Lamkin, Joanna; Clifton, Allan; Campbell, W Keith; Miller, Joshua D
2014-04-01
Two dimensions of narcissism exist, grandiose and vulnerable, which are thought to be associated with distinctly different patterns of interpersonal behavior. Social network analysis is a way of quantifying and analyzing interpersonal interactions that may prove useful for characterizing the networks associated with these narcissism dimensions. In the current study, participants (N = 148) completed scales assessing both narcissism dimensions and a measure of the five-factor model of personality. Egocentric network information about participants' 30 closest friends and family members (i.e., "alters") was also obtained. Both narcissism dimensions were characterized by negative perceptions of the individuals who comprise one's social networks, and many of these relations were mediated by individuals' higher levels of antagonism. Grandiose narcissism also interacted with alter centrality (i.e., importance to the network) such that individuals low on grandiose narcissism were less likely to perceive central alters in a negative light and were more attuned to central alters than were individuals high on grandiose narcissism. Overall, both narcissism dimensions were associated with perceiving one's overall social environment negatively because of the high levels of antagonism that characterize both narcissism dimensions. Individuals high on grandiose narcissism, however, appear to be more insensitive to the relative importance of individuals in their social networks. PsycINFO Database Record (c) 2014 APA, all rights reserved
High-Fat Diets Alter the Modulatory Effects of Xenobiotics on Cytochrome P450 Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadler, Natalie C.; Webb-Robertson, Bobbie-Jo M.; Clauss, Therese R.
Cytochrome P450 monooxygenases (P450) are key to the metabolism of myriad endogenous chemicals and xenobiotics, including the majority of therapeutic drugs. Dysregulated P450 activities can lead to altered drug metabolism and toxicity, oxidative stress, and inflammation; all physiological states frequently charged as the impetus for various chronic pathologies. We characterized the impact of common xenobiotic exposures, specifically high-fat diet and active or passive cigarette smoke, on the functional capacity of hepatic and pulmonary P450s. We employed an activity-based protein profiling approach to characterize the identity and activity level of measured individual P450 isoforms. Our results confirm expectations of significant alterationsmore » in pulmonary P450s due to cigarette smoke, but now reveal the repressive impact of high-fat diet-induced obesity on many hepatic P450s activities, and the dynamic alterations due to concomitant diet and smoke exposures on liver and lung P450 activities impacting drug metabolism and pathways of inflammation.« less
Distinct microRNA alterations characterize high- and low-grade bladder cancer.
Catto, James W F; Miah, Saiful; Owen, Helen C; Bryant, Helen; Myers, Katie; Dudziec, Ewa; Larré, Stéphane; Milo, Marta; Rehman, Ishtiaq; Rosario, Derek J; Di Martino, Erica; Knowles, Margaret A; Meuth, Mark; Harris, Adrian L; Hamdy, Freddie C
2009-11-01
Urothelial carcinoma of the bladder (UCC) is a common disease that arises by at least two different molecular pathways. The biology of UCC is incompletely understood, making the management of this disease difficult. Recent evidence implicates a regulatory role for microRNA in cancer. We hypothesized that altered microRNA expression contributes to UCC carcinogenesis. To test this hypothesis, we examined the expression of 322 microRNAs and their processing machinery in 78 normal and malignant urothelial samples using real-time rtPCR. Genes targeted by differentially expressed microRNA were investigated using real-time quantification and microRNA knockdown. We also examined the role of aberrant DNA hypermethylation in microRNA downregulation. We found that altered microRNA expression is common in UCC and occurs early in tumorogenesis. In normal urothelium from patients with UCC, 11% of microRNAs had altered expression when compared with disease-free controls. This was associated with upregulation of Dicer, Drosha, and Exportin 5. In UCC, microRNA alterations occur in a tumor phenotype-specific manner and can predict disease progression. High-grade UCC were characterized by microRNA upregulation, including microRNA-21 that suppresses p53 function. In low-grade UCC, there was downregulation of many microRNA molecules. In particular, loss of microRNAs-99a/100 leads to upregulation of FGFR3 before its mutation. Promoter hypermethylation is partly responsible for microRNA downregulation. In conclusion, distinct microRNA alterations characterize UCC and target genes in a pathway-specific manner. These data reveal new insights into the disease biology and have implications regarding tumor diagnosis, prognosis and therapy.
Hydrothermal alteration of a rhyolitic hyaloclastite from Ponza Island, Italy
NASA Astrophysics Data System (ADS)
Ylagan, Robert F.; Altaner, Stephen P.; Pozzuoli, Antonio
1996-12-01
A rhyolitic hyaloclastite from Ponza island, Italy, has been hydrothermally altered producing four distinct alteration zones based on XRD and field textures: (1) non-pervasive argillic zone; (2) propylitic zone; (3) silicic zone; and (4) sericitic zone. The unaltered hyaloclastite is a volcanic breccia with clasts of vesiculated obsidian in a matrix of predominantly pumice lapilli. Incomplete alteration of the hyaloclastite resulted in the non pervasive argillic zone, characterized by smectite and disordered opal-CT. Obsidian clasts, some pumice lapilli, and pyrogenic plagioclase and biotite are unaltered. Smectite has an irregular flakey morphology, although euhedral particles are occasionally observed. The propylitic zone is characterized by mixed-layer illite/smectite (I/S) with 10 to 85% illite (I), mordenite, opal-C and authigenic K-feldspar (akspar). The matrix of the hyaloclastite is completely altered and obsidian clasts are silicified; however, plagioclase and biotite phenocrysts remain unaltered. Flakey I/S replaces pumice, and mordenite, akspar and silica line and fill pores. I/S particles are composed predominantly of subequant plates and euhedral laths. The silicic zone is characterized by highly illitic I/S with ≥ 90% I, quartz, akspar and occasional albite. In this zone the matrix and clasts are completely altered, and pyrogenic plagioclase shows significant alteration. Illitic I/S has a euhedral lath-like morphology. In the sericitic zone the hyaloclastite altered primarily to illitic I/S with ≥ 66% I, quartz, and minor akspar and pyrite. Clay minerals completely replace pyrogenic feldspars and little evidence remains of the original hyaloclastite texture. Unlike other zones, illitic I/S is fibrous and pure illite samples are composed of euhedral laths and hexagonal plates. The temperatures of hydrothermal alteration likely ranged from 30 to 90 °C for the argillic zone, from 110 to 160 °C for the propylitic zone, from 160 to 270 °C for the silicic zone, and were possibly as high as 300 °C for the sericitic zone. The four zones occur as linear bands that increase in intensity north of the bentonite mine at Cala dell'Acqua. The alteration zones have two orientations and may be structurally controlled by E-W- and NE-SW-trending faulting which is consistent with the dominant structural trends of the Pontine archipelago. Finally, hydrothermal alteration most likely involved seawater based on the geologic evolution of Ponza.
Integrated Molecular Characterization of Uterine Carcinosarcoma.
Cherniack, Andrew D; Shen, Hui; Walter, Vonn; Stewart, Chip; Murray, Bradley A; Bowlby, Reanne; Hu, Xin; Ling, Shiyun; Soslow, Robert A; Broaddus, Russell R; Zuna, Rosemary E; Robertson, Gordon; Laird, Peter W; Kucherlapati, Raju; Mills, Gordon B; Weinstein, John N; Zhang, Jiashan; Akbani, Rehan; Levine, Douglas A
2017-03-13
We performed genomic, epigenomic, transcriptomic, and proteomic characterizations of uterine carcinosarcomas (UCSs). Cohort samples had extensive copy-number alterations and highly recurrent somatic mutations. Frequent mutations were found in TP53, PTEN, PIK3CA, PPP2R1A, FBXW7, and KRAS, similar to endometrioid and serous uterine carcinomas. Transcriptome sequencing identified a strong epithelial-to-mesenchymal transition (EMT) gene signature in a subset of cases that was attributable to epigenetic alterations at microRNA promoters. The range of EMT scores in UCS was the largest among all tumor types studied via The Cancer Genome Atlas. UCSs shared proteomic features with gynecologic carcinomas and sarcomas with intermediate EMT features. Multiple somatic mutations and copy-number alterations in genes that are therapeutic targets were identified. Copyright © 2017 Elsevier Inc. All rights reserved.
Determining the effects of dams on subdaily variation in river flows at a whole-basin scale
Zimmerman, J.K.H.; Letcher, B.H.; Nislow, K.H.; Lutz, K.A.; Magilligan, F.J.
2010-01-01
River regulation can alter the frequency and magnitude of subdaily flow variations causing major impacts on ecological structure and function. We developed an approach to quantify subdaily flow variation for multiple sites across a large watershed to assess the potential impacts of different dam operations (flood control, run-of-river hydropower and peaking hydropower) on natural communities. We used hourly flow data over a 9-year period from 30 stream gages throughout the Connecticut River basin to calculate four metrics of subdaily flow variation and to compare sites downstream of dams with unregulated sites. Our objectives were to (1) determine the temporal scale of data needed to characterize subdaily variability; (2) compare the frequency of days with high subdaily flow variation downstream of dams and unregulated sites; (3) analyse the magnitude of subdaily variation at all sites and (4) identify individual sites that had subdaily variation significantly higher than unregulated locations. We found that estimates of flow variability based on daily mean flow data were not sufficient to characterize subdaily flow patterns. Alteration of subdaily flows was evident in the number of days natural ranges of variability were exceeded, rather than in the magnitude of subdaily variation, suggesting that all rivers may exhibit highly variable subdaily flows, but altered rivers exhibit this variability more frequently. Peaking hydropower facilities had the most highly altered subdaily flows; however, we observed significantly altered ranges of subdaily variability downstream of some flood-control and run-of-river hydropower dams. Our analysis can be used to identify situations where dam operating procedures could be modified to reduce the level of hydrologic alteration. ?? 2009 John Wiley & Sons, Ltd.
Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation
Rihel, Jason; Prober, David A.; Arvanites, Anthony; Lam, Kelvin; Zimmerman, Steven; Jang, Sumin; Haggarty, Stephen J.; Kokel, David; Rubin, Lee L.; Peterson, Randall T.; Schier, Alexander F.
2010-01-01
A major obstacle for the discovery of psychoactive drugs is the inability to predict how small molecules will alter complex behaviors. We report the development and application of a high-throughput, quantitative screen for drugs that alter the behavior of larval zebrafish. We found that the multi-dimensional nature of observed phenotypes enabled the hierarchical clustering of molecules according to shared behaviors. Behavioral profiling revealed conserved functions of psychotropic molecules and predicted the mechanisms of action of poorly characterized compounds. In addition, behavioral profiling implicated new factors such as ether-a-go-go-related gene (ERG) potassium channels and immunomodulators in the control of rest and locomotor activity. These results demonstrate the power of high-throughput behavioral profiling in zebrafish to discover and characterize psychotropic drugs and to dissect the pharmacology of complex behaviors. PMID:20075256
Molecular genetic heterogeneity in undifferentiated endometrial carcinomas.
Rosa-Rosa, Juan M; Leskelä, Susanna; Cristóbal-Lana, Eva; Santón, Almudena; López-García, Ma Ángeles; Muñoz, Gloria; Pérez-Mies, Belen; Biscuola, Michele; Prat, Jaime; Esther, Oliva E; Soslow, Robert A; Matias-Guiu, Xavier; Palacios, Jose
2016-11-01
Undifferentiated and dedifferentiated endometrial carcinomas are rare and highly aggressive subtypes of uterine cancer, not well characterized at a molecular level. To investigate whether dedifferentiated carcinomas carry molecular genetic alterations similar to those of pure undifferentiated carcinomas, and to gain insight into the pathogenesis of these tumors, we selected a cohort of 18 undifferentiated endometrial carcinomas, 8 of them with a well-differentiated endometrioid carcinoma component (dedifferentiated endometrioid carcinomas), and studied them by immunohistochemistry and massive parallel and Sanger sequencing. Whole-exome sequencing of the endometrioid and undifferentiated components, as well as normal myometrium, was also carried out in one case. According to The Cancer Genome Atlas classification, we distributed 95% of the undifferentiated carcinomas in this series as follows: (a) hypermutated tumors with loss of any mismatch repair protein expression and microsatellite instability (eight cases, 45%); (b) ultramutated carcinomas carrying mutations in the exonuclease domain of POLE (two cases, 11%); (c) high copy number alterations (copy-number high) tumors group exhibiting only TP53 mutations and high number of alterations detected by FISH (two cases, 11%); and (d) low copy number alterations (copy-number low) tumors with molecular alterations typical of endometrioid endometrial carcinomas (five cases, 28%). Two of the latter cases, however, also had TP53 mutations and higher number of alterations detected by FISH and could have progressed to a copy-number high phenotype. Most dedifferentiated carcinomas belonged to the hypermutated group, whereas pure undifferentiated carcinomas shared molecular genetic alterations with copy-number low or copy-number high tumors. These results indicate that undifferentiated and dedifferentiated endometrial carcinomas are molecularly heterogeneous tumors, which may have prognostic value.
Molecular genetic heterogeneity in undifferentiated endometrial carcinomas
Rosa-Rosa, J.M.; Leskelä, S.; Cristóbal-Lana, E.; Santón, A.; López-García, M.A.; Muñoz, G.; Pérez-Mies, B.; Biscuola, M; Prat, J.; Oliva, E.; Soslow, R.A.; Matias-Guiu, X.; Palacios, J.
2017-01-01
Undifferentiated and dedifferentiated endometrial carcinomas are rare and highly aggressive subtypes of uterine cancer, not well characterized at a molecular level. To investigate whether dedifferentiated carcinomas carry molecular genetic alterations similar to those of pure undifferentiated carcinomas, and to gain insight into the pathogenesis of these tumours, we selected a cohort of 18 undifferentiated endometrial carcinomas, 8 of them with a well differentiated endometrioid carcinoma component (dedifferentiated endometrioid carcinomas), and studied them by immunohistochemistry and massive parallel and Sanger sequencing. Whole exome sequencing of the endometrioid and undifferentiated components as well as normal myometrium, was also carried out in one case. According to The Cancer Genome Atlas classification, we distributed 95% of the undifferentiated carcinomas in this series as follows: a) hypermutated tumours with loss of any mismatch repair protein expression and microsatellite instability (eight cases, 45%); b) ultramutated carcinomas carrying mutations in the exonuclease domain of POLE (two cases, 11%); c) high copy number alterations (copy-number high) tumours group exhibiting only TP53 mutations and high number of alterations detected by FISH (two cases, 11%) ; and d) low copy number alterations (copy-number low) tumours with molecular alterations typical of endometrioid endometrial carcinomas (five cases, 28%). Two of the latter cases, however, also had TP53 mutations and higher number of alterations detected by FISH and could have progressed to a copy-number high phenotype. Most dedifferentiated carcinomas belonged to the hypermutated group whereas pure undifferentiated carcinomas shared molecular genetic alterations with copy-number low or copy-number high tumours. These results indicate that undifferentiated and dedifferentiated endometrial carcinomas are molecularly heterogeneous tumours, which may have prognostic value. PMID:27491810
NASA Astrophysics Data System (ADS)
Pignatelli, Isabella; Marrocchi, Yves; Mugnaioli, Enrico; Bourdelle, Franck; Gounelle, Matthieu
2017-07-01
The CM chondrites represent the largest group of hydrated meteorites and span a wide range of conditions, from less altered (i.e., CM2) down to heavily altered (i.e., CM1). The Paris chondrite is considered the least altered CM and thus enables the earliest stages of aqueous alteration processes to be deciphered. Here, we report results from a nanoscale study of tochilinite/cronstedtite intergrowths (TCIs) in Paris-TCIs being the emblematic secondary mineral assemblages of CM chondrites, formed from the alteration of Fe-Ni metal beads (type-I TCIs) and anhydrous silicates (type-II TCIs). We combined high-resolution transmission electron microscopy, scanning transmission X-ray microscopy and electron diffraction tomography to characterize the crystal structure, crystal chemistry and redox state of TCIs. The data obtained are useful to reconstruct the alteration conditions of Paris and to compare them with those of other meteorites. Our results show that tochilinite in Paris is characterized by a high hydroxide layer content (n = 2.1-2.2) regardless of the silicate precursors. When examined alongside other CMs, it appears that the hydroxide layer and iron contents of tochilinites correlate with the degree of alteration experienced by the chondrites. The Fe3+/ΣFe ratios of TCIs are high: 8-15% in tochilinite, 33-60% in cronstedtite and 70-80% in hydroxides. These observations suggest that alteration of CM chondrites took place under oxidizing conditions that could have been induced by significant H2 release during serpentinization. Similar results were recently reported in CR chondrites (Le Guillou et al., 2015), suggesting that the process(es) controlling the redox state of the secondary mineral assemblages were quite similar in the CM and CR parent bodies despite the different alteration conditions. According to our mineralogical and crystallographic survey, the formation of TCIs in Paris occurred at temperatures lower than 100 °C, under neutral, slightly alkaline conditions that favored the formation of both tochilinite and cronstedtite. During the course of alteration, the reduction in sulfur activity and/or the decrease of temperature prevented tochilinite crystallization and favoured the formation of cronstedtite and iron hydroxides. We suggest that iron hydroxides probably formed as ferrihydrite and then progressively converted to goethite between 50° and 80 °C, a temperature range that is also favorable for cronstedtite formation. The presence of cronstedtite plays a key role in the reconstruction of the alteration history, demonstrating that the alteration of Paris took place by way of serpentinization processes similar to those described on the Earth.
Mitochondrial Dynamics in Diabetic Cardiomyopathy
Galloway, Chad A.
2015-01-01
Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID:25738230
Lai, Floriana; Jutfelt, Fredrik; Nilsson, Göran E
2015-01-01
Studies on the consequences of ocean acidification for the marine ecosystem have revealed behavioural changes in coral reef fishes exposed to sustained near-future CO2 levels. The changes have been linked to altered function of GABAergic neurotransmitter systems, because the behavioural alterations can be reversed rapidly by treatment with the GABAA receptor antagonist gabazine. Characterization of the molecular mechanisms involved would be greatly aided if these can be examined in a well-characterized model organism with a sequenced genome. It was recently shown that CO2-induced behavioural alterations are not confined to tropical species, but also affect the three-spined stickleback, although an involvement of the GABAA receptor was not examined. Here, we show that loss of lateralization in the stickleback can be restored rapidly and completely by gabazine treatment. This points towards a worrying universality of disturbed GABAA function after high-CO2 exposure in fishes from tropical to temperate marine habitats. Importantly, the stickleback is a model species with a sequenced and annotated genome, which greatly facilitates future studies on underlying molecular mechanisms.
NASA Astrophysics Data System (ADS)
Loudin, L. C.; Yogodzinski, G. M.; Sena, C.; van der Land, C.; Zhang, Z.; Marsaglia, K. M.; Meffre, S.
2014-12-01
Interstitial water (IW) geochemistry provides insight into the diagenetic transformation of sediment to rock by component dissolution/alteration and precipitation of new mineral phases as pore-filling cements, as well as providing insight into ion exchange reactions with secondary minerals. At Site U1438, 67 IW samples were collected within a ~950 m section of volcaniclastic sediments. These were analyzed for pH as well as major and trace elements. The corresponding host sediments were mineralogically characterized by XRD and petrographic observations. Three alteration zones are inferred: 1) the upper alteration zone (~0-300 mbsf) characterized by maximum IW concentrations of Si (790.1 μM), Sr (138.5 μM) and Mn (279.5 μM), consistent with volcanic glass and siliceous microfossil dissolution, enhanced reduction of Mn oxides, and carbonate recrystallization. Maximum concentrations in Li and B coupled with the lowest pH (6.7) imply that Li and B are released into the IW due to silicate dissolution and clay desorption. 2) At intermediate depths (~300 to ~550 mbsf) Mg, K, Sr, Si, Mn, Li, and B are at concentration minima, possibly due to growth of authigenic minerals. B and Li minimum concentrations occur at high pH (~9) suggesting that these elements are preferentially removed from high pH waters during the precipitation of clay mineral and zeolite cements in primary and secondary (dissolution) pores. The mineralogy of these phases is confirmed by XRD data, and their pore-filling nature is seen in thin sections of the coarser lithologies. 3) The deep alteration zone (>~550m) is characterized by an increase in B, Li, Sr and Ca. At ~650 mbsf, Ca becomes the dominant cation in solution consistent with either mineral interaction with the IW, or diffusive input from underlying igneous basement (~1400 mbsf).
Genomic and Epigenomic Alterations in Cancer.
Chakravarthi, Balabhadrapatruni V S K; Nepal, Saroj; Varambally, Sooryanarayana
2016-07-01
Multiple genetic and epigenetic events characterize tumor progression and define the identity of the tumors. Advances in high-throughput technologies, like gene expression profiling, next-generation sequencing, proteomics, and metabolomics, have enabled detailed molecular characterization of various tumors. The integration and analyses of these high-throughput data have unraveled many novel molecular aberrations and network alterations in tumors. These molecular alterations include multiple cancer-driving mutations, gene fusions, amplification, deletion, and post-translational modifications, among others. Many of these genomic events are being used in cancer diagnosis, whereas others are therapeutically targeted with small-molecule inhibitors. Multiple genes/enzymes that play a role in DNA and histone modifications are also altered in various cancers, changing the epigenomic landscape during cancer initiation and progression. Apart from protein-coding genes, studies are uncovering the critical regulatory roles played by noncoding RNAs and noncoding regions of the genome during cancer progression. Many of these genomic and epigenetic events function in tandem to drive tumor development and metastasis. Concurrent advances in genome-modulating technologies, like gene silencing and genome editing, are providing ability to understand in detail the process of cancer initiation, progression, and signaling as well as opening up avenues for therapeutic targeting. In this review, we discuss some of the recent advances in cancer genomic and epigenomic research. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Methamphetamine Induces Anhedonic-Like Behavior and Impairs Frontal Cortical Energetics in Mice.
Fonseca, Raquel; Carvalho, Rui A; Lemos, Cristina; Sequeira, Ana C; Pita, Inês R; Carvalho, Fábio; Silva, Carlos D; Prediger, Rui D S; Jarak, Ivana; Cunha, Rodrigo A; Fontes Ribeiro, Carlos A; Köfalvi, Attila; Pereira, Frederico C
2017-02-01
We recently showed that a single high dose of methamphetamine (METH) induces a persistent frontal cortical monoamine depletion that is accompanied by helpless-like behavior in mice. However, brain metabolic alterations underlying both neurochemical and mood alterations remain unknown. Herein, we aimed at characterizing frontal cortical metabolic alterations associated with early negative mood behavior triggered by METH. Adult C57BL/6 mice were injected with METH (30 mg/kg, i.p.), and their frontal cortical metabolic status was characterized after probing their mood and anxiety-related phenotypes 3 days postinjection. Methamphetamine induced depressive-like behavior, as indicated by the decreased grooming time in the splash test and by a transient decrease in sucrose preference. At this time, METH did not alter anxiety-like behavior or motor functions. Depolarization-induced glucose uptake was reduced in frontocortical slices from METH-treated mice compared to controls. Consistently, astrocytic glucose transporter (GluT1) density was lower in the METH group. A proton high rotation magic angle spinning (HRMAS) spectroscopic approach revealed that METH induced a significant decrease in N-acetyl aspartate (NAA) and glutamate levels, suggesting that METH decreased neuronal glutamatergic function in frontal cortex. We report, for the first time, that a single METH injection triggers early self-care and hedonic deficits and impairs frontal cortical energetics in mice. © 2016 John Wiley & Sons Ltd.
Rubio-Aliaga, Isabel; Roos, Baukje de; Sailer, Manuela; McLoughlin, Gerard A; Boekschoten, Mark V; van Erk, Marjan; Bachmair, Eva-Maria; van Schothorst, Evert M; Keijer, Jaap; Coort, Susan L; Evelo, Chris; Gibney, Michael J; Daniel, Hannelore; Muller, Michael; Kleemann, Robert; Brennan, Lorraine
2011-04-27
Obesity frequently leads to insulin resistance and the development of hepatic steatosis. To characterize the molecular changes that promote hepatic steatosis, transcriptomics, proteomics, and metabolomics technologies were applied to liver samples from C57BL/6J mice obtained from two independent intervention trials. After 12 wk of high-fat feeding the animals became obese, hyperglycemic, and insulin resistant, had elevated levels of blood cholesterol and VLDL, and developed hepatic steatosis. Nutrigenomic analysis revealed alterations of key metabolites and enzyme transcript levels of hepatic one-carbon metabolism and related pathways. The hepatic oxidative capacity and the lipid milieu were significantly altered, which may play a key role in the development of insulin resistance. Additionally, high choline levels were observed after the high-fat diet. Previous studies have linked choline levels with insulin resistance and hepatic steatosis in conjunction with changes of certain metabolites and enzyme levels of one-carbon metabolism. The present results suggest that the coupling of high levels of choline and low levels of methionine plays an important role in the development of insulin resistance and liver steatosis. In conclusion, the complexities of the alterations induced by high-fat feeding are multifactorial, indicating that the interplay between several metabolic pathways is responsible for the pathological consequences.
Leukogram Profile and Clinical Status in vivax and falciparum Malaria Patients from Colombia
Tobón-Castaño, Alberto; Mesa-Echeverry, Esteban; Miranda-Arboleda, Andrés Felipe
2015-01-01
Introduction. Hematological alterations are frequent in malaria patients; the relationship between alterations in white blood cell counts and clinical status in malaria is not well understood. In Colombia, with low endemicity and unstable transmission for malaria, with malaria vivax predominance, the hematologic profile in malaria patients is not well characterized. The aim of this study was to characterize the leukogram in malaria patients and to analyze its alterations in relation to the clinical status. Methods. 888 leukogram profiles of malaria patients from different Colombian regions were studied: 556 with P. falciparum infection (62.6%), 313 with P. vivax infection (35.2%), and 19 with mixed infection by these species (2.1%). Results. Leukocyte counts at diagnosis were within normal range in 79% of patients and 18% had leucopenia; the most frequent alteration was lymphopenia (54%) followed by monocytosis (11%); the differential granulocyte count in 298 patients revealed eosinophilia (15%) and high basophil counts (8%). Leukocytosis, eosinopenia, and neutrophilia were associated with clinical complications. The utility of changes in leukocyte counts as markers of severity should be explored in depth. A better understanding of these hematological parameters will allow their use in prompt diagnosis of malaria complications and monitoring treatment response. PMID:26664413
Thermal Infrared Emission Spectroscopy of Synthetic Allophane and its Potential Formation on Mars
NASA Technical Reports Server (NTRS)
Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Golden, D. C.; Ming, Douglas W.
2010-01-01
Allophane is a poorly-crystalline, hydrous aluminosilicate with variable Si/Al ratios approx.0.5-1 and a metastable precursor of clay minerals. On Earth, it forms rapidly by aqueous alteration of volcanic glass under neutral to slightly acidic conditions [1]. Based on in situ chemical measurements and the identification of alteration phases [2-4], the Martian surface is interpreted to have been chemically weathered on local to regional scales. Chemical models of altered surfaces detected by the Mars Exploration Rover Spirit in Gusev crater suggest the presence of an allophane-like alteration product [3]. Thermal infrared (TIR) spectroscopy and spectral deconvolution models are primary tools for determining the mineralogy of the Martian surface [5]. Spectral models of data from the Thermal Emission Spectrometer (TES) indicate a global compositional dichotomy, where high latitudes tend to be enriched in a high-silica material [6,7], interpreted as high-silica, K-rich volcanic glass [6,8]. However, later interpretations proposed that the high-silica material may be an alteration product (such as amorphous silica, clay minerals, or allophane) and that high latitude surfaces are chemically weathered [9-11]. A TIR spectral library of pure minerals is available for the public [12], but it does not contain allophane spectra. The identification of allophane on the Martian surface would indicate high water activity at the time of its formation and would help constrain the aqueous alteration environment [13,14]. The addition of allophane to the spectral library is necessary to address the global compositional dichotomy. In this study, we characterize a synthetic allophane by IR spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) to create an IR emission spectrum of pure allophane for the Mars science community to use in Martian spectral models.
Swinnen, Stephan P.; Wenderoth, Nicole
2016-01-01
Autism spectrum disorders (ASD) are far more prevalent in males than in females. Little is known however about the differential neural expression of ASD in males and females. We used a resting-state fMRI-dataset comprising 42 males/42 females with ASD and 75 male/75 female typical-controls to examine whether autism-related alterations in intrinsic functional connectivity are similar or different in males and females, and particularly whether alterations reflect ‘neural masculinization’, as predicted by the Extreme Male Brain theory. Males and females showed a differential neural expression of ASD, characterized by highly consistent patterns of hypo-connectivity in males with ASD (compared to typical males), and hyper-connectivity in females with ASD (compared to typical females). Interestingly, patterns of hyper-connectivity in females with ASD reflected a shift towards the (high) connectivity levels seen in typical males (neural masculinization), whereas patterns of hypo-connectivity observed in males with ASD reflected a shift towards the (low) typical feminine connectivity patterns (neural feminization). Our data support the notion that ASD is a disorder of sexual differentiation rather than a disorder characterized by masculinization in both genders. Future work is needed to identify underlying factors such as sex hormonal alterations that drive these sex-specific neural expressions of ASD. PMID:26989195
Comprehensive Molecular Characterization of Papillary Renal Cell Carcinoma
Linehan, W. Marston; Spellman, Paul T.; Ricketts, Christopher J.; Creighton, Chad J.; Fei, Suzanne S.; Davis, Caleb; Wheeler, David A.; Murray, Bradley A.; Schmidt, Laura; Vocke, Cathy D.; Peto, Myron; Al Mamun, Abu Amar M.; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W. Kimryn; Brooks, Angela N.; Hoadley, Katherine A.; Robertson, A. Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J.; Bootwalla, Moiz; Baylin, Stephen B.; Laird, Peter W.; Cherniack, Andrew D.; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B.; Akbani, Rehan; Leiserson, Mark D.M.; Raphael, Benjamin J.; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K.; Czerniak, Bogdan; Godwin, Andrew K.; Hakimi, A. Ari; Ho, Thai; Hsieh, James; Ittmann, Michael; Kim, William Y.; Krishnan, Bhavani; Merino, Maria J.; Mills Shaw, Kenna R.; Reuter, Victor E.; Reznik, Ed; Shelley, Carl Simon; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D.; Penny, Robert J.; Shelton, Candace; Shelton, W. Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T.; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A.; Felau, Ina; Hutter, Carolyn M.; Sheth, Margi; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S.N.; Carlsen, Rebecca; Carter, Scott L.; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R.; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, HarshaVardhan; Drummond, Jennifer; Gabriel, Stacey B.; Gibbs, Richard A.; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D. Neil; Holt, Robert A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Steven J.M.; Jones, Corbin D.; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A.; Moore, Richard A.; Morton, Donna; Mose, Lisle E.; Mungall, Andrew J.; Muzny, Donna; Parker, Joel S.; Perou, Charles M.; Roach, Jeffrey; Schein, Jacqueline E.; Schumacher, Steven E.; Shi, Yan; Simons, Janae V.; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G.; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D.; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N.; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J. Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L.; Boice, Lori; Bollag, Roni J.; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C.; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K.; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L.; Slaton, Joel; Stanton, Melissa; Thompson, R. Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M.; Winemiller, Cythnia; Zach, Leigh Anne; Zuna, Rosemary
2016-01-01
Background Papillary renal cell carcinoma, accounting for 15% of renal cell carcinoma, is a heterogeneous disease consisting of different types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal cell carcinoma; no effective forms of therapy for advanced disease exist. Methods We performed comprehensive molecular characterization utilizing whole-exome sequencing, copy number, mRNA, microRNA, methylation and proteomic analyses of 161 primary papillary renal cell carcinomas. Results Type 1 and Type 2 papillary renal cell carcinomas were found to be different types of renal cancer characterized by specific genetic alterations, with Type 2 further classified into three individual subgroups based on molecular differences that influenced patient survival. MET alterations were associated with Type 1 tumors, whereas Type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-ARE pathway. A CpG island methylator phenotype (CIMP) was found in a distinct subset of Type 2 papillary renal cell carcinoma characterized by poor survival and mutation of the fumarate hydratase (FH) gene. Conclusions Type 1 and Type 2 papillary renal cell carcinomas are clinically and biologically distinct. Alterations in the MET pathway are associated with Type 1 and activation of the NRF2-ARE pathway with Type 2; CDKN2A loss and CIMP in Type 2 convey a poor prognosis. Furthermore, Type 2 papillary renal cell carcinoma consists of at least 3 subtypes based upon molecular and phenotypic features. PMID:26536169
USDA-ARS?s Scientific Manuscript database
Data is limited on measures influencing cholesterol homeostasis in subjects at high risk of developing cardiovascular disease (CVD) relative to established risk factors. To address this, we quantified circulating indicators of cholesterol homeostasis (plasma phytosterols and cholesterol precursor co...
Lecumberri-Sanchez, Pilar; Newton, M. Claiborne; Westman, Erik C.; Kamilli, Robert J.; Canby, Vertrees M.; Bodnar, Robert J.
2013-01-01
Red Mountain, Arizona, is a Laramide porphyry Cu system (PCD) that has experienced only a modest level of erosion compared to most other similar deposits in the southwestern United States. As a result, the upper portion of the magmatic–hydrothermal system, which represents the transition from shallower high-sulfidation epithermal mineralization to deeper porphyry Cu mineralization, is well preserved. Within the Red Mountain system, alteration, mineralization and fluid inclusion assemblages show a systematic distribution in both time and space. Early-potassic alteration (characterized by the minerals biotite and magnetite) is paragenetically earlier than late-potassic alteration (K-feldspar–anhydrite) and both are followed by later phyllic (sericite–pyrite) alteration. Advanced argillic alteration (pyrophyllite–alunite–other clay minerals) is thought to be coeval with or postdate phyllic alteration. Minerals characteristic of advanced argillic alteration are present in the near surface. Phyllic alteration extends to greater depths compared to advanced argillic alteration. Early-potassic and late-potassic alteration are only observed in the deepest part of the system. Considerable overlap of phyllic alteration with both early-potassic and late-potassic alteration zones is observed. The hypogene mineralization contains 0.4–1.2% Cu and is spatially and temporally related to the late-potassic alteration event. Molybdenum concentration is typically In the deepest part of the system, an early generation of low-to-moderate density and salinity liquid + vapor inclusions with opaque daughter minerals is followed in time by halite-bearing inclusions that also contain opaque daughter minerals indicating that an early intermediate-density magmatic fluid evolved to a high-density, high-salinity mineralizing fluid. The increase in density and salinity of fluids with time observed in the deeper parts of the system may be the result of immiscibility (“boiling”) of the earlier magmatic fluids or may reflect the compositional evolution of fluids that exsolved from the magma. Trails of inclusions consisting of only vapor-rich inclusions are common in the shallow parts of the system, and are associated with advanced argillic alteration, suggesting that intense boiling (“flashing”) occurred at (or below) this level. Fluid inclusion assemblages consisting of coexisting vapor-rich and halite-bearing inclusions are observed in samples extending from the surface to the upper part of the late-potassic zone, indicating that fluid immiscibility occurred within this depth interval.
USDA-ARS?s Scientific Manuscript database
The objectives of this study were to determine if milk production efficiency (MPE) is altered by near-total exchange of ruminal contents between high- (HE) and low-MPE (LE) cows and to characterize ruminal bacterial community composition (BCC) prior to exchange and over time post-exchange. Three pai...
In order to detect environmental chemicals that pose a risk of endocrine disruption, high-throughput screening (HTS) tests capable of testing thousands of environmental chemicals are needed. Alteration of estrogen signaling has been implicated in a variety of adverse health effec...
COST AND BENEFITS OF ALTERED BENZO(A)PYRENE METABOLISM IN A PCB-ADAPTED FISH POPULATION
We examined populations of an estuarine fish species (Fundulus heteroclitus) resident to a highly contaminated site and a reference site for their ability to metabolize an important environmental pollutant. In previous work, we characterized the fish population resident to this h...
NASA Astrophysics Data System (ADS)
Sänger-von Oepen, P.; Friedrich, G.; Kisters, A.
1990-12-01
The operating Rodalquilar gold deposit and the abandoned Triunfo and Maria Josefa gold mines are located within the Sierra del Cabo de Gata volcanic field some 40 km east of Almeria in SE Spain. While the gold mineralization at Rodalquilar is mainly controlled by caldera-tectonics, vein structures at Triunfo and Maria Josefa are not. Wall-rock alteration at Triunfo and Maria Josefa is characterized by argillic alteration (illite/sericite, kaolinite). The alteration zonation around the gold-mineralized vein structures at Rodalquilar ranges from advanced argillic alteration (porous quartz, alunite, pyrophyllite, dickite) over argillic alteration into a regionally developed propylitization. Fluid inclusion studies from all three mines indicate that gold was deposited from low-salinity fluids (2 5 wt.% NaCl equivalent) between 170° and 250 °C. However, the hydrothermal system at Rodalquilar was fed by a second fluid source. High-salinity, halite and/or sylvite-bearing, liquid-rich, and vapour-dominated, CO2-bearing fluid inclusions are assumed to be of magmatic origin. High sulfidation ore mineral assemblages at depth (covellite, enargite, tennantite) and part of the advanced argillic alteration can be related to these fluids. Thus, part of those features which attribute the Rodalquilar gold deposit to the acid-sulfate or high sulfidation type of epithermal gold deposits, stem from magmatically derived fluids which are typical for a porphyry environment, whereas gold mineralization at all three localities is associated with low-salinity fluids, probably of marine origin.
Moon, Clara; Stupp, Gregory S; Su, Andrew I; Wolan, Dennis W
2018-02-01
Metaproteomics can greatly assist established high-throughput sequencing methodologies to provide systems biological insights into the alterations of microbial protein functionalities correlated with disease-associated dysbiosis of the intestinal microbiota. Here, the authors utilize the well-characterized murine T cell transfer model of colitis to find specific changes within the intestinal luminal proteome associated with inflammation. MS proteomic analysis of colonic samples permitted the identification of ≈10 000-12 000 unique peptides that corresponded to 5610 protein clusters identified across three groups, including the colitic Rag1 -/- T cell recipients, isogenic Rag1 -/- controls, and wild-type mice. The authors demonstrate that the colitic mice exhibited a significant increase in Proteobacteria and Verrucomicrobia and show that such alterations in the microbial communities contributed to the enrichment of specific proteins with transcription and translation gene ontology terms. In combination with 16S sequencing, the authors' metaproteomics-based microbiome studies provide a foundation for assessing alterations in intestinal luminal protein functionalities in a robust and well-characterized mouse model of colitis, and set the stage for future studies to further explore the functional mechanisms of altered protein functionalities associated with dysbiosis and inflammation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Epigallocatechin gallate (EGCG) inhibits adhesion and migration of neural progenitor cells in vitro.
Barenys, Marta; Gassmann, Kathrin; Baksmeier, Christine; Heinz, Sabrina; Reverte, Ingrid; Schmuck, Martin; Temme, Thomas; Bendt, Farina; Zschauer, Tim-Christian; Rockel, Thomas Dino; Unfried, Klaus; Wätjen, Wim; Sundaram, Sivaraj Mohana; Heuer, Heike; Colomina, Maria Teresa; Fritsche, Ellen
2017-02-01
Food supplements based on herbal products are widely used during pregnancy as part of a self-care approach. The idea that such supplements are safe and healthy is deeply seated in the general population, although they do not underlie the same strict safety regulations than medical drugs. We aimed to characterize the neurodevelopmental effects of the green tea catechin epigallocatechin gallate (EGCG), which is now commercialized as high-dose food supplement. We used the "Neurosphere Assay" to study the effects and unravel underlying molecular mechanisms of EGCG treatment on human and rat neural progenitor cells (NPCs) development in vitro. EGCG alters human and rat NPC development in vitro. It disturbs migration distance, migration pattern, and nuclear density of NPCs growing as neurospheres. These functional impairments are initiated by EGCG binding to the extracellular matrix glycoprotein laminin, preventing its binding to β1-integrin subunits, thereby prohibiting cell adhesion and resulting in altered glia alignment and decreased number of migrating young neurons. Our data raise a concern on the intake of high-dose EGCG food supplements during pregnancy and highlight the need of an in vivo characterization of the effects of high-dose EGCG exposure during neurodevelopment.
Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma.
Linehan, W Marston; Spellman, Paul T; Ricketts, Christopher J; Creighton, Chad J; Fei, Suzanne S; Davis, Caleb; Wheeler, David A; Murray, Bradley A; Schmidt, Laura; Vocke, Cathy D; Peto, Myron; Al Mamun, Abu Amar M; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W Kimryn; Brooks, Angela N; Hoadley, Katherine A; Robertson, A Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J; Bootwalla, Moiz; Baylin, Stephen B; Laird, Peter W; Cherniack, Andrew D; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B; Akbani, Rehan; Leiserson, Mark D M; Raphael, Benjamin J; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K; Czerniak, Bogdan; Godwin, Andrew K; Hakimi, A Ari; Ho, Thai H; Hsieh, James; Ittmann, Michael; Kim, William Y; Krishnan, Bhavani; Merino, Maria J; Mills Shaw, Kenna R; Reuter, Victor E; Reznik, Ed; Shelley, Carl S; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D; Penny, Robert J; Shelton, Candace; Shelton, W Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T; Bowen, Jay; Gastier-Foster, Julie M; Gerken, Mark; Leraas, Kristen M; Lichtenberg, Tara M; Ramirez, Nilsa C; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A; Felau, Ina; Hutter, Carolyn M; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C; Zhang, Jiashan; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S N; Carlsen, Rebecca; Carter, Scott L; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, Harsha V; Drummond, Jennifer A; Gabriel, Stacey B; Gibbs, Richard A; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D Neil; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven J M; Jones, Corbin D; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A; Moore, Richard A; Morton, Donna; Mose, Lisle E; Mungall, Andrew J; Muzny, Donna; Parker, Joel S; Perou, Charles M; Roach, Jeffrey; Schein, Jacqueline E; Schumacher, Steven E; Shi, Yan; Simons, Janae V; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L; Boice, Lori; Bollag, Roni J; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L; Slaton, Joel; Stanton, Melissa; Thompson, R Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M; Winemiller, Cynthia; Zach, Leigh Anne; Zuna, Rosemary
2016-01-14
Papillary renal-cell carcinoma, which accounts for 15 to 20% of renal-cell carcinomas, is a heterogeneous disease that consists of various types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal-cell carcinoma, and no effective forms of therapy for advanced disease exist. We performed comprehensive molecular characterization of 161 primary papillary renal-cell carcinomas, using whole-exome sequencing, copy-number analysis, messenger RNA and microRNA sequencing, DNA-methylation analysis, and proteomic analysis. Type 1 and type 2 papillary renal-cell carcinomas were shown to be different types of renal cancer characterized by specific genetic alterations, with type 2 further classified into three individual subgroups on the basis of molecular differences associated with patient survival. Type 1 tumors were associated with MET alterations, whereas type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in a distinct subgroup of type 2 papillary renal-cell carcinomas that was characterized by poor survival and mutation of the gene encoding fumarate hydratase (FH). Type 1 and type 2 papillary renal-cell carcinomas were shown to be clinically and biologically distinct. Alterations in the MET pathway were associated with type 1, and activation of the NRF2-ARE pathway was associated with type 2; CDKN2A loss and CIMP in type 2 conveyed a poor prognosis. Furthermore, type 2 papillary renal-cell carcinoma consisted of at least three subtypes based on molecular and phenotypic features. (Funded by the National Institutes of Health.).
Process-induced defects in terrestrial solar cells
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Li, S. S.; Sah, C. T.
1975-01-01
Experimental and theoretical work on low resistivity, high efficiency solar cells indicates the dominant role that defects take in determining performance. High doping mechanisms produce gap shrinkage by band tailing, impurity band widening and impurity misfit; altered interband transmission rates result from Auger impact, SRH processes, or from electronic tunneling via defects. Characterizations of cell materials for their defects and their relations to the chosen fabrication processes are proposed.
Spatio-temporal variation in stream water chemistry in a tropical urban watershed
A. Ramirez; K.G. Rosas; A.E. Lugo; O.M. Ramos-Gonzalez
2014-01-01
Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial...
Alaerts, Kaat; Swinnen, Stephan P; Wenderoth, Nicole
2016-06-01
Autism spectrum disorders (ASD) are far more prevalent in males than in females. Little is known however about the differential neural expression of ASD in males and females. We used a resting-state fMRI-dataset comprising 42 males/42 females with ASD and 75 male/75 female typical-controls to examine whether autism-related alterations in intrinsic functional connectivity are similar or different in males and females, and particularly whether alterations reflect 'neural masculinization', as predicted by the Extreme Male Brain theory. Males and females showed a differential neural expression of ASD, characterized by highly consistent patterns of hypo-connectivity in males with ASD (compared to typical males), and hyper-connectivity in females with ASD (compared to typical females). Interestingly, patterns of hyper-connectivity in females with ASD reflected a shift towards the (high) connectivity levels seen in typical males (neural masculinization), whereas patterns of hypo-connectivity observed in males with ASD reflected a shift towards the (low) typical feminine connectivity patterns (neural feminization). Our data support the notion that ASD is a disorder of sexual differentiation rather than a disorder characterized by masculinization in both genders. Future work is needed to identify underlying factors such as sex hormonal alterations that drive these sex-specific neural expressions of ASD. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Interstitial protein alterations in rabbit vocal fold with scar.
Thibeault, Susan L; Bless, Diane M; Gray, Steven D
2003-09-01
Fibrous and interstitial proteins compose the extracellular matrix of the vocal fold lamina propria and account for its biomechanic properties. Vocal fold scarring is characterized by altered biomechanical properties, which create dysphonia. Although alterations of the fibrous proteins have been confirmed in the rabbit vocal fold scar, interstitial proteins, which are known to be important in wound repair, have not been investigated to date. Using a rabbit model, interstitial proteins decorin, fibromodulin, and fibronectin were examined immunohistologically, two months postinduction of vocal fold scar by means of forcep biopsy. Significantly decreased decorin and fibromodulin with significantly increased fibronectin characterized scarred vocal fold tissue. The implications of altered interstitial proteins levels and their affect on the fibrous proteins will be discussed in relation to increased vocal fold stiffness and viscosity, which characterizes vocal fold scar.
Non-destructive characterization of corroded glass surfaces by spectroscopic ellipsometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaspar, Tiffany C.; Reiser, Joelle T.; Ryan, Joseph V.
Characterization of the alteration layers that form on glass surfaces during corrosion processes provides valuable information on both the mechanisms and rate of glass alteration. In recent years, state-of-the-art materials and surface characterization techniques have been employed to study various aspects of the alteration layers that result from corrosion. In most cases, these techniques are destructive and thus can only be employed at the end of the corrosion experiment. We show that the alteration layers can be investigated by non-destructive spectroscopic ellipsometry (SE), which provides pertinent information on alteration layer thickness, morphology, and, through correlation of the index of refraction,more » porosity. SE measurements of silicate glass coupons altered in aqueous solutions of pH 3, 5, 7, 9, and 11 at 90 °C for 7 days are compared to cross-sectional secondary electron microscopy images. In most cases, quantitative agreement of the alteration layer thickness is obtained. The fractional porosity calculated from the index of refraction is lower than the porosity calculated from elemental analysis of the aqueous solutions, indicating that the alteration layer has compacted during corrosion or the subsequent supercritical CO 2 drying process. Our results confirm the utility of performing non-destructive SE measurements on corroded glass surfaces.« less
Non-destructive characterization of corroded glass surfaces by spectroscopic ellipsometry
Kaspar, Tiffany C.; Reiser, Joelle T.; Ryan, Joseph V.; ...
2017-11-03
Characterization of the alteration layers that form on glass surfaces during corrosion processes provides valuable information on both the mechanisms and rate of glass alteration. In recent years, state-of-the-art materials and surface characterization techniques have been employed to study various aspects of the alteration layers that result from corrosion. In most cases, these techniques are destructive and thus can only be employed at the end of the corrosion experiment. We show that the alteration layers can be investigated by non-destructive spectroscopic ellipsometry (SE), which provides pertinent information on alteration layer thickness, morphology, and, through correlation of the index of refraction,more » porosity. SE measurements of silicate glass coupons altered in aqueous solutions of pH 3, 5, 7, 9, and 11 at 90 °C for 7 days are compared to cross-sectional secondary electron microscopy images. In most cases, quantitative agreement of the alteration layer thickness is obtained. The fractional porosity calculated from the index of refraction is lower than the porosity calculated from elemental analysis of the aqueous solutions, indicating that the alteration layer has compacted during corrosion or the subsequent supercritical CO 2 drying process. Our results confirm the utility of performing non-destructive SE measurements on corroded glass surfaces.« less
Masias, Emilse; Dupuy, Fernando G; da Silva Sanches, Paulo Ricardo; Farizano, Juan Vicente; Cilli, Eduardo; Bellomio, Augusto; Saavedra, Lucila; Minahk, Carlos
2017-07-01
Enterocin CRL35 is a class IIa bacteriocin with anti-Listeria activity. Resistance to these peptides has been associated with either the downregulation of the receptor expression or changes in the membrane and cell walls. The scope of the present work was to characterize enterocin CRL35 resistant Listeria strains with MICs more than 10,000 times higher than the MIC of the WT sensitive strain. Listeria monocytogenes INS7 resistant isolates R2 and R3 were characterized by 16S RNA gene sequencing and rep-PCR. Bacterial growth kinetic was studied in different culture media. Plasma membranes of sensitive and resistant bacteria were characterized by FTIR and Langmuir monolayer techniques. The growth kinetic of the resistant isolates was slower as compared to the parental strain in TSB medium. Moreover, the resistant isolates barely grew in a glucose-based synthetic medium, suggesting that these cells had a major alteration in glucose transport. Resistant bacteria also had alterations in their cell wall and, most importantly, membrane lipids. In fact, even though enterocin CRL35 was able to bind to the membrane-water interface of both resistant and parental sensitive strains, this peptide was only able to get inserted into the latter membranes. These results indicate that bacteriocin receptor is altered in combination with membrane structural modifications in enterocin CRL35-resistant L. monocytogenes strains. Highly enterocin CRL35-resistant isolates derived from Listeria monocytogenes INS7 have not only an impaired glucose transport but also display structural changes in the hydrophobic core of their plasma membranes. Copyright © 2017. Published by Elsevier B.V.
Bassel, Léna; Motto-Ros, Vincent; Trichard, Florian; Pelascini, Frédéric; Ammari, Faten; Chapoulie, Rémy; Ferrier, Catherine; Lacanette, Delphine; Bousquet, Bruno
2017-01-01
Cave walls are affected by different kinds of alterations involving preservative issues in the case of ornate caves, in particular regarding the rock art covering the walls. In this context, coralloids correspond to a facies with popcorn-like aspect belonging to the speleothem family, mostly composed of calcium carbonate. The elemental characterization indicates the presence of elements that might be linked to the diagenesis and the expansion of the alterations as demonstrated by prior analyses on stalagmites. In this study, we report the use of laser-induced breakdown spectroscopy (LIBS) to characterize the elemental composition of one coralloid sample with a portable instrument allowing punctual measurements and a laboratory mapping setup delivering elemental images with spatial resolution at the micrometric scale, being particularly attentive to Mg, Sr, and Si identified as elements of interest. The complementarity of both instruments allows the determination of the internal structure of the coralloid. Although a validation based on a reference technique is necessary, LIBS data reveal that the external layer of the coralloid is composed of laminations correlated to variations of the LIBS signal of Si. In addition, an interstitial layer showing high LIBS signals for Fe, Al, and Si is interpreted to be a detrital clay interface between the external and the internal part of the coralloid. These preliminary results sustain a possible formation scenario of the coralloid by migration of the elements from the bedrock.
Punctuated Evolution of Prostate Cancer Genomes
Baca, Sylvan C.; Prandi, Davide; Lawrence, Michael S.; Mosquera, Juan Miguel; Romanel, Alessandro; Drier, Yotam; Park, Kyung; Kitabayashi, Naoki; MacDonald, Theresa Y.; Ghandi, Mahmoud; Van Allen, Eliezer; Kryukov, Gregory V.; Sboner, Andrea; Theurillat, Jean-Philippe; Soong, T. David; Nickerson, Elizabeth; Auclair, Daniel; Tewari, Ashutosh; Beltran, Himisha; Onofrio, Robert C.; Boysen, Gunther; Guiducci, Candace; Barbieri, Christopher E.; Cibulskis, Kristian; Sivachenko, Andrey; Carter, Scott L.; Saksena, Gordon; Voet, Douglas; Ramos, Alex H; Winckler, Wendy; Cipicchio, Michelle; Ardlie, Kristin; Kantoff, Philip W.; Berger, Michael F.; Gabriel, Stacey B.; Golub, Todd R.; Meyerson, Matthew; Lander, Eric S.; Elemento, Olivier; Getz, Gad; Demichelis, Francesca; Rubin, Mark A.; Garraway, Levi A.
2013-01-01
SUMMARY The analysis of exonic DNA from prostate cancers has identified recurrently mutated genes, but the spectrum of genome-wide alterations has not been profiled extensively in this disease. We sequenced the genomes of 57 prostate tumors and matched normal tissues to characterize somatic alterations and to study how they accumulate during oncogenesis and progression. By modeling the genesis of genomic rearrangements, we identified abundant DNA translocations and deletions that arise in a highly interdependent manner. This phenomenon, which we term “chromoplexy”, frequently accounts for the dysregulation of prostate cancer genes and appears to disrupt multiple cancer genes coordinately. Our modeling suggests that chromoplexy may induce considerable genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a model of punctuated cancer evolution. By characterizing the clonal hierarchy of genomic lesions in prostate tumors, we charted a path of oncogenic events along which chromoplexy may drive prostate carcinogenesis. PMID:23622249
Punctuated evolution of prostate cancer genomes.
Baca, Sylvan C; Prandi, Davide; Lawrence, Michael S; Mosquera, Juan Miguel; Romanel, Alessandro; Drier, Yotam; Park, Kyung; Kitabayashi, Naoki; MacDonald, Theresa Y; Ghandi, Mahmoud; Van Allen, Eliezer; Kryukov, Gregory V; Sboner, Andrea; Theurillat, Jean-Philippe; Soong, T David; Nickerson, Elizabeth; Auclair, Daniel; Tewari, Ashutosh; Beltran, Himisha; Onofrio, Robert C; Boysen, Gunther; Guiducci, Candace; Barbieri, Christopher E; Cibulskis, Kristian; Sivachenko, Andrey; Carter, Scott L; Saksena, Gordon; Voet, Douglas; Ramos, Alex H; Winckler, Wendy; Cipicchio, Michelle; Ardlie, Kristin; Kantoff, Philip W; Berger, Michael F; Gabriel, Stacey B; Golub, Todd R; Meyerson, Matthew; Lander, Eric S; Elemento, Olivier; Getz, Gad; Demichelis, Francesca; Rubin, Mark A; Garraway, Levi A
2013-04-25
The analysis of exonic DNA from prostate cancers has identified recurrently mutated genes, but the spectrum of genome-wide alterations has not been profiled extensively in this disease. We sequenced the genomes of 57 prostate tumors and matched normal tissues to characterize somatic alterations and to study how they accumulate during oncogenesis and progression. By modeling the genesis of genomic rearrangements, we identified abundant DNA translocations and deletions that arise in a highly interdependent manner. This phenomenon, which we term "chromoplexy," frequently accounts for the dysregulation of prostate cancer genes and appears to disrupt multiple cancer genes coordinately. Our modeling suggests that chromoplexy may induce considerable genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a model of punctuated cancer evolution. By characterizing the clonal hierarchy of genomic lesions in prostate tumors, we charted a path of oncogenic events along which chromoplexy may drive prostate carcinogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.
Chronic Stress Alters Striosome-Circuit Dynamics, Leading to Aberrant Decision-Making.
Friedman, Alexander; Homma, Daigo; Bloem, Bernard; Gibb, Leif G; Amemori, Ken-Ichi; Hu, Dan; Delcasso, Sebastien; Truong, Timothy F; Yang, Joyce; Hood, Adam S; Mikofalvy, Katrina A; Beck, Dirk W; Nguyen, Norah; Nelson, Erik D; Toro Arana, Sebastian E; Vorder Bruegge, Ruth H; Goosens, Ki A; Graybiel, Ann M
2017-11-16
Effective evaluation of costs and benefits is a core survival capacity that in humans is considered as optimal, "rational" decision-making. This capacity is vulnerable in neuropsychiatric disorders and in the aftermath of chronic stress, in which aberrant choices and high-risk behaviors occur. We report that chronic stress exposure in rodents produces abnormal evaluation of costs and benefits resembling non-optimal decision-making in which choices of high-cost/high-reward options are sharply increased. Concomitantly, alterations in the task-related spike activity of medial prefrontal neurons correspond with increased activity of their striosome-predominant striatal projection neuron targets and with decreased and delayed striatal fast-firing interneuron activity. These effects of chronic stress on prefronto-striatal circuit dynamics could be blocked or be mimicked by selective optogenetic manipulation of these circuits. We suggest that altered excitation-inhibition dynamics of striosome-based circuit function could be an underlying mechanism by which chronic stress contributes to disorders characterized by aberrant decision-making under conflict. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Enriquez, M. V.; Eagle, R.; Eiler, J. M.; Tripati, A. K.; Ramirez, P. C.; Loyd, S. J.; Chiappe, L.; Montanari, S.; Norell, M.; Tuetken, T.
2012-12-01
Carbonate clumped isotope analysis of fossil eggshells has the potential to constrain both the physiology of extinct animals and, potentially, paleoenvironmental conditions, especially when coupled with isotopic measurements of co-occurring soil carbonates. Eggshell samples from both modern vertebrates and Cretaceous Hadrosaurid, Oviraptorid, Titanosaur, Hypselosaurus, Faveoolithus, dinosaur fossils have been collected from Auca Mahuevo, Argentina and Rousett, France, amongst other locations, for geochemical analysis to determine if isotopic signatures could be used to indicate warm- or cold-bloodedness. In some locations soil carbonates were also analyzed to constrain environmental temperatures. In order to test the validity of the geochemical results, an extensive study was undertaken to establish degree of diagenetic alteration. Petrographic and cathodoluminescence characterization of the eggshells were used to assess diagenetic alteration. An empirical 1-5 point scale was used to assign each sample an alteration level, and the observations were then compared with the geochemical results. Specimens displayed a wide range of alteration states. Some of which were well preserved and others highly altered. Another group seemed to be structural intact and only under cathodoluminescence was alteration clearly observed. In the majority of samples, alteration level was found to be predictably related to geochemical results. From specimens with little evidence for diagenesis, carbonate clumped isotope signatures support high (37-40°C) body temperature for Titanosaurid dinosaurs, but potentially lower body temperatures for other taxa. If these data do, in fact, represent original eggshell growth temperatures, these results support variability in body temperature amongst Cretaceous dinosaurs and potentially are consistent with variations between adult body temperature and size — a characteristic of 'gigantothermy'.
NASA Astrophysics Data System (ADS)
Carrino, Thais Andressa; Crósta, Alvaro Penteado; Toledo, Catarina Labouré Bemfica; Silva, Adalene Moreira
2018-02-01
Remote sensing is a strategic key tool for mineral exploration, due to its capacity of detecting hydrothermal alteration minerals or alteration mineral zones associated with different types of mineralization systems. A case study of an epithermal system located in southern Peru is presented, aimed at the characterization of mineral assemblies for discriminating potential high sulfidation epithermal targets, using hyperspectral imagery integrated with petrography, XRD and magnetic data. HyMap images were processed using the Mixture Tuned Matched Filtering (MTMF) technique for producing alteration map in the Chapi Chiara epithermal gold prospect. Extensive areas marked by advanced argillic alteration (alunite-kaolinite-dickite ± topaz) were mapped in detail, as well as limited argillic (illite-smectite) and propylitic (chlorite spectral domain) alteration. The magmatic-hydrothermal processes responsible for the formation of hypogene minerals were also related to the destruction of ferrimagnetic minerals (e.g., magnetite) of host rocks such as andesite, and the remobilization/formation of paramagnetic Fe-Ti oxides (e.g., rutile, anatase). The large alteration zones of advanced argillic alteration are controlled by structures related to a regional NW-SE trend, and also by local NE-SW and ENE-WSW ones.
NASA Astrophysics Data System (ADS)
Meller, Carola; Kontny, Agnes; Kohl, Thomas
2014-10-01
Clay minerals as products of hydrothermal alteration significantly influence the hydraulic and mechanical properties of crystalline rock. Therefore, the localization and characterization of alteration zones by downhole measurements is a great challenge for the development of geothermal reservoirs. The magnetite bearing granite of the geothermal site in Soultz-sous-Forêts (France) experienced hydrothermal alteration during several tectonic events and clay mineral formation is especially observed in alteration halos around fracture zones. During the formation of clay minerals, magnetite was oxidized into hematite, which significantly reduces the magnetic susceptibility of the granite from ferrimagnetic to mostly paramagnetic values. The aim of this study was to find out if there exists a correlation between synthetic clay content logs (SCCLs) and measurements of magnetic susceptibility on cuttings in the granite in order to characterize their alteration mineralogy. Such a correlation has been proven for core samples of the EPS1 reference well. SCCLs were created from gamma ray and fracture density logs using a neural network. These logs can localize altered fracture zones in the GPK1-4 wells, where no core material is available. Mass susceptibility from 261 cutting samples of the wells GPK1-GPK4 was compared with the neural network derived synthetic logs. We applied a combination of temperature dependent magnetic susceptibility measurements with optical and electron microscopy, and energy dispersive X-ray spectroscopy to discriminate different stages of alteration. We found, that also in the granite cuttings an increasing alteration grade is characterized by an advancing oxidation of magnetite into hematite and a reduction of magnetic susceptibility. A challenge to face for the interpretation of magnetic susceptibility data from cuttings material is that extreme alteration grades can also display increased susceptibilities due to the formation of secondary magnetite. Low magnetic susceptibility can also be attributed to primary low magnetite content, if the granite facies changes. In order to interpret magnetic susceptibility from cuttings, contaminations with iron from wear debris of the drilling tools must be eliminated. Provided that the magnetic mineralogy of the granite is known in detail, this method in combination with petrographic investigations is suited to indicate and characterize hydrothermal alteration and the appearance of clay.
Physical and Biological Impacts of Changing Land-Uses and the Environment
NASA Astrophysics Data System (ADS)
English, W. R.; Pike, J. W.; Jolley, L. W.; Goddard, M. A.; Biondi, M. J.; Hur, J. M.; Powell, B. A.; Morse, J. C.
2005-05-01
A goal of the Changing Land Use and the Environment (CLUE) project is to characterize surface water quality impacted by land-use change in the Saluda and Reedy River watersheds of South Carolina. The CLUE project focuses on impacts common to urban development including 1. sedimentation from construction sites, 2. alteration of discharge and channel morphology due to increased impervious surfaces, 3. macroinvertebrate community response to sedimentation and habitat alteration, and 4. microbial contamination. We found that mean streambed particle size was reduced in developing areas. Stream cross-sectional areas enlarged in catchments with high percentages of impervious surfaces. Sedimentation and altered discharge resulted in the benthic macroinvertebrate community showing a general reduction in biotic integrity values and reductions in Plecoptera taxa richness. Fecal coliform levels were higher for both surface water and bottom sediments in and below urbanized areas during base flows. Levels of fecal coliform in samples collected during storm flows were significantly higher than in base flows, and were correlated with high sediment loads.
[Gastroesophageal reflux disease and respiratory disease].
Mattioli, G; Caffarena, P E; Battistini, E; Fregonese, B; Barabino, A; Jasonni, V
1995-01-01
The patients treated for oesophageal atresia present a correlation between the clinical sintomatology after recanalization characterized by disfagia, dispnea, recurrent cough, chronic pneumopaties and oesophageal anomalies. Where morphological alterations accounting for the presence of gastro-oesophageal reflux (GOR) were not evident, possible functional alterations of the motility were considered. The incidence of GOR was considerably high and, expression of a congenital alteration of the lower oesophageal sphincter and of oesophageal peristalsis, becomes even more severe due to further stretching of the gastro-esophageal junction. The authors underline that the early demonstration of histological changes, even before recanalization, and the motility disorders of the oesophagus have to be well studied, while the LES is normalized, in order to prevent and treat the possible appearance of the well-known complications of GOR.
NASA Astrophysics Data System (ADS)
Young, K. E.; Rogers, D.; Dyar, M. D.; Ito, G.; Yant, M.; McAdam, A.; Bleacher, J. E.; Glotch, T. D.
2015-12-01
A major objective of the SSERVI RIS4E (Remote, In-situ, and Synchrotron Studies for Science and Exploration) investigation is to evaluate the performance of portable chemical and mineralogical instruments in a variety of planetary volcanic analog settings. To that end, we used a suite of true/proxy portable instruments (XRF, LIBS, XRD, near-IR and mid-IR spectrometers), to measure the chemical and spectral characteristics of young basaltic flows (erupted December 1974, or D1974) within the southwest rift zone of Kilauea, Hawaii. The D1974 lavas exhibit multiple flow morphologies and textures, and have undergone alteration by a variety of processes, including acid weathering, oxidation and devitrification. The mineralogy, chemistry and infrared spectral properties of select samples from these altered surfaces have been well characterized by previous groups using high resolution (e.g. SEM, TEM) and/or laboratory measurements (XRD, Mossbauer, infrared). Typical alteration products include coatings of Fe-Ti-oxide +/- an overlying silica-rich coating. Coatings are commonly discontinuous and vary in color. Oxidation fronts are also present, most visible as reddish brown discoloration along the edges of broken and uplifted flow crusts. The previous detailed characterizations provide the basis for evaluating instrument performance and also allow us to assess areas where portable instruments can contribute new information to current understanding. These areas include characterizing the spatial variability in alteration chemistry/mineralogy, relating chemical/mineralogical properties to texture and context, and comparing chemical/mineralogical variations with infrared spectral properties. Because infrared spectra are commonly used to assess compositional variations of a site remotely, either from the ground or from orbit, relating changes in chemistry and mineralogy to spectral variations is particularly important. Last, the D1974 site provides an excellent location to test the performance of portable chemical instruments on coated surfaces of variable texture. Results from this multi-technique approach will be presented at the meeting.
Schmäh, Juliane; Fedders, Birthe; Panzer-Grümayer, Renate; Fischer, Susanna; Zimmermann, Martin; Dagdan, Elif; Bens, Susanne; Schewe, Denis; Moericke, Anja; Alten, Julia; Bleckmann, Kirsten; Siebert, Reiner; Schrappe, Martin; Stanulla, Martin; Cario, Gunnar
2017-10-01
A high-level expression of the CRLF2 gene is frequent in precursor B-cell acute lymphoblastic leukemia (pB-ALL) and can be caused by different genetic aberrations. The presence of the most frequent alteration, the P2RY8/CRLF2 fusion, was shown to be associated with a high relapse incidence in children treated according to ALL-Berlin-Frankfurt-Münster (BFM) protocols, which is poorly understood. Moreover, the frequency of other alterations has not been systematically analyzed yet. CRLF2 mRNA expression and potential genetic aberrations causing a CRLF2 high expression were prospectively assessed in 1,105 patients treated according to the Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP)-BFM ALL 2009 protocol. Additionally, we determined copy number alterations in selected B-cell differentiation genes for all CRLF2 high-expressing pB-ALL cases, as well as JAK2 and CRLF2 mutations. A CRLF2 high expression was detected in 26/178 (15%) T-cell acute lymphoblastic leukemia (T-ALL) cases, 21 of them (81%) had been stratified as high-risk patients by treatment response. In pB-ALL, a CRLF2 high expression was determined in 91/927 (10%) cases; the P2RY8/CRLF2 rearrangement in 44/91 (48%) of them, supernumerary copies of CRLF2 in 18/91 (20%), and, notably, the IGH/CRLF2 translocation was detected in 16/91 (18%). Remarkably, 7 of 16 (44%) patients with IGH/CRLF2 translocation had already relapsed. P2RY8/CRLF2- and IGH/CRLF2-positive samples (70 and 94%, respectively) were characterized by a high frequency of additional deletions in B-cell differentiation genes such as IKZF1 or PAX5. Our data suggest that this high frequency of genetic aberrations in the context of a high CRLF2 expression could contribute to the high risk of relapse in P2RY8/CRLF2- and IGH/CRLF2-positive ALL. © 2017 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Chickens are characterized by rather unique glucose homeostasis, with relatively high blood glucose levels, reduced glucose sensitivity of pancreatic cells, and large resistance to exogenous insulin. In mammals, insulin regulates blood glucose level but also plays a key role in appetite regulation ...
The Effectiveness of Hydrothermal Alteration Mapping based on Hyperspectral Data in Tropical Region
NASA Astrophysics Data System (ADS)
Muhammad, R. R. D.; Saepuloh, A.
2016-09-01
Hyperspectral remote sensing could be used to characterize targets at earth's surface based on their spectra. This capability is useful for mapping and characterizing the distribution of host rocks, alteration assemblages, and minerals. Contrary to the multispectral sensors, the hyperspectral identifies targets with high spectral resolution. The Wayang Windu Geothermal field in West Java, Indonesia was selected as the study area due to the existence of surface manifestation and dense vegetation environment. Therefore, the effectiveness of hyperspectral remote sensing in tropical region was targeted as the study objective. The Spectral Angle Mapper (SAM) method was used to detect the occurrence of clay minerals spatially from Hyperion data. The SAM references of reflectance spectra were obtained from field observation at altered materials. To calculate the effectiveness of hyperspectral data, we used multispectral data from Landsat-8. The comparison method was conducted by comparing the SAM's rule images from Hyperion and Landsat-8, resulting that hyperspectral was more accurate than multispectral data. Hyperion SAM's rule images showed lower value compared to Landsat-8, the significant number derived from using Hyperion was about 24% better. This inferred that the hyperspectral remote sensing is preferable for mineral mapping even though vegetation covered study area.
Comprehensive molecular characterization of human colon and rectal cancer.
2012-07-18
To characterize somatic alterations in colorectal carcinoma, we conducted a genome-scale analysis of 276 samples, analysing exome sequence, DNA copy number, promoter methylation and messenger RNA and microRNA expression. A subset of these samples (97) underwent low-depth-of-coverage whole-genome sequencing. In total, 16% of colorectal carcinomas were found to be hypermutated: three-quarters of these had the expected high microsatellite instability, usually with hypermethylation and MLH1 silencing, and one-quarter had somatic mismatch-repair gene and polymerase ε (POLE) mutations. Excluding the hypermutated cancers, colon and rectum cancers were found to have considerably similar patterns of genomic alteration. Twenty-four genes were significantly mutated, and in addition to the expected APC, TP53, SMAD4, PIK3CA and KRAS mutations, we found frequent mutations in ARID1A, SOX9 and FAM123B. Recurrent copy-number alterations include potentially drug-targetable amplifications of ERBB2 and newly discovered amplification of IGF2. Recurrent chromosomal translocations include the fusion of NAV2 and WNT pathway member TCF7L1. Integrative analyses suggest new markers for aggressive colorectal carcinoma and an important role for MYC-directed transcriptional activation and repression.
NASA Astrophysics Data System (ADS)
Waggoner, Derek Charles
Evidence suggests that reactive oxygen species (ROS), largely generated through photochemical processes, are important in transforming the chemical composition of the large pool of terrestrially-derived dissolved organic matter (DOM) exported from land to water annually. However, due to the challenges inherent in isolating the effects of individual ROS on DOM composition, the role of ROS in the photochemical alteration of DOM remains poorly characterized. The main focus of the studies within this dissertation aim to more thoroughly characterize the alterations to lignin, used as an analog for terrestrial DOM, resulting from reactions with ROS. To investigate the possibility that the alteration of lignin, through reactions involving ROS, could lead to the production of compounds not recognized as having terrestrial origin, lignin-derived DOM was prepared from a sample of Atlantic white cedar (Chamaecyparis thyoides) and used for a number of studies. Lignin-derived DOM was independently exposed to hydroxyl radical (•OH) generated by Fenton reaction, singlet oxygen (1O2) produced using the photosensitizer Rose Bengal, and superoxide (O2-•) via stable potassium superoxide solution, under controlled laboratory conditions to accentuate how each ROS is responsible for the alteration of lignin. Advanced analytical techniques including high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), were employed to characterize alteration to lignin taking place following various ROS treatments. Results of these studies have shown distinct differences in the types of new compounds observed from exposure to each ROS as well as ROS reactivity. The alteration of lignin to compounds not typically associated with terrestrial DOM has been demonstrated upon exposure to ROS. It is also suggested that ROS could selectively react with different fractions of lignin like compounds based largely on oxygen content. Additionally, results indicate that partially oxidized lignin could react further with ROS to generate compounds resembling condensed aromatic-like compounds, previously believed to be primarily pyrogenic in origin, as well as alicyclic compounds commonly observed in marine DOM.
Characterizing genomic alterations in cancer by complementary functional associations.
Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo
2016-05-01
Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.
Schrock, Alexa B; Li, Shuyu D; Frampton, Garrett M; Suh, James; Braun, Eduardo; Mehra, Ranee; Buck, Steven C; Bufill, Jose A; Peled, Nir; Karim, Nagla Abdel; Hsieh, K Cynthia; Doria, Manuel; Knost, James; Chen, Rong; Ou, Sai-Hong Ignatius; Ross, Jeffrey S; Stephens, Philip J; Fishkin, Paul; Miller, Vincent A; Ali, Siraj M; Halmos, Balazs; Liu, Jane J
2017-06-01
Pulmonary sarcomatoid carcinoma (PSC) is a high-grade NSCLC characterized by poor prognosis and resistance to chemotherapy. Development of targeted therapeutic strategies for PSC has been hampered because of limited and inconsistent molecular characterization. Hybrid capture-based comprehensive genomic profiling was performed on DNA from formalin-fixed paraffin-embedded sections of 15,867 NSCLCs, including 125 PSCs (0.8%). Tumor mutational burden (TMB) was calculated from 1.11 megabases (Mb) of sequenced DNA. The median age of the patients with PSC was 67 years (range 32-87), 58% were male, and 78% had stage IV disease. Tumor protein p53 gene (TP53) genomic alterations (GAs) were identified in 74% of cases, which had genomics distinct from TP53 wild-type cases, and 62% featured a GA in KRAS (34%) or one of seven genes currently recommended for testing in the National Comprehensive Cancer Network NSCLC guidelines, including the following: hepatocyte growth factor receptor gene (MET) (13.6%), EGFR (8.8%), BRAF (7.2%), erb-b2 receptor tyrosine kinase 2 gene (HER2) (1.6%), and ret proto-oncogene (RET) (0.8%). MET exon 14 alterations were enriched in PSC (12%) compared with non-PSC NSCLCs (∼3%) (p < 0.0001) and were more prevalent in PSC cases with an adenocarcinoma component. The fraction of PSC with a high TMB (>20 mutations per Mb) was notably higher than in non-PSC NSCLC (20% versus 14%, p = 0.056). Of nine patients with PSC treated with targeted or immunotherapies, three had partial responses and three had stable disease. Potentially targetable GAs in National Comprehensive Cancer Network NSCLC genes (30%) or intermediate or high TMB (43%, >10 mutations per Mb) were identified in most of the PSC cases. Thus, the use of comprehensive genomic profiling in clinical care may provide important treatment options for a historically poorly characterized and difficult to treat disease. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Genomic Characterization of Upper Tract Urothelial Carcinoma.
