe,Ni)xP, are rare, but important accessory phases present in iron and chondrite meteorites. The occurrence of these minerals in meteoritic samples is believed to originate either from the equilibrium condensation of protoplanetary materials taking place in solar nebulae or from crystallization processes in the cores of parent bodies. Fe-Ni phosphides are considered an important candidate for a minor phase present in Earth's core, and at least partially responsible for the observed core density deficit with respect to pure Fe. We report results of high-pressure high-temperature single-crystal X- ray diffraction experiments with end-members belonging to the (Fe,Ni,Co)2P family, including Fe2P, Ni2P and Co2P. A new phase transition to the Co2Si-type structure (allabogdanite) has been found in Fe2P barringerite at 8.0 GPa, upon heating. The high-pressure phase can be quenched metastably to ambient conditions and then, if heated again, it transforms back to barringerite. Ni2P barringerite does not undergo transformation to allabogdanite structure up to 50 GPa, but instead exhibits incongruent melting with formation of pyrite-type NiP2 and Ni-P glass. Our results indicate that the presence of allabogdanite in meteoritic samples places two important constraints on the thermodynamic history of the meteorite. First, it imposes a minimum pressure and temperature for the formation of the Fe2P, and additionally rules out any higher temperature low pressure alterations. If present in the Earth's core, Fe2P will have the allabogdanite rather than the barringerite structure. Crystal chemical trends in the compressibility of (Fe,Ni,Co)2P minerals, as well as polymorphic transition paths are analyzed in the context of Earth and planetary core composition and properties.
Miller, C E; Majewski, J; Watkins, E B; Kuhl, T L
2008-07-01
Cholera toxin is a highly efficient biotoxin, which is frequently used as a tool to investigate protein-membrane interactions and as a reporter for membrane rafts. Cholera toxin binds selectively to gangliosides with highest affinity to GM(1). However, the mechanism by which cholera toxin crosses the membrane remains unresolved. Using x-ray reflectivity and grazing incidence diffraction, we have been able to monitor the binding and penetration of cholera toxin into a model lipid monolayer containing the receptor GM(1) at the air-water interface. Very high toxin coverage was obtained allowing precise measurements of how toxin binding alters lipid packing. Grazing incidence x-ray diffraction revealed the coexistence of two monolayer phases after toxin binding. The first was identical to the monolayer before toxin binding. In regions where toxin was bound, a second membrane phase exhibited a decrease in order as evidenced by a larger area per molecule and tilt angle with concomitant thinning of the monolayer. These results demonstrate that cholera toxin binding induces the formation of structurally distinct, less ordered domains in gel phases. Furthermore, the largest decrease in lateral order to the monolayer occurred at low pH, supporting a low endosomal pH in the infection pathway. Surprisingly, at pH = 8 toxin penetration by the binding portion of the toxin, the B(5) pentamer, was also observed.
NASA Astrophysics Data System (ADS)
Melo, Elis Almeida; Magnabosco, Rodrigo
2017-11-01
The aim of this work is to study the influence of the heterogeneous nucleation site quantity, observed in different ferrite and austenite grain size samples, on the phase transformations that result in intermetallic phases in a UNS S31803 duplex stainless steel (DSS). Solution treatment was conducted for 1, 24, 96, or 192 hours at 1373 K (1100 °C) to obtain different ferrite and austenite grain sizes. After solution treatment, isothermal aging treatments for 5, 8, 10, 20, 30, or 60 minutes at 1123 K (850 °C) were performed to verify the influence of different amounts of heterogeneous nucleation sites in the kinetics of intermetallic phase formation. The sample solution treated for 1 hour, with the highest surface area between matrix phases, was the one that presented, after 60 minutes at 1123 K (850 °C), the smaller volume fraction of ferrite (indicative of greater intermetallic phase formation), higher volume of sigma (that was present in coral-like and compact morphologies), and chi phase. It was not possible to identify which was the first nucleated phase, sigma or chi. It was also observed that the phase formation kinetics is higher for the sample solution treated for 1 hour. It was evidenced that, from a certain moment on, the chi phase begins to be consumed due to the sigma phase formation, and the austenite/ferrite interface presents higher S V for all solution treatment times. It was also observed that intermetallic phases form preferably in austenite-ferrite interfaces, although the higher occupation rate occurs at triple junction ferrite-ferrite-ferrite. It was verified that there was no saturation of nucleation sites in any interface type nor triple junction, and the equilibrium after 1 hour of aging at 1123 K (850 °C) was not achieved. It was then concluded that sigma phase formation is possibly controlled by diffusional processes, without saturation of nucleation sites.
Unstable genomes elevate transcriptome dynamics
Stevens, Joshua B.; Liu, Guo; Abdallah, Batoul Y.; Horne, Steven D.; Ye, Karen J.; Bremer, Steven W.; Ye, Christine J.; Krawetz, Stephen A.; Heng, Henry H.
2015-01-01
The challenge of identifying common expression signatures in cancer is well known, however the reason behind this is largely unclear. Traditionally variation in expression signatures has been attributed to technological problems, however recent evidence suggests that chromosome instability (CIN) and resultant karyotypic heterogeneity may be a large contributing factor. Using a well-defined model of immortalization, we systematically compared the pattern of genome alteration and expression dynamics during somatic evolution. Co-measurement of global gene expression and karyotypic alteration throughout the immortalization process reveals that karyotype changes influence gene expression as major structural and numerical karyotypic alterations result in large gene expression deviation. Replicate samples from stages with stable genomes are more similar to each other than are replicate samples with karyotypic heterogeneity. Karyotypic and gene expression change during immortalization is dynamic as each stage of progression has a unique expression pattern. This was further verified by comparing global expression in two replicates grown in one flask with known karyotypes. Replicates with higher karyotypic instability were found to be less similar than replicates with stable karyotypes. This data illustrates the karyotype, transcriptome, and transcriptome determined pathways are in constant flux during somatic cellular evolution (particularly during the macroevolutionary phase) and this flux is an inextricable feature of CIN and essential for cancer formation. The findings presented here underscore the importance of understanding the evolutionary process of cancer in order to design improved treatment modalities. PMID:24122714
Characterization of a water-solid interaction in a partially ordered system.
Chakravarty, Paroma; Lubach, Joseph W
2013-11-04
GNE068-PC, a developmental compound, was previously characterized to be mesomorphous, i.e. having long-range order associated with significant local molecular disorder (Chakravarty et. al., Mol. Pharmaceutics, accepted). The compound was exposed to moisture under different relative humidity conditions ranging from 11% to 60% RH at room temperature (RT) for 7 days, and the resultant product phases were characterized. The partially ordered sample progressively lost crystallinity (long-range order) and birefringence (orientational order) upon exposure to increasing RH conditions, leading to the formation of a completely disordered amorphous phase at 60% RH (RT). Long-range positional order was irrecoverable even after moisture removal from the sample exposed to 60% RH. This was attributed to replacement of residual ethyl acetate by water, the former being critical for maintenance of long-range order in the material. In addition, water sorption appeared to irreversibly alter the molecular orientation, thereby affecting sample birefringence. Solid-state NMR revealed increases in (1)H and (13)C spin-lattice relaxation times (T1) going from the mesomorphous phase to the fully amorphous phase. This was indicative of reduction in lattice mobility, likely due to the decreased motion of the aromatic portions of the molecule, in particular C17, which showed the most dramatic increase in (13)C T1. This is likely due to decrease in available free volume upon water sorption. Drying of the hydrated disordered phase showed somewhat greater mobility than the hydrated phase, likely due to increased relative free volume through removal of water. A water-solid interaction therefore irreversibly changed the solid-state makeup of GNE068-PC.
Reactions between palladium and gallium arsenide: Bulk versus thin-film studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, J.; Hsieh, K.; Schulz, K.J.
1988-01-01
Reactions between Pd and GaAs have been studied using bulk-diffusion couples of Pd (approx.0.6 mm thick)/GaAs and thin-film Pd (50 and 160 nm)/GaAs samples. The sequence of phase formation at 600 /sup 0/C between bulk Pd and GaAs was established. Initial formation of the solution phase ..mu.. and the ternary phase T does not represent the stable configuration. The stable configuration is GaAs chemically bondepsilonchemically bondlambdachemically bond..gamma..chemically bond..nu..chemically bondPd and is termed the diffusion path between GaAs and Pd. The sequence of phase formation for the bulk-diffusion couples is similar at 500 /sup 0/C. Phase formation for the thin-film Pd/GaAsmore » specimens was studied at 180, 220, 250, 300, 350, 400, 450, 600, and 1000 /sup 0/C for various annealing times. The sequence of phase formation obtained from the thin-film experiments is rationalized readily from the known ternary phase equilibria of Ga--Pd--As and the results from the bulk-diffusion couples of Pd/GaAs. The thin-film results reported in the literature are likewise rationalized. The diffusion path concept provides a useful guide in understanding the phase formation in Pd--GaAs interface or any other M--GaAs interface. This information is important in designing a uniform, stable contact for the metallization of GaAs.« less
Abdel-Halim, H I; Natarajan, A T; Mullenders, L H F; Boei, J J W A
2005-04-15
Chromatid interchanges induced by the DNA cross-linking agent mitomycin C (MMC) are over-represented in human chromosomes containing large heterochromatic regions. We found that nearly all exchange breakpoints of chromosome 9 are located within the paracentromeric heterochromatin and over 70% of exchanges involving chromosome 9 are between its homologues. We provide evidence that the required pairing of chromosome 9 heterochromatic regions occurs in G(0)/G(1) and S-phase cells as a result of an active cellular process initiated upon MMC treatment. By contrast, no pairing was observed for a euchromatic paracentromeric region of the equal-sized chromosome 8. The MMC-induced pairing of chromosome 9 heterochromatin is observed in a subset of cells; its percentage closely mimics the frequency of homologous interchanges found at metaphase. Moreover, the absence of pairing in cells derived from XPF patients correlates with an altered spectrum of MMC-induced exchanges. Together, the data suggest that the heterochromatin-specific pairing following MMC treatment reflects the initiation of DNA cross-link repair and the formation of exchanges.
Diagenesis in the Murray Formation, Gale Crater, Mars
NASA Technical Reports Server (NTRS)
Rampe, E. B.; Ming, D. W.; Morris, R. V.; Blake, D. F.; Bristow, T. F.; Chipera. S. J.; Vaniman, D. T.; Yen, A. S.; Grotzinger, J. P.; Downs, R. T.;
2016-01-01
The Mars Science Laboratory (MSL) Curiosity rover began investigating the rocks of Mt. Sharp in September 2014. The Murray formation is the lowermost unit, which is mostly comprised of finely laminated mudstones, suggesting these sediments were deposited in a lacustrine environment. It is important to characterize the geochemical and mineralogical trends throughout the Murray Fm to interpret the aqueous conditions of the ancient lake, the sources of the lake sediments, and post-depositional alteration processes. Four samples have been drilled from the Murray Fm so far: Confidence Hills, Mojave 2, and Telegraph Peak were collected from the Pahrump Hills member - the basal portion of the Murray Fm, and Buckskin was collected in the Marias Pass region (Fig. 1). The drill fines were delivered to the instruments inside the rover, including the CheMin instrument, a combination X-ray diffractometer and X-ray fluorescence spectrometer. Rietveld refinements and FULLPAT analyses of 1D CheMin XRD patterns were performed to determine quantitative abundances of minerals and amor-phous phases and the unit cell parameters of minerals present in abundances greater than 4-5 wt.%.
Kurup, Naina; Kono, Karina
2017-01-01
Neural circuits are dynamic, with activity-dependent changes in synapse density and connectivity peaking during different phases of animal development. In C. elegans, young larvae form mature motor circuits through a dramatic switch in GABAergic neuron connectivity, by concomitant elimination of existing synapses and formation of new synapses that are maintained throughout adulthood. We have previously shown that an increase in microtubule dynamics during motor circuit rewiring facilitates new synapse formation. Here, we further investigate cellular control of circuit rewiring through the analysis of mutants obtained in a forward genetic screen. Using live imaging, we characterize novel mutations that alter cargo binding in the dynein motor complex and enhance anterograde synaptic vesicle movement during remodeling, providing in vivo evidence for the tug-of-war between kinesin and dynein in fast axonal transport. We also find that a casein kinase homolog, TTBK-3, inhibits stabilization of nascent synapses in their new locations, a previously unexplored facet of structural plasticity of synapses. Our study delineates temporally distinct signaling pathways that are required for effective neural circuit refinement. PMID:28636662
Nuñez, Illyce; Rodriguez Pino, Marbelys; Wiley, David J; Das, Maitreyi E; Chen, Chuan; Goshima, Tetsuya; Kume, Kazunori; Hirata, Dai; Toda, Takashi; Verde, Fulvia
2016-07-30
RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.
Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Wallace, P.J.; Grimes, Craig B.; Klein, E.M.
2011-01-01
Most geochemical variability in MOR basalts is consistent with low- to moderate-pressure fractional crystallization of various mantle-derived parental melts. However, our geochemical data from MOR high-silica glasses, including new volatile and oxygen isotope data, suggest that assimilation of altered crustal material plays a significant role in the petrogenesis of dacites and may be important in the formation of basaltic lavas at MOR in general. MOR high-silica andesites and dacites from diverse areas show remarkably similar major element trends, incompatible trace element enrichments, and isotopic signatures suggesting similar processes control their chemistry. In particular, very high Cl and elevated H2O concentrations and relatively light oxygen isotope ratios (~ 5.8‰ vs. expected values of ~ 6.8‰) in fresh dacite glasses can be explained by contamination of magmas from a component of ocean crust altered by hydrothermal fluids. Crystallization of silicate phases and Fe-oxides causes an increase in δ18O in residual magma, but assimilation of material initially altered at high temperatures results in lower δ18O values. The observed geochemical signatures can be explained by extreme fractional crystallization of a MOR basalt parent combined with partial melting and assimilation (AFC) of amphibole-bearing altered oceanic crust. The MOR dacitic lavas do not appear to be simply the extrusive equivalent of oceanic plagiogranites. The combination of partial melting and assimilation produces a distinct geochemical signature that includes higher incompatible trace element abundances and distinct trace element ratios relative to those observed in plagiogranites.
Type V Collagen is Persistently Altered after Inguinal Hernia Repair.
Lorentzen, L; Henriksen, N A; Juhl, P; Mortensen, J H; Ågren, M S; Karsdal, M A; Jorgensen, L N
2018-04-01
Hernia formation is associated with alterations of collagen metabolism. Collagen synthesis and degradation cause a systemic release of products, which are measurable in serum. Recently, we reported changes in type V and IV collagen metabolisms in patients with inguinal and incisional hernia. The aim of this study was to determine if the altered collagen metabolism was persistent after hernia repair. Patients who had undergone repairs for inguinal hernia (n = 11) or for incisional hernia (n = 17) were included in this study. Patients who had undergone elective cholecystectomy served as controls (n = 10). Whole venous blood was collected 35-55 months after operation. Biomarkers for type V collagen synthesis (Pro-C5) and degradation (C5M) and those for type IV collagen synthesis (P4NP) and degradation (C4M2) were measured by a solid-phase competitive assay. The turnover of type V collagen (Pro-C5/C5M) was slightly higher postoperatively when compared to preoperatively in the inguinal hernia group (P = 0.034). In addition, the results revealed a postoperatively lower type V collagen turnover level in the inguinal hernia group compared to controls (P = 0.012). In the incisional hernia group, the type V collagen turnover was higher after hernia repair (P = 0.004) and the postoperative turnover level was not different from the control group (P = 0.973). Patients with an inguinal hernia demonstrated a systemic and persistent type V collagen turnover alteration. This imbalance of the collagen metabolism may be involved in the development of inguinal hernias.