Sfakianos, John P; Cha, Eugene K; Iyer, Gopa; Scott, Sasinya N; Zabor, Emily C; Shah, Ronak H; Ren, Qinghu; Bagrodia, Aditya; Kim, Philip H; Hakimi, A Ari; Ostrovnaya, Irina; Ramirez, Ricardo; Hanrahan, Aphrothiti J; Desai, Neil B; Sun, Arony; Pinciroli, Patrizia; Rosenberg, Jonathan E; Dalbagni, Guido; Schultz, Nikolaus; Bajorin, Dean F; Reuter, Victor E; Berger, Michael F; Bochner, Bernard H; Al-Ahmadie, Hikmat A; Solit, David B; Coleman, Jonathan A
2015-12-01
Despite a similar histologic appearance, upper tract urothelial carcinoma (UTUC) and urothelial carcinoma of the bladder (UCB) tumors have distinct epidemiologic and clinicopathologic differences. To investigate whether the differences between UTUC and UCB result from intrinsic biological diversity. Tumor and germline DNA from patients with UTUC (n=83) and UCB (n=102) were analyzed using a custom next-generation sequencing assay to identify somatic mutations and copy number alterations in 300 cancer-associated genes. We described co-mutation patterns and copy number alterations in UTUC. We also compared mutation frequencies in high-grade UTUC (n=59) and high-grade UCB (n=102). Comparison of high-grade UTUC and UCB revealed significant differences in the prevalence of somatic alterations. Genes altered more commonly in high-grade UTUC included FGFR3 (35.6% vs 21.6%; p=0.065), HRAS (13.6% vs 1.0%; p=0.001), and CDKN2B (15.3% vs 3.9%; p=0.016). Genes less frequently mutated in high-grade UTUC included TP53 (25.4% vs 57.8%; p<0.001), RB1 (0.0% vs 18.6%; p<0.001), and ARID1A (13.6% vs 27.5%; p=0.050). Because our assay was restricted to genomic alterations in a targeted panel, rare mutations and epigenetic changes were not analyzed. High-grade UTUC tumors display a spectrum of genetic alterations similar to high-grade UCB. However, there were significant differences in the prevalence of several recurrently mutated genes including HRAS, TP53, and RB1. As relevant targeted inhibitors are being developed and tested, these results may have important implications for the site-specific management of patients with urothelial carcinoma. Comparison of next-generation sequencing of upper tract urothelial carcinoma (UTUC) with urothelial bladder cancer identified that similar mutations were present in both cancer types but at different frequencies, indicating a potential need for unique management strategies. UTUC tumors were found to have a high rate of mutations that could be targeted with novel therapies. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schindler, Michael; Legrand, Christine A.; Hochella, Michael F.
2015-03-01
Nano-scale processes on the solid-water interface of clay minerals control the mobility of metals in the environment. These processes can occur in confined pore spaces of clay buffers and barriers as well as in contaminated sediments and involve a combination of alteration, adsorption and nucleation processes of multiple species and phases. This study characterizes nano-scale processes on the interface between clay minerals and uranyl-bearing solution near neutral pH. Samples of clay minerals with a contact pH of ∼6.7 are collected from a U mill and mine tailings at Key Lake, Saskatchewan, Canada. The tailings material contains Cu-, As-, Co-, Mo-, Ni-, Se-bearing polymetallic phases and has been deposited with a surplus of Ca(OH)2 and Na2CO3 slaked lime. Small volumes of mill-process solutions containing sulfuric acid and U are occasionally discharged onto the surface of the tailings and are neutralized after discharge by reactions with the slaked lime. Transmission electron microscopy (TEM) in combination with the focused ion beam (FIB) technique and other analytical methods (SEM, XRD, XRF and ICP-OES) are used to characterize the chemical and mineralogical composition of phases within confined pore spaces of the clay minerals montmorillonite and kaolinite and in the surrounding tailings material. Alteration zones around the clay minerals are characterized by different generations of secondary silicates containing variable proportions of adsorbed uranyl- and arsenate-species and by the intergrowth of the silicates with the uranyl-minerals cuprosklodowskite, Cu[(UO2)2(SiO3OH)2](H2O)6 and metazeunerite, Cu[(UO2)(AsO4)2](H2O)8. The majority of alteration phases such as illite, illite-smectite, kaolinite and vermiculite have been most likely formed in the sedimentary basin of the U-ore deposit and contain low amounts of Fe (<5 at.%). Iron-enriched Al-silicates or illite-smectites (Fe >10 at.%) formed most likely in the limed tailings at high contact pH (∼10.5) and their structure is characterized by a low degree of long-range order. Adsorption of U and nucleation of metazeunerite and cuprosklodowskite are strongly controlled by the presence of the adsorbed oxy-anion species arsenate and silica on the Fe-enriched silicates. Heterogeneous nucleation of nano-crystals of the uranyl minerals occurs most likely on adsorption sites of binary uranyl-, arsenate- and silica-complexes as well as on ternary uranyl-arsenate or uranyl-silicate complexes. The uranyl minerals occur as aggregates of misoriented nano-size crystals and are the result of supersaturated solutions and a high number of nucleation sites that prevented the formation of larger crystals through Oswald ripening. The results of this study provide an understanding of interfacial nano-scale processes between uranyl species and altered clay buffers in a potential Nuclear Waste repository as similar alteration conditions of clays may occur in a multi-barrier system.
Moreira-Filho, Carlos Alberto; Bando, Silvia Yumi; Bertonha, Fernanda Bernardi; Silva, Filipi Nascimento; da Fontoura Costa, Luciano; Ferreira, Leandro Rodrigues; Furlanetto, Glaucio; Chacur, Paulo; Zerbini, Maria Claudia Nogueira; Carneiro-Sampaio, Magda
2016-01-01
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue - obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT) - and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the “canonical” way of thymus functioning. Conversely, DS networks represent a “non-canonical” way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes. PMID:26848775
Genomic Biomarkers for the Prediction of Stage and Prognosis of Upper Tract Urothelial Carcinoma.
Bagrodia, Aditya; Cha, Eugene K; Sfakianos, John P; Zabor, Emily C; Bochner, Bernard H; Al-Ahmadie, Hikmat A; Solit, David B; Coleman, Jonathan A; Iyer, Gopa; Scott, Sasinya N; Shah, Ronak; Ostrovnaya, Irina; Lee, Byron; Desai, Neil B; Ren, Qinghu; Rosenberg, Jonathan E; Dalbagni, Guido; Bajorin, Dean F; Reuter, Victor E; Berger, Michael F
2016-06-01
Genomic characterization of radical nephroureterectomy specimens in patients with upper tract urothelial carcinoma may allow for thoughtful integration of systemic and targeted therapies. We sought to determine whether genomic alterations in upper tract urothelial carcinoma are associated with adverse pathological and clinical outcomes. Next generation exon capture sequencing of 300 cancer associated genes was performed in 83 patients with upper tract urothelial carcinoma. Genomic alterations were assessed individually and also grouped into core signal transduction pathways or canonical cell functions for association with clinicopathological outcomes. Binary outcomes, including grade (high vs low), T stage (pTa/T1/T2 vs pT3/T4) and organ confined status (pT2 or less and N0/Nx vs greater than pT2 or N+) were assessed with the Kruskal-Wallis and Fisher exact tests as appropriate. Associations between alterations and survival were estimated using the Kaplan-Meier method and Cox regression. Of the 24 most commonly altered genes in 9 pathways TP53/MDM2 alterations and FGFR3 mutations were the only 2 alterations uniformly associated with high grade, advanced stage, nonorgan confined disease, and recurrence-free and cancer specific survival. TP53/MDM2 alterations were associated with adverse clinicopathological outcomes whereas FGFR3 mutations were associated with favorable outcomes. We created a risk score using TP53/MDM2 and FGFR3 status that was able to discriminate between adverse pathological and clinical outcomes, including in the subset of patients with high grade disease. The study is limited by small numbers and lack of validation. Our data indicate that specific genomic alterations in radical nephroureterectomy specimens correlate with tumor grade, stage and cancer specific survival outcomes. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
On the Behavior of Phosphorus During the Aqueous Alteration of CM2 Carbonaceous Chondrites
NASA Technical Reports Server (NTRS)
Brearley, Adrian J.; Chizmadia, Lysa J.
2005-01-01
During the earliest period of solar system formation, water played an important role in the evolution of primitive dust, both after accretion of planetesimals and possible before accretion within the protoplanetary disk. Many chondrites show evidence of variable degrees of aqueous alteration, the CM2 chondrites being among the most studied [1]. This group of chondrites is characterized by mineral assemblages of both primary and secondary alteration phases. Hence, these meteorites retain a particularly important record of the reactions that occurred between primary high temperature nebular phases and water. Studies of these chondrites can provide information on the conditions and environments of aqueous alteration and the mobility of elements during alteration. This latter question is at the core of a debate concerning the location of aqueous alteration, i.e. whether alteration occurred predominantly within a closed system after accretion (parent body alteration) or whether some degree of alteration occurred within the solar nebula or on ephemeral protoplanetary bodies prior to accretion. At the core of the parent body alteration model is the hypothesis that elemental exchange between different components, principally chondrules and matrix, must have occurred. chondrules and matrix, must have occurred. In this study, we focus on the behavior of the minor element, phosphorus. This study was stimulated by observations of the behavior of P during the earliest stages of alteration in glassy mesostasis in type II chondrules in CR chondrites and extends the preliminary observations of on Y791198 to other CM chondrites.
NASA Astrophysics Data System (ADS)
Shao, H.; Yang, S.; Teng, F. Z.; Cai, D.; Humphris, S. E.
2016-12-01
Chlorite is a common alteration product during water-rock reactions in seafloor hydrothermal systems. This chlorite is commonly characterized by high concentrations of magnesium. However, the source of the Mg and its behavior during hydrothermal alteration have yet to be clarified. Mg isotopes have been used in recent years to investigate a variety of geological processes, including low temperature weathering and metamorphism processes, and Mg cycling in sediments. In this study, we investigate the source of Mg and its behavior in chlorite-rich sediments collected during IODP Expedition 331 from the active hydrothermal Iheya North Knoll field in the middle Okinawa Trough — an intra-continental rift in continental crust. This area is characterized by hemipelagic muds with interbedded thick layers of felsic pumiceous volcanic material. Based on mineralogical, geochemical, and isotopic data, we have previously suggested that the chlorite-rich sediments resulted from hydrothermal alteration of the pumiceous layers at temperatures of 220-300°C. Prior to Mg isotope analysis, all selected samples were pretreated with 1N HCl in order to remove carbonates and other unstable minerals, and measurements were made on both the residues (mainly chlorite) and leachates, as well as on bulk samples. The residues are expected to show higher δ26Mg than the leachates reflecting the Mg isotopic signature of the pumiceous material precursor and provide insight into the behavior of Mg isotopes during the high-temperature hydrothermal processes.
Weickenmeier, J; Kurt, M; Ozkaya, E; de Rooij, R; Ovaert, T C; Ehman, R L; Butts Pauly, K; Kuhl, E
2018-04-22
Alterations in brain rheology are increasingly recognized as a diagnostic marker for various neurological conditions. Magnetic resonance elastography now allows us to assess brain rheology repeatably, reproducibly, and non-invasively in vivo. Recent elastography studies suggest that brain stiffness decreases one percent per year during normal aging, and is significantly reduced in Alzheimer's disease and multiple sclerosis. While existing studies successfully compare brain stiffnesses across different populations, they fail to provide insight into changes within the same brain. Here we characterize rheological alterations in one and the same brain under extreme metabolic changes: alive and dead. Strikingly, the storage and loss moduli of the cerebrum increased by 26% and 60% within only three minutes post mortem and continued to increase by 40% and 103% within 45 minutes. Immediate post mortem stiffening displayed pronounced regional variations; it was largest in the corpus callosum and smallest in the brainstem. We postulate that post mortem stiffening is a manifestation of alterations in polarization, oxidation, perfusion, and metabolism immediately after death. Our results suggest that the stiffness of our brain-unlike any other organ-is a dynamic property that is highly sensitive to the metabolic environment. Our findings emphasize the importance of characterizing brain tissue in vivo and question the relevance of ex vivo brain tissue testing as a whole. Knowing the true stiffness of the living brain has important consequences in diagnosing neurological conditions, planning neurosurgical procedures, and modeling the brain's response to high impact loading. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Schuler, Nadine; Palm, Jan; Kaiser, Mareike; Betten, Dominik; Furtwängler, Rhoikos; Rübe, Christian; Graf, Norbert; Rübe, Claudia E
2014-01-01
In children diagnosed with cancer, we evaluated the DNA damage foci approach to identify patients with double-strand break (DSB) repair deficiencies, who may overreact to DNA-damaging radio- and chemotherapy. In one patient with Fanconi anemia (FA) suffering relapsing squamous cell carcinomas of the oral cavity we also characterized the repair defect in biopsies of skin, mucosa and tumor. In children with histologically confirmed tumors or leukemias and healthy control-children DSB repair was investigated by counting γH2AX-, 53BP1- and pATM-foci in blood lymphocytes at defined time points after ex-vivo irradiation. This DSB repair capacity was correlated with treatment-related normal-tissue responses. For the FA patient the defective repair was also characterized in tissue biopsies by analyzing DNA damage response proteins by light and electron microscopy. Between tumor-children and healthy control-children we observed significant differences in mean DSB repair capacity, suggesting that childhood cancer is based on genetic alterations affecting DNA repair. Only 1 out of 4 patients with grade-4 normal-tissue toxicities revealed an impaired DSB repair capacity. The defective DNA repair in FA patient was verified in irradiated blood lymphocytes as well as in non-irradiated mucosa and skin biopsies leading to an excessive accumulation of heterochromatin-associated DSBs in rapidly cycling cells. Analyzing human tissues we show that DSB repair alterations predispose to cancer formation at younger ages and affect the susceptibility to normal-tissue toxicities. DNA damage foci analysis of blood and tissue samples allows one to detect and characterize DSB repair deficiencies and enables identification of patients at risk for high-grade toxicities. However, not all treatment-associated normal-tissue toxicities can be explained by DSB repair deficiencies.
Assessing immune aging in HIV-infected patients
Appay, Victor; Sauce, Delphine
2017-01-01
ABSTRACT Many of the alterations that affect innate and adaptive immune cell compartments in HIV-infected patients are reminiscent of the process of immune aging, characteristic of old age. These alterations define the immunological age of individuals and are likely to participate to the decline of immune competence with HIV disease progression. It is therefore important to characterize these changes, which point toward the accumulation of highly differentiated immunocompetent cells, associated with overall telomere length shortening, as well as understanding their etiology, especially related to the impact of chronic immune activation. Particular attention should be given to the exhaustion of primary immune resources, including haematopoietic progenitors and naïve cells, which holds the key for effective hematopoiesis and immune response induction, respectively. The alteration of these compartments during HIV infection certainly represents the foundation of the immune parallel with aging. PMID:27310730
The use of positrons to survey alteration layers on synthetic nuclear waste glasses
NASA Astrophysics Data System (ADS)
Reiser, Joelle T.; Parruzot, Benjamin; Weber, Marc H.; Ryan, Joseph V.; McCloy, John S.; Wall, Nathalie A.
2017-07-01
In order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe0 in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only. For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe0. Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.
The use of positrons to survey alteration layers on synthetic nuclear waste glasses
Reiser, Joelle T.; Parruzot, Benjamin; Weber, Marc H.; ...
2017-07-01
Here, in order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe 0 in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only.more » For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe 0. Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.« less
The use of positrons to survey alteration layers on synthetic nuclear waste glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiser, Joelle T.; Parruzot, Benjamin; Weber, Marc H.
Here, in order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe 0 in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only.more » For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe 0. Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.« less
Podwysocki, M.H.; Segal, D.B.; Jones, O.D.
1983-01-01
Multispectral data covering an area near Marysvale, Utah, collected with the airborne National Aeronautics and Space Administration (NASA) 24-channel Bendix multispectral scanner, were analyzed to detect areas of hydrothermally altered, potentially mineralized rocks. Spectral bands were selected for analysis that approximate those of the Landsat 4 Thematic Mapper and which are diagnostic of the presence of hydrothermally derived products. Hydrothermally altered rocks, particularly volcanic rocks affected by solutions rich in sulfuric acid, are commonly characterized by concentrations of argillic minerals such as alunite and kaolinite. These minerals are important for identifying hydrothermally altered rocks in multispectral images because they have intense absorption bands centered near a wavelength of 2.2 ??m. Unaltered volcanic rocks commonly do not contain these minerals and hence do not have the absorption bands. A color-composite image was constructed using the following spectral band ratios: 1.6??m/2.2??m, 1.6??m/0.48??m, and 0.67??m/1.0??m. The particular bands were chosen to emphasize the spectral contrasts that exist for argillic versus non-argillic rocks, limonitic versus nonlimonitic rocks, and rocks versus vegetation, respectively. The color-ratio composite successfully distinguished most types of altered rocks from unaltered rocks. Some previously unrecognized areas of hydrothermal alteration were mapped. The altered rocks included those having high alunite and/or kaolinite content, siliceous rocks containing some kaolinite, and ash-fall tuffs containing zeolitic minerals. The color-ratio-composite image allowed further division of these rocks into limonitic and nonlimonitic phases. The image did not allow separation of highly siliceous or hematitically altered rocks containing no clays or alunite from unaltered rocks. A color-coded density slice image of the 1.6??m/2.2??m band ratio allowed further discrimination among the altered units. Areas containing zeolites and some ash-fall tuffs containing montmorillonite were readily recognized on the color-coded density slice as having less intense 2.2-??m absorption than areas of highly altered rocks. The areas of most intense absorption, as depicted in the color-coded density slice, are dominated by highly altered rocks containing large amounts of alunite and kaolinite. These areas form an annulus, approximately 10 km in diameter, which surrounds a quartz monzonite intrusive body of Miocene age. The patterns of most intense alteration are interpreted as the remnants of paleohydrothermal convective cells set into motion during the emplacement of the central intrusive body. ?? 1983.
Parametric Characterization of Flow Inside Cererbal Aneurysms Treated with Flow-Diverting Stents
NASA Astrophysics Data System (ADS)
Barbour, Michael; Levitt, Michael; Geindreau, Christian; Johnson, Luke; Chivukula, Keshav; Aliseda, Alberto
2017-11-01
Cerebral aneurysms are often treated with a flow-diverting stent (FDS) to reduce blood flow into the aneurysm sac, promoting the development of a stable thrombus. Successful treatment is highly dependent on the degree of flow reduction and the altered hemodynamics inside the aneurysm sac following treatment. Establishing a causal connection between hemodynamic metrics of FDS-treated CAs and long-term clinical outcomes requires a rigorous parametric characterization of this flow environment. We use 3D particle image velocimetry (PIV) to measure the flow inside idealized aneurysm models treated with FDS. Physiologically realistic Reynolds numbers and increasing levels of parent vessel curvature are analyzed to understand the effect of inertia on flow development. The flow velocity into the aneurysm and the topology of the flow inside the sac is shown to be highly dependent on parent vessel Dean number (De). The role of flow pulsatility is then added to the study via time-dependent waveforms. Velocity measurements at 2 values of parent vessel Womersley number (Wo) allow us to parameterize flow inside of CAs treated with FDS as a function of De, Re and Wo, improving the fundamental understanding of how FDS alter CA hemodynamics and aiding in the development of new treatments.
Krause-Utz, Annegret; Frost, Rachel; Winter, Dorina; Elzinga, Bernet M
2017-01-01
Dissociation involves disruptions of usually integrated functions of consciousness, perception, memory, identity, and affect (e.g., depersonalization, derealization, numbing, amnesia, and analgesia). While the precise neurobiological underpinnings of dissociation remain elusive, neuroimaging studies in disorders, characterized by high dissociation (e.g., depersonalization/derealization disorder (DDD), dissociative identity disorder (DID), dissociative subtype of posttraumatic stress disorder (D-PTSD)), have provided valuable insight into brain alterations possibly underlying dissociation. Neuroimaging studies in borderline personality disorder (BPD), investigating links between altered brain function/structure and dissociation, are still relatively rare. In this article, we provide an overview of neurobiological models of dissociation, primarily based on research in DDD, DID, and D-PTSD. Based on this background, we review recent neuroimaging studies on associations between dissociation and altered brain function and structure in BPD. These studies are discussed in the context of earlier findings regarding methodological differences and limitations and concerning possible implications for future research and the clinical setting.
Santagata, Sandro; Cahill, Daniel P.; Taylor-Weiner, Amaro; Jones, Robert T.; Van Allen, Eliezer M.; Lawrence, Michael S.; Horowitz, Peleg M.; Cibulskis, Kristian; Ligon, Keith L.; Tabernero, Josep; Seoane, Joan; Martinez-Saez, Elena; Curry, William T.; Dunn, Ian F.; Paek, Sun Ha; Park, Sung-Hye; McKenna, Aaron; Chevalier, Aaron; Rosenberg, Mara; Barker, Frederick G.; Gill, Corey M.; Van Hummelen, Paul; Thorner, Aaron R.; Johnson, Bruce E.; Hoang, Mai P.; Choueiri, Toni K.; Signoretti, Sabina; Sougnez, Carrie; Rabin, Michael S.; Lin, Nancy U.; Winer, Eric P.; Stemmer-Rachamimov, Anat; Meyerson, Matthew; Garraway, Levi; Gabriel, Stacey; Lander, Eric S.; Beroukhim, Rameen; Batchelor, Tracy T.; Baselga, Jose; Louis, David N.
2016-01-01
Brain metastases are associated with a dismal prognosis. Whether brain metastases harbor distinct genetic alterations beyond those observed in primary tumors is unknown. We performed whole-exome sequencing of 86 matched brain metastases, primary tumors and normal tissue. In all clonally related cancer samples, we observed branched evolution, where all metastatic and primary sites shared a common ancestor yet continued to evolve independently. In 53% of cases, we found potentially clinically informative alterations in the brain metastases not detected in the matched primary-tumor sample. In contrast, spatially and temporally separated brain metastasis sites were genetically homogenous. Distal extracranial and regional lymph node metastases were highly divergent from brain metastases. We detected alterations associated with sensitivity to PI3K/AKT/mTOR, CDK, and HER2/EGFR inhibitors in the brain metastases. Genomic analysis of brain metastases provides an opportunity to identify potentially clinically informative alterations not detected in clinically sampled primary tumors, regional lymph nodes, or extracranial metastases. PMID:26410082
Liu, Yanni; Gehring, William J.; Weissman, Daniel H.; Taylor, Stephan F.; Fitzgerald, Kate Dimond
2012-01-01
Background: Impairments of cognitive control have been theorized to drive the repetitive thoughts and behaviors of obsessive compulsive disorder (OCD) from early in the course of illness. However, it remains unclear whether altered trial-by-trial adjustments of cognitive control characterize young patients. To test this hypothesis, we determined whether trial-by-trial adjustments of cognitive control are altered in children with OCD, relative to healthy controls. Methods: Forty-eight patients with pediatric OCD and 48 healthy youth performed the Multi-Source Interference Task. Two types of trial-by-trial adjustments of cognitive control were examined: post-error slowing (i.e., slower responses after errors than after correct trials) and post-conflict adaptation (i.e., faster responses in high-conflict incongruent trials that are preceded by other high-conflict incongruent trials, relative to low-conflict congruent trials). Results: While healthy youth exhibited both post-error slowing and post-conflict adaptation, patients with pediatric OCD failed to exhibit either of these effects. Further analyses revealed that patients with low symptom severity showed a reversal of the post-conflict adaptation effect, whereas patients with high symptom severity did not show any post-conflict adaptation. Conclusion: Two types of trial-by-trial adjustments of cognitive control are altered in pediatric OCD. These abnormalities may serve as early markers of the illness. PMID:22593744
Dorca-Fornell, Carmen; Pajor, Radoslaw; Lehmeier, Christoph; Pérez-Bueno, Marísa; Bauch, Marion; Sloan, Jen; Osborne, Colin; Rolfe, Stephen; Sturrock, Craig; Mooney, Sacha; Fleming, Andrew
2013-01-01
The causal relationship between cell division and growth in plants is complex. Although altered expression of cell-cycle genes frequently leads to altered organ growth, there are many examples where manipulation of the division machinery leads to a limited outcome at the level of organ form, despite changes in constituent cell size. One possibility, which has been under-explored, is that altered division patterns resulting from manipulation of cell-cycle gene expression alter the physiology of the organ, and that this has an effect on growth. We performed a series of experiments on retinoblastoma-related protein (RBR), a well characterized regulator of the cell cycle, to investigate the outcome of altered cell division on leaf physiology. Our approach involved combination of high-resolution microCT imaging and physiological analysis with a transient gene induction system, providing a powerful approach for the study of developmental physiology. Our investigation identifies a new role for RBR in mesophyll differentiation that affects tissue porosity and the distribution of air space within the leaf. The data demonstrate the importance of RBR in early leaf development and the extent to which physiology adapts to modified cellular architecture resulting from altered cell-cycle gene expression. PMID:24118480
Hydrothermal alteration of deep fractured granite: Effects of dissolution and precipitation
NASA Astrophysics Data System (ADS)
Nishimoto, Shoji; Yoshida, Hidekazu
2010-03-01
This paper investigates the mineralogical effects of hydrothermal alteration at depth in fractures in granite. A fracture accompanied by an alteration halo and filled with clay was found at a depth of 200 m in a drill core through Toki granite, Gifu, central Japan. Microscopic observation, XRD, XRF, EPMA and SXAM investigations revealed that the microcrystalline clays consist of illite, quartz and pyrite and that the halo round the fracture can be subdivided into a phyllic zone adjacent to the fracture, surrounded by a propylitic zone in which Fe-phyllosilicates are present, and a distinctive outer alteration front characterized by plagioclase breakdown. The processes that result in these changes took place in three successive stages: 1) partial dissolution of plagioclase with partial chloritization of biotite; 2) biotite dissolution and precipitation of Fe-phyllosilicate in the dissolution pores; 3) dissolution of K-feldspar and Fe-phyllosilicate, and illite precipitation associated with development of microcracks. These hydrothermal alterations of the granite proceed mainly by a dissolution-precipitation process resulting from the infiltration of hydrothermal fluid along microcracks. Such infiltration causes locally high mobility of Al and increases the ratio of fluid to rock in the alteration halo. These results contribute to an understanding of how granitic rock becomes altered in orogenic fields such as the Japanese island arc.
CM chondrites exhibit the complete petrologic range from type 2 to 1. [Abstract only
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Browning, L. B.
1994-01-01
Recognition and characterization of the different CM lithologies as components in all meteorites could reveal details of the nature and chronology of alteration and brecciation events on hydrous asteroids. The CM chondrites are of particular interest, as they are the most common carbonaceous chondrites and are found as clasts within other types of meteorites, which suggests that the CM parent asteroids are (or were) widespread in the sections of the asteroid belt providing samples to Earth. Some CM2s, including EET 90047, ALH 83100, and Y 82042, are more 'extensively' altered, and are distinguished by a high proportion of Mg-rich phyllosilicates and Ca-Mg carbonates, frequently in rounded aggregates, and near absence of olivine or pyroxene. 'Completely' altered CMs, called CM1s, essentially lack olivine or pyroxene; these include EET 83334, ALH 88045, and the CM1 clasts in Kaidun. Cold Bokkeveld and EET 84034, both highly brecciated CMs, consist of both extensively and completely altered lithologies. We describe how these lithologies further cosntrain physicochemical conditions on hydrous asteroids. We conclude that CM chondrites exhibit the petrologic range 2 through 1, and that progressive alteration on the parent hydrous asteroid(s) was accompanied by significant increases in temperature (to a peak of approximately 450 C), fO2, water-rock ratio, and (locally) degree of chemical leaching, all well beyond the conditions recorded by CM2s.
Feng, Shaolong; Eucker, Tyson P.; Holly, Mayumi K.; Konkel, Michael E.
2014-01-01
We present the results of a study using high-throughput whole-transcriptome sequencing (RNA-seq) and vibrational spectroscopy to characterize and fingerprint pathogenic-bacterium injury under conditions of unfavorable stress. Two garlic-derived organosulfur compounds were found to be highly effective antimicrobial compounds against Cronobacter sakazakii, a leading pathogen associated with invasive infection of infants and causing meningitis, necrotizing entercolitis, and bacteremia. RNA-seq shows changes in gene expression patterns and transcriptomic response, while confocal micro-Raman spectroscopy characterizes macromolecular changes in the bacterial cell resulting from this chemical stress. RNA-seq analyses showed that the bacterial response to ajoene differed from the response to diallyl sulfide. Specifically, ajoene caused downregulation of motility-related genes, while diallyl sulfide treatment caused an increased expression of cell wall synthesis genes. Confocal micro-Raman spectroscopy revealed that the two compounds appear to have the same phase I antimicrobial mechanism of binding to thiol-containing proteins/enzymes in bacterial cells generating a disulfide stretching band but different phase II antimicrobial mechanisms, showing alterations in the secondary structures of proteins in two different ways. Diallyl sulfide primarily altered the α-helix and β-sheet, as reflected in changes in amide I, while ajoene altered the structures containing phenylalanine and tyrosine. Bayesian probability analysis validated the ability of principal component analysis to differentiate treated and control C. sakazakii cells. Scanning electron microscopy confirmed cell injury, showing significant morphological variations in cells following treatments by these two compounds. Findings from this study aid in the development of effective intervention strategies to reduce the risk of C. sakazakii contamination in the food production environment and on food contact surfaces, reducing the risks to susceptible consumers. PMID:24271174
Physical and hydraulic properties of volcanic rocks from Yucca Mountain, Nevada
Flint, Lorraine E.
2003-01-01
A database of physical and hydraulic properties was developed for rocks in the unsaturated zone at Yucca Mountain, Nevada, a site under consideration as a geologic repository for high-level radioactive waste. The 5320 core samples were collected from 23 shallow (<100 m) and 10 deep (500-1000 m) vertical boreholes. Hydrogeologic units have been characterized in the unsaturated zone [Flint, 1998] that represent rocks with ranges of welding, lithophysae, and high and low temperature alteration (as a result of the depositional, cooling, and alterational history of the lithostratigraphic layers). Lithostratigraphy, the hydrogeologic unit, and the corresponding properties are described. In addition, the physical properties of bulk density, porosity, and particle density; the hydraulic properties of saturated hydraulic conductivity and moisture retention characteristics; and the field water content were measured and compiled for each core sample.
Characterization on White Etching Layer Formed During Ceramic Milling of Inconel 718
NASA Astrophysics Data System (ADS)
Kruk, A.; Wusatowska-Sarnek, A. M.; Ziętara, M.; Jemielniak, K.; Siemiątkowski, Z.; Czyrska-Filemonowicz, A.
2018-03-01
A comprehensive characterization of the near surface formed during the interrupted high-speed dry ceramic milling of IN718 was performed using light imaging, SEM/EDX, TEM and nano-hardness methods. It was found out that even an initial cut by a fresh tool creates a sub-surface alteration roughly 20 µm deep. The depth of altered sub-surface progressively changed to a roughly 40 µm when the tool reached an approximately half of its life, and almost 60 µm at the tool's end of the life. In the last two cases, the visible WEL (utilizing a light microscope) of the thickness roughly 6 and 15 µm was created, respectively. The outermost layer of the deformed subsurface was found to be for all three cases approximately 1.5 µm thick and composed of dynamically recrystallized γ phase grains with the average diameter of approximately 150 nm. This layer was free of δ phase and γ' or γ″ precipitates. It was followed by a plastically deformed zone.
Degenerate time-dependent network dynamics anticipate seizures in human epileptic brain.
Tauste Campo, Adrià; Principe, Alessandro; Ley, Miguel; Rocamora, Rodrigo; Deco, Gustavo
2018-04-01
Epileptic seizures are known to follow specific changes in brain dynamics. While some algorithms can nowadays robustly detect these changes, a clear understanding of the mechanism by which these alterations occur and generate seizures is still lacking. Here, we provide crossvalidated evidence that such changes are initiated by an alteration of physiological network state dynamics. Specifically, our analysis of long intracranial electroencephalography (iEEG) recordings from a group of 10 patients identifies a critical phase of a few hours in which time-dependent network states become less variable ("degenerate"), and this phase is followed by a global functional connectivity reduction before seizure onset. This critical phase is characterized by an abnormal occurrence of highly correlated network instances and is shown to be particularly associated with the activity of the resected regions in patients with validated postsurgical outcome. Our approach characterizes preseizure network dynamics as a cascade of 2 sequential events providing new insights into seizure prediction and control.
NASA Astrophysics Data System (ADS)
Fucugauchi, J. U.; Perez-Cruz, L. L.; Rebolledo-Vieyra, M.; Tikoo, S.; Zylberman, W.; Lofi, J.
2017-12-01
Drilling at Site M0077 sampled post-impact sediments overlying a peak ring consisting of impact breccias, melt rock and granitoids. Here we focus on characterizing the peak ring using magnetic properties, which vary widely and depend on mineralogy, depositional and emplacement conditions and secondary alterations. Rock magnetic properties are integrated with Multi-Sensor Core Logger (MSCL) data, vertical seismic profile, physical properties, petrographic and chemical analyses and geophysical models. We measure low-field magnetic susceptibility at low- and high-frequencies, intensity and direction of natural remanent magnetization (NRM) and laboratory-induced isothermal (IRM) and anhysteretic (ARM) magnetizations, alternating-field demagnetization of NRM, IRM and NRM, susceptibility variation with temperature, anisotropy of magnetic susceptibility, hysteresis and IRM back-field demagnetization. Post-impact carbonates show low susceptibilities and NRM intensities, variable frequency-dependent susceptibilities and multivectorial remanences residing in low and high coercivity minerals. Hysteresis loops show low coercivity saturation magnetizations and variable paramagnetic mineral contents. Impact breccias (suevites) and melt rock show higher susceptibilities, low frequency-dependent susceptibilities, high NRM, ARM and IRM intensities and moderate ARM intensity/susceptibility ratios. Magnetic signal is dominated by fine-grained magnetite and titanomagnetites with PSD domain states. Melt rocks at the base of impactite section show the highest susceptibilities and remanence intensities. Basement section is characterized by low susceptibilities in the granites and higher values in the dikes, with NRM and ARM intensities increasing towards the base. The high susceptibilities and remanence intensities correlate with high seismic velocities, density and decreased porosity and electrical resistivity. Fracturing and alteration account for the reduced seismic velocities, density and magnetic properties in the basement section. Site M0077 is in a horizontal gradient high within the semi-circular gravity low in the crater central zone. Correlation with MSCL logs and petrographic and chemical data will allow further detailed characterization of peak ring units.
NASA Astrophysics Data System (ADS)
López-Buendía, Angel M.; García-Baños, Beatriz; Mar Urquiola, M.; Gutiérrez, José D.; Catalá-Civera, José M.
2016-04-01
Dielectric constant measurement has been used in rocks characterization, mainly for exploration objective in geophysics, particularly related to ground penetration radar characterization in ranges of 10 MHz to 1 GHz. However, few data have been collected for loss factor. Complex permittivity (dielectric constant and loss factor) characterization in rock provide information about mineralogical composition as well as other petrophysic parameters related to the quality, such as fabric parameters, mineralogical distribution, humidity. A study was performed in the frequency of 2,45GHz by using a portable kit for dielectric device based on an open coaxial probe. In situ measurements were made of natural stone marble and granite on selected industrial slabs and building stone. A mapping of their complex permittivity was performed and evaluated, and variations in composition and textures were identified, showing the variability with the mineral composition, metal ore minerals content and fabric. Dielectric constant was a parameter more sensible to rock forming minerals composition, particularly in granites for QAPF-composition (quartz-alkali feldspar-plagioclases-feldspathoids) and in marbles for calcite-dolomite-silicates. Loss factor shown a high sensibility to fabric and minerals of alteration. Results showed that the dielectric properties can be used as a powerful tool for petrographic characterization of building stones in two areas of application: a) in cultural heritage diagnosis to estimate the quality and alteration of the stone, an b) in industrial application for quality control and industrial microwave processing.
Biogeochemistry of hydrothermally and adjacent non-altered soils
USDA-ARS?s Scientific Manuscript database
As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in hydrothermally and adjacent non-hydrothermally altered andesitic parent material near Reno, NV. Hydrothermally altered soils had considerably lo...
Cruz-Ramírez, Alfredo; López-Bucio, José; Ramírez-Pimentel, Gabriel; Zurita-Silva, Andrés; Sánchez-Calderon, Lenin; Ramírez-Chávez, Enrique; González-Ortega, Emmanuel; Herrera-Estrella, Luis
2004-01-01
Phosphocholine (PCho) is an essential metabolite for plant development because it is the precursor for the biosynthesis of phosphatidylcholine, which is the major lipid component in plant cell membranes. The main step in PCho biosynthesis in Arabidopsis thaliana is the triple, sequential N-methylation of phosphoethanolamine, catalyzed by S-adenosyl-l-methionine:phosphoethanolamine N-methyltransferase (PEAMT). In screenings performed to isolate Arabidopsis mutants with altered root system architecture, a T-DNA mutagenized line showing remarkable alterations in root development was isolated. At the seedling stage, the mutant phenotype is characterized by a short primary root, a high number of lateral roots, and short epidermal cells with aberrant morphology. Genetic and biochemical characterization of this mutant showed that the T-DNA was inserted at the At3g18000 locus (XIPOTL1), which encodes PEAMT (XIPOTL1). Further analyses revealed that inhibition of PCho biosynthesis in xpl1 mutants not only alters several root developmental traits but also induces cell death in root epidermal cells. Epidermal cell death could be reversed by phosphatidic acid treatment. Taken together, our results suggest that molecules produced downstream of the PCho biosynthesis pathway play key roles in root development and act as signals for cell integrity. PMID:15295103
Arnedos, Monica; André, Fabrice; Farace, Françoise; Lacroix, Ludovic; Besse, Benjamin; Robert, Caroline; Soria, Jean Charles; Eggermont, Alexander M M
2012-04-01
Research with high throughput technologies has propitiated the segmentation of different types of tumors into very small subgroups characterized by the presence of very rare molecular alterations. The identification of these subgroups and the apparition of new agents targeting these infrequent alterations are already affecting the way in which clinical trials are being conducted with an increased need to identify those patients harboring specific molecular alterations. In this review we describe some of the currently ongoing and future studies at the Institut Gustave Roussy that aim for the identification of potential therapeutic targets for cancer patients with the incorporation of high throughput technologies into daily practice including aCGH, next generation sequencing and the creation of a software that allows for target identification specific for each tumor. The initial intention is to enrich clinical trials with cancer patients carrying certain molecular alterations in order to increase the possibility of demonstrating benefit from a targeted agent. Mid and long term aims are to facilitate and speed up the process of drug development as well as to implement the concept of personalized medicine. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chipera, Steve J.; Goff, Fraser; Goff, Cathy J.; Fittipaldo, Melissa
2008-12-01
Quantitative X-ray diffraction analysis of about 80 rhyolite and associated lacustrine rocks has characterized previously unrecognized zeolitic alteration throughout the Valles caldera resurgent dome. The alteration assemblage consists primarily of smectite-clinoptilolite-mordenite-silica, which replaces groundmass and fills voids, especially in the tuffs and lacustrine rocks. Original rock textures are routinely preserved. Mineralization typically extends to depths of only a few tens of meters and resembles shallow "caldera-type zeolitization" as defined by Utada et al. [Utada, M., Shimizu, M., Ito, T., Inoue, A., 1999. Alteration of caldera-forming rocks related to the Sanzugawa volcanotectonic depression, northeast Honshu, Japan — with special reference to "caldera-type zeolitization." Resource Geol. Spec. Issue No. 20, 129-140]. Geology and 40Ar/ 39Ar dates limit the period of extensive zeolite growth to roughly the first 30 kyr after the current caldera formed (ca. 1.25 to 1.22 Ma). Zeolitic alteration was promoted by saturation of shallow rocks with alkaline lake water (a mixture of meteoric waters and degassed hydrothermal fluids) and by high thermal gradients caused by cooling of the underlying magma body and earliest post-caldera rhyolite eruptions. Zeolitic alteration of this type is not found in the later volcanic and lacustrine rocks of the caldera moat (≤ 0.8 Ma) suggesting that later lake waters were cooler and less alkaline. The shallow zeolitic alteration does not have characteristics resembling classic, alkaline lake zeolite deposits (no analcime, erionite, or chabazite) nor does it contain zeolites common in high-temperature hydrothermal systems (laumontite or wairakite). Although aerially extensive, the early zeolitic alteration does not form laterally continuous beds and are consequently, not of economic significance.
NASA Astrophysics Data System (ADS)
Hajjar, Zaineb; Gervilla, Fernando; Essaifi, Abderrahim; Wafik, Amina
2017-08-01
The Beni Bousera ultramafic massif (Internal Rif, Morocco) is characterized by the presence of two types of small-scale magmatic mineralizations (i) a mineralization consisting mainly of chromite and Ni arsenides associated to orthopyroxene and cordierite (Cr-Ni ores), and (ii) a mineralization mainly composed of magmatic Fe-Ni-Cu sulfides containing variable amounts of graphite and chromite associated to phlogopite, clinopyroxène and plagioclase (S-G ores). Theses ores underwent High-T (450-550 °C) and Low-T (150-300 °C) alteration processes. The High-T alteration processes are tentatively related to intrusion of leucogranite dykes. They are preserved in the Galaros Cr-Ni ore deposit where nickeline is partly dissolved and transformed to maucherite, and orthopyroxene alters to phlogopite. Ni and Co were mobilized to the fluid phase, rising up their availability and promoting their diffusion into chromite and phlogopite, which have significantly higher contents in Ni and Co in phlogopite-rich ores than in orthopyroxene- and nickeline-rich ones. The Low-T alteration processes are related to serpentinization/weathering spatially associated with a regional shear zone. They affected both the Cr-Ni and S-G ores. In the Cr-Ni ores, Ni-arsenides were completely leached out while chromite is fractured within a matrix of chlorite, vermiculite and Ni-rich serpentine. In S-G ores, the silicates were altered into amphibole, Fe-rich chlorite and pectolite in clinopyroxene- and plagioclase-bearing ores while sulfides were completely leached out in phlogopite-bearing ores where iron oxides and hydroxides, and Fe-rich vermiculite were deposited. Chromite composition is not affected by the Low-T alteration processes.
Sodium Chloride Affects Helicobacter pylori Growth and Gene Expression▿
Gancz, Hanan; Jones, Kathleen R.; Merrell, D. Scott
2008-01-01
Epidemiological evidence links high-salt diets and Helicobacter pylori infection with increased risk of developing gastric maladies. The mechanism by which elevated sodium chloride content causes these manifestations is unclear. Here we characterize the response of H. pylori to temporal changes in sodium chloride concentration and show that growth, cell morphology, survival, and virulence factor expression are all altered by increased salt concentration. PMID:18375562
Toxicological profile of ultrapure 2,2',3,4,4',5,5'-heptachlorbiphenyl (PCB 180) in adult rats.
Viluksela, Matti; Heikkinen, Päivi; van der Ven, Leo T M; Rendel, Filip; Roos, Robert; Esteban, Javier; Korkalainen, Merja; Lensu, Sanna; Miettinen, Hanna M; Savolainen, Kari; Sankari, Satu; Lilienthal, Hellmuth; Adamsson, Annika; Toppari, Jorma; Herlin, Maria; Finnilä, Mikko; Tuukkanen, Juha; Leslie, Heather A; Hamers, Timo; Hamscher, Gerd; Al-Anati, Lauy; Stenius, Ulla; Dervola, Kine-Susann; Bogen, Inger-Lise; Fonnum, Frode; Andersson, Patrik L; Schrenk, Dieter; Halldin, Krister; Håkansson, Helen
2014-01-01
PCB 180 is a persistent non-dioxin-like polychlorinated biphenyl (NDL-PCB) abundantly present in food and the environment. Risk characterization of NDL-PCBs is confounded by the presence of highly potent dioxin-like impurities. We used ultrapure PCB 180 to characterize its toxicity profile in a 28-day repeat dose toxicity study in young adult rats extended to cover endocrine and behavioral effects. Using a loading dose/maintenance dose regimen, groups of 5 males and 5 females were given total doses of 0, 3, 10, 30, 100, 300, 1000 or 1700 mg PCB 180/kg body weight by gavage. Dose-responses were analyzed using benchmark dose modeling based on dose and adipose tissue PCB concentrations. Body weight gain was retarded at 1700 mg/kg during loading dosing, but recovered thereafter. The most sensitive endpoint of toxicity that was used for risk characterization was altered open field behavior in females; i.e. increased activity and distance moved in the inner zone of an open field suggesting altered emotional responses to unfamiliar environment and impaired behavioral inhibition. Other dose-dependent changes included decreased serum thyroid hormones with associated histopathological changes, altered tissue retinoid levels, decreased hematocrit and hemoglobin, decreased follicle stimulating hormone and luteinizing hormone levels in males and increased expression of DNA damage markers in liver of females. Dose-dependent hypertrophy of zona fasciculata cells was observed in adrenals suggesting activation of cortex. There were gender differences in sensitivity and toxicity profiles were partly different in males and females. PCB 180 adipose tissue concentrations were clearly above the general human population levels, but close to the levels in highly exposed populations. The results demonstrate a distinct toxicological profile of PCB 180 with lack of dioxin-like properties required for assignment of WHO toxic equivalency factor. However, PCB 180 shares several toxicological targets with dioxin-like compounds emphasizing the potential for interactions.
Toxicological Profile of Ultrapure 2,2′,3,4,4′,5,5′-Heptachlorbiphenyl (PCB 180) in Adult Rats
Viluksela, Matti; Heikkinen, Päivi; van der Ven, Leo T. M.; Rendel, Filip; Roos, Robert; Esteban, Javier; Korkalainen, Merja; Lensu, Sanna; Miettinen, Hanna M.; Savolainen, Kari; Sankari, Satu; Lilienthal, Hellmuth; Adamsson, Annika; Toppari, Jorma; Herlin, Maria; Finnilä, Mikko; Tuukkanen, Juha; Leslie, Heather A.; Hamers, Timo; Hamscher, Gerd; Al-Anati, Lauy; Stenius, Ulla; Dervola, Kine-Susann; Bogen, Inger-Lise; Fonnum, Frode; Andersson, Patrik L.; Schrenk, Dieter; Halldin, Krister; Håkansson, Helen
2014-01-01
PCB 180 is a persistent non-dioxin-like polychlorinated biphenyl (NDL-PCB) abundantly present in food and the environment. Risk characterization of NDL-PCBs is confounded by the presence of highly potent dioxin-like impurities. We used ultrapure PCB 180 to characterize its toxicity profile in a 28-day repeat dose toxicity study in young adult rats extended to cover endocrine and behavioral effects. Using a loading dose/maintenance dose regimen, groups of 5 males and 5 females were given total doses of 0, 3, 10, 30, 100, 300, 1000 or 1700 mg PCB 180/kg body weight by gavage. Dose-responses were analyzed using benchmark dose modeling based on dose and adipose tissue PCB concentrations. Body weight gain was retarded at 1700 mg/kg during loading dosing, but recovered thereafter. The most sensitive endpoint of toxicity that was used for risk characterization was altered open field behavior in females; i.e. increased activity and distance moved in the inner zone of an open field suggesting altered emotional responses to unfamiliar environment and impaired behavioral inhibition. Other dose-dependent changes included decreased serum thyroid hormones with associated histopathological changes, altered tissue retinoid levels, decreased hematocrit and hemoglobin, decreased follicle stimulating hormone and luteinizing hormone levels in males and increased expression of DNA damage markers in liver of females. Dose-dependent hypertrophy of zona fasciculata cells was observed in adrenals suggesting activation of cortex. There were gender differences in sensitivity and toxicity profiles were partly different in males and females. PCB 180 adipose tissue concentrations were clearly above the general human population levels, but close to the levels in highly exposed populations. The results demonstrate a distinct toxicological profile of PCB 180 with lack of dioxin-like properties required for assignment of WHO toxic equivalency factor. However, PCB 180 shares several toxicological targets with dioxin-like compounds emphasizing the potential for interactions. PMID:25137063
UBIAD1 Mutation Alters a Mitochondrial Prenyltransferase to Cause Schnyder Corneal Dystrophy
Nickerson, Michael L.; Kostiha, Brittany N.; Brandt, Wolfgang; Fredericks, William; Xu, Ke-Ping; Yu, Fu-Shin; Gold, Bert; Chodosh, James; Goldberg, Marc; Lu, Da Wen; Yamada, Masakazu; Tervo, Timo M.; Grutzmacher, Richard; Croasdale, Chris; Hoeltzenbein, Maria; Sutphin, John; Malkowicz, S. Bruce; Wessjohann, Ludger; Kruth, Howard S.; Dean, Michael; Weiss, Jayne S.
2010-01-01
Background Mutations in a novel gene, UBIAD1, were recently found to cause the autosomal dominant eye disease Schnyder corneal dystrophy (SCD). SCD is characterized by an abnormal deposition of cholesterol and phospholipids in the cornea resulting in progressive corneal opacification and visual loss. We characterized lesions in the UBIAD1 gene in new SCD families and examined protein homology, localization, and structure. Methodology/Principal Findings We characterized five novel mutations in the UBIAD1 gene in ten SCD families, including a first SCD family of Native American ethnicity. Examination of protein homology revealed that SCD altered amino acids which were highly conserved across species. Cell lines were established from patients including keratocytes obtained after corneal transplant surgery and lymphoblastoid cell lines from Epstein-Barr virus immortalized peripheral blood mononuclear cells. These were used to determine the subcellular localization of mutant and wild type protein, and to examine cholesterol metabolite ratios. Immunohistochemistry using antibodies specific for UBIAD1 protein in keratocytes revealed that both wild type and N102S protein were localized sub-cellularly to mitochondria. Analysis of cholesterol metabolites in patient cell line extracts showed no significant alteration in the presence of mutant protein indicating a potentially novel function of the UBIAD1 protein in cholesterol biochemistry. Molecular modeling was used to develop a model of human UBIAD1 protein in a membrane and revealed potentially critical roles for amino acids mutated in SCD. Potential primary and secondary substrate binding sites were identified and docking simulations indicated likely substrates including prenyl and phenolic molecules. Conclusions/Significance Accumulating evidence from the SCD familial mutation spectrum, protein homology across species, and molecular modeling suggest that protein function is likely down-regulated by SCD mutations. Mitochondrial UBIAD1 protein appears to have a highly conserved function that, at least in humans, is involved in cholesterol metabolism in a novel manner. PMID:20505825
Joha, Sami; Dauphin, Véronique; Leprêtre, Frédéric; Corm, Sélim; Nicolini, Franck E; Roumier, Christophe; Nibourel, Olivier; Grardel, Nathalie; Maguer-Satta, Véronique; Idziorek, Thierry; Figeac, Martin; Laï, Jean-Luc; Quesnel, Bruno; Etienne, Gabriel; Guilhot, François; Lippert, Eric; Preudhomme, Claude; Roche-Lestienne, Catherine
2011-04-01
To ascertain genomic alterations associated with Imatinib resistance in chronic myeloid leukaemia, we performed high resolution genomic analysis of CD34(+) cells from 25 Imatinib (IM) resistant and 11 responders CML patients. Using patients' T-cells as reference, we found significant association between number of acquired cryptic copy number alterations (CNA) and disease phase (p=0.036) or loss of IM response for patients diagnosed in chronic phase (CP) (p=0.04). Recurrent cryptic losses were identified on chromosomes 7, 12 and 13. On chromosome 7, recurrent deletions of the IKZF1 locus were detected, for the first time, in 4 patients in CP. Copyright © 2010 Elsevier Ltd. All rights reserved.
The use of on-line characterization technologies during the manufacture of nanostructured materials
NASA Astrophysics Data System (ADS)
Barbas, Joana Margarida de Oliveira
Since their potential has become widely recognized, one of the major research lines on polymer-clay nanocomposites has focused on the preparation of well dispersed systems, which involves investigating their compounding (including their structural and morphological characterization) and the determination of their physical and mechanical performances. Currently, there is an understanding that a high degree of dispersion, particularly exfoliation, of the nanoclay is required to improve the overall performance. Although the influencing parameters are known - interfacial adhesion, chemical affinity and operating conditions - the effect of each on the onset and extent of the organoclay dispersion are still subject of debate. Twin screw extrusion allows for control of the main variables (shear, stress and time), but also, due to the typical modular construction, offers a high degree of freedom in creating the adequate screw design and enables knowledgeable alteration of the barrel. These features offer a solid basis for the development and implementation of apt on-line/in-line monitoring techniques, able to follow up the evolution of dispersion of polymer-clay nanocomposites during processing. This research included the validation, implementation and application of a methodology based on inline Near-Infrared (NIR) Spectroscopy for the characterization of the dispersion along the extruder axis. The results showed that the operating conditions have great impact on the dispersion level, but also that degradation may affect the interfacial chemistry of the system, altering the dispersion pathways. Overall the results obtained confirm that NIR is a valid tool for the on-line characterization of these materials, offering the possibility of assessing in real time the clay dispersion, enabling proper corrective and optimization actions over the material characteristics in a timely manner.
Application of an alkylammonium method for characterization of phyllosilicates in CI chondrites
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, D. W.; Zolensky, M. E.; Yang, S. V.
1994-01-01
Many meteorites and interplanetary dust particles (IDP's) with primitive compositions contain significant amounts of phyllosilicates, which are generally interpreted as evidence of protoplanetary aqueous alteration at an early period in the solar system. These meteorites are chondrites of the carbonaceous and ordinary varieties. Characterization of phyllosilicates in these materials is important because of the important physico-chemical information they hold, e.g., from well characterized phyllosilicates, thermodynamic stability relations and hence the conditions of formation of phyllosilicates in the parent body of the meteorite can be predicted. Although we are at a rudimentary level of understanding of the minerals resulting from the aqueous alteration in the early solar nebula, we know that the most common phyllosilicates present in chondritic extraterrestrial materials are serpentines, smectites, chlorites, and micas. The characterization of fine grained minerals in meteorites and IDP's rely heavily on electron beam instruments, especially transmission electron microscopy (TEM). Typically, phyllosilicates are identified by a combination of high resolution imaging of basal spacings, electron diffraction analysis, and chemical analysis. Smectites can be difficult to differentiate from micas because the smectites loose their interlayer water and the interlayers collapse to the same basal spacing as mica in the high vacuum of the TEM. In high-resolution TEM (HRTEM) images, smectite basal spacings vary from 1 nm up to 1.5 nm, while micas show 1 or 2 nm basal spacings. Not only is it difficult to differentiate smectites from micas, but there is no way of identifying different classes of smectites in meteorites and IDP's. To differentiate smectites from micas and also to recognize the charge differences among smectites, an alkylammonium method can be employed because the basal spacings of alkylammonium saturated smectites expand as a function of alkylamine chain length and the layer-charge density of the 2:1 expanding phyllosilicate, and the final product is significantly more stable under electron beam examination. Such a method was tested on standard clays and several meteorite samples using four alkylammonium salts.
Evidence Report: Risk of Crew Adverse Health Event Due to Altered Immune Response
NASA Technical Reports Server (NTRS)
Crucian, Brian; Sams, Clarence F.
2013-01-01
The Risk of Crew Adverse Health Event Due to Altered Immune Response is identified by the National Aeronautics and Space Administration (NASA) Human Research Program (HRP) as a recognized risk to human health and performance in space. The HRP Program Requirements Document (PRD) defines these risks. This Evidence Report provides a summary of the evidence that has been used to identify and characterize this risk. It is known that human immune function is altered in- and post-flight, but it is unclear at present if such alterations lead to increased susceptibility to disease. Reactivation of latent viruses has been documented in crewmembers, although this reactivation has not been directly correlated with immune changes or with observed diseases. As described in this report, further research is required to better characterize the relationships between altered immune response and susceptibility to disease during and after spaceflight. This is particularly important for future deep-space exploration missions.
Ritter, Philipp S; Marx, Carolin; Lewtschenko, Natalia; Pfeiffer, Steffi; Leopold, Karolina; Bauer, Michael; Pfennig, Andrea
2012-10-01
Sleep is highly altered during affective episodes in patients with bipolar disorder. There is accumulating evidence that sleep is also altered in euthymic states. A deficit in sleep regulation may be a vulnerability factor with aetiological relevance in the development of the disease. This study aims to explore the objective, subjective and lifetime sleep characteristics of patients with manifest bipolar disorder and persons with an elevated risk of developing the disease. Twenty-two patients with bipolar I and II disorder, nine persons with an elevated risk of developing the disorder and 28 healthy controls were evaluated with a structured interview to characterize subjective and lifetime sleeping habits. In addition, participants wore an actimeter for six nights. Patients with bipolar disorder had longer sleep latency and duration compared with healthy controls as determined by actigraphy. The subjective and lifetime sleep characteristics of bipolar patients differed significantly from healthy controls. The results of participants with an elevated risk of developing the disorder had subjective and lifetime characteristics that were largely analogous to those of patients with manifest bipolar disorder. In particular, both groups described recurring insomnia and hypersomnia, sensitivity to shifts in circadian rhythm, difficulties awakening and prolonged sleep latency. This study provides further evidence that sleep and circadian timing are profoundly altered in patients with bipolar disorder. It may also tentatively suggest that sleep may be altered prior to the first manic episode in subjects at high risk.
NASA Technical Reports Server (NTRS)
Ming, D. W.; Morris, R. V.; Rampe, E. B.; Golden, D. C.; Quinn, J. E.
2015-01-01
The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Curiosity rover has detected abundant amounts (approx. 25-30 weight percentage) of X-ray amorphous materials in a windblown deposit (Rocknest) and in a sedimentary mudstone (Cumberland and John Klein) in Gale crater, Mars. On Earth, X-ray amorphous components are common in soils and sediments, but usually not as abundant as detected in Gale crater. One hypothesis for the abundant X-ray amorphous materials on Mars is limited interaction of liquid water with surface materials, kinetically inhibiting maturation to more crystalline phases. The objective of this study was to characterize the chemistry and mineralogy of soils formed in the Antarctica Dry Valleys, one of the driest locations on Earth. Two soils were characterized from different elevations, including a low elevation, coastal, subxerous soil in Taylor Valley and a high elevation, ultraxerous soil in University Valley. A variety of techniques were used to characterize materials from each soil horizon, including Rietveld analysis of X-ray diffraction data. For Taylor Valley soil, the X-ray amorphous component ranged from about 4 weight percentage in the upper horizon to as high as 15 weight percentage in the lowest horizon just above the permafrost layer. Transmission electron microscopy indicated that the presence of short-range ordered (SRO) smectite was the most likely candidate for the X-ray amorphous materials in the Taylor Valley soils. The SRO smectite is likely an aqueous alteration product of mica inherited from granitic materials during glaciation of Taylor Valley. The drier University Valley soils had lower X-ray amorphous contents of about 5 weight percentage in the lowest horizon. The X-ray amorphous materials in University Valley are attributed to nanoparticles of TiO2 and possibly amorphous SiO2. The high abundance of X-ray amorphous materials in Taylor Valley is surprising for one of the driest places on Earth. These materials may have been physically and chemical altered during soil formation, however, the limited interaction with water and low temperatures may result in the formation of "immature" X-ray amorphous or SRO materials. Perhaps, a similar process contributes to the formation of the high content of X-ray amorphous materials detected on Mars.
Lesiak, Ashton D; Cody, Robert B; Ubukata, Masaaki; Musah, Rabi A
2016-03-01
We demonstrate the utility of direct analysis in real time ionization coupled with high resolution time-of-flight mass spectrometry (DART-HRTOFMS) in revealing the adulteration of commercially available Sceletium tortuosum, a mind-altering plant-based drug commonly known as Kanna. Accurate masses consistent with alkaloids previously isolated from S. tortuosum plant material enabled identification of the products as Kanna, and in-source collision-induced dissociation (CID) confirmed the presence of one of these alkaloids, hordenine, while simultaneously revealing the presence of an adulterant. The stimulant ephedrine, which has been banned in herbal products and supplements, was confirmed to be present in a sample through the use of in-source CID. High-throughput DART-HRTOFMS was shown to be a powerful tool to not only screen plant-based drugs of abuse for psychotropic alkaloids, but also to reveal the presence of scheduled substances and adulterants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Antonini, James M; Keane, Michael; Chen, Bean T; Stone, Samuel; Roberts, Jenny R; Schwegler-Berry, Diane; Andrews, Ronnee N; Frazer, David G; Sriram, Krishnan
2011-12-01
The goal was to determine if increasing welding voltage changes the physico-chemical properties of the fume and influences lung responses. Rats inhaled 40 mg/m³ (3 h/day × 3 days) of stainless steel (SS) welding fume generated at a standard voltage setting of 25 V (regular SS) or at a higher voltage (high voltage SS) of 30 V. Particle morphology, size and composition were characterized. Bronchoalveolar lavage was performed at different times after exposures to assess lung injury. Fumes collected from either of the welding conditions appeared as chain-like agglomerates of nanometer-sized primary particles. High voltage SS welding produced a greater number of ultrafine-sized particles. Fume generated by high voltage SS welding was higher in manganese. Pulmonary toxicity was more substantial and persisted longer after exposure to the regular SS fume. In summary, a modest raise in welding voltage affected fume size and elemental composition and altered the temporal lung toxicity profile.
Kulikov, Sergey N; Lisovskaya, Svetlana A; Zelenikhin, Pavel V; Bezrodnykh, Evgeniya A; Shakirova, Diana R; Blagodatskikh, Inesa V; Tikhonov, Vladimir E
2014-03-03
A series of oligochitosans (short chain chitosans) prepared by acidic hydrolysis of chitosan and characterized by their molecular weight, polydispersity and degree of deacetylation were used to determine their anticandidal activities. This study has demonstrated that oligochitosans show a high fungistatic activity (MIC 8-512 μg/ml) against Candida species and clinical isolates of Candida albicans, which are resistant to a series of classic antibiotics. Flow cytometry analysis showed that oligochitosan possessed a high fungicidal activity as well. For the first time it was shown that even sub-MIC oligochitosan concentration suppressed the formation of C. albicans hyphal structures, cause severe cell wall alterations, and altered internal cell structure. These results indicate that oligochitosan should be considered as a possible alternative/additive to known anti-yeast agents in pharmaceutical compositions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
James E. Garabedian; Robert J. McGaughey; Stephen E. Reutebuch; Bernard R. Parresol; John C. Kilgo; Christopher E. Moorman; M. Nils. Peterson
2014-01-01
Light detection and ranging (LiDAR) technology has the potential to radically alter the way researchers and managers collect data on wildlifeâhabitat relationships. To date, the technology has fostered several novel approaches to characterizing avian habitat, but has been limited by the lack of detailed LiDAR-habitat attributes relevant to species across a continuum of...
Differential effects of malignant mesothelioma cells on THP-1 monocytes and macrophages.
Izzi, Valerio; Chiurchiù, Valerio; D'Aquilio, Fabiola; Palumbo, Camilla; Tresoldi, Ilaria; Modesti, Andrea; Baldini, Patrizia M
2009-02-01
Malignant mesothelioma (MM) is a highly fatal tumor arising from inner body membranes, whose extensive growth is facilitated by its week immunogenicity and by its ability to blunt the immune response which should arise from the huge mass of leukocytes typically infiltrating this tumor. It has been reported that the inflammatory infiltrate found in MM tissues is characterized by a high prevalence of macrophages. Thus, in this work we evaluated the ability of human MM cells to modulate the inflammatory phenotype of human THP-1 monocytes and macrophages, a widely used in vitro model of monocyte/macrophage differentiation. Furthermore, we tested the hypothesis that the exposure to MM cells could alter the differentiation of THP-1 monocytes favoring the development of alternatively activated, tumor-supporting macrophages. Our data prove for the first time that MM cells can polarize monocytes towards an altered inflammatory phenotype and macrophages towards an immunosuppressive phenotype. Moreover, we demonstrate that monocytes cocultivated with MM cells 'keep a memory' of their encounter with the tumor which influences their differentiation to macrophages. On the whole, we provide evidence that MM cells exert distinct, cell-specific effects on monocytes and macrophages. The thorough characterization of such effects may be of a crucial importance for the rational design of new immunotherapeutic protocols.
Courtois, Audrey; Nusgens, Betty V; Hustinx, Roland; Namur, Gauthier; Gomez, Pierre; Somja, Joan; Defraigne, Jean-Olivier; Delvenne, Philippe; Michel, Jean-Baptiste; Colige, Alain C; Sakalihasan, Natzi
2013-10-01
Rupture of abdominal aortic aneurysms (AAAs) leads to a significant morbidity and mortality in aging populations, and its prediction would be most beneficial to public health. Spots positive for uptake of (18)F-FDG detected by PET are found in 12% of AAA patients (PET+), who are most often symptomatic and at high rupture risk. Comparing the (18)F-FDG-positive site with a negative site from the same aneurysm and with samples collected from AAA patients with no (18)F-FDG uptake should allow the discrimination of biologic alterations that would help in identifying markers predictive of rupture. Biopsies of the AAA wall were obtained from patients with no (18)F-FDG uptake (PET0, n = 10) and from PET+ patients (n = 8), both at the site positive for uptake and at a distant negative site of the aneurysmal wall. Samples were analyzed by immunohistochemistry, quantitative real-time polymerase chain reaction, and zymography. The sites of the aneurysmal wall with a positive (18)F-FDG uptake were characterized by a strikingly increased number of adventitial inflammatory cells, highly proliferative, and by a drastic reduction of smooth muscle cells (SMCs) in the media as compared with their negative counterpart and with the PET0 wall. The expression of a series of genes involved in the maintenance and remodeling of the wall was significantly modified in the negative sites of PET+, compared with the PET0 wall, suggesting a systemic alteration of the aneurysmal wall. Furthermore, a striking increase of several matrix metalloproteinases (MMPs), notably the MMP1 and MMP13 collagenases, was observed in the positive sites, mainly in the adventitia. Moreover, PET+ patients were characterized by a higher circulating C-reactive protein. Positive (18)F-FDG uptake in the aneurysmal wall is associated with an active inflammatory process characterized by a dense infiltrate of proliferating leukocytes in the adventitia and an increased circulating C-reactive protein. Moreover, a loss of SMC in the media and alterations of the expression of genes involved in the remodeling of adventitia and collagen degradation potentially participate in the weakening of the aneurysmal wall preceding rupture.
Spatial and mineralogic variation of Na-Ca alteration in Laramide porphyry systems of Arizona
NASA Astrophysics Data System (ADS)
Runyon, S.; Seedorff, E.; Barton, M. D.; Mazdab, F. K.; Lecumberri-Sanchez, P.; Steele-MacInnis, M.
2017-12-01
Na-Ca alteration is characterized by the metasomatic addition of Ca ± Na and the loss of K. Minor volumes of Na-Ca alteration in Laramide porphyry systems develops from 3 to 8 km paleodepth. Mineral assemblages, mineral compositions, hydrogen isotopes, whole-rock analyses, and reconnaissance fluid inclusion characteristics have been documented for Na-Ca alteration in Laramide porphyry systems such as Tea Cup and Sierrita. Volumetrically minor Na-Ca alteration in Laramide porphyry systems documented in this study commonly takes the form of one of three mineral assemblages: albite-epidote-chlorite, Na-plagioclase-actinolite ± epidote, and garnet- or diopside-stable Na-plagioclase-actinolite ± epidote. These different Na-Ca mineral assemblages have broad spatial relationships, from shallow albite-chlorite-epidote to deeper Na-plagioclase-actinolite within a given district. Hydrogen isotope data on Na-Ca alteration minerals shows consistently distinct δD compositions of Na-Ca alteration minerals compared to igneous minerals in a given district. Further, calculated hydrogen isotope composition of fluids in equilibrium with Na-Ca alteration minerals are consistently enriched in δD compared to magmatic-hydrothermal fluids. Whole-rock analyses show consistent losses of K and variable addition of Na and Ca across different Na-Ca alteration assemblages. Na-Ca alteration has been well documented associated with the Jurassic arc. Previous studies demonstrated through mass balance, timing and spatial relationships, isotopic, and fluid inclusion studies that Na-Ca alteration associated with the Jurassic arc likely formed from the circulation of external, highly saline, non-magmatic fluids (e.g., Battles and Barton, 1995; Dilles et al., 1995). Na-Ca alteration documented in Laramide systems is generally similar to Na-Ca alteration documented along the Jurassic arc in mineral assemblages, compositions, and timing, but the volume of Na-Ca alteration in the Laramide systems is small as compared to the voluminous Na-Ca alteration documented in systems associated with the Jurassic arc.
Functional pleiotropy and mating system evolution in plants: frequency-independent mating.
Jordan, Crispin Y; Otto, Sarah P
2012-04-01
Mutations that alter the morphology of floral displays (e.g., flower size) or plant development can change multiple functions simultaneously, such as pollen export and selfing rate. Given the effect of these various traits on fitness, pleiotropy may alter the evolution of both mating systems and floral displays, two characters with high diversity among angiosperms. The influence of viability selection on mating system evolution has not been studied theoretically. We model plant mating system evolution when a single locus simultaneously affects the selfing rate, pollen export, and viability. We assume frequency-independent mating, so our model characterizes prior selfing. Pleiotropy between increased viability and selfing rate reduces opportunities for the evolution of pure outcrossing, can favor complete selfing despite high inbreeding depression, and notably, can cause the evolution of mixed mating despite very high inbreeding depression. These results highlight the importance of pleiotropy for mating system evolution and suggest that selection by nonpollinating agents may help explain mixed mating, particularly in species with very high inbreeding depression. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Wegert, Jenny; Vokuhl, Christian; Ziegler, Barbara; Ernestus, Karen; Leuschner, Ivo; Furtwängler, Rhoikos; Graf, Norbert; Gessler, Manfred
2017-10-01
TP53 mutations have been associated with anaplasia in Wilms tumour, which conveys a high risk for relapse and fatal outcome. Nevertheless, TP53 alterations have been reported in no more than 60% of anaplastic tumours, and recent data have suggested their presence in tumours that do not fulfil the criteria for anaplasia, questioning the clinical utility of TP53 analysis. Therefore, we characterized the TP53 status in 84 fatal cases of Wilms tumour, irrespective of histological subtype. We identified TP53 alterations in at least 90% of fatal cases of anaplastic Wilms tumour, and even more when diffuse anaplasia was present, indicating a very strong if not absolute coupling between anaplasia and deregulation of p53 function. Unfortunately, TP53 mutations do not provide additional predictive value in anaplastic tumours since the same mutation rate was found in a cohort of non-fatal anaplastic tumours. When classified according to tumour stage, patients with stage I diffuse anaplastic tumours still had a high chance of survival (87%), but this rate dropped to 26% for stages II-IV. Thus, volume of anaplasia or possible spread may turn out to be critical parameters. Importantly, among non-anaplastic fatal tumours, 26% had TP53 alterations, indicating that TP53 screening may identify additional cases at risk. Several of these non-anaplastic tumours fulfilled some criteria for anaplasia, for example nuclear unrest, suggesting that such partial phenotypes should be under special scrutiny to enhance detection of high-risk tumours via TP53 screening. A major drawback is that these alterations are secondary changes that occur only later in tumour development, leading to striking intratumour heterogeneity that requires multiple biopsies and analysis guided by histological criteria. In conclusion, we found a very close correlation between histological signs of anaplasia and TP53 alterations. The latter may precede development of anaplasia and thereby provide diagnostic value pointing towards aggressive disease.
Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan; ...
2017-02-24
Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan
Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. In this work, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, inhomogeneous or nomore » alteration layers were observed, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1-10 microns) alteration layers were inhomogeneously distributed at a small portion of surfaces. More interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan
Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less
Breast tumors educate stromal tissue with individualized but coordinated proteomic signatures
Wang, Xuya; Mooradian, Arshag D.; Erdmann-Gilmore, Petra; Zhang, Qiang; Viner, Rosa; Davies, Sherri R.; Huang, Kuan-lin; Bomgarden, Ryan; Van Tine, Brian A.; Shao, Jieya; Ding, Li; Li, Shunqiang; Ellis, Matthew J.; Rogers, John C.; Townsend, R. Reid; Fenyö, David; Held, Jason M.
2017-01-01
Cancer forms specialized microenvironmental niches that promote local invasion and colonization. Engrafted patient-derived xenografts (PDXs) locally invade and colonize naïve stroma, while enabling unambiguous molecular discrimination of human proteins in the tumor from mouse proteins in the microenvironment. To characterize how patient breast tumors form a niche and educate naïve stroma, subcutaneous breast cancer PDXs were globally profiled using species-specific quantitative proteomics. Regulation of PDX stromal proteins by breast tumors was extensive, with thirty-five percent of the stromal proteome consistently altered by tumors across different animals and passages. Differentially regulated proteins in the stroma clustered into six signatures that included both known and novel contributors to tumor invasion and colonization. Stromal proteomes were coordinately regulated, though the sets of proteins altered by each tumor were highly distinct. Integrated analysis of tumor and stromal proteins, a comparison possible in xenograft models, indicated that the known hallmarks of cancer contribute pleiotropically to establishing and maintaining the tumor’s microenvironmental niche. Tumor education of the stroma is therefore an intrinsic property of breast tumors that is highly individualized, yet proceeds by consistent, non-random and defined tumor-promoting molecular alterations. PMID:28790197
Epigenetic alterations are associated with monocyte immune dysfunctions in HIV-1 infection.