NASA Astrophysics Data System (ADS)
Macdonald, Ray; Bagiński, Bogusław; Kartashov, Pavel M.; Zozulya, Dmitry; Dzierżanowski, Piotr; Jokubauskas, Petras
2015-12-01
The results are presented of a textural and mineral chemical study of a previously undescribed type of hydrothermal alteration of chevkinite-(Ce) which occurs in a syenitic pegmatite from the Vishnevye Mountains, Urals Region, Russia. The progressive alteration of the chevkinite to a bastnäsite-(Ce)-ilmenite-columbite-(Fe) assemblage through a series of texturally complex intermediate stages is described and electron microprobe analyses are given of all the major phases. Unusual Nb ± Th-rich phases formed late in the alteration sequence provide evidence of local Nb mobility. The main compositional fluxes are traced, especially of the REE, HFSE, Th and U. It appears that almost all elements, with the exception of La, released from the chevkinite-(Ce) were reincorporated into later phases, such that they did not leave the alteration crust in significant amounts. The hydrothermal fluids are inferred to have been F- and CO2-rich, with variable levels of Ca activity, and with fO2 mainly between the nickel-nickel oxide and magnetite-hematite buffers. This occurrence represents a new paragenesis for a columbite-group mineral.
NASA Technical Reports Server (NTRS)
Zalesak, J.
1975-01-01
A dynamic substructuring analysis, utilizing the component modes technique, of the 1/8 scale space shuttle orbiter finite element model is presented. The analysis was accomplished in 3 phases, using NASTRAN RIGID FORMAT 3, with appropriate Alters, on the IBM 360-370. The orbiter was divided into 5 substructures, each of which was reduced to interface degrees of freedom and generalized normal modes. The reduced substructures were coupled to yield the first 23 symmetric free-free orbiter modes, and the eigenvectors in the original grid point degree of freedom lineup were recovered. A comparison was made with an analysis which was performed with the same model using the direct coordinate elimination approach. Eigenvalues were extracted using the inverse power method.
NASA Astrophysics Data System (ADS)
Taucher, Jan; Stange, Paul; Algueró-Muñiz, María; Bach, Lennart T.; Nauendorf, Alice; Kolzenburg, Regina; Büdenbender, Jan; Riebesell, Ulf
2018-05-01
Particle aggregation and the consequent formation of marine snow alter important properties of biogenic particles (size, sinking rate, degradability), thus playing a key role in controlling the vertical flux of organic matter to the deep ocean. However, there are still large uncertainties about rates and mechanisms of particle aggregation, as well as the role of plankton community structure in modifying biomass transfer from small particles to large fast-sinking aggregates. Here we present data from a high-resolution underwater camera system that we used to observe particle size distributions and formation of marine snow (aggregates >0.5 mm) over the course of a 9-week in situ mesocosm experiment in the Eastern Subtropical North Atlantic. After an oligotrophic phase of almost 4 weeks, addition of nutrient-rich deep water (650 m) initiated the development of a pronounced diatom bloom and the subsequent formation of large marine snow aggregates in all 8 mesocosms. We observed a substantial time lag between the peaks of chlorophyll a and marine snow biovolume of 9-12 days, which is much longer than previously reported and indicates a marked temporal decoupling of phytoplankton growth and marine snow formation during our study. Despite this time lag, our observations revealed substantial transfer of biomass from small particle sizes (single phytoplankton cells and chains) to marine snow aggregates of up to 2.5 mm diameter (ESD), with most of the biovolume being contained in the 0.5-1 mm size range. Notably, the abundance and community composition of mesozooplankton had a substantial influence on the temporal development of particle size spectra and formation of marine snow aggregates: While higher copepod abundances were related to reduced aggregate formation and biomass transfer towards larger particle sizes, the presence of appendicularia and doliolids enhanced formation of large marine snow. Furthermore, we combined in situ particle size distributions with measurements of particle sinking velocity to compute instantaneous (potential) vertical mass flux. However, somewhat surprisingly, we did not find a coherent relationship between our computed flux and measured vertical mass flux (collected by sediment traps in 15 m depth). Although the onset of measured vertical flux roughly coincided with the emergence of marine snow, we found substantial variability in mass flux among mesocosms that was not related to marine snow numbers, and was instead presumably driven by zooplankton-mediated alteration of sinking biomass and export of small particles (fecal pellets). Altogether, our findings highlight the role of zooplankton community composition and feeding interactions on particle size spectra and formation of marine snow aggregates, with important implications for our understanding of particle aggregation and vertical flux of organic matter in the ocean.
NASA Astrophysics Data System (ADS)
Carrino, Thais Andressa; Crósta, Alvaro Penteado; Toledo, Catarina Labouré Bemfica; Silva, Adalene Moreira
2018-02-01
Remote sensing is a strategic key tool for mineral exploration, due to its capacity of detecting hydrothermal alteration minerals or alteration mineral zones associated with different types of mineralization systems. A case study of an epithermal system located in southern Peru is presented, aimed at the characterization of mineral assemblies for discriminating potential high sulfidation epithermal targets, using hyperspectral imagery integrated with petrography, XRD and magnetic data. HyMap images were processed using the Mixture Tuned Matched Filtering (MTMF) technique for producing alteration map in the Chapi Chiara epithermal gold prospect. Extensive areas marked by advanced argillic alteration (alunite-kaolinite-dickite ± topaz) were mapped in detail, as well as limited argillic (illite-smectite) and propylitic (chlorite spectral domain) alteration. The magmatic-hydrothermal processes responsible for the formation of hypogene minerals were also related to the destruction of ferrimagnetic minerals (e.g., magnetite) of host rocks such as andesite, and the remobilization/formation of paramagnetic Fe-Ti oxides (e.g., rutile, anatase). The large alteration zones of advanced argillic alteration are controlled by structures related to a regional NW-SE trend, and also by local NE-SW and ENE-WSW ones.
Wallula Basalt Pilot Demonstration Project: Post-injection Results and Conclusions
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrail, Bernard Pete; Schaef, Herbert T.; Spane, Frank A.
Deep underground geologic formations are emerging as a reasonable option for long-term storage of CO 2, including large continental flood basalt formations. At the GHGT-11 and GHGT-12 conferences, progress was reported on the initial phases for Wallula Basalt Pilot demonstration test (located in Eastern Washington state), where nearly 1,000 metric tons of CO 2 were injected over a 3-week period during July/August 2013. The target CO 2 injection intervals were two permeable basalt interflow reservoir zones with a combined thickness of ~20 m that occur within a layered basalt sequence between a depth of 830-890 m below ground surface. Duringmore » the two-year post-injection period, downhole fluid samples were periodically collected during this post-injection monitoring phase, coupled with limited wireline borehole logging surveys that provided indirect evidence of on-going chemical geochemical reactions/alterations and CO 2 disposition. A final detailed post-closure field characterization program that included downhole fluid sampling, and performance of hydrologic tests and wireline geophysical surveys. Included as part of the final wireline characterization activities was the retrieval of side-wall cores from within the targeted injection zones. These cores were examined for evidence of in-situ mineral carbonization. Visual observations of the core material identified small globular nodules, translucent to yellow in color, residing within vugs and small cavities of the recovered basalt side-wall cores, which were not evident in pre-injection side-wall cores obtained from the native basalt formation. Characterization by x-ray diffraction identified these nodular precipitates as ankerite, a commonly occurring iron and calcium rich carbonate. Isotopic characterization (δ 13C, δ 18O) conducted on the ankerite nodules indicate a distinct isotopic signature that is closely aligned with that of the injected CO 2. Both the secondary mineral nodules and injected CO 2 are measurably different from the isotopic content of basalt, injection zone groundwater and for naturally occurring calcite. Final post-injection wireline geophysical logging results also indicate the presence of free-phase CO 2 at the top of the two injection interflow zones, with no vertical migration of CO 2 above the injection horizons. Furthermore, these findings are significant and demonstrate the feasibility of sequestering CO 2 in a basalt formation.« less
Wallula Basalt Pilot Demonstration Project: Post-injection Results and Conclusions
McGrail, Bernard Pete; Schaef, Herbert T.; Spane, Frank A.; ...
2017-08-18
Deep underground geologic formations are emerging as a reasonable option for long-term storage of CO 2, including large continental flood basalt formations. At the GHGT-11 and GHGT-12 conferences, progress was reported on the initial phases for Wallula Basalt Pilot demonstration test (located in Eastern Washington state), where nearly 1,000 metric tons of CO 2 were injected over a 3-week period during July/August 2013. The target CO 2 injection intervals were two permeable basalt interflow reservoir zones with a combined thickness of ~20 m that occur within a layered basalt sequence between a depth of 830-890 m below ground surface. Duringmore » the two-year post-injection period, downhole fluid samples were periodically collected during this post-injection monitoring phase, coupled with limited wireline borehole logging surveys that provided indirect evidence of on-going chemical geochemical reactions/alterations and CO 2 disposition. A final detailed post-closure field characterization program that included downhole fluid sampling, and performance of hydrologic tests and wireline geophysical surveys. Included as part of the final wireline characterization activities was the retrieval of side-wall cores from within the targeted injection zones. These cores were examined for evidence of in-situ mineral carbonization. Visual observations of the core material identified small globular nodules, translucent to yellow in color, residing within vugs and small cavities of the recovered basalt side-wall cores, which were not evident in pre-injection side-wall cores obtained from the native basalt formation. Characterization by x-ray diffraction identified these nodular precipitates as ankerite, a commonly occurring iron and calcium rich carbonate. Isotopic characterization (δ 13C, δ 18O) conducted on the ankerite nodules indicate a distinct isotopic signature that is closely aligned with that of the injected CO 2. Both the secondary mineral nodules and injected CO 2 are measurably different from the isotopic content of basalt, injection zone groundwater and for naturally occurring calcite. Final post-injection wireline geophysical logging results also indicate the presence of free-phase CO 2 at the top of the two injection interflow zones, with no vertical migration of CO 2 above the injection horizons. Furthermore, these findings are significant and demonstrate the feasibility of sequestering CO 2 in a basalt formation.« less
NASA Technical Reports Server (NTRS)
Shore, Steven N.; Ferrini, Federico; Palla, Francesco
1987-01-01
The evolution of models for star formation in galaxies with disk and halo components is discussed. Two phases for the halo (gas and stars) and three for the disk (including clouds) are used in these calculations. The star-formation history is followed using nonlinear phase-coupling models which completely determine the populations of the phases as a function of time. It is shown that for a wide range of parameters, including the effects of both spontaneous and stimulated star formation and mass exchange between the spatial components of the system, the observed chemical history of the galaxy can easily be obtained. The most sensitive parameter in the detailed metallicity and star-formation history for the system is the rate of return of gas to the diffuse phase upon stellar death.
2015-01-01
Phosphatidycholines (PC) with two saturated acyl chains (e.g., dipalmitoyl) mimic natural sphingomyelin (SM) by promoting raft formation in model membranes. However, sphingoid-based lipids, such as SM, rather than saturated-chain PCs have been implicated as key components of lipid rafts in biomembranes. These observations raise questions about the physical packing properties of the phase states that can be formed by these two major plasma membrane lipids with identical phosphocholine headgroups. To investigate, we developed a monolayer platform capable of monitoring changes in surface fluorescence by acquiring multiple spectra during measurement of a lipid force–area isotherm. We relied on the concentration-dependent emission changes of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-labeled PC to detect nanoscale alterations in lipid packing and phase state induced by monolayer lateral compression. The BODIPY-PC probe contained an indacene ring with four symmetrically located methyl (Me) substituents to enhance localization to the lipid hydrocarbon region. Surface fluorescence spectra indicated changes in miscibility even when force–area isotherms showed no deviation from ideal mixing behavior in the surface pressure versus cross-sectional molecular area response. We detected slightly better mixing of Me4-BODIPY-8-PC with the fluid-like, liquid expanded phase of 1-palmitoyl-2-oleoyl-PC compared to N-oleoyl-SM. Remarkably, in the gel-like, liquid condensed phase, Me4-BODIPY-8-PC mixed better with N-palmitoyl-SM than dipalmitoyl-PC, suggesting naturally abundant SMs with saturated acyl chains form gel-like lipid phase(s) with enhanced ability to accommodate deeply embedded components compared to dipalmitoyl-PC gel phase. The findings reveal a fundamental difference in the lateral packing properties of SM and PC that occurs even when their acyl chains match. PMID:24564829
Ionic liquids: solvents and sorbents in sample preparation.
Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L
2018-01-01
The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis, structure stability and magnetic properties of nanocrystalline Ag-Ni alloy
NASA Astrophysics Data System (ADS)
Santhi, Kalavathy; Thirumal, E.; Karthick, S. N.; Kim, Hee-Je; Nidhin, Marimuthu; Narayanan, V.; Stephen, A.
2012-05-01
Silver-nickel alloy nanoparticles with an average size of 30-40 nm were synthesized by chemically reducing the mixture of silver and nickel salts using sodium borohydride. The structure and the magnetic properties of the alloy samples with different compositions were investigated. The phase stability of the material was analysed after annealing the sample in vacuum at various temperatures. The material exhibits single fcc phase which is stable up to 400 °C and Ni precipitation sets in when the sample is annealed to 500 °C. The thermal analysis using DSC was carried out to confirm the same. The alloy compositions are found to be in close correlation with the metal salt ratios in the precursors. The synthesized samples exhibit weak paramagnetic to ferromagnetic behaviour. The magnetic measurements reveal that by adjusting the precursor ratio, the Ni content in the material can be altered and hence its magnetic properties tailored to suit specific requirements. The formation of Ag-Ni alloy is confirmed by the observed Curie temperature from the magneto thermogram. Annealing the sample helps to produce significant enhancement in the magnetization of the material.
Mouri, Abdelkader; Legrand, Philippe; El Ghzaoui, Abdeslam; Dorandeu, Christophe; Maurel, Jean Claude; Devoisselle, Jean-Marie
2016-04-11
Lithium biocompatible microemulsion based on Peceol(®), lecithin, ethanol and water was studied in attempt to identify the optimal compositions in term of drug content, physicochemical properties and stability. Lithium solubilization in microemulsion was found to be compatible with a drug-surfactant binding model. Lithium ions were predominantly solubilized within lecithin head group altering significantly the interfacial properties of the system. Pseudo-ternary phase diagrams of drug free and drug loaded microemulsions were built at constant ethanol/lecithin weight ratio (40/60). Lithium loaded microemulsion has totally disappeared in the Peceol(®) rich part of phase diagram; critical fractions of lecithin and ethanol were required for the formation of stable microemulsion. The effect of lithium concentration on the properties and physical stability of microemulsions were studied using microscopy, Karl Fischer titrations, rheology analyses, conductivity measurements and centrifugation tests. The investigated microemulsions were found to be stable under accelerated storage conditions. The systems exhibited low viscosity and behaved as Newtonian fluid and no structural transition was shown. Copyright © 2016 Elsevier B.V. All rights reserved.
Equivalence of time and aperture domain additive noise in ultrasound coherence.
Bottenus, Nick B; Trahey, Gregg E
2015-01-01
Ultrasonic echoes backscattered from diffuse media, recorded by an array transducer and appropriately focused, demonstrate coherence predicted by the van Cittert-Zernike theorem. Additive noise signals from off-axis scattering, reverberation, phase aberration, and electronic (thermal) noise can all superimpose incoherent or partially coherent signals onto the recorded echoes, altering the measured coherence. An expression is derived to describe the effect of uncorrelated random channel noise in terms of the noise-to-signal ratio. Equivalent descriptions are made in the aperture dimension to describe uncorrelated magnitude and phase apodizations of the array. Binary apodization is specifically described as an example of magnitude apodization and adjustments are presented to minimize the artifacts caused by finite signal length. The effects of additive noise are explored in short-lag spatial coherence imaging, an image formation technique that integrates the calculated coherence curve of acquired signals up to a small fraction of the array length for each lateral and axial location. A derivation of the expected contrast as a function of noise-to-signal ratio is provided and validation is performed in simulation.
Effect of inorganic salts on the volatility of organic acids.
Häkkinen, Silja A K; McNeill, V Faye; Riipinen, Ilona
2014-12-02
Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance.
Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis
Ge, Xiuchun; Shi, Xiaoli; Shi, Limei; Liu, Jinlin; Stone, Victoria; Kong, Fanxiang; Kitten, Todd; Xu, Ping
2016-01-01
Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation. PMID:26950587
NASA Astrophysics Data System (ADS)
Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Michalski, J. R.
2006-12-01
Spectral data suggest that the Martian surface may be chemically altered. However, TES data show evidence for abundant primary glass, and Mini-TES data from MER Spirit in the Columbia Hills identify primary basaltic glass in rocks that are believed to be altered (Haskin et al., 2005, Ming et al., 2006, Wang et al., 2006). Debate over whether the primary glass identified spectrally may be interpreted as alteration products, such as clay minerals and/or amorphous silica coatings (Wyatt and McSween, 2002, Kraft et al., 2003), has focused on their spectral similarities (Koeppen and Hamilton, 2005). We suggest that some of the putative primary glass may be due to nonlinear spectral mixing of primary and secondary phases. We created physical mixtures made up of a primary phase (augite, andesine, or a 50:50 weight percent mixture of augite and andesine) and a secondary phase (montmorillonite clay or amorphous silica in 2.5, 5, 10, and 20 weight percent abundances) to test how secondary phases affect primary mineral thermal infrared spectra and modeled mineralogies. We found that the presence of small to moderate amounts of secondary material strongly affect modeled mineralogies, cause the false identification of primary glass in abundances as high as 40 volume percent, and report modeled plagioclase to pyroxene ratios that differ from actual ratios in the mixtures. These results are important for the surface mineralogy of Mars because surface type two (ST2), which may be altered, has the highest modeled plagioclase to pyroxene ratio. The presence of alteration material on Mars may cause the false identification or overestimation of primary glass in TES and Mini-TES data and may cause incorrect modeling of primary phases on Mars.
Applications of primary and secondary inclusion assemblages for zircon petrogenesis and alteration
NASA Astrophysics Data System (ADS)
Bell, E. A.
2017-12-01
Igneous zircon often contains abundant mineral inclusions which represent a mixture of primary phases captured during crystallization in magma and secondary phases formed either during late-stage deuteric alteration of a solidifying pluton, during later metamorphism, or during detrital transport and diagenesis in groundwater. Microstructural examination of zircon from both magmatic and metamorphic rocks reveals varying abundances of clearly secondary phases filling cracks and potentially secondary phases in contact with cracks or in disturbed regions of the host zircon. We used EDS and WDS X-ray spectroscopy to examine crack-isolated, crack-intersecting, and crack-filling phases in zircon from Phanerozoic magmatic rocks (USA, Victoria), several Grenville (Blue Ridge, VA) orthogneisses, and detrital zircons in metasediments from Jack Hills, Mt. Narryer (Western Australia) and the Nuvvuagittuq supracrustal belt (northern Quebec). Orthogneiss and detrital zircon appear to retain primary inclusion compositions away from contact with cracks or disturbed regions of zircon (as distinguished by U-Pb). Characteristic trace element patterns associated with chemical alteration of zircon match well with the apparently dominant secondary phases in metasedimentary detrital zircons and magmatic zircon subjected to deuteric alteration. Additionally, high spatial resolution Pb isotopic analyses of secondary phosphates using the CAMECA ims1290 ion microprobe reveal preservation of multiple generations of metamorphic phosphate, in some cases juxtaposed within a single inclusion on the 5-10 micron scale. Zircon can therefore in many cases preserve the compositions of its primary inclusion cargo through later metamorphism. Zircon can also preserve information about individual hydrothermal or metamorphic events during the grain's residence in the crust.
NASA Astrophysics Data System (ADS)
DeBlase, Andrew F.; Harrilal, Christopher P.; Lawler, John T.; Burke, Nicole L.; McLuckey, Scott A.; Zwier, Timothy S.
2017-06-01
Incorporation of the unnatural D-proline (^{D}P) stereoisomer into a polypeptide sequence is a typical strategy to encourage formation of β-hairpin loops because natural sequences are often unstructured in solution. Using conformation-specific IR and UV spectroscopy of cold (10 K) gas-phase ions, we probe the inherent conformational preferences of the ^{D}P and ^{L}P diastereomers in the protonated peptide [YAPAA+H]^{+}, where only intramolecular interactions are possible. Consistent with the solution phase studies, one of the conformers of [YADPAA+H]^{+} is folded into a charge-stabilized β-hairpin turn. However, a second predominant conformer family containing two sequential γ-turns is also identified, with similar energetic stability. A single conformational isomer of the ^{L}P diastereomer, [YALPAA+H]^{+}, is found and assigned to a structure that is not the anticipated "mirror image" β-turn. Instead, the ^{L}P stereo center promotes a cis alanine-proline amide bond. The assigned structures contain clues that the preference of the ^{D}P diastereomer to support a trans-amide bond and the proclivity of ^{L}P for a cis-amide bond is sterically driven and can be reversed by substituting glycine for alanine in position 2, forming [YGLPAA+H]^{+}. These results provide a basis for understanding the residue-specific and stereo-specific alterations in the potential energy surface that underlie these changing preferences, providing insights to the origin of β-hairpin formation.
Tandem Mass Spectrometry of Modified and Platinated Oligoribonucleotides
NASA Astrophysics Data System (ADS)
Nyakas, Adrien; Stucki, Silvan R.; Schürch, Stefan
2011-05-01
Therapeutic approaches for treatment of various diseases aim at the interruption of transcription or translation. Modified oligonucleotides, such as 2'- O-methyl- and methylphosphonate-derivatives, exhibit high resistance against cellular nucleases, thus rendering application for, e.g., antigene or antisense purposes possible. Other approaches are based on administration of cross-linking agents, such as cis-diamminedichloroplatinum(II) (cisplatin, DDP), which is still the most widely used anticancer drug worldwide. Due to the formation of 1,2-intrastrand cross links at adjacent guanines, replication of the double-strand is disturbed, thus resulting in significant cytotoxicity. Evidence for the gas-phase dissociation mechanism of platinated RNA is given, based on nano-electrospray ionization high-resolution multistage tandem mass spectrometry (MS n ). Confirmation was found by investigating the fragmentation pattern of platinated and unplatinated 2'-methoxy oligoribonucleotide hexamers and their corresponding methylphosphonate derivatives. Platinated 2'-methoxy oligoribonucleotides exhibit a similar gas-phase dissociation behavior as the corresponding DNA and RNA sequences, with the 3'-C-O bond adjacent to the vicinal guanines being cleaved preferentially, leading to wx-ion formation. By examination of the corresponding platinated methylphosphonate derivatives of the 2'-methoxy oligoribonucleotides, the key role of the negatively charged phosphate oxygen atoms in direct proximity to the guanines was proven. The significant alteration of fragmentation due to platination is demonstrated by comparison of the fragment ion patterns of unplatinated and platinated 2'- O-methyl- and 2'- O-methyl methylphosphonate oligoribonucleotides, and the results obtained by H/D exchange experiments.
How salt lakes affect atmospheric new particle formation: A case study in Western Australia.
Kamilli, K A; Ofner, J; Krause, T; Sattler, T; Schmitt-Kopplin, P; Eitenberger, E; Friedbacher, G; Lendl, B; Lohninger, H; Schöler, H F; Held, A
2016-12-15
New particle formation was studied above salt lakes in-situ using a mobile aerosol chamber set up above the salt crust and organic-enriched layers of seven different salt lakes in Western Australia. This unique setup made it possible to explore the influence of salt lake emissions on atmospheric new particle formation, and to identify interactions of aqueous-phase and gas-phase chemistry. New particle formation was typically observed at enhanced air temperatures and enhanced solar irradiance. Volatile organic compounds were released from the salt lake surfaces, probably from a soil layer enriched in organic compounds from decomposed leaf litter, and accumulated in the chamber air. After oxidation of these organic precursor gases, the reaction products contributed to new particle formation with observed growth rates from 2.7 to 25.4nmh -1 . The presence of ferrous and ferric iron and a drop of pH values in the salt lake water just before new particle formation events indicated that organic compounds were also oxidized in the aqueous phase, affecting the new particle formation process in the atmosphere. The contribution of aqueous-phase chemistry to new particle formation is assumed, as a mixture of hundreds of oxidized organic compounds was characterized with several analytical techniques. This chemically diverse composition of the organic aerosol fraction contained sulfur- and nitrogen-containing organic compounds, and halogenated organic compounds. Coarse mode particles were analyzed using electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Ultra-high resolution mass spectrometry was applied to analyze filter samples. A targeted mass spectral analysis revealed the formation of organosulfates from monoterpene precursors and two known tracers for secondary organic aerosol formation from atmospheric oxidation of 1,8-cineole, which indicates that a complex interplay of aqueous-phase and gas-phase oxidation of monoterpenes contributes to new particle formation in the investigated salt lake environment. Copyright © 2016. Published by Elsevier B.V.
Confinement Effects on Carbon Dioxide Methanation: A Novel Mechanism for Abiotic Methane Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Thu; Striolo, Alberto; Turner, C. Heath
An important scientific debate focuses on the possibility of abiotic synthesis of hydrocarbons during oceanic crust-seawater interactions. While on-site measurements near hydrothermal vents support this possibility, laboratory studies have provided data that are in some cases contradictory. At conditions relevant for sub-surface environments it has been shown that classic thermodynamics favour the production of CO 2 from CH 4, while abiotic methane synthesis would require the opposite. However, confinement effects are known to alter reaction equilibria. This report shows that indeed thermodynamic equilibrium can be shifted towards methane production, suggesting that thermal hydrocarbon synthesis near hydrothermal vents and deeper inmore » the magma-hydrothermal system is possible. We report reactive ensemble Monte Carlo simulations for the CO 2 methanation reaction. We compare the predicted equilibrium composition in the bulk gaseous phase to that expected in the presence of confinement. In the bulk phase we obtain excellent agreement with classic thermodynamic expectations. When the reactants can exchange between bulk and a confined phase our results show strong dependency of the reaction equilibrium conversions, X CO2, on nanopore size, nanopore chemistry, and nanopore morphology. Some physical conditions that could shift significantly the equilibrium composition of the reactive system with respect to bulk observations are discussed.« less
Confinement Effects on Carbon Dioxide Methanation: A Novel Mechanism for Abiotic Methane Formation
Le, Thu; Striolo, Alberto; Turner, C. Heath; ...
2017-08-21
An important scientific debate focuses on the possibility of abiotic synthesis of hydrocarbons during oceanic crust-seawater interactions. While on-site measurements near hydrothermal vents support this possibility, laboratory studies have provided data that are in some cases contradictory. At conditions relevant for sub-surface environments it has been shown that classic thermodynamics favour the production of CO 2 from CH 4, while abiotic methane synthesis would require the opposite. However, confinement effects are known to alter reaction equilibria. This report shows that indeed thermodynamic equilibrium can be shifted towards methane production, suggesting that thermal hydrocarbon synthesis near hydrothermal vents and deeper inmore » the magma-hydrothermal system is possible. We report reactive ensemble Monte Carlo simulations for the CO 2 methanation reaction. We compare the predicted equilibrium composition in the bulk gaseous phase to that expected in the presence of confinement. In the bulk phase we obtain excellent agreement with classic thermodynamic expectations. When the reactants can exchange between bulk and a confined phase our results show strong dependency of the reaction equilibrium conversions, X CO2, on nanopore size, nanopore chemistry, and nanopore morphology. Some physical conditions that could shift significantly the equilibrium composition of the reactive system with respect to bulk observations are discussed.« less
NASA Astrophysics Data System (ADS)
Zahardis, James; Lafranchi, Brian W.; Petrucci, Giuseppe A.
2005-04-01
The heterogeneous reaction of particle-phase 9-octadecenoic acid (oleic acid) and gas-phase ozone in a flow reactor was studied by photoelectron resonance capture ionization (PERCI) mass spectrometry. This soft ionization technique facilitated one of the first simultaneous, direct observations of all four of the major products predicted for this reaction: nonanal, nonanoic acid, 9-oxononanoic acid, and azelaic acid. In addition, a series of higher molecular weight oxygenated compounds were observed directly for the first time. The proposed structures are all cyclic oxygenates and contain the oxygen-oxygen moiety, including secondary ozonides and cyclic geminal diperoxides. Mechanisms for the formation of these products are proposed. The mechanisms are generally 1,3-dipolar cycloadditions that lead to five- and six-member oxygen-containing rings. The mechanisms are shown to involve short-lived Criegee intermediates reacting with aldehydes and other Criegee intermediates. Atmospheric implications of these higher molecular weight compounds are suggested and include enhancing the fatty acid medium's capacity to act as a source of radicals due to the prominence of the peroxide moiety. The low volatility coupled with the high polarity of these compounds may alter particle phase hygroscopicity that can enhance the cloud condensation nuclei properties of these particles.
NASA Astrophysics Data System (ADS)
Roldin, P.; Liao, L.; Mogensen, D.; Dal Maso, M.; Rusanen, A.; Kerminen, V.-M.; Mentel, T. F.; Wildt, J.; Kleist, E.; Kiendler-Scharr, A.; Tillmann, R.; Ehn, M.; Kulmala, M.; Boy, M.
2015-09-01
We used the Aerosol Dynamics gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM) to simulate the contribution of BVOC plant emissions to the observed new particle formation during photooxidation experiments performed in the Jülich Plant-Atmosphere Chamber and to evaluate how well smog chamber experiments can mimic the atmospheric conditions during new particle formation events. ADCHAM couples the detailed gas-phase chemistry from Master Chemical Mechanism with a novel aerosol dynamics and particle phase chemistry module. Our model simulations reveal that the observed particle growth may have either been controlled by the formation rate of semi- and low-volatility organic compounds in the gas phase or by acid catalysed heterogeneous reactions between semi-volatility organic compounds in the particle surface layer (e.g. peroxyhemiacetal dimer formation). The contribution of extremely low-volatility organic gas-phase compounds to the particle formation and growth was suppressed because of their rapid and irreversible wall losses, which decreased their contribution to the nano-CN formation and growth compared to the atmospheric situation. The best agreement between the modelled and measured total particle number concentration (R2 > 0.95) was achieved if the nano-CN was formed by kinetic nucleation involving both sulphuric acid and organic compounds formed from OH oxidation of BVOCs.
Zincian dolomite related to supergene alteration in the Iglesias mining district (SW Sardinia)
NASA Astrophysics Data System (ADS)
Boni, M.; Mondillo, N.; Balassone, G.; Joachimski, M.; Colella, A.