Espíndola, Milena S; Soares, Luana S; Galvão-Lima, Leonardo J; Zambuzi, Fabiana A; Cacemiro, Maira C; Brauer, Verônica S; Marzocchi-Machado, Cleni M; de Souza Gomes, Matheus; Amaral, Laurence R; Martins-Filho, Olindo A; Bollela, Valdes R; Frantz, Fabiani G
2018-04-03
Monocytes are key cells in the immune dysregulation observed during human immunodeficiency virus (HIV) infection. The events that take place specifically in monocytes may contribute to the systemic immune dysfunction characterized by excessive immune activation in infected individuals, which directly correlates with pathogenesis and progression of the disease. Here, we investigated the immune dysfunction in monocytes from untreated and treated HIV + patients and associated these findings with epigenetic changes. Monocytes from HIV patients showed dysfunctional ability of phagocytosis and killing, and exhibited dysregulated cytokines and reactive oxygen species production after M. tuberculosis challenge in vitro. In addition, we showed that the expression of enzymes responsible for epigenetic changes was altered during HIV infection and was more prominent in patients that had high levels of soluble CD163 (sCD163), a newly identified plasmatic HIV progression biomarker. Among the enzymes, histone acetyltransferase 1 (HAT1) was the best epigenetic biomarker correlated with HIV - sCD163 high patients. In conclusion, we confirmed that HIV impairs effector functions of monocytes and these alterations are associated with epigenetic changes that once identified could be used as targets in therapies aiming the reduction of the systemic activation state found in HIV patients.
NASA Astrophysics Data System (ADS)
Wang, Kuyu; Wu, Jianping; Day, Robert; Kirk, Thomas Brett; Hu, Xiaozhi
2016-09-01
Utilizing a laser scanning confocal microscope system, the refractive indices of articular cartilage (AC) with mechanical or biochemical degenerations were characterized to investigate whether potential correlations exist between refractive index (RI) and cartilage degeneration. The cartilage samples collected from the medial femoral condyles of kangaroo knees were mechanically degenerated under different loading patterns or digested in trypsin solution with different concentrations. The sequences of RI were then measured from cartilage surface to deep region and the fluctuations of RI were quantified considering combined effects of fluctuating frequency and amplitude. The compositional and microstructural alterations of cartilage samples were assessed with histological methods. Along with the loss of proteoglycans, the average RI of cartilage increased and the local fluctuation of RI became stronger. Short-term high-speed test induced little influence to both the depth fluctuation and overall level of RI. Long-term low-speed test increased the fluctuation of RI but the average RI was barely changed. The results substantially demonstrate that RI of AC varies with both compositional and structural alterations and is potentially an indicator for the degeneration of AC.
Metabolic profiles are principally different between cancers of the liver, pancreas and breast.
Budhu, Anuradha; Terunuma, Atsushi; Zhang, Geng; Hussain, S Perwez; Ambs, Stefan; Wang, Xin Wei
2014-01-01
Molecular profiling of primary tumors may facilitate the classification of patients with cancer into more homogenous biological groups to aid clinical management. Metabolomic profiling has been shown to be a powerful tool in characterizing the biological mechanisms underlying a disease but has not been evaluated for its ability to classify cancers by their tissue of origin. Thus, we assessed metabolomic profiling as a novel tool for multiclass cancer characterization. Global metabolic profiling was employed to identify metabolites in paired tumor and non-tumor liver (n=60), breast (n=130) and pancreatic (n=76) tissue specimens. Unsupervised principal component analysis showed that metabolites are principally unique to each tissue and cancer type. Such a difference can also be observed even among early stage cancers, suggesting a significant and unique alteration of global metabolic pathways associated with each cancer type. Our global high-throughput metabolomic profiling study shows that specific biochemical alterations distinguish liver, pancreatic and breast cancer and could be applied as cancer classification tools to differentiate tumors based on tissue of origin.
Yuill, Kathryn H; Al Kury, Lina T; Howarth, Frank Christopher
2015-01-01
Cardiovascular complications are common in patients with Diabetes mellitus (DM). In addition to changes in cardiac muscle inotropy, electrical abnormalities are also commonly observed in these patients. We have previously shown that spontaneous cellular electrical activity is altered in atrioventricular nodal (AVN) myocytes, isolated from the streptozotocin (STZ) rat model of type-1 DM. In this study, utilizing the same model, we have characterized the changes in L-type calcium channel activity in single AVN myocytes. Ionic currents were recorded from AVN myocytes isolated from the hearts of control rats and from those with STZ-induced diabetes. Patch-clamp recordings were used to assess the changes in cellular electrical activity in individual myocytes. Type-1 DM significantly altered the cellular characteristics of L-type calcium current. A reduction in peak ICaL density was observed, with no corresponding changes in the activation parameters of the current. L-type calcium channel current also exhibited faster time-dependent inactivation in AVN myocytes from diabetic rats. A negative shift in the voltage dependence of inactivation was also evident, and a slowing of restitution parameters. These findings demonstrate that experimentally induced type-1 DM significantly alters AVN L-type calcium channel cellular electrophysiology. These changes in ion channel activity may contribute to the abnormalities in cardiac electrical function that are associated with high mortality levels in patients with DM. PMID:26603460
Language Ability Predicts Cortical Structure and Covariance in Boys with Autism Spectrum Disorder.
Sharda, Megha; Foster, Nicholas E V; Tryfon, Ana; Doyle-Thomas, Krissy A R; Ouimet, Tia; Anagnostou, Evdokia; Evans, Alan C; Zwaigenbaum, Lonnie; Lerch, Jason P; Lewis, John D; Hyde, Krista L
2017-03-01
There is significant clinical heterogeneity in language and communication abilities of individuals with Autism Spectrum Disorders (ASD). However, no consistent pathology regarding the relationship of these abilities to brain structure has emerged. Recent developments in anatomical correlation-based approaches to map structural covariance networks (SCNs), combined with detailed behavioral characterization, offer an alternative for studying these relationships. In this study, such an approach was used to study the integrity of SCNs of cortical thickness and surface area associated with language and communication, in 46 high-functioning, school-age children with ASD compared with 50 matched, typically developing controls (all males) with IQ > 75. Findings showed that there was alteration of cortical structure and disruption of fronto-temporal cortical covariance in ASD compared with controls. Furthermore, in an analysis of a subset of ASD participants, alterations in both cortical structure and covariance were modulated by structural language ability of the participants, but not communicative function. These findings indicate that structural language abilities are related to altered fronto-temporal cortical covariance in ASD, much more than symptom severity or cognitive ability. They also support the importance of better characterizing ASD samples while studying brain structure and for better understanding individual differences in language and communication abilities in ASD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Resting State Brain Entropy Alterations in Relapsing Remitting Multiple Sclerosis.
Zhou, Fuqing; Zhuang, Ying; Gong, Honghan; Zhan, Jie; Grossman, Murray; Wang, Ze
2016-01-01
Brain entropy (BEN) mapping provides a novel approach to characterize brain temporal dynamics, a key feature of human brain. Using resting state functional magnetic resonance imaging (rsfMRI), reliable and spatially distributed BEN patterns have been identified in normal brain, suggesting a potential use in clinical populations since temporal brain dynamics and entropy may be altered in disease conditions. The purpose of this study was to characterize BEN in multiple sclerosis (MS), a neurodegenerative disease that affects millions of people. Since currently there is no cure for MS, developing treatment or medication that can slow down its progression represents a high research priority, for which validating a brain marker sensitive to disease and the related functional impairments is essential. Because MS can start long time before any measurable symptoms and structural deficits, assessing the dynamic brain activity and correspondingly BEN may provide a critical way to study MS and its progression. Because BEN is new to MS, we aimed to assess BEN alterations in the relapsing-remitting MS (RRMS) patients using a patient versus control design, to examine the correlation of BEN to clinical measurements, and to check the correlation of BEN to structural brain measures which have been more often used in MS studies. As compared to controls, RRMS patients showed increased BEN in motor areas, executive control area, spatial coordinating area, and memory system. Increased BEN was related to greater disease severity as measured by the expanded disability status scale (EDSS) and greater tissue damage as indicated by the mean diffusivity. Patients also showed decreased BEN in other places, which was associated with less disability or fatigue, indicating a disease-related BEN re-distribution. Our results suggest BEN as a novel and useful tool for characterizing RRMS.
Fitian, Asem I; Nelson, David R; Liu, Chen; Xu, Yiling; Ararat, Miguel; Cabrera, Roniel
2014-10-01
The metabolic pathway disturbances associated with hepatocellular carcinoma (HCC) remain unsatisfactorily characterized. Determination of the metabolic alterations associated with the presence of HCC can improve our understanding of the pathophysiology of this cancer and may provide opportunities for improved disease monitoring of patients at risk for HCC development. To characterize the global metabolic alterations associated with HCC arising from hepatitis C (HCV)-associated cirrhosis using an integrated non-targeted metabolomics methodology employing both gas chromatography/mass spectrometry (GC/MS) and ultrahigh-performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC/MS-MS). The global serum metabolomes of 30 HCC patients, 27 hepatitis C cirrhosis disease controls and 30 healthy volunteers were characterized using a metabolomics approach that combined two metabolomics platforms, GC/MS and UPLC/MS-MS. Random forest, multivariate statistics and receiver operator characteristic analysis were performed to identify the most significantly altered metabolites in HCC patients vs. HCV-cirrhosis controls and which therefore exhibited a close association with the presence of HCC. Elevated 12-hydroxyeicosatetraenoic acid (12-HETE), 15-HETE, sphingosine, γ-glutamyl oxidative stress-associated metabolites, xanthine, amino acids serine, glycine and aspartate, and acylcarnitines were strongly associated with the presence of HCC. Elevations in bile acids and dicarboxylic acids were highly correlated with cirrhosis. Integrated metabolomic profiling through GC/MS and UPLC/MS-MS identified global metabolic disturbances in HCC and HCV-cirrhosis. Aberrant amino acid biosynthesis, cell turnover regulation, reactive oxygen species neutralization and eicosanoid pathways may be hallmarks of HCC. Aberrant dicarboxylic acid metabolism, enhanced bile acid metabolism and elevations in fibrinogen cleavage peptides may be signatures of cirrhosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Recent advances in next-generation sequencing technology have enabled the unprecedented characterization of a full spectrum of somatic alterations in cancer genomes. Given the large numbers of somatic mutations typically detected by this approach, a key challenge in the downstream analysis is to distinguish “drivers” that functionally contribute to tumorigenesis from “passengers” that occur as the consequence of genomic instability.
Fundamental Characterization of Spanwise Loading and Trailed Wake Vortices
2016-07-01
the close interaction of the tip vortex with a following blade . Such vortex interactions are fundamental determinants of rotor performance, loads, and...wing loading distribution differs from a typical loading on a hovering rotor blade in that the maximum bound circulation occurs at the blade root...and not close to the tip; this is similar to a very highly twisted rotor blade , like a tilt-rotor, in hover. The wing-vortex interaction alters the
Gesquiere, Laurence R.; Onyango, Patrick O.; Alberts, Susan C.; Altmann, Jeanne
2010-01-01
In conditions characterized by energetic constraints, such as in periods of low food availability, some trade-offs between reproduction and self-maintenance may be necessary; even year-round breeders may then be forced to exhibit some reproductive seasonality. Prior research has largely focused on female reproduction and physiology, and few studies have evaluated the impact of environmental factors on males. Here we assessed the effects of season and ambient temperatures on fecal glucocorticoid (fGC) and testosterone (fT) levels in male baboons in Amboseli, Kenya. The Amboseli basin is a highly challenging, semi-arid tropical habitat that is characterized by strongly seasonal patterns of rainfall and by high ambient temperatures. We previously reported that female baboons were impacted by these challenging environmental conditions. We ask here whether male baboons in the same environment and groups as females exhibit similar physiological effects. We found that after accounting for male age and individual variability, males exhibited higher fGC levels and lower fT levels during the dry season than during the wet season. Furthermore, fT but not fGC levels were lower in months of high average daily maximum temperatures, suggesting a direct impact of heat on testes. Our results demonstrate that male baboons, like females, experience ecological stress that alters their reproductive physiology. The impact of the environment on male reproduction deserves more attention both in its own right and because alteration in male physiology may contribute to the reduction in female fertility observed in challenging environments. PMID:20721938
Morphology and texture of particles along the Spirit rover traverse from sol 450 to sol 745
NASA Astrophysics Data System (ADS)
Yingst, R. A.; Crumpler, L.; Farrand, W. H.; Li, R.; Cabrol, N. A.; Neakrase, L. D.
2008-12-01
We quantified and classified the shape, roundness, size, and texture of 935 loose surface particles along the Spirit rover traverse from sols 450-745 to assess origin, transport, and other alteration mechanisms that altered particles during and after formation. Variation in particle morphologic parameters along traverse is consistent with crossing mapped geologic unit boundaries. Texture is divided into four types: vesicular, smooth and flat-faceted, rough and flat-faceted, and very rough. Sphericity and roundness are intermediate and low, respectively, comparable to particles moved by high-energy transport or to crushed particles. This indicates intermittent, high-energy emplacement or modification of a single lithology, rather than systematic, continuous low-energy abrasion or wear over time. Comparison with particle morphology at other Mars landing sites is consistent with the hypothesis that no secondary systematic transport or wide-scale chemical alteration was active at a significant enough level to alter macromorphology. In particular, particle morphology at the Mars Pathfinder site shows stronger evidence of abrasion than along the Spirit traverse, suggesting Mars Pathfinder particles have undergone abrasion processes that particles in this study area have not. Additionally, morphology indices have correlation coefficients near zero, indicating that a fluvial transport mechanism is likely not responsible for morphology. Morphology and texture are instead related to origin and composition rather than subsequent modification. Morphology and texture support a volcanic origin, possibly without modification, but most likely altered primarily by ballistic impact, implying that the Spirit landing site and traverse may be utilized in the future as a standard site for characterization of impact-derived morphology.
Stockwell, B R; Haggarty, S J; Schreiber, S L
1999-02-01
Fully adapting a forward genetic approach to mammalian systems requires efficient methods to alter systematically gene products without prior knowledge of gene sequences, while allowing for the subsequent characterization of these alterations. Ideally, these methods would also allow function to be altered in a temporally controlled manner. We report the development of a miniaturized cell-based assay format that enables a genetic-like approach to understanding cellular pathways in mammalian systems using small molecules, rather than mutations, as the source of gene-product alterations. This whole-cell immunodetection assay can sensitively detect changes in specific cellular macromolecules in high-density arrays of mammalian cells. Furthermore, it is compatible with screening large numbers of small molecules in nanoliter to microliter culture volumes. We refer to this assay format as a 'cytoblot', and demonstrate the use of cytoblotting to monitor biosynthetic processes such as DNA synthesis, and post-translational processes such as acetylation and phosphorylation. Finally, we demonstrate the applicability of these assays to natural-product screening through the identification of marine sponge extracts exhibiting genotype-specific inhibition of 5-bromodeoxyuridine incorporation and suppression of the anti-proliferative effect of rapamycin. We show that cytoblots can be used for high-throughput screening of small molecules in cell-based assays. Together with small-molecule libraries, the cytoblot assay can be used to perform chemical genetic screens analogous to those used in classical genetics and thus should be applicable to understanding a wide variety of cellular processes, especially those involving post-transitional modifications.
Ferreira-Santos, Fernando; Almeida, Pedro R.; Barbosa, Fernando; Marques-Teixeira, João; Marsh, Abigail A.
2015-01-01
Research suggests psychopathy is associated with structural brain alterations that may contribute to the affective and interpersonal deficits frequently observed in individuals with high psychopathic traits. However, the regional alterations related to different components of psychopathy are still unclear. We used voxel-based morphometry to characterize the structural correlates of psychopathy in a sample of 35 healthy adults assessed with the Triarchic Psychopathy Measure. Furthermore, we examined the regional grey matter alterations associated with the components described by the triarchic model. Our results showed that, after accounting for variation in total intracranial volume, age and IQ, overall psychopathy was negatively associated with grey matter volume in the left putamen and amygdala. Additional regression analysis with anatomical regions of interests revealed total triPM score was also associated with increased lateral orbitofrontal cortex (OFC) and caudate volume. Boldness was positively associated with volume in the right insula. Meanness was positively associated with lateral OFC and striatum volume, and negatively associated with amygdala volume. Finally, disinhibition was negatively associated with amygdala volume. Results highlight the contribution of both subcortical and cortical brain alterations for subclinical psychopathy and are discussed in light of prior research and theoretical accounts about the neurobiological bases of psychopathic traits. PMID:25971600
NASA Astrophysics Data System (ADS)
Kent, T.
2011-12-01
The goal of this study is to constrain the most recent thermal alteration of two drill cores (HSB2/HSB4) from the Island of Akutan in the Aleutian Islands of Alaska. These cores are characterized by identifying mineralogy using x-ray diffraction spectra, energy dispersive spectroscopy with a scanning electron microscope and optical mineralogy. This is then compared with the coincident thermal data gathered on site in order to help constrain the most recent thermal activity of this dynamic resource. Using multiple temperature diagnostic minerals and their paragenesis, a relative thermal history is produced of expansive propylitic alteration. When combined with the wireline temperature gradients of the cores a model of downward migration emerges. Shallow occurrences of high temperature minerals that lie above the boiling point to depth curve indicate higher hydrostatic pressures in the past which can be attributed to a combination of glacial effects, including a significant amount of glacial erosion that is recognized due to a lack of significant clay cap to the geothermal resource.
Deconvoluting complex structural histories archived in brittle fault zones
NASA Astrophysics Data System (ADS)
Viola, G.; Scheiber, T.; Fredin, O.; Zwingmann, H.; Margreth, A.; Knies, J.
2016-11-01
Brittle deformation can saturate the Earth's crust with faults and fractures in an apparently chaotic fashion. The details of brittle deformational histories and implications on, for example, seismotectonics and landscape, can thus be difficult to untangle. Fortunately, brittle faults archive subtle details of the stress and physical/chemical conditions at the time of initial strain localization and eventual subsequent slip(s). Hence, reading those archives offers the possibility to deconvolute protracted brittle deformation. Here we report K-Ar isotopic dating of synkinematic/authigenic illite coupled with structural analysis to illustrate an innovative approach to the high-resolution deconvolution of brittle faulting and fluid-driven alteration of a reactivated fault in western Norway. Permian extension preceded coaxial reactivation in the Jurassic and Early Cretaceous fluid-related alteration with pervasive clay authigenesis. This approach represents important progress towards time-constrained structural models, where illite characterization and K-Ar analysis are a fundamental tool to date faulting and alteration in crystalline rocks.
2013-01-01
Background Triglyceride deposit cardiomyovasculopathy (TGCV) is a rare disease, characterized by the massive accumulation of triglyceride (TG) in multiple tissues, especially skeletal muscle, heart muscle and the coronary artery. TGCV is caused by mutation of adipose triglyceride lipase, which is an essential molecule for the hydrolysis of TG. TGCV is at high risk for skeletal myopathy and heart dysfunction, and therefore premature death. Development of therapeutic methods for TGCV is highly desirable. This study aims to discover specific molecules responsible for TGCV pathogenesis. Methods To identify differentially expressed proteins in TGCV patient cells, the stable isotope labeling with amino acids in cell culture (SILAC) method coupled with LC-MS/MS was performed using skin fibroblast cells derived from two TGCV patients and three healthy volunteers. Altered protein expression in TGCV cells was confirmed using the selected reaction monitoring (SRM) method. Microarray-based transcriptome analysis was simultaneously performed to identify changes in gene expression in TGCV cells. Results Using SILAC proteomics, 4033 proteins were quantified, 53 of which showed significantly altered expression in both TGCV patient cells. Twenty altered proteins were chosen and confirmed using SRM. SRM analysis successfully quantified 14 proteins, 13 of which showed the same trend as SILAC proteomics. The altered protein expression data set was used in Ingenuity Pathway Analysis (IPA), and significant networks were identified. Several of these proteins have been previously implicated in lipid metabolism, while others represent new therapeutic targets or markers for TGCV. Microarray analysis quantified 20743 transcripts, and 252 genes showed significantly altered expression in both TGCV patient cells. Ten altered genes were chosen, 9 of which were successfully confirmed using quantitative RT-PCR. Biological networks of altered genes were analyzed using an IPA search. Conclusions We performed the SILAC- and SRM-based identification-through-confirmation study using skin fibroblast cells derived from TGCV patients, and first identified altered proteins specific for TGCV. Microarray analysis also identified changes in gene expression. The functional networks of the altered proteins and genes are discussed. Our findings will be exploited to elucidate the pathogenesis of TGCV and discover clinically relevant molecules for TGCV in the near future. PMID:24360150
Characterization of seepage in the exploratory studies facility, Yucca Mountain, Nevada
Oliver, T.A.; Whelan, J.F.
2006-01-01
Following a 5-month period of above-average precipitation during the winter of 2004-2005, water was observed seeping into the South Ramp section of the Exploratory Studies Facility of the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada. Samples of the seepage were collected and analyzed for major ions, trace metals, and delta deuterium and delta oxygen-18 values in an effort to characterize the water and assess the interaction of seepage with anthropogenic materials used in the construction of the proposed repository. As demonstrated by the changes in the chemistry of water dripping from a rock bolt, interaction of seepage with construction materials can alter solution chemistry and oxidation state.
Xiong, Shenglin; Xi, Baojuan; Wang, Weizhi; Zhou, Hongyang; Zhang, Shuyuan; Qian, Yitai
2007-12-01
Silica-coated ZnSe nanowires with well-controlled the thickness of sheath in the range of 10-60 nm have been synthesized through a simple sol-gel process. The thickness of silica coating could be controlled through altering reaction parameters such as volume ratio of TEOS and ammonia. XRD, high-resolution TEM, X-ray photoelectron spectroscopy (XPS), Raman spectra, thermogravimetric analysis (TGA), and photoluminescence (PL) spectra were used to characterize the core/sheath nanostructures. Room-temperature PL measurements indicate these silica-coated ZnSe nanowires remarkably improve the PL intensity. Meanwhile, the thermal stability has been enhanced greatly, which is useful for their potential applications in advanced semiconductor devices.
NASA Astrophysics Data System (ADS)
Levin, Barnaby
The transmission electron microscope (TEM) is a powerful tool for characterizing the nanoscale and atomic structure of materials, offering insights into their fundamental physical properties. However, TEM characterization requires very thin samples of material to be placed in a high vacuum environment, and exposed to electron radiation. The high vacuum will induce some materials to evaporate or sublimate, preventing them from being accurately characterized, radiation may damage the sample, causing mass loss, or altering its structure, and structurally delicate samples may collapse and break apart when they are thinned for TEM imaging. This dissertation discusses three different projects in which each of these three difficulties pose challenges to TEM characterization of samples. Firstly, we outline strategies for minimizing radiation damage when characterizing materials in TEM at atomic resolution. We consider types of radiation damage, such as vacancy enhanced displacement, that are not included in some previous discussions of beam damage, and we consider how to minimize damage when using new imaging techniques such as annular bright-field scanning TEM. Our methodology emphasizes the general principle that variation of both signal strength and damage cross section must be considered when choosing an experimental electron beam voltage to minimize damage. Secondly, we consider samples containing sulfur, which is prone to sublimation in high vacuum. TEM is routinely used to attempt to characterize the sulfur distribution in lithium-sulfur battery electrodes, but sublimation artifacts can give misleading results. We demonstrate that sulfur sublimation can be suppressed by using cryogenic TEM to characterize sulfur at very low temperatures, or by using the recently developed airSEM to characterize sulfur without exposing it to vacuum. Finally, we discuss the characterization of aging cadmium yellow paint from early 20th century art masterpieces. The binding medium holding paint particles together bends and curls as sample thickness is reduced to 100 nm, making high resolution characterization challenging. We acquire lattice resolution images of the pigment particles through the binder using high voltage zero-loss energy filtered TEM, allowing us to measure the pigment particle size and determine the pigment crystal structure, providing insight into why the paint is aging and how it was synthesized.
John, David A.; Rytuba, James J.; Ashley, Roger P.; Blakely, Richard J.; Vallance, James W.; Newport, Grant R.; Heinemeyer, Gary R.
2003-01-01
The Cenozoic Cascades arcs of southwestern Washington are the product of long-lived, but discontinuous, magmatism beginning in the Eocene and continuing to the present (for example, Christiansen and Yeats, 1992). This magmatism is the result of subduction of oceanic crust beneath the North American continent. The magmatic rocks are divided into two subparallel, north-trending continental-margin arcs, the Eocene to Pliocene Western Cascades, and the Quaternary High Cascades, which overlies, and is east of, the Western Cascades. Both arcs are calc-alkaline and are characterized by voluminous mafic lava flows (mostly basalt to basaltic andesite compositions) and scattered large stratovolcanoes of mafic andesite to dacite compositions. Silicic volcanism is relatively uncommon. Quartz diorite to granite plutons are exposed in more deeply eroded parts of the Western Cascades Arc (for example, Mount Rainier area and just north of Mt. St. Helens). Hydrothermal alteration is widespread in both Tertiary and Quaternary igneous rocks of the Cascades arcs. Most alteration in the Tertiary Western Cascades Arc resulted from hydrothermal systems associated with small plutons, some of which formed porphyry copper and related deposits, including copper-rich breccia pipes, polymetallic veins, and epithermal gold-silver deposits. Hydrothermal alteration also is present on many Quaternary stratovolcanoes of the High Cascades Arc. On some High Cascades volcanoes, this alteration resulted in severely weakened volcanic edifices that were susceptible to failure and catastrophic landslides. Most notable is the sector collapse of the northeast side of Mount Rainier that occurred about 5,600 yr. B.P. This collapse resulted in formation of the clay-rich Osceola Mudflow that traveled 120 km down valley from Mount Rainier to Puget Sound covering more than 200 km2. This field trip examines several styles and features of hydrothermal alteration related to Cenozoic magmatism in the Cascades arcs. The morning of the trip will examine the White River altered area, which includes high-level alteration related to a large, early Miocene magmatic-hydrothermal system exposed about 10 km east of Enumclaw, Washington. Here, vuggy silica alteration is being quarried for silica and advanced argillic alteration has been prospected for alunite. Clay-filled fractures and sulfide-rich, fine-grained sedimentary rocks of hydrothermal origin locally are enriched in precious metals. Many hydrothermal features common in high-sulfidation gold-silver deposits and in advanced argillic alteration zones overlying porphyry copper deposits (for example, Gustafson and Hunt, 1975; Hedenquist and others, 2000; Sillitoe, 2000) are exposed, although no economic base or precious metal mineralized rock has been discovered to date. The afternoon will be spent examining two exposures of the Osceola Mudflow along the White River. The Osceola Mudflow contains abundant clasts of altered Quaternary rocks from Mount Rainier that show various types of hydrothermal alteration and hydrothermal features. The mudflow matrix contains abundant hydrothermal clay minerals that added cohesiveness to the debris flow and helped allow it to travel much farther down valley than other, noncohesive debris flows from Mount Rainier (Crandell, 1971; Vallance and Scott, 1997). The White River altered area is the subject of ongoing studies by geoscientists from Weyerhaeuser Company and the U.S. Geological Survey (USGS). The generalized descriptions of the geology, geophysics, alteration, and mineralization presented here represent the preliminary results of this study (Ashley and others, 2003). Additional field, geochemical, geochronologic, and geophysical studies are underway. The Osceola Mudflow and other Holocene debris flows from Mount Rainier also are the subject of ongoing studies by the USGS (for example, Breit and others, 2003; John and others, 2003; Plumlee and others, 2003, Sisson and others, 2003; Vallance and others, 2003). Studies of hydrothermal alteration in the Osceola Mudflow are being used to better understand fossil hydrothermal systems on Mount Rainier and potential hazards associated with this alteration.
Bove, D.J.; Eberl, D.D.; McCarty, D.K.; Meeker, G.P.
2002-01-01
Mean thickness measurements and crystal-thickness distributions (CTDs) of illite particles vary systematically with changes in hydrothermal alteration type, fracture density, and attendant mineralization in a large acid-sulfate/Mo-porphyry hydrothermal system at Red Mountain, near Lake City, Colorado. The hydrothermal illites characterize an extensive zone of quartz-sericite-pyrite alteration beneath two deeply rooted bodies of magmatic-related, quartz-alunite altered rock. Nineteen illites from a 3000 ft vertical drill hole were analyzed by XRD using the PVP-10 intercalation method and the computer program MudMaster (Bertaut-Warren-Averbach technique). Mean crystallite thicknesses, as determined from 001 reflections, range from 5-7 nanometers (nm) at depths from 0-1700 ft, then sharply increase to 10-16 nm at depths between 1800-2100 ft, and decrease again to 4-5 nm below this level. The interval of largest particle thickness correlates strongly with the zone of most intense quartz-sericite-pyrite alteration (QSP) and attendant high-density stockwork fracturing, and with the highest concentrations of Mo within the drill core. CTD shapes for the illite particles fall into two main categories: asymptotic and lognormal. The shapes of the CTDs are dependent on conditions of illite formation. The asymptotic CTDs correspond to a nucleation and growth mechanism, whereas surface-controlled growth was the dominant mechanism for the lognormal CTDs. Lognormal CTDs coincide with major through-going fractures or stockwork zones, whereas asymptotic CTDs are present in wallrock distal to these intense fracture zones. The increase in illite particle size and the associated zone of intense QSP alteration and stockwork veining was related by proximity to the dacitic magma(s), which supplied both reactants and heat to the hydrothermal system. However, no changes in illite polytype, which in other studies reflect temperature transitions, were observed within this interval.
Monteiro, Lena V.S.; Xavier, R.P.; Carvalho, E.R.; Hitzman, M.W.; Johnson, C.A.; Souza, Filho C.R.; Torresi, I.
2008-01-01
The Sossego iron oxide–copper–gold deposit (245 Mt @ 1.1% Cu, 0.28 g/t Au) in the Carajás Mineral Province of Brazil consists of two major groups of orebodies (Pista–Sequeirinho–Baiano and Sossego–Curral) with distinct alteration assemblages that are separated from each other by a major high angle fault. The deposit is located along a regional WNW–ESE-striking shear zone that defines the contact between metavolcano–sedimentary units of the ∼2.76 Ga Itacaiúnas Supergroup and tonalitic to trondhjemitic gneisses and migmatites of the ∼2.8 Ga Xingu Complex. The deposit is hosted by granite, granophyric granite, gabbro, and felsic metavolcanic rocks. The Pista–Sequeirinho–Baiano orebodies have undergone regional sodic (albite–hematite) alteration and later sodic–calcic (actinolite-rich) alteration associated with the formation of massive magnetite–(apatite) bodies. Both these alteration assemblages display ductile to ductile–brittle fabrics. They are cut by spatially restricted zones of potassic (biotite and potassium feldspar) alteration that grades outward to chlorite-rich assemblages. The Sossego–Curral orebodies contain weakly developed early albitic alteration and very poorly developed subsequent calcic–sodic alteration. These orebodies contain well-developed potassic alteration assemblages that were formed during brittle deformation that resulted in the formation of breccia bodies. Breccia matrix commonly displays coarse mineral infill suggestive of growth into open space. Sulfides in both groups of deposits were precipitated first with potassic alteration and more importantly with a later assemblage of calcite–quartz–epidote–chlorite. In the Sequeirinho orebodies, sulfides range from undeformed to deformed; sulfides in the Sossego–Curral orebodies are undeformed. Very late, weakly mineralized hydrolytic alteration is present in the Sossego/Currral orebodies. The sulfide assemblage is dominated by chalcopyrite with subsidiary siegenite, and millerite. Pyrrhotite and pyrite are minor constituents of ore in the Sequerinho orebodies while pyrite is relatively abundant in the Sossego–Curral bodies. Oxygen isotope partitioning between mineral pairs constrains temperatures in the deposit spatially and through time. In the Sequeirinho orebody, the early sodic–calcic alteration stage was characterized by temperatures exceeding 500°C and δ18OH2O values for the alteration fluid of 6.9 ± 0.9‰. Temperature declines outward and upward from the zone of most intense alteration. Paragenetically later copper–gold mineralization displays markedly lower temperatures (<300°C) and was characterized by the introduction of 18O-depleted hydrothermal fluids −1.8 ± 3.4‰. The calculated δDH2O and δ18OH2O values suggest that the fluids that formed the early calcic–sodic alteration assemblage were of formational/metamorphic or magmatic origin. The decrease of δ18OH2O values through time may reflect influx of surficially derived waters during later alteration and mineralization events. Influx of such fluids could be related to episodic fluid overpressure, resulting in dilution and cooling of the metalliferous fluid, causing deposition of metals transported as metal chloride complexes.
Moudra, Alena; Hubackova, Sona; Machalova, Veronika; Vancurova, Marketa; Bartek, Jiri; Reinis, Milan; Hodny, Zdenek; Jonasova, Anna
2016-01-01
ABSTRACT Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal stem cell disorders characterized by ineffective hematopoiesis frequently progressing into acute myeloid leukemia (AML), with emerging evidence implicating aberrant bone marrow (BM) microenvironment and inflammation-related changes. 5-azacytidine (5-AC) represents standard MDS treatment. Besides inhibiting DNA/RNA methylation, 5-AC has been shown to induce DNA damage and apoptosis in vitro. To provide insights into in vivo effects, we assessed the proinflammatory cytokines alterations during MDS progression, cytokine changes after 5-AC, and contribution of inflammatory comorbidities to the cytokine changes in MDS patients. We found that IL8, IP10/CXCL10, MCP1/CCL2 and IL27 were significantly elevated and IL12p70 decreased in BM of MDS low-risk, high-risk and AML patients compared to healthy donors. Repeated sampling of the high-risk MDS patients undergoing 5-AC therapy revealed that the levels of IL8, IL27 and MCP1 in BM plasma were progressively increasing in agreement with in vitro experiments using several cancer cell lines. Moreover, the presence of inflammatory diseases correlated with higher levels of IL8 and MCP1 in low-risk but not in high-risk MDS. Overall, all forms of MDS feature a deregulated proinflammatory cytokine landscape in the BM and such alterations are further augmented by therapy of MDS patients with 5-AC. PMID:27853634
Meteorite-asteroid spectral comparison - The effects of comminution, melting, and recrystallization
NASA Technical Reports Server (NTRS)
Clark, Beth E.; Fanale, Fraser P.; Salisbury, John W.
1992-01-01
The present laboratory simulation of possible spectral-alteration effects on the optical surface of ordinary chondrite parent bodies duplicated regolith processes through comminution of the samples to finer rain sizes. After reflectance spectra characterization, the comminuted samples were melted, crystallized, recomminuted, and again characterized. While individual spectral characteristics could be significantly changed by these processes, no combination of the alteration procedures appeared capable of affecting all relevant parameters in a way that improved the match between chondritic meteorites and S-class asteroids.
Castro, Jorge E; Diessler, Shanaz; Varea, Emilio; Márquez, Cristina; Larsen, Marianne H; Cordero, M Isabel; Sandi, Carmen
2012-08-01
Emerging evidence indicates that certain behavioral traits, such as anxiety, are associated with the development of depression-like behaviors after exposure to chronic stress. However, single traits do not explain the wide variability in vulnerability to stress observed in outbred populations. We hypothesized that a combination of behavioral traits might provide a better characterization of an individual's vulnerability to prolonged stress. Here, we sought to determine whether the characterization of relevant behavioral traits in rats could aid in identifying individuals with different vulnerabilities to developing stress-induced depression-like behavioral alterations. We also investigated whether behavioral traits would be related to the development of alterations in the hypothalamic-pituitary-adrenal axis and in brain activity - as measured through phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2)--in response to an acute stressor following either sub-chronic (2 weeks) or chronic (4 weeks) unpredictable stress (CUS). Sprague-Dawley rats were characterized using a battery of behavioral tasks, and three principal traits were identified: anxiety, exploration and activity. When combined, the first two traits were found to explain the variability in the stress responses. Our findings confirm the increased risk of animals with high anxiety developing certain depression-like behaviors (e.g., increased floating time in the forced swim test) when progressively exposed to stress. In contrast, the behavioral profile based on combined low anxiety and low exploration was resistant to alterations related to social behaviors, while the high anxiety and low exploration profile displayed a particularly vulnerable pattern of physiological and neurobiological responses after sub-chronic stress exposure. Our findings indicate important differences in animals' vulnerability and/or resilience to the effects of repeated stress, particularly during initial or intermediate levels of stress exposure, and they highlight that the behavioral inhibition profile of an animal provides a particular susceptibility to responding in a deleterious manner to stress. Copyright © 2011 Elsevier Ltd. All rights reserved.
Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway
Wang, Jiwei; Qi, Qichao; Feng, Zichao; Zhang, Xin; Huang, Bin; Chen, Anjing; Prestegarden, Lars; Li, Xingang; Wang, Jian
2016-01-01
There is an urgent need for new therapeutic strategies for patients with glioblastoma multiforme (GBM). Previous studies have shown that berberine (BBR), a natural plant alkaloid, has potent anti-tumor activity. However, the mechanisms leading to cancer cell death have not been clearly elucidated. In this study, we show that BBR has profound effects on the metabolic state of GBM cells, leading to high autophagy flux and impaired glycolytic capacity. Functionally, these alterations reduce the invasive properties, proliferative potential and induce apoptotic cell death. The molecular alterations preceding these changes are characterized by inhibition of the AMPK/mTOR/ULK1 pathway. Finally, we demonstrate that BBR significantly reduces tumor growth in vivo, demonstrating the potential clinical benefits for autophagy modulating plant alkaloids in cancer therapy. PMID:27557493
Using cancer cell-line profiling, we established an ongoing resource to identify, as comprehensively as possible, the drug-targetable dependencies that specific genomic alterations impart on human cancers. We measured the sensitivity of hundreds of genetically characterized cancer cell lines to hundreds of small-molecule probes and drugs that have highly selective interactions with their targets, and that collectively modulate many distinct nodes in cancer cell circuitry.
Recent advances in next-generation sequencing technology have enabled the unprecedented characterization of a full spectrum of somatic alterations in cancer genomes. Given the large numbers of somatic mutations typically detected by this approach, a key challenge in the downstream analysis is to distinguish “drivers” that functionally contribute to tumorigenesis from “passengers” that occur as the consequence of genomic instability.
2.9-1.9 Ga paleoalterations of Archean granitic basement of the Franceville basin (Gabon)
NASA Astrophysics Data System (ADS)
Mouélé, Idalina Moubiya; Dudoignon, Patrick; El Albani, Abderrazak; Meunier, Alain; Boulvais, Philippe; Gauthier-Lafaye, François; Paquette, Jean-Louis; Martin, Hervé; Cuney, Michel
2014-09-01
The Archean granitoids in the Kiéné area, Gabon, are overlained by the Paleoproterozoic sediments of the Franceville basin (2.1 Ga). The basin is known for its high-grade uranium deposits among which some have been forming natural nuclear fission reactors. Most of the studies were dedicated to the FA-FB Paleoproterozoic sediments hosting these uranium deposits. Little is known on the Archean basement itself and specifically on the hydrous alteration events it experienced before and after the sediment deposition. The present work is focused on their petrographical, mineralogical and geochemical characterization. Dating the successive alteration events has been attempted on altered monazite crystals. Rocks in different alteration states have been sampled from eight drill cores crosscutting the Archean - Paleoproterozoic unconformity. The Archean granitoids observed in the deepest levels exhibit typical petrographical features of a propylitic alteration while they are intensely illitized up to the unconformity. The propylitic alteration is mainly pervasive but the original texture of the granitoïds is conserved in spite of the formation of new minerals: Mg-chlorite, allanite and epidote forming a typical paragenesis. The illitic alteration is much more invasive near the unconformity. The illitization process leads to the replacement of feldspars and the corrosion of quartz crysals by an illitic matrix while the ferromagnesian minerals are pseudomorphosed by a Fe-chlorite + phengite + hematite assemblage. The final fluid-rock interaction step is marked by fissural deposits of calcite and anhydrite. The δ13C isotopic data show that the fissural carbonates precipitated from diagenetic fluids enriched carbon products deriving from the maturation of organic matter. The U-Pb isotopic analyzes performed on monazite crystals have dated three distinct events: 3.0-2.9 Ga (magmatic), 2.6 Ga (propylitic alteration) and 1.9 Ga (diagenetic illitization). The calculation of geochemical mass balances suggests that the water-rock ratio during the propylitic alteration event was weak. On the contrary, it was much higher during the overprinted illitization which is characterized by an intense leaching of Na, Ca, Mg, Sr, REE and an enrichment in K, Rb,Cs. Neither the petrographic features nor the geochemical data militate for an Archean weathering event (paleosol). In the present case, diagenetic fluids have percolated from the unconformity into the basement where they overprinted the illitization processes upon the previously propylitized rocks. These fluids were probably oxidant as they are also responsible of the U mobilization which led to the formation of the ore deposits close to the FA-FB interface.
Diabetic dyslipidemia and exercise alter the plasma low-density lipoproteome in Yucatan pigs
Richardson, Matthew R.; Lai, Xianyin; Dixon, Joseph L.; Sturek, Michael; Witzmann, Frank A.
2010-01-01
Although low-density lipoprotein (LDL) plays a predominant role in atherogenesis, the low-density lipoproteome has not been fully characterized. Moreover, alterations from a Western diet, diabetes, and physical inactivity on this proteome have yet to be determined. Accordingly, relative quantification was determined in LDL proteins from male Yucatan diabetic dyslipidemic (DD) swine in the early stages of atherosclerosis compared to healthy control (C) and non-diabetic hyperlipidemic (H) swine. Importantly, coronary vascular dysfunction was prevented by aerobic exercise training in these animals (DDX) without altering total LDL concentration. Using 2-DE, Western blot, label-free quantitative MS, and selected reaction monitoring, alterations in the abundance of apolipoproteins A-I, B, C-III, D, E, and J and noncovalently associated proteins were determined in LDL isolated using fast protein liquid chromatography. At least 28 unique proteins, many of which were novel, were identified with high confidence. An apolipoprotein E isoform demonstrated stronger correlation to disease (percent of coronary artery segments with intimal thickening) than some traditional risk factors (total cholesterol, LDL cholesterol, and LDL/HDL cholesterol). Taken together, this work identifies new possible biomarkers, potential therapeutic targets for atherosclerosis, and generates new hypotheses regarding the role of LDL in atherogenesis. PMID:19402046
Estradiol therapy in adulthood reverses glial and neuronal alterations caused by perinatal asphyxia.
Saraceno, Gustavo Ezequiel; Bertolino, María Laura Aón; Galeano, Pablo; Romero, Juan Ignacio; Garcia-Segura, Luis Miguel; Capani, Francisco
2010-06-01
The capacity of the ovarian hormone 17beta-estradiol to prevent neurodegeneration has been characterized in several animal models of brain and spinal cord pathology. However, the potential reparative activity of the hormone under chronic neurodegenerative conditions has received less attention. In this study we have assessed the effect of estradiol therapy in adulthood on chronic glial and neuronal alterations caused by perinatal asphyxia (PA) in rats. Four-month-old male Sprague-Dawley rats submitted to PA just after delivery, and their control littermates, were injected for 3 consecutive days with 17beta estradiol or vehicle. Animals subjected to PA and treated with vehicle showed an increased astrogliosis, focal swelling and fragmented appearance of MAP-2 immunoreactive dendrites, decreased MAP-2 immunoreactivity and decreased phosphorylation of high and medium molecular weight neurofilaments in the hippocampus, compared to control animals. Estradiol therapy reversed these alterations. These findings indicate that estradiol is able to reduce, in adult animals, chronic reactive astrogliosis and neuronal alterations caused by an early developmental neurodegenerative event, suggesting that the hormone might induce reparative actions in the Central Nervous System (CNS). Copyright (c) 2009 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Boulton, Carolyn; Menzies, Catriona D.; Toy, Virginia G.; Townend, John; Sutherland, Rupert
2017-01-01
Oblique dextral motion on the central Alpine Fault in the last circa 5 Ma has exhumed garnet-oligoclase facies mylonitic fault rocks from ˜35 km depth. During exhumation, deformation, accompanied by fluid infiltration, has generated complex lithological variations in fault-related rocks retrieved during Deep Fault Drilling Project (DFDP-1) drilling at Gaunt Creek, South Island, New Zealand. Lithological, geochemical, and mineralogical results reveal that the fault comprises a core of highly comminuted cataclasites and fault gouges bounded by a damage zone containing cataclasites, protocataclasites, and fractured mylonites. The fault core-alteration zone extends ˜20-30 m from the principal slip zone (PSZ) and is characterized by alteration of primary phases to phyllosilicate minerals. Alteration associated with distinct mineral phases occurred proximal the brittle-to-plastic transition (T ≤ 300-400°C, 6-10 km depth) and at shallow depths (T = 20-150°C, 0-3 km depth). Within the fault core-alteration zone, fractures have been sealed by precipitation of calcite and phyllosilicates. This sealing has decreased fault normal permeability and increased rock mass competency, potentially promoting interseismic strain buildup.
Wood, Matthew D; Tihan, Tarik; Perry, Arie; Chacko, Geeta; Turner, Clinton; Pu, Cunfeng; Payne, Christopher; Yu, Alexander; Bannykh, Serguei I; Solomon, David A
2018-03-01
Astroblastoma is a rare and controversial glioma with variable clinical behavior. The diagnosis currently rests on histologic findings of a circumscribed glioma with astroblastomatous pseudorosettes and vascular hyalinization. Immunohistochemical studies have suggested different oncogenic drivers, such as BRAF p.V600E, but very few cases have been studied using genome-wide methodologies. Recent genomic profiling identified a subset of CNS embryonal tumors with astroblastoma-like morphology that harbored MN1 gene fusions, termed "CNS high-grade neuroepithelial tumors with MN1 alteration" (CNS-HGNET-MN1). To further characterize the genetic alterations that drive astroblastomas, we performed targeted next-generation sequencing (NGS) of 500 cancer-associated genes in a series of eight cases. We correlated these findings with break-apart fluorescence in situ hybridization (FISH) analysis of the MN1 locus and genome-wide DNA methylation profiling. Four cases showed MN1 alteration by FISH, including two pediatric cases that lacked other pathogenic alterations, and two adult cases that harbored other cancer-associated gene mutations or copy number alterations (eg, CDKN2A/B homozygous deletion, TP53, ATM and TERT promoter mutations). Three of these cases grouped with the CNS-HGNET-MN1 entity by methylation profiling. Two of four MN1 intact cases by FISH showed genetic features of either anaplastic pleomorphic xanthoastrocytoma (BRAF p.V600E mutation, CDKN2A/B homozygous deletion and TERT promoter mutation) or IDH-wildtype glioblastoma (trisomy 7, monosomy 10, CDK4 amplification and TP53, NRAS and TERT promoter mutations) and these cases had an aggressive clinical course. Two clinically indolent cases remained unclassifiable despite multimodal molecular analysis. We conclude that astroblastoma histology is not specific for any entity including CNS-HGNET-MN1, and that additional genetic characterization should be considered for astroblastomas, as a number of these tumors likely contain a methylation profile or genetic alterations that suggest classification as other tumor entities. Our heterogeneous molecular findings help to explain the clinical unpredictability of astroblastoma. © 2017 International Society of Neuropathology.
NASA Astrophysics Data System (ADS)
Chukwu, Anthony; Obiora, Smart C.
2018-05-01
The pyroclastic rocks in the Cretaceous Abakaliki basin occur mostly as oval-shaped bodies, consisting of lithic/lava and vitric fragments. They are commonly characterized by parallel and cross laminations, as well contain xenoliths of shale, mudstone and siltstones from the older Asu River Group of Albian age. The rocks are basic to ultrabasic in composition, comprising altered alkali basalts, altered tuffs, minor lapillistones and agglomerates. The mineral compositions are characterized mainly by laths of calcic plagioclase, pyroxene (altered), altered olivines and opaques. Calcite, zeolite and quartz represent the secondary mineral constituents. Geochemically, two groups of volcaniclastic rocks, are distinguished: alkaline and tholeiitic rocks, both represented by fresh and altered rock samples. The older alkali basalts occur within the core of the Abakaliki anticlinorium while the younger tholeiites occur towards the periphery. Though most of the rocks are moderate to highly altered [Loss on ignition (LOI, 3.43-22.07 wt. %)], the use of immobile trace element such as Nb, Zr, Y, Hf, Ti, Ta and REEs reflect asthenospheric mantle source compositions. The rocks are enriched in incompatible elements and REEs (∑REE = 87.98-281.0 ppm for alkaline and 69.45-287.99 ppm for tholeiites). The ratios of La/Ybn are higher in the alkaline rocks ranging from 7.69 to 31.55 compared to the tholeiitic rocks which range from 4.4 to 16.89 and indicating the presence of garnet-bearing lherzolite in the source mantle. The spidergrams and REEs patterns along with Zr/Nb, Ba/Nb, Rb/Nb ratios suggest that the rocks were generated by a mantle plume from partial melting of mixed enriched mantle sources (HIMU, EMI and EMII) similar to the rocks of the south Atlantic Ocean such as St. Helena (alkaline rocks) and Ascension rocks (tholeiitic rocks). The rocks were formed in a within-plate setting of the intra-continental rift type similar to other igneous rocks in the Benue Rift and are not related to any subduction event as previously suggested.
Characterizing the cancer genome in lung adenocarcinoma
Weir, Barbara A.; Woo, Michele S.; Getz, Gad; Perner, Sven; Ding, Li; Beroukhim, Rameen; Lin, William M.; Province, Michael A.; Kraja, Aldi; Johnson, Laura A.; Shah, Kinjal; Sato, Mitsuo; Thomas, Roman K.; Barletta, Justine A.; Borecki, Ingrid B.; Broderick, Stephen; Chang, Andrew C.; Chiang, Derek Y.; Chirieac, Lucian R.; Cho, Jeonghee; Fujii, Yoshitaka; Gazdar, Adi F.; Giordano, Thomas; Greulich, Heidi; Hanna, Megan; Johnson, Bruce E.; Kris, Mark G.; Lash, Alex; Lin, Ling; Lindeman, Neal; Mardis, Elaine R.; McPherson, John D.; Minna, John D.; Morgan, Margaret B.; Nadel, Mark; Orringer, Mark B.; Osborne, John R.; Ozenberger, Brad; Ramos, Alex H.; Robinson, James; Roth, Jack A.; Rusch, Valerie; Sasaki, Hidefumi; Shepherd, Frances; Sougnez, Carrie; Spitz, Margaret R.; Tsao, Ming-Sound; Twomey, David; Verhaak, Roel G. W.; Weinstock, George M.; Wheeler, David A.; Winckler, Wendy; Yoshizawa, Akihiko; Yu, Soyoung; Zakowski, Maureen F.; Zhang, Qunyuan; Beer, David G.; Wistuba, Ignacio I.; Watson, Mark A.; Garraway, Levi A.; Ladanyi, Marc; Travis, William D.; Pao, William; Rubin, Mark A.; Gabriel, Stacey B.; Gibbs, Richard A.; Varmus, Harold E.; Wilson, Richard K.; Lander, Eric S.; Meyerson, Matthew
2008-01-01
Somatic alterations in cellular DNA underlie almost all human cancers1. The prospect of targeted therapies2 and the development of high-resolution, genome-wide approaches3–8 are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumors (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in ~12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered. PMID:17982442
Staufenbiel, Sven; Merino, Marian; Li, Wenzhong; Huang, Mao-Dong; Baudis, Stefan; Lendlein, Andreas; Müller, Rainer H; Wischke, Christian
2015-05-15
The surface properties of intravenously injected nanoparticles determine the acquired blood protein adsorption pattern and subsequently the organ distribution and cellular recognition. A series of poly[acrylonitrile-co-(N-vinyl pyrrolidone)] (PANcoNVP) model nanoparticles (133-181 nm) was synthesized, in which the surface properties were altered by changing the molar content of NVP (0-33.8 mol%) as the more hydrophilic repeating unit. The extent of achieved surface property variation was comprehensively characterized. The residual sodium dodecyl sulfate (SDS) content from the synthesis was in the range 0.3-1.6 μgml(-1), potentially contributing to the surface properties. Surface hydrophobicity was determined by Rose Bengal dye adsorption, hydrophobic interaction chromatography (HIC) and aqueous two-phase partitioning (TPP). Particle charge was quantified by zeta potential (ZP) measurements including ZP-pH profiles. The interaction with proteins was analyzed by ZP measurements in serum and by adsorption studies with single proteins. Compared to hydrophobic polystyrene model nanoparticles, all PANcoNVP particles were very hydrophilic. Differences in surface hydrophobicity could be detected, which did not linearly correlate with the systematically altered bulk composition of the PANcoNVP nanoparticles. This proves the high importance of a thorough surface characterization applying a full spectrum of methods, complementing predictions solely based on bulk polymer composition. Copyright © 2015. Published by Elsevier B.V.
Soleymanlou, Nima; Jurisicova, Andrea; Wu, Yuanhong; Chijiiwa, Mari; Ray, Jocelyn E.; Detmar, Jacqui; Todros, Tullia; Zamudio, Stacy; Post, Martin; Caniggia, Isabella
2007-01-01
Preeclampsia, a disorder of pregnancy, is characterized by increased trophoblast cell death and altered trophoblast-mediated remodeling of myometrial spiral arteries resulting in reduced uteroplacental perfusion. Mitochondria-associated Bcl-2 family members are important regulators of programed cell death. The mechanism whereby hypoxia alters the mitochondrial apoptotic rheostat is essential to our understanding of placental disease. Herein, myeloid cell leukemia factor-1 (Mcl-1) isoform expression was examined in physiological/pathological models of placental hypoxia. Preeclamptic placentae were characterized by caspase-dependent cleavage of death-suppressing Mcl-1L and switch toward cell death-inducing Mcl-1S. In vitro, Mcl-1L cleavage was induced by hypoxia-reoxygenation in villous explants, whereas Mcl-1L overexpression under hypoxia-reoxygenation rescued trophoblast cells from undergoing apoptosis. Cleavage was mediated by caspase-3/-7 because pharmacological caspase inhibition prevented this process. Altitude-induced chronic hypoxia was characterized by expression of Mcl-1L; resulting in a reduction of apoptotic markers (cleaved caspase-3/-8 and p85 poly-ADP-ribose polymerase). Moreover, in both physiological (explants and high altitude) and pathological (preeclampsia) placental hypoxia, decreased trophoblast syncytin expression was observed. Hence, although both pathological and physiological placental hypoxia are associated with slowed trophoblast differentiation, trophoblast apoptosis is only up-regulated in preeclampsia, because of a hypoxia-reoxygenation-induced switch in generation of proapoptotic Mcl-1 isoforms. PMID:17600131
Agnelli, Luca; Tassone, Pierfrancesco; Neri, Antonino
2013-06-01
Multiple myeloma is a fatal malignant proliferation of clonal bone marrow Ig-secreting plasma cells, characterized by wide clinical, biological, and molecular heterogeneity. Herein, global gene and microRNA expression, genome-wide DNA profilings, and next-generation sequencing technology used to investigate the genomic alterations underlying the bio-clinical heterogeneity in multiple myeloma are discussed. High-throughput technologies have undoubtedly allowed a better comprehension of the molecular basis of the disease, a fine stratification, and early identification of high-risk patients, and have provided insights toward targeted therapy studies. However, such technologies are at risk of being affected by laboratory- or cohort-specific biases, and are moreover influenced by high number of expected false positives. This aspect has a major weight in myeloma, which is characterized by large molecular heterogeneity. Therefore, meta-analysis as well as multiple approaches are desirable if not mandatory to validate the results obtained, in line with commonly accepted recommendation for tumor diagnostic/prognostic biomarker studies.
Stegelmann, Frank; Bullinger, Lars; Griesshammer, Martin; Holzmann, Karlheinz; Habdank, Marianne; Kuhn, Susanne; Maile, Carmen; Schauer, Stefanie; Döhner, Hartmut; Döhner, Konstanze
2010-01-01
Single-nucleotide polymorphism arrays allow for genome-wide profiling of copy-number alterations and copy-neutral runs of homozygosity at high resolution. To identify novel genetic lesions in myeloproliferative neoplasms, a large series of 151 clinically well characterized patients was analyzed in our study. Copy-number alterations were rare in essential thrombocythemia and polycythemia vera. In contrast, approximately one third of myelofibrosis patients exhibited small genomic losses (less than 5 Mb). In 2 secondary myelofibrosis cases the tumor suppressor gene NF1 in 17q11.2 was affected. Sequencing analyses revealed a mutation in the remaining NF1 allele of one patient. In terms of copy-neutral aberrations, no chromosomes other than 9p were recurrently affected. In conclusion, novel genomic aberrations were identified in our study, in particular in patients with myelofibrosis. Further analyses on single-gene level are necessary to uncover the mechanisms that are involved in the pathogenesis of myeloproliferative neoplasms. PMID:20015882
Kirkman, Matthew A; Pickles, Jessica C; Fairchild, Amy R; Avery, Aimee; Pietsch, Torsten; Jacques, Thomas S; Aquilina, Kristian
2018-05-30
Advances in molecular profiling have facilitated the emergence of newly defined entities of central nervous system tumor, including CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR). Relatively little is known about the clinical behaviour of these newly-characterized tumors. We describe a pediatric male patient with CNS HGNET-BCOR who developed seeding of the tumor into the site of the surgical wound within months of surgery for resection of a residual posterior fossa tumor. This case emphasises three important points. First, CNS HGNET-BCOR can be aggressive tumors that necessitate close clinical and radiological surveillance. Second, surveillance imaging in such cases should incorporate the surgical incision site into the field of view, and this should be closely scrutinised to ensure the timely detection of wound site seeding. Third, wound site seeding may still occur despite the use of meticulous surgical techniques. Copyright © 2018. Published by Elsevier Inc.
The impact of junk foods on the adolescent brain.
Reichelt, Amy C; Rank, Michelle M
2017-12-01
Adolescence is a significant period of physical, social, and emotional development, and is characterized by prominent neurobiological changes in the brain. The maturational processes that occur in brain regions responsible for cognitive control and reward seeking may underpin excessive consumption of palatable high fat and high sugar "junk" foods during adolescence. Recent studies have highlighted the negative impact of these foods on brain function, resulting in cognitive impairments and altered reward processing. The increased neuroplasticity during adolescence may render the brain vulnerable to the negative effects of these foods on cognition and behavior. In this review, we describe the mechanisms by which junk food diets influence neurodevelopment during adolescence. Diet can lead to alterations in dopamine-mediated reward signaling, and inhibitory neurotransmission controlled by γ-aminobutyric acid (GABA), two major neurotransmitter systems that are under construction across adolescence. We propose that poor dietary choices may derail the normal adolescent maturation process and influence neurodevelopmental trajectories, which can predispose individuals to dysregulated eating and impulsive behaviors. © 2017 Wiley Periodicals, Inc.
Wynn, J.C.; Roseboom, E.H.
1987-01-01
Evaluation of potential high-level nuclear waste repository sites is an area where geophysical capabilities and limitations may significantly impact a major governmental program. Since there is concern that extensive exploratory drilling might degrade most potential disposal sites, geophysical methods become crucial as the only nondestructive means to examine large volumes of rock in three dimensions. Characterization of potential sites requires geophysicists to alter their usual mode of thinking: no longer are anomalies being sought, as in mineral exploration, but rather their absence. Thus the size of features that might go undetected by a particular method take on new significance. Legal and regulatory considerations that stem from this different outlook, most notably the requirements of quality assurance (necessary for any data used in support of a repository license application), are forcing changes in the manner in which geophysicists collect and document their data. -Authors
Ramamonjisoa, Nirilanto; Ackerstaff, Ellen
2017-01-01
Tumors are often characterized by hypoxia, vascular abnormalities, low extracellular pH, increased interstitial fluid pressure, altered choline-phospholipid metabolism, and aerobic glycolysis (Warburg effect). The impact of these tumor characteristics has been investigated extensively in the context of tumor development, progression, and treatment response, resulting in a number of non-invasive imaging biomarkers. More recent evidence suggests that cancer cells undergo metabolic reprograming, beyond aerobic glycolysis, in the course of tumor development and progression. The resulting altered metabolic content in tumors has the ability to affect cell signaling and block cellular differentiation. Additional emerging evidence reveals that the interaction between tumor and stroma cells can alter tumor metabolism (leading to metabolic reprograming) as well as tumor growth and vascular features. This review will summarize previous and current preclinical, non-invasive, multimodal imaging efforts to characterize the tumor microenvironment, including its stromal components and understand tumor–stroma interaction in cancer development, progression, and treatment response. PMID:28197395
El Ayed, Mohamed; Kadri, Safwen; Mabrouk, Maha; Aouani, Ezzedine; Elkahoui, Salem
2018-05-10
Obesity is currently one of the major epidemics of this millennium and affects poeples throughout the world. It causes multiple systemic complications as it significantly interferes with respiratory function. We aimed in the present work to study the effect of high fat diet (HFD) on lung oxidative stress and energy metabolism alterations, as well as the putative protection afforded by grape seed and skin extract (GSSE). We started by characterizing the GSSE and its composition using gas chromatography coupled to mass spectrometry (GC-MS). We used a rat model of high-fat-diet and we evaluated the effect of GSSE on oxidative stress and energetic disturbances induced by HFD. We analyzed the effect of HFD on lung oxidative status by assessing lipid oxidation level, non-protein thiols (NPSH) and superoxide anion level… We also evaluated the effect of HFD on creatine kinase (CK), malate dehydrogenase (MDH) and mitochondrial complex IV. HFD induced body weight gain, increased lung weight and lipid content without affecting insulinemia and dropped adiponectemia. HFD also provoked on lung oxidative stress characterized by increased carbonylation (+ 95%; p = 0.0045), decreased of NPSH (- 32%; p = 0.0291) and inhibition of antioxidant enzyme activities such as glutathione peroxidase (- 25%; p = 0.0074). HFD also altered lung intracellular mediators as superoxide anion O 2 ¯ (+ 59%; p = 0.0027) and increased lung xanthine oxidase activity (+ 27%; p = 0.0122). HFD induced copper depletion (- 24%; p = 0.0498) and lead (- 51%: p = 0.0490) from the lung. Correlatively HFD decreased the copper associated enzyme tyrosinase (- 29%; p = 0.0500) and decreased glutamine synthetase activity (- 31%; p = 0.0027). HFD altered also lung energy metabolism by increasing CK activity (+ 22%; p = 0.0108) and decreasing MDH and mitochondrial complex IV activities (- 28%; p = 0.0120, - 31%; p = 0.0086 respectively). Importantly all these alterations were efficiently corrected with GSSE treatment. In conclusion, GSSE has the potential to alleviate the deleterious lipotoxic effect of HFD on lung and it could find potential application in the protection against HFD-induced lung complications.
Brain Gut Microbiome Interactions and Functional Bowel Disorders
Mayer, Emeran A.; Savidge, Tor; Shulman, Robert J.
2014-01-01
Alterations in the bidirectional interactions between the gut and the nervous system play an important role in IBS pathophysiology and symptom generation. A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. Characterizations of alterations of gut microbiota in unselected IBS patients, and assessment of changes in subjective symptoms associated with manipulations of the gut microbiota with prebiotics, probiotics and antibiotics support a small, but poorly defined role of dybiosis in overall IBS symptoms. It remains to be determined if the observed abnormalities are a consequence of altered top down signaling from the brain to the gut and microbiota, if they are secondary to a primary perturbation of the microbiota, and if they play a role in the development of altered brain gut interactions early in life. Different mechanisms may play role in subsets of patients. Characterization of gut microbiome alterations in large cohorts of well phenotyped patients as well as evidence correlating gut metabolites with specific abnormalities in the gut brain axis are required to answer these questions. PMID:24583088
Hypothyroidism during critical periods of brain developmental leads to learning deficits and alterations in hippocampal structure. Neurophysiological properties of the hippocampus, however, have not been well characterized. The present study examined field potentials evoked in...
Photogrammetry and Videogrammetry Methods for Solar Sails and Other Gossamer Structures
NASA Technical Reports Server (NTRS)
Black, Jonathan T.; Pappa, Richard S.
2004-01-01
Ultra-lightweight and inflatable gossamer space structures are designed to be tightly packaged for launch, then deploy or inflate once in space. These properties will allow for in-space construction of very large structures 10 to 1000 meters in size such as solar sails, inflatable antennae, and space solar power stations using a single launch. Solar sails are of particular interest because of their potential for propellantless propulsion. Gossamer structures do, however, have significant complications. Their low mass and high flexibility make them very difficult to test on the ground. The added mass and stiffness of attached measurement devices can significantly alter the static and dynamic properties of the structure. This complication necessitates an alternative approach for characterization. This paper discusses the development and application of photogrammetry and videogrammetry methods for the static and dynamic characterization of gossamer structures, as four specific solar sail applications demonstrate. The applications prove that high-resolution, full-field, non-contact static measurements of solar sails using dot projection photogrammetry are possible as well as full-field, noncontact, dynamic characterization using dot projection videogrammetry.
NASA Astrophysics Data System (ADS)
Donahue, John E.; Berzin, Tyler M.; Rafii, Michael S.; Glass, David J.; Yancopoulos, George D.; Fallon, Justin R.; Stopa, Edward G.
1999-05-01
Agrin is a heparan sulfate proteoglycan that is widely expressed in neurons and microvascular basal lamina in the rodent and avian central nervous system. Agrin induces the differentiation of nerve-muscle synapses, but its function in either normal or diseased brains is not known. Alzheimer's disease (AD) is characterized by loss of synapses, changes in microvascular architecture, and formation of neurofibrillary tangles and senile plaques. Here we have asked whether AD causes changes in the distribution and biochemical properties of agrin. Immunostaining of normal, aged human central nervous system revealed that agrin is expressed in neurons in multiple brain areas. Robust agrin immunoreactivity was observed uniformly in the microvascular basal lamina. In AD brains, agrin is highly concentrated in both diffuse and neuritic plaques as well as neurofibrillary tangles; neuronal expression of agrin also was observed. Furthermore, patients with AD had microvascular alterations characterized by thinning and fragmentation of the basal lamina. Detergent extraction and Western blotting showed that virtually all the agrin in normal brain is soluble in 1% SDS. In contrast, a large fraction of the agrin in AD brains is insoluble under these conditions, suggesting that it is tightly associated with β -amyloid. Together, these data indicate that the agrin abnormalities observed in AD are closely linked to β -amyloid deposition. These observations suggest that altered agrin expression in the microvasculature and the brain parenchyma contribute to the pathogenesis of AD.
Yaeger, Rona; Shah, Manish A; Miller, Vincent A; Kelsen, Judith R; Wang, Kai; Heins, Zachary J; Ross, Jeffrey S; He, Yuting; Sanford, Eric; Yantiss, Rhonda K; Balasubramanian, Sohail; Stephens, Philip J; Schultz, Nikolaus; Oren, Moshe; Tang, Laura; Kelsen, David
2016-08-01
Patients with inflammatory bowel diseases, such as Crohn's disease (CD) and ulcerative colitis (UC), are at increased risk for small bowel or colorectal cancers (colitis-associated cancers [CACs]). We compared the spectrum of genomic alterations in CACs with those of sporadic colorectal cancers (CRCs) and investigated differences between CACs from patients with CD vs UC. We studied tumor tissues from patients with CACs treated at Memorial Sloan Kettering Cancer Center or Weill Cornell Medical College from 2003 through 2015. We performed hybrid capture-based next-generation sequencing analysis of >300 cancer-related genes to comprehensively characterize genomic alterations. We performed genomic analyses of 47 CACs (from 29 patients with UC and 18 with CD; 43 primary tumors and 4 metastases). Primary tumors developed in the ileum (n = 2), right colon (n = 18), left colon (n = 6), and rectosigmoid or rectum (n = 21). We found genomic alterations in TP53, IDH1, and MYC to be significantly more frequent, and mutations in APC to be significantly less frequent, than those reported in sporadic CRCs by The Cancer Genome Atlas or Foundation Medicine. We identified genomic alterations that might be targeted by a therapeutic agent in 17 of 47 (36%) CACs. These included the mutation encoding IDH1 R132; amplification of FGFR1, FGFR2, and ERBB2; and mutations encoding BRAF V600E and an EML4-ALK fusion protein. Alterations in IDH1 and APC were significantly more common in CACs from patients with CD than UC. In an analysis of CACs from 47 patients, we found significant differences in the spectrum of genomic alterations in CACs compared with sporadic CRCs. We observed a high frequency of IDH1 R132 mutations in patients with CD but not UC, as well as a high frequency of MYC amplification in CACs. Many genetic alterations observed in CACs could serve as therapeutic targets. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Yaeger, Rona; Shah, Manish A.; Miller, Vincent A.; Kelsen, Judith R.; Wang, Kai; Heins, Zachary J.; Ross, Jeffrey S.; He, Yuting; Sanford, Eric; Yantiss, Rhonda K.; Balasubramanian, Sohail; Stephens, Philip J.; Schultz, Nikolaus; Oren, Moshe; Tang, Laura; Kelsen, David
2016-01-01
Background & Aims Patients with inflammatory bowel diseases such as Crohn's disease (CD) or ulcerative colitis (UC) are at increased risk for small bowel or colorectal cancers (colitis-associated cancers, CACs). We compared the spectrum of genomic alterations in CACs with those of sporadic colorectal cancers (CRCs) and investigated differences between CACs from patients with CD vs UC. Methods We studied tumor tissues from patients with CACs, treated at Memorial Sloan Kettering Cancer Center or Weill Cornell Medical College from 2003 through 2015. We performed hybrid capture based next-generation sequencing analysis of over 300 cancer-related genes to comprehensively characterize genomic alterations. Results We performed genomic analyses of 47 CACs (from 29 patients with UC and 18 with CD; 43 primary tumors and 4 metastases). Primary tumors developed in the ileum (n=2), right colon (n=18), left colon (n=6) and rectosigmoid or rectum (n=21). We found genomic alterations in TP53, IDH1, and MYC to be significantly more frequent, and mutations in APC to be significantly less frequent, than those reported in sporadic CRCs by The Cancer Genome Atlas or Foundation Medicine. We identified genomic alterations that might be targeted by a therapeutic agent in 17/47 (36%) of CACs. These included the mutation encoding IDH1 R132; amplification of FGFR1, FGFR2, and ERBB2; and mutations encoding BRAF V600E and an EML4-ALK fusion protein. Alterations in IDH1 and APC were significantly more common in CACs from patients with CD than UC. Conclusions In an analysis of CACs from 47 patients, we found significant differences in the spectrum of genomic alterations in CACs compared to sporadic CRCs. We observed a high frequency of IDH1 R132 mutations in patients with CD but not UC, as well as a high frequency of MYC amplification in CACs. Many genetic alterations observed in CACs could serve as therapeutic targets. PMID:27063727
Arango, Natalia Paez; Brusco, Lauren; Mills Shaw, Kenna R; Chen, Ken; Eterovic, Agda Karina; Holla, Vijaykumar; Johnson, Amber; Litzenburger, Beate; Khotskaya, Yekaterina B; Sanchez, Nora; Bailey, Ann; Zheng, Xiaofeng; Horombe, Chacha; Kopetz, Scott; Farhangfar, Carol J; Routbort, Mark; Broaddus, Russell; Bernstam, Elmer V; Mendelsohn, John; Mills, Gordon B; Meric-Bernstam, Funda
2017-06-27
Molecular profiling performed in the research setting usually does not benefit the patients that donate their tissues. Through a prospective protocol, we sought to determine the feasibility and utility of performing broad genomic testing in the research laboratory for discovery, and the utility of giving treating physicians access to research data, with the option of validating actionable alterations in the CLIA environment. 1200 patients with advanced cancer underwent characterization of their tumors with high depth hybrid capture sequencing of 201 genes in the research setting. Tumors were also tested in the CLIA laboratory, with a standardized hotspot mutation analysis on an 11, 46 or 50 gene platform. 527 patients (44%) had at least one likely somatic mutation detected in an actionable gene using hotspot testing. With the 201 gene panel, 945 patients (79%) had at least one alteration in a potentially actionable gene that was undetected with the more limited CLIA panel testing. Sixty-four genomic alterations identified on the research panel were subsequently tested using an orthogonal CLIA assay. Of 16 mutations tested in the CLIA environment, 12 (75%) were confirmed. Twenty-five (52%) of 48 copy number alterations were confirmed. Nine (26.5%) of 34 patients with confirmed results received genotype-matched therapy. Seven of these patients were enrolled onto genotype-matched targeted therapy trials. Expanded cancer gene sequencing identifies more actionable genomic alterations. The option of CLIA validating research results can provide alternative targets for personalized cancer therapy.
Hosoda, Waki; Chianchiano, Peter; Griffin, James F; Pittman, Meredith E; Brosens, Lodewijk Aa; Noë, Michaël; Yu, Jun; Shindo, Koji; Suenaga, Masaya; Rezaee, Neda; Yonescu, Raluca; Ning, Yi; Albores-Saavedra, Jorge; Yoshizawa, Naohiko; Harada, Kenichi; Yoshizawa, Akihiko; Hanada, Keiji; Yonehara, Shuji; Shimizu, Michio; Uehara, Takeshi; Samra, Jaswinder S; Gill, Anthony J; Wolfgang, Christopher L; Goggins, Michael G; Hruban, Ralph H; Wood, Laura D
2017-05-01
High-grade pancreatic intraepithelial neoplasia (HG-PanIN) is the major precursor of pancreatic ductal adenocarcinoma (PDAC) and is an ideal target for early detection. To characterize pure HG-PanIN, we analysed 23 isolated HG-PanIN lesions occurring in the absence of PDAC. Whole-exome sequencing of five of these HG-PanIN lesions revealed a median of 33 somatic mutations per lesion, with a total of 318 mutated genes. Targeted next-generation sequencing of 17 HG-PanIN lesions identified KRAS mutations in 94% of the lesions. CDKN2A alterations occurred in six HG-PanIN lesions, and RNF43 alterations in five. Mutations in TP53, GNAS, ARID1A, PIK3CA, and TGFBR2 were limited to one or two HG-PanINs. No non-synonymous mutations in SMAD4 were detected. Immunohistochemistry for p53 and SMAD4 proteins in 18 HG-PanINs confirmed the paucity of alterations in these genes, with aberrant p53 labelling noted only in three lesions, two of which were found to be wild type in sequencing analyses. Sixteen adjacent LG-PanIN lesions from ten patients were also sequenced using targeted sequencing. LG-PanIN harboured KRAS mutations in 94% of the lesions; mutations in CDKN2A, TP53, and SMAD4 were not identified. These results suggest that inactivation of TP53 and SMAD4 are late genetic alterations, predominantly occurring in invasive PDAC. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Pérez-Torres, Anahí; Rampey, Rebekah A.; Bartel, Bonnie; Herrera-Estrella, Luis
2005-01-01
Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mm) and low (1 μm) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG. PMID:15681664
Kang, Aram; Meadows, Corey W.; Canu, Nicolas; ...