2013-01-01
One of the main effects of supergene alteration of ore-bearing hydrothermal dolomite in areas surrounding secondary zinc orebodies ( Calamine-type nonsulfides) in southwestern Sardinia (Italy) is the formation of a broad halo of Zn dolomite. The characteristics of supergene Zn dolomite have been investigated using scanning electron microscopy and qualitative energy-dispersive X-ray spectroscopy, thermodifferential analysis, and stable isotope geochemistry. The supergene Zn dolomite is characterized by variable amounts of Zn, and low contents of Pb and Cd in the crystal lattice. It is generally depleted in Fe and Mn relative to precursor hydrothermal dolomite ( Dolomia Geodica), which occurs in two phases (stoichiometric dolomite followed by Fe-Mn-Zn-rich dolomite), well distinct in geochemistry. Mg-rich smithsonite is commonly associated to Zn dolomite. Characterization of Zn-bearing dolomite using differential thermal analysis shows a drop in temperature of the first endothermic reaction of dolomite decomposition with increasing Zn contents in dolomite. The supergene Zn dolomites have higher δ18O but lower δ13C values than hydrothermal dolomite. In comparison with smithsonite-hydrozincite, the supergene Zn dolomites have higher δ18O, but comparable δ13C values. Formation of Zn dolomite from meteoric waters is indicated by low δ13C values, suggesting the influence of soil-gas CO2 in near-surface environments. The replacement of the dolomite host by supergene Zn dolomite is interpreted as part of a multistep process, starting with a progressive "zincitization" of the dolomite crystals, followed by a patchy dedolomitization s.s. and potentially concluded by the complete replacement of dolomite by smithsonite.
The sensitivities of in cloud and cloud top phase distributions to primary ice formation in ICON-LEM
NASA Astrophysics Data System (ADS)
Beydoun, H.; Karrer, M.; Tonttila, J.; Hoose, C.
2017-12-01
Mixed phase clouds remain a leading source of uncertainty in our attempt to quantify cloud-climate and aerosol-cloud climate interactions. Nevertheless, recent advances in parametrizing the primary ice formation process, high resolution cloud modelling, and retrievals of cloud phase distributions from satellite data offer an excellent opportunity to conduct closure studies on the sensitivity of the cloud phase to microphysical and dynamical processes. Particularly, the reliability of satellite data to resolve the phase at the top of the cloud provides a promising benchmark to compare model output to. We run large eddy simulations with the new ICOsahedral Non-hydrostatic atmosphere model (ICON) to place bounds on the sensitivity of in cloud and cloud top phase to the primary ice formation process. State of the art primary ice formation parametrizations in the form of the cumulative ice active site density ns are implemented in idealized deep convective cloud simulations. We exploit the ability of ICON-LEM to switch between a two moment microphysics scheme and the newly developed Predicted Particle Properties (P3) scheme by running our simulations in both configurations for comparison. To quantify the sensitivity of cloud phase to primary ice formation, cloud ice content is evaluated against order of magnitude changes in ns at variable convective strengths. Furthermore, we assess differences between in cloud and cloud top phase distributions as well as the potential impact of updraft velocity on the suppression of the Wegener-Bergeron-Findeisen process. The study aims to evaluate our practical understanding of primary ice formation in the context of predicting the structure and evolution of mixed phase clouds.
Greaves, Tamar L; Broomhall, Hayden; Weerawardena, Asoka; Osborne, Dale A; Canonge, Bastien A; Drummond, Calum J
2017-12-14
The phase behaviour of n-alkylammonium (C6 to C16) nitrates and formates has been characterised using synchrotron small angle and wide angle X-ray scattering (SAXS/WAXS), differential scanning calorimetry (DSC), cross polarised optical microscopy (CPOM) and Fourier transform infrared spectroscopy (FTIR). The protic salts may exist as crystalline, liquid crystalline or ionic liquid materials depending on the alkyl chain length and temperature. n-Alkylammonium nitrates with n ≥ 6 form thermotropic liquid crystalline (LC) lamellar phases, whereas n ≥ 8 was required for the formate series to form this LC phase. The protic ionic liquid phase showed an intermediate length scale nanostructure resulting from the segregation of the polar and nonpolar components of the ionic liquid. This segregation was enhanced for longer n-alkyl chains, with a corresponding increase in the correlation length scale. The crystalline and liquid crystalline phases were both lamellar. Phase transition temperatures, lamellar d-spacings, and liquid correlation lengths for the n-alkylammonium nitrates and formates were compared with those for n-alkylammonium chlorides and n-alkylamines. Plateau regions in the liquid crystalline to liquid phase transition temperatures as a function of n for the n-alkylammonium nitrates and formates are consistent with hydrogen-bonding and cation-anion interactions between the ionic species dominating alkyl chain-chain van der Waals interactions, with the exception of the mid chained hexyl- and heptylammonium formates. The d-spacings of the lamellar phases for both the n-alkylammonium nitrates and formates were consistent with an increase in chain-chain layer interdigitation within the bilayer-based lamellae with increasing alkyl chain length, and they were comparable to the n-alkylammonium chlorides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starcher, Autumn N.; Elzinga, Evert J.; Sparks, Donald L.
Previous research demonstrated the formation of single divalent metal (Co, Ni, and ZnAl) and mixed divalent metal (NiZnAl) layered double hydroxide (LDH) phases from reactions of the divalent metal with Al-bearing substrates and soils in both laboratory experiments and in the natural environment. Recently Fe(II)-Al-LDH phases have been found in laboratory batch reaction studies, and although they have yet to be found in the natural environment. Potential locations of Fe(II)-Al-LDH phases in nature include areas with suboxic and anoxic conditions. Because these areas can be environments of significant contaminant accumulation, it is important to understand the possible interactions and impactsmore » of contaminant elements on LDH phase formation. One such contaminant, Zn, can also form as an LDH and has been found to form as a mixed divalent layered hydroxide phase. To understand how Zn impacts the formation of Fe(II)-Al-LDH phase formation and kinetics, 3 mM or 0.8 mM Fe(II) and 0.8 mM Zn were batch reacted with either 10 g/L pyrophyllite or 7.5 g/L γ-Al2O3 for up to three months under anoxic conditions. Aqueous samples were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) and solid samples were analyzed with X-ray absorption spectroscopy (XAS). Shell-by-shell fits of Fe(II) and co-sorption samples with pyrophyllite show the formation of a mixed divalent metal (Fe(II)-Zn-Al) layered hydroxide phase, while Fe(II) and Zn co-sorption samples with γ-Al2O3 produce Fe(II)-Al-LDH phases and Zn in inner-sphere complexation with the γ-Al2O3. This study demonstrates the formation of a mixed divalent metal layered hydroxide and further iterates the importance of sorbent reactivity on LDH phase formation.« less
Experimental formation enthalpies for intermetallic phases and other inorganic compounds
Kim, George; Meschel, S. V.; Nash, Philip; Chen, Wei
2017-01-01
The standard enthalpy of formation of a compound is the energy associated with the reaction to form the compound from its component elements. The standard enthalpy of formation is a fundamental thermodynamic property that determines its phase stability, which can be coupled with other thermodynamic data to calculate phase diagrams. Calorimetry provides the only direct method by which the standard enthalpy of formation is experimentally measured. However, the measurement is often a time and energy intensive process. We present a dataset of enthalpies of formation measured by high-temperature calorimetry. The phases measured in this dataset include intermetallic compounds with transition metal and rare-earth elements, metal borides, metal carbides, and metallic silicides. These measurements were collected from over 50 years of calorimetric experiments. The dataset contains 1,276 entries on experimental enthalpy of formation values and structural information. Most of the entries are for binary compounds but ternary and quaternary compounds are being added as they become available. The dataset also contains predictions of enthalpy of formation from first-principles calculations for comparison. PMID:29064466
Newton, Robert U; Spry, Nigel A; Taaffe, Dennis R; Chambers, Suzanne K; Feeney, Kynan T; Joseph, David J; Redfern, Andrew D; Ferguson, Tom; Galvão, Daniel A
2017-01-01
Introduction Exercise may positively alter tumour biology through numerous modulatory and regulatory mechanisms in response to a variety of modes and dosages, evidenced in preclinical models to date. Specifically, localised and systemic biochemical alterations produced during and following exercise may suppress tumour formation, growth and distribution by virtue of altered epigenetics and endocrine–paracrine activity. Given the impressive ability of targeted mechanical loading to interfere with metastasis-driven tumour formation in human osteolytic tumour cells, it is of equal interest to determine whether a similar effect is observed in sclerotic tumour cells. The study aims to (1) establish the feasibility and safety of a combined modular multimodal exercise programme with spinal isometric training in advanced prostate cancer patients with sclerotic bone metastases and (2) examine whether targeted and supervised exercise can suppress sclerotic tumour growth and activity in spinal metastases in humans. Methods and analysis A single-blinded, two-armed, randomised, controlled and explorative phase I clinical trial combining spinal isometric training with a modular multimodal exercise programme in 40 men with advanced prostate cancer and stable sclerotic spinal metastases. Participants will be randomly assigned to (1) the exercise intervention or (2) usual medical care. The intervention arm will receive a 3-month, supervised and individually tailored modular multimodal exercise programme with spinal isometric training. Primary endpoints (feasibility and safety) and secondary endpoints (tumour morphology; biomarker activity; anthropometry; musculoskeletal health; adiposity; physical function; quality of life; anxiety; distress; fatigue; insomnia; physical activity levels) will be measured at baseline and following the intervention. Statistical analyses will include descriptive characteristics, t-tests, effect sizes and two-way (group × time) repeated-measures analysis of variance (or analysis of covariance) to examine differences between groups over time. The data-set will be primarily examined using an intention-to-treat approach with multiple imputations, followed by a secondary sensitivity analysis to ensure data robustness using a complete cases approach. Ethics and dissemination Ethics approval was obtained from the Human Research Ethics Committee (HREC) of Edith Cowan University and the Sir Charles Gairdner and Osborne Park Health Care Group. If proven to be feasible and safe, this study will form the basis of future phase II and III trials in human patients with advanced cancer. To reach a maximum number of clinicians, practitioners, patients and scientists, outcomes will be disseminated through national and international clinical, conference and patient presentations, as well as publication in high-impact, peer-reviewed academic journals. Trial registration number ACTRN 12616000179437. PMID:28559456
NASA Astrophysics Data System (ADS)
Ruiz-Agudo, Encarnacion; Patiño-López, Luis David; Putnis, Christine V.; Rodriguez-Navarro, Carlos; Putnis, Andrew
2014-05-01
Dissolution is a key process in fluid-rock interactions, such as in chemical weathering, CO2 carbonation reactions, metasomatism, and metamorphism. Many multicomponent rock-forming minerals are reported to dissolve incongruently, because the elemental molar ratios, measured in the fluid during dissolution experiments, that differ from those in the solid. This frequently results in the formation of chemically and structurally altered zones at the fluid-solid interface of varying thickness that are depleted in some elements relative to the bulk mineral composition. Although the mechanisms of the formation of these altered layers is still a matter of debate (see e.g. Ruiz-Agudo et al. 2012 and Schott et al. 2012), recent AFM studies on the dissolution of two multicomponent minerals, dolomite, Ca0.5Mg0.5CO3 (Urosevic et al. 2012), and wollastonite, CaSiO3 (Ruiz-Agudo et al. 2012), provide experimental evidence showing that these layers are formed in a two-step process: (i) stoichiometric dissolution of the pristine mineral surfaces and (ii) precipitation of a secondary phase. This occurs despite the fact that the bulk solution is undersaturated with respect to such a phase. It has been suggested that after stoichiometric dissolution of the mineral, a boundary layer of fluid in contact with the surface becomes supersaturated with respect to a secondary phase that then precipitates. Here we present in situ observations of the evolution of the fluid composition at the interface during dissolution in acidic solutions (pH 1.5) of dolomite and wollastonite using real-time phase-shift interferometry. We show that immediately when the sparingly soluble dolomite or wollastonite crystals are in contact with the solution, the refractive index of the solution at the crystal surface sharply increases. A steep refractive index gradient (i.e., concentration gradient) develops as a consequence of mineral dissolution producing an interfacial fluid with a different composition to the bulk. Similar observations have been made during the replacement of KBr by KCl (Putnis et al. 2005). Thus, it seems that incongruent dissolution is essentially similar to any other mineral-fluid equilibration process: when a fluid interacts with a mineral with which it is out of equilibrium the mineral will tend to dissolve. Depending on the fluid composition, the interfacial fluid may become supersaturated with respect to a secondary phase that will eventually nucleate on the parent mineral surface. Ruiz-Agudo E., Putnis, C.V., Rodríguez-Navarro, C. and Putnis A. (2012) Geology 40, 947-950 (2012) Urosevic M., Rodríguez-Navarro C., Putnis C.V., Cardell C., Putnis A. and Ruiz Agudo, E. (2012) In Geochimica et Cosmochimica Acta 80, 1-13 Schott J., Pokrovsky O.S., Spalla O., Devreux F., Gloter A. and Mielczarski J.A. (2012) Geochimica et Cosmochimica Acta 98, 259-281 Putnis C.V., Tsukamoto K. and Nishimura Y. (2005) American Mineralogist 90, 1909-1912
Alteration of cell cycle progression by Sindbis virus infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa
We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Veromore » cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.« less
Iron Mineral Catalyzed C-H Activation As a Potential Pathway for Halogenation Processes
NASA Astrophysics Data System (ADS)
Tubbesing, C.; Schoeler, H. F.; Benzing, K.; Krause, T.; Lippe, S.; Rudloff, M.
2014-12-01
Due to increasing drinking water demand of mankind and an expected climate change the impact of salt lakes and salt deserts will increase within the next decades. Furthermore, a rising sea level influences coastal areas like salt marshes and abets processes which will lead to elevated organohalogen formation. An additional increase of the global warming potential, of particle formation and stratospheric ozone depletion is expected. Understanding these multifaceted processes is essential for mankind to be prepared for these alterations of the atmosphere. For example, Keppler et al. (2000) described the production of volatile halogenated organic compounds via oxidation of organic matter driven by ferric iron. However, the formation of long-chained alkyl halides in salt lakes is yet undisclosed. Despite the relative "inertness" of alkanes a direct halogenation of these compounds might be envisaged. In 2005 Vaillancourt et al. discovered a nonheme iron enzyme which is able to halogenate organic compounds via generating the high valent ferryl cation as reaction center. Based on various publications about C-H activation (Bergman, 2007) we postulate a halogenation process in which an iron containing minerals catalyse the C-H bond cleavage of organic compounds in soils. The generated organic radicals are highly reactive towards halides connected to the iron complex. We suggest that next to diagenetically altered iron containing enzymes, minerals such as oxides, hydroxides and sulfides are involved in abiotic halogenation processes. We applied the amino acid methionine as organic model compound and soluble iron species as reactants. All samples were incubated in aqueous phases containing various NaCl concentrations. As a result various halogenated ethanes and ethenes were identified as reaction products. References Bergman, R. G. (2007) Nature, 446(7134) 391-393 Keppler, F., et al. (2000) Nature, 403(6767) 298-301 Vaillancourt, F. H., et al. (2005) Nature, 436(7054) 1191-1194
Genesis of the Abu Marawat gold deposit, central Eastern Desert of Egypt
NASA Astrophysics Data System (ADS)
Zoheir, Basem A.; Akawy, Ahmed
2010-06-01
Gold mineralisation at the Abu Marawat mine, central Eastern Desert of Egypt, is related to a system of massive and sheared, milky quartz veins cutting a sequence of Neoproterozoic island arc metavolcanic/volcaniclastic rocks and related banded iron formation (BIF). Sulphide-bearing quartz veins and related hydrothermal breccia bodies display a range of textures including sheared, boudinaged and recrystallised quartz, open space filling and microbreccia. These variable textures imply a complex history of crack-seal mechanism characterising the relation between mineral deposition and a major N-S-trending shear zone, during a late brittle-ductile deformation event which affected the area at about 550 Ma. Gold-base metal mineralisation is associated with brecciation and fracturing of the iron ore bands, close to silicified shears and related quartz veins. The auriferous quartz lodes are characterised by the occurrence of visible pyrite-chalcopyrite ± pyrrhotite ± sphalerite ± galena mineralisation. Gold is refractory in pyrite and chalcopyrite, but rare visible gold/electrum and telluride specks were observed in a few samples. Hydrothermal alteration includes pervasive silicification, pyritisation, sericitisation, carbonatisation confined to a delicate set of veins and altered shears, and a more widespread propylitic alteration assemblage (quartz + chlorite + pyrite + calcite ± epidote). Fluid inclusion petrography and microthermometric studies suggest heterogeneous trapping of a low-salinity (1.4-6.7 wt.% eq. NaCl) aqueous solution and a carbonic fluid. Evidence for fluid immiscibility during ore formation includes variable liquid/vapour ratios in inclusions along individual trails and bulk inclusion homogenisation into liquid and occasionally to vapour at comparable temperatures. The trapping conditions of intragranular aqueous-carbonic inclusions approximate 264-378 °C at 700-1300 bar. Similar temperature estimates have been obtained from Al-in-chlorite geothermometry of chlorite associated with sulphides in the mineralised quartz veins. Fracturing enhanced fluid circulation through the wallrock and related BIF, allowing reaction of the S-bearing ore fluid with iron oxides. This caused pyrite formation and concomitant Au precipitation, enhanced by fluid immiscibility as H 2S partitioned preferentially into the carbonic phase. The ore fluids may have originated from granitoid intrusions (likely the post-Hammamat felsites, whereas gold and base metals might have been leached from the Abu Marawat basic metavolcanics.
Mineralogy of Rocks and Sediments at Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Achilles, Cherie; Downs, Robert; Blake, David; Vaniman, David; Ming, Doug; Rampe, Elizabeth; Morris, Dick; Morrison, Shaunna; Treiman, Allan; Chipera, Steve; Yen, Albert; Bristow, Thomas; Craig, Patricia; Hazen, Robert; Crisp, Joy; Grotzinger, John; Des Marias, David; Farmer, Jack; Sarrazin, Philippe; Morookian, John Michael
2017-04-01
The Mars Science Laboratory rover, Curiosity, is providing in situ mineralogical, geochemical, and sedimentological assessments of rocks and soils in Gale crater. Since landing in 2012, Curiosity has traveled over 15 km, providing analyses of mudstones and sandstones to build a stratigraphic history of the region. The CheMin X-ray diffraction (XRD) instrument is the first instrument on Mars to provide quantitative mineralogical analyses of drilled powders and scooped sediment based on X-ray crystallography. CheMin identifies and determines mineral abundances and unit-cell parameters of major crystalline phases, and identifies minor phases at abundances >1 wt%. In conjunction with elemental analyses, CheMin-derived crystal chemistry allows for the first calculations of crystalline and amorphous material compositions. These mineralogy, crystal chemistry, and amorphous chemistry datasets are playing central roles in the characterization of Gale crater paleoenvironments. CheMin has analyzed 17 rock and sediment samples. In the first phase of the mission, Curiosity explored the sedimentary units of Aeolis Palus (Bradbury group), including two mudstones from Yellowknife Bay. CheMin analyses of the Yellowknife Bay mudstones identified clay minerals among an overall basaltic mineral assemblage. These mineralogical results, along with imaging and geochemical analyses, were used to characterize an ancient lacustrine setting that is thought to have once been a habitable environment. Following the investigations of the Bradbury group, Curiosity arrived at the lower reaches of Aeolis Mons, commonly called Mt. Sharp. A strategic sample campaign was initiated, drilling bedrock at <25 m elevation intervals in order to compile a comprehensive stratigraphic column of Mt. Sharp sedimentary units. Two formations have been sampled thus far, the lower-most Murray formation and the Stimson formation, which lies unconformably over the Murray. The Stimson formation is a cross-bedded sandstone interpreted as ancient, lithified eolian dunes. The mineralogy of this sandstone is dominated by plagioclase, pyroxene, magnetite and X-ray amorphous phases. Adjacent to fractures, light-toned, halo-like zones are thought to result from significant aqueous alteration of the primary sandstone and show decreased abundances of feldspar and pyroxene, and an increase in the amorphous component, specifically high-silica phases. The Murray formation is the most sampled stratigraphic unit in Gale crater. Composed mainly of finely laminated mudstones and interpreted as lacustrine deposits, the mineralogy of Murray rocks reveals a complex aqueous history. Within the lower Murray strata, CheMin identified clay minerals, crystalline and amorphous silica, hematite, magnetite, and jarosite. The mineralogy suggests a paleolake that experienced variable redox conditions and sediment influx from multiple sources. Younger Murray strata have high abundances of clay minerals, hematite, and calcium sulfate but show lower variability in mineralogy compared to the older bedforms. CheMin's identification of tridymite in one of the Murray mudstone samples led to the first in situ identification of silicic volcanism on Mars. This presentation will discuss the mineralogy of sedimentary samples analyzed by CheMin and how these data are used to characterize the depositional and diagenetic environment of Gale crater's long-lived lake system.
Barg, E.; Lal, D.; Pavich, M.J.; Caffee, M.W.; Southon, J.R.
1997-01-01
Soils contain a diverse and complex set of chemicals and minerals. Being an 'open system', both in the chemical and nuclear sense, soils have defied quantitative nuclear dating. However, based on the published studies of the cosmogenic atmospheric 10Be in soils, its relatively long half-life (1.5 Ma), and the fact that 10Be gets quickly incorporated in most soil minerals, this radionuclide appears to be potentially the most useful for soil dating. We therefore studied the natural variations in the specific activities of 10Be with respect to the isotope 9Be in mineral phases in eight profiles of diverse soils from temperate to tropical climatic regimes and evaluated the implications of the data for determining the time of formation of soil minerals, following an earlier suggestion [Lal et al., 1991. Development of cosmogenic nuclear methods for the study of soil erosion and formation rates. Current Sci. 61, 636-639.]. We find that the 10Be/9Be ratios in both bulk soils and in the authigenic mineral phases are confined within a narrower range than in 10Be concentrations. Also, the highest 10Be/9Be ratios in authigenic minerals are observed at the soil-rock interface as predicted by the model. We present model 10Be/9Be ages of the B-horizon and the corresponding soil formation rates for several soil profiles. The present study demonstrates that the 10Be/9Be ratios in the authigenic phases, e.g. clay and Fe-hydroxides, can indeed be used for obtaining useful model ages for soils younger than 10-15 Ma. However, the present work has to be pushed considerably further, to take into account more realistic age models in which, for instance, downward transport of 10Be and clays, and in-situ dissolution of clay minerals at depths, altering the 10Be/9Be ratios of the acidic solutions, are included. We show that in the case of younger soils (< 1 Ma) studied here, their 10Be inventories and 10Be/9Be ratios have been significantly disturbed possibly by mixing with transported soils. ?? 1997 Elsevier Science B.V.
A dual origin for water in carbonaceous asteroids revealed by CM chondrites
NASA Astrophysics Data System (ADS)
Piani, Laurette; Yurimoto, Hisayoshi; Remusat, Laurent
2018-04-01
Carbonaceous asteroids represent the principal source of water in the inner Solar System and might correspond to the main contributors for the delivery of water to Earth. Hydrogen isotopes in water-bearing primitive meteorites, for example carbonaceous chondrites, constitute a unique tool for deciphering the sources of water reservoirs at the time of asteroid formation. However, fine-scale isotopic measurements are required to unravel the effects of parent-body processes on the pre-accretion isotopic distributions. Here, we report in situ micrometre-scale analyses of hydrogen isotopes in six CM-type carbonaceous chondrites, revealing a dominant deuterium-poor water component (δD = -350 ± 40‰) mixed with deuterium-rich organic matter. We suggest that this deuterium-poor water corresponds to a ubiquitous water reservoir in the inner protoplanetary disk. A deuterium-rich water signature has been preserved in the least altered part of the Paris chondrite (δDParis ≥ -69 ± 163‰) in hydrated phases possibly present in the CM rock before alteration. The presence of the deuterium-enriched water signature in Paris might indicate that transfers of ice from the outer to the inner Solar System were significant within the first million years of the history of the Solar System.
Droplet breakup dynamics of weakly viscoelastic fluids
NASA Astrophysics Data System (ADS)
Marshall, Kristin; Walker, Travis
2016-11-01
The addition of macromolecules to solvent, even in dilute quantities, can alter a fluid's response in an extensional flow. For low-viscosity fluids, the presence of elasticity may not be apparent when measured using a standard rotational rheometer, yet it may still alter the response of a fluid when undergoing an extensional deformation, especially at small length scales where elastic effects are enhanced. Applications such as microfluidics necessitate investigating the dynamics of fluids with elastic properties that are not pronounced at large length scales. In the present work, a microfluidic cross-slot configuration is used to study the effects of elasticity on droplet breakup. Droplet breakup and the subsequent iterated-stretching - where beads form along a filament connecting two primary droplets - were observed for a variety of material and flow conditions. We present a relationship on the modes of bead formation and how and when these modes will form based on key parameters such as the properties of the outer continuous-phase fluid. The results are vital not only for simulating the droplet breakup of weakly viscoelastic fluids but also for understanding how the droplet breakup event can be used for characterizing the extensional properties of weakly-viscoelastic fluids.
Toxic effects of theobromine on mature and immature male rabbits.
Soffietti, M G; Nebbia, C; Valenza, F; Amedeo, S; Re, G
1989-01-01
Mature and immature male rabbits were fed for 120 and 20 days, respectively, a commercial diet containing theobromine in amounts of 0, 0.5, 1 and 1.5 per cent. Clinical, haematological, histopathological and histoenzymological examinations were performed. Mortality, which appeared dose- and time-related, was severe and rapid, mostly in the 1 and 1.5 per cent groups and was attributed to cardiac failure. Theobromine administration resulted in marked changes in thymus and testes and the severity of lesions appeared to be related to the amounts of the ingested methylxanthine. The earliest thymic alterations in immature rabbits consisted of a blurring of demarcation between cortex and medulla accompanied, in the more advanced stages, by a decreased lymphocyte density. Similar lesions were observed in mature animals which had died in the earlier phase of the study. Testicular alterations ranged from vacuolation of spermatids and spermatocytes to multinucleated cell formation and oligospermia or aspermia with extensive degeneration of tubule cells. Some necrotic and post-necrotic myocardial foci were also recorded. The increase in testicular activity of beta-glucuronidase in immature rabbits compared to the untreated animals provided further evidence of an early theobromine-induced damage of the testes.
Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi
2007-12-24
All-optical on-off keying (OOK) to binary phase-shift keying (BPSK) modulation format conversion based on gain-transparent semiconductor optical amplifier (GT-SOA) is simulated and analyzed, where GT-SOA is used as an all-optical phase-modulator (PM). Numerical simulation of the phase modulation effect of GT-SOA is performed using a wideband dynamic model of GT-SOA and the quality of the BPSK signal is evaluated using the differential-phase-Q factor. Performance improvement by holding light injection is analyzed and non-return-to-zero (NRZ) and return-to-zero (RZ) modulation formats of the OOK signal are considered.
NASA Astrophysics Data System (ADS)
Hu, Z. W.; Winarski, R. P.
2016-09-01
Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.
Mars Exploration Rover APXS Results from Matijevic Hill
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Clark, B. C.; Gellert, R.; Klingelhoefer, G.; Ming, D. W.; Mittlefehldt, D. W.; Morris, R. V.; Schrader, C. M.; Schroeder, C.; Yen, A. S.;
2013-01-01
Correlation analysis of APXS results on the eastern slope rocks indicate that the Matijevic Hill rocks are overall compositionally distinct from the Shoemaker Formation rocks [6]. Compared to the Shoemaker impactites, Matijevic Hill rocks are higher in Al, Si, and Ni, and lower in Ti, Fe, and Zn. No significant variation is evident in the APXS analyses that indicate the presence of a smectite or other phyllosilicate, as opposed to basaltic rocks. However, APXS data cannot in themselves rule out phyllosilicates. If indeed this material contains smectite, as seen from orbit, it implies that the rock has been isochemically altered to create the phyllosilicate content. The Cl content of the Cape York rocks is relatively high, and whereas the S/Cl ratio in the Burns Formation is 4x higher than in soil, in the Cape York rocks it is lower than in soil. These trends indicate that the alteration processes and types of aqueous salt loads were different between Cape York and Meridiani. In addition, significant deviations from the Martian Mn/Fe ratio are observed in Whitewater Lake coatings and the altered Grasford/Deadwood rocks (Fig. 3). These variations indicate that the redox/pH conditions during alteration of the Shoemaker Formation rocks and the Matijevic Hill rocks were similar, but that the Deadwood/Grasberg unit may have undergone alteration under different conditions, possibly at a later time. The Matijevic Hill outcrops appear to share a common genetic origin. It is not yet clear whether both the Shoemaker impactites and Matijevic Hill rocks are related to the formation of Endeavour Crater, or whether the Matijevic Hill suite represents a prior episode of Martian impact or volcanism. Opportunity continues to investigate both hypotheses.
Formation of metastable phases during heat treatment of multilayers in the Al-Pt system
NASA Astrophysics Data System (ADS)
Lábár, János L.; Kovács, András; Barna, Péter B.; Gas, Patrick
2001-12-01
This communication reports that several metastable phases form subsequently during heat treatment (up to 500 °C) of Al-rich Al-Pt multilayers. Besides the known a(amorphous)-Al2Pt, formation of two metastable phases with a composition close to Al5Pt was also observed in a transmission electron microscope. One of them corresponds to a phase given by space group P4 in Pearson's collection of intermetallic compounds. The other, a hexagonal phase (a=12.4 Å and c=26.2 Å) is the one that was observed in rapidly solidified Al-Pt alloys [L. Ma, R. Wang, and K. H. Kuo, J. Less-Common Met. 163, 37 (1990)]. Formation of these phases under different conditions is reported here.
FORMATION OF SECONDARY ORGANIC AEROSOL
(1) Gas-phase chemistry. With the clear and profound effect of the VOC/NOx ratio on SOA formation, we will augment gas-phase VOC oxidation mechanisms in atmospheric models to account for the effect of NOx level on the mechanism of SOA formation; (2) Revis...
THE ROLE OF GAS-PHASE CL2 IN THE FORMATION OF PCDD/PCDF DURING WASTE COMBUSTION
Results of previous experiments investigating formation of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/PCDF) through low-temperature (300°C), fly-ash-catalyzed reactions are demonstrated to have occurred through intermediate formation of gas-phase Cl2 by deco...