2017-04-05
Isopentenol (or isoprenol, 3-methyl-3-buten-1-ol) is a drop-in biofuel and a precursor for commodity chemicals such as isoprene. Biological production of isopentenol via the mevalonate pathway has been optimized extensively in Escherichia coli, yielding 70% of its theoretical maximum. However, high ATP requirements and isopentenyl diphosphate (IPP) toxicity pose immediate challenges for engineering bacterial strains to overproduce commodities utilizing IPP as an intermediate. To overcome these limitations, we developed an “IPP-bypass” isopentenol pathway using the promiscuous activity of a mevalonate diphosphate decarboxylase (PMD) and demonstrated improved performance under aeration-limited conditions. However, relatively low activity of PMD toward the non-native substrate (mevalonatemore » monophosphate, MVAP) was shown to limit flux through this new pathway. By inhibiting all IPP production from the endogenous non-mevalonate pathway, we developed a high-throughput screening platform that correlated promiscuous PMD activity toward MVAP with cellular growth. Successful identification of mutants that altered PMD activity demonstrated the sensitivity and specificity of the screening platform. Strains with evolved PMD mutants and the novel IPP-bypass pathway increased titers up to 2.4-fold. Further enzymatic characterization of the evolved PMD variants suggested that higher isopentenol titers could be achieved either by altering residues directly interacting with substrate and cofactor or by altering residues on nearby α-helices. These altered residues could facilitate the production of isopentenol by tuning either k cat or K i of PMD for the non-native substrate. The synergistic modification made on PMD for the IPP-bypass mevalonate pathway is expected to significantly facilitate the industrial scale production of isopentenol.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Aram; Meadows, Corey W.; Canu, Nicolas
Isopentenol (or isoprenol, 3-methyl-3-buten-1-ol) is a drop-in biofuel and a precursor for commodity chemicals such as isoprene. Biological production of isopentenol via the mevalonate pathway has been optimized extensively in Escherichia coli, yielding 70% of its theoretical maximum. However, high ATP requirements and isopentenyl diphosphate (IPP) toxicity pose immediate challenges for engineering bacterial strains to overproduce commodities utilizing IPP as an intermediate. To overcome these limitations, we developed an “IPP-bypass” isopentenol pathway using the promiscuous activity of a mevalonate diphosphate decarboxylase (PMD) and demonstrated improved performance under aeration-limited conditions. However, relatively low activity of PMD toward the non-native substrate (mevalonatemore » monophosphate, MVAP) was shown to limit flux through this new pathway. By inhibiting all IPP production from the endogenous non-mevalonate pathway, we developed a high-throughput screening platform that correlated promiscuous PMD activity toward MVAP with cellular growth. Successful identification of mutants that altered PMD activity demonstrated the sensitivity and specificity of the screening platform. Strains with evolved PMD mutants and the novel IPP-bypass pathway increased titers up to 2.4-fold. Further enzymatic characterization of the evolved PMD variants suggested that higher isopentenol titers could be achieved either by altering residues directly interacting with substrate and cofactor or by altering residues on nearby α-helices. These altered residues could facilitate the production of isopentenol by tuning either k cat or K i of PMD for the non-native substrate. The synergistic modification made on PMD for the IPP-bypass mevalonate pathway is expected to significantly facilitate the industrial scale production of isopentenol.« less
Cabrera, Paula V.; Pang, Mabel; Marshall, Jamie L.; Kung, Raymond; Nelson, Stanley F.; Stalnaker, Stephanie H.; Wells, Lance; Crosbie-Watson, Rachelle H.; Baum, Linda G.
2012-01-01
Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function. PMID:22570487
Buck, Eva; Zügel, Martina; Schumann, Uwe; Merz, Tamara; Gumpp, Anja M; Witting, Anke; Steinacker, Jürgen M; Landwehrmeyer, G Bernhard; Weydt, Patrick; Calzia, Enrico; Lindenberg, Katrin S
2017-01-01
Alterations in mitochondrial respiration are an important hallmark of Huntington's disease (HD), one of the most common monogenetic causes of neurodegeneration. The ubiquitous expression of the disease causing mutant huntingtin gene raises the prospect that mitochondrial respiratory deficits can be detected in skeletal muscle. While this tissue is readily accessible in humans, transgenic animal models offer the opportunity to cross-validate findings and allow for comparisons across organs, including the brain. The integrated respiratory chain function of the human vastus lateralis muscle was measured by high-resolution respirometry (HRR) in freshly taken fine-needle biopsies from seven pre-manifest HD expansion mutation carriers and nine controls. The respiratory parameters were unaffected. For comparison skeletal muscle isolated from HD knock-in mice (HdhQ111) as well as a broader spectrum of tissues including cortex, liver and heart muscle were examined by HRR. Significant changes of mitochondrial respiration in the HdhQ knock-in mouse model were restricted to the liver and the cortex. Mitochondrial mass as quantified by mitochondrial DNA copy number and citrate synthase activity was stable in murine HD-model tissue compared to control. mRNA levels of key enzymes were determined to characterize mitochondrial metabolic pathways in HdhQ mice. We demonstrated the feasibility to perform high-resolution respirometry measurements from small human HD muscle biopsies. Furthermore, we conclude that alterations in respiratory parameters of pre-manifest human muscle biopsies are rather limited and mirrored by a similar absence of marked alterations in HdhQ skeletal muscle. In contrast, the HdhQ111 murine cortex and liver did show respiratory alterations highlighting the tissue specific nature of mutant huntingtin effects on respiration.
Trained immunity in newborn infants of HBV-infected mothers
Hong, Michelle; Sandalova, Elena; Low, Diana; Gehring, Adam J.; Fieni, Stefania; Amadei, Barbara; Urbani, Simonetta; Chong, Yap-Seng; Guccione, Ernesto; Bertoletti, Antonio
2015-01-01
The newborn immune system is characterized by an impaired Th1-associated immune response. Hepatitis B virus (HBV) transmitted from infected mothers to newborns is thought to exploit the newborns’ immune system immaturity by inducing a state of immune tolerance that facilitates HBV persistence. Contrary to this hypothesis, we demonstrate here that HBV exposure in utero triggers a state of trained immunity, characterized by innate immune cell maturation and Th1 development, which in turn enhances the ability of cord blood immune cells to respond to bacterial infection in vitro. These training effects are associated with an alteration of the cytokine environment characterized by low IL-10 and, in most cases, high IL-12p40 and IFN-α2. Our data uncover a potentially symbiotic relationship between HBV and its natural host, and highlight the plasticity of the fetal immune system following viral exposure in utero. PMID:25807344
Environmental enteric dysfunction is associated with altered bile acid metabolism
USDA-ARS?s Scientific Manuscript database
Environmental enteric dysfunction (EED), a clinically asymptomatic condition characterized by inflammation of the small bowel mucosa, villous atrophy, and increased gut permeability, is common among children in developing countries. Because of abnormal gut mucosa and altered gut microbiome, EED coul...
Adolescents and Alcohol: Acute Sensitivities, Enhanced Intake, and Later Consequences*
Spear, Linda Patia
2014-01-01
Adolescence is an evolutionarily conserved developmental period characterized by notable maturational changes in brain along with various age-related behavioral characteristics, including the propensity to initiate alcohol and other drug use and consume more alcohol per occasion than adults. After a brief review of adolescent neurobehavioral function from an evolutionary perspective, the paper will turn to assessment of adolescent alcohol sensitivity and consequences, with a focus on work from our laboratory. After summarizing evidence showing that adolescents differ considerably from adults in their sensitivity to various effects of alcohol, potential contributors to these age-typical sensitivities will be discussed, and the degree to which these findings are generalizable to other drugs and to human adolescents will be considered. Recent studies are then reviewed to illustrate that repeated alcohol exposure during adolescence induces behavioral, cognitive, and neural alterations that are highly specific, replicable, persistent and dependent on the timing of the exposure. Research in this area is in its early stages, however, and more work will be necessary to characterize the extent of these neurobehavioral alterations and further determine the degree to which observed effects are specific to alcohol exposure during adolescence. PMID:24291291
Gombos, Ferenc; Bódizs, Róbert; Kovács, Ilona
2017-07-21
Williams syndrome (7q11.23 microdeletion) is characterized by specific alterations in neurocognitive architecture and functioning, as well as disordered sleep. Here we analyze the region, sleep state and frequency-specific EEG synchronization of whole night sleep recordings of 21 Williams syndrome and 21 typically developing age- and gender-matched subjects by calculating weighted phase lag indexes. We found broadband increases in inter- and intrahemispheric neural connectivity for both NREM and REM sleep EEG of Williams syndrome subjects. These effects consisted of increased theta, high sigma, and beta/low gamma synchronization, whereas alpha synchronization was characterized by a peculiar Williams syndrome-specific decrease during NREM states (intra- and interhemispheric centro-temporal) and REM phases of sleep (occipital intra-area synchronization). We also found a decrease in short range, occipital connectivity of NREM sleep EEG theta activity. The striking increased overall synchronization of sleep EEG in Williams syndrome subjects is consistent with the recently reported increase in synaptic and dendritic density in stem-cell based Williams syndrome models, whereas decreased alpha and occipital connectivity might reflect and underpin the altered microarchitecture of primary visual cortex and disordered visuospatial functioning of Williams syndrome subjects.
Exploration for gold mineralization in the Arabo Nubian Shield: Using remote sensing Approach
NASA Astrophysics Data System (ADS)
Ramadan, Talaat
2013-04-01
In the southern part of the Eastern Desert of Egypt, Landsat Thematic Mapper (ETM+) data and fieldwork was combined with mineralogical and geochemical investigations in order to detect and characterize alteration zones within Pan-African rocks. The processing of Landsat ETM+ data using ratioing (bands 5/7,5/1,4/3 in Red, Green, Blue) showed two different types of alteration zones (type l and 2). Type 1 is close to the ophiolitic ultramafic rocks and type 2 is located within island-arc related metavolcanic rocks at the study areas. Both of these alteration zones are concordant with the main NW-SE structural trend. Mineralogical studies indicate that the alteration zones of type 1 consist mainly of calcite, ankerite, magnesite, dolomite and quartz. Chromian spinel, pyrite, and Ni-bearing sulphides (gersdorffite, pentlandite and polydymite) are the main ore minerals within this zone. Alteration zones of type 2 are strongly potassium-enriched and pyrophyllite, kaolinite, illite, gypsum and quartz occur. The brecciated quartz-veins associated with theses alteration zones consist of quartz, Fe-hydroxides, hematite and native gold. The gold content reaches up to 5 g/t in the alteration zone, while it extends up to 50 g/t in the quartz veins. This study presents a mineralogical characterization of such zones and demonstrates the utility of orbital remote sensing for finding unknown alteration zones in the Eastern Desert and other arid areas with similar host rock lithologies.
Ou, Xiufang; Long, Likun; Zhang, Yunhong; Xue, Yiqun; Liu, Jingchun; Lin, Xiuyun; Liu, Bao
2009-03-09
Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety issues of spaceship crews and potentiality of spaceflight as a means for mutagenesis in crop breeding.
Vieira, Joana B; Ferreira-Santos, Fernando; Almeida, Pedro R; Barbosa, Fernando; Marques-Teixeira, João; Marsh, Abigail A
2015-12-01
Research suggests psychopathy is associated with structural brain alterations that may contribute to the affective and interpersonal deficits frequently observed in individuals with high psychopathic traits. However, the regional alterations related to different components of psychopathy are still unclear. We used voxel-based morphometry to characterize the structural correlates of psychopathy in a sample of 35 healthy adults assessed with the Triarchic Psychopathy Measure. Furthermore, we examined the regional grey matter alterations associated with the components described by the triarchic model. Our results showed that, after accounting for variation in total intracranial volume, age and IQ, overall psychopathy was negatively associated with grey matter volume in the left putamen and amygdala. Additional regression analysis with anatomical regions of interests revealed total triPM score was also associated with increased lateral orbitofrontal cortex (OFC) and caudate volume. Boldness was positively associated with volume in the right insula. Meanness was positively associated with lateral OFC and striatum volume, and negatively associated with amygdala volume. Finally, disinhibition was negatively associated with amygdala volume. Results highlight the contribution of both subcortical and cortical brain alterations for subclinical psychopathy and are discussed in light of prior research and theoretical accounts about the neurobiological bases of psychopathic traits. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Investigation of microstructural alterations in M50 and 52100 steel using nanoindentation
NASA Astrophysics Data System (ADS)
Paulson, Kristin R.
Bearing steels are used in rolling elements and are designed to withstand heavy loads for an extended period of time. At the end of life, microstructural alterations within the material have been observed and are linked to failure. In this study, a three ball-on-rod fatigue tester was used to test M50 and 52100 steel cylindrical rods at differing loads of 4.0 GPa, 4.5 GPa, and 5.0 GPa and in lubricated and unlubricated conditions to 108 cycles in an attempt to produce microstructural alterations. Microstructural alterations characterized as butterflies were observed and investigated further in two M50 samples that were tested at 4.5 GPa to 10 8 cycles in the lubricated and unlubricated condition. Microstructural alterations characterized as dark etching regions (DER), and white etching bands (WEBs) were not observed. Additionally, hardness was investigated cross sectionally as a function of depth and location within the wear track produced by the fatigue test. No conclusive evidence was derived from the hardness measurements as a function of depth in relation to the formation of microstructural alterations or the stress experienced subsurface within the material. Hardness measurements performed specifically within a butterfly wing, however, returned hardness values significantly higher than the matrix hardness values.
Molecular Pathogenesis and Diagnostic, Prognostic and Predictive Molecular Markers in Sarcoma.
Mariño-Enríquez, Adrián; Bovée, Judith V M G
2016-09-01
Sarcomas are infrequent mesenchymal neoplasms characterized by notable morphological and molecular heterogeneity. Molecular studies in sarcoma provide refinements to morphologic classification, and contribute diagnostic information (frequently), prognostic stratification (rarely) and predict therapeutic response (occasionally). Herein, we summarize the major molecular mechanisms underlying sarcoma pathogenesis and present clinically useful diagnostic, prognostic and predictive molecular markers for sarcoma. Five major molecular alterations are discussed, illustrated with representative sarcoma types, including 1. the presence of chimeric transcription factors, in vascular tumors; 2. abnormal kinase signaling, in gastrointestinal stromal tumor; 3. epigenetic deregulation, in chondrosarcoma, chondroblastoma, and other tumors; 4. deregulated cell survival and proliferation, due to focal copy number alterations, in dedifferentiated liposarcoma; 5. extreme genomic instability, in conventional osteosarcoma as a representative example of sarcomas with highly complex karyotype. Copyright © 2016 Elsevier Inc. All rights reserved.
Wegert, Jenny; Vokuhl, Christian; Ziegler, Barbara; Ernestus, Karen; Leuschner, Ivo; Furtwängler, Rhoikos; Graf, Norbert
2017-01-01
Abstract TP53 mutations have been associated with anaplasia in Wilms tumour, which conveys a high risk for relapse and fatal outcome. Nevertheless, TP53 alterations have been reported in no more than 60% of anaplastic tumours, and recent data have suggested their presence in tumours that do not fulfil the criteria for anaplasia, questioning the clinical utility of TP53 analysis. Therefore, we characterized the TP53 status in 84 fatal cases of Wilms tumour, irrespective of histological subtype. We identified TP53 alterations in at least 90% of fatal cases of anaplastic Wilms tumour, and even more when diffuse anaplasia was present, indicating a very strong if not absolute coupling between anaplasia and deregulation of p53 function. Unfortunately, TP53 mutations do not provide additional predictive value in anaplastic tumours since the same mutation rate was found in a cohort of non‐fatal anaplastic tumours. When classified according to tumour stage, patients with stage I diffuse anaplastic tumours still had a high chance of survival (87%), but this rate dropped to 26% for stages II–IV. Thus, volume of anaplasia or possible spread may turn out to be critical parameters. Importantly, among non‐anaplastic fatal tumours, 26% had TP53 alterations, indicating that TP53 screening may identify additional cases at risk. Several of these non‐anaplastic tumours fulfilled some criteria for anaplasia, for example nuclear unrest, suggesting that such partial phenotypes should be under special scrutiny to enhance detection of high‐risk tumours via TP53 screening. A major drawback is that these alterations are secondary changes that occur only later in tumour development, leading to striking intratumour heterogeneity that requires multiple biopsies and analysis guided by histological criteria. In conclusion, we found a very close correlation between histological signs of anaplasia and TP53 alterations. The latter may precede development of anaplasia and thereby provide diagnostic value pointing towards aggressive disease. PMID:29085664
NASA Astrophysics Data System (ADS)
Frolova, J.; Ladygin, V.; Rychagov, S.; Shanina, V.; Blyumkina, M.
2009-04-01
This report is based on the results of petrophysical studies obtained on a number of hydrothermal systems in the Kuril-Kamchatka island arc (Pauzhetsky, Mutnovsky, Koshelevsky, Essovsky, a volcano of Ebeko, Oceansky). Mineral composition and pore-space structure of primary rocks change intensively during hydrothermal process, results in alteration of petrophysical properties - porosity, density, permeability, hygroscopy, sonic velocity, elastic modulus, mechanical properties, thermal and magnetic characteristics. Petrophysical alterations gradually lead to the change of the structure of hydrothermal system, and its hydrodynamic and temperature regime. The tendency of petrophysical alteration can be different. In some cases rocks "improvement" is observed i.e. consolidation, hardening, decrease of porosity and permeability, removal of hygroscopy. In other cases rocks "deterioration" occurs, i.e. formation of secondary porosity and permeability, a decrease of density, strength, and elastic modulus, and occurrence of hygroscopic moisture. The classical example of cardinal petrophysical alteration is the transformation of hard basalts to plastic clays. The opposite example is the transformation of only slightly consolidates porous tuffs to hard and dense secondary quartzite. The character of petrophysical alteration depends on a number of factors including peculiarities of primary rocks, temperature, pressure and composition of thermal fluids, duration of fluid-rock interaction, and condition of fluid (steam, water, boiling water). The contribution of each factor to change of volcanic rocks properties is considered and analyzed in details. In particular, primary rocks controls speed, intensity and character of petrophysical alterations. Factors favorable for alteration are high porosity and permeability, micro crakes, weak cementation, glassy structure, basaltic composition. Kuril-Kamchatka region represents the volcanic island arch so host rocks in hydrothermal systems are mainly volcanic or volcaniclastic types of Neogene-Quaternary age. Volcanic rocks (lava rocks) are dense with high strength and elastic modulus and low porosity and permeability. The speed of their alteration is low. Basically volcanic rocks form impermeable horizons in the structure of hydrothermal system. But sometimes they form fracture-type reservoir. The origin of fracturing can be various. Volcanoclastic rocks are characterized by lower physical and mechanical properties, higher porosity and permeability. Due to high porosity and permeability they are greatly exposed to thermal fluids so they are altered intensively. Volcaniclastic rocks are the most common host rocks of geothermal reservoirs. Typically they form porous or fracture-porous aquifers. But in some cases they form water confining layers. The well-studied example is Pauzhetskaya hydrothermal system. The main reservoir is composed of highly porous (30-40%) and permeable medium-grained tuffs. The caprock is composed of fine-grained argillized tuffs. They are highly porous but due to small pore size porosity is un-effective for fluid and permeability is low. The temperature and pressure in a hydrothermal system cardinally influence on rocks properties. High-temperature deep fluids (Т>200C) cause the perfect tendency of petrophysical alteration - consolidation, hardening, a decrease of porosity and permeability, and removal of a hygroscopic moisture. This petrophysical tendency is observed independently of composition of fluids. This is the result of the development of high-temperature secondary minerals, which fill pores and cracks, and substitute matrix and phenocrystals. The contacts between grains become strong and dense, intergranular porosity is disappeared that reinforces cementation of rock. The petrophysical alteration caused by low-temperature subsurface fluids (Т<150C) are more difficult and diverse. Depending on what process prevails - rocks leaching, sedimentation of secondary minerals in pores and cracks or replacement of primary minerals by secondary minerals, it can lead to both: an increase or a decrease in petrophysical properties. Financial support from RFBR (project 05-07-00118-a)
NASA Astrophysics Data System (ADS)
Krishnan, Vinoadh Kumar; Sinnaeruvadi, Kumaran
2016-10-01
Vanadium metal powders, ball milled with different surfactants viz., stearic acid, KCl and NaCl, have been studied by X-ray diffraction and transmission electron microscopy. The surfactants alter the microstructural and morphological characteristics of the powders. Ball milling with stearic acid results in solid-state amorphization, while powders milled with KCl yield vanadium-tungsten carbide nanocomposite mixtures. NaCl proved to be an excellent surfactant for obtaining nanostructured fusion-grade vanadium powders. In order to understand the reaction mechanism behind any interstitial addition in the ball-milled powders, CHNOS analysis was performed.
NASA Astrophysics Data System (ADS)
Lackschewitz, K. S.; Devey, C. W.; Stoffers, P.; Botz, R.; Eisenhauer, A.; Kummetz, M.; Schmidt, M.; Singer, A.
2004-11-01
During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges. The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite ± illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310°C; (2) chlorite ± mixed-layer clay alteration at temperatures of 230°C; (3) chlorite and illite alteration; (4) illite and chlorite ± illite mixed-layer alteration at temperatures of 250-260°C; and (5) illite ± chlorite alteration at 290-300°C. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at ˜250°C, overprinted by quartz veining at 350°C. In contrast, four alteration zones occur in Hole 1189B: (1) illite ± chlorite alteration formed at ˜300°C; (2) chlorite ± illite alteration at 235°C; (3) chlorite ± illite and mixed layer clay alteration; and (4) chlorite ± illite alteration at 220°C. Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly present in the pyrophyllites. Illite shows a significant enrichment for Cs and Cu relative to the bulk altered samples. Considerations of mineral stability allow us to place some constraints on fluid chemistry. Hydrothermal fluid pH for the chloritization and illitization was neutral to slightly acidic and relatively acidic for the pyrophyllite alteration. In general the fluids, especially from Roman Ruins and at intermediate depths below Snowcap, show only a small proportion of seawater mixing (<10%). Fluids in shallow and deep parts of the Snowcap holes, in contrast, show stronger seawater influence.
Kolb, Erik M; Kelly, Scott A; Garland, Theodore
2013-03-15
Exercise is known to be rewarding and have positive effects on mental and physical health. Excessive exercise, however, can be the result of an underlying behavioral/physiological addiction. Both humans who exercise regularly and rodent models of exercise addiction sometimes display behavioral withdrawal symptoms, including depression and anxiety, when exercise is denied. However, few studies have examined the physiological state that occurs during this withdrawal period. Alterations in blood pressure (BP) are common physiological indicators of withdrawal in a variety of addictions. In this study, we examined exercise withdrawal in four replicate lines of mice selectively bred for high voluntary wheel running (HR lines). Mice from the HR lines run almost 3-fold greater distances on wheels than those from non-selected control lines, and have altered brain activity as well as increased behavioral despair when wheel access is removed. We tested the hypothesis that male HR mice have an altered cardiovascular response (heart rate, systolic, diastolic, and mean arterial pressure [MAP]) during exercise withdrawal. Measurements using an occlusion tail-cuff system were taken during 8 days of baseline, 6 days of wheel access, and 2 days of withdrawal (wheel access blocked). During withdrawal, HR mice had significantly lower systolic BP, diastolic BP, and MAP than controls, potentially indicating a differential dependence on voluntary wheel running in HR mice. This is the first characterization of a cardiovascular withdrawal response in an animal model of high voluntary exercise. Copyright © 2013. Published by Elsevier Inc.
Modeling cancer metabolism on a genome scale
Yizhak, Keren; Chaneton, Barbara; Gottlieb, Eyal; Ruppin, Eytan
2015-01-01
Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome-scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network-level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field. PMID:26130389
Donofry, Shannon D; Roecklein, Kathryn A; Wildes, Jennifer E; Miller, Megan A; Erickson, Kirk I
2016-09-01
Major depression and eating disorders (EDs) are highly co-morbid and may share liability. Impaired emotion regulation may represent a common etiological or maintaining mechanism. Research has demonstrated that depressed individuals and individuals with EDs exhibit impaired emotion regulation, with these impairments being associated with changes in brain structure and function. The goal of this review was to evaluate findings from neuroimaging studies of depression and EDs to determine whether there are overlapping alterations in the brain regions known to be involved in emotion regulation, evidence of which would aid in the diagnosis and treatment of these conditions. Our review of the literature suggests that depression and EDs exhibit common structural and functional alterations in brain regions involved in emotion regulation, including the amygdala, ventral striatum and nucleus accumbens, anterior cingulate cortex, insula, and dorsolateral prefrontal cortex. We present preliminary support for a shared etiological mechanism. Future studies should consider manipulating emotion regulation in a sample of individuals with depression and EDs to better characterize abnormalities in these brain circuits. Copyright © 2016 Elsevier Ltd. All rights reserved.
Le Lay, Pascaline; Böddi, Béla; Kovacevic, Dragan; Juneau, Philippe; Dewez, David; Popovic, Radovan
2001-01-01
Effects of water deficit on the chlorophyllide (Chlide) transformation pathway were studied in etiolated barley (Hordeum vulgare) leaves by analyzing absorption spectra and 77-K fluorescence spectra deconvoluted in components. Chlide transformations were examined in dehydrated leaves exposed to a 35-ms saturating flash triggering protochlorophyllide (Pchlide) and Chlide transformation processes. During the 90 min following the flash, we found that dehydration induced modifications of Chlide transformations, but no effect on Pchlide phototransformation into Chlide was observed. During this time, content of NADPH-Pchlide oxydoreductase in leaves did not change. Chlide transformation process in dehydrated leaves was characterized by the alteration of the Shibata shift process, by the appearance of a new Chlide species emitting at 692 nm, and by the favored formation of Chl(ide) A668F676. The formation of Chl(ide) A668F676, so-called “free Chlide,” was probably induced by disaggregation of highly aggregated Chlide complexes. Here, we offer evidence for the alteration of photoactive Pchlide regeneration process, which may be caused by the desiccation-induced inhibition of Pchlide synthesis. PMID:11553748
NASA Astrophysics Data System (ADS)
Godyń, Katarzyna
2016-09-01
As regards the exploitation of hard coal seams, the near-fault zones and faults themselves are considered to be particularly dangerous areas, which is due to a high probability of the occurrence of gasogeodynamic phenomena. Tectonic dislocations running across a seam have a destructive impact on coal. Degradation of the coal structure, particularly visible in the microscale, is reflected in the coal's strength or gas properties. Such "structurally altered" coal is characterized by the presence of numerous fracturings, crushed areas, or dislocations of some of its fragments, and sometimes even the total destruction of the original structure. The present paper provides a detailed analysis and description of near-fault coal obtained from selected seams of the Upper Silesian Coal Basin, completed due to the application of optical methods. Both the type and the degree of changes in the structure of such coal were identified. On this basis, the author attempted to systematize the nomenclature used in relation to selected Upper Silesian hard coal seams, which, in turn, resulted in a proposed classification of the "altered structures" of the near-fault coal.
Genomic alterations and molecular subtypes of gastric cancers in Asians.
Ye, Xiang S; Yu, Chunping; Aggarwal, Amit; Reinhard, Christoph
2016-05-09
Gastric cancer (GC) is a highly heterogenic disease, and it is the second leading cause of cancer death in the world. Common chemotherapies are not very effective for GC, which often presents as an advanced or metastatic disease at diagnosis. Treatment options are limited, and the prognosis for advanced GCs is poor. The landscape of genomic alterations in GCs has recently been characterized by several international cancer genome programs, including studies that focused exclusively on GCs in Asians. These studies identified major recurrent driver mutations and provided new insights into the mutational heterogeneity and genetic profiles of GCs. An analysis of gene expression data by the Asian Cancer Research Group (ACRG) further uncovered four distinct molecular subtypes with well-defined clinical features and their intersections with actionable genetic alterations to which targeted therapeutic agents are either already available or under clinical development. In this article, we review the ACRG GC project. We also discuss the implications of the genetic and molecular findings from various GC genomic studies with respect to developing more precise diagnoses and treatment approaches for GCs.
Toxicology is increasingly focused on molecular events comprising adverse outcome pathways. Atrazine activates the hypothalamic-pituitary adrenal axis, but relationships to gonadal alterations are unknown. We characterized hormone profiles and adrenal (intact and castrate) and te...
Virus Innexins induce alterations in insect cell and tissue function
USDA-ARS?s Scientific Manuscript database
Polydnaviruses are dsDNA viruses that induce immune and developmental alterations in their caterpillar hosts. Characterization of polydnavirus gene families and family members is necessary to understand mechanisms of pathology and evolution of these viruses, and may aid to elucidate the role of host...
Rare endocrine cancers have novel genetic alterations
A molecular characterization of adrenocortical carcinoma, a rare cancer of the adrenal cortex, analyzed 91 cases for alterations in the tumor genomes and identified several novel genetic mutations as likely mechanisms driving the disease as well as whole genome doubling as a probable driver of the disease.
Sauer, Aisha V; Mrak, Emanuela; Hernandez, Raisa Jofra; Zacchi, Elena; Cavani, Francesco; Casiraghi, Miriam; Grunebaum, Eyal; Roifman, Chaim M; Cervi, Maria C; Ambrosi, Alessandro; Carlucci, Filippo; Roncarolo, Maria Grazia; Villa, Anna; Rubinacci, Alessandro; Aiuti, Alessandro
2009-10-08
Adenosine deaminase (ADA) deficiency is a disorder of the purine metabolism leading to combined immunodeficiency and systemic alterations, including skeletal abnormalities. We report that ADA deficiency in mice causes a specific bone phenotype characterized by alterations of structural properties and impaired mechanical competence. These alterations are the combined result of an imbalanced receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin axis, causing decreased osteoclastogenesis and an intrinsic defect of osteoblast function with subsequent low bone formation. In vitro, osteoblasts lacking ADA displayed an altered transcriptional profile and growth reduction. Furthermore, the bone marrow microenvironment of ADA-deficient mice showed a reduced capacity to support in vitro and in vivo hematopoiesis. Treatment of ADA-deficient neonatal mice with enzyme replacement therapy, bone marrow transplantation, or gene therapy resulted in full recovery of the altered bone parameters. Remarkably, untreated ADA-severe combined immunodeficiency patients showed a similar imbalance in RANKL/osteoprotegerin levels alongside severe growth retardation. Gene therapy with ADA-transduced hematopoietic stem cells increased serum RANKL levels and children's growth. Our results indicate that the ADA metabolism represents a crucial modulatory factor of bone cell activities and remodeling.
Dietary obesity caused by a specific circadian eating pattern.
Hariri, Niloofar; Thibault, Louise
2011-04-01
The eating pattern is altered by high-fat diet-induced obesity. To clarify whether this is dependent on the fatty acid profile of the diet, the authors conducted two studies on adult female Sprague-Dawley rats fed normal-fat chow or high-fat diets with varying fatty acid composition. Eating pattern and body weight were assessed in rats fed canola-based (low in saturated fatty acids) or lard-based (moderate in saturated fatty acids) diets for 7 days, and in animals fed chow or canola- or butter-based diets (rich in saturated fatty acids) for 43 days. These parameters were also determined when restricted amounts of low-fat canola- or butter-based diets were consumed for 25 days. Early exposure to canola or lard high-fat feeding or prolonged access to canola- or butter-based fat-rich diets (relative to chow feeding) did not alter the normal light-dark distribution of food and energy intake. All animals ingested most of their food during the dark phase. However, feeding the high-fat canola- and butter-based diets produced an altered eating pattern during the light phase characterized by a smaller number of meals, longer intermeal interval, and enhanced satiety ratio, and consumption of shorter-lasting meals than chow-fed animals. Relative to canola or chow feeding, butter-fed animals consumed a lower number of meals during the dark phase and had a higher eating rate in the light phase, but ate larger meals overall. Only butter feeding led to overeating and obesity. When given a restricted amount of low-fat canola- or butter-based diet at the start of the light phase, rats ate most of their food in that phase and diurnal rather than nocturnal feeding occurred with restriction. These findings underscore the role of saturated fatty acids and the resulting eating pattern alteration in the development of obesity.
Aqueous Alteration of Basalts: Earth, Moon, and Mars
NASA Technical Reports Server (NTRS)
Ming, Douglas W.
2007-01-01
The geologic processes responsible for aqueous alteration of basaltic materials on Mars are modeled beginning with our knowledge of analog processes on Earth, i.e., characterization of elemental and mineralogical compositions of terrestrial environments where the alteration and weathering pathways related to aqueous activity are better understood. A key ingredient to successful modeling of aqueous processes on Mars is identification of phases that have formed by those processes. The purpose of this paper is to describe what is known about the elemental and mineralogical composition of aqueous alteration products of basaltic materials on Mars and their implications for specific aqueous environments based upon our knowledge of terrestrial systems. Although aqueous alteration has not occurred on the Moon, it is crucial to understand the behaviors of basaltic materials exposed to aqueous environments in support of human exploration to the Moon over the next two decades. Several methods or indices have been used to evaluate the extent of basalt alteration/weathering based upon measurements made at Mars by the Mars Exploration Rover (MER) Moessbauer and Alpha Particle X-Ray Spectrometers. The Mineralogical Alteration Index (MAI) is based upon the percentage of total Fe (Fe(sub T)) present as Fe(3+) in alteration products (Morris et al., 2006). A second method is the evaluation of compositional trends to determine the extent to which elements have been removed from the host rock and the likely formation of secondary phases (Nesbitt and Young, 1992; Ming et al., 2007). Most of the basalts that have been altered by aqueous processes at the two MER landing sites in Gusev crater and on Meridiani Planum have not undergone extensive leaching in an open hydrolytic system with the exception of an outcrop in the Columbia Hills. The extent of aqueous alteration however ranges from relatively unaltered to pervasively altered materials. Several experimental studies have focused upon the aqueous alteration of lunar materials and simulants (e.g., Keller and Huang, 1971; Eick et al., 1996). Lunar basalts are void of water and highly reduced, hence, these materials are initially very reactive when exposed to water under oxidizing conditions.
MYD88 L265P mutation in Waldenstrom macroglobulinemia.
Poulain, Stéphanie; Roumier, Christophe; Decambron, Audrey; Renneville, Aline; Herbaux, Charles; Bertrand, Elisabeth; Tricot, Sabine; Daudignon, Agnès; Galiègue-Zouitina, Sylvie; Soenen, Valerie; Theisen, Olivier; Grardel, Nathalie; Nibourel, Olivier; Roche-Lestienne, Catherine; Quesnel, Bruno; Duthilleul, Patrick; Preudhomme, Claude; Leleu, Xavier
2013-05-30
Mutation of the MYD88 gene has recently been identified in activated B-cell-like diffuse cell lymphoma and enhanced Janus kinase/signal transducer and activator of transcription (JAK-STAT) and nuclear factor κB (NF-κB) signaling pathways. A whole exome-sequencing study of Waldenstrom macroglobulinemia (WM) suggested a high frequency of MYD88 L265P mutation in WM. The genetic background is not fully deciphered in WM, although the role of NF-κB and JAK-STAT has been demonstrated. We analyzed MYD88 mutation in exon 5 and characterized the clinical significance of this genetic alteration in 67 WM patients. Clinical features; immunophenotypic markers; and conventional cytogenetic, fluorescence in situ hybridization, and single nucleotide polymorphism array data were analyzed. MYD88 L265P mutation was acquired in 79% of patients. Overall, we have identified alteration of the MYD88 locus in 91% of WM patients, including 12% with gain on chromosome 3 at the 3p22 locus that included the MYD88 gene. Patients with absence of MYD88 mutation were WM characterized with a female predominance, a splenomegaly, gain of chromosome 3, and CD27 expression. Importantly, inhibition of MYD88 signaling induced cytotoxicity and inhibited cell growth of cell lines issued from patients with WM. In conclusion, these results confirm a high frequency of MYD88 L265P mutation in WM. The discovery of MYD88 L265P mutation may contribute to a better understanding of the physiopathogeny of WM.
Wang, Pengjiao; Shan, Ling; Xue, Liyan; Zheng, Bo; Ying, Jianming; Lu, Ning
2017-01-17
Superficial esophageal squamous cell carcinoma (ESCC) is generally considered a subtype of less invasive ESCC. Yet a subset of these superficial ESCC would have metastasis after esophagostomy or endoscopic resection and lead to poor prognosis. The objective of this study is to determine biomarkers that can identify such subset of superficial ESCC that would have metastasis after surgery using genome wide copy number alteration (CNA) analyses. The CNAs of 38 cases of superficial ESCCs originated from radical surgery, including 19 without metastasis and 19 with metastasis within 5 years' post-surgery, were analyzed using Affymetrix OncoScan™ FFPE Assay. A 39-gene signature was identified which characterized the subset of superficial ESCC with high risk of metastasis after surgery. In addition, recurrent CNAs of superficial ESCC were also investigated in the study. Amplification of 11q13.3 (FGF4) and deletion of 9p21.3 (CDKN2A) were found to be recurrent in all 38 superficial ESCCs analyzed. Notably amplifications of 3p26.33 (SOX2OT), 8q24.21 (MYC), 14q21.1 (FOXA1) and deletion of 3p12.1 (GBE1) were only found to be recurrent in metastaic superficial ESCCs. In conclusion, using CNAs analyses, we identify a 39-gene signature which characterizes the high risk metastatic superficial ESCCs and discover several recurrent CNAs that might be the driver alterations in metastasis among superficial ESCCs.
Xue, Liyan; Zheng, Bo; Ying, Jianming; Lu, Ning
2017-01-01
Superficial esophageal squamous cell carcinoma (ESCC) is generally considered a subtype of less invasive ESCC. Yet a subset of these superficial ESCC would have metastasis after esophagostomy or endoscopic resection and lead to poor prognosis. The objective of this study is to determine biomarkers that can identify such subset of superficial ESCC that would have metastasis after surgery using genome wide copy number alteration (CNA) analyses. The CNAs of 38 cases of superficial ESCCs originated from radical surgery, including 19 without metastasis and 19 with metastasis within 5 years’ post-surgery, were analyzed using Affymetrix OncoScan™ FFPE Assay. A 39-gene signature was identified which characterized the subset of superficial ESCC with high risk of metastasis after surgery. In addition, recurrent CNAs of superficial ESCC were also investigated in the study. Amplification of 11q13.3 (FGF4) and deletion of 9p21.3 (CDKN2A) were found to be recurrent in all 38 superficial ESCCs analyzed. Notably amplifications of 3p26.33 (SOX2OT), 8q24.21 (MYC), 14q21.1 (FOXA1) and deletion of 3p12.1 (GBE1) were only found to be recurrent in metastaic superficial ESCCs. In conclusion, using CNAs analyses, we identify a 39-gene signature which characterizes the high risk metastatic superficial ESCCs and discover several recurrent CNAs that might be the driver alterations in metastasis among superficial ESCCs. PMID:27974698
Sequencing-based breast cancer diagnostics as an alternative to routine biomarkers.
Rantalainen, Mattias; Klevebring, Daniel; Lindberg, Johan; Ivansson, Emma; Rosin, Gustaf; Kis, Lorand; Celebioglu, Fuat; Fredriksson, Irma; Czene, Kamila; Frisell, Jan; Hartman, Johan; Bergh, Jonas; Grönberg, Henrik
2016-11-30
Sequencing-based breast cancer diagnostics have the potential to replace routine biomarkers and provide molecular characterization that enable personalized precision medicine. Here we investigate the concordance between sequencing-based and routine diagnostic biomarkers and to what extent tumor sequencing contributes clinically actionable information. We applied DNA- and RNA-sequencing to characterize tumors from 307 breast cancer patients with replication in up to 739 patients. We developed models to predict status of routine biomarkers (ER, HER2,Ki-67, histological grade) from sequencing data. Non-routine biomarkers, including mutations in BRCA1, BRCA2 and ERBB2(HER2), and additional clinically actionable somatic alterations were also investigated. Concordance with routine diagnostic biomarkers was high for ER status (AUC = 0.95;AUC(replication) = 0.97) and HER2 status (AUC = 0.97;AUC(replication) = 0.92). The transcriptomic grade model enabled classification of histological grade 1 and histological grade 3 tumors with high accuracy (AUC = 0.98;AUC(replication) = 0.94). Clinically actionable mutations in BRCA1, BRCA2 and ERBB2(HER2) were detected in 5.5% of patients, while 53% had genomic alterations matching ongoing or concluded breast cancer studies. Sequencing-based molecular profiling can be applied as an alternative to histopathology to determine ER and HER2 status, in addition to providing improved tumor grading and clinically actionable mutations and molecular subtypes. Our results suggest that sequencing-based breast cancer diagnostics in a near future can replace routine biomarkers.
Signorino, Giulia; Covaceuszach, Sonia; Bozzi, Manuela; Hübner, Wolfgang; Mönkemöller, Viola; Konarev, Petr V; Cassetta, Alberto; Brancaccio, Andrea; Sciandra, Francesca
2018-02-01
Dystroglycan (DG) is a cell adhesion complex composed by two subunits, the highly glycosylated α-DG and the transmembrane β-DG. In skeletal muscle, DG is involved in dystroglycanopathies, a group of heterogeneous muscular dystrophies characterized by a reduced glycosylation of α-DG. The genes mutated in secondary dystroglycanopathies are involved in the synthesis of O-mannosyl glycans and in the O-mannosylation pathway of α-DG. Mutations in the DG gene (DAG1), causing primary dystroglycanopathies, destabilize the α-DG core protein influencing its binding to modifying enzymes. Recently, a homozygous mutation (p.Cys699Phe) hitting the β-DG ectodomain has been identified in a patient affected by muscle-eye-brain disease with multicystic leucodystrophy, suggesting that other mechanisms than hypoglycosylation of α-DG could be implicated in dystroglycanopathies. Herein, we have characterized the DG murine mutant counterpart by transfection in cellular systems and high-resolution microscopy. We observed that the mutation alters the DG processing leading to retention of its uncleaved precursor in the endoplasmic reticulum. Accordingly, small-angle X-ray scattering data, corroborated by biochemical and biophysical experiments, revealed that the mutation provokes an alteration in the β-DG ectodomain overall folding, resulting in disulfide-associated oligomerization. Our data provide the first evidence of a novel intracellular mechanism, featuring an anomalous endoplasmic reticulum-retention, underlying dystroglycanopathy. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gil, C.; Pomes, R.; Nombela, C.
1990-05-01
Several Candida albicans morphological mutants were obtained by a procedure based on a combined treatment with nitrous acid plus UV irradiation and a double-enrichment step to increase the proportion of mutants growing as long filamentous structures. Altered cell morphogenesis in these mutants correlated with an altered colonial phenotype. Two of these mutants, C. albicans NEL102 and NEL103, were selected and characterized. Mutant blastoconidia initiated budding but eventually gave rise to filamentous hypha-type formations. These filaments were long and septate, and they branched very regularly at positions near septa. Calcofluor white (which is known to bind chitin-rich areas) stained septa, branchingmore » zones, and filament tips very intensely, as observed under the fluorescence microscope. Wild-type hybrids were obtained by fusing protoplasts of strain NEL102 with B14, another morphological mutant previously described as being permanently pseudomycelial, indicating that genetic determinants responsible for the two altered phenotypes are different. The mutants characterized in this work seemed to sequentially express the morphogenic characteristics of C. albicans, from blastoconidia to hyphae, in the absence of any inducer. Further characterization of these strains could be relevant to gain understanding of the genetic control of dimorphism in this species.« less
Fredebohm, Johannes; Boettcher, Michael; Eisen, Christian; Gaida, Matthias M.; Heller, Anette; Keleg, Shereen; Tost, Jörg; Greulich-Bode, Karin M.; Hotz-Wagenblatt, Agnes; Lathrop, Mark; Giese, Nathalia A.; Hoheisel, Jörg D.
2012-01-01
Standard cancer cell lines do not model the intratumoural heterogeneity situation sufficiently. Clonal selection leads to a homogeneous population of cells by genetic drift. Heterogeneity of tumour cells, however, is particularly critical for therapeutically relevant studies, since it is a prerequisite for acquiring drug resistance and reoccurrence of tumours. Here, we report the isolation of a highly tumourigenic primary pancreatic cancer cell line, called JoPaca-1 and its detailed characterization at multiple levels. Implantation of as few as 100 JoPaca-1 cells into immunodeficient mice gave rise to tumours that were histologically very similar to the primary tumour. The high heterogeneity of JoPaca-1 was reflected by diverse cell morphology and a substantial number of chromosomal aberrations. Comparative whole-genome sequencing of JoPaca-1 and BxPC-3 revealed mutations in genes frequently altered in pancreatic cancer. Exceptionally high expression of cancer stem cell markers and a high clonogenic potential in vitro and in vivo was observed. All of these attributes make this cell line an extremely valuable model to study the biology of and pharmaceutical effects on pancreatic cancer. PMID:23152778
The molecular genetic makeup of acute lymphoblastic leukemia.
Mullighan, Charles G
2012-01-01
Genomic profiling has transformed our understanding of the genetic basis of acute lymphoblastic leukemia (ALL). Recent years have seen a shift from microarray analysis and candidate gene sequencing to next-generation sequencing. Together, these approaches have shown that many ALL subtypes are characterized by constellations of structural rearrangements, submicroscopic DNA copy number alterations, and sequence mutations, several of which have clear implications for risk stratification and targeted therapeutic intervention. Mutations in genes regulating lymphoid development are a hallmark of ALL, and alterations of the lymphoid transcription factor gene IKZF1 (IKAROS) are associated with a high risk of treatment failure in B-ALL. Approximately 20% of B-ALL cases harbor genetic alterations that activate kinase signaling that may be amenable to treatment with tyrosine kinase inhibitors, including rearrangements of the cytokine receptor gene CRLF2; rearrangements of ABL1, JAK2, and PDGFRB; and mutations of JAK1 and JAK2. Whole-genome sequencing has also identified novel targets of mutation in aggressive T-lineage ALL, including hematopoietic regulators (ETV6 and RUNX1), tyrosine kinases, and epigenetic regulators. Challenges for the future are to comprehensively identify and experimentally validate all genetic alterations driving leukemogenesis and treatment failure in childhood and adult ALL and to implement genomic profiling into the clinical setting to guide risk stratification and targeted therapy.
NASA Technical Reports Server (NTRS)
Vaughan, Greg R.; Calvin, Wendy M.
2005-01-01
To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of acidic drainage that were identified remotely.
Nguyen, H V; Meile, J-C; Lebrun, M; Caruso, D; Chu-Ky, S; Sarter, S
2018-03-01
The threat of bacterial resistance to antibiotics has created an urgent need to develop new antimicrobials. The aim of this study was to characterize the chemical diversity of Litsea cubeba leaf essential oil (EO) and its impacts on the antibacterial activity against pathogenic bacteria. Essential oils collected from seven provinces in North Vietnam (n = 25) were characterized by their high content in either 1,8-cineole or linalool. Linalool-type EOs were more effective against the eight bacterial strains tested than 1,8-cineole-type. Oil samples, LC19 (50% 1,8-cineole) and BV27 (94% linalool), were selected to investigate their antibacterial mechanisms against Escherichia coli. A strong bactericidal effect was observed after 4 and 2 h of exposure respectively. Microscopic analysis of treated E. coli cultures clearly showed that EOs caused changes in cell morphology, loss of integrity and permeability of the cell membrane, as well as DNA loss. However, the effects of both EOs were distinct. LC19 mostly affected cell membrane, led to a significant cell filamentation rate and altered cell width, whereas BV27 damaged cell membrane integrity leading to cell permeabilization and altered nucleoid morphology with the appearance of spot and visibly altered compaction. This study aimed to characterize the chemical diversity of Litsea cubeba leaf essential oil (EO) and its impacts on its antibacterial activity. Two major chemotypes (1,8-cineole or linalool rich) were identified in North Vietnam and both were bactericidal against several pathogenic bacteria. A distinct inhibitory effect of EO samples on Escherichia coli was observed. 1,8-cineole-rich sample (LC19) affected cell membrane, led to cell filamentation and perturbation of cell width, while the linalool-rich one (BV27) induced damages in the cell membrane and changes in the nucleoid morphology. The study demonstrates the importance of considering chemotype variations in terms of chemical composition as well as the mode of action. © 2017 The Society for Applied Microbiology.
Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Cholinergic transmission is involved in auditory structures in the periphery and the brainstem and is altered following chlorpyrifos exposure. This study e...
Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Visual disturbances are often reported following exposure to xenobiotics, and cholinesterase-inhibiting compounds have been reported to alter visual functi...
NASA Astrophysics Data System (ADS)
Chambefort, Isabelle; Moritz, Robert; von Quadt, Albrecht
2007-10-01
The Chelopech deposit is one of the largest European gold deposits and is located 60 km east of Sofia, within the northern part of the Panagyurishte mineral district. It lies within the Banat-Srednegorie metallogenic belt, which extends from Romania through Serbia to Bulgaria. The magmatic rocks define a typical calc-alkaline suite. The magmatic rocks surrounding the Chelopech deposit have been affected by propylitic, quartz-sericite, and advanced argillic alteration, but the igneous textures have been preserved. Alteration processes have resulted in leaching of Na2O, CaO, P2O5, and Sr and enrichment in K2O and Rb. Trace element variation diagrams are typical of subduction-related volcanism, with negative anomalies in high field strength elements (HFSE) and light element, lithophile elements. HFSE and rare earth elements were relatively immobile during the hydrothermal alteration related to ore formation. Based on immobile element classification diagrams, the magmatic rocks are andesitic to dacitic in compositions. Single zircon grains, from three different magmatic rocks spanning the time of the Chelopech magmatism, were dated by high-precision U-Pb geochronology. Zircons of an altered andesitic body, which has been thrust over the deposit, yield a concordant 206Pb/238U age of 92.21 ± 0.21 Ma. This age is interpreted as the crystallization age and the maximum age for magmatism at Chelopech. Zircon analyses of a dacitic dome-like body, which crops out to the north of the Chelopech deposit, give a mean 206Pb/238U age of 91.95 ± 0.28 Ma. Zircons of the andesitic hypabyssal body hosting the high-sulfidation mineralization and overprinted by hydrothermal alteration give a concordant 206Pb/238U age of 91.45 ± 0.15 Ma. This age is interpreted as the intrusion age of the andesite and as the maximum age of the Chelopech epithermal high-sulfidation deposit. 176Hf/177Hf isotope ratios of zircons from the Chelopech magmatic rocks, together with published data on the Chelopech area and the about 92-Ma-old Elatsite porphyry-Cu deposit, suggest two different magma sources in the Chelopech-Elatsite magmatic area. Magmatic rocks associated with the Elatsite porphyry-Cu deposit and the dacitic dome-like body north of Chelopech are characterized by zircons with ɛHfT90 values of ˜5, which suggest an important input of mantle-derived magma. Some zircons display lower ɛHfT90 values, as low as -6, and correlate with increasing 206Pb/238U ages up to about 350 Ma, suggesting assimilation of basement rocks during magmatism. In contrast, zircon grains in andesitic rocks from Chelopech are characterized by homogeneous 176Hf/177Hf isotope ratios with ɛHfT90 values of ˜1 and suggest a homogeneous mixed crust-mantle magma source. We conclude that the Elatsite porphyry-Cu and the Chelopech high-sulfidation epithermal deposits were formed within a very short time span and could be partly contemporaneous. However, they are related to two distinct upper crustal magmatic reservoirs, and they cannot be considered as a genetically paired porphyry-Cu and high-sulfidation epithermal related to a single magmatic-hydrothermal system centered on the same intrusion.
NASA Astrophysics Data System (ADS)
Saheb, Mandana; Chabas, Anne; Mertz, Jean-Didier; Rozenbaum, Olivier; Verney-Carron, Aurélie
2015-04-01
This project belongs to a specific work aiming at developing isotopic tools to better understand the alteration of materials used in the built cultural heritage. It is focused on the study of the alteration of limestone used in the facades of historic buildings subject to atmospheric polluted environment. Actually in the elevated parts of the buildings, water as rainfall (runoff or wet deposition) or in vapor form (condensation or dry deposition) is the main agent of alteration. Thus, the rock/water interactions need to be well understood to propose adapted solution to better preserve the buildings. To identify the water transfer within the porous limestone and locate the reaction preferential sites, two isotopic tracers (D and 18O) are used to monitor the alteration solution (D) and locate the zones containing the secondary phases (18O). The Saint-Maximin limestone used in many monuments in the suburbs of Paris (France) as a building and restoration stone has been specifically studied. Pristine materials, stones from monuments (monuments in the Paris area) and samples altered in laboratory constitute the analytical corpus to compare different stages of alteration. In a first step the stones are characterized at different scales to identify the alteration pattern (SEM-EDS, Raman microspectrometry, XRD, rugosimetry) and study the water transfers (X-ray tomography, mercury porosimetry, imbibition kinetics). The samples are then altered in the laboratory by realistic and controlled wet or dry deposition using isotopically labeled solutions to locate the reaction zones by SIMS. The multiscale characterization of the alteration pattern has allowed proposing alteration mechanisms linked to the properties of the stones and their location inside the building. Moreover, the location of the reactive zones inside the materials determined by the isotopic experiments helps examining the role of the evolution of porosity and formation of alteration products within the material, in order to estimate the alteration rate. This innovative methodology will contribute to improve the knowledge of stone alteration processes in order to develop appropriate conservation strategies for the buildings.
FAMBRINI, MARCO; BONSIGNORI, ELISA; RAPPARINI, FRANCESCA; CIONINI, GIULIANO; MICHELOTTI, VANIA; BERTINI, DANIELE; BARALDI, RITA; PUGLIESI, CLAUDIO
2006-01-01
• Background and Aims Plant lateral organs such as leaves arise from a group of initial cells within the flanks of the shoot apical meristem (SAM). Alterations in the initiation of lateral organs are often associated with changes in the dimension and arrangement of the SAM as well as with abnormal hormonal homeostasis. A mutation named stem fasciated (stf) that affects various aspects of plant development, including SAM shape and auxin level, was characterized in sunflower (Helianthus annuus). • Methods F1, F2 and F3 generations were obtained through reciprocal crosses between stf and normal plants. For the genetic analysis, a χ2 test was used. Phenotypic observations were made in field-grown and potted plants. A histological analysis of SAM, hypocotyl, epicotyl, stem and root apical meristem was also conducted. To evaluate the level of endogenous indole-3-acetic acid (IAA), a capillary gas chromatography–mass spectrometry–selected ion monitoring analysis was performed. • Key Results stf is controlled by a single nuclear recessive gene. stf plants are characterized by a dramatically increased number of leaves and vascular bundles in the stem, as well as by a shortened plastochron and an altered phyllotaxis pattern. By histological analysis, it was demonstrated that the stf phenotype is related to an enlarged vegetative SAM. Microscopy analysis of the mutant's apex also revealed an abnormal enlargement of nuclei in both central and peripheral zones and a disorganized distribution of cells in the L2 layer of the central zone. The stf mutant showed a high endogenous free IAA level, whereas auxin perception appeared normal. • Conclusions The observed phenotype and the high level of auxin detected in stf plants suggest that the STF gene is necessary for the proper initiation of primordia and for the establishment of a phyllotactic pattern through control of both SAM arrangement and hormonal homeostasis. PMID:16845141
Behavioral effects of heavy ions and protons and potential countermeasure agents
NASA Astrophysics Data System (ADS)
Vazquez, M.; Gatley, J.; Bruneus, M.; Koslosky, S.; Billups, A.
Space travel beyond the Earth's protective magnetic field (for example, to Mars) will involve exposure of astronauts to irradiation by high-energy nuclei such as 56 Fe, which are a component of galactic cosmic rays. These particles have high linear energy transfer (LET) and are expected to irreversibly damage cells they traverse. Exposure to HZE radiation may therefore cause progressive deterioration of brain function, adding to other inescapable damage involved in normal aging. We propose a study of the hypothesis that long-term behavioral alterations are induced after exposure of the brain to 1 GeV/n iron and silicon particles with fluences of 1 to 8 particles/cell targets. Previous studies support this notion but are not definitive, especially with regard to long-term effects. Our principal goal is to examine the neurological effects of high-LET radiation on C57BL/6 mice using a series of behavioral tests to unveil the temporal expression of altered behaviors in the radiation response, as well as the means, which can modulate these responses. The studies planned in this project are designed to: 1) Characterize the behavioral consequences after exposure to low-fluences of heavy ions and protons on C57BL/6 mice. The main behavioral endpoints to be used in these studies are locomotor activity to evaluate the integrity of striatal dopaminergic pathways, and spatial reference memory to probe hippocampal cholinergic pathways. 2) Characterize the neurochemical and structural changes induced by heavy ions and protons. 3) To develop countermeasures to protect neural cell populations exposed to low fluences of heavy ions and protons. The project will test methods to protect injured neural cells based on their molecular and cellular mechanisms that may regulate neural cell survival in the central nervous system. Among the methods that will be studied is the direct administration of neuroprotective molecules as well as the modulation of apoptotic pathways by pharmacological manipulation. The effects of 3 different neuro/radioprotectors (GM1, melatonin and PTF-) on the levels of radiation induced neurochemical and structural damage will be compared with the level of behavioral alterations to determine a cause/effect relationship
Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress
Papale, Ligia A.; Li, Sisi; Madrid, Andy; Zhang, Qi; Chen, Li; Chopra, Pankaj; Jin, Peng; Keleş, Sündüz; Alisch, Reid S.
2016-01-01
Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders. While it is well known that acute environmental stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive epigenetic modification that is highly enriched in neurons and is associated with active neuronal transcription. Recently, we reported a genome-wide disruption of hippocampal 5hmC in male mice following acute stress that was correlated to altered transcript levels of genes in known stress related pathways. Since sex-specific endocrine mechanisms respond to environmental stimulus by altering the neuronal epigenome, we examined the genome-wide profile of hippocampal 5hmC in female mice following exposure to acute stress and identified 363 differentially hydroxymethylated regions (DhMRs) linked to known (e.g., Nr3c1 and Ntrk2) and potentially novel genes associated with stress response and psychiatric disorders. Integration of hippocampal expression data from the same female mice found stress-related hydroxymethylation correlated to altered transcript levels. Finally, characterization of stress-induced sex-specific 5hmC profiles in the hippocampus revealed 778 sex-specific acute stress-induced DhMRs some of which were correlated to altered transcript levels that produce sex-specific isoforms in response to stress. Together, the alterations in 5hmC presented here provide a possible molecular mechanism for the adaptive sex-specific response to stress that may augment the design of novel therapeutic agents that will have optimal effectiveness in each sex. PMID:27576189
Korsak, A; Chaikovsky, Yu; Sokurenko, L; Likhodiievskyi, V; Neverovskyi, A
2016-02-01
A new experimental model for tissues connection at peripheral nerve injury site in form of tissues welding was designed. In current study we investigated motoneuron state 1, 3, 6 and 12 weeks after peripheral nerve injury and surgical repair with high-frequency electrosurgical technology. Spinal cord sections was stained by Nissl method and observed with light microscopy. We found that postoperative period in animals from experimental groups characterized by qualitative changes in neurons from spinal motor centers that can be interpreted as compensatory processes as response to alteration. In animals from group with high-frequency electrosurgical technology usage stabilization processes passes more quickly comparatively to animals with epineural sutures. High-frequency electrosurgical technology usage provides less harmful effects on motoneurons than epineural suturing.
Shapiro, John P; Komar, Hannah M; Hancioglu, Baris; Yu, Lianbo; Jin, Ming; Ogata, Yuko; Hart, Phil A; Cruz-Monserrate, Zobeida; Lesinski, Gregory B; Conwell, Darwin L
2017-01-01
Objectives: Chronic pancreatitis (CP) is characterized by inflammation and fibrosis of the pancreas, leading to pain, parenchymal damage, and loss of exocrine and endocrine function. There are currently no curative therapies; diagnosis remains difficult and aspects of pathogenesis remain unclear. Thus, there is a need to identify novel biomarkers to improve diagnosis and understand pathophysiology. We hypothesize that pancreatic acinar regions contain proteomic signatures relevant to disease processes, including secreted proteins that could be detected in biofluids. Methods: Acini from pancreata of mice injected with or without caerulein were collected using laser capture microdissection followed by mass spectrometry analysis. This protocol enabled high-throughput analysis that captured altered protein expression throughout the stages of CP. Results: Over 2,900 proteins were identified, whereas 331 were significantly changed ≥2-fold by mass spectrometry spectral count analysis. Consistent with pathogenesis, we observed increases in proteins related to fibrosis (e.g., collagen, P<0.001), several proteases (e.g., trypsin 1, P<0.001), and altered expression of proteins associated with diminished pancreas function (e.g., lipase, amylase, P<0.05). In comparison with proteomic data from a public data set of CP patients, a significant correlation was observed between proteomic changes in tissue from both the caerulein model and CP patients (r=0.725, P<0.001). CONCLUSIONS: This study illustrates the ability to characterize proteome changes of acinar cells isolated from pancreata of caerulein-treated mice and demonstrates a relationship between signatures from murine and human CP. PMID:28406494
McCauley, Laurie K; Tözüm, Tolga F; Rosol, Thomas J
2002-01-01
Estrogens have long been known to be important for skeletal homeostasis, but their precise mechanisms of action in bone are still unclear. Mice with targeted deletions of the estrogen receptors alpha (ERalpha) and beta (ERbeta) have been generated by two research groups and several studies performed characterizing the phenotype of ERalpha knockout (ERKOalpha), ERbeta knockout (ERKObeta), or double deletion of ERalpha and ERbeta (DERKO) mice. Initial studies reported a reduction in bone mineral density in male ERKOalpha mice. More extensive analyses have been puzzling, likely because of compensatory mechanisms in ERKO mice. Furthermore, the existence of a third ER continues to be a potential explanation for some actions of estrogen in bone. Other rodent models, including the testicular feminized mouse and rat, the aromatase knockout mouse, and a rat with a dominant negative ER mutation, have added information regarding estrogen's actions in bone. This review summarizes many reports characterizing available rodent models with genetic alterations relevant to estrogen action. The sum of these reports suggests that the ERbeta is not highly protective in bone because loss of its function results in minimal alterations in the skeleton. Furthermore, loss of both the ERalpha and the ERbeta does not account for loss of estrogen action in bone, because the impact of DERKO is seemingly not as great as the impact of gonadectomy on the skeleton. Finally, through studies of ERKO mice and other rodent models of altered sex steroid action, it appears that estrogen may be more protective in the skeleton than androgens.
A Comparative Review of microRNA Expression Patterns in Autism Spectrum Disorder.
Hicks, Steven D; Middleton, Frank A
2016-01-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by a wide spectrum of deficits in social interaction, communication, and behavior. There is a significant genetic component to ASD, yet no single gene variant accounts for >1% of incidence. Posttranscriptional mechanisms such as microRNAs (miRNAs) regulate gene expression without altering the genetic code. They are abundant in the developing brain and are dysregulated in children with ASD. Patterns of miRNA expression are altered in the brain, blood, saliva, and olfactory precursor cells of ASD subjects. The ability of miRNAs to regulate broad molecular pathways in response to environmental stimuli makes them an intriguing player in ASD, a disorder characterized by genetic predisposition with ill-defined environmental triggers. In addition, the availability and extracellular stability of miRNAs make them an ideal candidate for biomarker discovery. Here, we discuss 27 miRNAs with overlap across ASD studies, including 3 miRNAs identified in 3 or more studies (miR-23a, miR-146a, and miR-106b). Together, these 27 miRNAs have 1245 high-confidence mRNA targets, a significant number of which are expressed in the brain. Furthermore, these mRNA targets demonstrate over-representation of autism-related genes with enrichment of neurotrophic signaling molecules. Brain-derived neurotrophic factor, a molecule involved in hippocampal neurogenesis and altered in ASD, is targeted by 6 of the 27 miRNAs of interest. This neurotrophic pathway represents one intriguing mechanism by which perturbations in miRNA signaling might influence central nervous system development in children with ASD.
Manteiga, Sara; Lee, Kyongbum
2016-01-01
Background: A growing body of evidence links endocrine-disrupting chemicals (EDCs) with obesity-related metabolic diseases. While it has been shown that EDCs can predispose individuals toward adiposity by affecting developmental processes, little is known about the chemicals’ effects on adult adipose tissue. Objectives: Our aim was to study the effects of low, physiologically relevant doses of EDCs on differentiated murine adipocytes. Methods: We combined metabolomics, proteomics, and gene expression analysis to characterize the effects of mono-ethylhexyl phthalate (MEHP) in differentiated adipocytes. Results: Repeated exposure to MEHP over several days led to changes in metabolite and enzyme levels indicating elevated lipogenesis and lipid oxidation. The chemical exposure also increased expression of major inflammatory cytokines, including chemotactic factors. Proteomic and gene expression analysis revealed significant alterations in pathways regulated by peroxisome proliferator activated receptor-γ (PPARγ). Inhibiting the nuclear receptor’s activity using a chemical antagonist abrogated not only the alterations in PPARγ-regulated metabolic pathways, but also the increases in cytokine expression. Conclusions: Our results show that MEHP can induce a pro-inflammatory state in differentiated adipocytes. This effect is at least partially mediated PPARγ. Citation: Manteiga S, Lee K. 2017. Monoethylhexyl phthalate elicits an inflammatory response in adipocytes characterized by alterations in lipid and cytokine pathways. Environ Health Perspect 125:615–622; http://dx.doi.org/10.1289/EHP464 PMID:27384973
Postdoctoral Fellow | Center for Cancer Research
A postdoctoral training position in translational cancer biology is currently available in the Laboratory of Genitourinary Cancer Pathogenesis (LGCP) of the National Cancer Institute (NCI). The position is located in the laboratory of David VanderWeele M.D., Ph.D., whose research group uses in vitro and in vivo functional studies and pathology specimens and next-generation sequencing data to identify and target drivers of prostate cancer progression. The laboratory is interested in characterizing clinically significant, potentially lethal prostate cancer. We are specifically interested in molecular alterations that drive progression of subclones to dominance development of metastatic disease and characterizing therapeutic vulnerabilities. Current work is aimed at using xenograft and organoid models to further characterize the role of putative drivers of progression, and to develop ways to target these alterations.
McGuigan, Megan; Waite, J Hunter; Imanaka, Hiroshi; Sacks, Richard D
2006-11-03
The reddish brown haze that surrounds Titan, Saturn's largest moon, is thought to consist of tholin-like organic aerosols. Tholins are complex materials of largely unknown structure. The very high peak capacity and structured chromatograms obtained from comprehensive two-dimensional GC (GC x GC) are attractive attributes for the characterization of tholin pyrolysis products. In this report, GC x GC with time-of-flight MS detection and a flash pyrolysis inlet is used to characterize tholin pyrolysis products. Identified pyrolysis products include low-molecular-weight nitriles, alkyl substituted pyrroles, linear and branched hydrocarbons, alkyl-substituted benzenes and PAH compounds. The pyrolysis of standards found in tholin pyrolysate showed that little alteration occurred and thus these structures are likely present in the tholin material.
Quartz-molybdenite veins in the Priestly Lake granodiorite, north-central Maine
Ayuso, Robert A.; Shank, Stephen G.
1983-01-01
Quartz-molybdenite veins up to 15 cm in width occur in fine to medium-grained porphyritic biotite-hornblende granodiorite at Priestly Lake north-central Maine. An area of about 150 m x 150 m contains quartz-molybdenite veins; a larger area is characterized by barren quartz veins. Quartz-molybdenite veins are concentrated within the most felsic variants of the intrusion as suggested by lower mafic mineral contents. The pluton has a narrow range in SiO2 (67-70 wt.%), major oxides, and in trace-element compositions. Molybdenite occurs as coarse grained clusters in pockets within the quartz veins, and fills fractures in the quartz veins and host rocks. Disseminated molybdenite in the granodiorite is relatively rare and occurs only in the area characterized by a high density of quartz veins (up to 50 veins per square meter). Alteration envelopes along the quartz veins are very thin or absent, although in some areas the granodiorite appears to be selectively and pervasively altered. Sericite, chlorite, epidote, calcite, pyrite, and quartz are concentrated near the quartz-molybdenite veins. Many of the field and geochemical characteristics of the Priestly Lake pluton are unlike those of major molybdenum-producing areas (Climax, Henderson, Urad). For example, the area of alteration seems to be of limited extent, the host rock is not intensely altered hydrothermally at the surface, the density of fractures is rather low in the mineralized area, and the amount of disseminated molybdenite appears to be small. However, the Priestly Lake pluton may be a small fraction of a concealed batholith as suggested by geophysical data. It is conceivable that the type of mineralization at the surface might be the expression of more extensive molybdenite mineralization at depth. The quartz-molybdenite veins in the Priestly Lake pluton are significant because they indicate that potential molybdenum sources for producing mineralized granites were available at depth. Future studies should be aimed at delineating the area of quartz-molybdenite mineralization, documenting hydrothermal alteration and zonation, determining fracture density, and evaluating the sulfide assemblage.
Purification and biophysical characterization of the core protease domain of anthrax lethal factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gkazonis, Petros V.; Dalkas, Georgios A.; Chasapis, Christos T.
2010-06-04
Anthrax lethal toxin (LeTx) stands for the major virulence factor of the anthrax disease. It comprises a 90 kDa highly specific metalloprotease, the anthrax lethal factor (LF). LF possesses a catalytic Zn{sup 2+} binding site and is highly specific against MAPK kinases, thus representing the most potent native biomolecule to alter and inactivate MKK [MAPK (mitogen-activated protein kinase) kinases] signalling pathways. Given the importance of the interaction between LF and substrate for the development of anti-anthrax agents as well as the potential treatment of nascent tumours, the analysis of the structure and dynamic properties of the LF catalytic site aremore » essential to elucidate its enzymatic properties. Here we report the recombinant expression and purification of a C-terminal part of LF (LF{sub 672-776}) that harbours the enzyme's core protease domain. The biophysical characterization and backbone assignments ({sup 1}H, {sup 13}C, {sup 15}N) of the polypeptide revealed a stable, well folded structure even in the absence of Zn{sup 2+}, suitable for high resolution structural analysis by NMR.« less
Characterization of Escherichia coli Type 1 Pilus Mutants with Altered Binding Specificities
Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Hamrick, Terri S.; Horton, John R.; Orndorff, Paul E.
2001-01-01
PCR mutagenesis and a unique enrichment scheme were used to obtain two mutants, each with a single lesion in fimH, the chromosomal gene that encodes the adhesin protein (FimH) of Escherichia coli type 1 pili. These mutants were noteworthy in part because both were altered in the normal range of cell types bound by FimH. One mutation altered an amino acid at a site previously shown to be involved in temperature-dependent binding, and the other altered an amino acid lining the predicted FimH binding pocket. PMID:11395476
Schwaenen, Carsten; Nessling, Michelle; Wessendorf, Swen; Salvi, Tatjana; Wrobel, Gunnar; Radlwimmer, Bernhard; Kestler, Hans A.; Haslinger, Christian; Stilgenbauer, Stephan; Döhner, Hartmut; Bentz, Martin; Lichter, Peter
2004-01-01
B cell chronic lymphocytic leukemia (B-CLL) is characterized by a highly variable clinical course. Recurrent chromosomal imbalances provide significant prognostic markers. Risk-adapted therapy based on genomic alterations has become an option that is currently being tested in clinical trials. To supply a robust tool for such large scale studies, we developed a comprehensive DNA microarray dedicated to the automated analysis of recurrent genomic imbalances in B-CLL by array-based comparative genomic hybridization (matrix–CGH). Validation of this chip in a series of 106 B-CLL cases revealed a high specificity and sensitivity that fulfils the criteria for application in clinical oncology. This chip is immediately applicable within clinical B-CLL treatment trials that evaluate whether B-CLL cases with distinct chromosomal abnormalities should be treated with chemotherapy of different intensities and/or stem cell transplantation. Through the control set of DNA fragments equally distributed over the genome, recurrent genomic imbalances were discovered: trisomy of chromosome 19 and gain of the MYCN oncogene correlating with an elevation of MYCN mRNA expression. PMID:14730057
NASA Astrophysics Data System (ADS)
Galgani, L.; Engel, A.
2015-12-01
The coastal upwelling system off Peru is characterized by high biological activity and a pronounced subsurface oxygen minimum zone, as well as associated emissions of atmospheric trace gases such as N2O, CH4 and CO2. During the Meteor (M91) cruise to the Peruvian upwelling system in 2012, we investigated the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like Chromophoric Dissolved Organic Matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. In order to understand organic matter cycling in surface films, we analyzed SML and underlying water samples at 38 stations determining DOC concentration, amino acid composition, marine gels, CDOM and bacterial and phytoplankton abundance as indicators of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slope (S) values and Excitation-Emission Matrix fluorescence (EEMs), which allow to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources and sinks. We identified five fluorescent components of the CDOM pool, of which two had excitation/emission characteristics of protein-like fluorophores and were highly enriched in the SML. CDOM composition and changes in spectral slope properties suggested a local microbial release of HMW DOM directly in the SML as a response to light exposure in this extreme environment. Our results suggest that microbial and photochemical processes play an important role for the production, alteration and loss of optically active substances in the SML.
Schulte, Simone Laura; Waha, Andreas; Steiger, Barbara; Denkhaus, Dorota; Dörner, Evelyn; Calaminus, Gabriele; Leuschner, Ivo; Pietsch, Torsten
2016-01-01
CNS germinomas represent a unique germ cell tumor entity characterized by undifferentiated tumor cells and a high response rate to current treatment protocols. Limited information is available on their underlying genomic, epigenetic and biological alterations. We performed a genome-wide analysis of genomic copy number alterations in 49 CNS germinomas by molecular inversion profiling. In addition, CpG dinucleotide methylation was studied by immunohistochemistry for methylated cytosine residues. Mutational analysis was performed by resequencing of candidate genes including KIT and RAS family members. Ras/Erk and Akt pathway activation was analyzed by immunostaining with antibodies against phospho-Erk, phosho-Akt, phospho-mTOR and phospho-S6. All germinomas coexpressed Oct4 and Kit but showed an extensive global DNA demethylation compared to other tumors and normal tissues. Molecular inversion profiling showed predominant genomic instability in all tumors with a high frequency of regional gains and losses including high level gene amplifications. Activating mutations of KIT exons 11, 13, and 17 as well as a case with genomic KIT amplification and activating mutations or amplifications of RAS gene family members including KRAS, NRAS and RRAS2 indicated mutational activation of crucial signaling pathways. Co-activation of Ras/Erk and Akt pathways was present in 83% of germinomas. These data suggest that CNS germinoma cells display a demethylated nuclear DNA similar to primordial germ cells in early development. This finding has a striking coincidence with extensive genomic instability. In addition, mutational activation of Kit-, Ras/Raf/Erk- and Akt- pathways indicate the biological importance of these pathways and their components as potential targets for therapy. PMID:27391150
Chronic Ethanol Intake Alters Circadian Phase Shifting and Free-Running Period in Mice
Seggio, Joseph A.; Fixaris, Michael C.; Reed, Jeffrey D.; Logan, Ryan W.; Rosenwasser, Alan M.
2011-01-01
Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker—including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli—in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes. PMID:19625732
[Melatonin, synthetic analogs, and the sleep/wake rhythm].
Escames, G; Acuña-Castroviejo, D
Melatonin, a widespread hormone in the animal kingdom, is produced by several organs and tissues besides the pineal gland. Whilst extrapineal melatonin behaves as a cytoprotective molecule, the pineal produces the hormone in a rhythmic manner. The discovery of melatonin in 1958, and the characterization of its synthesis somewhat later, let to the description of its photoperiodic regulation and its relationship with the biological rhythms such as the sleep/wake rhythm. The suprachiasmatic nuclei are the anatomical seat of the biological clock, represented by the clock genes, which code for the period and frequency of the rhythms. The photoperiod synchronizes the activity of the auprachiasmatic biological clock, which in turn induces the melatonin's rhythm. The rhythm of melatonin, peaking at 2-3 am, acts as an endogenous synchronizer that translates the environmental photoperiodic signal in chemical information for the cells. The sleep/wake cycle is a typical biological rhythm synchronized by melatonin, and the sleep/wake cycle alterations of chronobiological origin, are very sensitive to melatonin treatment. Taking advantage of the chronobiotic and antidepressive properties of melatonin, a series of synthetic analogs of this hormone, with high interest in insomnia, are now available. Melatonin is a highly effective chronobiotic in the treatment of chronobiological alterations of the sleep/wake cycle. From a pharmacokinetic point of view, the synthetic drugs derived from melatonin are interesting tools in the therapy of these alterations.
Huang, Rong; Xue, Xinli; Li, Shengxian; Wang, Yuying; Sun, Yun; Liu, Wei; Yin, Huiyong; Tao, Tao
2018-03-30
The metabolism of polyunsaturated fatty acids (PUFAs) remains poorly characterized in ovarian tissues of patients with polycystic ovary syndrome (PCOS). This study aimed to explore alterations in the levels of PUFAs and their metabolites in serum and ovarian tissues in a PCOS rat model treated with a high-fat diet and andronate. Levels of PUFAs and their metabolites were measured using gas/liquid chromatography-mass spectrometry after the establishment of a PCOS rat model. Only 3 kinds of PUFAs [linoleic acid, arachidonic acid (AA) and docosahexaenoic acid] were detected in both the circulation and ovarian tissues of the rats, and their concentrations were lower in ovarian tissues than in serum. Moreover, significant differences in the ovarian levels of AA were observed between control, high-fat diet-fed and PCOS rats. The levels of prostaglandins, AA metabolites via the cyclooxygenase (COX) pathway, in ovarian tissues of the PCOS group were significantly increased compared to those in the controls. Further studies on the mechanism underlying this phenomenon showed a correlation between decreased expression of phosphorylated cytosolic phospholipase A2 (p-cPLA2) and increased mRNA and protein expression of COX2, potentially leading to a deeper understanding of altered AA and prostaglandin levels in ovarian tissues of PCOS rats. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Chronic ethanol intake alters circadian phase shifting and free-running period in mice.
Seggio, Joseph A; Fixaris, Michael C; Reed, Jeffrey D; Logan, Ryan W; Rosenwasser, Alan M
2009-08-01
Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker--including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli--in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes.
A systems model for immune cell interactions unravels the mechanism of inflammation in human skin.
Valeyev, Najl V; Hundhausen, Christian; Umezawa, Yoshinori; Kotov, Nikolay V; Williams, Gareth; Clop, Alex; Ainali, Crysanthi; Ouzounis, Christos; Tsoka, Sophia; Nestle, Frank O
2010-12-02
Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.
Metabolic drift in the aging brain.
Ivanisevic, Julijana; Stauch, Kelly L; Petrascheck, Michael; Benton, H Paul; Epstein, Adrian A; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E; Boska, Michael D; Gendelman, Howard E; Fox, Howard S; Siuzdak, Gary
2016-05-01
Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energymetabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication.
The Impact of Neonatal Illness on Nutritional Requirements—One Size Does Not Fit All
Ramel, Sara E.; Brown, Laura D.
2015-01-01
Sick neonates are at high risk for growth failure and poorer neurodevelopment than their healthy counterparts. The etiology of postnatal growth failure in sick infants is likely multi-factorial and includes undernutrition due to the difficulty of feeding them during their illness and instability. Illness also itself induces fundamental changes in cellular metabolism that appear to significantly alter nutritional demand and nutrient handling. Inflammation and physiologic stress play a large role in inducing the catabolic state characteristic of the critically ill newborn infant. Inflammatory and stress responses are critical short-term adaptations to promote survival, but are not conducive to promoting long-term growth and development. Conditions such as sepsis, surgery, necrotizing enterocolitis, chronic lung disease and intrauterine growth restriction and their treatments are characterized by altered energy, protein and micronutrient metabolism that result in nutritional requirements that are different from those of the healthy, growing term or preterm infant. PMID:25722954
Hemothorax in vascular Ehlers-Danlos syndrome.
Álvarez, Kevin; Jordi, López; Jose Angel, Hernández
2017-10-16
Vascular Ehlers-Danlos syndrome (EDS IV) is a rare genetic disorder characterized by an alteration in the COL3A1 gene which encodes type III collagen. It is the most common type of collagen in vessels of medium size and certain organs such as the intestines and the uterus. The alteration of this type of collagen produces aneurisms and ruptures of vessels and organs. A high level of clinical suspicion is required for diagnosis. It is a complex disease whose management requires a multidisciplinary team to treat the different complications that may occur. We report the case of a 50-year-old man diagnosed with EDS IV detected incidentally after hemothorax secondary to a coughing spell. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.
Imaging natural materials with a quasi-microscope. [spectrophotometry of granular materials
NASA Technical Reports Server (NTRS)
Bragg, S.; Arvidson, R.
1977-01-01
A Viking lander camera with auxilliary optics mounted inside the dust post was evaluated to determine its capability for imaging the inorganic properties of granular materials. During mission operations, prepared samples would be delivered to a plate positioned within the camera's field of view and depth of focus. The auxiliary optics would then allow soil samples to be imaged with an 11 pm pixel size in the broad band (high resolution, black and white) mode, and a 33 pm pixel size in the multispectral mode. The equipment will be used to characterize: (1) the size distribution of grains produced by igneous (intrusive and extrusive) processes or by shock metamorphism, (2) the size distribution resulting from crushing, chemical alteration, or by hydraulic or aerodynamic sorting; (3) the shape and degree of grain roundness and surface texture induced by mechanical and chemical alteration; and (4) the mineralogy and chemistry of grains.
Functions of ocular surface mucins in health and disease
Mantelli, Flavio; Argüeso, Pablo
2009-01-01
Purpose of review The purpose of the present review is to describe new concepts on the role of mucins in the protection of corneal and conjunctival epithelia and to identify alterations of mucins in ocular surface diseases. Recent findings New evidence indicates that gel-forming and cell surface-associated mucins contribute differently to the protection of the ocular surface against allergens, pathogens, extracellular molecules, abrasive stress, and drying. Summary Mucins are high molecular weight glycoproteins characterized by their extensive O-glycosylation. Major mucins expressed by the ocular surface epithelia include cell surface-associated mucins MUC1, -4 and -16, and the gel-forming mucin MUC5AC. Recent advances using functional assays have allowed the examination of their roles in the protection of corneal and conjunctival epithelia. Alterations in mucin and mucin O-glycan biosynthesis in ocular surface disorders, including allergy, non-autoimmune dry eye, autoimmune dry eye, and infection, are presented. PMID:18769205
Modulation of post-antibiotic bacterial community reassembly and host response by Candida albicans.
Erb Downward, John R; Falkowski, Nicole R; Mason, Katie L; Muraglia, Ryan; Huffnagle, Gary B
2013-01-01
The introduction of Candida albicans into cefoperazone-treated mice results in changes in bacterial community reassembly. Our objective was to use high-throughput sequencing to characterize at much greater depth the specific changes in the bacterial microbiome. The colonization of C. albicans significantly altered bacterial community reassembly that was evident at multiple taxonomic levels of resolution. There were marked changes in the levels of Bacteriodetes and Lactobacillaceae. Lachnospiraceae and Ruminococcaceae, the two most abundant bacterial families, did not change in relative proportions after antibiotics, but there were marked genera-level shifts within these two bacterial families. The microbiome shifts occurred in the absence of overt intestinal inflammation. Overall, these experiments demonstrate that the introduction of a single new microbe in numerically inferior numbers into the bacterial microbiome during a broad community disturbance has the potential to significantly alter the subsequent reassembly of the bacterial community as it recovers from that disturbance.
Trousil, Sebastian; Lee, Patrizia; Pinato, David J; Ellis, James K; Dina, Roberto; Aboagye, Eric O; Keun, Hector C; Sharma, Rohini
2014-12-01
Metabolic rearrangements subsequent to malignant transformation are not well characterized in endometrial cancer. Identification of altered metabolites could facilitate imaging-guided diagnosis, treatment surveillance, and help to identify new therapeutic options. Here, we used high-resolution magic angle spinning magnetic resonance mass spectroscopy on endometrial cancer surgical specimens and normal endometrial tissue to investigate the key modulators that might explain metabolic changes, incorporating additional investigations using qRT-PCR, Western blotting, tissue microarrays (TMA), and uptake assays of [(3)H]-labeled choline. Lipid metabolism was severely dysregulated in endometrial cancer with various amino acids, inositols, nucleobases, and glutathione also altered. Among the most important lipid-related alterations were increased phosphocholine levels (increased 70% in endometrial cancer). Mechanistic investigations revealed that changes were not due to altered choline transporter expression, but rather due to increased expression of choline kinase α (CHKA) and an activated deacylation pathway, as indicated by upregulated expression of the catabolic enzymes LYPLA1, LYPLA2, and GPCPD1. We confirmed the significance of CHKA overexpression on a TMA, including a large series of endometrial hyperplasia, atypical hyperplasia, and adenocarcinoma tissues, supporting a role for CHKA in malignant transformation. Finally, we documented several-fold increases in the uptake of [(3)H]choline in endometrial cancer cell lines compared with normal endometrial stromal cells. Our results validate deregulated choline biochemistry as an important source of noninvasive imaging biomarkers for endometrial cancer. ©2014 American Association for Cancer Research.
Sol, E-ri M; Hovsepyan, Meri; Bergsten, Peter
2009-01-01
Background Development of type 2 diabetes mellitus (T2DM) is characterized by aberrant insulin secretory patterns, where elevated insulin levels at non-stimulatory basal conditions and reduced hormonal levels at stimulatory conditions are major components. To delineate mechanisms responsible for these alterations we cultured INS-1E cells for 48 hours at 20 mM glucose in absence or presence of 0.5 mM palmitate, when stimulatory secretion of insulin was reduced or basal secretion was elevated, respectively. Results After culture, cells were protein profiled by SELDI-TOF-MS and 2D-PAGE. Differentially expressed proteins were discovered and identified by peptide mass fingerprinting. Complimentary protein profiles were obtained by the two approaches with SELDI-TOF-MS being more efficient in separating proteins in the low molecular range and 2D-PAGE in the high molecular range. Identified proteins included alpha glucosidase, calmodulin, gars, glucose-6-phosphate dehydrogenase, heterogenous nuclear ribonucleoprotein A3, lon peptidase, nicotineamide adenine dinucleotide hydrogen (NADH) dehydrogenase, phosphoglycerate kinase, proteasome p45, rab2, pyruvate kinase and t-complex protein. The observed glucose-induced differential protein expression pattern indicates enhanced glucose metabolism, defense against reactive oxygen species, enhanced protein translation, folding and degradation and decreased insulin granular formation and trafficking. Palmitate-induced changes could be related to altered exocytosis. Conclusion The identified altered proteins indicate mechanism important for altered β-cell function in T2DM. PMID:19607692
Assessment of the Alteration of Granitic Rocks and its Influence on Alkalis Release
NASA Astrophysics Data System (ADS)
Ferraz, Ana Rita; Fernandes, Isabel; Soares, Dora; Santos Silva, António; Quinta-Ferreira, Mário
2017-12-01
Several concrete structures had shown signs of degradation some years after construction due to internal expansive reactions. Among these reactions there are the alkali-aggregate reactions (AAR) that occur between the aggregates and the concrete interstitial fluids which can be divided in two types: the alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR). The more common is the ASR which occurs when certain types of reactive silica are present in the aggregates. In consequence, an expansive alkali-silica gel is formed leading to the concrete cracking and degradation. Granites are rocks composed essentially of quartz, micas and feldspars, the latter being the minerals which contain more alkalis in their structure and thus, able to release them in conditions of high alkalinity. Although these aggregates are of slow reaction, some structures where they were applied show evidence of deterioration due to ASR some years or decades after the construction. In the present work, the possible contribution of granitic aggregates to the interstitial fluids of concrete by alkalis release was studied by performing chemical attack with NaOH and KOH solutions. Due to the heterogeneity of the quarries in what concerns the degree of alteration and/or fracturing, rock samples with different alteration were analysed. The alteration degree was characterized both under optical microscope and image analysis and compared with the results obtained from the chemical tests. It was concluded that natural alteration reduces dramatically the releasable alkalis available in the rocks.
NASA Astrophysics Data System (ADS)
Krupnik, D.; Khan, S.; Crockett, M.
2017-12-01
Understanding the origin, genesis, as well as depositional and structural mechanisms of gold mineralization as well as detailed mapping of gold-bearing mineral phases at centimeter scale can be useful for exploration. This work was conducted in the Goldstrike mining district near St. George, UT, a structurally complex region which contains Carlin-style disseminated gold deposits in permeable sedimentary layers near high-angle fault zones. These fault zones are likely a conduit for gold-bearing hydrothermal fluids, are silicified, and are frequently gold-bearing. Alteration patterns are complex, difficult to distinguish visually, composed of several phases, and vary significantly over centimeter to meter scale distances. This makes identifying and quantifying the extent of the target zones costly, time consuming, and discontinuous with traditional geochemical methods. A ground-based hyperspectral scanning system with sensors collecting data in the Visible Near Infrared (VNIR) and Short-Wave Infrared (SWIR) portions of the electromagnetic spectrum are utilized for close-range outcrop scanning. Scans were taken of vertical exposures of both gold-bearing and barren silicified rocks (jasperoids), with the intent to produce images which delineate and quantify the extent of each phase of alteration, in combination with discrete geochemical data. This ongoing study produces mineralogical maps of surface minerals at centimeter scale, with the intent of mapping original and alteration minerals. This efficient method of outcrop characterization increases our understanding of fluid flow and alteration of economic deposits.
High-resolution characterization of a hepatocellular carcinoma genome.
Totoki, Yasushi; Tatsuno, Kenji; Yamamoto, Shogo; Arai, Yasuhito; Hosoda, Fumie; Ishikawa, Shumpei; Tsutsumi, Shuichi; Sonoda, Kohtaro; Totsuka, Hirohiko; Shirakihara, Takuya; Sakamoto, Hiromi; Wang, Linghua; Ojima, Hidenori; Shimada, Kazuaki; Kosuge, Tomoo; Okusaka, Takuji; Kato, Kazuto; Kusuda, Jun; Yoshida, Teruhiko; Aburatani, Hiroyuki; Shibata, Tatsuhiro
2011-05-01
Hepatocellular carcinoma, one of the most common virus-associated cancers, is the third most frequent cause of cancer-related death worldwide. By massively parallel sequencing of a primary hepatitis C virus-positive hepatocellular carcinoma (36× coverage) and matched lymphocytes (>28× coverage) from the same individual, we identified more than 11,000 somatic substitutions of the tumor genome that showed predominance of T>C/A>G transition and a decrease of the T>C substitution on the transcribed strand, suggesting preferential DNA repair. Gene annotation enrichment analysis of 63 validated non-synonymous substitutions revealed enrichment of phosphoproteins. We further validated 22 chromosomal rearrangements, generating four fusion transcripts that had altered transcriptional regulation (BCORL1-ELF4) or promoter activity. Whole-exome sequencing at a higher sequence depth (>76× coverage) revealed a TSC1 nonsense substitution in a subpopulation of the tumor cells. This first high-resolution characterization of a virus-associated cancer genome identified previously uncharacterized mutation patterns, intra-chromosomal rearrangements and fusion genes, as well as genetic heterogeneity within the tumor.
Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models
Gargiulo, Sara; Gramanzini, Matteo; Mancini, Marcello
2016-01-01
Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE−/− and ApoE−/−Fbn1C1039G+/− mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies. PMID:27618031
Veligdan, J.T.
1994-03-08
An ultra short (<10 ps), high power laser pulse is temporally characterized by a system that uses a physical measurement of a wavefront that has been altered in a known manner. The system includes a first reflection switch to remove a portion of a pulse from a beam of pulses, then includes a second reflection switch, operating in a mode that is opposite to the first reflection switch, to slice off a portion of that removed portion. The sliced portion is then directed to a measuring device for physical measurement. The two reflection switches are arranged with respect to each other and with respect to the beam of ultra short pulses such that physical measurement of the sliced portion is related to the temporal measurement of the ultra short pulse by a geometric or trigonometric relationship. The reflection switches are operated by a control pulse that is directed to impinge on each of the reflection switches at a 90[degree] angle of incidence. 8 figures.
Veligdan, James T.
1994-01-01
An ultra short (<10 ps), high power laser pulse is temporally characterized by a system that uses a physical measurement of a wavefront that has been altered in a known manner. The system includes a first reflection switch to remove a portion of a pulse from a beam of pulses, then includes a second reflection switch, operating in a mode that is opposite to the first reflection switch, to slice off a portion of that removed portion. The sliced portion is then directed to a measuring device for physical measurement. The two reflection switches are arranged with respect to each other and with respect to the beam of ultra short pulses such that physical measurement of the sliced portion is related to the temporal measurement of the ultra short pulse by a geometric or trigonometric relationship. The reflection switches are operated by a control pulse that is directed to impinge on each of the reflection switches at a 90.degree. angle of incidence.
A novel marker in pregnant with preeclampsia: renalase.
Yılmaz, Zehra Vural; Akkaş, Elif; Yıldırım, Tolga; Yılmaz, Rahmi; Erdem, Yunus
2017-04-01
Preeclampsia is characterized by an increase in high blood pressure and decrease in GFR and proteinuria, however, the underlying mechanisms are still unclear. Renalase is a recently discovered protein implicated in regulation of blood pressure in humans. Plasma concentrations of serum renalase were measured in healthy controls, healthy pregnant and pregnant with preeclampsia matched for age, gestational age, in the third trimester of pregnancy. Serum renalase levels were compared in pregnant with and without preeclampsia and non-pregnant controls. Factors associated with serum renalase levels in pregnancies were also evaluated. In healthy pregnant serum renalase levels were significantly higher than in controls. However, pregnant with preeclampsia had lower renalase levels than healthy controls. Serum renalase levels were inversely associated with blood pressure levels and positively correlated with glomerular filtration rate. The results indicated that the development of preeclampsia in pregnant is accompanied by altered serum renalase levels. High blood pressure and kidney damage that characterize this disorder are mediated at least in part by low renalase levels.
Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabaras, Nicolas J.
2016-11-08
Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.
Lucero, D; Olano, C; Bursztyn, M; Morales, C; Stranges, A; Friedman, S; Macri, E V; Schreier, L; Zago, V
2017-05-24
Insulin-resistance (IR), of increased cardiovascular risk, is characterized by the production of altered VLDL with greater atherogenicity. Dietary fatty acids influence the type of circulating VLDL. But, it is not clear how dietary fatty acids impact VLDL characteristics in IR. to evaluate the effects of n-3, n-6 and n-9 fatty acid supplementation on preventing atherogenic alterations in VLDL, in a diet-induced IR rat model. Male Wistar rats (180-200 g) were fed: standard diet (control, n = 8) and a sucrose rich diet (30% sucrose in water/12 weeks, SRD; n = 24). Simultaneously, SRD was subdivided into SRD-C (standard diet), and three other groups supplemented (15% w/w) with: fish oil (SRD-n3), sunflower oil (SRD-n6) and high oleic sunflower oil (SRD-n9). Lipid profile, free fatty acids, glucose, and insulin were measured. Isolated VLDL (d < 1.006 g ml -1 ) was characterized by chemical composition and size (size exclusion-HPLC). In comparison with SRD-C: SRD-n3 showed an improved lipoprotein profile (p < 0.01), with lower levels of insulin and HOMA-IR (p < 0.05). SRD-n6 showed increased levels of HDL-cholesterol and lower insulin levels. SRD-n9 did not exhibit differences in lipid and IR profile, and even favored weight gain and visceral fat. Only SRD-n3 prevented the alterations in VLDL-TG% (54.2 ± 4.4% vs. 68.6 ± 8.2, p < 0.05) and showed lower large VLDL-% (22.5[19.7-35.6] vs. 49.1[15.5-82.0], p < 0.05), while SRD-n6 and SRD-n9 did not show effects. In IR, while n-3 PUFA showed expected favorable effects, supplementation with n-6 PUFA and n-9 MUFA did not prevent atherogenic alterations of VLDL. Thus, the recommendations of supplementation with these fatty acids in general diet should be revised.
Resilience of arctic mycorrhizal fungal communities after wildfire facilitated by resprouting shrubs
Rebecca E. Hewitt; Elizabeth Bent; Teresa N. Hollingsworth; F. Stuart Chapin; D. Lee Taylor
2013-01-01
Climate-induced changes in the tundra fire regime are expected to alter shrub abundance and distribution across the Arctic. However, little is known about how fire may indirectly impact shrub performance by altering mycorrhizal symbionts. We used molecular tools, including ARISA and ITS sequencing, to characterize the mycorrhizal communities on resprouting ...
Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Cholinergic transmission is involved in sensory modulation in the cortex and cerebellum, and therefore may be altered following chlorpyrifos (CPF) exposure...
Elmasri, Wael A; Zhu, Rui; Peng, Wenjing; Al-Hariri, Moustafa; Kobeissy, Firas; Tran, Phat; Hamood, Abdul N; Hegazy, Mohamed F; Paré, Paul W; Mechref, Yehia
2017-07-07
Growth inhibition of the pathogen Staphylococcus aureus with currently available antibiotics is problematic in part due to bacterial biofilm protection. Although recently characterized natural products, including 3',4',5-trihydroxy-6,7-dimethoxy-flavone [1], 3',4',5,6,7-pentahydroxy-flavone [2], and 5-hydroxy-4',7-dimethoxy-flavone [3], exhibit both antibiotic and biofilm inhibitory activities, the mode of action of such hydroxylated flavonoids with respect to S. aureus inhibition is yet to be characterized. Enzymatic digestion and high-resolution MS analysis of differentially expressed proteins from S. aureus with and without exposure to antibiotic flavonoids (1-3) allowed for the characterization of global protein alterations induced by metabolite treatment. A total of 56, 92, and 110 proteins were differentially expressed with bacterial exposure to 1, 2, or 3, respectively. The connectivity of the identified proteins was characterized using a search tool for the retrieval of interacting genes/proteins (STRING) with multitargeted S. aureus inhibition of energy metabolism and biosynthesis by the assayed flavonoids. Identifying the mode of action of natural products as antibacterial agents is expected to provide insight into the potential use of flavonoids alone or in combination with known therapeutic agents to effectively control S. aureus infection.
Fabrication and Characterization of Thermite Reactive Nano-Laminates
NASA Astrophysics Data System (ADS)
Lee, Evyn; Maria, Jon-Paul; Matveev, Sergey; Dlott, Dana; Rost, Christina; Hopkins, Patrick
2017-06-01
Results of fabrication and characterization of thermite reactive nano-laminates (RNLs) via magnetron sputtering will be presented. The samples were created in a bilayer geometry of a metal and metal oxide at varied thicknesses to alter the amount of interfacial area readily available to participate in the reaction. Two systems were investigated to characterize the RNL system: Al/CuO and Zr/CuO. The Al/CuO system was fabricated at a constant overall stack thickness of nearly one micron with varied numbers of bilayers (one to seven). Thermal conductivity and interface conductance of the Al/CuO system were investigated via time-domain thermoreflectance (TDTR). The Zr/CuO system was also fabricated at varying bilayer thickness and was characterized via high throughput shock studies to characterize the oxygen transfer process at short time scales. Emissions were obtained via a flyer plate impact at velocities ranging 0.5- 2 km s-1 at durations of 4-16 ns. The reaction impact threshold was found to be at velocities lower than 0.7(+/-0.05) km s-1. At impact velocities above the threshold, the reaction onset is seen at approximately 1 μs. ARO MURI: Multimodal energy flow at atomically engineered interfaces.
75 FR 22868 - Withdrawal of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... Characterization of Seismic Sources and Determination of Safe Shutdown Earthquake Ground Motion.'' FOR FURTHER.... Nuclear Regulatory Commission (NRC) is withdrawing RG 1.165, ``Identification and Characterization of... alter the licensing basis of any currently operating reactor or any of the currently issued early site...
Browning phenomenon of medieval stained glass windows.
Ferrand, Jessica; Rossano, Stéphanie; Loisel, Claudine; Trcera, Nicolas; van Hullebusch, Eric D; Bousta, Faisl; Pallot-Frossard, Isabelle
2015-04-07
In this work, three pieces of historical on-site glass windows dated from the 13th to 16th century and one archeological sample (8th century) showing Mn-rich brown spots at their surface or subsurface have been characterized by optical microscopy and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy. The oxidation state of Mn as well as the Mn environment in the alteration phase have been characterized by X-ray absorption spectroscopy at the Mn K-edge. Results show that the oxidation state of Mn and therefore the nature of the alteration phase varies according to the sample considered and is correlated with the extent of the brown alteration. The larger the brown areas the more oxidized the Mn. However, by contrast with literature, the samples presenting the more extended brown areas are not similar to pyrolusite and contain Mn mainly under a (+III) oxidation state.
Patel, Mira P; Siu, Vincent; Silva-Garcia, Abel; Xu, Qing; Li, Zhe; Oksenberg, Donna
2018-01-01
Hemoglobin (Hb) is a critical molecule necessary for all vertebrates to maintain aerobic metabolism. Hb-oxygen (O 2 ) affinity modifiers have been studied to address various diseases including sickle cell disease, hypoxemia, tumor hypoxia, and wound healing. However, drug development of exogenous Hb modifiers has been hindered by the lack of a technique to rapidly screen compounds for their ability to alter Hb-O 2 affinity. We have developed a novel screening assay based upon the spectral changes observed during Hb deoxygenation and termed it the oxygen dissociation assay (ODA). ODA allows for the quantitation of oxygenated Hb at given time points during Hb deoxygenation on a 96-well plate. This assay was validated by comparing the ability of 500 Hb modifiers to alter the Hb-O 2 affinity in the ODA vs the oxygen equilibrium curves obtained using the industry standard Hemox Analyzer instrument. A correlation ( R 2 ) of 0.7 indicated that the ODA has the potential to screen and identify potent exogenous Hb modifiers. In addition, it allows for concurrent comparison of compounds, concentrations, buffers, or pHs on the level of Hb oxygenation. With a cost-effective, simple, rapid, and highly adaptable assay, the ODA will allow researchers to rapidly characterize Hb-O 2 affinity modifiers.
Lemos, C; Rial, D; Gonçalves, F Q; Pires, J; Silva, H B; Matheus, F C; da Silva, A C; Marques, J M; Rodrigues, R J; Jarak, I; Prediger, R D; Reis, F; Carvalho, R A; Pereira, F C; Cunha, R A
2016-02-19
High sugar consumption is a risk factor for metabolic disturbances leading to memory impairment. Thus, rats subject to high sucrose intake (HSu) develop a metabolic syndrome and display memory deficits. We now investigated if these HSu-induced memory deficits were associated with metabolic and electrophysiological alterations in the hippocampus. Male Wistar rats were submitted for 9 weeks to a sucrose-rich diet (35% sucrose solution) and subsequently to a battery of behavioral tests; after sacrifice, their hippocampi were collected for ex vivo high-resolution magic angle spinning (HRMAS) metabolic characterization and electrophysiological extracellular recordings in slices. HSu rats displayed a decreased memory performance (object displacement and novel object recognition tasks) and helpless behavior (forced swimming test), without altered locomotion (open field). HRMAS analysis indicated a similar hippocampal metabolic profile of HSu and control rats. HSu rats also displayed no change of synaptic transmission and plasticity (long-term potentiation) in hippocampal Schaffer fibers-CA1 pyramid synapses, but had decreased amplitude of long-term depression in the temporoammonic (TA) pathway. Furthermore, HSu rats had an increased density of inhibitory adenosine A1 receptors (A1R), that translated into a greater potency of A1R in Schaffer fiber synapses, but not in the TA pathway, whereas the endogenous activation of A1R in HSu rats was preserved in the TA pathway but abolished in Schaffer fiber synapses. These results suggest that HSu triggers a hippocampal-dependent memory impairment that is not associated with altered hippocampal metabolism but is probably related to modified synaptic plasticity in hippocampal TA synapses. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Laboratory Simulation of Electrical Discharge in Surface Lunar Regolith
NASA Astrophysics Data System (ADS)
Shusterman, M.; Izenberg, N.; Wing, B. R.; Liang, S.
2016-12-01
Physical, chemical, and optical characteristics of space-weathered surface materials on airless bodies are produced primarily from bombardment by solar energetic particles and micrometeoroid impacts. On bodies such as the Moon and Mercury, soils in permanently shadowed regions (PSRs) are very cold, have low electrical conductivities, and are subjected to a high flux of incoming energetic particles accelerated by solar events. Theoretical models predict that up to 25% of gardened soils in the lunar polar regions are altered by dielectric breakdown; a potentially significant weathering process that is currently unconfirmed. Although electrical properties of lunar soils have been studied in relation to flight electronics and spacecraft safety, no studies have characterized potential alterations to soils resulting from electrical discharge. To replicate the surface charge field in PSRs, lunar regolith simulant JSC-1A was placed between two parallel plane electrodes under both low and high vacuum environments, 10e-3 torr and 2.5e-6 torr, respectively. Voltage was increased until discharge occurred within the sample. Grains were analyzed using an SVC fiber-fed point spectrometer, Olympus BX51 upright metallurgical microscope, and a Hitachi TM3000 scanning electron microscope with Bruker Quantax-70 X-ray spectrometer. Discharges occurring in samples under low vacuum resulted in surficial melting, silicate vapor deposition, coalescence of metallic iron, and micro-scale changes to surface topography. Samples treated under a high vacuum environment showed similar types of effects, but fewer in number compared to low vacuum samples. The variation in alteration abundances between the two environments implies that discharges may be occurring across surface contaminants, even at high vacuum conditions, inhibiting dielectric breakdown in our laboratory simulations.
Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment.
Chan, Kin
2018-01-01
Mutations are permanent alterations to the coding content of DNA. They are starting material for the Darwinian evolution of species by natural selection, which has yielded an amazing diversity of life on Earth. Mutations can also be the fundamental basis of serious human maladies, most notably cancers. In this chapter, I describe a highly sensitive reporter system for the molecular genetic analysis of mutagenesis, featuring controlled generation of long stretches of single-stranded DNA in budding yeast cells. This system is ~100- to ~1000-fold more susceptible to mutation than conventional double-stranded DNA reporters, and is well suited for generating large mutational datasets to investigate the properties of mutagens.
Hong, Xiaowei; Stegemann, Jan P.; Deng, Cheri X.
2016-01-01
Characterization of the microscale mechanical properties of biomaterials is a key challenge in the field of mechanobiology. Dual-mode ultrasound elastography (DUE) uses high frequency focused ultrasound to induce compression in a sample, combined with interleaved ultrasound imaging to measure the resulting deformation. This technique can be used to non-invasively perform creep testing on hydrogel biomaterials to characterize their viscoelastic properties. DUE was applied to a range of hydrogel constructs consisting of either hydroxyapatite (HA)-doped agarose, HA-collagen, HA-fibrin, or preosteoblast-seeded collagen constructs. DUE provided spatial and temporal mapping of local and bulk displacements and strains at high resolution. Hydrogel materials exhibited characteristic creep behavior, and the maximum strain and residual strain were both material- and concentration-dependent. Burger’s viscoelastic model was used to extract characteristic parameters describing material behavior. Increased protein concentration resulted in greater stiffness and viscosity, but did not affect the viscoelastic time constant of acellular constructs. Collagen constructs exhibited significantly higher modulus and viscosity than fibrin constructs. Cell-seeded collagen constructs became stiffer with altered mechanical behavior as they developed over time. Importantly, DUE also provides insight into the spatial variation of viscoelastic properties at sub-millimeter resolution, allowing interrogation of the interior of constructs. DUE presents a novel technique for non-invasively characterizing hydrogel materials at the microscale, and therefore may have unique utility in the study of mechanobiology and the characterization of hydrogel biomaterials. PMID:26928595
Hong, Xiaowei; Stegemann, Jan P; Deng, Cheri X
2016-05-01
Characterization of the microscale mechanical properties of biomaterials is a key challenge in the field of mechanobiology. Dual-mode ultrasound elastography (DUE) uses high frequency focused ultrasound to induce compression in a sample, combined with interleaved ultrasound imaging to measure the resulting deformation. This technique can be used to non-invasively perform creep testing on hydrogel biomaterials to characterize their viscoelastic properties. DUE was applied to a range of hydrogel constructs consisting of either hydroxyapatite (HA)-doped agarose, HA-collagen, HA-fibrin, or preosteoblast-seeded collagen constructs. DUE provided spatial and temporal mapping of local and bulk displacements and strains at high resolution. Hydrogel materials exhibited characteristic creep behavior, and the maximum strain and residual strain were both material- and concentration-dependent. Burger's viscoelastic model was used to extract characteristic parameters describing material behavior. Increased protein concentration resulted in greater stiffness and viscosity, but did not affect the viscoelastic time constant of acellular constructs. Collagen constructs exhibited significantly higher modulus and viscosity than fibrin constructs. Cell-seeded collagen constructs became stiffer with altered mechanical behavior as they developed over time. Importantly, DUE also provides insight into the spatial variation of viscoelastic properties at sub-millimeter resolution, allowing interrogation of the interior of constructs. DUE presents a novel technique for non-invasively characterizing hydrogel materials at the microscale, and therefore may have unique utility in the study of mechanobiology and the characterization of hydrogel biomaterials. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kiran Yildirim, Demet; Abdelnasser, Amr; Doner, Zeynep; Kumral, Mustafa
2016-04-01
The Halilar Cu-Pb (-Zn) mineralization that is formed in the volcanogenic metasediments of Bagcagiz Formation at Balikesir province, NW Turkey, represents locally vein-type deposit as well as restricted to fault gouge zone directed NE-SW along with the lower boundary of Bagcagiz Formation and Duztarla granitic intrusion in the study area. Furthermore, This granite is traversed by numerous mineralized sheeted vein systems, which locally transgress into the surrounding metasediments. Therefore, this mineralization closely associated with intense hydrothermal alteration within brecciation, and quartz stockwork veining. The ore mineral assemblage includes chalcopyrite, galena, and some sphalerite with covellite and goethite formed during three phases of mineralization (pre-ore, main ore, and supergene) within an abundant gangue of quartz and calcite. The geologic and field relationships, petrographic and mineralogical studies reveal two alteration zones occurred with the Cu-Pb (-Zn) mineralization along the contact between the Bagcagiz Formation and Duztarla granite; pervasive phyllic alteration (quartz, sericite, and pyrite), and selective propylitic alteration (albite, calcite, epidote, sericite and/or chlorite). This work, by using the mass balance calculations, reports the mass/volume changes (gain and loss) of the chemical components of the hydrothermal alteration zones associated with Halilar Cu-Pb (-Zn) mineralization at Balikesir area (Turkey). It revealed that the phyllic alteration has enrichments of Si, Fe, K, Ba, and LOI with depletion of Mg, Ca, and Na reflect sericitization of alkali feldspar and destruction of ferromagnesian minerals. This zone has high Cu and Pb with Zn contents represents the main mineralized zone. On the other hand, the propylitic zone is characterized by addition of Ca, Na, K, Ti, P, and Ba with LOI and Cu (lower content) referring to the replacement of plagioclase and ferromagnesian minerals by albite, calcite, epidote, and sericite with chlorite. Keywords: Mass balance calculations; hydrothermal alterations; Cu-Pb (-Zn) mineralization; Halilar area; NW Turkey
Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P
2016-08-01
Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.
NASA Astrophysics Data System (ADS)
Constanzo-Alvarez, Vincenzo; Dunlop, David J.
1993-10-01
We report paleomagnetic results from (1) largely unaltered batholiths and (2) sheared and altered units in the Archean Red Lake greenstone belt, a major gold-producing region in the Uchi subprovince of northwestern Ontario. Group 1 includes the Hammell Lake, Killala Baird, Trout Lake and Little Vermilion Lake batholiths, which were intruded between 2730 and 2700 Ma ago (U/Pb, zircon). Group 2 includes the Howey diorite, the Dome Stock, and dikes and andesites from the Dickenson mine. These units, from the mineralized deformation zones (DZs) between the batholiths, were sheared and hydrothermally altered in the same event that caused gold mineralization in supracrustal units. The batholiths carry a stable reversed remanence (RLR), with D = 159 deg, I = -74 deg (k = 20, alpha(sub 95) = 16 deg, N = 4 units, 14 sites). RLR has high coercivities, unblocking temperatures and remanence intensities an appears to be a primary thermal remanence dating from approximately 2700 ma. The altered units from the gold-bearing Dzs carrying a different remanence (RLG), with D = 180 deg, I = -57 deg (k = 23, alpha (sub 95) = 3 deg, N = 3 units, 6 sites). RLG also has relatively high coercivities and unblocking temperatures but its magnetization intensities are 1-2 orders of magnitude lower than those of RLR. Opaque minerals and silicates observed in thin section are highly altered. RLG is therfore believed to be a chemical or thermochemical remanence acquired approximately 2580 Ma ago during the late stages of cooling and gold mineralization. Seeing as RLG characterizes the shear zone rocks but is absent from unaltered rocks outside the DZs, it could be used as a rapid prospecting tool in delineating areas of alteration and posible mineralization. The palepoles for RLR (approximately 2700 Ma) and RLG (approximately 2580 Ma) link with those of the Shelley Lake granite (2580 Ma, Ar-40/Ar-39, hornblende and biotite) and the Matachewan/Hearst dikes (2450 Ma, U/Pb, zircon and baddeleyite). The sense of motion on the late Archean-early Proterozoic apparent polar wander path for Laurentia, as defined by this sequence of pale poles, is opposite to that previously accepted.
Seidl, Matthias D; Stein, Juliane; Hamer, Sabine; Pluteanu, Florentina; Scholz, Beatrix; Wardelmann, Eva; Huge, Andreas; Witten, Anika; Stoll, Monika; Hammer, Elke; Völker, Uwe; Müller, Frank U
2017-08-01
Reduced expression of genes regulated by the transcription factors CREB/CREM (cAMP response element-binding protein/modulator) is linked to atrial fibrillation (AF) susceptibility in patients. Cardiomyocyte-directed expression of the inhibitory CREM isoform CREM-IbΔC-X in transgenic mice (TG) leads to spontaneous-onset AF preceded by atrial dilatation and conduction abnormalities. Here, we characterized the altered gene program linked to atrial remodeling and development of AF in CREM-TG mice. Atria of young (TGy, before AF onset) and old (TGo, after AF onset) TG mice were investigated by mRNA microarray profiling in comparison with age-matched wild-type controls (WTy/WTo). Proteomic alterations were profiled in young mice (8 TGy versus 8 WTy). Annotation of differentially expressed genes revealed distinct differences in biological functions and pathways before and after onset of AF. Alterations in metabolic pathways, some linked to altered peroxisome proliferator-activated receptor signaling, muscle contraction, and ion transport were already present in TGy. Electron microscopy revealed significant loss of sarcomeres and mitochondria and increased collagen and glycogen deposition in TG mice. Alterations in electrophysiological pathways became prominent in TGo, concomitant with altered gene expression of K + -channel subunits and ion channel modulators, relevant in human AF. The most prominent alterations of the gene program linked to CREM-induced atrial remodeling were identified in the expression of genes related to structure, metabolism, contractility, and electric activity regulation, suggesting that CREM transgenic mice are a valuable experimental model for human AF pathophysiology. © 2017 American Heart Association, Inc.
Roy, Dipanjan; Sigala, Rodrigo; Breakspear, Michael; McIntosh, Anthony Randal; Jirsa, Viktor K; Deco, Gustavo; Ritter, Petra
2014-12-01
Spontaneous brain activity, that is, activity in the absence of controlled stimulus input or an explicit active task, is topologically organized in multiple functional networks (FNs) maintaining a high degree of coherence. These "resting state networks" are constrained by the underlying anatomical connectivity between brain areas. They are also influenced by the history of task-related activation. The precise rules that link plastic changes and ongoing dynamics of resting-state functional connectivity (rs-FC) remain unclear. Using the framework of the open source neuroinformatics platform "The Virtual Brain," we identify potential computational mechanisms that alter the dynamical landscape, leading to reconfigurations of FNs. Using a spiking neuron model, we first demonstrate that network activity in the absence of plasticity is characterized by irregular oscillations between low-amplitude asynchronous states and high-amplitude synchronous states. We then demonstrate the capability of spike-timing-dependent plasticity (STDP) combined with intrinsic alpha (8-12 Hz) oscillations to efficiently influence learning. Further, we show how alpha-state-dependent STDP alters the local area dynamics from an irregular to a highly periodic alpha-like state. This is an important finding, as the cortical input from the thalamus is at the rate of alpha. We demonstrate how resulting rhythmic cortical output in this frequency range acts as a neuronal tuner and, hence, leads to synchronization or de-synchronization between brain areas. Finally, we demonstrate that locally restricted structural connectivity changes influence local as well as global dynamics and lead to altered rs-FC.
Heterotopias are a birth defect of the brain, and have varying etiologies in humans. They are characterized as clusters of mislocalized neurons, and are associated with disorders such as autism, epilepsy, and learning disabilities. We have previously characterized the robust pene...
Transient Maternal Hypothyroidism Alters Neural Progenitors Resulting in Abnormal Brain Development
Heterotopias are a birth defect of the brain and have varying etiologies in humans. They are characterized as clusters of mislocalized neurons and are associated with disorders such as autism, epilepsy, and learning disabilities. We have previously characterized the robust penetr...
Determining the relative extent of alteration in CM chondrites
NASA Technical Reports Server (NTRS)
Browning, Lauren B.; Mcsween, Harry Y., Jr.; Zolensky, Michael
1993-01-01
The aqueous alteration of CM chondrites provides a record of the processes attending the earliest stages of parent body evolution. However, resolving the alteration pathways of chondritic evolution requires a means for distinguishing the relative extent of alteration that individual samples have experienced. Three new indices for gauging the relative degree of alteration in CM chondrites based on modal and compositional analyses of 7 CM falls were proposed. The proposed alteration parameters are consistent with the basic tenets of several previous models and correlate with additional indices to produce an integrated method for determining the relative extent of alteration. The model predicts the following order of progressive alteration: Murchison (MC) is less than or equal to Bells (BL) is less than Murray (MY) is less than Cochabamba (CC) is less than Mighei (MI) is less than Nogoya (NG) is less than or equal to Cold Bokkeveld (CB). The broad range of CM phyllosilicate compositions observed within individual meteorites is fundamental to the characterization of the aqueous alteration process. Chemical analyses of CM phyllosilicates suggest that these phases became systematically enriched in Mg and depleted in Fe with increasing alteration.
Competition alters tree growth responses to climate at individual and stand scales
Kevin Ford; Ian K. Breckheimer; Jerry F. Franklin; James A. Freund; Steve J. Kroiss; Andrew J. Larson; Elinore J. Theobald; Janneke. HilleRisLambers
2015-01-01
Understanding how climate affects tree growth is essential for assessing climate change impacts on forests, but is complicated by the effects of competition, which strongly influences growth and could alter how forests respond to climate change. We characterized the joint effects of climate and competition on diameter growth in the mountain forests of Mount Rainier...
Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress.
Papale, Ligia A; Li, Sisi; Madrid, Andy; Zhang, Qi; Chen, Li; Chopra, Pankaj; Jin, Peng; Keleş, Sündüz; Alisch, Reid S
2016-12-01
Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders. While it is well known that acute environmental stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive epigenetic modification that is highly enriched in neurons and is associated with active neuronal transcription. Recently, we reported a genome-wide disruption of hippocampal 5hmC in male mice following acute stress that was correlated to altered transcript levels of genes in known stress related pathways. Since sex-specific endocrine mechanisms respond to environmental stimulus by altering the neuronal epigenome, we examined the genome-wide profile of hippocampal 5hmC in female mice following exposure to acute stress and identified 363 differentially hydroxymethylated regions (DhMRs) linked to known (e.g., Nr3c1 and Ntrk2) and potentially novel genes associated with stress response and psychiatric disorders. Integration of hippocampal expression data from the same female mice found stress-related hydroxymethylation correlated to altered transcript levels. Finally, characterization of stress-induced sex-specific 5hmC profiles in the hippocampus revealed 778 sex-specific acute stress-induced DhMRs some of which were correlated to altered transcript levels that produce sex-specific isoforms in response to stress. Together, the alterations in 5hmC presented here provide a possible molecular mechanism for the adaptive sex-specific response to stress that may augment the design of novel therapeutic agents that will have optimal effectiveness in each sex. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Alterations of CHEK2 forkhead-associated domain increase the risk of Hodgkin lymphoma.
Havranek, O; Spacek, M; Hubacek, P; Mocikova, H; Markova, J; Trneny, M; Kleibl, Z
2011-01-01
Checkpoint kinase 2 gene (CHEK2) codes for an important mediator of DNA damage response pathway. Mutations in the CHEK2 gene increase the risk of several cancer types, however, their role in Hodgkin lymphoma (HL) has not been studied so far. The most frequent CHEK2 alterations (including c.470T>C; p.I157T) cluster into the forkhead-associated (FHA) domain-coding region of the CHEK2 gene. We performed mutation analysis of the CHEK2 gene segment coding for FHA domain using denaturing high-performance liquid chromatography in 298 HL patients and analyzed the impact of characterized CHEK2 gene variants on the risk of HL development and progression-free survival (PFS). The overall frequency of CHEK2 alterations was significantly higher in HL patients (17/298; 5.7%) compared to the previously analyzed non-cancer controls (19/683; 2.8%; p= 0.04). Presence of any alteration within the analyzed region of the CHEK2 gene was associated with increased risk of HL development (OR = 2.11; 95% CI = 1.08 - 4.13; p= 0.04). The most frequent I157T mutation was found in 4.0% of HL patients and 2.5% of controls (p = 0.22), however, the frequency of 5 other alterations (excluding I157T) was significantly higher in HL cases and associated with increased risk of HL development (OR = 5.81; 95% CI = 1.12 - 30.12; p= 0.03). PFS in HL patients did not differ between CHEK2 mutation carriers and non-carriers. The predominant I157T mutation together with other alterations in its proximity represent moderate genetic predisposition factor increasing the risk of HL development.
NASA Astrophysics Data System (ADS)
Betkowski, Wladyslaw B.; Rakovan, John; Harlov, Daniel E.
2017-09-01
Petrographic and geochemical characterization of phosphate accessory minerals represents a powerful tool in understanding the mineralization and metasomatic history of one of the world's biggest tin deposits, the Siglo XX mine, Salvadora stock, Llallagua, Bolivia. The Llallagua tin deposit lies in a hydrothermally altered porphyry stock that is part of the subduction-related Bolivian tin belt. Despite numerous studies, there is still a debate over the timing and characteristics of mineralization history of the deposit. Primary igneous fluorapatite and monazite (for the first time) were recognized in the altered porphyry. The igneous monazite is enriched in Th, unlike the hydrothermal monazite that is recognized for its low Th concentration. Fluorapatite, monazite, and xenotime also coexist with cassiterite within the hydrothermal vein assemblage. Fluorapatite and xenotime are essentially pristine. Monazite, however, shows various degrees of alteration in the form of regenerative mineral replacement (RMR). This exemplifies differential reactivity and selective mineral replacement/alteration of three accessory phosphate minerals, that are all important geochemical tracers of magmatic and hydrothermal processes, and which can all be used as geochronometers. Mineral textures and composition in the altered porphyry and vein assemblages have been evaluated. Monazite-xenotime geothermometry indicates monazite crystallization beginning around 550 °C. Monazite continues to grow as temperatures gradually decrease to about 300 °C, when most of cassiterite precipitation occurred in the samples studied. The primary mechanism of phosphate alteration has been identified as a coupled dissolution-reprecipitation process, which led to REE exchange in the igneous fluorapatite and hydrothermal monazite. In Type I local alteration, La and Pr-Nd show continuity across the pre- and post- alteration concentric zones indicating that they were not affected by alteration. This is an example of a selective elemental exchange during coupled dissolution-precipitation. Type II, pervasive post-growth alteration, is evident by the presence of micro-porosity and the formation of secondary, reaction induced minerals. Release of HREE from the monazite goes into the formation of void filling xenotime inclusions; the first documentation of this metasomatic alteration product in monazite. A well-documented discrepancy exists among ages determined from the zircon, fluorapatite, monazite, and altered porphyry minerals. These observations, regarding selective alteration of fluorapatite and monazite, may help to elucidate the reasons for this discrepancy.
Kieffer, Dorothy A.; Piccolo, Brian D.; Vaziri, Nosratola D.; Liu, Shuman; Lau, Wei L.; Khazaeli, Mahyar; Nazertehrani, Sohrab; Moore, Mary E.; Marco, Maria L.; Martin, Roy J.
2016-01-01
Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xenometabolites). The fermentable dietary fiber high amylose maize-resistant starch type 2 (HAMRS2) has been shown to alter the gut milieu and in CKD rat models leads to markedly improved kidney function. The aim of the present study was to identify specific cecal bacteria and cecal, blood, and urinary metabolites that associate with changes in kidney function to identify potential mechanisms involved with CKD amelioration in response to dietary resistant starch. Male Sprague-Dawley rats with adenine-induced CKD were fed a semipurified low-fiber diet or a high-fiber diet [59% (wt/wt) HAMRS2] for 3 wk (n = 9 rats/group). The cecal microbiome was characterized, and cecal contents, serum, and urine metabolites were analyzed. HAMRS2-fed rats displayed decreased cecal pH, decreased microbial diversity, and an increased Bacteroidetes-to-Firmicutes ratio. Several uremic retention solutes were altered in the cecal contents, serum, and urine, many of which had strong correlations with specific gut bacteria abundances, i.e., serum and urine indoxyl sulfate were reduced by 36% and 66%, respectively, in HAMRS2-fed rats and urine p-cresol was reduced by 47% in HAMRS2-fed rats. Outcomes from this study were coincident with improvements in kidney function indexes and amelioration of CKD outcomes previously reported for these rats, suggesting an important role for microbial-derived factors and gut microbe metabolism in regulating host kidney function. PMID:26841824
Kieffer, Dorothy A; Piccolo, Brian D; Vaziri, Nosratola D; Liu, Shuman; Lau, Wei L; Khazaeli, Mahyar; Nazertehrani, Sohrab; Moore, Mary E; Marco, Maria L; Martin, Roy J; Adams, Sean H
2016-05-01
Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xenometabolites). The fermentable dietary fiber high amylose maize-resistant starch type 2 (HAMRS2) has been shown to alter the gut milieu and in CKD rat models leads to markedly improved kidney function. The aim of the present study was to identify specific cecal bacteria and cecal, blood, and urinary metabolites that associate with changes in kidney function to identify potential mechanisms involved with CKD amelioration in response to dietary resistant starch. Male Sprague-Dawley rats with adenine-induced CKD were fed a semipurified low-fiber diet or a high-fiber diet [59% (wt/wt) HAMRS2] for 3 wk (n = 9 rats/group). The cecal microbiome was characterized, and cecal contents, serum, and urine metabolites were analyzed. HAMRS2-fed rats displayed decreased cecal pH, decreased microbial diversity, and an increased Bacteroidetes-to-Firmicutes ratio. Several uremic retention solutes were altered in the cecal contents, serum, and urine, many of which had strong correlations with specific gut bacteria abundances, i.e., serum and urine indoxyl sulfate were reduced by 36% and 66%, respectively, in HAMRS2-fed rats and urine p-cresol was reduced by 47% in HAMRS2-fed rats. Outcomes from this study were coincident with improvements in kidney function indexes and amelioration of CKD outcomes previously reported for these rats, suggesting an important role for microbial-derived factors and gut microbe metabolism in regulating host kidney function. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Rejas, J. G.; Martínez-Frías, J.; Bonatti, J.; Martínez, R.; Marchamalo, M.
2012-07-01
The aim of this work is the comparative study of the presence of hydrothermal alteration materials in the Turrialba volcano (Costa Rica) in relation with computed spectral anomalies from multitemporal and multisensor data adquired in spectral ranges of the visible (VIS), short wave infrared (SWIR) and thermal infrared (TIR). We used for this purposes hyperspectral and multispectral images from the HyMAP and MASTER airborne sensors, and ASTER and Hyperion scenes in a period between 2002 and 2010. Field radiometry was applied in order to remove the atmospheric contribution in an empirical line method. HyMAP and MASTER images were georeferenced directly thanks to positioning and orientation data that were measured at the same time in the acquisition campaign from an inertial system based on GPS/IMU. These two important steps were allowed the identification of spectral diagnostic bands of hydrothermal alteration minerals and the accuracy spatial correlation. Enviromental impact of the volcano activity has been studied through different vegetation indexes and soil patterns. Have been mapped hydrothermal materials in the crater of the volcano, in fact currently active, and their surrounding carrying out a principal components analysis differentiated for a high and low absorption bands to characterize accumulations of kaolinite, illite, alunite and kaolinite+smectite, delimitating zones with the presence of these minerals. Spectral anomalies have been calculated on a comparative study of methods pixel and subpixel focused in thermal bands fused with high-resolution images. Results are presented as an approach based on expert whose main interest lies in the automated identification of patterns of hydrothermal altered materials without prior knowledge or poor information on the area.
Molecular Alteration of Marine Dissolved Organic Matter under Experimental Hydrothermal Conditions
NASA Astrophysics Data System (ADS)
Hawkes, J. A.; Hansen, C. T.; Goldhammer, T.; Bach, W.; Dittmar, T.
2016-02-01
Marine dissolved organic matter (DOM) is a large (660 Pg) pool of reduced carbon that is subject to thermal alteration in hydrothermal systems and sedimentary basins. In natural hydrothermal systems, DOM is almost completely removed, but the mechanism, kinetics and temperature dependence of this removal have not been studied to date. We investigated molecular-level changes to DOM that was solid-phase extracted (SPE-DOM) from the deep ocean of the North Pacific Ocean. This complex molecular mixture was experimentally exposed to temperatures between 100-380 °C over the course of two weeks in artificial seawater, and was then characterized on a molecular level via ultrahigh-resolution mass spectrometry (FTICRMS & Orbitrap). Almost 93% of SPE-DOM was removed by the treatment at 380 °C, and this removal was accompanied by a consistent pattern of SPE-DOM alteration across the temperatures studied, which can likely be extrapolated down to temperatures around 68 °C. Higher molecular weight and more oxygen rich compounds were preferentially degraded, suggesting that decarboxylation and dehydration of carboxylic acid and alcohol groups are the most rapid degradation mechanisms. Nitrogen containing compounds followed the same overall trends as those containing just C, H and O up to 300 °C. Above this temperature, the most highly degraded samples contained very little of the original character of marine DOM, instead being mainly composed of very low intensity N- and S- containing molecules with a high H:C ratio (>1.5). Our experiments were conducted without a sedimentary or mineral phase, and demonstrate that profound molecular alteration and almost complete removal of marine SPE-DOM requires nothing more than heating in a seawater matrix.
Methylation profiling identifies 2 groups of gliomas according to their tumorigenesis.
Laffaire, Julien; Everhard, Sibille; Idbaih, Ahmed; Crinière, Emmanuelle; Marie, Yannick; de Reyniès, Aurelien; Schiappa, Renaud; Mokhtari, Karima; Hoang-Xuan, Khê; Sanson, Marc; Delattre, Jean-Yves; Thillet, Joëlle; Ducray, François
2011-01-01
Extensive genomic and gene expression studies have been performed in gliomas, but the epigenetic alterations that characterize different subtypes of gliomas remain largely unknown. Here, we analyzed the methylation patterns of 807 genes (1536 CpGs) in a series of 33 low-grade gliomas (LGGs), 36 glioblastomas (GBMs), 8 paired initial and recurrent gliomas, and 9 controls. This analysis was performed with Illumina's Golden Gate Bead methylation arrays and was correlated with clinical, histological, genomic, gene expression, and genotyping data, including IDH1 mutations. Unsupervised hierarchical clustering resulted in 2 groups of gliomas: a group corresponding to de novo GBMs and a group consisting of LGGs, recurrent anaplastic gliomas, and secondary GBMs. When compared with de novo GBMs and controls, this latter group was characterized by a very high frequency of IDH1 mutations and by a hypermethylated profile similar to the recently described glioma CpG island methylator phenotype. MGMT methylation was more frequent in this group. Among the LGG cluster, 1p19q codeleted LGG displayed a distinct methylation profile. A study of paired initial and recurrent gliomas demonstrated that methylation profiles were remarkably stable across glioma evolution, even during anaplastic transformation, suggesting that epigenetic alterations occur early during gliomagenesis. Using the Cancer Genome Atlas data set, we demonstrated that GBM samples that had an LGG-like hypermethylated profile had a high rate of IDH1 mutations and a better outcome. Finally, we identified several hypermethylated and downregulated genes that may be associated with LGG and GBM oncogenesis, LGG oncogenesis, 1p19q codeleted LGG oncogenesis, and GBM oncogenesis.
Methylation profiling identifies 2 groups of gliomas according to their tumorigenesis
Laffaire, Julien; Everhard, Sibille; Idbaih, Ahmed; Crinière, Emmanuelle; Marie, Yannick; de Reyniès, Aurelien; Schiappa, Renaud; Mokhtari, Karima; Hoang-Xuan, Khê; Sanson, Marc; Delattre, Jean-Yves; Thillet, Joëlle; Ducray, François
2011-01-01
Extensive genomic and gene expression studies have been performed in gliomas, but the epigenetic alterations that characterize different subtypes of gliomas remain largely unknown. Here, we analyzed the methylation patterns of 807 genes (1536 CpGs) in a series of 33 low-grade gliomas (LGGs), 36 glioblastomas (GBMs), 8 paired initial and recurrent gliomas, and 9 controls. This analysis was performed with Illumina's Golden Gate Bead methylation arrays and was correlated with clinical, histological, genomic, gene expression, and genotyping data, including IDH1 mutations. Unsupervised hierarchical clustering resulted in 2 groups of gliomas: a group corresponding to de novo GBMs and a group consisting of LGGs, recurrent anaplastic gliomas, and secondary GBMs. When compared with de novo GBMs and controls, this latter group was characterized by a very high frequency of IDH1 mutations and by a hypermethylated profile similar to the recently described glioma CpG island methylator phenotype. MGMT methylation was more frequent in this group. Among the LGG cluster, 1p19q codeleted LGG displayed a distinct methylation profile. A study of paired initial and recurrent gliomas demonstrated that methylation profiles were remarkably stable across glioma evolution, even during anaplastic transformation, suggesting that epigenetic alterations occur early during gliomagenesis. Using the Cancer Genome Atlas data set, we demonstrated that GBM samples that had an LGG-like hypermethylated profile had a high rate of IDH1 mutations and a better outcome. Finally, we identified several hypermethylated and downregulated genes that may be associated with LGG and GBM oncogenesis, LGG oncogenesis, 1p19q codeleted LGG oncogenesis, and GBM oncogenesis. PMID:20926426
NASA Astrophysics Data System (ADS)
Poon, Kelvin W.; Brideau, Craig; Teo, Wulin; Schenk, Geert J.; Klaver, Roel; Klauser, Antoine M.; Kawasoe, Jean H.; Geurts, Jeroen J. G.; Stys, Peter K.
2013-03-01
The pathology of multiple sclerosis (MS) involves both the gray and white matter regions of the brain and spinal cord. It is characterized by various combinations of demyelination, inflammatory infiltration, axonal degeneration, and later gliosis in chronic lesions. While acute and chronic white matter plaques are well characterized and easily identified, evidence indicates that the CNS of MS patients may be globally altered, with subtle abnormalities found in grossly normal appearing white matter (NAWM) and in diffusely abnormal white matter (DAWM) where histochemical stains and advanced magnetic resonance imaging indicate altered tissue composition. Thus, the prototypical acute inflammatory lesion may merely represent the most obvious manifestation of a chronic widespread involvement of the CNS, which is difficult to examine reliably. The current study deals with the microstructure and biochemistry of demyelination, remyelination and axonal loss in various regions of post-mortem human MS brain, including NAWM, areas of remyelination and more typical acute and chronic lesions. The myelin sheath, neuroglia and perivascular spaces were investigated using a novel Coherent Anti-Stokes Raman Scattering (CARS) microscope with simultaneous Two-Photon Excited Fluorescence (TPEF) imaging. The active CH stretching region between 2800 and 3000 cm-1 was probed to provide chemically specific, high resolution, label-free imaging pertaining to the progression of the disease. CARS data were correlated with TPEF and conventional histochemical and immunohistochemical stains. Our novel CARS microscopy system provides detailed morphological and biochemical information regarding CNS pathology in MS and that may be applicable to a broad range of other human brain and spinal cord disorders.
NASA Technical Reports Server (NTRS)
Ming, D. W.; Gellert, R.; Morris, R. V.; Yen, A. S.; Arvidson, E.; Brueckner, J.; Clark, B. C.; Cohen, B. A.; Fleischer, I.; Klingelhoefer, G.;
2008-01-01
The Mars Exploration Rover Spirit landed in Gusev crater on Jan. 4, 2004. Spirit has traversed the Gusev crater plains, ascended to the top of Husband Hill, and entered into the Inner Basin of the Columbia Hills. The Athena science payload onboard Spirit has recorded numerous measurements on the chemistry and mineralogy of materials encountered during nearly 2 Mars years of operation within the crater. Rocks and soils have been grouped into classes based upon their unique differences in mineralogy and chemistry [1-3]. Some of the most significant chemical discoveries include the composition of Adirondack class flood basalts [4-6]; high sulfur in Clovis and Peace Class rocks [7,2]; high P and Ti in Wishstone Class rocks [7,2]; composition of alkalic basalts [2,6]; very high S in Paso Robles class soils [7,2], and the possible occurrence of a smectite-like chemical composition in Independence class rocks [8]. Water has played a significant role in the alteration of rocks and soils in the Columbia Hills. The occurrence of goethite and ferric sulfate alone suggests that liquid water was involved in their formation [3]. The pervasively altered materials in Husband Hill outcrops and rocks may have formed by the aqueous alteration of basaltic rocks, volcaniclastic materials, and/or impact ejecta by solutions that were rich in acid-volatile elements [2]. The objective of this paper is to provide an update on the health of the Alpha Particle X-ray Spectrometer (APXS) and to expand the geochemical dataset from sol 470 to sol 1368. Specific objectives are to (1) update the rock and soil classifications, (2) characterize elemental relationships among the major rock and soil classes, and (3) evaluate the involvement of water in the formation or alteration of the materials in these classes.
Yao, JK; Dougherty, GG; Reddy, RD; Keshavan, MS; Montrose, DM; Matson, WR; Rozen, S; Krishnan, RR; McEvoy, J; Kaddurah-Daouk, R
2010-01-01
Schizophrenia is characterized by complex and dynamically interacting perturbations in multiple neurochemical systems. In the past, evidence for these alterations has been collected piecemeal, limiting our understanding of the interactions among relevant biological systems. Earlier, both hyper- and hyposerotonemia were variously associated with the longitudinal course of schizophrenia, suggesting a disturbance in the central serotonin (5-hydroxytrypt-amine (5-HT)) function. Using a targeted electrochemistry-based metabolomics platform, we compared metabolic signatures consisting of 13 plasma tryptophan (Trp) metabolites simultaneously between first-episode neuroleptic-naive patients with schizophrenia (FENNS, n = 25) and healthy controls (HC, n = 30). We also compared these metabolites between FENNS at baseline (BL) and 4 weeks (4w) after antipsychotic treatment. N-acetylserotonin was increased in FENNS-BL compared with HC (P = 0.0077, which remained nearly significant after Bonferroni correction). N-acetylserotonin/Trp and melatonin (Mel)/serotonin ratios were higher, and Mel/N-acetylserotonin ratio was lower in FENNS-BL (all P-values < 0.0029), but not after treatment, compared with HC volunteers. All three groups had highly significant correlations between Trp and its metabolites, Mel, kynurenine, 3-hydroxykynurenine and tryptamine. However, in the HC, but in neither of the FENNS groups, serotonin was highly correlated with Trp, Mel, kynurenine or tryptamine, and 5-hydroxyindoleacetic acid (5HIAA) was highly correlated with Trp, Mel, kynurenine or 3-hydroxykynurenine. A significant difference between HC and FENNS-BL was further shown only for the Trp–5HIAA correlation. Thus, some metabolite interactions within the Trp pathway seem to be altered in the FENNS-BL patients. Conversion of serotonin to N-acetylserotonin by serotonin N-acetyltransferase may be upregulated in FENNS patients, possibly related to the observed alteration in Trp–5HIAA correlation. Considering N-acetylserotonin as a potent antioxidant, such increases in N-acetylserotonin might be a compensatory response to increased oxidative stress, implicated in the pathogenesis of schizophrenia. PMID:19401681
NASA Astrophysics Data System (ADS)
Magna, T.; Wiechert, U.; Stuart, F. M.; Halliday, A. N.; Harrison, D.
2011-02-01
Lithium (Li) isotopes are thought to provide a powerful proxy for the recycling of crustal material, affected by low temperature alteration, through the mantle. We present Li isotope compositions for basaltic volcanic rocks from Hengill, Iceland, and Jan Mayen in order to examine possible links between ocean island volcanism and recycled oceanic crust and to address recent suggestions that mantle 3He/ 4He is also related to recycling of ancient slabs. Basaltic glasses spanning a range of chemical enrichment from the Hengill fissure system define an inverse correlation between δ 7Li (3.8-6.9‰) and 3He/ 4He (12-20 RA). The high- 3He/ 4He basalts have low δ 18O as well as excess Eu and high Nb/U, but carry no Li isotope evidence of being the product of recycling of altered slab or wedge material. In fact, there is no clear correlation between Li or He isotopes on the one hand and any of the other fingerprints of recycled slab components. The low- 3He/ 4He samples do have elevated Nb/U, Sr/Nd, positive Eu anomalies and high δ 7Li (˜6.9‰), providing evidence of a cumulate-enriched source that could be part of an ancient altered ocean floor slab. Basalts from Jan Mayen are characterized by large degrees of enrichment in incompatible trace elements typical of EM-like basalts but have homogeneous δ 7Li typical of depleted mantle (3.9-4.7‰) providing evidence for a third mantle source in the North Atlantic. It appears that oceanic basalts can display a wide range in isotope and trace element compositions associated with recycled components whilst exhibiting no sign of modern surface-altered slab or wedge material from the Li isotope composition.
Adams, Alex T.; Kennedy, Nicholas A.; Hansen, Richard; Ventham, Nicholas T.; O'Leary, Kate R.; Drummond, Hazel E.; Noble, Colin L.; El-Omar, Emad; Russell, Richard K.; Wilson, David C.; Nimmo, Elaine R.; Hold, Georgina L.
2014-01-01
Background: As a result of technological and analytical advances, genome-wide characterization of key epigenetic alterations is now feasible in complex diseases. We hypothesized that this may provide important insights into gene-environmental interactions in Crohn's disease (CD) and is especially pertinent to early onset disease. Methods: The Illumina 450K platform was applied to assess epigenome-wide methylation profiles in circulating leukocyte DNA in discovery and replication pediatric CD cohorts and controls. Data were corrected for differential leukocyte proportions. Targeted replication was performed in adults using pyrosequencing. Methylation changes were correlated with gene expression in blood and intestinal mucosa. Results: We identified 65 individual CpG sites with methylation alterations achieving epigenome-wide significance after Bonferroni correction (P < 1.1 × 10−7), and 19 differently methylated regions displaying unidirectional methylation change. There was a highly significant enrichment of methylation changes around GWAS single nucleotide polymorphisms (P = 3.7 × 10−7), notably the HLA region and MIR21. Two-locus discriminant analysis in the discovery cohort predicted disease in the pediatric replication cohort with high accuracy (area under the curve, 0.98). The findings strongly implicate the transcriptional start site of MIR21 as a region of extended epigenetic alteration, containing the most significant individual probes (P = 1.97 × 10−15) within a GWAS risk locus. In extension studies, we confirmed hypomethylation of MIR21 in adults (P = 6.6 × 10−5, n = 172) and show increased mRNA expression in leukocytes (P < 0.005, n = 66) and in the inflamed intestine (P = 1.4 × 10−6, n = 99). Conclusions: We demonstrate highly significant and replicable differences in DNA methylation in CD, defining the disease-associated epigenome. The data strongly implicate known GWAS loci, with compelling evidence implicating MIR21 and the HLA region. PMID:25144570
Historical changes in Nebraska's lotic fish assemblages: Implications of anthropogenic alterations
Smith, Christopher D.; Fischer, Jesse R.; Quist, Michael C.
2014-01-01
The plains of midwestern North America have undergone significant anthropogenic alterations following European settlement with consequent effects to lotic fish assemblage structure. We examined trends in fish assemblage structure and function in Nebraska's lotic systems using site-specific, presence-absence data from historical (1939–1940) and contemporary surveys (2003–2005; n = 183). Shifts in fish assemblage structure were characterized by declines of specialist species (e.g., western silvery minnow Hybognathus argyritis) and increases in nonnative, sport, and generalist species (e.g., common carp Cyprinus carpio). Our research illustrates differences between historical and contemporary surveys for both taxonomic and functional metrics. Changes in fish assemblage structure were correlated with a contemporary measure of anthropogenic alteration (Human Threat Index; HTI) and were most pronounced for large-scale threats (i.e., watershed HTI, overall HTI). The HTI is a composite index of cumulative anthropogenic alterations experienced by a stream system and was used to investigate broad-scale implications of anthropogenic activity on fish assemblage structure. Fish assemblages among sites were more similar in contemporary surveys than in historical surveys, such changes might indicate a homogenization of the fish assemblages. Losses of native species and increases in introduced species have occurred in Nebraska's lotic systems across a broad temporal span and shifts are likely related to high levels of human perturbation.
NASA Astrophysics Data System (ADS)
Doroshkevich, Anna G.; Prokopyev, Ilya R.; Izokh, Andrey E.; Klemd, Reiner; Ponomarchuk, Anton V.; Nikolaeva, Irina V.; Vladykin, Nikolay V.
2018-04-01
The Paleoproterozoic Seligdar magnesiocarbonatite intrusion of the Aldan-Stanovoy shield in Russia underwent extensive postmagmatic hydrothermal alteration and metamorphic events. This study comprises new isotopic (Sr, Nd, C and O) data, whole-rock major and trace element compositions and trace element characteristics of the major minerals to gain a better understanding of the source and the formation process of the carbonatites. The Seligdar carbonatites have high concentrations of P2O5 (up to 18 wt%) and low concentrations of Na, K, Sr and Ba. The chondrite-normalized REE patterns of these carbonatites display significant enrichments of LREE relative to HREE with an average La/Ybcn ratio of 95. Hydrothermal and metamorphic overprints changed the trace element characteristics of the carbonatites and their minerals. These alteration processes were responsible for Sr loss and the shifting of the Sr isotopic compositions towards more radiogenic values. The altered carbonatites are further characterized by distinct 18O- and 13C-enrichments compared to the primary igneous carbonatites. The alteration most likely resulted from both the percolation of crustal-derived hydrothermal fluids and subsequent metamorphic processes accompanied by interaction with limestone-derived CO2. The narrow range of negative εNd(T) values indicates that the Seligdar carbonatites are dominated by a homogenous enriched mantle source component that was separated from the depleted mantle during the Archean.
Heterotopias are a birth defect of the brain and have varying etiologies in humans. They are characterized as clusters of mislocalized neurons and are associated with disorders such as autism and epilepsy. We have previously characterized the robust penetrance of a cortical heter...