A GAS-PHASE FORMATION ROUTE TO INTERSTELLAR TRANS-METHYL FORMATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Callie A.; Wehres, Nadine; Yang Zhibo
2012-07-20
The abundance of methyl formate in the interstellar medium has previously been underpredicted by chemical models. Additionally, grain surface chemistry cannot account for the relative abundance of the cis- and trans-conformers of methyl formate, and the trans-conformer is not even formed at detectable abundance on these surfaces. This highlights the importance of studying formation pathways to methyl formate in the gas phase. The rate constant and branching fractions are reported for the gas-phase reaction between protonated methanol and formic acid to form protonated trans-methyl formate and water as well as adduct ion: Rate constants were experimentally determined using a flowingmore » afterglow-selected ion flow tube apparatus at 300 K and a pressure of 530 mTorr helium. The results indicate a moderate overall rate constant of (3.19 {+-} 0.39) Multiplication-Sign 10{sup -10} cm{sup 3} s{sup -1} ({+-} 1{sigma}) and an average branching fraction of 0.05 {+-} 0.04 for protonated trans-methyl formate and 0.95 {+-} 0.04 for the adduct ion. These experimental results are reinforced by ab initio calculations at the MP2(full)/aug-cc-pVTZ level of theory to examine the reaction coordinate and complement previous density functional theory calculations. This study underscores the need for continued observational studies of trans-methyl formate and for the exploration of other gas-phase formation routes to complex organic molecules.« less
Calculation of Ceramic Phase Diagrams
1979-11-30
Recent examples of the use of data bases and computer techniques in solw~ng problems associated with: in-situ formation of columbium, nickel and...examples of the use of data bases and computer techniques in solving problems associated with: in-situ formation of columbium, nickel and cobalt based...covers processing of in-situ eutectic composite formation in columbium, nickel and cobalt base superalloys, sigma phase formation in high temperature
NASA Astrophysics Data System (ADS)
Shanina, Violetta; Gerke, Kirill; Bichkov, Andrey; Korost, Dmitry
2013-04-01
Alternative renewable energy sources research is getting more and more attention due to its importance for future exploitation and low ecological impacts. Geothermal energy is quite abundant and represents a cheap and easily extractable power source for electricity generation or central heating. For these purposes naturally heated geothermal fluids are extracted via drilled wells; after cooling water is usually pumped back to the reservoir to create a circle, or dumped into local streams. In addition to fundamental interest in understanding natural geothermal processes inside the reservoir, in both cases fluids can significantly alter rock properties around the well or stream bed, which is of great practical and ecological importance for the geothermal industry. Detailed knowledge of these transformations is necessary for power plant construction and well design, geophysical modeling and the prediction of geological properties. Under natural conditions such processes occur within geological time frames and are hard to capture. To accelerate geothermal alteration and model deep reservoir high temperature and pressure conditions we use autoclave laboratory experiments. To represent different geothermal conditions, rock samples are autoclaved using a wide range of parameters: temperature (100-450°C), pressure (16-1000 Bars), solution chemistry (from acidic to alkali artificial solutions and natural geothermal fluids sampled in Kamchatka), duration (from weeks to 1 year). Rock samples represent unaltered andesite-dacite tuffs, basalts and andesite collected at the Kamchatka peninsula. Numerous rock properties, e.g., density (bulk and specific), porosity (total and effective), hygroscopicity, P/S wave velocities, geomechanical characteristics (compressive and tensile strength, elastic modulus), etc., were thoroughly analyzed before and after alteration in laboratory autoclave or natural conditions (in situ). To reveal structural changes, some samples were scanned using X-ray microtomography prior to any alteration and after the experiments. 3D images were used to quantify structural changes and to determine permeability values using a pore-scale modeling approach, as laboratory measurements with through flow are known to have a potential to modify the pore structure. Chemical composition and local mineral formations were investigated using a «Spectroscan Max GV» spectrometer and scanning electron microscope imaging. Our study revealed significant relationships between structure modifications, physical properties and alteration conditions. Main results and conclusions include: 1) initial porosity and its connectivity have substantial effect on alteration dynamics, rocks with higher porosity values and connected pore space exhibit more pronounced alterations; 2) under similar experimental conditions (pressure, temperature, duration) pH plays an important role, acidic conditions result in significant new mineral formation; 3) almost all physical properties, including porosity, permeability, and elastic properties, were seriously modified in the modeled geothermal processes within short (from geological point of view) time frames; 4) X-ray microtomography was found useful for mineral phases distribution and the pore-scale modeling approach was found to be a promising technique to numerically obtain rock properties based on 3D scans; 5) we conclude that alteration and change of reservoir rocks should be taken into account for re-injecting well and geothermal power-plant design.
NASA Astrophysics Data System (ADS)
Quantin-Nataf, Cathy; Carter, John; Thollot, Patrick; Loizeau, Damien; Davis, Joel; Grindrod, Peter; lozach, Loic
2017-04-01
The ExoMars 2018 mission (ESA) has for scientific objectives to search for signs of past and present life on Mars, to investigate the water/geochemical environment as a function of depth in the shallow subsurface, to study to Martian atmospheric trace gases and to characterize the surface environment. The landing site has to be relevant with regard to these objectives while fitting the restrictive engineering constrains. From the scientific point of view, the site must be ancient, from the Early Mars period, for which many scientific evidences favor the existence of a water-related cycle. In this paper, we present the unique location called Oxia Planum, a wide clay bearing plain located between 16° and 19° North and -23° to -28° East proposed as landing site for Exomars 2020 mission. Oxia Planum is located between Ares Vallis and Marwth Vallis in a wide basin just at the outlet of Cogoon Vallis System, with elevations ranging from -2800 m down to -3100 m. The regional compositional mapping of Oxia planum has been achieved based on OMEGA data at 2.5 km/pix well as CRISM multispectral data at 200 m/pix. Mg/Fe phyllosilicates, identified and mapped based on their diagnostic absorptions at 1.4, 1.9 and 2.3 µm are exposed over about 80% of the ellipse surface. The entire unit with phyllosilicates signatures corresponds to a light-toned layered unit that is observed over a large range of elevations (from -2600 m to -3100m) suggesting that like in Marwth Vallis region, the layered and altered formation overlaps a pre-existing topography . The age returned from crater count on the clay rich formation is 3.9 Ga. At the top or embedded within the layered formation, several fluvial morphologies such as former valleys or inverted channels are observed. Also, at the top of the layered clay-rich formation, a deltaic deposit is observed suggesting sub-aqueous episodes postdating the altered layered formation. In terms of mineralogy, the putative delta fan shows layers enriched in hydrated silica. This delta fan implies a second and distinct period of alteration in Oxia Planum signed by a distinct mineralogy. In term of age, the delta has a too small surface to allow a confident age assignment from crater count. We can only state that the delta-fan is older than 3.5 Ga. Oxia Planum recorded at least two clearly distinct alteration environments and contexts: 1) the alteration of the Noachian layers and 2) the fluvio-deltaic system post-dating the Noachian clay rich unit. Deciphering the formation environments for such diverse altered rocks would fulfill the goals of the ExoMars Rover.
Keith, T.E.C.
1988-01-01
Core hole VC-1 penetrated the southwestern ring fracture zone of the 1.1 Ma Valles caldera and at a depth of 333 m intersected the top of the Paleozoic section including the Abo Formation, Madera Limestone, and Sandia Formation, reaching a total depth of 856 m. The Paleozoic rocks, which consist of thin-bedded limestone, siltstone, mudstone, sandstone, and local conglomerate, are overlain by volcanic rocks of the caldera moat that are less than 0.6 Ma. Diagenetic and at least three hydrothermal alteration stages were identified in the Madera Limestone and Sandia Formation. Diagenetic clay alteration was pervasive throughout the sedimentary rocks. Volcanic activity at 16.5 Ma and continuing through the formation of the Valles caldera resulted in high thermal gradients, which caused recrystallization of diagenetic clay minerals. Interstratified smectite-illite is the most diagnostic clay mineral throughout the section; structurally, the illite component in the ordered interstratified illite-smectite changes gradationally from 70% at the top of the Madera Limestone to 95% at the base of the section in the Sandia Formation. Pyrite that occurs as small clots and lenses as well as finely disseminated is interpreted as being of diagenetic origin, especially in organic-rich beds. Low permeability of much of the paleozoic section precluded the deposition of hydrothermal minerals except in fractures and intergranular space in some of the more permeable sandstone and brecciated horizons. Three stages of hydrothermal mineral deposition are defined. -from Author
Cohen, D E; Angelico, M; Carey, M C
1990-01-01
Using complementary physical-chemical methods including turbidimetry, quasielastic light scattering, gel filtration, and phase analysis, we examined the interactions between dilute concentrations of the common bile salt, taurochenodeoxycholate (TCDC), and uni- and multilamellar vesicles (MLVs) composed of defined molecular species of lecithin (L) and varying contents of cholesterol (Ch). Dissolution rates of MLVs with micellar TCDC, as assessed by turbidimetry, were more rapid with vesicles composed of sn-1 palmitoyl species, typical of biliary L, compared with those composed of the more hydrophobic sn-1 stearoyl species. Incorporation of Ch retarded MLV dissolution rates in proportion to the Ch content, and only at high Ch contents were dissolution rates appreciably influenced by the sn-2 fatty acid composition of L. When MLVs contained Ch in amounts characteristic of intracellular membranes (Ch/L approximately 0.1), the dissolution rates of the individual L species by TCDC accurately predicted the steady state L composition of human bile. TCDC interacted with small unilamellar L/Ch vesicles (SUVs) at concentrations well below, as well as appreciably above, its critical micellar concentration. In accordance with the TCDC-egg yolk L-H2O phase diagram, perimicellar concentrations of TCDC interacted with SUVs to form aggregates that were approximately twice the size of the SUVs. These were consistent with the formation of a dispersed hexagonal (rod-like) phase, which co-existed with aqueous bile salt (BS) monomers and either micellar or unilamellar SUV phases. Micellar TCDC completely solubilized SUVs as mixed micelles, putatively via this transient hexagonal phase. With modest Ch-supersaturation, dissolution was followed by the reemergence of a new vesicle population that coexisted metastably with mixed micelles. With high Ch supersaturation, TCDC extracted L and Ch molecules from SUVs in different proportions to form Ch-supersaturated mixed micelles and Ch-enriched SUVs, in accordance with the metastable phase diagram. These experiments are consistent with the hypothesis that sn-1 palmitoyl L species are subselected for bile, in part, by physical-chemical interactions of intracellular BS concentrations with Ch-poor membranes and that the subsequent evolution of Ch-rich vesicles and Ch-saturated mixed micelles occurs via a transitional hexagonal (rod) phase. These liquid-crystalline states are likely to be transient in Ch-unsaturated biles, but may persist in Ch-supersaturated human biles because of their high Ch contents which retard or inhibit these phase transitions.
Hydrothermal Alteration of the Lower Oceanic Crust: Insight from OmanDP Holes GT1A and GT2A.
NASA Astrophysics Data System (ADS)
Harris, M.; Zihlmann, B.; Mock, D.; Akitou, T.; Teagle, D. A. H.; Kondo, K.; Deans, J. R.; Crispini, L.; Takazawa, E.; Coggon, J. A.; Kelemen, P. B.
2017-12-01
Hydrothermal circulation is a fundamental Earth process that is responsible for the cooling of newly formed ocean crust at mid ocean ridges and imparts a chemical signature on both the crust and the oceans. Despite decades of study, the critical samples necessary to resolve the role of hydrothermal circulation during the formation of the lower ocean crust have remained poorly sampled in the ocean basins. The Oman Drilling Project successfully cored 3 boreholes into the lower crust of the Semail ophiolite (Holes GT1A layered gabbros, GT2A foliated gabbros and GT3A dike/gabbro transition). These boreholes have exceptionally high recovery ( 100%) compared to rotary coring in the oceans and provide an unrivalled opportunity to quantitatively characterise the hydrothermal system in the lower oceanic crust. Hydrothermal alteration in Holes GT1A and GT2A is ubiquitous and manifests as secondary minerals replacing primary igneous phases and secondary minerals precipitated in hydrothermal veins and hydrothermal fault zones. Hole GT1A is characterised by total alteration intensities between 10 -100%, with a mean alteration intensity of 60%, and shows no overall trend downhole. However, there are discrete depth intervals (on the scale of 30 -100 m) where the total alteration intensity increases with depth. Alteration assemblages are dominated by chlorite + albite + amphibole, with variable abundances of epidote, clinozoisite and quartz. Hole GT1A intersected several hydrothermal fault zones, these range from 2-3 cm up to >1m in size and are associated with more complex secondary mineral assemblages. Hydrothermal veins are abundant throughout Hole GT1A, with a mean density of 37 vein/m. Hole GT2A is characterised by total alteration intensities between 6-100%, with a mean alteration intensity of 45%, and is highly variable downhole. Alteration halos and patches are slightly more abundant than in Hole GT1A. The secondary mineral assemblage is similar to Hole GT1A, but Hole GT2A has higher abundances of epidote, clinozoisite, quartz, laumontite and iron-oxydroxides. Vein density in Hole GT2A is 61 veins/m. In both holes, cross cutting vein relationships indicate a relative timing from earliest to latest of: amphibole; epidote + zoisite + qtz; chlorite + prehnite + qtz, calcite-laumontite-anhydrite; gypsum.
Jiang, Li-Xue; Zhao, Chongyang; Li, Xiao-Na; Chen, Hui; He, Sheng-Gui
2017-04-03
The hydrogenation of carbon dioxide involves the activation of the thermodynamically very stable molecule CO 2 and formation of a C-H bond. Herein, we report that HCO 2 - and CO can be formed in the thermal reaction of CO 2 with a diatomic metal hydride species, FeH - . The FeH - anions were produced by laser ablation, and the reaction with CO 2 was analyzed by mass spectrometry and quantum-chemical calculations. Gas-phase HCO 2 - was observed directly as a product, and its formation was predicted to proceed by facile hydride transfer. The mechanism of CO 2 hydrogenation in this gas-phase study parallels similar behavior of a condensed-phase iron catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Resende, A. F. D.; Silva, T. S. F.; Silva, J. D. S.; Piedade, M. T. F.; Streher, A. S.; Ferreira-Ferreira, J.; Schongart, J.
2017-12-01
The flood pulse of large Amazonian Rivers is characterized by predictable high- and low-water periods during the annual cycle, and is the main driving force in the floodplains regulating decomposition, nutrient cycles, productivity, life cycles and growth rhythms of floodplains' biota. Over at least 20 millions of years, tree species in these ecosystems developed complex adaptative mechanisms to tolerate flooding, such as the tree species Macrolobium acaciifolium (Fabaceae) and Eschweilera tenuifolia (Lecythidaceae) occupying the lower topographic positions in the floodplain forests along the oligothrophic black-water rivers. Tree growth occurs mainly during terrestrial phase, while during the aquatic phase the anoxic conditions result into a cambial dormancy and formation of annual tree rings. The hydroelectric dam Balbina which was installed in the Uatumã River (central Amazonia) during the 1980s altered significantly the flood pulse regime resulting into higher minimum and lower maximum annual water levels. The suppression of the terrestrial phase caused large-scale mortality of flood-adapted trees growing on the lower topographic positions, as evidenced by radiocarbon dating and cross-dating techniques (dendrochronology). In this study we estimated the extension of dead forests using high resolution ALOS/PALSAR radar images, for their detection along a fluvial distance of more than 280 km downstream of the power plant. Further we analyzed tree growth of 60 living individuals of E. tenuifolia by tree-ring analyses comparing the post- and pre-dam periods. We evaluated the impacts of the altered hydrological regime on tree growth considering ontogenetic effects and the fluvial distance of the trees to the dam. Since the Balbina power plant started operating the associated igapó forests lost about 11% of its cover. We found a significant reduction of tree growth of E. tenuifolia during the post-dam period as a consequence of the increasing aquatic phase duration. This impact was stronger for younger trees (<200 yr) and for those growing closer to the hydroelectric dam (<100 km distance). Considering the planning of construction of several dozen dams in the Amazon there is an urgent need to consider these downstream impacts in all discussions of hydroelectric power plants implementation and operation.
ERIC Educational Resources Information Center
Antunes-Martins, Ana; Mizuno, Keiko; Irvine, Elaine E.; Lepicard, Eve M.; Giese, K. Peter
2007-01-01
Gene transcription is required for long-term memory (LTM) formation. LTM formation is impaired in a male-specific manner in mice lacking either of the two Ca[superscript 2+] / calmodulin-dependent kinase kinase ("Camkk") genes. Since altered transcription was suggested to cause these impairments in LTM formation, we used microarrays to screen for…
Surface antigen in early differentiation.