Zhang, Zhiqiang; Mantini, Dante; Xu, Qiang; Wang, Zhengge; Chen, Guanghui; Jiao, Qing; Zang, Yu-Feng
2013-01-01
Abstract The human brain can be modeled as a network, whose structure can be revealed by either anatomical or functional connectivity analyses. Little is known, so far, about the topological features of the large-scale interregional functional covariance network (FCN) in the brain. Further, the relationship between the FCN and the structural covariance network (SCN) has not been characterized yet, in the intact as well as in the diseased brain. Here, we studied 59 patients with idiopathic generalized epilepsy characterized by tonic–clonic seizures and 59 healthy controls. We estimated the FCN and the SCN by measuring amplitude of low-frequency fluctuations (ALFF) and gray matter volume (GMV), respectively, and then we conducted graph theoretical analyses. Our ALFF-based FCN and GMV-based results revealed that the normal human brain is characterized by specific topological properties such as small worldness and highly-connected hub regions. The patients had an altered overall topology compared to the controls, suggesting that epilepsy is primarily a disorder of the cerebral network organization. Further, the patients had altered nodal characteristics in the subcortical and medial temporal regions and default-mode regions, for both the FCN and SCN. Importantly, the correspondence between the FCN and SCN was significantly larger in patients than in the controls. These results support the hypothesis that the SCN reflects shared long-term trophic mechanisms within functionally synchronous systems. They can also provide crucial information for understanding the interactions between the whole-brain network organization and pathology in generalized tonic–clonic seizures. PMID:23510272
In vivo multiphoton and second harmonic generation microscopy of epithelial carcinogenesis
NASA Astrophysics Data System (ADS)
Vargas, Gracie; Shilagard, Tuya; Sun, Ju; Motamedi, Massoud
2006-02-01
Multiphoton microscopy and second harmonic generation microscopy were used to image epithelial changes in a hamster model for oral malignant transformation. In vivo imaging was performed to characterize morphometric alterations in normal and precancerous regions. Morphometric measurements such as cell nucleus area and epithelial thicknesses obtained from MPM-SHGM were in excellent agreement with histology obtained after in vivo imaging. MPM-SHGM was highly sensitive to spectroscopic and architectural alterations throughout carcinogenesis, showing statistically significant changes in morphology. MPM revealed hyperkeratosis, nuclear enlargement/crowding in dysplasia, and immune cell infiltration. SHGM revealed alterations in submucosal architecture, with a decrease in SHG density evident during early stages of precancer. By combining MPM with SHGM, the basement membrane could be identified in normal, hyperplasia, and dysplasia samples and in some cases of early invasion. The combined technique of MPM-SHGM has the potential to serve as an adjunct to biopsy for assessing precancerous changes and will be investigated further for that purpose. Additionally, the method can provide spatiotemporal assessment of early neoplastic changes in order to elucidate the stages of transformation in vivo and could be used to assess therapeutic efficacy of agents being tested for the treatment of epithelial precancers/cancer.
Matrix Metalloproteinase Dysregulation in the Stria Vascularis of Mice with Alport Syndrome
Gratton, Michael Anne; Rao, Velidi H.; Meehan, Daniel T.; Askew, Charles; Cosgrove, Dominic
2005-01-01
Alport syndrome results from mutations in genes encoding collagen α3(IV), α4(IV), or α5(IV) and is characterized by progressive glomerular disease associated with a high-frequency sensorineural hearing loss. Earlier studies of a gene knockout mouse model for Alport syndrome noted thickening of strial capillary basement membranes in the cochlea, suggesting that the stria vascularis is the primary site of cochlear pathogenesis. Here we combine a novel cochlear microdissection technique with molecular analyses to illustrate significant quantitative alterations in strial expression of mRNAs encoding matrix metalloproteinases-2, -9, -12, and -14. Gelatin zymography of extracts from the stria vascularis confirmed these findings. Treatment of Alport mice with a small molecule inhibitor of these matrix metalloproteinases exacerbated strial capillary basement membrane thickening, demonstrating that alterations in basement membrane metabolism result in matrix accumulation in the strial capillary basement membranes. This is the first demonstration of true quantitative analysis of specific mRNAs for matrix metalloproteinases in a cochlear microcompartment. Further, these data suggest that the altered basement membrane composition in Alport stria influences the expression of genes involved in basement membrane metabolism. PMID:15855646
The role of reactive oxygen species in the degradation of lignin derived dissolved organic matter
NASA Astrophysics Data System (ADS)
Waggoner, Derek C.; Wozniak, Andrew S.; Cory, Rose M.; Hatcher, Patrick G.
2017-07-01
Evidence suggests that reactive oxygen species (ROS) are important in transforming the chemical composition of the large pool of terrestrially-derived dissolved organic matter (DOM) exported from land to water annually. However, due to the challenges inherent in isolating the effects of individual ROS on DOM composition, the role of ROS in the photochemical alteration of DOM remains poorly characterized. In this work, terrestrial DOM was independently exposed to singlet oxygen (1O2), and superoxide (O2-rad under controlled laboratory conditions). Using ultra-high resolution mass spectrometry to track molecular level alterations of DOM by ROS, these findings suggest exposure to 1O2 (generated using Rose Bengal and visible light) removed formulas with an O/C > 0.3, and primarily resulted in DOM comprised of formulas with higher oxygen content, while O2-rad exposure (from KO2 in DMSO) removed formulas with O/C < 0.3 and produced aliphatic formulas (H/C > 1.5). Comparison of DOM altered by ROS in this study to riverine and coastal DOM showed that (20-80%) overlap in formulas, providing evidence for the role of ROS in shaping the composition of DOM exported from rivers to oceans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauron, D.; Barhanin, J.; Amichot, M.
1989-02-21
Resistance to insecticides is a major problem in agriculture. ({sup 3}H)Saxitoxin binding experiments have shown that pyrethroid-sensitive and pyrethroid-resistant flies have the same amount of Na{sup +} channel protein in their brain membranes. Also, although flies are resistant to pyrethroids, they remain as sensitive to batrachotoxin, which is another type of Na{sup +} channel activators, as pyrethroid-sensitive flies. Pyrethroid binding sites have been characterized by use of the properties of pyrethroids to increase the specific ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate binding component. K{sub 0.5} values for association of pyrethroids at the Na{sup +} channel of pyrethroid-sensitive flies are in the rangemore » of 0.15-0.25 {mu}M. Conversely, pyrethroids do not produce a significant increase of ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate binding in pyrethroid-resistant flies even at high concentrations of the insecticide. It is concluded that linkage between pyrethroid and batrachotoxin binding sites is altered in the pyrethroid-resistant fly strains. This alteration is probably due to a drastically decreased affinity of the Na{sup +} channel for pyrethroids.« less
Alexander, Julie D.; Kerans, Billie L.; Koel, Todd M.; Rasmussen, Charlotte
2011-01-01
Parasites can regulate host abundance and influence the composition and structure of communities. However, host-parasite interactions might be context-specific if environmental conditions can alter the outcome of parasitism and disease. An understanding of how host-parasite interactions might change in different contexts will be useful for predicting and managing disease against a background of anthropogenic environmental change. We examined the ecology of Myxobolus cerebralis, the parasite that causes whirling disease in salmonids, and its obligate host, Tubifex tubifex, in geothermally variable stream reaches in Yellowstone National Park. We identified reaches in 4 categories of geothermal influence, which were characterized by variable substrates, temperatures, specific conductivities, and pH. In each reach, we measured aspects of host ecology (abundance, relative abundance, size, and genotype of T. tubifex), parasite ecology (infection prevalence in T. tubifex and abundance of M. cerebralis-infected T. tubifex), and risk to fish of contracting whirling disease. Tubifex tubifex abundance was high all in reaches characterized by geothermal influence, whereas abundance of M. cerebralis-infected T. tubifex was high only in reaches characterized by intermediate geothermal influence. We suggest that habitat had a contextual effect on parasitism in the oligochaete host. Abundance of infected hosts appeared to depend on host abundance in all reach types except those with high geothermal influence, where abundance of infected hosts depended on environmental factors.
Kieffer, Dorothy A; Piccolo, Brian D; Marco, Maria L; Kim, Eun Bae; Goodson, Michael L; Keenan, Michael J; Dunn, Tamara N; Knudsen, Knud Erik Bach; Martin, Roy J; Adams, Sean H
2016-12-01
High-amylose-maize resistant starch type 2 (HAMRS2) is a fermentable dietary fiber known to alter the gut milieu, including the gut microbiota, which may explain the reported effects of resistant starch to ameliorate obesity-associated metabolic dysfunction. Our working hypothesis was that HAMRS2-induced microbiome changes alter gut-derived signals (i.e., xenometabolites) reaching the liver via the portal circulation, in turn altering liver metabolism by regulating gene expression and other pathways. We used a multi-omics systems biology approach to characterize HAMRS2-driven shifts to the cecal microbiome, liver metabolome, and transcriptome, identifying correlates between microbial changes and liver metabolites under obesogenic conditions that, to our knowledge, have not previously been recognized. Five-week-old male C57BL/6J mice were fed an energy-dense 45% lard-based-fat diet for 10 wk supplemented with either 20% HAMRS2 by weight (n = 14) or rapidly digestible starch (control diet; n = 15). Despite no differences in food intake, body weight, glucose tolerance, fasting plasma insulin, or liver triglycerides, the HAMRS2 mice showed a 15-58% reduction in all measured liver amino acids, except for Gln, compared with control mice. These metabolites were equivalent in the plasma of HAMRS2 mice compared with controls, and transcripts encoding key amino acid transporters were not different in the small intestine or liver, suggesting that HAMRS2 effects were not simply due to lower hepatocyte exposure to systemic amino acids. Instead, alterations in gut microbial metabolism could have affected host nitrogen and amino acid homeostasis: HAMRS2 mice showed a 62% increase (P < 0.0001) in 48-h fecal output and a 41% increase (P < 0.0001) in fecal nitrogen compared with control mice. Beyond amino acid metabolism, liver transcriptomics revealed pathways related to lipid and xenobiotic metabolism; and pathways related to cell proliferation, differentiation, and growth were affected by HAMRS2 feeding. Together, these differences indicate that HAMRS2 dramatically alters hepatic metabolism and gene expression concurrent with shifts in specific gut bacteria in C57BL/6J mice. © 2016 American Society for Nutrition.
Kieffer, Dorothy A; Piccolo, Brian D; Marco, Maria L; Kim, Eun Bae; Goodson, Michael L; Keenan, Michael J; Dunn, Tamara N; Knudsen, Knud Erik Bach; Martin, Roy J; Adams, Sean H
2016-01-01
Background: High-amylose-maize resistant starch type 2 (HAMRS2) is a fermentable dietary fiber known to alter the gut milieu, including the gut microbiota, which may explain the reported effects of resistant starch to ameliorate obesity-associated metabolic dysfunction. Objective: Our working hypothesis was that HAMRS2-induced microbiome changes alter gut-derived signals (i.e., xenometabolites) reaching the liver via the portal circulation, in turn altering liver metabolism by regulating gene expression and other pathways. Methods: We used a multi-omics systems biology approach to characterize HAMRS2-driven shifts to the cecal microbiome, liver metabolome, and transcriptome, identifying correlates between microbial changes and liver metabolites under obesogenic conditions that, to our knowledge, have not previously been recognized. Five-week-old male C57BL/6J mice were fed an energy-dense 45% lard-based-fat diet for 10 wk supplemented with either 20% HAMRS2 by weight (n = 14) or rapidly digestible starch (control diet; n = 15). Results: Despite no differences in food intake, body weight, glucose tolerance, fasting plasma insulin, or liver triglycerides, the HAMRS2 mice showed a 15–58% reduction in all measured liver amino acids, except for Gln, compared with control mice. These metabolites were equivalent in the plasma of HAMRS2 mice compared with controls, and transcripts encoding key amino acid transporters were not different in the small intestine or liver, suggesting that HAMRS2 effects were not simply due to lower hepatocyte exposure to systemic amino acids. Instead, alterations in gut microbial metabolism could have affected host nitrogen and amino acid homeostasis: HAMRS2 mice showed a 62% increase (P < 0.0001) in 48-h fecal output and a 41% increase (P < 0.0001) in fecal nitrogen compared with control mice. Beyond amino acid metabolism, liver transcriptomics revealed pathways related to lipid and xenobiotic metabolism; and pathways related to cell proliferation, differentiation, and growth were affected by HAMRS2 feeding. Conclusion: Together, these differences indicate that HAMRS2 dramatically alters hepatic metabolism and gene expression concurrent with shifts in specific gut bacteria in C57BL/6J mice. PMID:27807042
Universal Solid-phase Reversible Sample-Prep for Concurrent Proteome and N-glycome Characterization
Zhou, Hui; Morley, Samantha; Kostel, Stephen; Freeman, Michael R.; Joshi, Vivek; Brewster, David; Lee, Richard S.
2017-01-01
SUMMARY We describe a novel Solid-phase Reversible Sample-Prep (SRS) platform, which enables rapid sample preparation for concurrent proteome and N-glycome characterization by mass spectrometry. SRS utilizes a uniquely functionalized, silica-based bead that has strong affinity toward proteins with minimal-to-no affinity for peptides and other small molecules. By leveraging the inherent size difference between, SRS permits high-capacity binding of proteins, rapid removal of small molecules (detergents, metabolites, salts, etc.), extensive manipulation including enzymatic and chemical treatments on beads-bound proteins, and easy recovery of N-glycans and peptides. The efficacy of SRS was evaluated in a wide range of biological samples including single glycoprotein, whole cell lysate, murine tissues, and human urine. To further demonstrate the SRS platform, we coupled a quantitative strategy to SRS to investigate the differences between DU145 prostate cancer cells and its DIAPH3-silenced counterpart. Our previous studies suggested that DIAPH3 silencing in DU145 prostate cancer cells induced transition to an amoeboid phenotype that correlated with tumor progression and metastasis. In this analysis we identified distinct proteomic and N-glycomic alterations between the two cells. Intriguingly, a metastasis-associated tyrosine kinase receptor ephrin-type-A receptor (EPHA2) was highly upregulated in DIAPH3-silenced cells, indicating underling connection between EPHA2 and DIAPH3. Moreover, distinct alterations in the N-glycome were identified, suggesting a cross-link between DIAPH3 and glycosyltransferase networks. Overall, SRS is an enabling universal sample preparation strategy that is not size limited and has the capability to efficiently prepare and clean peptides and N-glycans concurrently from nearly all sample types. Conceptually, SRS can be utilized for the analysis of other posttranslational modifications, and the unique surface chemistry can be further transformed for high-throughput automation. The technical simplicity, robustness, and modularity of SRS make it a highly promising technology with great potential in proteomic-based research. PMID:26791391
Rauchová, H; Vokurková, M; Pavelka, S; Vaněčková, I; Tribulová, N; Soukup, T
2018-05-04
Red palm oil (RPO) is a rich natural source of antioxidant vitamins, namely carotenes, tocopherols and tocotrienols. However, it contains approximately 50 % saturated fatty acids the regular consumption of which could negatively modify lipid profile. The aim of our study was to test whether 7 weeks of RPO supplementation (1 g/kg body weight/day) would affect blood glucose and lipid metabolism in adult male Wistar rats with altered thyroid status. We induced hypothyroidism and hyperthyroidism in rats by oral administration of either methimazole or mixture of thyroid hormones. Different thyroid status (EU - euthyroid, HY - hypothyroid and HT - hyperthyroid) was characterized by different serum thyroid hormones levels (total and free thyroxine and triiodothyronine), changes in the activity of a marker enzyme of thyroid status - liver mitochondrial glycerol-3-phosphate dehydrogenase, and altered absolute and relative heart weights. Fasting blood glucose levels were higher in HT rats in comparison with EU and HY rats, but the changes caused by RPO supplementation were not significant. The achievement of the HY status significantly increased serum levels of total cholesterol, as well as with high-density lipoprotein-cholesterol and low-density lipoprotein-cholesterol: 2.43+/-0.15, 1.48+/-0.09, 0.89+/-0.08 mmol/l, compared to EU: 1.14+/-0.06, 0.77+/-0.06, 0.34+/-0.05 mmol/l and HT: 1.01+/-0.06, 0.69+/-0.04, 0.20+/-0.03 mmol/l, respectively. RPO supplementation did not increase significantly levels of blood lipids but tended to increase glutathione levels in the liver. In conclusion, RPO supplementation did not induce the presumed deterioration of glucose and lipid metabolism in rats with three well-characterized alterations in thyroid status.
Impact of bottom trawling on deep-sea sediment properties along the flanks of a submarine canyon.
Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel
2014-01-01
The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400-800 m depth range. To explore the degree of alteration of surface sediments (0-50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y-1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea.
Impact of Bottom Trawling on Deep-Sea Sediment Properties along the Flanks of a Submarine Canyon
Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel
2014-01-01
The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400–800 m depth range. To explore the degree of alteration of surface sediments (0–50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y−1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea. PMID:25111298
Functional Connectivity Bias in the Prefrontal Cortex of Psychopaths.
Contreras-Rodríguez, Oren; Pujol, Jesus; Batalla, Iolanda; Harrison, Ben J; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Macià, Dídac; Pera, Vanessa; Hernández-Ribas, Rosa; Pifarré, Josep; Menchón, José M; Cardoner, Narcís
2015-11-01
Psychopathy is characterized by a distinctive interpersonal style that combines callous-unemotional traits with inflexible and antisocial behavior. Traditional emotion-based perspectives link emotional impairment mostly to alterations in amygdala-ventromedial frontal circuits. However, these models alone cannot explain why individuals with psychopathy can regularly benefit from emotional information when placed on their focus of attention and why they are more resistant to interference from nonaffective contextual cues. The present study aimed to identify abnormal or distinctive functional links between and within emotional and cognitive brain systems in the psychopathic brain to characterize further the neural bases of psychopathy. High-resolution anatomic magnetic resonance imaging with a functional sequence acquired in the resting state was used to assess 22 subjects with psychopathy and 22 control subjects. Anatomic and functional connectivity alterations were investigated first using a whole-brain analysis. Brain regions showing overlapping anatomic and functional changes were examined further using seed-based functional connectivity mapping. Subjects with psychopathy showed gray matter reduction involving prefrontal cortex, paralimbic, and limbic structures. Anatomic changes overlapped with areas showing increased degree of functional connectivity at the medial-dorsal frontal cortex. Subsequent functional seed-based connectivity mapping revealed a pattern of reduced functional connectivity of prefrontal areas with limbic-paralimbic structures and enhanced connectivity within the dorsal frontal lobe in subjects with psychopathy. Our results suggest that a weakened link between emotional and cognitive domains in the psychopathic brain may combine with enhanced functional connections within frontal executive areas. The identified functional alterations are discussed in the context of potential contributors to the inflexible behavior displayed by individuals with psychopathy. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Transcatheter valve implantation can alter fluid flow fields in aortic sinuses and ascending aorta
NASA Astrophysics Data System (ADS)
Saikrishnan, Neelakantan; Yoganathan, Ajit
2012-11-01
Transcatheter aortic valves (TAVs) are valve replacements used to treat aortic stenosis. Currently, these have been used in elderly patients at high-risk for open-heart procedures. Since these devices are implanted under fluoroscopic guidance, the implantation position of the valve can vary with respect to the native aortic valve annulus. The current study characterizes the altered hemodynamics in the aortic sinus and ascending aorta under different implantation (high and low) and cardiac output (2.5 and 5.0 L/min) conditions. Two commonly used TAV designs are studied using 2-D Particle Image Velocimetry (PIV). 200 phase locked images are obtained at every 25ms in the cardiac cycle, and the resulting vector fields are ensemble averaged. High implantation of the TAV with respect to the annulus causes weaker sinus washout and weaker sinus vortex formation. Additionally, the longer TAV leaflets can also result in a weaker sinus vortex. The level of turbulent fluctuations in the ascending aorta did not appear to be affected by axial positioning of the valve, but varied with cardiac output. The results of this study indicates that TAV positioning is important to be considered clinically, since this can affect coronary perfusion and potential flow stagnation near the valve.
High phosphate feeding promotes mineral and bone abnormalities in mice with chronic kidney disease.
Lau, Wei Ling; Linnes, Michael; Chu, Emily Y; Foster, Brian L; Bartley, Bryan A; Somerman, Martha J; Giachelli, Cecilia M
2013-01-01
Chronic kidney disease-mineral bone disorder (CKD-MBD) is a systemic syndrome characterized by imbalances in mineral homeostasis, renal osteodystrophy (ROD) and ectopic calcification. The mechanisms underlying this syndrome in individuals with chronic kidney disease (CKD) are not yet clear. We examined the effect of normal phosphate (NP) or high phosphate (HP) feeding in the setting of CKD on bone pathology, serum biochemistry and vascular calcification in calcification-prone dilute brown non-agouti (DBA/2) mice. In both NP and HP-fed CKD mice, elevated serum parathyroid hormone and alkaline phosphatase (ALP) levels were observed, but serum phosphorus levels were equivalent compared with sham controls. CKD mice on NP diet showed trabecular alterations in the long bone consistent with high-turnover ROD, including increased trabecular number with abundant osteoblasts and osteoclasts. Despite trabecular bone and serum biochemical changes, CKD/NP mice did not develop vascular calcification. In contrast, CKD/HP mice developed arterial medial calcification (AMC), more severe trabecular bone alterations and cortical bone abnormalities that included decreased cortical thickness and density, and increased cortical porosity. Cortical bone porosity and trabecular number strongly correlated with the degree of aortic calcification. HP feeding was required to induce the full spectrum of CKD-MBD symptoms in CKD mice.
Modeling Steroidogenesis Disruption Using High-Throughput ...
Environmental chemicals can elicit endocrine disruption by altering steroid hormone biosynthesis and metabolism (steroidogenesis) causing adverse reproductive and developmental effects. Historically, a lack of assays resulted in few chemicals having been evaluated for effects on steroidogenesis. The steroidogenic pathway is a series of hydroxylation and dehydrogenation steps carried out by CYP450 and hydroxysteroid dehydrogenase enzymes, yet the only enzyme in the pathway for which a high-throughput screening (HTS) assay has been developed is aromatase (CYP19A1), responsible for the aromatization of androgens to estrogens. Recently, the ToxCast HTS program adapted the OECD validated H295R steroidogenesis assay using human adrenocortical carcinoma cells into a high-throughput model to quantitatively assess the concentration-dependent (0.003-100 µM) effects of chemicals on 10 steroid hormones including progestagens, androgens, estrogens and glucocorticoids. These results, in combination with two CYP19A1 inhibition assays, comprise a large dataset amenable to clustering approaches supporting the identification and characterization of putative mechanisms of action (pMOA) for steroidogenesis disruption. In total, 514 chemicals were tested in all CYP19A1 and steroidogenesis assays. 216 chemicals were identified as CYP19A1 inhibitors in at least one CYP19A1 assay. 208 of these chemicals also altered hormone levels in the H295R assay, suggesting 96% sensitivity in the
NASA Astrophysics Data System (ADS)
Martín-Méndez, Iván; Boixereu, Ester; Villaseca, Carlos
2016-06-01
Graphite is found dispersed in high-grade metapelitic rocks of the Anatectic Complex of Toledo (ACT) and was mined during the mid twentieth century in places where it has been concentrated (Guadamur and la Puebla de Montalbán mines). Some samples from these mines show variable but significant alteration intensity, reaching very low-T hydrothermal (supergene) conditions for some samples from the waste heap of the Guadamur site (<100 °C and 1 kbar). Micro-Raman and XRD data indicate that all the studied ACT graphite is of high crystallinity irrespective of the degree of hydrothermal alteration. Chemical differences were obtained for graphite δ13C composition. ACT granulitic graphite shows δ13CPDB values in the range of -20.5 to -27.8 ‰, indicating a biogenic origin. Interaction of graphite with hydrothermal fluids does not modify isotopic compositions even in the most transformed samples from mining sites. The different isotopic signatures of graphite from the mining sites reflect its contrasted primary carbon source. The high crystallinity of studied graphite makes this area of central Spain suitable for graphitic exploration and its potential exploitation, due to the low carbon content required for its viability and its strategic applications in advanced technologies, such as graphene synthesis.
Foster, Michelle T; Gentile, Christopher L; Cox-York, Kimberly; Wei, Yuren; Wang, Dong; Estrada, Andrea L; Reese, Lauren; Miller, Tirrel; Pagliassotti, Michael J; Weir, Tiffany L
2016-05-01
Nonalcoholic fatty liver disease is an obesity-related disorder characterized by lipid infiltration of the liver. Management is limited to lifestyle modifications, highlighting the need for alternative therapeutic options. The objective of this study was to examine if fermented Fuzhuan tea prevents metabolic impairments associated with development of hepatic steatosis. Rats consumed control (CON) or high saturated fat (SAT) diets with or without Fuzhuan tea for 8 weeks. Outcomes included enzymatic and gene expression measures of metabolic dysregulation in liver and adipose tissue. Pyrosequencing was used to assess intestinal microbiota adaptations. Fuzhuan tea prevented diet-induced inflammation in the liver. Liver triglycerides of ∼18 mg/g were observed in SAT-fed animals, but remained similar to CON diet levels (∼12 mg/g) when supplemented with Fuzhuan tea. In adipose tissue, tea treatment prevented SAT-induced inflammation and reduced plasma leptin approximately twofold. Fuzhuan tea also altered intestinal function and was associated with a threefold increase in two Lactobacillus spp. These data suggest that Fuzhuan tea protects against liver and adipose tissue stress induced by a high SAT diet and positively influences intestinal function. Further investigation of the molecular targets of Fuzhuan tea is warranted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Nguyen, A. N.; Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Kloeck, W.
2014-01-01
Anhydrous chondritic porous interplanetary dust particles (CP IDPs) have undergone minimal parent body alteration and contain an assemblage of highly primitive materials, including molecular cloud material, presolar grains, and material that formed in the early solar nebula [1-3]. The exact parent bodies of individual IDPs are not known, but IDPs that have extremely high abundances of presolar silicates (up to 1.5%) most likely have cometary origins [1, 4]. The presolar grain abundance among these minimally altered CP IDPs varies widely. "Isotopically primitive" IDPs distinguished by anomalous bulk N isotopic compositions, numerous 15N-rich hotspots, and some C isotopic anomalies have higher average abundances of presolar grains (375 ppm) than IDPs with isotopically normal bulk N (<10 ppm) [5]. Some D and N isotopic anomalies have been linked to carbonaceous matter, though this material is only rarely isotopically anomalous in C [1, 5, 6]. Previous studies of the bulk chemistry and, in some samples, the mineralogy of select anhydrous CP IDPs indicate a link between high C abundance and pyroxene-dominated mineralogy [7]. In this study, we conduct coordinated mineralogical and isotopic analyses of samples that were analyzed by [7] to characterize isotopically anomalous materials and to establish possible correlations with C abundance.
Malinowski, Douglas P
2007-03-01
The screening for cervical carcinoma and its malignant precursors (cervical neoplasia) currently employs morphology-based detection methods (Papanicolaou [Pap] smear) in addition to the detection of high-risk human papillomavirus. The combination of the Pap smear with human papillomavirus testing has achieved significant improvements in sensitivity for the detection of cervical disease. Diagnosis of cervical neoplasia is dependent upon histology assessment of cervical biopsy specimens. Attempts to improve the specificity of cervical disease screening have focused on the investigation of molecular biomarkers for adjunctive use in combination with the Pap smear. Active research into the genomic and proteomic alterations that occur during human papillomavirus-induced neoplastic transformation have begun to characterize some of the basic mechanisms inherent to the disease process of cervical cancer development. This research continues to demonstrate the complexity of multiple genomic and proteomic alterations that accumulate during the tumorigenesis process. Despite this diversity, basic patterns of uncontrolled signal transduction, cell cycle deregulation, activation of DNA replication and altered extracellular matrix interactions are beginning to emerge as common features inherent to cervical cancer development. Some of these gene or protein expression alterations have been investigated as potential biomarkers for screening and diagnostics applications. The contribution of multiple gene alterations in the development of cervical cancer suggests that the application of multiple biomarker panels has the potential to develop clinically useful molecular diagnostics. In this review, the application of biomarkers for the improvement of sensitivity and specificity of the detection of cervical neoplasia within cytology specimens will be discussed.
Manometric findings in adult eosinophilic oesophagitis: a study of 12 cases.
Lucendo, Alfredo J; Castillo, Pilar; Martín-Chávarri, Sonia; Carrión, Gemma; Pajares, Ramón; Pascual, Juan M; Manceñido, Noemí; Erdozain, José C
2007-05-01
To describe the manometric findings detected in adult patients with dysphagia that were diagnosed of eosinophilic oesophagitis, and to compare with the cases of eosinophilic infiltration of the oesophagus reported in the literature. We present 12 adult patients diagnosed as suffering from this disorder in our department in a 1.5-year period, according to histological criteria and discarding any other cause of eosinophilic infiltration of the oesophagus. Stationary oesophageal manometry using a hydropneumocapillary perfusion system was performed in every case. The recommendations of the Spanish Group of Digestive Motility were followed for the interpretation of the results. In seven patients who presented motor disorder in manometric evaluation, treatment with steroid oesophageal lavage using fluticasone propionate was carried out and these patients were subsequently re-evaluated. All patients were young predominantly men, and the first endoscopic examination showed regular concentric stenosis or a 'ring oesophagus'. Six patients had a severe nonspecific oesophageal motor disorder characterized by up to 80% of nontransmitted or very low-amplitude waves in the lower two-thirds of the organ. Three patients presented a manometric disturbance characterized by hyperkinetic peristaltic waves in distal oesophageal third. One patient had an alteration of the oesophageal motor dynamics characterized by 80% of deglutory complexes formed by a primary simultaneous wave in the two lower oesophageal thirds followed by a secondary peristaltic wave in 50% of cases that had a normal duration and amplitude. The remaining two patients had normal oesophageal motility. The upper oesophageal sphincter showed no alterations, and the manometric evaluation of the lower oesophageal sphincter tone proved normal in 10 patients, with slight hypotension in two cases. In seven of the nine patients who presented an oesophageal motor disorder, treatment with steroid oesophageal lavage using fluticasone propionate was administered and a new oesophageal manometry was performed afterwards, in which the motor disorder was clearly improved as soon as dysphagia, endoscopic lesions and histopathologic alteration disappeared. In the literature, 61 cases of eosinophilic infiltration of the oesophageal mucosa subjected to oesophageal manometric study had been described, and 60.6% of them showed evidence of different types of manometric alterations, mainly with spastic or hypercontractility characteristics. Although six of our cases showed very deficient peristalsis with very low-amplitude or nontransmitted waves, and in another three high-amplitude peristaltic waves were recorded. Motor disorders improved parallel to the disappearance of the eosinophilic infiltration of the mucosa. These data suggest that motor disorders in eosinophilic oesophagitis are a consequence of eosinophil infiltration of the oesophagus and should be considered in the differential diagnosis of dysphagia. These manometric alterations could be considered as primary nonspecific disorders and included in the 'ineffective oesophageal motility' group.
USDA-ARS?s Scientific Manuscript database
Chronic kidney disease (CKD) is characterized by the reduced ability to void urine, leading to accumulation of waste products in the body. Recently, it has been observed that patients with CKD have an altered gut microbiome. This may in part be due to reduced fiber intake. Patients with CKD are ofte...
Dana-Farber Cancer Institute | Office of Cancer Genomics
Functional Annotation of Cancer Genomes Principal Investigator: William C. Hahn, M.D., Ph.D. The comprehensive characterization of cancer genomes has and will continue to provide an increasingly complete catalog of genetic alterations in specific cancers. However, most epithelial cancers harbor hundreds of genetic alterations as a consequence of genomic instability. Therefore, the functional consequences of the majority of mutations remain unclear.
NASA Astrophysics Data System (ADS)
Dziggel, A.; Wulff, K.; Kolb, J.; Meyer, F. M.
2009-08-01
The Navachab gold deposit in the Damara belt of central Namibia is hosted by a near-vertical sequence of amphibolite facies shelf-type metasediments, including marble, calc-silicate rock, and biotite schist. Petrologic and geochemical data were collected in the ore, alteration halos, and the wall rock to evaluate transport of elements and interaction between the wall rock and the mineralizing fluid. The semi-massive sulfide lenses and quartz-sulfide veins are characterized by a complex polymetallic ore assemblage, comprising pyrrhotite, chalcopyrite, sphalerite, and arsenopyrite, native bismuth, gold, bismuthinite, and bismuth tellurides. Mass balance calculations indicate the addition of up to several orders of magnitude of Au, Bi, As, Ag, and Cu. The mineralized zones also record up to eightfold higher Mn and Fe concentrations. The semi-massive sulfide lenses are situated in the banded calc-silicate rock. Petrologic and textural data indicate that they represent hydraulic breccias that contain up to 50 vol.% ore minerals, and that are dominated by a high-temperature (T) alteration assemblage of garnet-clinopyroxene-K-feldspar-quartz. The quartz-sulfide veins crosscut all lithological units. Their thickness and mineralogy is strongly controlled by the composition and rheological behavior of the wall rocks. In the biotite schist and calc-silicate rock, they are up to several decimeters thick and quartz-rich, whereas in the marble, the same veins are only a few millimeters thick and dominated by sulfides. The associated alteration halos comprise (1) an actinolite-quartz alteration in the biotite schist, (2) a garnet-clinopyroxene-K-feldspar-quartz alteration in the marble and calc-silicate rock, and (3) a garnet-biotite alteration that is recorded in all rock types except the marble. The hydrothermal overprint was associated with large-scale carbonate dissolution and a dramatic increase in CO2 in the ore fluid. Decarbonation of wall rocks, as well as a low REE content of the ore fluid resulted in the mobilization of the REE, and the decoupling of the LREE from the HREE. The alteration halos not only parallel the mineralized zones, but may also follow up single layers away from the mineralization. Alteration is far more pronounced facing upward, indicating that the rocks were steep when veining occurred. The petrologic and geochemical data indicate that the actinolite-quartz- and garnet-clinopyroxene-K-feldspar-quartz alterations formed in equilibrium with a fluid (super-) saturated in Si, and were mainly controlled by the composition of the wall rocks. In contrast, the garnet-biotite alteration formed by interaction with a fluid undersaturated in Si, and was mainly controlled by the fluid composition. This points to major differences in fluid-rock ratios and changes in fluid composition during alteration. The alteration systematics and geometry of the hydrothermal vein system are consistent with cyclic fluctuations in fluid pressure during fault valve action.
All things rhabdoid and SMARC: An enigmatic exploration with Dr. Louis P. Dehner.
Fuller, Christine E
2016-11-01
Over the past several decades, our understanding of malignant rhabdoid tumors (MRT) and the central nervous system equivalent atypical teratoid/rhabdoid tumor (ATRT) has undergone considerable refinement, particularly in terms of genetic characterization. MRT (both renal and extra-renal) and ATRT share phenotypic similarities and a common genetic signature, that being inactivating alterations of the SWI/SNF complex component SMARCB1 (or rarely SMARCA4). Unfortunately, a wide array of tumors bears significantly overlapping phenotypic characteristics to MRT/ATRT, posing a formidable diagnostic challenge. Likewise, the list of tumors bearing SMARC-related alterations has grown at a dizzying pace, and the original assumption that SMARCB1 alterations were unique to MRT/ATRT has been essentially negated. It should come as no surprise that Dr. Louis P. Dehner, no stranger to enigmatic lesions, participated significantly in this pathologic controversy, and the circuitous journey of entity discovery and clarification. This review aims to (1) summarize our current knowledge of MRT and ATRT with an emphasis on genetic characterization, (2) present insight into so-called "composite rhabdoid tumors" (CRTs), and (3) and provide an updated account of others tumors bearing SMARC alterations. Copyright © 2016 Elsevier Inc. All rights reserved.
Shalev, Amit; Benarroch, Fortunato; Goltser-Dubner, Tanya; Canetti, Laura; Saloner, Chen; Roichman, Asael; Cohen, Haim; Galili-Weisstub, Esti; Segman, Ronen
2018-06-27
Long-term immune alterations have been proposed to play a mechanistic role in posttraumatic stress disorder (PTSD) as well as in its associated increase in medical morbidity and mortality. Better characterization of altered immune function may help identify diagnostic and prognostic biomarkers and potentially targets for preventive intervention. As part of an ongoing study, we conducted a preliminary case-control comparison of resting immune inflammatory profiles between terror victims treated in childhood at the emergency department over the previous decade, who developed chronic PTSD upon long-term follow-up, and healthy controls. Our preliminary results in a subsample of this ongoing study support and extend elevated resting levels of granulocyte colony-stimulating factor, interleukin-4, and regulated on activation, normal T cell expressed and secreted in childhood onset chronic PTSD. Chronic immune alterations may participate in inflammatory activation and signal to the CNS through the neurovascular unit, as well as modulate the neuroendocrine axis. Better characterization and understanding of these preliminary findings may point to diagnostic and prognostic biomarkers and potentially elucidate mechanistic involvement of immune activation in PTSD. © 2018 S. Karger AG, Basel.
Hydrothermal alteration mapping using ASTER data in Baogutu porphyry deposit, China
NASA Astrophysics Data System (ADS)
Li, Q.; Zhang, B.; Lu, L.; Lin, Q.
2014-03-01
Remote sensing plays an important role in mineral exploration. One of its proven applications is extracting host-rock lithology and alteration zones that are related to porphyry copper deposits. An Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to map the Baogutu porphyry deposit alteration area. A circular alteration mineral zoning pattern was clearly observed in the classification result of potassic, phyllic, argillic, propylitic zones. The potassic is characterized by biotite and anhydrite with an absorption feature centered at 1.94 and 2.1um. The phyllic zone is characterized by illite and sericite that indicates an intense Al-OH absorption feature centered at 2.20um. The narrower argillic zone including kaolinite and alunite displays a secondary Al-OH absorption feature at 2.17 um. The mineral assemblages of the outer propylitic zone are epidote, chlorite and calcite that exhibit absorption features at 2.335um.The performance of Principal Component Analysis(PCA), Minimum Noise Fraction (MNF), band ratio(BR) and Constrained Energy Minimization(CEM) has been evaluated. These techniques identified new prospects of porphyry copper mineralization in the study areas. These results indicate that ASTER is a powerful tool in the initial steps of mineral exploration.
Ruddle, N H; Li, C B; Horne, W C; Santiago, P; Troiano, N; Jay, G; Horowitz, M; Baron, R
1993-11-01
HTLV-I infection can result in adult T cell leukemia with accompanying hypercalcemia and increased bone resorption. A viral etiology has also been invoked for Paget's disease, a disease of high bone turnover. Delineation of pathogenetic mechanisms of viral-associated bone diseases has been impeded by the complexity of viral and host factors. In order to consider the relationship of HTLV-I infection to skeletal changes we have evaluated the role of a single viral gene in mice transgenic for HTLV-I tax under the control of the viral promoter. Tax mice exhibited severe skeletal abnormalities characterized by high bone turnover, increases in osteoblast and osteoclast numbers and activity, and myelofibrosis. These changes were apparent as early as two months of age. Tax mRNA and protein were highly expressed in bone but not in bone marrow nor in any other tissues except, as previously reported, salivary gland and neurofibromas when they did develop. Within bone, tax protein was detected in only two cell types, mature osteoclasts and spindle-shaped cells within the endosteal myelofibrosis. These observations suggest that local expression of the tax gene, which encodes a viral regulatory protein known to influence host gene expression, can induce within the bone environment marked changes in bone cell activity, resulting in profound skeletal alterations.
Hansen, Fernanda; Battú, Cíntia Eickhoff; Dutra, Márcio Ferreira; Galland, Fabiana; Lirio, Franciane; Broetto, Núbia; Nardin, Patrícia; Gonçalves, Carlos-Alberto
2016-02-01
Diabetes is a metabolic disease characterized by high fasting-glucose levels. Diabetic complications have been associated with hyperglycemia and high levels of reactive compounds, such as methylglyoxal (MG) and advanced glycation endproducts (AGEs) formation derived from glucose. Diabetic patients have a higher risk of developing neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. Herein, we examined the effect of high glucose, MG and carboxyethyllysine (CEL), a MG-derived AGE of lysine, on oxidative, metabolic and astrocyte-specific parameters in acute hippocampal slices, and investigated some of the mechanisms that could mediate these effects. Glucose, MG and CEL did not alter reactive oxygen species (ROS) formation, glucose uptake or glutamine synthetase activity. However, glutamate uptake and S100B secretion were decreased after MG and CEL exposure. RAGE activation and glycation reactions, examined by aminoguanidine and L-lysine co-incubation, did not mediate these changes. Acute MG and CEL exposure, but not glucose, were able to induce similar effects on hippocampal slices, suggesting that conditions of high glucose concentrations are primarily toxic by elevating the rates of these glycation compounds, such as MG, and by generation of protein cross-links. Alterations in the secretion of S100B and the glutamatergic activity mediated by MG and AGEs can contribute to the brain dysfunction observed in diabetic patients.
Dickinson, Peter J; York, Dan; Higgins, Robert J; LeCouteur, Richard A; Joshi, Nikhil; Bannasch, Danika
2016-07-01
Spontaneous gliomas in dogs occur at a frequency similar to that in humans and may provide a translational model for therapeutic development and comparative biological investigations. Copy number alterations in 38 canine gliomas, including diffuse astrocytomas, glioblastomas, oligodendrogliomas, and mixed oligoastrocytomas, were defined using an Illumina 170K single nucleotide polymorphism array. Highly recurrent alterations were seen in up to 85% of some tumor types, most notably involving chromosomes 13, 22, and 38, and gliomas clustered into 2 major groups consisting of high-grade IV astrocytomas, or oligodendrogliomas and other tumors. Tumor types were characterized by specific broad and focal chromosomal events including focal loss of the INK4A/B locus in glioblastoma and loss of the RB1 gene and amplification of the PDGFRA gene in oligodendrogliomas. Genes associated with the 3 critical pathways in human high-grade gliomas (TP53, RB1, and RTK/RAS/PI3K) were frequently associated with canine aberrations. Analysis of oligodendrogliomas revealed regions of chromosomal losses syntenic to human 1p involving tumor suppressor genes, such as CDKN2C, as well as genes associated with apoptosis, autophagy, and response to chemotherapy and radiation. Analysis of high frequency chromosomal aberrations with respect to human orthologues may provide insight into both novel and common pathways in gliomagenesis and response to therapy. © 2016 American Association of Neuropathologists, Inc. All rights reserved.
York, Dan; Higgins, Robert J.; LeCouteur, Richard A.; Joshi, Nikhil; Bannasch, Danika
2016-01-01
Spontaneous gliomas in dogs occur at a frequency similar to that in humans and may provide a translational model for therapeutic development and comparative biological investigations. Copy number alterations in 38 canine gliomas, including diffuse astrocytomas, glioblastomas, oligodendrogliomas, and mixed oligoastrocytomas, were defined using an Illumina 170K single nucleotide polymorphism array. Highly recurrent alterations were seen in up to 85% of some tumor types, most notably involving chromosomes 13, 22, and 38, and gliomas clustered into 2 major groups consisting of high-grade IV astrocytomas, or oligodendrogliomas and other tumors. Tumor types were characterized by specific broad and focal chromosomal events including focal loss of the INK4A/B locus in glioblastoma and loss of the RB1 gene and amplification of the PDGFRA gene in oligodendrogliomas. Genes associated with the 3 critical pathways in human high-grade gliomas (TP53, RB1, and RTK/RAS/PI3K) were frequently associated with canine aberrations. Analysis of oligodendrogliomas revealed regions of chromosomal losses syntenic to human 1p involving tumor suppressor genes, such as CDKN2C, as well as genes associated with apoptosis, autophagy, and response to chemotherapy and radiation. Analysis of high frequency chromosomal aberrations with respect to human orthologues may provide insight into both novel and common pathways in gliomagenesis and response to therapy. PMID:27251041
Vosahlikova, Miroslava; Ujcikova, Hana; Chernyavskiy, Oleksandr; Brejchova, Jana; Roubalova, Lenka; Alda, Martin; Svoboda, Petr
2017-05-01
The effect of long-term exposure of live cells to lithium cations (Li) was studied in HEK293 cells cultivated in the presence of 1mM LiCl for 7 or 21days. The alteration of Na + /K + -ATPase level, protein composition and biophysical state of plasma membrane was determined with the aim to characterize the physiological state of Li-treated cells. Na + /K + -ATPase level was determined by [ 3 H]ouabain binding and immunoblot assays. Overall protein composition was determined by 2D electrophoresis followed by proteomic analysis by MALDI-TOF MS/MS and LFQ. Li interaction with plasma membrane was characterized by fluorescent probes DPH, TMA-DPH and Laurdan. Na + /K + -ATPase was increased in plasma membranes isolated from cells exposed to Li. Identification of Li-altered proteins by 2D electrophoresis, MALDI-TOF MS/MS and LFQ suggests a change of energy metabolism in mitochondria and cytosol and alteration of cell homeostasis of calcium. Measurement of Laurdan generalized polarization indicated a significant alteration of surface layer of isolated plasma membranes prepared from both types of Li-treated cells. Prolonged exposure of HEK293 cells to 1mM LiCl results in up-regulation of Na + /K + -ATPase expression, reorganization of overall cellular metabolism and alteration of the surface layer/polar head-group region of isolated plasma membranes. Our findings demonstrate adaptation of live HEK293 cell metabolism to prolonged exposure to therapeutic concentration of Li manifested as up-regulation of Na + /K + -ATPase expression, alteration of protein composition and change of the surface layer of plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.
Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand
NASA Astrophysics Data System (ADS)
Wyering, L. D.; Villeneuve, M. C.; Wallis, I. C.; Siratovich, P. A.; Kennedy, B. M.; Gravley, D. M.; Cant, J. L.
2014-11-01
Mechanical characterization of hydrothermally altered rocks from geothermal reservoirs will lead to an improved understanding of rock mechanics in a geothermal environment. To characterize rock properties of the selected formations, we prepared samples from intact core for non-destructive (porosity, density and ultrasonic wave velocities) and destructive laboratory testing (uniaxial compressive strength). We characterised the hydrothermal alteration assemblage using optical mineralogy and existing petrography reports and showed that lithologies had a spread of secondary mineralisation that occurred across the smectite, argillic and propylitic alteration zones. The results from the three geothermal fields show a wide variety of physical rock properties. The testing results for the non-destructive testing shows that samples that originated from the shallow and low temperature section of the geothermal field had higher porosity (15 - 56%), lower density (1222 - 2114 kg/m3) and slower ultrasonic waves (1925 - 3512 m/s (vp) and 818 - 1980 m/s (vs)), than the samples from a deeper and higher temperature section of the field (1.5 - 20%, 2072 - 2837 kg/m3, 2639 - 4593 m/s (vp) and 1476 - 2752 m/s (vs), respectively). The shallow lithologies had uniaxial compressive strengths of 2 - 75 MPa, and the deep lithologies had strengths of 16 - 211 MPa. Typically samples of the same lithologies that originate from multiple wells across a field have variable rock properties because of the different alteration zones from which each sample originates. However, in addition to the alteration zones, the primary rock properties and burial depth of the samples also have an impact on the physical and mechanical properties of the rock. Where this data spread exists, we have been able to derive trends for this specific dataset and subsequently have gained an improved understanding of how hydrothermal alteration affects physical and mechanical properties.
Investigation of FANCA gene in Fanconi anaemia patients in Iran
Saffar Moghadam, Ali Akbar; Mahjoubi, Frouzandeh; Reisi, Nahid; Vosough, Parvaneh
2016-01-01
Background & objectives: Fanconi anaemia (FA) is a syndrome with a predisposition to bone marrow failure, congenital anomalies and malignancies. It is characterized by cellular hypersensitivity to cross-linking agents such as mitomycin C (MMC). In the present study, a new approach was selected to investigate FANCA (Fanconi anaemia complementation group A) gene in patients clinically diagnosed with cellular hypersensitivity to DNA cross-linking agent MMC. Methods: Chromosomal breakage analysis was performed to prove the diagnosis of Fanconi anaemia in 318 families. Of these, 70 families had a positive result. Forty families agreed to molecular genetic testing. In total, there were 27 patients with unknown complementary types. Genomic DNA was extracted and total RNA was isolated from fresh whole blood of the patients. The first-strand cDNA was synthesized and the cDNA of each patient was then tested with 21 pairs of overlapping primers. High resolution melting curve analysis was used to screen FANCA, and LinReg software version 1.7 was utilized for analysis of expression. Results: In total, six sequence alterations were identified, which included two stop codons, two frames-shift mutations, one large deletion and one amino acid exchange. FANCA expression was downregulated in patients who had sequence alterations. Interpretation & conclusions: The results of the present study show that high resolution melting (HRM) curve analysis may be useful in the detection of sequence alteration. It is simpler and more costeffective than the multiplex ligation-dependent probe amplification (MLPA) procedure. PMID:27121516
Investigation of FANCA gene in Fanconi anaemia patients in Iran.
Moghadam, Ali Akbar Saffar; Mahjoubi, Frouzandeh; Reisi, Nahid; Vosough, Parvaneh
2016-02-01
Fanconi anaemia (FA) is a syndrome with a predisposition to bone marrow failure, congenital anomalies and malignancies. It is characterized by cellular hypersensitivity to cross-linking agents such as mitomycin C (MMC). In the present study, a new approach was selected to investigate FANCA (Fanconi anaemia complementation group A) gene in patients clinically diagnosed with cellular hypersensitivity to DNA cross-linking agent MMC. Chromosomal breakage analysis was performed to prove the diagnosis of Fanconi anaemia in 318 families. Of these, 70 families had a positive result. Forty families agreed to molecular genetic testing. In total, there were 27 patients with unknown complementary types. Genomic DNA was extracted and total RNA was isolated from fresh whole blood of the patients. The first-strand cDNA was synthesized and the cDNA of each patient was then tested with 21 pairs of overlapping primers. High resolution melting curve analysis was used to screen FANCA, and LinReg software version 1.7 was utilized for analysis of expression. In total, six sequence alterations were identified, which included two stop codons, two frames-shift mutations, one large deletion and one amino acid exchange. FANCA expression was downregulated in patients who had sequence alterations. The results of the present study show that high resolution melting (HRM) curve analysis may be useful in the detection of sequence alteration. It is simpler and more cost-effective than the multiplex ligation-dependent probe amplification (MLPA) procedure.
Subgingival dysbiosis in smoker and non-smoker patients with chronic periodontitis
Coretti, Lorena; Cuomo, Mariella; Florio, Ermanno; Palumbo, Domenico; Keller, Simona; Pero, Raffaela; Chiariotti, Lorenzo; Lembo, Francesca; Cafiero, Carlo
2017-01-01
Periodontitis is one of the most common oral inflammatory diseases, and results in connective tissue degradation and gradual tooth loss. It manifests with formation of periodontal pockets, in which anaerobic and Gram-negative bacteria proliferate rapidly. Consequently, alteration of the subgingival microbiota is considered the primary etiologic agent of periodontitis. Previous studies have reported that smokers are at increased risk of periodontal disease, in both prevalence and severity, indicating that smoking is a risk factor for the onset and progression of the pathology. In the present study, 16S rRNA sequencing was employed to assess the subgingival microbiota in 6 smoker patients with chronic periodontitis, 6 non-smoker patients with chronic periodontitis and 8 healthy controls. The results demonstrated significant alterations in the microbial structure of periodontitis patients. High relative abundance of Parvimonans, Desulfubulbus, Paludibacter, Haemophilus, and Sphaerochaeta genera characterized subgingival microbiota of periodontitis patients, both smokers and non-smokers. Due to the high precision and sensitivity of the 16S rRNA sequencing method, analysis for low-abundant genera (including Pedobacter, Granulicatella, Paracoccus, Atopobium, Bifidobacterium, Coprococcus, Oridobacteriu, Peptococcus, Oscillospira and Akkermansia) was feasible, and revealed novel phylotypes associated with periodontitis. Of note, a major microbial community alteration was evident in smoker patients, suggesting an association between smoking and severity of subgingival dysbiosis. The present study confirmed that chronic periodontitis is a polymicrobial disease where changes in the equilibrium of subgingival microbiota contribute to severity of pathology. PMID:28260061
Rodríguez, Marianela; Muñoz, Nacira; Lenardon, Sergio; Lascano, Ramiro
2013-01-01
Sugars are part of an integrated redox system, since they are key regulators of respiration and photosynthesis, and therefore of the levels of reducing power, ATP and ROS. These elements are major determinants of the cellular redox state, which is involved in the perception and regulation of many endogenous and environmental stimuli. Our previous findings suggested that early sugar increase produced during compatible Sunflower chlorotic mottle virus (SuCMoV) infection might modulate chlorotic symptom development through redox state alteration in sunflower. The purpose of this work was to characterize redox-related metabolites and gene expression changes associated with high sugar availability and symptom development induced by SuCMoV. The results show that sugar caused an increase in glutathione, ascorbate, pyridine nucleotides, and ATP. In addition, higher sugar availability reduced hydrogen peroxide and ΦPSII. This finding suggests that high sugar availability would be associated with cellular redox alteration and photoinhibitory process. The expression of the genes analyzed was also strongly affected by sugar, such as the down-regulation of psbA and up-regulation of psbO and cp29. The expression level of cytoplasmic (apx-1 and gr)- and chloroplastic (Fe-sod)-targeted genes was also significantly enhanced in sugar-treated leaves. Therefore, all these responses suggest that sugars induce chloroplastic redox state alteration with photoinhibition process that could be contributing to chlorotic symptom development during SuCMoV infection.
Subgingival dysbiosis in smoker and non‑smoker patients with chronic periodontitis.
Coretti, Lorena; Cuomo, Mariella; Florio, Ermanno; Palumbo, Domenico; Keller, Simona; Pero, Raffaela; Chiariotti, Lorenzo; Lembo, Francesca; Cafiero, Carlo
2017-04-01
Periodontitis is one of the most common oral inflammatory diseases, and results in connective tissue degradation and gradual tooth loss. It manifests with formation of periodontal pockets, in which anaerobic and Gram‑negative bacteria proliferate rapidly. Consequently, alteration of the subgingival microbiota is considered the primary etiologic agent of periodontitis. Previous studies have reported that smokers are at increased risk of periodontal disease, in both prevalence and severity, indicating that smoking is a risk factor for the onset and progression of the pathology. In the present study, 16S rRNA sequencing was employed to assess the subgingival microbiota in 6 smoker patients with chronic periodontitis, 6 non‑smoker patients with chronic periodontitis and 8 healthy controls. The results demonstrated significant alterations in the microbial structure of periodontitis patients. High relative abundance of Parvimonans, Desulfubulbus, Paludibacter, Haemophilus, and Sphaerochaeta genera characterized subgingival microbiota of periodontitis patients, both smokers and non‑smokers. Due to the high precision and sensitivity of the 16S rRNA sequencing method, analysis for low‑abundant genera (including Pedobacter, Granulicatella, Paracoccus, Atopobium, Bifidobacterium, Coprococcus, Oridobacteriu, Peptococcus, Oscillospira and Akkermansia) was feasible, and revealed novel phylotypes associated with periodontitis. Of note, a major microbial community alteration was evident in smoker patients, suggesting an association between smoking and severity of subgingival dysbiosis. The present study confirmed that chronic periodontitis is a polymicrobial disease where changes in the equilibrium of subgingival microbiota contribute to severity of pathology.
Hematological alterations in protein malnutrition.
Santos, Ed W; Oliveira, Dalila C; Silva, Graziela B; Tsujita, Maristela; Beltran, Jackeline O; Hastreiter, Araceli; Fock, Ricardo A; Borelli, Primavera
2017-11-01
Protein malnutrition is one of the most serious nutritional problems worldwide, affecting 794 million people and costing up to $3.5 trillion annually in the global economy. Protein malnutrition primarily affects children, the elderly, and hospitalized patients. Different degrees of protein deficiency lead to a broad spectrum of signs and symptoms of protein malnutrition, especially in organs in which the hematopoietic system is characterized by a high rate of protein turnover and, consequently, a high rate of protein renewal and cellular proliferation. Here, the current scientific information about protein malnutrition and its effects on the hematopoietic process is reviewed. The production of hematopoietic cells is described, with special attention given to the hematopoietic microenvironment and the development of stem cells. Advances in the study of hematopoiesis in protein malnutrition are also summarized. Studies of protein malnutrition in vitro, in animal models, and in humans demonstrate several alterations that impair hematopoiesis, such as structural changes in the extracellular matrix, the hematopoietic stem cell niche, the spleen, the thymus, and bone marrow stromal cells; changes in mesenchymal and hematopoietic stem cells; increased autophagy; G0/G1 cell-cycle arrest of progenitor hematopoietic cells; and functional alterations in leukocytes. Structural and cellular changes of the hematopoietic microenvironment in protein malnutrition contribute to bone marrow atrophy and nonestablishment of hematopoietic stem cells, resulting in impaired homeostasis and an impaired immune response. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Thorpe, A.N.; Senftle, F.E.; Finkelman, R.B.; Dulong, F.T.; Bostick, N.H.
1998-01-01
Magnetization measurements have been made on natural coke-coal samples collected at various distances from a felsic porphyry dike in a coal seam in Dutch Creek Mine, Colorado to help characterize the nature and distribution of the iron-bearing phases. The magnetization passes through a maximum at the coke-to-coal transition about 31 cm from the dike contact. The magnetic measurements support the geochemical data indicating that magmatic fluids along with a high-temperature gas pulse moved into the coal bed. Interaction of the magmatic fluids with the coal diminished the reducing power of the thermal gas pulse from the dike to a point about 24 cm into the coal. The hot reducing gas penetrated further and produced a high temperature (~400-525??C) zone (at about 31 cm) just ahead of the magmatic fluids. Metallic iron found in this zone is the principal cause of the observed high magnetization. Beyond this zone, the temperature was too low to alter the coal significantly.Magnetization measurements have been made on natural coke-coal samples collected at various distances from a felsic porphyry dike in a coal seam in Dutch Creek Mine, Colorado to help characterize the nature and distribution of the iron-bearing phases. The magnetization passes through a maximum at the coke-to-coal transition about 31 cm from the dike contact. The magnetic measurements support the geochemical data indicating that magmatic fluids along with a high-temperature gas pulse moved into the coal bed. Interaction of the magmatic fluids with the coal diminished the reducing power of the thermal gas pulse from the dike to a point about 24 cm into the coal. The hot reducing gas penetrated further and produced a high temperature (approximately 400-525 ??C) zone (at about 31 cm) just ahead of the magmatic fluids. Metallic iron found in this zone is the principal cause of the observed high magnetization. Beyond this zone, the temperature was too low to alter the coal significantly.
Alteration and mineralization in the eastern part of the Soldier Mountains, Camas County, Idaho
Lewis, Reed S.
2001-01-01
The eastern part of the Soldier Mountains in Camas County, south-central Idaho, is underlain principally by plutonic rocks of Cretaceous and Eocene age that locally have undergone propylitic, potassic, and muscovite-quartz alteration. Muscovite- quartz alteration is Cretaceous in age and is localized along joints and fractures, some of which are filled with quartz. Associated veins have yielded minor amounts of gold. Potassic alteration is probably both Cretaceous and Eocene in age but is weakly developed and limited in extent. Propylitic alteration is Eocene in age and is pronounced around biotite granite plutons. Despite a clear association between plutons of biotite granite and widespread propylitic alteration, mineralization associated with these rocks was minimal. Mineralized areas within more mafic Eocene plutons are characterized by veins and (or) stockworks(?) enriched in copper, molybdenum, and silver, but these areas are restricted in size and have not been productive.
Controlled transport of latex beads through vertically aligned carbon nanofiber membranes
NASA Astrophysics Data System (ADS)
Zhang, L.; Melechko, A. V.; Merkulov, V. I.; Guillorn, M. A.; Simpson, M. L.; Lowndes, D. H.; Doktycz, M. J.
2002-07-01
Stripes of vertically aligned carbon nanofibers (VACNFs) have been used to form membranes for size selectively controlling the transport of latex beads. Fluidic structures were created in poly(dimethylsiloxane) (PDMS) and interfaced to the VACNF structures for characterization of the membrane pore size. Solutions of fluorescently labeled latex beads were introduced into the PDMS channels and characterized by fluorescence and scanning electron microscopy. Results show that the beads size selectively pass through the nanofiber barriers and the size restriction limit correlates with the interfiber spacing. The results suggest that altering VACNF array density can alter fractionation properties of the membrane. Such membranes may be useful for molecular sorting and for mimicking the properties of natural membranes.
Technical know-how relevant to planning of borehole investigation for fault characterization
NASA Astrophysics Data System (ADS)
Mizuno, T.; Takeuchi, R.; Tsuruta, T.; Matsuoka, T.; Kunimaru, T.; Saegusa, H.
2011-12-01
As part of the national R&D program for geological disposal of high-level radioactive waste (HLW), the broad scientific study of the deep geological environment, JAEA has established the Mizunami Underground Research Laboratory (MIU) in Central Japan as a generic underground research laboratory (URL) facility. The MIU Project focuses on the crystalline rocks. In the case of fractured rock, a fault is one of the major discontinuity structures which control the groundwater flow conditions. It is important to estimate geological, hydrogeological, hydrochemical and rock mechanical characteristics of faults, and then to evaluate its role in the engineering design of repository and the assessment of long-term safety of HLW disposal. Therefore, investigations for fault characterization have been performed to estimate its characteristics and to evaluate existing conceptual and/or numerical models of the geological environment in the MIU project. Investigations related to faults have been conducted based on the conventional concept that a fault consists of a "fault core (FC)" characterized by distribution of the faulted rocks and a "fractured zone (FZ)" along FC. With the progress of investigations, furthermore, it is clear that there is also a case in which an "altered zone (AZ)" characterized by alteration of host rocks to clay minerals can be developed around the FC. Intensity of alteration in AZ generally decreases with distance from the FC, and AZ transits to FZ. Therefore, the investigation program focusing on properties of AZ is required for revising the existing conceptual and/or numerical models of geological environment. In this study, procedures for planning of fault characterizations have been summarized based on the technical know-how learnt through the MIU Project for the development of Knowledge Management System performed by JAEA under a contract with the Ministry of Economy, Trade and Industry as part of its R&D supporting program for developing geological disposal technology in 2010. Taking into account the experience from the fault characterization in the MIU Project, an optimization procedure for investigation program is summarized as follows; 1) Definition of investigation aim, 2) Confirmation of current understanding of the geological environment, 3) Specification and prioritization of the data to be obtained 4) Selection of the methodology for obtaining the data, 5) Specification of sequence of the investigations, and 6) Establishment of drilling and casing program including optional cases and taking into account potential problems. Several geological conceptual models with uncertainty of geological structures were illustrated to define the investigation aim and to confirm the current uncertainties. These models were also available to establish optional cases by predicting the type and location of potential problems. The procedures and case study related to establishment of the investigation program are summarized in this study and can be available for site characterization works conducted by the implementing body (NUMO) in future candidate areas.
Batista, Ann S.; Zane, Laura L.; Smith, Lane M.
2017-01-01
Myxedema crisis (MC) is a rare but life-threatening illness characterized by multi-system organ impairment from thyroid hormone deficiency that is often brought on by an eliciting event. We present the case of MC with a rapid progression of hypothermia, altered mental status, and respiratory failure that was instigated by a flash burn to the face. The patient’s condition was refractory to rewarming and supportive efforts until thyroid hormone was replaced. This case illustrates the need for a high index of suspicion for patients with a rapid onset of metabolic encephalopathy immediately after an injury or burn. PMID:29849399
Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. T., E-mail: li48@llnl.gov; Bayu Aji, L. B.; Heo, T. W.
Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar{sup +} ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. The propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.
Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. T.; Bayu Aji, L. B.; Heo, T. W.
Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar + ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. In conclusion, the propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.
Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films
Li, T. T.; Bayu Aji, L. B.; Heo, T. W.; ...
2016-06-03
Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar + ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. In conclusion, the propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.
NASA Astrophysics Data System (ADS)
Hanamuro, T.; Umeda, K.; Maeda, K.
2008-12-01
Although there is no known evidence of volcanism during the Pliocene nor the Quaternary in the Kii Peninsula, it has long been recognized to host several hot springs with discharge temperatures greater than 60°C. In addition, numerous small-scale vein-type metal deposits are distributed around the southern part of the peninsula, with a heat source thought to be the Middle Miocene acidic magmatism associated with Kumano Acidic Rocks. The results of the TL (Thermoluminescence), FT (Fission Track) and K-Ar dating of altered rocks from these hot spring areas showed that the vein-type ore deposits and their surrounding altered rocks experienced high temperature hydrothermal alteration related to acidic magmatism in the Middle Miocene, whereas relatively low temperature alteration has occurred since the Pliocene in the Hongu and Totsukawa hot spring areas [Hanamuro et al., 2008]. Chemical and isotope data were obtained for fluid inclusions trapped in hydrothermal minerals in the peripheral parts of the high-temperature hot springs and in vein-type ore deposits. The hot spring inclusions indicate temperatures reached ~100°C with salinities of about 2 wt % (NaCl equiv.). In contrast, the inclusions in the vein-type deposits are characterized by high temperature fluids (>260°C) with high salinity (>5 wt %). The 3He/4He ratios of the hot spring inclusions have relatively high values, generally in agreement with those of the present-day hydrothermal fluids, indicating a significant contribution by deep source gases (i.e., mantle helium). These results suggest that the amagmatic hydrothermal system related to high-temperature hot springs in the southern Kii Peninsula have formed since the Pliocene and were caused by high temperature fluids with a lower crust provenance, presumably supplied from the subducting slab of the Philippine Sea Plate (PHS) [Umeda et al., 2006]. After a hiatus of about 4 Ma, the PHS resumed subduction beneath the SW Japan Arc at around 6 Ma [Kamata and Kodama, 1994]. This indicates that the present-day plate system for the SW Japan arc formed at around 6 Ma and continues to the present day. Although we lack definitive information on the age of hydrothermal alteration, it seems reasonable to infer that the amagmatic hydrothermal activity since about 6 Ma in the southern Kii Peninsula has occurred in a manner synchronous with the present-day plate system of the SW Japan Arc. Reference Hanamuro et al. (2008): Japanese Magazine of Mineralogical and Petrological Sciences, 37, 27-38 (in Japanese with English Abstract). Kamata and Kodama (1994): Journal of Geophysical Research, 233, 69-81. Umeda et al. (2006): Journal of Volcanology and Geothermal Research, 149, 47-61.
NASA Technical Reports Server (NTRS)
Graff, Trevor G.; Morris, R. V.; Archilles C. N.; Agresti, D. G.; Ming, D. W.; Hamilton, J. C.; Mertzman, S. A.; Smith, J.
2012-01-01
Sulfates have been identified on the martian surface during robotic surface exploration and by orbital remote sensing. Measurements at Meridiani Planum (MP) by the Alpha-Particle X-ray Spectrometer (APXS) and Mossbauer (MB) instruments on the Mars Exploration Rover Opportunity document the presence of a ubiquitous sulfate-rich outcrop (20-40% SO3) that has jarosite as an anhydrous Fe3+-sulfate [1- 3]. The presence of jarosite implies a highly acidic (pH <3) formation environment [4]. Jarosite and other sulfate minerals, including kieserite, gypsum, and alunite have also been identified in several locations in orbital remote sensing data from the MEx OMEGA and MRO CRISM instruments [e.g. 5-8]. Acid sulfate weathering of basaltic materials is an obvious pathway for formation of sulfate-bearing phases on Mars [e.g. 4, 9, 10]. In order to constrain acid-sulfate pathways on Mars, we are studying the mineralogical and chemical manifestations of acid-sulfate alteration of basaltic compositions in terrestrial environments. We have previously shown that acidsulfate alteration of tephra under hydrothermal conditions on the Puu Poliahu cone (summit region of Mauna Kea volcano, Hawaii) resulted in jarosite and alunite as sulfate-bearing alteration products [11-14]. Other, more soluble, sulfates may have formed, but were leached away by rain and melting snow. Acidsulfate processes on Puu Poliahu also formed hematite spherules similar (except in size) to the hematite spherules observed at MP as an alteration product [14]. Phyllosilicates, usually smectite }minor kaolinite are also present as alteration products [13]. We discuss here an occurrence of acid-sulfate alteration on Mauna Kea Volcano (Hawaii). We report VNIR spectra (0.35-2.5 microns ASD spectrometer), Mossbauer spectra (MER-like ESPI backscatter spectrometer), powder XRD (PANalytical), and major element chemical compositions (XRF with LOI and Fe redox) for comparison to similar data acquired or to be acquired by MRO-CRISM and MEx OMEGA, MERMB, MSL-CheMin, and MER and MSL APXS, respectively.
Gillard, Marc; Lack, Justin; Pontier, Andrea; Gandla, Divya; Hatcher, David; Sowalsky, Adam G; Rodriguez-Nieves, Jose; Vander Griend, Donald; Paner, Gladell; VanderWeele, David
2017-12-08
Ductal adenocarcinoma of the prostate is an aggressive subtype, with high rates of biochemical recurrence and overall poor prognosis. It is frequently found coincident with conventional acinar adenocarcinoma. The genomic features driving evolution to its ductal histology and the biology associated with its poor prognosis remain unknown. To characterize genomic features distinguishing ductal adenocarcinoma from coincident acinar adenocarcinoma foci from the same patient. Ten patients with coincident acinar and ductal prostate cancer underwent prostatectomy. Laser microdissection was used to separately isolate acinar and ductal foci. DNA and RNA were extracted, and used for integrative genomic and transcriptomic analyses. Single nucleotide mutations, small indels, copy number estimates, and expression profiles were identified. Phylogenetic relationships between coincident foci were determined, and characteristics distinguishing ductal from acinar foci were identified. Exome sequencing, copy number estimates, and fusion genes demonstrated coincident ductal and acinar adenocarcinoma diverged from a common progenitor, yet they harbored distinct alterations unique to each focus. AR expression and activity were similar in both histologies. Nine of 10 cases had mutually exclusive CTNNB1 hotspot mutations or phosphatase and tensin homolog (PTEN) alterations in the ductal component, and these were absent in the acinar foci. These alterations were associated with changes in expression in WNT- and PI3K-pathway genes. Coincident ductal and acinar histologies typically are clonally related and thus arise from the same cell of origin. Ductal foci are enriched for cases with either a CTNNB1 hotspot mutation or a PTEN alteration, and are associated with WNT- or PI3K-pathway activation. These alterations are mutually exclusive and may represent distinct subtypes. The aggressive subtype ductal adenocarcinoma is closely related to conventional acinar prostate cancer. Ductal foci contain additional alterations, however, leading to frequent activation of two targetable pathways. Published by Elsevier B.V.
Circulating tumor DNA for triple-negative breast cancer diagnosis and treatment decisions.
Saliou, Adrien; Bidard, François-Clément; Lantz, Olivier; Stern, Marc-Henri; Vincent-Salomon, Anne; Proudhon, Charlotte; Pierga, Jean-Yves
2016-01-01
Triple-negative breast cancer (TNBC) is a highly aggressive disease characterized by a high number of relapses and poor overall survival. The heterogeneity of the disease and the limited treatment options compared to other breast cancer subtypes mainly explain these clinical outcomes. New biomarkers are urgently needed to improve the management of TNBC. Circulating tumor DNA, identified by tumor-related molecular alterations, could be used in the context of non-invasive "liquid biopsy" and help in TNBC diagnosis and treatment decisions. In this review, we discuss the key issues related to the potential of circulating tumor DNA to improve the management of this disease and the future steps to overcome before its implementation into clinical routine within the next 5 years.
NASA Astrophysics Data System (ADS)
Saif, M.; Alsayed, N.; Mbarek, A.; El-Kemary, M.; Abdel-Mottaleb, M. S. A.
2016-12-01
Pure lanthanum titanate doped with europium metal ions (La2Ti2O7:Eu3+) and dispersed in silica matrix phosphor powder was prepared by sol-gel process followed by thermal treatment. The prepared nanophosphors were characterized by powder X-ray Diffraction (XRD), Fourier Transform Infrared (FT-IR), Transmission Electron Microscope (TEM), Energy Dispersive Spectroscopy (EDX), and Photoluminescence Spectroscopy (PL). The effects of silica, thermal treatment, Eu3+ ion, and surfactant (CTAB) concentrations on the crystal, morphology, and photoluminescence properties were investigated. The present work found that dispersion of La2Ti2O7:Eu3+ into silica matrix significantly altered the morphology of La2Ti2O7:Eu3+ from high crystalline micro-plate like shape into amorphous aggregated Nano-spherical shape. The high separated spherical shape with intense red PL emission and long lifetime was obtained from 10 mol% Eu3+:La2Ti2O7:Eu3+, dispersed into silica matrix, and prepared in the presence of CTAB. The high PL Nano-phosphor has been successfully used in developing latent fingerprint from various forensic relevant materials.
Moura Costa, Daniele Dietrich; Bozza, Dandie Antunes; Rizzo, Luiz Eduardo; Garcia, Juan; Costa, Michele Dietrich Moura; de Oliveira Ribeiro, Ciro Alberto
2016-12-01
Endocrine-disrupting chemicals (EDCs) are widespread used and can interfere on hormone regulation with adverse consequences for both biota and human. Vitellogenin (vtg) is a yolk precursor protein synthesized by the liver in response to estrogen. In order to characterize the vtg of tropical fish Rhamdia quelen and establish a molecular biomarker, adult male individuals were exposed to 17-β-estradiol (E 2 ) for vtg induction and anti-R. quelen vtg polyclonal antibodies production. Vitellogenic female fish were used as positive control group. E 2 -induced vtg was characterized as a glycolipophosphoprotein of high molecular mass with peptide mass fingerprint very similar in E 2 -exposed male and vitellogenic female fish. A polyclonal serum containing anti-R. quelen vtg antibodies was produced and showed high specificity and sensibility to detect the vtg of three fish species: R. quelen, Piaractus mesopotamicus and Prochilodus lineatus. Wildlife and laboratory studies reported that EDCs released into the environment may alter the levels of plasma vtg in male fish, making this protein a valuable biomarker of xenoestrogens exposure. Then, we propose the use of anti-R. quelen vtg as a tool for biomonitoring studies and water quality assessment in Brazil and South American countries where the three fish species occur.
Review of the emerging role of optical polarimetry in characterization of pathological myocardium.
Ahmad, Iftikhar
2017-10-01
Myocardial infarction (MI), a cause of significant morbidity and mortality, is typically followed by microstructural alterations where the necrotic myocardium is steadily replaced with a collagen scar. Engineered remodeling of the fibrotic scar via stem cell regeneration has been shown to improve/restore the myocardium function after MI. Nevertheless, the heterogeneous nature of the scar patch may impair the myocardial electrical integrity, leading to the formation of arrhythmogenesis. Radiofrequency ablation (RFA) offers an effective treatment for focal arrhythmias where local heating generated via electric current at specific spots in the myocardium ablate the arrhythmogenic foci. Characterization of these myocardial pathologies (i.e., infarcted, stem cell regenerated, and RFA-ablated myocardial tissues) is of potential clinical importance. Optical polarimetry, the use of light to map and characterize the polarization signatures of a sample, has emerged as a powerful imaging tool for structural characterization of myocardial tissues, exploiting the underlying highly fibrous tissue nature. This study aims to review the recent progress in optical polarimetry pertaining to the characterization of myocardial pathologies while describing the underlying biological rationales that give rise to the optical imaging contrast in various pathologies of the myocardium. Future possibilities of and challenges to optical polarimetry in cardiac imaging clinics are also discussed. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Review of the emerging role of optical polarimetry in characterization of pathological myocardium
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar
2017-10-01
Myocardial infarction (MI), a cause of significant morbidity and mortality, is typically followed by microstructural alterations where the necrotic myocardium is steadily replaced with a collagen scar. Engineered remodeling of the fibrotic scar via stem cell regeneration has been shown to improve/restore the myocardium function after MI. Nevertheless, the heterogeneous nature of the scar patch may impair the myocardial electrical integrity, leading to the formation of arrhythmogenesis. Radiofrequency ablation (RFA) offers an effective treatment for focal arrhythmias where local heating generated via electric current at specific spots in the myocardium ablate the arrhythmogenic foci. Characterization of these myocardial pathologies (i.e., infarcted, stem cell regenerated, and RFA-ablated myocardial tissues) is of potential clinical importance. Optical polarimetry, the use of light to map and characterize the polarization signatures of a sample, has emerged as a powerful imaging tool for structural characterization of myocardial tissues, exploiting the underlying highly fibrous tissue nature. This study aims to review the recent progress in optical polarimetry pertaining to the characterization of myocardial pathologies while describing the underlying biological rationales that give rise to the optical imaging contrast in various pathologies of the myocardium. Future possibilities of and challenges to optical polarimetry in cardiac imaging clinics are also discussed.
Bulleid, N J; Graham, A B; Craft, J A
1986-01-01
Microsomal epoxide hydrolase was purified from rat liver, and different fractions of the purified enzyme, which varied in their contents of phospholipid, were obtained by ion-exchange chromatography. One fraction (A), which did not bind to CM-cellulose, had a high phospholipid content, and a second fraction (B), which was eluted from CM-cellulose at high ionic strength, had a low phospholipid content. Removal of most of the phospholipid from fraction A altered its chromatographic behaviour. When the delipidated material was re-applied to CM-cellulose, most of the enzyme bound to the cation-exchanger. The specific activities of all the fractions described (with styrene epoxide [(1,2-epoxyethyl)benzene] as substrate) were altered by adding the non-ionic detergent Lubrol PX or phospholipid. Lubrol PX inhibited enzyme activity, and phospholipid reversed this inhibition. The various enzyme fractions isolated appeared to be different forms of the same protein, as judged by their minimum Mr values and immunochemical properties. These results indicate that different fractions of epoxide hydrolase isolated by ion-exchange chromatography probably are not different isoenzyme forms. Images Fig. 2. Fig. 3. PMID:3082328
CD28-CD80 interactions control regulatory T cell motility and immunological synapse formation1,2
Thauland, Timothy J.; Koguchi, Yoshinobu; Dustin, Michael L.; Parker, David C.
2014-01-01
Regulatory T cells (Tregs) are essential for tolerance to self and environmental antigens, acting in part by downmodulating costimulatory molecules on the surface of dendritic cells (DCs) and altering naïve CD4 T cell-DC interactions. Here, we show that Tregs form stable conjugates with DCs before, but not after, they decrease surface expression of the costimulatory molecule CD80 on the DCs. We use supported planar bilayers to show that Tregs dramatically slow down, but maintain a highly polarized and motile phenotype after recognizing antigen in the absence of costimulation. These motile cells are characterized by distinct accumulations of LFA-1-ICAM-1 in the lamella and TCR-MHC in the uropod, consistent with a motile immunological synapse or ‘kinapse’. However, in the presence of high, but not low, concentrations of CD80, Tregs form stationary, symmetrical synapses. Using blocking antibodies, we show that, while CTLA-4 is required for CD80 downmodulation, CD28-CD80 interactions are critical for modulating Treg motility in the presence of antigen. Together, these results support the hypothesis that Tregs are tuned to alter their motility depending on costimulatory signals. PMID:25355918
Dispersive elastic properties of Dzyaloshinskii domain walls
NASA Astrophysics Data System (ADS)
Pellegren, James; Lau, Derek; Sokalski, Vincent
Recent studies on the asymmetric field-driven growth of magnetic bubble domains in perpendicular thin films exhibiting an interfacial Dzyaloshinskii-Moriya interaction (DMI) have provided a wealth of experimental evidence to validate models of creep phenomena, as key properties of the domain wall (DW) can be altered with the application of an external in-plane magnetic field. While asymmetric growth behavior has been attributed to the highly anisotropic DW energy, σ (θ) , which results from the combination of DMI and the in-plane field, many experimental results remain anomalous. In this work, we demonstrate that the anisotropy of DW energy alters the elastic response of the DW as characterized by the surface stiffness, σ (θ) = σ (θ) + σ (θ) , and evaluate the impact of this stiffness on the creep law. We find that at in-plane fields larger than and antiparallel to the effective field due to DMI, the DW stiffness decreases rapidly, suggesting that higher energy walls can actually become more mobile than their low energy counterparts. This result is consistent with experiments on CoNi multilayer films where velocity curves for domain walls with DMI fields parallel and antiparallel to the applied field cross over at high in-plane fields.
Hayes, Jasmeet Pannu; LaBar, Kevin S.; Petty, Christopher M.; McCarthy, Gregory; Morey, Rajendra A.
2009-01-01
Information processing models of posttraumatic stress disorder (PTSD) suggest that PTSD is characterized by preferential allocation of attentional resources to potentially threatening stimuli. However, few studies have examined the neural pattern underlying attention and emotion in association with PTSD symptomatology. In the present study, combat veterans with PTSD symptomatology engaged in an emotional oddball task while undergoing functional magnetic resonance imaging (fMRI). Veterans were classified into a high or low symptomatology group based on their scores on the Davidson Trauma Scale (DTS). Participants discriminated infrequent target stimuli (circles) from frequent standards (squares) while emotional and neutral distractors were presented infrequently and irregularly. Results revealed that participants with greater PTSD symptomatology showed enhanced neural activity in ventral-limbic and dorsal regions for emotional stimuli and attenuated activity in dorsolateral prefrontal and parietal regions for attention targets. In the anterior cingulate gyrus, participants with fewer PTSD symptoms showed equivalent responses to attentional and emotional stimuli while the high symptom group showed greater activation for negative emotional stimuli. Taken together, the results suggest that hyperresponsive ventral-limbic activity coupled with altered dorsal-attention and anterior cingulate function may be a neural marker of attention bias in PTSD. PMID:19237269
Altaner, S.P.; Ylagan, R.F.; Savin, S.M.; Aronson, J.L.; Belkin, H.E.; Pozzuoli, A.
2003-01-01
A rhyolitic hyaloclastite from Ponza Island, Italy, was hydrothermally altered, producing four distinct alteration zones based on X-ray diffraction mineralogy and field textures: (1) nonpervasive argillic zone; (2) propylitic zone; (3) silicic zone; and (4) sericitic zone. The unaltered hyaloclastite is volcanic breccia with clasts of vesiculated obsidian in a matrix of predominantly pumice lapilli. Incomplete alteration of the hyaloclastite resulted in the nonpervasive argillic zone, characterized by smectite and disordered opal-CT. The other three zones exhibit more complete alteration of the hyaloclastite. The propylitic zone is characterized by mixed-layer illite-smectite (I-S) with 10 to 85% I, mordenite, opal-C, and authigenic K-feldspar (akspar). The silicic zone is characterized by I-S with ???90% I, pure illite, quartz, akspar, and occasional albite. The sericitic zone consists primarily of I-S with ???66% I, pure illite, quartz, and minor akspar and pyrite. K/Ar dates of I-S indicate hydrothermal alteration occurred at 3.38 ?? 0.08 Ma. Oxygen isotope compositions of I-S systematically decrease from zones 1 to 4. In the argillic zone, smectite has ??18 O values of 21.7 to 22.0??? and I-S from the propylitic, silicic, and sericitic zones ranges from 14.5 to 16.3???, 12.5 to 14.0???, and 8.6 to 11.9???, respectively. ??18 O values for quartz from the silicic and sericitic zones range from 12.6 to 15.9???. By use of isotope fractionation equations and data from authigenic quartz-hosted primary fluid inclusions, alteration temperatures ranged from 50 to 65 ??C for the argillic zone, 85 to 125 ??C for the propylitic zone, 110 to 210 ??C for the silicic zone, and 145 to 225 ??C for the sericitic zone. Fluid inclusion data and calculated ??18 O water values indicate that hydrothermal fluids were seawater dominated. Mass-transfer calculations indicate that hydrothermal alteration proceeded in a relatively open chemical system and alteration in the sericitic zone involved the most extensive loss of chemical species, especially Si. Systematic gains in Mg occur in all alteration zones as a result of I-S clay mineral formation, and systematic losses of Na, Ca, and K occur in most zones. With the exception of Ca, calculations of mass transfer associated with hydrothermal alteration on Ponza agree with chemical fluxes observed in laboratory experiments involving hydrothermal reactions of rhyolite and seawater. The anomalous Ca loss at Ponza may be due to hydrothermal formation of anhydrite and later low-temperature dissolution. On the basis of Mg enrichments derived from circulating seawater, we estimate the following minimum water/rock ratios: 9, 3, 6, and 9 for the argillic, propylitic, silicic, and sericitic zones, respectively. Hydrothermal fluid pH for the propylitic and silicic zones was neutral to slightly basic and relatively acidic for the sericitic zone as a result of condensation of carbonic and perhaps other acids. Copyright ?? 2003 Elsevier Science Ltd.
Iseli, Hans Peter; Körber, Nicole; Karl, Anett; Koch, Christian; Schuldt, Carsten; Penk, Anja; Liu, Qing; Huster, Daniel; Käs, Josef; Reichenbach, Andreas; Wiedemann, Peter; Francke, Mike
2015-10-01
Several scleral cross-linking (SXL) methods were suggested to increase the biomechanical stiffness of scleral tissue and therefore, to inhibit axial eye elongation in progressive myopia. In addition to scleral cross-linking and biomechanical effects caused by riboflavin and light irradiation such a treatment might induce tissue damage, dependent on the light intensity used. Therefore, we characterized the damage threshold and mechanical stiffening effect in rabbit eyes after application of riboflavin combined with various blue light intensities. Adult pigmented and albino rabbits were treated with riboflavin (0.5 %) and varying blue light (450 ± 50 nm) dosages from 18 to 780 J/cm(2) (15 to 650 mW/cm(2) for 20 min). Scleral, choroidal and retinal tissue alterations were detected by means of light microscopy, electron microscopy and immunohistochemistry. Biomechanical changes were measured by shear rheology. Blue light dosages of 480 J/cm(2) (400 mW/cm(2)) and beyond induced pathological changes in ocular tissues; the damage threshold was defined by the light intensities which induced cellular degeneration and/or massive collagen structure changes. At such high dosages, we observed alterations of the collagen structure in scleral tissue, as well as pigment aggregation, internal hemorrhages, and collapsed blood vessels. Additionally, photoreceptor degenerations associated with microglia activation and macroglia cell reactivity in the retina were detected. These pathological alterations were locally restricted to the treated areas. Pigmentation of rabbit eyes did not change the damage threshold after a treatment with riboflavin and blue light but seems to influence the vulnerability for blue light irradiations. Increased biomechanical stiffness of scleral tissue could be achieved with blue light intensities below the characterized damage threshold. We conclude that riboflavin and blue light application increased the biomechanical stiffness of scleral tissue at blue light energy levels below the damage threshold. Therefore, applied blue light intensities below the characterized damage threshold might define a therapeutic blue light tolerance range. Copyright © 2015 Elsevier Ltd. All rights reserved.
Characterization of retrieved orthodontic miniscrew implants.
Eliades, Theodore; Zinelis, Spiros; Papadopoulos, Moschos A; Eliades, George
2009-01-01
The purposes of this study were to characterize the morphologic, structural, and compositional alterations and to assess any hardness changes in used orthodontic miniscrew implants. Eleven miniscrew implants (Aarhus Anchorage System, Medicon eG, Tuttlingen, Germany) placed in 5 patients were retrieved after successful service of 3.5 to 17.5 months; none showed signs of mobility or failure. These implants, and brand-, type-, and size-matched specimens as controls, were subjected to multi-technique characterization. Optical microscopy indicated loss of gloss with variable discoloration. Scanning electron microscopy and x-ray microanalysis showed morphologic alteration of the miniscrew implant surfaces with integuments formed on the surface. The materials precipitated on the surfaces were sodium, potassium, chlorine, iron, calcium, and phosphorus from the contact of the implant with biologic fluids such as blood and exudates, forming sodium chloride, potassium chloride, and calcium-phosphorus precipitates. The composition of the implant was similar to that of a titanium alloy. X-ray microtomography analysis showed no bulk structure alterations. Vickers microhardness testing showed no increased bulk or surface hardness of the retrieved specimens compared with the controls, excluding the possibility of strain-hardening phenomena as a result of self-tapping and self-drilling placement and related loading conditions. Used titanium-alloy miniscrew implants have morphologic and surface structural alterations including adsorption of an integument that is calcified as a result of contact of the implants with biologic fluids. Randomly organized osseointegration islets on these smooth titanium-alloy miniscrew surfaces might be enhanced by the extended period of retention in alveolar bone in spite of the smooth surface and immediate loading pattern of these implants.
Wannenes, Francesca; Papa, Vincenza; Greco, Emanuela A.; Fornari, Rachele; Marocco, Chiara; Di Luigi, Luigi; Donini, Lorenzo M.; Lenzi, Andrea
2014-01-01
Obesity and sarcopenia have been associated with mineral metabolism derangement and low bone mineral density (BMD). We investigated whether imbalance of serum factors in obese or obese sarcopenic patients could affect bone cell activity in vitro. To evaluate and characterize potential cellular and molecular changes of human osteoblasts, cells were exposed to sera of four groups of patients: (1) affected by obesity with normal BMD (O), (2) affected by obesity with low BMD (OO), (3) affected by obesity and sarcopenia (OS), and (4) affected by obesity, sarcopenia, and low BMD (OOS) as compared to subjects with normal body weight and normal BMD (CTL). Patients were previously investigated and characterized for body composition, biochemical and bone turnover markers. Then, sera of different groups of patients were used to incubate human osteoblasts and evaluate potential alterations in cell homeostasis. Exposure to OO, OS, and OOS sera significantly reduced alkaline phosphatase, osteopontin, and BMP4 expression compared to cells exposed to O and CTL, indicating a detrimental effect on osteoblast differentiation. Interestingly, sera of all groups of patients induced intracellular alteration in Wnt/β-catenin molecular pathway, as demonstrated by the significant alteration of specific target genes expression and by altered β-catenin cellular compartmentalization and GSK3β phosphorylation. In conclusion our results show for the first time that sera of obese subjects with low bone mineral density and sarcopenia significantly alter osteoblasts homeostasis in vitro, indicating potential detrimental effects of trunk fat on bone formation and skeletal homeostasis. PMID:24963291
Instrumentation for Non-Invasive Assessment of Cardiovascular Regulation
NASA Technical Reports Server (NTRS)
Cohen, Richard J.
1999-01-01
It is critically important to be able to assess alterations in cardiovascular regulation during and after space flight. We propose to develop an instrument for the non-invasive assessment of such alterations that can be used on the ground and potentially during space flight. This instrumentation would be used by the Cardiovascular Alterations Team at multiple sites for the study of the effects of space flight on the cardiovascular system and the evaluation of countermeasures. In particular, the Cardiovascular Alterations Team will use this instrumentation in conjunction with ground-based human bed-rest studies and during application of acute stresses e.g., tilt, lower body negative pressure, and exercise. In future studies, the Cardiovascular Alterations Team anticipates using this instrumentation to study astronauts before and after space flight and ultimately, during space flight. The instrumentation may also be used by the Bone Demineralization/Calcium Metabolism Team, the Neurovestibular Team and the Human Performance Factors, Sleep and Chronobiology Team to measure changes in autonomic nervous function. The instrumentation will be based on a powerful new technology - cardiovascular system identification (CSI) - which has been developed in our laboratory. CSI provides a non-invasive approach for the study of alterations in cardiovascular regulation. This approach involves the analysis of second-to-second fluctuations in physiologic signals such as heart rate and non-invasively measured arterial blood pressure in order to characterize quantitatively the physiologic mechanisms responsible for the couplings between these signals. Through the characterization of multiple physiologic mechanisms, CSI provides a closed-loop model of the cardiovascular regulatory state in an individual subject.
NASA Astrophysics Data System (ADS)
Mixa, T.; Fritts, D. C.; Bossert, K.; Laughman, B.; Wang, L.; Lund, T.; Kantha, L. H.
2017-12-01
Gravity waves play a profound role in the mixing of the atmosphere, transporting vast amounts of momentum and energy among different altitudes as they propagate vertically. Above 60km in the middle atmosphere, high wave amplitudes enable a series of complex, nonlinear interactions with the background environment that produce highly-localized wind and temperature variations which alter the layering structure of the atmosphere. These small-scale interactions account for a significant portion of energy transport in the middle atmosphere, but they are difficult to characterize, occurring at spatial scales that are both challenging to observe with ground instruments and prohibitively small to include in weather forecasting models. Using high fidelity numerical simulations, these nuanced wave interactions are analyzed to better our understanding of these dynamics and improve the accuracy of long-term weather forecasting.
Prognostic relevance of aberrant DNA methylation in g1 and g2 pancreatic neuroendocrine tumors.
Stefanoli, Michele; La Rosa, Stefano; Sahnane, Nora; Romualdi, Chiara; Pastorino, Roberta; Marando, Alessandro; Capella, Carlo; Sessa, Fausto; Furlan, Daniela
2014-01-01
The occurrence and clinical relevance of DNA hypermethylation and global hypomethylation in pancreatic neuroendocrine tumours (PanNETs) are still unknown. We evaluated the frequency of both epigenetic alterations in PanNETs to assess the relationship between methylation profiles and chromosomal instability, tumour phenotypes and prognosis. In a well-characterized series of 56 sporadic G1 and G2 PanNETs, methylation-sensitive multiple ligation-dependent probe amplification was performed to assess hypermethylayion of 33 genes and copy number alterations (CNAs) of 53 chromosomal regions. Long interspersed nucleotide element-1 (LINE-1) hypomethylation was quantified by pyrosequencing. Unsupervised hierarchical clustering allowed to identify a subset of 22 PanNETs (39%) exhibiting high frequency of gene-specific methylation and low CNA percentages. This tumour cluster was significantly associated with stage IV (p = 0.04) and with poor prognosis in univariable analysis (p = 0.004). LINE-1 methylation levels in PanNETs were significantly lower than in normal samples (p < 0.01) and were approximately normally distributed. 12 tumours (21%) were highly hypomethylated, showing variable levels of CNA. Interestingly, only 5 PanNETs (9%) were observed to show simultaneously LINE-1 hypomethylation and high frequency of gene-specific methylation. LINE-1 hypomethylation was strongly correlated with advanced stage (p = 0.002) and with poor prognosis (p < 0.0001). In the multivariable analysis, low LINE-1 methylation status and methylation clusters were the only independent significant predictors of outcome (p = 0.034 and p = 0.029, respectively). The combination of global DNA hypomethylation and gene hypermethylation analyses may be useful to define distinct subsets of PanNETs. Both alterations are common in PanNETs and could be directly correlated with tumour progression. © 2014 S. Karger AG, Basel.
Acid Sulfate Alteration on Mars
NASA Technical Reports Server (NTRS)
Ming, D. W.; Morris, R. V.
2016-01-01
A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the aqueous formation of sulfate-bearing phases under acidic conditions on the surface of Mars including (1) sulfuric acid weathering of basaltic materials; (2) oxidative weathering of ultramafic igneous rocks containing sulfides; (3) acid fog weathering of basaltic materials, and (4) near-neutral pH subsurface solutions rich in Fe2(+) that were rapidly oxidized to Fe3(+), which produced excess acidity as iron was oxidized on exposure to O2 or photo-oxidized by ultraviolet radiation at the martian surface. Next, we briefly describe evidence for these hypothesis.
Raouf, Joan; Idborg, Helena; Englund, Petter; Alexanderson, Helene; Dastmalchi, Maryam; Jakobsson, Per-Johan; Lundberg, Ingrid E; Korotkova, Marina
2018-05-02
Polymyositis (PM) and dermatomyositis (DM) are severe chronic autoimmune diseases, characterized by muscle fatigue and low muscle endurance. Conventional treatment includes high doses of glucocorticoids and immunosuppressive drugs; however, few patients recover full muscle function. One explanation of the persistent muscle weakness could be altered lipid metabolism in PM/DM muscle tissue as we previously reported. Using a targeted lipidomic approach we aimed to characterize serum lipid profiles in patients with PM/DM compared to healthy individuals (HI) in a cross-sectional study. Also, in the longitudinal study we compared serum lipid profiles in patients newly diagnosed with PM/DM before and after immunosuppressive treatment. Lipidomic profiles were analyzed in serum samples from 13 patients with PM/DM, 12 HI and 8 patients newly diagnosed with PM/DM before and after conventional immunosuppressive treatment using liquid chromatography tandem mass spectrometry (LC-MS/MS) and a gas-chromatography flame ionization detector (GC-FID). Functional Index (FI), as a test of muscle performance and serum levels of creatine kinase (s-CK) as a proxy for disease activity were analyzed. The fatty acid (FA) composition of total serum lipids was altered in patients with PM/DM compared to HI; the levels of palmitic (16:0) acid were significantly higher while the levels of arachidonic (20:4, n-6) acid were significantly lower in patients with PM/DM. The profiles of serum phosphatidylcholine and triacylglycerol species were changed in patients with PM/DM compared to HI, suggesting disproportionate levels of saturated and polyunsaturated FAs that might have negative effects on muscle performance. After immunosuppressive treatment the total serum lipid levels of eicosadienoic (20:2, n-6) and eicosapentaenoic (20:5, n-3) acids were increased and serum phospholipid profiles were altered in patients with PM/DM. The correlation between FI or s-CK and levels of several lipid species indicate the important role of lipid changes in muscle performance and inflammation. Serum lipids profiles are significantly altered in patients with PM/DM compared to HI. Moreover, immunosuppressive treatment in patients newly diagnosed with PM/DM significantly affected serum lipid profiles. These findings provide new evidence of the dysregulated lipid metabolism in patients with PM/DM that could possibly contribute to low muscle performance.
Mutlu, Ece A.; Keshavarzian, Ali; Losurdo, John; Swanson, Garth; Siewe, Basile; Forsyth, Christopher; French, Audrey; DeMarais, Patricia; Sun, Yan; Koenig, Lars; Cox, Stephen; Engen, Phillip; Chakradeo, Prachi; Abbasi, Rawan; Gorenz, Annika; Burns, Charles; Landay, Alan
2014-01-01
HIV progression is characterized by immune activation and microbial translocation. One factor that may be contributing to HIV progression could be a dysbiotic microbiome. We therefore hypothesized that the GI mucosal microbiome is altered in HIV patients and this alteration correlates with immune activation in HIV. 121 specimens were collected from 21 HIV positive and 22 control human subjects during colonoscopy. The composition of the lower gastrointestinal tract mucosal and luminal bacterial microbiome was characterized using 16S rDNA pyrosequencing and was correlated to clinical parameters as well as immune activation and circulating bacterial products in HIV patients on ART. The composition of the HIV microbiome was significantly different than that of controls; it was less diverse in the right colon and terminal ileum, and was characterized by loss of bacterial taxa that are typically considered commensals. In HIV samples, there was a gain of some pathogenic bacterial taxa. This is the first report characterizing the terminal ileal and colonic mucosal microbiome in HIV patients with next generation sequencing. Limitations include use of HIV-infected subjects on HAART therapy. PMID:24586144
Brunetti, Dario; Dusi, Sabrina; Giordano, Carla; Lamperti, Costanza; Morbin, Michela; Fugnanesi, Valeria; Marchet, Silvia; Fagiolari, Gigliola; Sibon, Ody; Moggio, Maurizio; d’Amati, Giulia
2014-01-01
Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2, responsible for the phosphorylation of pantothenate or vitamin B5 in the biosynthesis of co-enzyme A. A Pank2 knockout (Pank2−/−) mouse model did not recapitulate the human disease but showed azoospermia and mitochondrial dysfunctions. We challenged this mouse model with a low glucose and high lipid content diet (ketogenic diet) to stimulate lipid use by mitochondrial beta-oxidation. In the presence of a shortage of co-enzyme A, this diet could evoke a general impairment of bioenergetic metabolism. Only Pank2−/− mice fed with a ketogenic diet developed a pantothenate kinase-associated neurodegeneration-like syndrome characterized by severe motor dysfunction, neurodegeneration and severely altered mitochondria in the central and peripheral nervous systems. These mice also showed structural alteration of muscle morphology, which was comparable with that observed in a patient with pantothenate kinase-associated neurodegeneration. We here demonstrate that pantethine administration can prevent the onset of the neuromuscular phenotype in mice suggesting the possibility of experimental treatment in patients with pantothenate kinase-associated neurodegeneration. PMID:24316510
Zhu, Mei; Xu, Yu; Wang, Huawei; Shen, Zongwen; Xie, Zhenrong; Chen, Fengrong; Gao, Yunhong; Chen, Xin; Zhang, Ying; Wu, Qiang; Li, Xuejun; Yu, Juehua; Luo, Huayou; Wang, Kunhua
2018-06-18
Repeated administration of heroin results in the induction of physical dependence, which is characterized as a behavioral state of compulsive drug seeking and a high rate of relapse even after periods of abstinence. However, few studies have been dedicated to characterization of the long-term alterations in heroin-dependent patients (HDPs). Herein, we examined the peripheral blood from 810 HDPs versus 500 healthy controls (HCs) according to the inclusion criteria. Compared with the control group, significant decreases of albumin, triglyceride, and total cholesterol levels were identified in HDPs (P < 0.001) versus HCs coupled with an insignificant decrease in BMI. Meanwhile, RNA-sequencing analyses were performed on blood of 16 long-term HDPs and 25 HCs. The results showed that the TNFα signaling pathway and hematopoiesis related genes were inhibited in HDPs. We further compared the transcriptome data to those of SCA2 and posttraumatic stress disorder patients, identified neurodegenerative diseases related genes were commonly up-regulated in coupled with biological processes "vesicle transport", "mitochondria" and "splicing". Genes in the categories of "protein ubiquitination" were down-regulated indicating potential biochemical alterations shared by all three comparative to their controls. In summary, this is a leading study performing a series of through investigations and using delicate approaches. Results from this study would benefit the study of drug addiction overall and link long-term heroin abuse to neurodegenerative diseases.
Nam, Jae-Yong; Oh, Bo Young; Hong, Hye Kyung; Bae, Joon Seol; Kim, Tae Won; Ha, Sang Yun; Park, Donghyun; Lee, Woo Yong; Kim, Hee Cheol; Yun, Seong Hyeon; Park, Yoon Ah; Joung, Je-Gun; Park, Woong-Yang; Cho, Yong Beom
2018-05-07
Signet-ring cell carcinoma (SRCC) is a very rare subtype of colorectal adenocarcinoma (COAD) with a poor clinical prognosis. Although understanding key mechanisms of tumor progression in SRCCs is critical for precise treatment, a comprehensive view of genomic alterations is lacking. We performed whole-exome sequencing of tumors and matched normal blood as well as RNA sequencing of tumors and matched normal colonic tissues from five patients with SRCC. We identified major somatic alterations and characterized transcriptional changes at the gene and pathway level. Based on high-throughput sequencing, the pattern of mutations and copy number variations was overall similar to that of COAD. Transcriptome analysis revealed that major transcription factors, such as SRF, HNF4A, ZEB1, and RUNX1, with potential regulatory roles in key pathways, including focal adhesion, the PI3K-Akt signaling pathway, and the MAPK signaling pathway, may play a role in the tumorigenesis of SRCC. Furthermore, significantly upregulated genes in SRCCs were enriched for epithelial-mesenchymal transition genes, and accumulation of mucin in intracytoplasm was associated with the overexpression of MUC2. The results indicate that the molecular basis of colorectal SRCC exhibits key differences from that of consensus COAD. Our findings clarify important genetic features of particular abnormalities in SRCCs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Asbestos exposure induces alveolar epithelial cell plasticity through MAPK/Erk signaling.
Tamminen, Jenni A; Myllärniemi, Marjukka; Hyytiäinen, Marko; Keski-Oja, Jorma; Koli, Katri
2012-07-01
The inhalation of asbestos fibers is considered to be highly harmful, and lead to fibrotic and/or malignant disease. Epithelial-to-mesenchymal transition (EMT) is a common pathogenic mechanism in asbestos associated fibrotic (asbestosis) and malignant lung diseases. The characterization of molecular pathways contributing to EMT may provide new possibilities for prognostic and therapeutic applications. The role of asbestos as an inducer of EMT has not been previously characterized. We exposed cultured human lung epithelial cells to crocidolite asbestos and analyzed alterations in the expression of epithelial and mesenchymal marker proteins and cell morphology. Asbestos was found to induce downregulation of E-cadherin protein levels in A549 lung carcinoma cells in 2-dimensional (2D) and 3D cultures. Similar findings were made in primary small airway epithelial cells cultured in 3D conditions where the cells retained alveolar type II cell phenotype. A549 cells also exhibited loss of cell-cell contacts, actin reorganization and expression of α-smooth muscle actin (α-SMA) in 2D cultures. These phenotypic changes were not associated with increased transforming growth factor (TGF)-β signaling activity. MAPK/Erk signaling pathway was found to mediate asbestos-induced downregulation of E-cadherin and alterations in cell morphology. Our results suggest that asbestos can induce epithelial plasticity, which can be interfered by blocking the MAPK/Erk kinase activity. Copyright © 2012 Wiley Periodicals, Inc.
2013-01-01
Background Graph theory has been recently introduced to characterize complex brain networks, making it highly suitable to investigate altered connectivity in neurologic disorders. A current model proposes autism spectrum disorder (ASD) as a developmental disconnection syndrome, supported by converging evidence in both non-syndromic and syndromic ASD. However, the effects of abnormal connectivity on network properties have not been well studied, particularly in syndromic ASD. To close this gap, brain functional networks of electroencephalographic (EEG) connectivity were studied through graph measures in patients with Tuberous Sclerosis Complex (TSC), a disorder with a high prevalence of ASD, as well as in patients with non-syndromic ASD. Methods EEG data were collected from TSC patients with ASD (n = 14) and without ASD (n = 29), from patients with non-syndromic ASD (n = 16), and from controls (n = 46). First, EEG connectivity was characterized by the mean coherence, the ratio of inter- over intra-hemispheric coherence and the ratio of long- over short-range coherence. Next, graph measures of the functional networks were computed and a resilience analysis was conducted. To distinguish effects related to ASD from those related to TSC, a two-way analysis of covariance (ANCOVA) was applied, using age as a covariate. Results Analysis of network properties revealed differences specific to TSC and ASD, and these differences were very consistent across subgroups. In TSC, both with and without a concurrent diagnosis of ASD, mean coherence, global efficiency, and clustering coefficient were decreased and the average path length was increased. These findings indicate an altered network topology. In ASD, both with and without a concurrent diagnosis of TSC, decreased long- over short-range coherence and markedly increased network resilience were found. Conclusions The altered network topology in TSC represents a functional correlate of structural abnormalities and may play a role in the pathogenesis of neurological deficits. The increased resilience in ASD may reflect an excessively degenerate network with local overconnection and decreased functional specialization. This joint study of TSC and ASD networks provides a unique window to common neurobiological mechanisms in autism. PMID:23445896
Reclamation Strategies and Geomorphic Outcomes in Coal Surface Mines of Eastern Ohio
NASA Astrophysics Data System (ADS)
Pollock, M.; Jaeger, K. L.
2014-12-01
Coal surface mining is a significant landscape disturbance in the United States. Since 1977, the reclamation of mined lands has been regulated by the Surface Mine Control and Reclamation Act (SMCRA). Prior to the act, many coalfields were left un-reclaimed or partially reclaimed, with highly irregular topology and drainage networks. Under the act, the reverse is often true; adherence to SMCRA often leads to the homogenization of surfaces and channel networks. While both pre and post-SMCRA landscapes are highly altered, they exhibit strongly dissimilar characteristics. We examine pre-SMCRA, post-SMCRA and unmined watersheds at 3 spatial scales in order to compare the geomorphic differences between reclamation strategies. In particular, we attempt to separate anthropogenic factors from pre-existing, natural factors via comparisons to unmined watersheds. Our study design incorporates a 3 scale top-down analysis of 21 independent watersheds (7 of each treatment type). Each watershed has an area of approximately 1km2. All watersheds share similar geography, climate and geology. At the landscape scale, characteristics are derived from 0.762m (2.5ft) resolution Digital Elevation Models (DEMs). At the channel network scale, DEMs, as well as remote sensing data (including the National Wetlands Inventory database) are used. Finally, the reach scale incorporates longitudinal and cross-section surveys (using a total station) as well as a particle size distribution. At each scale, attributes are parameterized for statistical comparison. Post-SMCRA sites are characterized by a general reduction of watershed surface slopes (11.9% median) compared to pre-SMCRA (19.3%) and unmined (19.8%) sites. Both pre and post-SMCRA channel networks are characterized by significant surface impoundments (in the form of remnant headwall trenches on pre-SMCRA sites and engineered retention basins on post-SMCRA sites). Pre-SMCRA outlet reaches have significantly steeper bed slopes (2.79% mean) than both post-SMCRA (1.72% mean) and unmined (1.67% mean) reaches (1-way ANOVA p=0.0488 n=19). Our results demonstrate the differential alterations resulting from these reclamation strategies, which may lead to alteration of long-term geomorphic processes. Further investigations of hydrology and sediment transport are needed.
NASA Astrophysics Data System (ADS)
Zaikin, Yu. A.; Kozhamkulov, B. A.; Koztaeva, U. P.
1997-07-01
A study is made of mechanical relaxation mechanisms and the correlation between parameters characterizing the temperature dependence of internal friction and shear modulus when the mechanical and electrical properties of glass-textolites of grades ST-11 and ST-ETF are altered by exposure to different doses of high-energy electrons. High-temperature α- and α'- transformation are observed, these transformations being due to the unfreezing of segmental mobility in the polymer matrix and the boundary layers at the surfaces of the glass fibers under the influence of the radiation. A discussion is presented of features of radiation-induced degradation processes in the polymer binder and at points where it contacts the filler. The data that is obtained shows that glass-texolites ST-ETF and ST-11 are highly resistant to radiation.
Fructosylation induced structural changes in mammalian DNA examined by biophysical techniques
NASA Astrophysics Data System (ADS)
Zaman, Asif; Arif, Zarina; Alam, Khursheed
2017-03-01
Glycosylation of DNA, proteins, lipids, etc. by reducing sugars, can lead to the formation of advanced glycation end products (AGEs). These products may accumulate and involve in the pathogenesis of a number of diseases, contributing to tissue injury via several mechanisms. In this study, fructosylation of calf thymus dsDNA was carried out with varying concentrations of fructose. The neo-structure of fructosylated-DNA was studied by various biophysical techniques and morphological characterization. Fructosylated-DNA showed hyperchromicity, increase in fluorescence intensity and decrease in melting temperature. The CD signal of modified-DNA shifted in the direction of higher wavelength indicative of structural changes in DNA. FTIR results indicated shift in specific band positions in fructosylated-DNA. Morphological characterization of fructosylated-DNA exhibited strand breakage and aggregation. The results suggest that the structure and conformation of DNA may be altered under high concentrations of fructose.
High flow and riparian vegetation along the San Miguel River, Colorado
Friedman, J.M.; Auble, G.T.
2000-01-01
Riparian ecosystems are characterized by abundance of water and frequent flow related disturbance. River regulation typically decreases peak flows, reducing the amount of disturbance and altering the vegetation. The San Miguel River is one of the last relatively unregulated rivers remaining in the Colorado River Watershed. One goal of major landowners along the San Miguel including the Bureau of Land Management and The Nature Conservancy is to maintain their lands in a natural condition. Conservation of an entire river corridor requires an integrated understanding of the variability in ecosystems and external influences along the river. Therefore, the Bureau of Land Management and others have fostered a series of studies designed to catalogue that variability, and to characterize the processes that maintain the river as a whole. In addition to providing information useful to managers, these studies present a rare opportunity to investigate how a Colorado river operates in the absence of regulation.
Label-Free Imaging and Biochemical Characterization of Bovine Sperm Cells
Ferrara, Maria Antonietta; Di Caprio, Giuseppe; Managò, Stefano; De Angelis, Annalisa; Sirleto, Luigi; Coppola, Giuseppe; De Luca, Anna Chiara
2015-01-01
A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH) and Raman spectroscopy (RS). DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols. PMID:25836358
Shai, Nadav; Yifrach, Eden; van Roermund, Carlo W T; Cohen, Nir; Bibi, Chen; IJlst, Lodewijk; Cavellini, Laetitia; Meurisse, Julie; Schuster, Ramona; Zada, Lior; Mari, Muriel C; Reggiori, Fulvio M; Hughes, Adam L; Escobar-Henriques, Mafalda; Cohen, Mickael M; Waterham, Hans R; Wanders, Ronald J A; Schuldiner, Maya; Zalckvar, Einat
2018-05-02
The understanding that organelles are not floating in the cytosol, but rather held in an organized yet dynamic interplay through membrane contact sites, is altering the way we grasp cell biological phenomena. However, we still have not identified the entire repertoire of contact sites, their tethering molecules and functions. To systematically characterize contact sites and their tethering molecules here we employ a proximity detection method based on split fluorophores and discover four potential new yeast contact sites. We then focus on a little-studied yet highly disease-relevant contact, the Peroxisome-Mitochondria (PerMit) proximity, and uncover and characterize two tether proteins: Fzo1 and Pex34. We genetically expand the PerMit contact site and demonstrate a physiological function in β-oxidation of fatty acids. Our work showcases how systematic analysis of contact site machinery and functions can deepen our understanding of these structures in health and disease.
Photometric anomalies in the Apollo landing sites as seen from the Lunar Reconnaissance Orbiter
NASA Astrophysics Data System (ADS)
Kaydash, Vadym; Shkuratov, Yuriy; Korokhin, Viktor; Videen, Gorden
2011-01-01
Phase-ratio imagery is a new tool of qualitative photometric analyses of the upper layer of the lunar regolith, which allows the identification of natural surface structure anomalies and artificially altered regolith. We apply phase-ratio imagery to analyze the Apollo-14, -15, and -17 landing sites. This reveals photometric anomalies of ˜170 × 120 m size that are characterized by lower values of the phase-function steepness, indicating a smoothing of the surface microstructure caused by the engine jets of the landing modules. Other photometric anomalies characterized by higher phase-function slopes are the result of regolith loosening by astronaut boots and the wheels of the Modular Equipment Transporter and the Lunar Roving Vehicle. We also provide a possible explanation for the high brightness of the wheel tracks seen in on-surface images acquired at very large phase angles.
Myocardial Infarction. Pathological Relevance and Relationship with Coronary Risk Factors.
Leone, Aurelio
2017-01-01
Three types of necrosis characterize MI: coagulation necrosis, typically due to a coronarogenic mechanism, coagulative myocytolysis with formation of contract bands as an effect of sympathetic nervous system and adrenergic stimulation, and colliquative myocytolysis, characterized by myocardial fiber lysis, which is a close result of hydrolytic enzyme activity deriving from the material reaching the infarct area. Although a multifactorial etiology may be identified, nevertheless coronary alterations, which are a consequence of atherosclerotic plaque formation and complications with a reduced blood flow supply to the myocardium, are the benchmark of MI. Evidence indicates a close relationship between the MI and some coronary risk factors, associated with this pathologic pattern with a different, but high rate. Precipitating events to cause acute myocardial pathology need, however, to develop an acute myocardial infarction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Genomic and transcriptomic characterization of skull base chordoma
Sa, Jason K.; Lee, In-Hee; Hong, Sang Duk; Kong, Doo-Sik; Nam, Do-Hyun
2017-01-01
Skull base chordoma is a primary rare malignant bone-origin tumor showing relatively slow growth pattern and locally destructive lesions, which can only be characterized by histologic components. There is no available prognostic or therapeutic biomarker to predict clinical outcome or treatment response and the molecular mechanisms underlying chordoma development still remain unexplored. Therefore, we sought out to identify novel somatic variations that are associated with chordoma progression and potentially employed as therapeutic targets. Thirteen skull base chordomas were subjected for whole-exome and/or whole-transcriptome sequencing. In process, we have identified chromosomal aberration in 1p, 7, 10, 13 and 17q, high frequency of functional germline SNP of the T gene, rs2305089 (P = 0.0038) and several recurrent alterations including MUC4, NBPF1, NPIPB15 mutations and novel gene fusion of SAMD5-SASH1 for the first time in skull base chordoma. PMID:27901492
Genomic and transcriptomic characterization of skull base chordoma.
Sa, Jason K; Lee, In-Hee; Hong, Sang Duk; Kong, Doo-Sik; Nam, Do-Hyun
2017-01-03
Skull base chordoma is a primary rare malignant bone-origin tumor showing relatively slow growth pattern and locally destructive lesions, which can only be characterized by histologic components. There is no available prognostic or therapeutic biomarker to predict clinical outcome or treatment response and the molecular mechanisms underlying chordoma development still remain unexplored. Therefore, we sought out to identify novel somatic variations that are associated with chordoma progression and potentially employed as therapeutic targets. Thirteen skull base chordomas were subjected for whole-exome and/or whole-transcriptome sequencing. In process, we have identified chromosomal aberration in 1p, 7, 10, 13 and 17q, high frequency of functional germline SNP of the T gene, rs2305089 (P = 0.0038) and several recurrent alterations including MUC4, NBPF1, NPIPB15 mutations and novel gene fusion of SAMD5-SASH1 for the first time in skull base chordoma.
In utero Undernutrition Programs Skeletal and Cardiac Muscle Metabolism.
Beauchamp, Brittany; Harper, Mary-Ellen
2015-01-01
In utero undernutrition is associated with increased risk for insulin resistance, obesity, and cardiovascular disease during adult life. A common phenotype associated with low birth weight is reduced skeletal muscle mass. Given the central role of skeletal muscle in whole body metabolism, alterations in its mass as well as its metabolic characteristics may contribute to disease risk. This review highlights the metabolic alterations in cardiac and skeletal muscle associated with in utero undernutrition and low birth weight. These tissues have high metabolic demands and are known to be sites of major metabolic dysfunction in obesity, type 2 diabetes, and cardiovascular disease. Recent research demonstrates that mitochondrial energetics are decreased in skeletal and cardiac muscles of adult offspring from undernourished mothers. These effects apparently lead to the development of a thrifty phenotype, which may represent overall a compensatory mechanism programmed in utero to handle times of limited nutrient availability. However, in an environment characterized by food abundance, the effects are maladaptive and increase adulthood risks of metabolic disease.
In utero Undernutrition Programs Skeletal and Cardiac Muscle Metabolism
Beauchamp, Brittany; Harper, Mary-Ellen
2016-01-01
In utero undernutrition is associated with increased risk for insulin resistance, obesity, and cardiovascular disease during adult life. A common phenotype associated with low birth weight is reduced skeletal muscle mass. Given the central role of skeletal muscle in whole body metabolism, alterations in its mass as well as its metabolic characteristics may contribute to disease risk. This review highlights the metabolic alterations in cardiac and skeletal muscle associated with in utero undernutrition and low birth weight. These tissues have high metabolic demands and are known to be sites of major metabolic dysfunction in obesity, type 2 diabetes, and cardiovascular disease. Recent research demonstrates that mitochondrial energetics are decreased in skeletal and cardiac muscles of adult offspring from undernourished mothers. These effects apparently lead to the development of a thrifty phenotype, which may represent overall a compensatory mechanism programmed in utero to handle times of limited nutrient availability. However, in an environment characterized by food abundance, the effects are maladaptive and increase adulthood risks of metabolic disease. PMID:26779032
Ambra1 Shapes Hippocampal Inhibition/Excitation Balance: Role in Neurodevelopmental Disorders.
Nobili, Annalisa; Krashia, Paraskevi; Cordella, Alberto; La Barbera, Livia; Dell'Acqua, Maria Concetta; Caruso, Angela; Pignataro, Annabella; Marino, Ramona; Sciarra, Francesca; Biamonte, Filippo; Scattoni, Maria Luisa; Ammassari-Teule, Martine; Cecconi, Francesco; Berretta, Nicola; Keller, Flavio; Mercuri, Nicola Biagio; D'Amelio, Marcello
2018-02-27
Imbalances between excitatory and inhibitory synaptic transmission cause brain network dysfunction and are central to the pathogenesis of neurodevelopmental disorders. Parvalbumin interneurons are highly implicated in this imbalance. Here, we probed the social behavior and hippocampal function of mice carrying a haploinsufficiency for Ambra1, a pro-autophagic gene crucial for brain development. We show that heterozygous Ambra1 mice (Ambra +/- ) are characterized by loss of hippocampal parvalbumin interneurons, decreases in the inhibition/excitation ratio, and altered social behaviors that are solely restricted to the female gender. Loss of parvalbumin interneurons in Ambra1 +/- females is further linked to reductions of the inhibitory drive onto principal neurons and alterations in network oscillatory activity, CA1 synaptic plasticity, and pyramidal neuron spine density. Parvalbumin interneuron loss is underlined by increased apoptosis during the embryonic development of progenitor neurons in the medial ganglionic eminence. Together, these findings identify an Ambra1-dependent mechanism that drives inhibition/excitation imbalance in the hippocampus, contributing to abnormal brain activity reminiscent of neurodevelopmental disorders.
Tengs, Torstein; Zhang, Haibo; Holst-Jensen, Arne; Bohlin, Jon; Butenko, Melinka A; Kristoffersen, Anja Bråthen; Sorteberg, Hilde-Gunn Opsahl; Berdal, Knut G
2009-10-08
When generating a genetically modified organism (GMO), the primary goal is to give a target organism one or several novel traits by using biotechnology techniques. A GMO will differ from its parental strain in that its pool of transcripts will be altered. Currently, there are no methods that are reliably able to determine if an organism has been genetically altered if the nature of the modification is unknown. We show that the concept of computational subtraction can be used to identify transgenic cDNA sequences from genetically modified plants. Our datasets include 454-type sequences from a transgenic line of Arabidopsis thaliana and published EST datasets from commercially relevant species (rice and papaya). We believe that computational subtraction represents a powerful new strategy for determining if an organism has been genetically modified as well as to define the nature of the modification. Fewer assumptions have to be made compared to methods currently in use and this is an advantage particularly when working with unknown GMOs.
Metabolic drift in the aging brain
Ivanisevic, Julijana; Stauch, Kelly L.; Petrascheck, Michael; Benton, H. Paul; Epstein, Adrian A.; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E.; Boska, Michael D.; Gendelman, Howard E.; Fox, Howard S.; Siuzdak, Gary
2016-01-01
Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energy metabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication. PMID:27182841
Cardiac Metabolism in Heart Failure - Implications beyond ATP production
Doenst, Torsten; Nguyen, T. Dung; Abel, E. Dale
2013-01-01
The heart has a high rate of ATP production and turnover which is required to maintain its continuous mechanical work. Perturbations in ATP generating processes may therefore affect contractile function directly. Characterizing cardiac metabolism in heart failure revealed several metabolic alterations termed metabolic remodeling, ranging from changes in substrate utilization to mitochondrial dysfunction, ultimately resulting in ATP deficiency and impaired contractility. However, ATP depletion is not the only relevant consequence of metabolic remodeling during heart failure. By providing cellular building blocks and signaling molecules, metabolic pathways control essential processes such as cell growth and regeneration. Thus, alterations in cardiac metabolism may also affect the progression to heart failure by mechanisms beyond ATP supply. Our aim is therefore to highlight that metabolic remodeling in heart failure not only results in impaired cardiac energetics, but also induces other processes implicated in the development of heart failure such as structural remodeling and oxidative stress. Accordingly, modulating cardiac metabolism in heart failure may have significant therapeutic relevance that goes beyond the energetic aspect. PMID:23989714
Unsteady Flow Interactions Between Pitching Wings In Schooling Arrangements
NASA Astrophysics Data System (ADS)
Kurt, Melike; Moored, Keith
2017-11-01
In nature, many fish aggregate into large groups or schools for protection against predators, for social interactions and to save energy during migrations. Regardless of their prime motivation, fish experience three-dimensional flow interactions amongst themselves that can improve or hamper swimming performance and give rise to fluid-mediated forces between individuals. To date, the unsteady, three-dimensional flow interactions among schooling fish remains relatively unexplored. In order to study these interactions, the caudal fins of two interacting fish are idealized as two finite span pitching wings arranged in mixtures of canonical in-line and side-by-side arrangements. The forces and moments acting on the wings in the streamwise and cross-stream directions are quantified as the arrangement and the phase delay between the wings is altered. Particle image velocimetry is employed to characterize the flow physics during high efficiency locomotion. Finally, the forces and flowfields of two-dimensional pitching wings are compared with three-dimensional wings to distinguish how three-dimensionality alters the flow interactions in schools of fish.
Xenoestrogenic chemicals effectively alter sperm functional behavior in mice.
Park, Yoo-Jin; Mohamed, El-Sayed A; Kwon, Woo-Sung; You, Young-Ah; Ryu, Buom-Yong; Pang, Myung-Geol
2011-12-01
Xenoestrogenic compounds (XCs) can disrupt endogenous hormone function and affect sperm function by binding to receptors on sperm membrane. Albeit spermatozoa are potentially a useful model for screening estrogenic activities of endocrine disruptors, high-quality in vitro test system that examination of the XCs effects on sperm function is required. The objective of this study was to compare the effects of XCs (genistein and 4-tert-octylphenol) to those of steroids (estrogen and progesterone) and heparin on in vitro capacitation and acrosome reaction (AR) in mouse spermatozoa. Mouse spermatozoa were incubated with various concentrations (0.001-100 μM) of each chemical for 15 or 30 min, and then capacitation and AR were assessed using chlortetracycline. All chemicals studied effectively alter capacitation and/or AR in mouse spermatozoa with different manner. Therefore, we believed that our system will provide a good in vitro model system to characterize the physiological effect of XCs especially when compared with steroids. Copyright © 2011 Elsevier Inc. All rights reserved.
Tengs, Torstein; Zhang, Haibo; Holst-Jensen, Arne; Bohlin, Jon; Butenko, Melinka A; Kristoffersen, Anja Bråthen; Sorteberg, Hilde-Gunn Opsahl; Berdal, Knut G
2009-01-01
Background When generating a genetically modified organism (GMO), the primary goal is to give a target organism one or several novel traits by using biotechnology techniques. A GMO will differ from its parental strain in that its pool of transcripts will be altered. Currently, there are no methods that are reliably able to determine if an organism has been genetically altered if the nature of the modification is unknown. Results We show that the concept of computational subtraction can be used to identify transgenic cDNA sequences from genetically modified plants. Our datasets include 454-type sequences from a transgenic line of Arabidopsis thaliana and published EST datasets from commercially relevant species (rice and papaya). Conclusion We believe that computational subtraction represents a powerful new strategy for determining if an organism has been genetically modified as well as to define the nature of the modification. Fewer assumptions have to be made compared to methods currently in use and this is an advantage particularly when working with unknown GMOs. PMID:19814792
Influence of neurobehavioral incentive valence and magnitude on alcohol drinking behavior
Joseph, Jane E.; Zhu, Xun; Corbly, Christine R.; DeSantis, Stacia; Lee, Dustin C.; Baik, Grace; Kiser, Seth; Jiang, Yang; Lynam, Donald R.; Kelly, Thomas H.
2014-01-01
The monetary incentive delay (MID) task is a widely used probe for isolating neural circuitry in the human brain associated with incentive motivation. In the present functional magnetic resonance imaging (fMRI) study, 82 young adults, characterized along dimensions of impulsive sensation seeking, completed a MID task. fMRI and behavioral incentive functions were decomposed into incentive valence and magnitude parameters, which were used as predictors in linear regression to determine whether mesolimbic response is associated with problem drinking and recent alcohol use. Alcohol use was best explained by higher fMRI response to anticipation of losses and feedback on high gains in the thalamus. In contrast, problem drinking was best explained by reduced sensitivity to large incentive values in meso-limbic regions in the anticipation phase and increased sensitivity to small incentive values in the dorsal caudate nucleus in the feedback phase. Altered fMRI responses to monetary incentives in mesolimbic circuitry, particularly those alterations associated with problem drinking, may serve as potential early indicators of substance abuse trajectories. PMID:25261001
Mikkelsen, S Rochelle; Long, Julie M; Zhang, Lin; Galemore, Erin R; VandeWoude, Sue; Dean, Gregg A
2011-02-25
Feline immunodeficiency virus (FIV) infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4(+)CD25(hi)FoxP3(+) immunosuppressive regulatory T (Treg) cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4(+) T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection.
Al-Hadi, Ahmed M; Periasamy, Vaiyapuri Subbarayan; Athinarayanan, Jegan; Alshatwi, Ali A
2016-01-01
Ingredients commonly present in processed foods are excellent substrates for chemical reactions during modern thermal cooking or processing, which could possibly result in deteriorative carbonization changes mediated by a variety of thermal reactions. Spontaneous self-assembling complexation or polymerization of partially combusted lipids, proteins, and other food macromolecules with synthetic food additives during high temperature food processing or baking (200-250 °C) would result in the formation of carbon nanostructures (CNs). These unknown nanostructures may produce adverse physiological effects or potential health risks. The present work aimed to identify and characterize the nanostructures from the crusts of bread. Furthermore, a toxicological risk assessment of these nanostructures was conducted using human mesenchymal stem cells (hMSCs) as a model for cellular uptake and metabolic oxidative stress, with special reference to induced adipogenesis. CNs isolated from bread crusts were characterized using transmission electron microscopy. The in vitro risk assessment of the CNs was carried out in hMSCs using an MTT assay, cell morphological assessment, a reactive oxygen species assay, a mitochondrial trans-membrane potential assay, cell cycle progression assessment and gene expression analysis. Our results revealed that bread crusts contain CNs, which may form during the bread-making process. The in vitro results indicate that carbon nanostructures have moderately toxic effects in the hMSCs at a high dose (400 μg/mL). The mitochondrial trans-membrane potentials and intracellular ROS levels of the hMSCs were altered at this dose. The levels of the mRNA transcripts of metabolic stress-responsive genes such as CAT, GSR, GSTA4, CYP1A and p53 were significantly altered in response to CNs. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sahoo, Prafulla Kumar; Guimarães, José Tasso Felix; Souza-Filho, Pedro Walfir Martins; da Silva, Marcio Sousa; Nascimento, Wilson, Júnior; Powell, Mike A.; Reis, Luiza Santos; Pessenda, Luiz Carlos Ruiz; Rodrigues, Tarcísio Magevski; da Silva, Delmo Fonseca; Costa, Vladimir Eliodoro
2017-12-01
Lake Três Irmãs (LTI), the largest upland lake in the Brazilian Amazonia, located in Serra dos Carajás, was characterized using multi-elemental and isotope geochemistry (δ13C and δ15N) to understand the significance of organic and inorganic sources, weathering and sedimentary processes on the distribution of elements in lake bottom (surficial) sediments. Carbon and nitrogen isotopes from sedimentary organic matter suggest C3 terrestrial plants (forests > canga vegetation), macrophytes and freshwater DOC as the main sources. Sediments are depleted in most of the major oxides (except Fe2O3 and P2O5) when compared to upper continental crust (UCC) and their spatial distribution is highly influenced by catchment lithology. Principal Component Analysis revealed that most of the trace elements (Ba, Sr, Rb, Sc, Th, U, Zr, Hf, Nb, Y, V, Cr, Ga, Co, Ni) and REEs are closely correlated with Al and Ti (PC1; Group-1), so their redistribution is less influenced by post-depositional process. This is due to their relative immobility and being hosted by Al-bearing minerals during laterization. High Chemical Index of Alteration (CIA), Mafic Index of Alteration (MIA) and Index of Laterization (IOL) values indicate intense chemical weathering at source areas, but the weathering transformation was better quantified by IOL. A-CN-K plot along with elemental ratios (Al/K, Ti/K, Ti/Zr, La/Al, Cr/Th, Co/Th, La/Sm, La/Gd, Zr/Y, and Eu/Eu*) as well as chondrite-normalized REE patterns show that the detritic sediments are mainly sourced from ferruginous laterites and soils in the catchment, which may have characteristics similar to mafic rocks.
Gait analysis in anorexia and bulimia nervosa.
Cimolin, Veronica; Galli, Manuela; Vismara, Luca; Vimercati, Sara Laura; Precilios, Helmer; Cattani, Laila; Fabris De Souza, Shirley; Petroni, Maria Letizia; Capodaglio, Paolo
2013-09-13
Anorexia (AN) and Bulimia Nervosa (BN) are two common eating disorders, which appear to share some reduced motor capacities, such as a reduced balance. The presence and the extent of other motor disorders have not been investigated in a comprehensive way. The aim of this study was to quantify gait pattern in AN and BN individuals in order to ascertain possible differences from the normality range and provide novel data for developing some evidence-based rehabilitation strategies. Nineteen AN patients (age 30.16+9.73) and 20 BN patients (age 26.8+8.41) were assessed with quantitative 3D computerized Gait Analysis. Results were compared with a group of healthy controls (CG; 30.7+5.6). AN and BN patients were characterized by different gait strategies compared to CG. Spatio-temporal parameters indicated shorter step length, with AN showing the shortest values. AN walked slower than BN and CG. As for kinematics, AN and BN showed a nonphysiologic pattern at pelvis and hip level on the sagittal and frontal plane, with BN yielding the most abnormal values. Both AN and BN patients were characterized by high ankle plantar flexion capacity at toe-off when compared to CG. As for ankle kinetics, both AN and BN showed physiologic patterns. Stiffness at hip level was close to CG in both pathologic groups; at the ankle level, stiffness was significantly decreased in both groups, with AN displaying lower values. Both AN and BN were characterized by an altered gait pattern compared to CG. Biomechanical differences were evident mainly at pelvis and hip level. Loss of lean mass may lead to musculoskeletal adaptation, ultimately causing alterations in the gait pattern.
Carrasco, Javier; Márquez, Cristina; Nadal, Roser; Tobeña, Adolfo; Fernández-Teruel, Albert; Armario, Antonio
2008-05-01
Several studies performed in outbred Roman high- and low-avoidance lines (RHA and RLA, respectively) have demonstrated that the more anxious line (RLA) is characterized by a higher hypothalamic-pituitary-adrenal (HPA) response to certain stressors than the less anxious one (RHA). However, inconsistent results have also been reported. Taking advantage of the generation of an inbred colony of RLA and RHA rats (RHA-I and RLA-I, respectively), we have characterized in the two strains not only resting and stress levels of peripheral HPA hormones but also central components of the HPA axis, including CRF gene expression in extra-hypothalamic areas. Whereas resting levels of ACTH and corticosterone did not differ between the strains, a greater response to a novel environment was found in RLA-I as compared to RHA-I rats. RLA-I rats showed enhanced CRF gene expression in the paraventricular nucleus (PVN) of the hypothalamus, with normal arginin-vasopressin gene expression in both parvocellular and magnocellular regions of the PVN. This enhanced CRF gene expression is not apparently related to altered negative corticosteroid feedback as similar levels of expression of brain glucorticoid and mineralocorticoid receptors were found in the two rat strains. CRF gene expression tended to be higher in the central amygdala and it was significantly higher in the dorsal region of the bed nucleus of stria terminalis (BNST) of RLA-I rats, while no differences appeared in the ventral region of BNST. Considering the involvement of CRF and the BNST in anxiety and stress-related behavioral alterations, the present data suggest that the CRF system may be a critical neurobiological substrate underlying differences between the two rat strains.
Altered Regional Cerebral Blood Flow in Idiopathic Hypersomnia.
Boucetta, Soufiane; Montplaisir, Jacques; Zadra, Antonio; Lachapelle, Francis; Soucy, Jean-Paul; Gravel, Paul; Dang-Vu, Thien Thanh
2017-10-01
Idiopathic hypersomnia is characterized by excessive daytime sleepiness, despite normal or long sleep time. Its pathophysiological mechanisms remain unclear. This pilot study aims at characterizing the neural correlates of idiopathic hypersomnia using single photon emission computed tomography. Thirteen participants with idiopathic hypersomnia and 16 healthy controls were scanned during resting wakefulness using a high-resolution single photon emission computed tomography scanner with 99mTc-ethyl cysteinate dimer to assess cerebral blood flow. The main analysis compared regional cerebral blood flow distribution between the two groups. Exploratory correlations between regional cerebral blood flow and clinical characteristics evaluated the functional correlates of those brain perfusion patterns. Significance was set at p < .05 after correction for multiple comparisons. Participants with idiopathic hypersomnia showed regional cerebral blood flow decreases in medial prefrontal cortex and posterior cingulate cortex and putamen, as well as increases in amygdala and temporo-occipital cortices. Lower regional cerebral blood flow in the medial prefrontal cortex was associated with higher daytime sleepiness. These preliminary findings suggest that idiopathic hypersomnia is characterized by functional alterations in brain areas involved in the modulation of vigilance states, which may contribute to the daytime symptoms of this condition. The distribution of regional cerebral blood flow changes was reminiscent of the patterns associated with normal non-rapid-eye-movement sleep, suggesting the possible presence of incomplete sleep-wake transitions. These abnormalities were strikingly distinct from those induced by acute sleep deprivation, suggesting that the patterns seen here might reflect a trait associated with idiopathic hypersomnia rather than a non-specific state of sleepiness. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Gin, S.; Jollivet, P.; Barba Rossa, G.; Tribet, M.; Mougnaud, S.; Collin, M.; Fournier, M.; Cadel, E.; Cabie, M.; Dupuy, L.
2017-04-01
Significant efforts have been made into understanding the dissolution of silicate glasses and minerals, but there is still debate about the formation processes and the properties of surface layers. Here, we investigate glass coupons of ISG glass - a 6 oxide borosilicate glass of nuclear interest - altered at 90 °C in conditions close to saturation and for durations ranging from 1 to 875 days. Altered glass coupons were characterized from atomic to macroscopic levels to better understand how surface layers become protective. With this approach, it was shown that a rough interface, whose physical characteristics have been modeled, formed in a few days and then propagated into the pristine material at a rate controlled by the reactive transport of water within the growing alteration layer. Several observations such as stiff interfacial B, Na, and Ca profiles and damped profiles within the rest of the alteration layer are not consistent with the classical inter-diffusion model, or with the interfacial dissolution-precipitation model. A new paradigm is proposed to explain these features. Inter-diffusion, a process based on water ingress into the glass and ion-exchange, may only explain the formation of the rough interface in the early stage of glass corrosion. A thin layer of altered glass is formed by this process, and as the layer grows, the accessibility of water to the reactive interface becomes rate-limiting. As a consequence, only the most easily accessible species are dissolved. The others remain undissolved in the alteration layer, probably fixed in highly hydrolysis resistant clusters. A new estimation of water diffusivity in the glass when covered by the passivating layer was determined from the shift between B and H profiles, and was 10-23 m2.s-1, i.e. approximately 3 orders of magnitude lower than water diffusivity in the pristine material. Overall, in the absence of secondary crystalline phases that could consume the major components of the alteration layer (Si, Al), it is assumed that the glass dissolution rate continuously decreases due to the growth of the transport limiting alteration layer, in good agreement with residual rates reported in the literature for this glass. According to our results it can be expected that new kinetic models should emerge from an accurate time dependent budget of water within the nanoporous alteration layer.
Créau, Nicole
2012-01-01
Down syndrome is a complex disease that has challenged molecular and cellular research for more than 50 years. Understanding the molecular bases of morphological, cellular, and functional alterations resulting from the presence of an additional complete chromosome 21 would aid in targeting specific genes and pathways for rescuing some phenotypes. Recently, progress has been made by characterization of brain alterations in mouse models of Down syndrome. This review will highlight the main molecular and cellular findings recently described for these models, particularly with respect to their relationship to Down syndrome phenotypes.
Alterations of brain activity in fibromyalgia patients.
Sawaddiruk, Passakorn; Paiboonworachat, Sahattaya; Chattipakorn, Nipon; Chattipakorn, Siriporn C
2017-04-01
Fibromyalgia is a chronic pain syndrome, characterized by widespread musculoskeletal pain with diffuse tenderness at multiple tender points. Despite intense investigations, the pathophysiology of fibromyalgia remains elusive. Evidence shows that it could be due to changes in either the peripheral or central nervous system (CNS). For the CNS changes, alterations in the high brain area of fibromyalgia patients have been investigated but the definite mechanisms are still unclear. Magnetic Resonance Imaging (MRI) and Functional Magnetic Resonance (fMRI) have been used to gather evidence regarding the changes of brain morphologies and activities in fibromyalgia patients. Nevertheless, due to few studies, limited knowledge for alterations in brain activities in fibromyalgia is currently available. In this review, the changes in brain activity in various brain areas obtained from reports in fibromyalgia patients are comprehensively summarized. Changes of the grey matter in multiple regions such as the superior temporal gyrus, posterior thalamus, amygdala, basal ganglia, cerebellum, cingulate cortex, SII, caudate and putamen from the MRI as well as the increase of brain activities in the cerebellum, prefrontal cortex, anterior cingulate cortex, thalamus, somatosensory cortex, insula in fMRI studies are presented and discussed. Moreover, evidence from pharmacological interventions offering benefits for fibromyalgia patients by reducing brain activity is presented. Because of limited knowledge regarding the roles of brain activity alterations in fibromyalgia, this summarized review will encourage more future studies to elucidate the underlying mechanisms involved in the brains of these patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Urinary Metabolite Markers of Precocious Puberty*
Qi, Ying; Li, Pin; Zhang, Yongyu; Cui, Lulu; Guo, Zi; Xie, Guoxiang; Su, Mingming; Li, Xin; Zheng, Xiaojiao; Qiu, Yunping; Liu, Yumin; Zhao, Aihua; Jia, Weiping; Jia, Wei
2012-01-01
The incidence of precocious puberty (PP, the appearance of signs of pubertal development at an abnormally early age), is rapidly rising, concurrent with changes of diet, lifestyles, and social environment. The current diagnostic methods are based on a hormone (gonadotropin-releasing hormone) stimulation test, which is costly, time-consuming, and uncomfortable for patients. The lack of molecular biomarkers to support simple laboratory tests, such as a blood or urine test, has been a long standing bottleneck in the clinical diagnosis and evaluation of PP. Here we report a metabolomic study using an ultra performance liquid chromatography-quadrupole time of flight mass spectrometry and gas chromatography-time of flight mass spectrometry. Urine metabolites from 163 individuals were profiled, and the metabolic alterations were analyzed after treatment of central precocious puberty (CPP) with triptorelin depot. A panel of biomarkers selected from >70 differentially expressed urinary metabolites by receiver operating characteristic and logistic regression analysis provided excellent predictive power with high sensitivity and specificity for PP. The altered metabolic profile of the PP patients was characterized by three major perturbed metabolic pathways: catecholamine, serotonin metabolism, and tricarboxylic acid cycle, presumably resulting from activation of the sympathetic nervous system and the hypothalamic-pituitary-gonadal axis. Treatment with triptorelin depot was able to normalize these three altered pathways. Additionally, significant changes in the urine levels of 4-hydroxyphenylacetic acid, 5-hydroxyindoleacetic acid, indoleacetic acid, 5-hydroxytryptophan, and 5-hydroxykynurenamine in the CPP group suggest that the development of CPP condition may involve an alteration in symbiotic gut microbial composition. PMID:22027199
Phenotype- and Genotype-Specific Structural Alterations in Spasmodic Dysphonia
Bianchi, Serena; Battistella, Giovanni; Huddleston, Hailey; Scharf, Rebecca; Fleysher, Lazar; Rumbach, Anna F.; Frucht, Steven J.; Blitzer, Andrew; Ozelius, Laurie J.; Simonyan, Kristina
2017-01-01
Background Spasmodic dysphonia is a focal dystonia characterized by involuntary spasms in the laryngeal muscles that occur selectively during speaking. Although hereditary trends have been reported in up to 16% of patients, the causative etiology of spasmodic dysphonia is unclear, and the influences of various phenotypes and genotypes on disorder pathophysiology are poorly understood. In this study, we examined structural alterations in cortical gray matter and white matter integrity in relationship to different phenotypes and putative genotypes of spasmodic dysphonia to elucidate the structural component of its complex pathophysiology. Methods Eighty-nine patients with spasmodic dysphonia underwent high-resolution magnetic resonance imaging and diffusion-weighted imaging to examine cortical thickness and white matter fractional anisotropy in adductor versus abductor forms (distinct phenotypes) and in sporadic versus familial cases (distinct genotypes). Results Phenotype-specific abnormalities were localized in the left sensorimotor cortex and angular gyrus and the white matter bundle of the right superior corona radiata. Genotype-specific alterations were found in the left superior temporal gyrus, supplementary motor area, and the arcuate portion of the left superior longitudinal fasciculus. Conclusions Our findings suggest that phenotypic differences in spasmodic dysphonia arise at the level of the primary and associative areas of motor control, whereas genotype-related pathophysiological mechanisms may be associated with dysfunction of regions regulating phonological and sensory processing. Identification of structural alterations specific to disorder phenotype and putative genotype provides an important step toward future delineation of imaging markers and potential targets for novel therapeutic interventions for spasmodic dysphonia. PMID:28186656
NASA Technical Reports Server (NTRS)
Evans, H. H.; Horng, M. F.; Ricanati, M.; Diaz-Insua, M.; Jordan, R.; Schwartz, J. L.
2001-01-01
To obtain information on the origin of radiation-induced genomic instability, we characterized a total of 166 clones that survived exposure to (56)Fe particles or (137)Cs gamma radiation, isolated approximately 36 generations after exposure, along with their respective control clones. Cytogenetic aberrations, growth alterations, responses to a second irradiation, and mutant frequencies at the Na(+)/K(+) ATPase and thymidine kinase loci were determined. A greater percentage of clones that survived exposure to (56)Fe particles exhibited instability (defined as clones showing one or more outlying characteristics) than in the case of those that survived gamma irradiation. The phenotypes of the unstable clones that survived exposure to (56)Fe particles were also qualitatively different from those of the clones that survived gamma irradiation. A greater percentage (20%) of the unstable clones that survived gamma irradiation than those that survived exposure to (56)Fe particles (4%) showed an altered response to the second irradiation, while an increase in the percentage of clones that had an outlying frequency of ouabain-resistant and thymidine kinase mutants was more evident in the clones exposed to (56)Fe particles than in those exposed to gamma rays. Growth alterations and increases in dicentric chromosomes were found only in clones with more than one alteration. These results underscore the complex nature of genomic instability and the likelihood that radiation-induced genomic instability arises from different original events.
Wang, Sheng; Yang, Feng; Petyuk, Vladislav A; Shukla, Anil K; Monroe, Matthew E; Gritsenko, Marina A; Rodland, Karin D; Smith, Richard D; Qian, Wei-Jun; Gong, Cheng-Xin; Liu, Tao
2017-09-01
Protein modification by O-linked β-N-acetylglucosamine (O-GlcNAc) is emerging as an important factor in the pathogenesis of sporadic Alzheimer's disease (AD); however, detailed molecular characterization of this important protein post-translational modification at the proteome level has been highly challenging, owing to its low stoichiometry and labile nature. Herein, we report the most comprehensive, quantitative proteomics analysis for protein O-GlcNAcylation in postmortem human brain tissues with and without AD by the use of isobaric tandem mass tag labelling, chemoenzymatic photocleavage enrichment, and liquid chromatography coupled to mass spectrometry. A total of 1850 O-GlcNAc peptides covering 1094 O-GlcNAcylation sites were identified from 530 proteins in the human brain. One hundred and thirty-one O-GlcNAc peptides covering 81 proteins were altered in AD brains as compared with controls (q < 0.05). Moreover, alteration of O-GlcNAc peptide abundance could be attributed more to O-GlcNAcylation level than to protein level changes. The altered O-GlcNAcylated proteins belong to several structural and functional categories, including synaptic proteins, cytoskeleton proteins, and memory-associated proteins. These findings suggest that dysregulation of O-GlcNAcylation of multiple brain proteins may be involved in the development of sporadic AD. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Dissolution and secondary mineral precipitation in basalts due to reactions with carbonic acid
NASA Astrophysics Data System (ADS)
Kanakiya, Shreya; Adam, Ludmila; Esteban, Lionel; Rowe, Michael C.; Shane, Phil
2017-06-01
One of the leading hydrothermal alteration processes in volcanic environments is when rock-forming minerals with high concentrations of iron, magnesium, and calcium react with CO2 and water to form carbonate minerals. This is used to the advantage of geologic sequestration of anthropogenic CO2. Here we experimentally investigate how mineral carbonation processes alter the rock microstructure due to CO2-water-rock interactions. In order to characterize these changes, CO2-water-rock alteration in Auckland Volcanic Field young basalts (less than 0.3 Ma) is studied before and after a 140 day reaction period. We investigate how whole core basalts with similar geochemistry but different porosity, permeability, pore geometry, and volcanic glass content alter due to CO2-water-rock reactions. Ankerite and aluminosilicate minerals precipitate as secondary phases in the pore space. However, rock dissolution mechanisms are found to dominate this secondary mineral precipitation resulting in an increase in porosity and decrease in rigidity of all samples. The basalt with the highest initial porosity and volcanic glass volume shows the most secondary mineral precipitation. At the same time, this sample exhibits the greatest increase in porosity and permeability, and a decrease in rock rigidity post reaction. For the measured samples, we observe a correlation between volcanic glass volume and rock porosity increase due to rock-fluid reactions. We believe this study can help understand the dynamic rock-fluid interactions when monitoring field scale CO2 sequestration projects in basalts.
Henley, R.W.; Berger, B.R.
2011-01-01
Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays from any external contemporary hydrothermal activity. Subsequent fracturing is localized by the embrittled wallrock to provide high-permeability fracture arrays that constrain vapor expansion with minimization of heat loss. The Sulfide Stage vein sequence is then a consequence of destabilization of metal-vapor species in response to depressurization and decrease in vapor density. The geology, mineralogy, fluid inclusion and stable isotope data and geothermometry for high-sulfidation, bulk-tonnage and lode deposits are quite different from those for epithermal gold-silver deposits such as McLaughlin, California that formed near-surface in groundwater-dominated hydrothermal systems where magmatic fluid has been diluted to less than about 30%. High sulfidation gold deposits are better termed 'Solfataric Gold Deposits' to emphasize this distinction. The magmatic-vapor expansion hypothesis also applies to the phenomenology of acidic geothermal systems in active volcanic systems and equivalent magmatic-vapor discharges on the flanks of submarine volcanoes. ?? 2010.