Kemler, R; Babinet, C; Eisen, H; Jacob, F
1977-01-01
Addition of Fab fragments from rabbit antiserum to surface antigen F9 to 2-cell stage mouse embryos in culture does not alter cleavage; however, the addition prevents culture does not alter cleavage; however, the addition prevents the formation of compact morulae and blastocysts. A similar effect is observed when Fab fragments are added to already compact 8-cell stage or even older morulae, but disappears at the beginning of blastocoel formation. This effect is reversible: uncompact 30-cell embryos washed free of Fab become compact in a few hours, produce blastocysts, and upon reimplantation into pseudopregnant mothers can produce mice. Development is not altered by divalent anti-F9 antibodies, by Fab fragments from sera directed against other embryo surface antigens, or by succinyl concanavalin A. Images PMID:270688
NASA Astrophysics Data System (ADS)
Sakhno, V. G.; Kovalenko, S. V.; Alenicheva, A. A.
2011-05-01
Magmatic rocks from the copper-porphyritic Lazurnoe deposit (Central Primor'e) have been studied. It has been found that rocks from the Lazurnyi massif are referred to gabbro-monzodiorites, monzodiorites, and monzo-granodiorites formed during two magmatic phases of different ages. The earlier phase is represented by gabbro-monzodiorites and diorites of the North Stock, and the later one, by gabbro-monzodiorites and monzo-grano-diorites of the South Stock. On the basis of isotopic dating by the U-Pb (SHRIMP) method for zircon and by the K-Ar method for hornblendes and biotites, the age of magmatic rocks is determined at 110 ± 4 for the earlier phase and at 103.5 ± 1.5 for the later one. Examination of the isotopic composition for Nd, Sr, Pb, Hf, δ18O, and REE spectra has shown that melts of the first phase are contaminated with crustal rocks and they are typical for a high degree of secondary alterations. Potassiumfeldspar, biotite, propylitic alterations, and sulfidization are manifested in these rocks. The rocks of the later stage of magmatism are characteristic for a primitive composition of isotopes and the absence of secondary alterations. They carry the features of adakite specifics that allows us to consider them derivatives of mantle generation under high fluid pressure. The intrusion of fluid-saturated melts of the second phase into the magmatic source of the first phase caused both an alteration pattern of rocks and copper-porphyritic mineralization. Isotopes of sulfur and oxygen allow us to consider the ore component to be of magmatic origin.
Phase change in CoTi2 induced by MeV electron irradiation
NASA Astrophysics Data System (ADS)
Zensho, Akihiro; Sato, Kazuhisa; Yasuda, Hidehiro; Mori, Hirotaro
2018-07-01
The phase change induced by MeV electron irradiation in the intermetallic compound E93-CoTi2 was investigated using high-voltage electron microscopy. Under MeV electron irradiation, CoTi2 was first transformed into an amorphous phase and, with continued irradiation, crystallite formation in the amorphous phase (i.e. formation of crystallites of a solid-solution phase within the amorphous phase) was induced. The critical temperature for amorphisation was around 250 K. The total dose (dpa) required for crystallite formation (i.e. that required for partial crystallisation) was high (i.e. 27-80 dpa) and, even after prolonged irradiation, the amorphous phase was retained in the irradiated sample. Such partial crystallisation behaviour of amorphous Co33Ti67 was clearly different from the crystallisation behaviour (i.e. amorphous-to-solid solution, polymorphous transformation) of amorphous Cr67Ti33 reported in the literature. A possible cause of the difference is discussed.
Formation of the Vysoká-Zlatno Cu-Au skarn-porphyry deposit, Slovakia
NASA Astrophysics Data System (ADS)
Koděra, Peter; Lexa, Jaroslav; Fallick, Anthony E.
2010-12-01
The central zone of the Miocene Štiavnica stratovolcano hosts several occurrences of Cu-Au skarn-porphyry mineralisation, related to granodiorite/quartz-diorite porphyry dyke clusters and stocks. Vysoká-Zlatno is the largest deposit (13.4 Mt at 0.52% Cu), with mineralised Mg-Ca exo- and endoskarns, developed at the prevolcanic basement level. The alteration pattern includes an internal K- and Na-Ca silicate zone, surrounded by phyllic and argillic zones, laterally grading into a propylitic zone. Fluid inclusions in quartz veinlets in the internal zone contain mostly saline brines with 31-70 wt.% NaCl eq. and temperatures of liquid-vapour homogenization (Th) of 186-575°C, indicating fluid heterogenisation. Garnet contains inclusions of variable salinity with 1-31 wt.% NaCl eq. and Th of 320-360°C. Quartz-chalcopyrite veinlets host mostly low-salinity fluid inclusions with 0-3 wt.% NaCl eq. and Th of 323-364°C. Data from sphalerite from the margin of the system indicate mixing with dilute and cooler fluids. The isotopic composition of fluids in equilibrium with K-alteration and most skarn minerals (both prograde and retrograde) indicates predominantly a magmatic origin (δ18Ofluid 2.5-12.3‰) with a minor meteoric component. Corresponding low δDfluid values are probably related to isotopic fractionation during exsolution of the fluid from crystallising magma in an open system. The data suggest the general pattern of a distant source of magmatic fluids that ascended above a zone of hydraulic fracturing below the temperature of ductile-brittle transition. The magma chamber at ˜5-6 km depth exsolved single-phase fluids, whose properties were controlled by changing PT conditions along their fluid paths. During early stages, ascending fluids display liquid-vapour immiscibility, followed by physical separation of both phases. Low-salinity liquid associated with ore veinlets probably represents a single-phase magmatic fluid/magmatic vapour which contracted into liquid upon its ascent.
Yee, Lindsay D; Craven, Jill S; Loza, Christine L; Schilling, Katherine A; Ng, Nga Lee; Canagaratna, Manjula R; Ziemann, Paul J; Flagan, Richard C; Seinfeld, John H
2012-06-21
The extended photooxidation of and secondary organic aerosol (SOA) formation from dodecane (C(12)H(26)) under low-NO(x) conditions, such that RO(2) + HO(2) chemistry dominates the fate of the peroxy radicals, is studied in the Caltech Environmental Chamber based on simultaneous gas and particle-phase measurements. A mechanism simulation indicates that greater than 67% of the initial carbon ends up as fourth and higher generation products after 10 h of reaction, and simulated trends for seven species are supported by gas-phase measurements. A characteristic set of hydroperoxide gas-phase products are formed under these low-NO(x) conditions. Production of semivolatile hydroperoxide species within three generations of chemistry is consistent with observed initial aerosol growth. Continued gas-phase oxidation of these semivolatile species produces multifunctional low volatility compounds. This study elucidates the complex evolution of the gas-phase photooxidation chemistry and subsequent SOA formation through a novel approach comparing molecular level information from a chemical ionization mass spectrometer (CIMS) and high m/z ion fragments from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Combination of these techniques reveals that particle-phase chemistry leading to peroxyhemiacetal formation is the likely mechanism by which these species are incorporated in the particle phase. The current findings are relevant toward understanding atmospheric SOA formation and aging from the "unresolved complex mixture," comprising, in part, long-chain alkanes.
Fekri, Farnaz; Delos Santos, Ralph Christian; Karshafian, Raffi; Antonescu, Costin N
2016-01-01
Drug delivery to tumors is limited by several factors, including drug permeability of the target cell plasma membrane. Ultrasound in combination with microbubbles (USMB) is a promising strategy to overcome these limitations. USMB treatment elicits enhanced cellular uptake of materials such as drugs, in part as a result of sheer stress and formation of transient membrane pores. Pores formed upon USMB treatment are rapidly resealed, suggesting that other processes such as enhanced endocytosis may contribute to the enhanced material uptake by cells upon USMB treatment. How USMB regulates endocytic processes remains incompletely understood. Cells constitutively utilize several distinct mechanisms of endocytosis, including clathrin-mediated endocytosis (CME) for the internalization of receptor-bound macromolecules such as Transferrin Receptor (TfR), and distinct mechanism(s) that mediate the majority of fluid-phase endocytosis. Tracking the abundance of TfR on the cell surface and the internalization of its ligand transferrin revealed that USMB acutely enhances the rate of CME. Total internal reflection fluorescence microscopy experiments revealed that USMB treatment altered the assembly of clathrin-coated pits, the basic structural units of CME. In addition, the rate of fluid-phase endocytosis was enhanced, but with delayed onset upon USMB treatment relative to the enhancement of CME, suggesting that the two processes are distinctly regulated by USMB. Indeed, vacuolin-1 or desipramine treatment prevented the enhancement of CME but not of fluid phase endocytosis upon USMB, suggesting that lysosome exocytosis and acid sphingomyelinase, respectively, are required for the regulation of CME but not fluid phase endocytosis upon USMB treatment. These results indicate that USMB enhances both CME and fluid phase endocytosis through distinct signaling mechanisms, and suggest that strategies for potentiating the enhancement of endocytosis upon USMB treatment may improve targeted drug delivery.
On liquid phases in cometary nuclei
NASA Astrophysics Data System (ADS)
Miles, Richard; Faillace, George A.
2012-06-01
In this paper we review the relevant literature and investigate conditions likely to lead to melting of H2O ice, methanol (CH3OH) ice, ethane (C2H6) ice and other volatile ices in cometary nuclei. On the basis of a heat balance model which takes account of volatiles loss, we predict the formation of occasional aqueous and hydrocarbon liquid phases in subsurface regions at heliocentric distances, rh of 1-3 AU, and 5-12 AU, respectively. Low triple-point temperatures and low vapour pressures of C2H6, C3H8, and some higher-order alkanes and alkenes, favour liquid phase formation in cometary bodies at high rh. Microporosity and the formation of a stabilization crust occluding the escape of volatiles facilitate liquid-phase formation. Characteristics of the near-surface which favour subsurface melting include; low effective surface emissivity (at low rh), high amorphous carbon content, average pore sizes of ˜10 μm or less, presence of solutes (e.g. CH3OH), mixtures of C2-C6 hydrocarbons (for melting at high rh), diurnal thermal cycling, and slow rotation rate. Applying the principles of soil mechanics, capillary forces are shown to initiate pre-melting phenomena and subsequent melting, which is expected to impart considerable strength of ˜104 Pa in partially saturated layers, reducing porosity and permeability, enhancing thermal conductivity and heat transfer. Diurnal thermal cycling is expected to have a marked effect on the composition and distribution of H2O ice in the near-surface leading to frost heave-type phenomena even where little if any true melting occurs. Where melting does take place, capillary suction in the wetted zone has the potential to enhance heat transfer via capillary wetting in a low-gravity environment, and to modify surface topography creating relatively smooth flat-bottomed features, which have a tendency to be located within small depressions. An important aspect of the "wetted layer" model is the prediction that diurnal melt-freeze cycles alter the mixing ratio vs. depth of solutes present, or of other miscible components, largely through a process of fractional crystallization, but also potentially involving frost heave. Wetted layers are potentially durable and can involve significant mass transport of volatile materials in the near-surface, increasing in extent over many rotations of the nucleus prior to and just after perihelion passage, and causing stratification and trapping of the lowest-melting mixtures at depths of several metres. A possible mechanism for cometary outbursts is proposed involving a heat pulse reaching the liquid phase in the deepest wetted zone, leading to supersaturation and triggering the sudden release under pressure of dissolved gases, in particular CO2, CO, CH4 or N2, contained beneath a consolidated near-surface layer. This study indicates that liquid water can persist for long periods of time in the near-surface of some intermediate-sized bodies (102-103 km radius) within protoplanetary discs.
NASA Astrophysics Data System (ADS)
Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.
2011-12-01
One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.
NASA Technical Reports Server (NTRS)
Morris, R. V.; Klingelhoefer, G.; Schroeder, C.; Rodionov, D. S.; Ming, D. W.; Yen, A.
2006-01-01
The Mars Exploration Rover (MER) Spirit landed on the plains of Gusev Crater on 4 January 2004. One primary scientific objective for the mission is to characterize the mineralogical and elemental composition of surface materials, searching for evidence of water and clues for assessing past and current climates and their suitability for life [1]. The role of the Moessbauer (MB) spectrometer on Spirit is to provide quantitative information about the distribution of Fe among its oxidation and coordination states, identification of Fe-bearing phases, and relative distribution of Fe among those phases. The speciation and distribution of Fe in Martian rock and soil constrains the primary rock types, redox conditions under which primary minerals crystallized, the extent of alteration and weathering, the type of alteration and weathering products, and the processes and environmental conditions for alteration and weathering. In this abstract, we discuss the incredible diversity of Fe-bearing phases detected by Spirit s MB instrument during its first 540 sols of exploration at Gusev crater [2,3].
Large PAMAM Dendron Induces Formation of Unusual P4332 Mesophase in Monoolein/Water system.
Kumar, Manoj; Patil, Naganath G; Ambade, Ashootosh V; Kumaraswamy, Guruswamy
2018-05-18
Compact macromolecular dendrons have been shown to induce the formation of discontinuous inverse micellar assemblies with Fd3m symmetry in monoolein/water systems. Here, we demonstrate that a large PAMAM dendron (G5: fifth generation) induces the formation a very unusual mesophase with P4332 symmetry. This mesophase had previously been observed in monoolein/water systems only on addition of cytochrome C. The P4332 mesophase can be considered an intermediate phase between the bicontinuous Ia3d and discontinuous micellar mesophases. In this unusual phase, every third rod junction of the Ia3d mesophase is replaced with a spherical micelle. We present a detailed investigation of the phase behaviour of monoolein/water as a function of G5 concentration and temperature. Addition of 1% G5 in 85/15 monoolein/water system induces a transition from the L to Ia3d phase. Further increase in G5 concentration to above 2% induces the formation of the P4332 phase. Thus, incorporation of G5 yields a qualitatively different phase diagram when compared with incorporation of lower generation PAMAM dendrons (G2 - G4) in monoolein/water, where the reverse micellar Fd3m phase forms. PAMAM dendrons of all generations, G2 - G5, bear terminal amine groups that interact with the monoolein head group. The compact molecular architecture of the dendrons and these attractive interactions induce bending of the monoolein bilayer structure. For smaller dendrons, G2 - G4, this results in the formation of the Fd3m phase. However, the large size of the G5 dendron precludes this and a rare intermediate phase between the Ia3d and discontinuous micellar phase, the P4332 mesophase forms instead.
Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching.
Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff
2017-03-27
The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.
Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching
Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff
2017-01-01
The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures. PMID:28772707
Modelling Iron-Bentonite Interactions
NASA Astrophysics Data System (ADS)
Watson, C.; Savage, D.; Benbow, S.; Wilson, J.
2009-04-01
The presence of both iron canisters and bentonitic clay in some engineered barrier system (EBS) designs for the geological disposal of high-level radioactive wastes creates the potential for chemical interactions which may impact upon the long-term performance of the clay as a barrier to radionuclide migration. Flooding of potential radionuclide sorption sites on the clay by ferrous ions and conversion of clay to non-swelling sheet silicates (e.g. berthierine) are two possible outcomes deleterious to long-term performance. Laboratory experimental studies of the corrosion of iron in clay show that corrosion product layers are generally thin (< 1 µm) with magnetite, siderite, or ‘green rust' occurring depending upon temperature and ambient partial pressure of carbon dioxide. In theory, incorporation of iron into clay alteration products could act as a ‘pump' to accelerate corrosion. However, the results of laboratory experiments to characterise the products of iron-bentonite interaction are less than unequivocal. The type and amounts of solid products appear to be strong functions of time, temperature, water/clay ratio, and clay and pore fluid compositions. For example, the products of high temperature experiments (> 250 °C) are dominated by chlorite, whereas lower temperatures produce berthierine, odinite, cronstedtite, or Fe-rich smectite. Unfortunately, the inevitable short-term nature of laboratory experimental studies introduces issues of metastability and kinetics. The sequential formation in time of minerals in natural systems often produces the formation of phases not predicted by equilibrium thermodynamics. Evidence from analogous natural systems suggests that the sequence of alteration of clay by Fe-rich fluids will proceed via an Ostwald step sequence. The computer code, QPAC, has been modified to incorporate processes of nucleation, growth, precursor cannibalisation, and Ostwald ripening to address the issues of the slow growth of bentonite alteration products. This, together with inclusion of processes of iron corrosion and diffusion, has enabled investigation of a representative model of the alteration of bentonite in a typical EBS environment. Simulations with fixed mineral surface areas show that berthierine dominates the solid product assemblage, with siderite replacing it at simulation times greater than 10 000 years. Simulations with time-dependent mineral surface areas show a sequence of solid alteration products, described by: magnetite -> cronstedtite -> berthierine -> chlorite. Using plausible estimates of mineral-fluid interfacial free energies, chlorite growth is not achieved until 5 000 years of simulation time. The results of this modelling work suggest that greater emphasis should be placed upon methods to up-scale the results of laboratory experiments to timescales of relevance to performance assessment.
Phase formation and texture of thin nickel germanides on Ge(001) and Ge(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Schutter, B., E-mail: deschutter.bob@ugent.be; Detavernier, C.; Van Stiphout, K.
2016-04-07
We studied the solid-phase reaction between a thin Ni film and a single crystal Ge(001) or Ge(111) substrate during a ramp anneal. The phase formation sequence was determined using in situ X-ray diffraction and in situ Rutherford backscattering spectrometry (RBS), while the nature and the texture of the phases were studied using X-ray pole figures and transmission electron microscopy. The phase sequence is characterized by the formation of a single transient phase before NiGe forms as the final and stable phase. X-ray pole figures were used to unambiguously identify the transient phase as the ϵ-phase, a non-stoichiometric Ni-rich germanide withmore » a hexagonal crystal structure that can exist for Ge concentrations between 34% and 48% and which forms with a different epitaxial texture on both substrate orientations. The complementary information gained from both RBS and X-ray pole figure measurements revealed a simultaneous growth of both the ϵ-phase and NiGe over a small temperature window on both substrate orientations.« less
NASA Astrophysics Data System (ADS)
Tang, Haolan; Liu, Ming-Chang; McKeegan, Kevin D.; Tissot, Francois L. H.; Dauphas, Nicolas
2017-06-01
The isotopic composition of oxygen as well as 26Al-26Mg and 36Cl-36S systematics were studied in Curious Marie, an aqueously altered Allende CAI characterized by a Group II REE pattern and a large 235U excess produced by the decay of short-lived 247Cm. Oxygen isotopic compositions in the secondary minerals of Curious Marie follow a mass-dependent fractionation line with a relatively homogenous depletion in 16O (Δ17O of -8‰) compared to unaltered minerals of CAI components. Both Mg and S show large excesses of radiogenic isotopes (26Mg∗ and 36S∗) that are uniformly distributed within the CAI, independent of parent/daughter ratio. A model initial 26Al/27Al ratio [(6.2 ± 0.9) × 10-5], calculated using the bulk Al/Mg ratio and the uniform δ26Mg∗ ∼ +43‰, is similar to the canonical initial solar system value within error. The exceptionally high bulk Al/Mg ratio of this CAI (∼95) compared to other inclusions is presumably due to Mg mobilization by fluids. Therefore, the model initial 26Al/27Al ratio of this CAI implies not only the early condensation of the CAI precursor but also that aqueous alteration occurred early, when 26Al was still at or near the canonical value. This alteration event is most likely responsible for the U depletion in Curious Marie and occurred at most 50 kyr after CAI formation, leading to a revised estimate of the early solar system 247Cm/235U ratio of (5.6 ± 0.3) × 10-5. The Mg isotopic composition in Curious Marie was subsequently homogenized by closed-system thermal processing without contamination by chondritic Mg. The large, homogeneous 36S excesses (Δ36S∗ ∼ +97‰) detected in the secondary phases of Curious Marie are attributed to 36Cl decay (t1/2 = 0.3 Myr) that was introduced by Cl-rich fluids during the aqueous alteration event that led to sodalite formation. A model 36Cl/35Cl ratio of (2.3 ± 0.6) × 10-5 is calculated at the time of aqueous alteration, translating into an initial 36Cl/35Cl ratio of ∼1.7-3 × 10-5 at solar system birth. The Mg and S radiogenic excesses suggest that 26Al and 36Cl co-existed in the early solar nebula, raising the possibility that, in addition to an irradiation origin, 36Cl could have also been derived from a stellar source.
NASA Astrophysics Data System (ADS)
Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.
2013-10-01
Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.
Ripple formation in unilamellar-supported lipid bilayer revealed by FRAPP.
Harb, Frédéric; Simon, Anne; Tinland, Bernard
2013-12-01
The mechanisms of formation and conditions of the existence of the ripple phase are fundamental thermodynamic questions with practical implications for medicine and pharmaceuticals. We reveal a new case of ripple formation occurring in unilamellar-supported bilayers in water, which results solely from the bilayer/support interaction, without using lipid mixtures or specific ions. This ripple phase is detected by FRAPP using diffusion coefficient measurements as a function of temperature: a diffusivity plateau is observed. It occurs in the same temperature range where ripple phase existence has been observed using other methods. When AFM experiments are performed in the appropriate temperature range the ripple phase is confirmed.
Development of theory-based health messages: three-phase programme of formative research
Epton, Tracy; Norman, Paul; Harris, Peter; Webb, Thomas; Snowsill, F. Alexandra; Sheeran, Paschal
2015-01-01
Online health behaviour interventions have great potential but their effectiveness may be hindered by a lack of formative and theoretical work. This paper describes the process of formative research to develop theoretically and empirically based health messages that are culturally relevant and can be used in an online intervention to promote healthy lifestyle behaviours among new university students. Drawing on the Theory of Planned Behaviour, a three-phase programme of formative research was conducted with prospective and current undergraduate students to identify (i) modal salient beliefs (the most commonly held beliefs) about fruit and vegetable intake, physical activity, binge drinking and smoking, (ii) which beliefs predicted intentions/behaviour and (iii) reasons underlying each of the beliefs that could be targeted in health messages. Phase 1, conducted with 96 pre-university college students, elicited 56 beliefs about the behaviours. Phase 2, conducted with 3026 incoming university students, identified 32 of these beliefs that predicted intentions/behaviour. Phase 3, conducted with 627 current university students, elicited 102 reasons underlying the 32 beliefs to be used to construct health messages to bolster or challenge these beliefs. The three-phase programme of formative research provides researchers with an example of how to develop health messages with a strong theoretical- and empirical base for use in health behaviour change interventions. PMID:24504361
Cutting Modeling of Hybrid CFRP/Ti Composite with Induced Damage Analysis
Xu, Jinyang; El Mansori, Mohamed
2016-01-01
In hybrid carbon fiber reinforced polymer (CFRP)/Ti machining, the bi-material interface is the weakest region vulnerable to severe damage formation when the tool cutting from one phase to another phase and vice versa. The interface delamination as well as the composite-phase damage is the most serious failure dominating the bi-material machining. In this paper, an original finite element (FE) model was developed to inspect the key mechanisms governing the induced damage formation when cutting this multi-phase material. The hybrid composite model was constructed by establishing three disparate physical constituents, i.e., the Ti phase, the interface, and the CFRP phase. Different constitutive laws and damage criteria were implemented to build up the entire cutting behavior of the bi-material system. The developed orthogonal cutting (OC) model aims to characterize the dynamic mechanisms of interface delamination formation and the affected interface zone (AIZ). Special focus was made on the quantitative analyses of the parametric effects on the interface delamination and composite-phase damage. The numerical results highlighted the pivotal role of AIZ in affecting the formation of interface delamination, and the significant impacts of feed rate and cutting speed on delamination extent and fiber/matrix failure. PMID:28787824
NASA Technical Reports Server (NTRS)
Krohn, M. D.; Abrams, M. J.; Rowan, L. C. (Principal Investigator)
1979-01-01
The author has identified the following significant results. Limonitic alteration halos associated with two copper prophyry deposits were successfully mapped at Battle Mountain. Alteration halos from both a hypogene system at Copper Canyon and a supergene system at Copper Basin are recognizable in the composite. Both copper porphyry deposits are located in sedimentary rock units that commonly have ferruginous coatings; yet, in most cases, the hydrothermally derived limonite was distinguishable in the CRC from sedimentary limonite. Large format playback images with pixel sizes from 200 to 400 micron m provided details of spatial resolution and color separation unachievable on enlargements from 70 mm film chips. Details of the alteration halos could be resolved only in the large format images. Two aspects of the alteration halos of the porphyry copper deposits were not mapped on the CRC. The optimum CRC image for the area studied consists of MSS 4/5 as blue, MSS 4/6 as yellow, and MSS 6/7 as magenta using diazo films. The disseminated gold deposits at Gold Acres are not depicted in the CRC image.
Clarke, Elizabeth C; Fletcher, David F; Bilston, Lynne E
2017-04-01
Syringomyelia (a spinal cord cyst) usually develops as a result of conditions that cause cerebrospinal fluid (CSF) obstruction. The mechanism of syrinx formation and enlargement remains unclear, though previous studies suggest that the fluid enters via the perivascular spaces (PVS) of the penetrating arteries of the spinal cord, and that alterations in the CSF pulse timing and pressure could contribute to enhanced PVS inflow. This study uses an idealised computational model of the PVS to investigate the factors that influence peri-arterial fluid flow. First, we used three sample patient-specific models to explore whether changes in subarachnoid space (SAS) pressures in individuals with and without syringomyelia could influence PVS inflow. Second we conducted a parametric study to determine how features of the CSF pulse altered perivascular fluid, including alterations to timing and magnitude of the peak SAS pressure, the timing of reversal from high to low pressure (diastolic phase), and the area under the pressure-time curve. The model for the patient with syringomyelia had higher net CSF inflow to the PVS than the two subjects without syringomyelia. In the parametric study, only increasing the area under the high pressure region of the SAS pulse substantially increased PVS inflow, when coupled with a temporal shift in arterial and SAS pulses. This suggests that a period of sustained high SAS pressure while arterial diameter is low may increase net CSF pumping into the PVS.
NASA Astrophysics Data System (ADS)
Till, J. L.; Nowaczyk, N.
2018-06-01
The iron oxyhydroxide goethite is unstable at elevated temperatures and can transform to magnetite under reducing conditions. In this study, various heating experiments were conducted to simulate Fe-mineral transformations during pyrogenic or burial diagenesis alteration in the presence of organic matter. Thermomagnetic measurements, capsule heating experiments and thermochemical remanence acquisition measurements were performed to determine the effect of organic carbon additions on samples containing synthetic microcrystalline goethite, microcrystalline hematite or nanocrystalline goethite. Changes in magnetic properties with heating were monitored to characterize the magnetic behaviour of secondary magnetite and hematite formed during the experiments. Authigenic magnetite formed in all samples containing organic C, while goethite heated without organic C altered to poorly crystalline pseudomorphic hematite. The concentration of organic matter was found to have little influence on the rate or extent of reaction or on the characteristics of the secondary phases. Authigenic magnetite formed from microcrystalline goethite and hematite dominantly behaves as interacting single-domain particles, while nanophase goethite alters to a mixture of small single-domain and superparamagnetic magnetite. Authigenic magnetite and hematite both acquire a stable thermochemical remanence on heating to temperatures between 350 and 600 °C, although the remanence intensity acquired below 500 °C is much weaker than that at higher temperatures. Reductive transformation of fine-grained goethite or hematite is therefore a potential pathway for the production of authigenic magnetite and the generation of stable chemical remanence that may be responsible for remagnetization in organic-matter-bearing sedimentary rocks.
The report gives Phase II results of a combined experimental/theoretical study to define the mechanisms and kinetics of the formation of NOx and other combustion pollutants. Two experimental devices were used in Phase II. A special flat-flame burner with a controlled-temperature ...
Impaired theta phase-resetting underlying auditory N1 suppression in chronic alcoholism.
Fuentemilla, Lluis; Marco-Pallarés, Josep; Gual, Antoni; Escera, Carles; Polo, Maria Dolores; Grau, Carles
2009-02-18
It has been suggested that chronic alcoholism may lead to altered neural mechanisms related to inhibitory processes. Here, we studied auditory N1 suppression phenomena (i.e. amplitude reduction with repetitive stimuli) in chronic alcoholic patients as an early-stage information-processing brain function involving inhibition by the analysis of the N1 event-related potential and time-frequency computation (spectral power and phase-resetting). Our results showed enhanced neural theta oscillatory phase-resetting underlying N1 generation in suppressed N1 event-related potential. The present findings suggest that chronic alcoholism alters neural oscillatory synchrony dynamics at very early stages of information processing.
Gomez-Godinez, Veronica; Wu, Tao; Sherman, Adria J.; Lee, Christopher S.; Liaw, Lih-Huei; Zhongsheng, You; Yokomori, Kyoko; Berns, Michael W.
2010-01-01
In this study the femtosecond near-IR and nanosecond green lasers are used to induce alterations in mitotic chromosomes. The subsequent double-strand break responses are studied. We show that both lasers are capable of creating comparable chromosomal alterations and that a phase paling observed within 1–2 s of laser exposure is associated with an alteration of chromatin as confirmed by serial section electron microscopy, DAPI, γH2AX and phospho-H3 staining. Additionally, the accumulation of dark material observed using phase contrast light microscopy (indicative of a change in refractive index of the chromatin) ∼34 s post-laser exposure corresponds spatially to the accumulation of Nbs1, Ku and ubiquitin. This study demonstrates that chromosomes selectively altered in mitosis initiate the DNA damage response within 30 s and that the accumulation of proteins are visually represented by phase-dark material at the irradiation site, allowing us to determine the fate of the damage as cells enter G1. These results occur with two widely different laser systems, making this approach to study DNA damage responses in the mitotic phase generally available to many different labs. Additionally, we present a summary of most of the published laser studies on chromosomes in order to provide a general guide of the lasers and operating parameters used by other laboratories. PMID:20923785
NASA Astrophysics Data System (ADS)
Stoudt, M. R.; Lass, E. A.; Ng, D. S.; Williams, M. E.; Zhang, F.; Campbell, C. E.; Lindwall, G.; Levine, L. E.
2018-07-01
This research evaluated the kinetics of δ-phase growth in laser powder bed additively-manufactured (AM) Inconel 625 during post-build stress-relief heat treatments. The temperatures ranged between 650 °C and 1050 °C, and the times from 0.25 to 168 hours. The presence of δ-phase was verified for each temperature/time combination through multiple techniques. A conventional time-temperature-transformation diagram was constructed from the time-temperature data. Comparison to the growth in wrought IN625 with a similar nominal composition revealed that δ-phase formation occurred at least two orders of magnitude faster in the AM IN625. The results of this study also revealed that the segregated microstructure in the as-built condition has a strong influence on the kinetics of δ-phase formation in AM IN625 as compared to a homogenized material. Since control of the δ-phase growth is essential for reliable prediction of the performance of IN625 components in service, avoiding heat treatments that promote the formation of δ-phase in AM components that are not homogenized is highly recommended. This will be particularly true at elevated temperatures where the microstructural stability and the consistency of mechanical properties are more likely to be affected by the presence of δ-phase.