Percolation of diagenetic fluids in the Archaean basement of the Franceville basin
NASA Astrophysics Data System (ADS)
Mouélé, Idalina Moubiya; Dudoignon, Patrick; Albani, Abderrazak El; Cuney, Michel; Boiron, Marie-Christine; Gauthier-Lafaye, François
2014-01-01
The Palaeoproterozoic Franceville basin, Gabon, is mainly known for its high-grade uranium deposits, which are the only ones known to act as natural nuclear fission reactors. Previous work in the Kiéné region investigated the nature of the fluids responsible for these natural nuclear reactors. The present work focuses on the top of the Archaean granitic basement, specifically, to identify and date the successive alteration events that affected this basement just below the unconformity separating it from the Palaeoproterozoic basin. Core from four drill holes crosscutting the basin-basement unconformity have been studied. Dating is based on U-Pb isotopic analyses performed on monazite. The origin of fluids is discussed from the study of fluid inclusion planes (FIP) in quartz from basement granitoids. From the deepest part of the drill holes to the unconformable boundary with the basin, propylitic alteration assemblages are progressively replaced by illite and locally by a phengite + Fe chlorite ± Fe oxide assemblage. Illitic alteration is particularly strong along the sediment-granitoid contact and is associated with quartz dissolution. It was followed by calcite and anhydrite precipitation as fracture fillings. U-Pb isotopic dating outlines three successive events: a 3.0-2.9-Ga primary magmatic event, a 2.6-Ga propylitic alteration and a late 1.9-Ga diagenetic event. Fluid inclusion microthermometry suggests the circulation of three types of fluids: (1) a Na-Ca-rich diagenetic brine, (2) a moderately saline (diagenetic + meteoric) fluid, and (3) a low-salinity fluid of probable meteoric origin. These fluids are similar to those previously identified within the overlying sedimentary rocks of the Franceville basin. Overall, the data collected in this study show that the Proterozoic-Archaean unconformity has operated as a major flow corridor for fluids circulation, around 1.9 Ga. highly saline diagenetic brines; hydrocarbon-rich fluids derived from organic matter-rich formations; a low-salinity fluid likely of meteoric origin migrating through the granitic basement; mineralizing fluids resulting from the mixing of fluids 1 and 3; high-temperature fluids resulting from the natural nuclear reactor environment (Mathieu et al., 2000). The present paper attempts to characterize the succession of alteration events that have affected the top of the basement below the Palaeoproterozoic sediment unconformity. Are these alterations related to early post-magmatic to hydrothermal events, to palaeoweathering, or to late infiltration of diagenetic brines from the overlying basin? Our study, carried out on drill core samples from Kiéné, is supported by petrographic investigation, new fluid inclusion data and U-Pb geochronology on monazite.
Altered cerebral blood flow velocity features in fibromyalgia patients in resting-state conditions
Rodríguez, Alejandro; Tembl, José; Mesa-Gresa, Patricia; Muñoz, Miguel Ángel; Montoya, Pedro
2017-01-01
The aim of this study is to characterize in resting-state conditions the cerebral blood flow velocity (CBFV) signals of fibromyalgia patients. The anterior and middle cerebral arteries of both hemispheres from 15 women with fibromyalgia and 15 healthy women were monitored using Transcranial Doppler (TCD) during a 5-minute eyes-closed resting period. Several signal processing methods based on time, information theory, frequency and time-frequency analyses were used in order to extract different features to characterize the CBFV signals in the different vessels. Main results indicated that, in comparison with control subjects, fibromyalgia patients showed a higher complexity of the envelope CBFV and a different distribution of the power spectral density. In addition, it has been observed that complexity and spectral features show correlations with clinical pain parameters and emotional factors. The characterization features were used in a lineal model to discriminate between fibromyalgia patients and healthy controls, providing a high accuracy. These findings indicate that CBFV signals, specifically their complexity and spectral characteristics, contain information that may be relevant for the assessment of fibromyalgia patients in resting-state conditions. PMID:28700720
NASA Astrophysics Data System (ADS)
Rutigliani, Vito; Lorusso, Gian Francesco; De Simone, Danilo; Lazzarino, Frederic; Rispens, Gijsbert; Papavieros, George; Gogolides, Evangelos; Constantoudis, Vassilios; Mack, Chris A.
2018-03-01
Power spectral density (PSD) analysis is playing more and more a critical role in the understanding of line-edge roughness (LER) and linewidth roughness (LWR) in a variety of applications across the industry. It is an essential step to get an unbiased LWR estimate, as well as an extremely useful tool for process and material characterization. However, PSD estimate can be affected by both random to systematic artifacts caused by image acquisition and measurement settings, which could irremediably alter its information content. In this paper, we report on the impact of various setting parameters (smoothing image processing filters, pixel size, and SEM noise levels) on the PSD estimate. We discuss also the use of PSD analysis tool in a variety of cases. Looking beyond the basic roughness estimate, we use PSD and autocorrelation analysis to characterize resist blur[1], as well as low and high frequency roughness contents and we apply this technique to guide the EUV material stack selection. Our results clearly indicate that, if properly used, PSD methodology is a very sensitive tool to investigate material and process variations
On the Application of Quantitative EEG for Characterizing Autistic Brain: A Systematic Review
Billeci, Lucia; Sicca, Federico; Maharatna, Koushik; Apicella, Fabio; Narzisi, Antonio; Campatelli, Giulia; Calderoni, Sara; Pioggia, Giovanni; Muratori, Filippo
2013-01-01
Autism-Spectrum Disorders (ASD) are thought to be associated with abnormalities in neural connectivity at both the global and local levels. Quantitative electroencephalography (QEEG) is a non-invasive technique that allows a highly precise measurement of brain function and connectivity. This review encompasses the key findings of QEEG application in subjects with ASD, in order to assess the relevance of this approach in characterizing brain function and clustering phenotypes. QEEG studies evaluating both the spontaneous brain activity and brain signals under controlled experimental stimuli were examined. Despite conflicting results, literature analysis suggests that QEEG features are sensitive to modification in neuronal regulation dysfunction which characterize autistic brain. QEEG may therefore help in detecting regions of altered brain function and connectivity abnormalities, in linking behavior with brain activity, and subgrouping affected individuals within the wide heterogeneity of ASD. The use of advanced techniques for the increase of the specificity and of spatial localization could allow finding distinctive patterns of QEEG abnormalities in ASD subjects, paving the way for the development of tailored intervention strategies. PMID:23935579
Beyond Metrics? The Role of Hydrologic Baseline Archetypes in Environmental Water Management.
Lane, Belize A; Sandoval-Solis, Samuel; Stein, Eric D; Yarnell, Sarah M; Pasternack, Gregory B; Dahlke, Helen E
2018-06-22
Balancing ecological and human water needs often requires characterizing key aspects of the natural flow regime and then predicting ecological response to flow alterations. Flow metrics are generally relied upon to characterize long-term average statistical properties of the natural flow regime (hydrologic baseline conditions). However, some key aspects of hydrologic baseline conditions may be better understood through more complete consideration of continuous patterns of daily, seasonal, and inter-annual variability than through summary metrics. Here we propose the additional use of high-resolution dimensionless archetypes of regional stream classes to improve understanding of baseline hydrologic conditions and inform regional environmental flows assessments. In an application to California, we describe the development and analysis of hydrologic baseline archetypes to characterize patterns of flow variability within and between stream classes. We then assess the utility of archetypes to provide context for common flow metrics and improve understanding of linkages between aquatic patterns and processes and their hydrologic controls. Results indicate that these archetypes may offer a distinct and complementary tool for researching mechanistic flow-ecology relationships, assessing regional patterns for streamflow management, or understanding impacts of changing climate.
Altered cerebral blood flow velocity features in fibromyalgia patients in resting-state conditions.
Rodríguez, Alejandro; Tembl, José; Mesa-Gresa, Patricia; Muñoz, Miguel Ángel; Montoya, Pedro; Rey, Beatriz
2017-01-01
The aim of this study is to characterize in resting-state conditions the cerebral blood flow velocity (CBFV) signals of fibromyalgia patients. The anterior and middle cerebral arteries of both hemispheres from 15 women with fibromyalgia and 15 healthy women were monitored using Transcranial Doppler (TCD) during a 5-minute eyes-closed resting period. Several signal processing methods based on time, information theory, frequency and time-frequency analyses were used in order to extract different features to characterize the CBFV signals in the different vessels. Main results indicated that, in comparison with control subjects, fibromyalgia patients showed a higher complexity of the envelope CBFV and a different distribution of the power spectral density. In addition, it has been observed that complexity and spectral features show correlations with clinical pain parameters and emotional factors. The characterization features were used in a lineal model to discriminate between fibromyalgia patients and healthy controls, providing a high accuracy. These findings indicate that CBFV signals, specifically their complexity and spectral characteristics, contain information that may be relevant for the assessment of fibromyalgia patients in resting-state conditions.
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Gross, C.; Rampe, E. B.; Wray, J. J.; Parente, M.; Horgan, B.; Loizeau, D.; Viviano-Beck, C. E.; Clark, R. N.; Seelos, F. P.;
2016-01-01
Recently developed CRISM parameters and newly available DTMs are enabling refined characterization of the mineralogy at Mawrth Vallis. A stratigraphy including 5 units is mapped using HRSC DTMs across 100s of kms and using HiRISE DTMs across 100s of meters. Transitions in mineralogic units were characterized using spectral properties and surface morphology. The observations point to an ancient wet and warm geologic record that formed the thick nontronite unit, a period of wet/dry cycling to create acid alteration, followed by leaching or pedogenesis to result in Al-phyllosilicates, and finally a drier, colder climate that left the altered ash in the form of nanophase aluminosilicates, rather than crystalline clays.
Deletion of the Snord116/SNORD116 Alters Sleep in Mice and Patients with Prader-Willi Syndrome.
Lassi, Glenda; Priano, Lorenzo; Maggi, Silvia; Garcia-Garcia, Celina; Balzani, Edoardo; El-Assawy, Nadia; Pagani, Marco; Tinarelli, Federico; Giardino, Daniela; Mauro, Alessandro; Peters, Jo; Gozzi, Alessandro; Grugni, Graziano; Tucci, Valter
2016-03-01
Sleep-wake disturbances are often reported in Prader-Willi syndrome (PWS), a rare neurodevelopmental syndrome that is associated with paternally-expressed genomic imprinting defects within the human chromosome region 15q11-13. One of the candidate genes, prevalently expressed in the brain, is the small nucleolar ribonucleic acid-116 (SNORD116). Here we conducted a translational study into the sleep abnormalities of PWS, testing the hypothesis that SNORD116 is responsible for sleep defects that characterize the syndrome. We studied sleep in mutant mice that carry a deletion of Snord116 at the orthologous locus (mouse chromosome 7) of the human PWS critical region (PWScr). In particular, we assessed EEG and temperature profiles, across 24-h, in PWScr (m+/p-) heterozygous mutants compared to wild-type littermates. High-resolution magnetic resonance imaging (MRI) was performed to explore morphoanatomical differences according to the genotype. Moreover, we complemented the mouse work by presenting two patients with a diagnosis of PWS and characterized by atypical small deletions of SNORD116. We compared the individual EEG parameters of patients with healthy subjects and with a cohort of obese subjects. By studying the mouse mutant line PWScr(m+/p-), we observed specific rapid eye movement (REM) sleep alterations including abnormal electroencephalograph (EEG) theta waves. Remarkably, we observed identical sleep/EEG defects in the two PWS cases. We report brain morphological abnormalities that are associated with the EEG alterations. In particular, mouse mutants have a bilateral reduction of the gray matter volume in the ventral hippocampus and in the septum areas, which are pivotal structures for maintaining theta rhythms throughout the brain. In PWScr(m+/p-) mice we also observed increased body temperature that is coherent with REM sleep alterations in mice and human patients. Our study indicates that paternally expressed Snord116 is involved in the 24-h regulation of sleep physiological measures, suggesting that it is a candidate gene for the sleep disturbances that most individuals with PWS experience. © 2016 Associated Professional Sleep Societies, LLC.
Hua, Xiao; Xu, Shanan; Wang, Mingming; Chen, Ying; Yang, Hui; Yang, Ruijin
2017-10-01
Tomato residue fibers obtained after derosination and deproteinization were processed by high-speed homogenization (HSH) and high-pressure homogenization (HPH), and their effects on fiber structure was investigated, respectively. Characterizations including particle size distribution, SEM, TEM and XRD were performed. HSH could break raw fibers to small particles of around 60μm, while HPH could reshape fibers to build network structure. Microfibrils were released and their nanostructure consisting of elementary fibrils was observed by TEM. XRD patterns indicated both HSH and HPH could hardly alter the nanostructure of the fibers. Physicochemical properties including expansibility, WHC and OHC were determined. Both HSH and HPH could increase the soluble fiber content by about 8%, but HSH-HPH combined processing did not show better result. Acid (4mol/L HCl) was used in replacement of water medium and the acidic degradation of fibers could be promoted by high speed shearing or high pressure processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Functional characterization of rare FOXP2 variants in neurodevelopmental disorder.
Estruch, Sara B; Graham, Sarah A; Chinnappa, Swathi M; Deriziotis, Pelagia; Fisher, Simon E
2016-01-01
Heterozygous disruption of FOXP2 causes a rare form of speech and language impairment. Screens of the FOXP2 sequence in individuals with speech/language-related disorders have identified several rare protein-altering variants, but their phenotypic relevance is often unclear. FOXP2 encodes a transcription factor with a forkhead box DNA-binding domain, but little is known about the functions of protein regions outside this domain. We performed detailed functional analyses of seven rare FOXP2 variants found in affected cases, including three which have not been previously characterized, testing intracellular localization, transcriptional regulation, dimerization, and interaction with other proteins. To shed further light on molecular functions of FOXP2, we characterized the interaction between this transcription factor and co-repressor proteins of the C-terminal binding protein (CTBP) family. Finally, we analysed the functional significance of the polyglutamine tracts in FOXP2, since tract length variations have been reported in cases of neurodevelopmental disorder. We confirmed etiological roles of multiple FOXP2 variants. Of three variants that have been suggested to cause speech/language disorder, but never before been characterized, only one showed functional effects. For the other two, we found no effects on protein function in any assays, suggesting that they are incidental to the phenotype. We identified a CTBP-binding region within the N-terminal portion of FOXP2. This region includes two amino acid substitutions that occurred on the human lineage following the split from chimpanzees. However, we did not observe any effects of these amino acid changes on CTBP binding or other core aspects of FOXP2 function. Finally, we found that FOXP2 variants with reduced polyglutamine tracts did not exhibit altered behaviour in cellular assays, indicating that such tracts are non-essential for core aspects of FOXP2 function, and that tract variation is unlikely to be a highly penetrant cause of speech/language disorder. Our findings highlight the importance of functional characterization of novel rare variants in FOXP2 in assessing the contribution of such variants to speech/language disorder and provide further insights into the molecular function of the FOXP2 protein.
Mayer, Philipp; Dinkic, Christine; Jesenofsky, Ralf; Klauss, Miriam; Schirmacher, Peter; Dapunt, Ulrike; Hackert, Thilo; Uhle, Florian; Hänsch, G. Maria; Gaida, Matthias M.
2018-01-01
In pancreatic cancer (PDAC) intratumor infiltration of polymorphonuclear neutrophils (PMN) is associated with histologically apparent alterations of the tumor growth pattern. The aim of this study was to examine possible associations between PMN infiltration, tumor microarchitecture, and water diffusivity in diffusion-weighted magnetic resonance imaging (DW-MRI), and to further asses the underlying mechanisms. Methods: DW-MRI was performed in 33 PDAC patients prior to surgery. In parallel, tissue specimen were examined histologically for growth pattern, azurocidin-positive PMN infiltrates, and the presence of alpha-smooth muscle actin (α-SMA) and metalloproteinase 9 (MMP9)-positive myofibroblastic cells. For confirmation of the histological findings, a tissue microarray of a second cohort of patients (n=109) was prepared and examined similarly. For in vitro studies, the pancreatic stellate cell line RLT was co-cultivated either with isolated PMN, PMN-lysates, or recombinant azurocidin and characterized by Western blot, flow cytometry, and proteome profiler arrays. Results: Tumors with high PMN density showed restricted water diffusion in DW-MRI and histologic apparent alterations of the tumor microarchitecture (microglandular, micropapillary, or overall poorly differentiated growth pattern) as opposed to tumors with scattered PMN. Areas with altered growth pattern lacked α-SMA-positive myofibroblastic cells. Tissue microarrays confirmed a close association of high PMN density with alterations of the tumor microarchitecture and revealed a significant association of high PMN density with poor histologic grade of differentiation (G3). In vitro experiments provided evidence for direct effects of PMN on stellate cells, where a change to a spindle shaped cell morphology in response to PMN and to PMN-derived azurocidin was seen. Azurocidin incorporated into stellate cells, where it associated with F-actin. Down-regulation of α-SMA was seen within hours, as was activation of the p38-cofilin axis, up-regulation of MMP9, and acquisition of intracellular lipid droplets, which together indicate a phenotype switch of the stellate cells. Conclusion: In PDAC, PMN infiltrates are associated with alterations of the tumor microarchitecture. As a causal relationship, we propose a reprogramming of stellate cells by PMN-derived azurocidin towards a phenotype, which affects the microarchitecture of the tumor. PMID:29290790
Shern, Jack F; Chen, Li; Chmielecki, Juliann; Wei, Jun S; Patidar, Rajesh; Rosenberg, Mara; Ambrogio, Lauren; Auclair, Daniel; Wang, Jianjun; Song, Young K; Tolman, Catherine; Hurd, Laura; Liao, Hongling; Zhang, Shile; Bogen, Dominik; Brohl, Andrew S; Sindiri, Sivasish; Catchpoole, Daniel; Badgett, Thomas; Getz, Gad; Mora, Jaume; Anderson, James R; Skapek, Stephen X; Barr, Frederic G; Meyerson, Matthew; Hawkins, Douglas S; Khan, Javed
2014-02-01
Despite gains in survival, outcomes for patients with metastatic or recurrent rhabdomyosarcoma remain dismal. In a collaboration between the National Cancer Institute, Children's Oncology Group, and Broad Institute, we performed whole-genome, whole-exome, and transcriptome sequencing to characterize the landscape of somatic alterations in 147 tumor/normal pairs. Two genotypes are evident in rhabdomyosarcoma tumors: those characterized by the PAX3 or PAX7 fusion and those that lack these fusions but harbor mutations in key signaling pathways. The overall burden of somatic mutations in rhabdomyosarcoma is relatively low, especially in tumors that harbor a PAX3/7 gene fusion. In addition to previously reported mutations in NRAS, KRAS, HRAS, FGFR4, PIK3CA, and CTNNB1, we found novel recurrent mutations in FBXW7 and BCOR, providing potential new avenues for therapeutic intervention. Furthermore, alteration of the receptor tyrosine kinase/RAS/PIK3CA axis affects 93% of cases, providing a framework for genomics-directed therapies that might improve outcomes for patients with rhabdomyosarcoma. This is the most comprehensive genomic analysis of rhabdomyosarcoma to date. Despite a relatively low mutation rate, multiple genes were recurrently altered, including NRAS, KRAS, HRAS, FGFR4, PIK3CA, CTNNB1, FBXW7, and BCOR. In addition, a majority of rhabdomyosarcoma tumors alter the receptor tyrosine kinase/RAS/PIK3CA axis, providing an opportunity for genomics-guided intervention. 2014 AACR
NASA Astrophysics Data System (ADS)
Abubakar, A. J.; Hashim, M.; Pour, A. B.
2017-10-01
Geothermal systems are essentially associated with hydrothermal alteration mineral assemblages such as iron oxide/hydroxide, clay, sulfate, carbonate and silicate groups. Blind and fossilized geothermal systems are not characterized by obvious surface manifestations like hot springs, geysers and fumaroles, therefore, they could not be easily identifiable using conventional techniques. In this investigation, the applicability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were evaluated in discriminating hydrothermal alteration minerals associated with geothermal systems as a proxy in identifying subtle Geothermal systems at Yankari Park in northeastern Nigeria. The area is characterized by a number of thermal springs such as Wikki and Mawulgo. Feature-oriented Principal Component selection (FPCS) was applied to ASTER data based on spectral characteristics of hydrothermal alteration minerals for a systematic and selective extraction of the information of interest. Application of FPCS analysis to bands 5, 6 and 8 and bands 1, 2, 3 and 4 datasets of ASTER was used for mapping clay and iron oxide/hydroxide minerals in the zones of Wikki and Mawulgo thermal springs in Yankari Park area. Field survey using GPS and laboratory analysis, including X-ray Diffractometer (XRD) and Analytical Spectral Devices (ASD) were carried out to verify the image processing results. The results indicate that ASTER dataset reliably and complementarily be used for reconnaissance stage of targeting subtle alteration mineral assemblages associated with geothermal systems.
Comparative mineral mapping in the Colorado Mineral Belt using AVIRIS and ASTER remote sensing data
Rockwell, Barnaby W.
2013-01-01
This report presents results of interpretation of spectral remote sensing data covering the eastern Colorado Mineral Belt in central Colorado, USA, acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors. This study was part of a multidisciplinary mapping and data integration project at the U.S. Geological Survey that focused on long-term resource planning by land-managing entities in Colorado. The map products were designed primarily for the regional mapping and characterization of exposed surface mineralogy, including that related to hydrothermal alteration and supergene weathering of pyritic rocks. Alteration type was modeled from identified minerals based on standard definitions of alteration mineral assemblages. Vegetation was identified using the ASTER data and subdivided based on per-pixel chlorophyll content (depth of 0.68 micrometer absorption band) and dryness (fit and depth of leaf biochemical absorptions in the shortwave infrared spectral region). The vegetation results can be used to estimate the abundance of fire fuels at the time of data acquisition (2002 and 2003). The AVIRIS- and ASTER-derived mineral mapping results can be readily compared using the toggleable layers in the GeoPDF file, and by using the provided GIS-ready raster datasets. The results relating to mineral occurrence and distribution were an important source of data for studies documenting the effects of mining and un-mined, altered rocks on aquatic ecosystems at the watershed level. These studies demonstrated a high correlation between metal concentrations in streams and the presence of hydrothermal alteration and (or) pyritic mine waste as determined by analysis of the map products presented herein. The mineral mapping results were also used to delineate permissive areas for various mineral deposit types.
Li, Shuang; Zhang, Qing-Zhao; Zhang, De-Qin; Feng, Jiang-Bin; Luo, Qun; Lu, Xue; Wang, Xin-Ru; Li, Kun-Peng; Chen, De-Qing; Mu, Xiao-Feng; Gao, Ling; Liu, Qing-Jie
2017-01-01
The identification of rapid, sensitive and high-throughput biomarkers is imperative in order to identify individuals harmed by radiation accidents, and accurately evaluate the absorbed doses of radiation. DNA microarrays have previously been used to evaluate the alterations in growth/differentiation factor 15 (GDF15) gene expression in AHH-1 human lymphoblastoid cells, following exposure to γ-rays. The present study aimed to characterize the relationship between the dose of ionizing radiation and the produced effects in GDF-15 gene expression in AHH-1 cells and human peripheral blood lymphocytes (HPBLs). GDF-15 mRNA and protein expression levels following exposure to γ-rays and neutron radiation were assessed by reverse transcription-quantitative polymerase chain reaction and western blot analysis in AHH-1 cells. In addition, alterations in GDF-15 gene expression in HPBLs following ex vivo irradiation were evaluated. The present results demonstrated that GDF-15 mRNA and protein expression levels in AHH-1 cells were significantly upregulated following exposure to γ-ray doses ranging between 1 and 10 Gy, regardless of the dose rate. A total of 48 h following exposure to neutron radiation, a dose-response relationship was identified in AHH-1 cells at γ-ray doses between 0.4 and 1.6 Gy. GDF-15 mRNA levels in HPBLs were significantly upregulated following exposure to γ-ray doses between 1 and 8 Gy, within 4–48 h following irradiation. These results suggested that significant time- and dose-dependent alterations in GDF-15 mRNA and protein expression occur in AHH-1 cells and HPBLs in the early phases following exposure to ionizing radiation. In conclusion, alterations in GDF-15 gene expression may have potential as a biomarker to evaluate radiation exposure. PMID:28440431
Protective effects of Sonchus asper against KBrO3 induced lipid peroxidation in rats
2012-01-01
Background Sonchus asper is traditionally used in Pakistan for the treatment of reproductive dysfunction and oxidative stress. The present investigation was aimed to evaluate chloroform extract of Sonchus asper (SACE) against potassium bromate-induced reproductive stress in male rats. Methods 20 mg/kg body weight (b.w.) potassium bromate (KBrO3) was induced in 36 rats for four weeks and checked the protective efficacy of SACE at various hormonal imbalances, alteration of antioxidant enzymes, and DNA fragmentation levels. High performance chromatography (HPLC) was used for determination of bioactive constituents responsible. Results The level of hormonal secretion was significantly altered by potassium bromate. DNA fragmentation%, activity of antioxidant enzymes; catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and phase II metabolizing enzymes viz; glutathione reductase (GSR), glutathione peroxidase (GSHpx), glutathione-S-tansase (GST) and reduced glutathione (GSH) was decreased while hydrogen per oxide contents and thiobarbituric acid reactive substances (TBARS) were increased with KBrO3 treatment. Treatment with SACE effectively ameliorated the alterations in the biochemical markers; hormonal and molecular levels while HPLC characterization revealed the presence of catechin, kaempferol, rutin and quercetin. Conclusion Protective effects of Sonchus asper vs. KBrO3 induced lipid peroxidation might be due to bioactive compound present in SACE. PMID:23186106
Protective effects of Sonchus asper against KBrO3 induced lipid peroxidation in rats.
Khan, Rahmat Ali; Khan, Muhammad Rashid; Sahreen, Sumaira
2012-11-27
Sonchus asper is traditionally used in Pakistan for the treatment of reproductive dysfunction and oxidative stress. The present investigation was aimed to evaluate chloroform extract of Sonchus asper (SACE) against potassium bromate-induced reproductive stress in male rats. 20 mg/kg body weight (b.w.) potassium bromate (KBrO3) was induced in 36 rats for four weeks and checked the protective efficacy of SACE at various hormonal imbalances, alteration of antioxidant enzymes, and DNA fragmentation levels. High performance chromatography (HPLC) was used for determination of bioactive constituents responsible. The level of hormonal secretion was significantly altered by potassium bromate. DNA fragmentation%, activity of antioxidant enzymes; catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and phase II metabolizing enzymes viz; glutathione reductase (GSR), glutathione peroxidase (GSHpx), glutathione-S-tansase (GST) and reduced glutathione (GSH) was decreased while hydrogen per oxide contents and thiobarbituric acid reactive substances (TBARS) were increased with KBrO3 treatment. Treatment with SACE effectively ameliorated the alterations in the biochemical markers; hormonal and molecular levels while HPLC characterization revealed the presence of catechin, kaempferol, rutin and quercetin. Protective effects of Sonchus asper vs. KBrO3 induced lipid peroxidation might be due to bioactive compound present in SACE.
The brain functional connectome is robustly altered by lack of sleep.
Kaufmann, Tobias; Elvsåshagen, Torbjørn; Alnæs, Dag; Zak, Nathalia; Pedersen, Per Ø; Norbom, Linn B; Quraishi, Sophia H; Tagliazucchi, Enzo; Laufs, Helmut; Bjørnerud, Atle; Malt, Ulrik F; Andreassen, Ole A; Roussos, Evangelos; Duff, Eugene P; Smith, Stephen M; Groote, Inge R; Westlye, Lars T
2016-02-15
Sleep is a universal phenomenon necessary for maintaining homeostasis and function across a range of organs. Lack of sleep has severe health-related consequences affecting whole-body functioning, yet no other organ is as severely affected as the brain. The neurophysiological mechanisms underlying these deficits are poorly understood. Here, we characterize the dynamic changes in brain connectivity profiles inflicted by sleep deprivation and how they deviate from regular daily variability. To this end, we obtained functional magnetic resonance imaging data from 60 young, adult male participants, scanned in the morning and evening of the same day and again the following morning. 41 participants underwent total sleep deprivation before the third scan, whereas the remainder had another night of regular sleep. Sleep deprivation strongly altered the connectivity of several resting-state networks, including dorsal attention, default mode, and hippocampal networks. Multivariate classification based on connectivity profiles predicted deprivation state with high accuracy, corroborating the robustness of the findings on an individual level. Finally, correlation analysis suggested that morning-to-evening connectivity changes were reverted by sleep (control group)-a pattern which did not occur after deprivation. We conclude that both, a day of waking and a night of sleep deprivation dynamically alter the brain functional connectome. Copyright © 2015 Elsevier Inc. All rights reserved.
Chemistry and Mineralogy of Antarctica Dry Valley Soils: Implications for Mars
NASA Technical Reports Server (NTRS)
Quinn, J. E.; Golden, D. C.; Graff, T. G.; Ming, D. W.; Morris, R. V.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Tamppari, L, K.; Smith, P. H.;
2011-01-01
The Antarctic Dry Valleys (ADV) comprise the largest ice-free region of Antarctica. Precipitation almost always occurs as snow, relative humidity is frequently low, and mean annual temperatures are about -20 C. The ADV soils have previously been categorized into three soil moisture regimes: subxerous, xerous and ultraxerous, based on elevation and climate influences. The subxerous regime is predominately a coastal zone soil, and has the highest average temperature and precipitation, while the ultraxerous regime occurs at high elevation (>1000 m) and have very low temperature and precipitation. The amounts and types of salts present in the soils vary between regions. The nature, origin and significance of salts in the ADV have been previously investigated. Substantial work has focused on soil formation in the ADVs, however, little work has focused on the mineralogy of secondary alteration phases. The dominant weathering process in the ADV region is physical weathering, however, chemical weathering has been well documented. The objective of this study was to characterize the chemistry and mineralogy, including the alteration mineralogy, of soils from two sites, a subxerous soil in Taylor Valley, and an ultraxerous soil in University Valley. The style of aqueous alteration in the ADVs may have implications for pedogenic processes on Mars.
Moncho, Dulce; Poca, Maria-Antonia; Minoves, Teresa; Ferré, Alejandro; Rahnama, Kimia; Sahuquillo, Juan
2015-04-01
The aim of this study was to describe the abnormalities found in the recordings of evoked potentials (EPs), in particular those of brainstem auditory evoked potentials and somatosensory evoked potentials, in a homogeneous series of patients with Chiari type 1 malformation (CM-1) and study their relationship with clinical symptoms and malformation severity. CM-1 is characterized by cerebellar tonsils that descend below the foramen magnum and may be associated with EP alterations. However, only a small number of authors have described these tests in CM-1, and the patient groups studied to date have been small and heterogeneous. The clinical findings, neuroimages, and EP findings were retrospectively studied in a cohort of 50 patients with CM-1. Seventy percent of patients had EP abnormalities (brainstem auditory evoked potential: 52%, posterior tibial nerve somatosensory evoked potential: 42%, and median nerve somatosensory evoked potential: 34%). The most frequent alteration was an increased central conduction time. Morphometric measurements differed between the normal and pathological groups, although no statistical significance was found when comparing these groups. A high percentage of patients with CM-1 show EP alterations regardless of their clinical or radiological findings, thus highlighting the necessity of performing these tests, especially in patients with few or no symptoms.
Russo, Isabella
2012-01-01
The metabolic syndrome is a clinical disorder characterized by impairment of glucose metabolism, increased arterial blood pressure, and abdominal obesity. The presence of these clinical features exposes patients to a high risk of atherothrombotic cardiovascular events. The pathogenesis of atherothrombosis in the metabolic syndrome is multifactorial, requiring a close relationship among the main components of the metabolic syndrome, including insulin resistance, alterations of glycaemic and lipid pattern, haemodynamic impairment, and early appearance of endothelial dysfunction. Furthermore, haemostatic alterations involving coagulation balance, fibrinolysis, and platelet function play a relevant role both in the progression of the arterial wall damage and in acute vascular events. The mechanisms linking abdominal obesity with prothrombotic changes in the metabolic syndrome have been identified and partially elucidated on the basis of alterations of each haemostatic variable and defined through the evidence of peculiar dysfunctions in the endocrine activity of adipose tissue responsible of vascular impairment, prothrombotic tendency, and low-grade chronic inflammation. This paper will focus on the direct role of adipose tissue on prothrombotic tendency in patients affected by metabolic syndrome, with adipocytes being able to produce and/or release cytokines and adipokines which deeply influence haemostatic/fibrinolytic balance, platelet function, and proinflammatory state. PMID:24278711
NASA Astrophysics Data System (ADS)
Rudmin, Maxim; Banerjee, Santanu; Mazurov, Aleksey
2017-06-01
Glauconite occurs either as unaltered greenish or as altered brownish variety in Upper Cretaceous-Palaeocene sediments in the southeastern corner of Western Siberia. Studied section within the Bakchar iron-ore deposit includes Ipatovo, Slavgorod, Gan'kino and Lyulinvor formations, which are represented by sandstones, siltstones, claystones and oolitic ironstones of coastal-marine facies. The origin of unaltered glauconite is explained by the ;verdissement theory;. Transgressions during Lower Coniacian, Santonian and Campanian favored the formation of unaltered glauconites in dysoxic to anoxic conditions. Subaerial exposure of glauconite resulted in leaching of potassium, oxidation of iron and formation of iron hydroxides in Upper Coniacian, Maastrichtian and Palaeocene. Glauconite ultimately converts to leptochlorite and hydrogoethite by this alteration. Abundant microscopic gold inclusions, besides sulphides, sulphates, oxides and silicates characterize this glauconite. Mineral inclusions include precious, rare metals and non-ferrous metals. The concentration of gold in glauconite may be as high as 42.9 ppb. Abundant inclusions of various compositions in glauconites indicate enrichment of marine sediments in precious and non-precious metals. While major element composition of glauconites is affected by subaerial exposure, the broadly similar micro-inclusions in both altered and unaltered varieties are possibly related to the comparatively immobile nature of REE and trace elements.
Chu, Edward P F; Elso, Colleen M; Pollock, Abigail H; Alsayb, May A; Mackin, Leanne; Thomas, Helen E; Kay, Thomas W H; Silveira, Pablo A; Mansell, Ashley S; Gaus, Katharina; Brodnicki, Thomas C
2017-02-01
During immune cell activation, serine-derived lipids such as phosphatidylserine and sphingolipids contribute to the formation of protein signaling complexes within the plasma membrane. Altering lipid composition in the cell membrane can subsequently affect immune cell function and the development of autoimmune disease. Serine incorporator 1 (SERINC1) is a putative carrier protein that facilitates synthesis of serine-derived lipids. To determine if SERINC1 has a role in immune cell function and the development of autoimmunity, we characterized a mouse strain in which a retroviral insertion abolishes expression of the Serinc1 transcript. Expression analyses indicated that the Serinc1 transcript is readily detectable and expressed at relatively high levels in wildtype macrophages and lymphocytes. The ablation of Serinc1 expression in these immune cells, however, did not significantly alter serine-derived lipid composition or affect macrophage function and lymphocyte proliferation. Analyses of Serinc1-deficient mice also indicated that systemic ablation of Serinc1 expression did not affect viability, fertility or autoimmune disease susceptibility. These results suggest that Serinc1 is dispensable for certain immune cell functions and does not contribute to previously reported links between lipid composition in immune cells and autoimmunity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Recent advances in genomic profiling of adenosquamous carcinoma of the pancreas.
Marcus, Rebecca; Maitra, Anirban; Roszik, Jason
2017-11-01
Adenosquamous carcinoma of the pancreas (ASCP) is a mixed tumor type which contains squamous cell carcinoma and also ductal adenocarcinoma components. Due to the rarity of this malignancy, only very limited genomic profiling has been performed. A recent paper by Fang et al. published in The Journal of Pathology contributed to our knowledge of genomic alterations by performing whole-genome and -exome sequencing of 17 ASCP tumors. They found major genomic similarities to pancreatic ductal adenocarcinoma; however, the p53 pathway was altered in a greater proportion of cases, while a high frequency of 3p loss was a distinct copy number alteration pattern observed in ASCP. Laser capture microdissection revealed that adenocarcinoma and squamous carcinoma components of ASCP harbor similar genomic variations, indicating that the origin of tumor components is the same or similar. Although the study published by Fang et al. increases our knowledge of this rare mixed tumor type, further investigation, including RNA sequencing, will be needed to fully characterize this malignancy and to aid the development of novel treatment approaches. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Capo, A; Ismail, E; Cardone, D; Celletti, E; Auriemma, M; Sabatini, E; Merla, A; Amerio, P
2015-11-01
Functional infrared imaging (fIRI) is used to provide information on circulation, thermal properties and thermoregulatory function of the cutaneous tissue in several clinical settings. This study aims to evaluate the application of fIRI in Psoriatic Arthritis (PsA) assessment, evaluating the thermoregulatory alterations due to joint inflammation in PsA patients both in basal conditions and after a mild functional (isometric) exercise; fIRI outcomes were compared with those provided by Power Doppler Ultrasonography (PWD-US). 10 patients with PsA and 11 healthy controls were enrolled in the study. The cutaneous temperature dynamics of 20 regions of interest located on the dominant hand were recorded by means of high-resolution thermal imaging at baseline and after a functional exercise. Higher temperature values and faster temperature variations characterized the PsA group compared to healthy controls, confirming that the PsA-related inflammatory state alters the normal thermal proprieties of the skin overlying inflamed joints. fIRI outcomes correlated with the PWD-US findings. fIRI applied to the study of the response to a functional stimulus may represent an innovative, non-invasive, and operator-independent method for the assessment of peripheral PsA. Copyright © 2015 Elsevier Inc. All rights reserved.
Genetic Control and Evolution of Anthocyanin Methylation1[W
Provenzano, Sofia; Spelt, Cornelis; Hosokawa, Satoko; Nakamura, Noriko; Brugliera, Filippa; Demelis, Linda; Geerke, Daan P.; Schubert, Andrea; Tanaka, Yoshikazu; Quattrocchio, Francesca; Koes, Ronald
2014-01-01
Anthocyanins are a chemically diverse class of secondary metabolites that color most flowers and fruits. They consist of three aromatic rings that can be substituted with hydroxyl, sugar, acyl, and methyl groups in a variety of patterns depending on the plant species. To understand how such chemical diversity evolved, we isolated and characterized METHYLATION AT THREE2 (MT2) and the two METHYLATION AT FIVE (MF) loci from Petunia spp., which direct anthocyanin methylation in petals. The proteins encoded by MT2 and the duplicated MF1 and MF2 genes and a putative grape (Vitis vinifera) homolog Anthocyanin O-Methyltransferase1 (VvAOMT1) are highly similar to and apparently evolved from caffeoyl-Coenzyme A O-methyltransferases by relatively small alterations in the active site. Transgenic experiments showed that the Petunia spp. and grape enzymes have remarkably different substrate specificities, which explains part of the structural anthocyanin diversity in both species. Most strikingly, VvAOMT1 expression resulted in the accumulation of novel anthocyanins that are normally not found in Petunia spp., revealing how alterations in the last reaction can reshuffle the pathway and affect (normally) preceding decoration steps in an unanticipated way. Our data show how variations in gene expression patterns, loss-of-function mutations, and alterations in substrate specificities all contributed to the anthocyanins’ structural diversity. PMID:24830298
Cheaib, Miriam; Dehghani Amirabad, Azim; Nordström, Karl J. V.; Schulz, Marcel H.; Simon, Martin
2015-01-01
Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes. PMID:26231545
Druliner, Brooke R; Wang, Panwen; Bae, Taejeong; Baheti, Saurabh; Slettedahl, Seth; Mahoney, Douglas; Vasmatzis, Nikolaos; Xu, Hang; Kim, Minsoo; Bockol, Matthew; O'Brien, Daniel; Grill, Diane; Warner, Nathaniel; Munoz-Gomez, Miguel; Kossick, Kimberlee; Johnson, Ruth; Mouchli, Mohamad; Felmlee-Devine, Donna; Washechek-Aletto, Jill; Smyrk, Thomas; Oberg, Ann; Wang, Junwen; Chia, Nicholas; Abyzov, Alexej; Ahlquist, David; Boardman, Lisa A
2018-02-16
The majority of colorectal cancer (CRC) arises from precursor lesions known as polyps. The molecular determinants that distinguish benign from malignant polyps remain unclear. To molecularly characterize polyps, we utilized Cancer Adjacent Polyp (CAP) and Cancer Free Polyp (CFP) patients. CAPs had tissues from the residual polyp of origin and contiguous cancer; CFPs had polyp tissues matched to CAPs based on polyp size, histology and dysplasia. To determine whether molecular features distinguish CAPs and CFPs, we conducted Whole Genome Sequencing, RNA-seq, and RRBS on over 90 tissues from 31 patients. CAPs had significantly more mutations, altered expression and hypermethylation compared to CFPs. APC was significantly mutated in both polyp groups, but mutations in TP53, FBXW7, PIK3CA, KIAA1804 and SMAD2 were exclusive to CAPs. We found significant expression changes between CAPs and CFPs in GREM1, IGF2, CTGF, and PLAU, and both expression and methylation alterations in FES and HES1. Integrative analyses revealed 124 genes with alterations in at least two platforms, and ERBB3 and E2F8 showed aberrations specific to CAPs across all platforms. These findings provide a resource of molecular distinctions between polyps with and without cancer, which have the potential to enhance the diagnosis, risk assessment and management of polyps.
Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation.
Boverhof, Darrell R; David, Raymond M
2010-02-01
Nanotechnology is a rapidly emerging field of great interest and promise. As new materials are developed and commercialized, hazard information also needs to be generated to reassure regulators, workers, and consumers that these materials can be used safely. The biological properties of nanomaterials are closely tied to the physical characteristics, including size, shape, dissolution rate, agglomeration state, and surface chemistry, to name a few. Furthermore, these properties can be altered by the medium used to suspend or disperse these water-insoluble particles. However, the current toxicology literature lacks much of the characterization information that allows toxicologists and regulators to develop "rules of thumb" that could be used to assess potential hazards. To effectively develop these rules, toxicologists need to know the characteristics of the particle that interacts with the biological system. This void leaves the scientific community with no options other than to evaluate all materials for all potential hazards. Lack of characterization could also lead to different laboratories reporting discordant results on seemingly the same test material because of subtle differences in the particle or differences in the dispersion medium used that resulted in altered properties and toxicity of the particle. For these reasons, good characterization using a minimal characterization data set should accompany and be required of all scientific publications on nanomaterials.
Gray matter alterations in chronic pain: A network-oriented meta-analytic approach
Cauda, Franco; Palermo, Sara; Costa, Tommaso; Torta, Riccardo; Duca, Sergio; Vercelli, Ugo; Geminiani, Giuliano; Torta, Diana M.E.
2014-01-01
Several studies have attempted to characterize morphological brain changes due to chronic pain. Although it has repeatedly been suggested that longstanding pain induces gray matter modifications, there is still some controversy surrounding the direction of the change (increase or decrease in gray matter) and the role of psychological and psychiatric comorbidities. In this study, we propose a novel, network-oriented, meta-analytic approach to characterize morphological changes in chronic pain. We used network decomposition to investigate whether different kinds of chronic pain are associated with a common or specific set of altered networks. Representational similarity techniques, network decomposition and model-based clustering were employed: i) to verify the presence of a core set of brain areas commonly modified by chronic pain; ii) to investigate the involvement of these areas in a large-scale network perspective; iii) to study the relationship between altered networks and; iv) to find out whether chronic pain targets clusters of areas. Our results showed that chronic pain causes both core and pathology-specific gray matter alterations in large-scale networks. Common alterations were observed in the prefrontal regions, in the anterior insula, cingulate cortex, basal ganglia, thalamus, periaqueductal gray, post- and pre-central gyri and inferior parietal lobule. We observed that the salience and attentional networks were targeted in a very similar way by different chronic pain pathologies. Conversely, alterations in the sensorimotor and attention circuits were differentially targeted by chronic pain pathologies. Moreover, model-based clustering revealed that chronic pain, in line with some neurodegenerative diseases, selectively targets some large-scale brain networks. Altogether these findings indicate that chronic pain can be better conceived and studied in a network perspective. PMID:24936419
investigating the use of geophysical techniques to detect hydrocarbon seeps
NASA Astrophysics Data System (ADS)
Somwe, Vincent Tambwe
In the Cement oil field, seeps occur in the Hydrocarbon Induced Diagenetic Aureole (HIDA).This 14 square km diagenetic alteration region is mainly characterized by the: (1) secondary carbonate minerals deposition that tends to form ridges throughout the oil field; (2) disseminated pyrite in the vicinity of the fault zones; (3) uranium occurrence and the change in color pattern from red to bleached red sandstone. Generally the HIDA of the Cement oil field is subdivided into four zones: (1) carbonate cemented sandstone zone (zone 1), (2) altered sandstone zone (zone 2), (3) sulfide zone (zone 3) and (4) unaltered sandstone zone (zone 4). This study investigated the use of geophysical techniques to detect alteration zones over the Cement oil field. Magnetic and electromagnetic data were acquired at 5 m interval using the geometric G858 magnetometer and the Geonics EM-31 respectively. Both total magnetic intensity and bulk conductivity were found to decrease across boundaries between unaltered and altered sandstones. Boundaries between sulfide and carbonate zones, which in most cases were located in fault zones, were found to be characterized by higher magnetic and bulk conductivity readings. The contrast between the background and the highest positive peak was found to be in the range of 0.5-10% for total magnetic intensity and 258-450% for bulk conductivity respectively; suggesting that the detection of hydrocarbon seeps would be more effective with EM techniques. The study suggests that geophysical techniques can be used to delineate contact between the different alteration zones especially where metallic minerals such as pyrite are precipitated. The occurrence of carbonate cemented sandstone in the Cement oil field can be used as a pathfinder for hydrocarbon reservoir. The change in color in the altered sandstone zone can still be useful in the hydrocarbon exploration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, H.D.; Bieler, B.H.
1960-01-01
Between 1952 and 1956 a study was made of some of the uranium-bearing hydrothermal veins in the northern part of the Boulder batholith, Montana. Three mines, the W. Wilson, G. Washington, and Free Enterprise, were investigated in detail. The veins are characterized by a microcrystalline quartz gangue containing sparsely scattered, very fine-grained sulfide minerals and uraninite. Above the present water table, secondary uranium minerals are abundant locally. Throughout the area the veins --called "siliceous reefs"--strike east to northeast, are of steep dip, and vary in thickness from a fraction of an inch to several feet. The country rock is granodioritemore » containing, in order of abundance, plagioclase (An/sub 30/ to An/sub 36/), quartz, orthoclase, biotite, and hornblende, with apatite, zircon, and sphene. Small bodies of aplite, pegmatite, and alaskite occur along some veins. The granodiorite adjacent to the veins is rather strongly altered. The alteration is similar throughout all of the deposits studied, in barren and orebearing portions alike. The essential minerals show a characteristic sequence of alteration, in the order hornblende, andesine, biotite, orthoclase, and quartz. Successive zones of alteration are characterized, from the vein outward, by maximum development of sericite (muscovite polytype 1M, in part), kaolinite, and montmorillonite. Other alteration products are quartz, pyrite, calcite, leucoxene, and chlorite. The alteration resulted in an increase in silica and ferric iron, a decrease in alumina, total iron, ferrous iron, lime, soda, and magnesia, and little change in potash, titania, phosphorus, carbon dioxide, and sulfur. Consideration of the stability fields of the sheet structure silicate minerals indicates little basis for interpretation of the temperatures prevailing during mineralization. (auth)« less
Least Disturbed Condition for European Mediterranean rivers.
Feio, M J; Aguiar, F C; Almeida, S F P; Ferreira, J; Ferreira, M T; Elias, C; Serra, S R Q; Buffagni, A; Cambra, J; Chauvin, C; Delmas, F; Dörflinger, G; Erba, S; Flor, N; Ferréol, M; Germ, M; Mancini, L; Manolaki, P; Marcheggiani, S; Minciardi, M R; Munné, A; Papastergiadou, E; Prat, N; Puccinelli, C; Rosebery, J; Sabater, S; Ciadamidaro, S; Tornés, E; Tziortzis, I; Urbanič, G; Vieira, C
2014-04-01
The present report describes a three-step approach that was used to characterize and define thresholds for the Least Disturbed Condition in Mediterranean streams of four different types, regarding organic pollution and nutrients, hydrological and morphological alterations, and land use. For this purpose, a common database composed of national reference sites (929 records) from seven countries, sampled for invertebrates, diatoms and macrophytes was used. The analyses of reference sites showed that small (catchment <100 km(2)) siliceous and non-siliceous streams were mainly affected by channelization, bank alteration and hydropeaking. Medium-sized siliceous rivers were the most affected by stressors: 25-43% of the samples showed at least slight alterations regarding channelization, connectivity, upstream dam influence, hydropeaking and degradation of riparian vegetation. Temporary streams were the least affected by hydromorphological changes, but they were nevertheless affected by alterations in riparian vegetation. There were no major differences between all permanent stream types regarding water quality, but temporary streams showed lower values for oxygenation (DO) and wider ranges for other variables, such as nitrates. A lower threshold value for DO (60%) was determined for this stream type and can be attributed to the streams' natural characteristics. For all other river types, common limits were found for the remaining variables (ammonium, nitrate, phosphate, total P, % of artificial areas, % of intensive and extensive agriculture, % of semi-natural areas in the catchment). These values were then used to select the list of reference sites. The biological communities were characterized, revealing the existence of nine groups of Mediterranean invertebrate communities, six for diatoms and five for macrophytes: each group was characterized by specific indicator taxa that highlighted the differences between groups. Copyright © 2013 Elsevier B.V. All rights reserved.
Nakano, Kazuhiko; Nomura, Ryota; Matsumoto, Michiyo; Ooshima, Takashi
2010-01-01
Streptococcus mutans is generally known as a pathogen of dental caries, and it is also considered to cause bacteremia and infective endocarditis (IE). S. mutans was previously classified into 3 serotypes, c, e, and f, due to the different chemical compositions of the serotype-specific polysaccharides, which are composed of a rhamnose backbone and glucose side chains. We recently designated non-c/e/f serotype S. mutans strains as novel serotype k, which is characterized by a drastic reduction in the amount of the glucose side chain. A common biological feature of novel serotype-k strains is a lower level of cariogenicity due to alterations of several major cell surface protein antigens. As for virulence in blood, these strains survive in blood for a longer duration due to lower antigenicity, while the detection rate of all strains carrying the gene encoding collagen-binding adhesin has been shown to be high. Furthermore, molecular biological analyses of infected heart valve specimens obtained from IE patients revealed a high detection rate of serotype-k S. mutans. Together, these findings suggest that serotype-k S. mutans strains show low cariogenicity but high virulence in blood as compared to the other serotypes, due to alterations of several cell surface structures.
Iwasaki, M; Juvonen, R; Lindberg, R; Negishi, M
1991-02-25
The identities of the amino acid at position 209 are most critical in determining specific coumarin 7- and steroid 15 alpha-hydroxylase activity in P450coh and P450(15)alpha, respectively. This system, therefore, provides us with an excellent model to study the structural basis for P450 specificity as a monooxygenase. We expressed in Saccharomyces cerevisiae a series of the mutated P450s in which residue 209 was substituted with the various amino acids and characterized the spectral property and hydroxylase activity of these mutated P450s. The positioning of a hydrophobic residue including Phe, Leu, and Val at position 209 resulted in shifting the P450 to the high-spin state, while a charged amino acid such as Lys or Asp produced the low-spin form. Moreover, a P450 with Asn or Gly in this position exhibited spectra indicating a mixture of the high- and low-spin forms. This spin alteration, depending upon the hydrophobicity and size of residue at position 209, indicates that this position is likely to reside close to the sixth axial ligand on the distal surface of the heme in these P450s. This proximity of residue 209 to the ligand may explain the critical role of this residue in determining the hydroxylase specificity and activity of these P450s.
Novel Insight into Mutational Landscape of Head and Neck Squamous Cell Carcinoma
Gaykalova, Daria A.; Mambo, Elizabeth; Choudhary, Ashish; Houghton, Jeffery; Buddavarapu, Kalyan; Sanford, Tiffany; Darden, Will; Adai, Alex; Hadd, Andrew; Latham, Gary; Danilova, Ludmila V.; Bishop, Justin; Li, Ryan J.; Westra, William H.; Hennessey, Patrick; Koch, Wayne M.; Ochs, Michael F.; Califano, Joseph A.; Sun, Wenyue
2014-01-01
Development of head and neck squamous cell carcinoma (HNSCC) is characterized by accumulation of mutations in several oncogenes and tumor suppressor genes. We have formerly described the mutation pattern of HNSCC and described NOTCH signaling pathway alterations. Given the complexity of the HNSCC, here we extend the previous study to understand the overall HNSCC mutation context and to discover additional genetic alterations. We performed high depth targeted exon sequencing of 51 highly actionable cancer-related genes with a high frequency of mutation across many cancer types, including head and neck. DNA from primary tumor tissues and matched normal tissues was analyzed for 37 HNSCC patients. We identified 26 non-synonymous or stop-gained mutations targeting 11 of 51 selected genes. These genes were mutated in 17 out of 37 (46%) studied HNSCC patients. Smokers harbored 3.2-fold more mutations than non-smokers. Importantly, TP53 was mutated in 30%, NOTCH1 in 8% and FGFR3 in 5% of HNSCC. HPV negative patients harbored 4-fold more TP53 mutations than HPV positive patients. These data confirm prior reports of the HNSCC mutational profile. Additionally, we detected mutations in two new genes, CEBPA and FES, which have not been previously reported in HNSCC. These data extend the spectrum of HNSCC mutations and define novel mutation targets in HNSCC carcinogenesis, especially for smokers and HNSCC without HPV infection. PMID:24667986
Charradi, Kamel; Mahmoudi, Mohamed; Bedhiafi, Takwa; Kadri, Safwen; Elkahoui, Salem; Limam, Ferid; Aouani, Ezzedine
2017-03-01
It is unknown whether gender has an impact on brain injury in obesity, and, if so, whether treatment with grape seed and skin flour could exert a protective effect. Both male and female rats were fed a standard diet (SD) or a high fat diet (HFD) during eight weeks and treated with high dosage grape seed and skin flour (GSSF). Fat-induced oxidative stress was evaluated into the brain with a special emphasis on transition metals determination. HFD induced male-cholesterol overload (+78.12%) and an oxidative stress status characterized by increased lipoperoxidation (+68.97%), carbonylation (+40.28%), decreased antioxidant enzyme activities as glutathione peroxidase (-61.07%) and manganese-superoxide dismutase (-35.47%) but not catalase. Additionally HFD depleted the brain from manganese (-71.31%) and dropped glutamine synthetase activity (-36.16%), without affecting copper nor iron nor their associated enzymes. HFD also altered intracellular mediators as superoxide anion (+36.12%), calcium (+44.41%) and also calpain (+76.54%) a calcium dependent protease. Importantly all these alterations were detected exclusively in male brain and were efficiently corrected upon GSSF treatment. In conclusion, GSSF has the potential to alleviate the deleterious lipotoxic effect of HFD treatment that occurred in male brain and perhaps in post-menauposal female brain. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Anthropogenic effects on winter behavior of ferruginous hawks
Plumpton, D.L.; Andersen, D.E.
1998-01-01
Little information is known about the ecology of ferruginous hawks (Buteo regalis) in winter versus the breeding season and less about how the species adapts to fragmented grassland habitats. Accordingly, we studied the behavior of 38 radiotagged ferruginous hawks during 3 winters from 1992 to 1995. We used 2 adjacent sites in Colorado that were characterized by low and high levels of anthropogenic influence and habitat fragmentation: the Rocky Mountain Arsenal National Wildlife Refuge (RMANWR; low-level influence), and several adjacent Denver suburbs (high-level influence). Relative abundance of ferruginous hawks differed by treatment area and year (P 0.05) at RMANWR and suburban sites. Ferruginous hawks appear to modify their behavior in fragmented, largely human-altered habitats, provided some foraging habitats with adequate populations of suitable prey species are present.
Berthier, Erwin; Warrick, Jay; Yu, Hongmeiy; Beebe, David J
2008-06-01
Cell based microassays allow the screening of a multitude of culture conditions in parallel, which can be used for various applications from drug screening to fundamental cell biology research. Tubeless microfluidic devices based on passive pumping are a step towards accessible high throughput microassays, however they are vulnerable to evaporation. In addition to volume loss, evaporation can lead to the generation of small flows. Here, we focus on issues of convection and diffusion for cell culture in microchannels and particularly the transport of soluble factors secreted by cells. We find that even for humidity levels as high as 95%, convection in a passive pumping channel can significantly alter distributions of these factors and that appropriate system design can prevent convection.
NASA Astrophysics Data System (ADS)
Dolníček, Zdeněk; René, Miloš; Hermannová, Sylvie; Prochaska, Walter
2014-04-01
The Okrouhlá Radouň shear zone hosted uranium deposit is developed along the contact of Variscan granites and high-grade metasedimentary rocks of the Moldanubian Zone of the Bohemian Massif. The pre-ore pervasive alteration of wall rocks is characterized by chloritization of mafic minerals, followed by albitization of feldspars and dissolution of quartz giving rise to episyenites. The subsequent fluid circulation led to precipitation of disseminated uraninite and coffinite, and later on, post-ore quartz and carbonate mineralization containing base metal sulfides. The fluid inclusion and stable isotope data suggest low homogenization temperatures (˜50-140 °C during pre-ore albitization and post-ore carbonatization, up to 230 °C during pre-ore chloritization), variable fluid salinities (0-25 wt.% NaCl eq.), low fluid δ18O values (-10 to +2 ‰ V-SMOW), low fluid δ13C values (-9 to -15 ‰ V-PDB), and highly variable ionic composition of the aqueous fluids (especially Na/Ca, Br/Cl, I/Cl, SO4/Cl, NO3/Cl ratios). The available data suggest participation of three fluid endmembers of primarily surficial origin during alteration and mineralization at the deposit: (1) local meteoric water, (2) Na-Ca-Cl basinal brines or shield brines, (3) SO4-NO3-Cl-(H)CO3 playa-like fluids. Pre-ore albitization was caused by circulation of alkaline, oxidized, and Na-rich playa fluids, whereas basinal/shield brines and meteoric water were more important during the post-ore stage of alteration.
Improving the groundwater-well siting approach in consolidated rock in Nampula Province, Mozambique
NASA Astrophysics Data System (ADS)
Chirindja, F. J.; Dahlin, T.; Juizo, D.
2017-08-01
Vertical electrical sounding was used for assessing the suitability of the drill sites in crystalline areas within a water supply project in Nampula Province in Mozambique. Many boreholes have insufficient yield (<600 L/h). Electrical resistivity tomography (ERT) was carried out over seven boreholes with sufficient yield, and five boreholes with insufficient yield, in Rapale District, in an attempt to understand the reason for the failed boreholes. Two significant hydrogeological units were identified: the altered zone (19-220 ohm-m) with disintegrated rock fragments characterized by intermediate porosity and permeability, and the fractured zone (>420 ohm-m) with low porosity and high permeability. In addition to this, there is unfractured nonpermeable intact rock with resistivity of thousands of ohm-m. The unsuccessful boreholes were drilled over a highly resistive zone corresponding to fresh crystalline rock and a narrow altered layer with lower resistivity. Successful boreholes were drilled in places where the upper layers with lower resistivity correspond to a well-developed altered layer or a well-fractured basement. There are a few exceptions with boreholes drilled in seemingly favourable locations but they were nevertheless unsuccessful boreholes for unknown reasons. Furthermore, there were boreholes drilled into very resistive zones that produced successful water wells, which may be due to narrow permeable fracture zones that are not resolved by ERT. Community involvement is proposed, in choosing between alternative borehole locations based on information acquired with a scientifically based approach, including conceptual geological models and ERT. This approach could probably lower the borehole failure rate.
Dental anomalies in 14 patients with IP: clinical and radiological analysis and review.
Santa-Maria, Fernanda D; Mariath, Luiza Monteavaro; Poziomczyk, Cláudia S; Maahs, Marcia A P; Rosa, Rafael F M; Zen, Paulo R G; Schüller-Faccini, Lavínia; Kiszewski, Ana Elisa
2017-06-01
Current knowledge on dental anomalies in patients with incontinentia pigmenti (IP) has been obtained by examining case reports; however, an overall characterization of such alterations remains lacking. The objective of this study was to determine the frequency, type and location of dental alterations in IP using a case series. Fourteen patients (9 children and 5 adults) with a clinical diagnosis of IP who presented dental anomalies were included in this study. All patients were administered a clinical questionnaire, dental examination and radiological investigation. In the present case series, agenesis of primary dentition was present in 60 % of patients and agenesis of permanent tooth was present in 92.8 % of patients. Most cases were missing at least 6 teeth. Second molar agenesis was present in 13 patients (92.8 %). Anomalies in dental crowns occurred in 71.4 % of cases, and the central incisor was most frequently affected. Two adult patients still had primary teeth. Malocclusion was found in 10 patients (71.4 %). High-arched palate was observed in 7 (50 %) patients. Patients with IP present alterations in both primary and permanent dentition. Because the agenesis of permanent teeth is more common, primary teeth are not always replaced. In addition, the durability of primary dentition appears to be greater in IP. This study shows that patients with IP experience significant loss of teeth, especially in permanent dentition, and have an increased risk of high-arched palate compared to the general population. Prophylactic care of primary teeth in IP is relevant for improving functional and aesthetic outcomes until dental prostheses are implanted.
Type 2 diabetes aggravates Alzheimer's disease-associated vascular alterations of the aorta in mice.
Sena, Cristina M; Pereira, Ana M; Carvalho, Cristina; Fernandes, Rosa; Seiça, Raquel M; Oliveira, Catarina R; Moreira, Paula I
2015-01-01
Vascular risk factors are associated with a higher incidence of dementia. In fact, diabetes mellitus is considered a main risk factor for Alzheimer's disease (AD) and both diseases are characterized by vascular dysfunction. However, the underlying mechanisms remain largely unknown. Here, the effects of high-sucrose-induced type 2 diabetes (T2D) in the aorta of wild type (WT) and triple-transgenic AD (3xTg-AD) mice were investigated. 3xTg-AD mice showed a significant decrease in body weight and an increase in postprandial glycemia, glycated hemoglobin (HbA1c), and vascular nitrotyrosine, superoxide anion (O2•-), receptor for the advanced glycation end products (RAGE) protein, and monocyte chemoattractant protein-1 (MCP-1) levels when compared to WT mice. High-sucrose intake caused a significant increase in body weight, postprandial glycemia, HbA1c, triglycerides, plasma vascular cell adhesion molecule 1 (VCAM-1), and vascular nitrotyrosine, O2•-, RAGE, and MCP-1 levels in both WT and 3xTg-AD mice when compared to the respective control group. Also, a significant decrease in nitric oxide-dependent vasorelaxation was observed in 3xTg-AD and sucrose-treated WT mice. In conclusion, AD and T2D promote similar vascular dysfunction of the aorta, this effect being associated with elevated oxidative and nitrosative stress and inflammation. Also, AD-associated vascular alterations are potentiated by T2D. These findings support the idea that metabolic alterations predispose to the onset and progression of dementia.
Vanyukov, P M; Szanto, K; Hallquist, M N; Siegle, G J; Reynolds, C F; Forman, S D; Aizenstein, H J; Dombrovski, A Y
2016-01-01
Alongside impulsive suicide attempts, clinicians encounter highly premeditated suicidal acts, particularly in older adults. We have previously found that in contrast to the more impulsive suicide attempters' inability to delay gratification, serious and highly planned suicide attempts were associated with greater willingness to wait for larger rewards. This study examined neural underpinnings of intertemporal preference in suicide attempters. We expected that impulsivity and suicide attempts, particularly poorly planned ones, would predict altered paralimbic subjective value representations. We also examined lateral prefrontal and paralimbic correlates of premeditation in suicidal behavior. A total of 48 participants aged 46-90 years underwent extensive clinical and cognitive characterization and completed the delay discounting task in the scanner: 26 individuals with major depression (13 with and 13 without history of suicide attempts) and 22 healthy controls. More impulsive individuals displayed greater activation in the precuneus/posterior cingulate cortex (PCC) to value difference favoring the delayed option. Suicide attempts, particularly better-planned ones, were associated with deactivation of the lateral prefrontal cortex (lPFC) in response to value difference favoring the immediate option. Findings were robust to medication exposure, depression severity and possible brain damage from suicide attempts, among other confounders. Finally, in suicide attempters longer reward delays were associated with diminished parahippocampal responses. Impulsivity was associated with an altered paralimbic (precuneus/PCC) encoding of value difference during intertemporal choice. By contrast, better-planned suicidal acts were associated with altered lPFC representations of value difference. The study provides preliminary evidence of impaired decision processes in both impulsive and premeditated suicidal behavior.
Maupin, Kevin A.; Droscha, Casey J.; Williams, Bart O.
2013-01-01
The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001–2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRP5), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone. PMID:26273492
[Prevalence of obesity and altered lipid profile in university students].
González Sandoval, Claudia Elena; Díaz Burke, Yolanda; Mendizabal-Ruiz, Adriana Patricia; Medina Díaz, Eunice; Morales, José Alejandro
2014-02-01
Obesity is a serious public health problem because its association with the risk to develop various chronic diseases. Atherogenic dyslipidemia that often accompany obesity is also associated to the metabolic syndrome and to cardiovascular diseases. The transition from adolescence to young adulthood appears to be a period where major changes occur in the lifestyle which contributes to the development of obesity, however, little attention has been given to this transition stage. The inclination to adopt unhealthy behaviors which occurs during early adulthood may be increased on university students because their lifestyle, which is characterized by lack of time to eat a healthy diet, which can make them susceptible to obesity. To determine the prevalence of obesity and lipid levels abnormalities and their relationship in a group of university students. Transversal study of university students aged between 18 and 24 years. Body mass index, waist circumference and blood lipid profile where evaluated. Of the 620 students surveyed about one-third have either overweight or obesity. 86% of students had at least one alteration in the evaluated parameters. Lipid profile results show a high prevalence of minor alterations in levels, particularly in cholesterol linked to low density lipoproteins levels. University young students have a high prevalence of overweight and plasma lipid levels above the norm, but most are in the low-risk categories. It is necessary to establish early preventive measures aimed at promoting in the university student good eating habits and increased physical activity. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Hydrologic Response to Climatic and Vegetation Change in an Extreme Alpine Environment
NASA Astrophysics Data System (ADS)
Livneh, B.; Badger, A.; Molotch, N. P.; Bueno de Mesquita, C.; Suding, K.
2016-12-01
Mountain hydrology and ecology are uniquely sensitive to climate change. This presentation will examine how changes in climate have altered land cover and hydrology in the Green Lakes Valley, an alpine catchment for which approximately 80% of the annual precipitation ( 950 mm/yr) falls as snow. In these environments vegetation has two way interaction with hydrology: its distribution is driven by patterns of snowpack and water availability while it functions to modulate hydrologic responses by alterating land-atmosphere interaction. Long-term climate trends indicate warming, earlier snowmelt, and longer snow-free growing seasons. High-resolution aerial photography from 1972 and 2008 identified vegetation encroachment as shrubs and trees have increased in vigor and density in the tundra, while herbaceous tundra plants have colonized high-elevation bare ground. To understand modulations to physical hydrology from climate and biophysical responses, we apply a 20-m resolution fully-distributed hydrologic model. Through the use of observed meteorology (radiation, humidity, temperature and precipitation) an hourly climatology was created. Realizations from a stochastic ensemble of this climatology together with trends from long-term observations are used to characterize historical hydrologic response and project future changes. Through temperature and precipitation change experiments, alterations to the annual water cycle are presented—indicating the importance of annual snowpack evolution on both the surface and sub-surface hydrology, particularly through seasonal water storage. Probabilistic land cover change scenarios are developed that project how further vegetation encroachment modulates surface water fluxes and sediment yields. Lastly, the context of these results are compared with hydrometeorological research from other differing alpine and ecological regions.
Altered expression of prohibitin in psoriatic lesions and its cellular implication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Soon Young; Kim, Younghwa; Hwang, Ha Young
2007-08-31
Psoriasis is characterized by excessive proliferation of keratinocytes accompanying acanthosis and incomplete differentiation. Prohibitin was investigated by examining its function of HaCaT as well as psoriasis. Psoriatic involved skin revealed high level of prohibitin in the basal layer. Prohibitin was analyzed by applying RNAi (PHBi) with HaCaT, which demonstrated increased S-phase. PHBi showed enhanced sensitivity to anthralin-mediated cell death due to enhanced loss of mitochondrial membrane potential, suggesting a protective role of prohibitin against apoptosis. Collectively, prohibitin plays a role both in cell cycle regulation and in maintaining mitochondrial integrity, implying its association with pathogenesis of psoriasis.
Aqueous Alteration of Tridymite: Implications for its Discovery at Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Rampe, E. B.; Morris, R. V.; Ming, D. W.; Graff, T. G.; Downs, R. T.; Peretyazhko, T.
2016-12-01
Tridymite is a high-temperature, low-pressure polymorph of SiO2. It is relatively uncommon on Earth and can form by vapor phase alteration of silicic tuffs [e.g., 1], in silicic volcanic fumaroles [e.g., 2], and from contact metamorphism of opaline silica [e.g., 3]. The martian crust is generally mafic, and minerals that form in silicic volcanic environments are rarely observed from orbit [e.g., 4]. The Mars Science Laboratory Curiosity has been investigating an ancient fluviolacustrine sequence in Gale crater since its landing in August 2012. Monoclinic tridymite was recently discovered with X-ray diffraction data measured by the CheMin instrument in a target called Buckskin drilled from the Murray formation in the Marias Pass area [5,6]. The Murray fm is dominated by finely horizontally laminated mudstone, suggesting subaqueous sediment deposition in a lake. Buckskin contains substantial amounts of tridymite (13.6 wt.% of the bulk sample) and abundant X-ray amorphous materials (60 wt.%), primarily made up of high-silica phases (opal-A, opal-CT, obsidian) [5]. Other samples drilled from the Murray fm contain minerals consistent with diagenesis by acid-sulfate solutions (e.g., jarosite, hematite) [7], and geochemical trends in the Marias Pass and Pahrump Hills sections suggest these sediments were altered by acidic fluids in an open system [7]. The stability and alteration products of tridymite in acid-sulfate alteration environments are not well characterized. To investigate the behavior of tridymite in these environments, we performed a series of laboratory experiments in which we exposed synthetic tridymite (monoclinic) to 0.5 and 2 M solutions of H2SO4 for up to three weeks at 25 °C and 150 °C. Our experiments show that tridymite is stable in these environments, suggesting that tridymite in the lacustrine sediments found in Marias Pass would have survived diagenesis in acidic solutions. Future experiments will include alteration under neutral and alkaline conditions to further explore the stability of tridymite in aqueous environments. [1] Broxton et al. (1995) LANL Lab Rept. LA-12934-MS. [2] Hamasaki (2002) Earth Planet Sp, 54. [3] Del Moro et al. (2011) J. Petrol., 52. [4] Smith and Bandfield (2012) JGR, 117. [5] Morris et al. (2016) PNAS, 113. [6] Morris et al., this meeting. [7] Rampe et al. (2016) LPS XLVII.
NASA Astrophysics Data System (ADS)
Uǧurcan, Okşan Gökçen; Oyman, Tolga
2016-11-01
The Eğrigöz pluton is located in the northern portion of the Menderes Massif, which is the largest known metamorphic core complex that is also characterized by large-scale extension. Kalkan and Karaağıl skarn deposits are located on the southern border of the Eğrigöz Pluton, whereas Katrandağ mineralization developed along the roof pendant. Skarnization in these three areas is associated with the peraluminous, I-type, calc-alkaline, high-K calc-alkaline Eğrigöz Pluton. Geochemical characteristics of the pluton indicate that it was generated in a continental arc setting. Kalkan, Karaağıl, and Katrandağ skarns are hosted in marble bands in two-mica gneiss of the Kalkan Formation, a locally dolomitic and clay-bearing limestone of the Arıkaya Formation and locally dolomitised limestone of the Balıkbaşı Formation, respectively. Skarn development occurred sequentially in two stages, prograde and retrograde. In Kalkan skarn, prograde stage is characterized by clinopyroxene (Di56-73 Hd26-43 Joh1-2), garnet (Adr45-69 Grs30-52 Alm0-1.4 Sps0.7-2.3), amphibole, and magnetite, whereas retrograde stage is dominated by epidote, amphibole, chlorite, quartz, and calcite. In Karaağıl, both calcic and magnesian skarn association occurred as a result of local variations in dolomite content in Arıkaya Formation. The prograde assemblage of magnesian skarn is composed chiefly of spinel, amphibole and olivine. These mineral assemblages were, partially or fully, altered to serpentine, talc, and chlorite during retrograde alteration. Mesh textures of the serpentine indicates that the serpentine was altered from olivine. Olivine was completely destroyed during retrograde alteration without relict grains remaining. Calcic skarn paragenesis include garnet (Grs36-80Adr20-62Alm0-2.2Sps0.2-2.6), clinopyroxene (Di81-92 Hd7-19 Jo0-1), and plagioclase, that belongs to the earlier stage, and amphibole of the retrograde stage. High grossular end member of the garnet probably reflects host rock composition. The Katrandağ area differs from Kalkan and Karaağıl deposits in terms of initial metal content and gossan alteration due to the supergene alteration of galena dominated mineralization. In the Katrandağ, skarn that associated with iron and lead mineralization, both contain clinopyroxene and garnet. In the Kalkan skarn, fluid inclusion assemblages of prograde skarn association yield homogenization temperatures from 379 °C to over 600 °C, whereas those of retrograde minerals vary between 235 °C and 412 °C. Salinity values of the inclusions which obtained from prograde and retrograde assemblages are 9.2-22.4 and 6.4-20.1 wt%NaCl eq., respectively. Homogenization temperatures and salinity values of inclusions in clinopyroxene of Karaağıl calcic skarn are 420 to over 600 °C and 21-30 wt%NaCl eq., respectively.
Boettger, Soenke; Meyer, Rafael; Richter, André; Fernandez, Susana Franco; Rudiger, Alain; Schubert, Maria; Jenewein, Josef; Nuñez, David Garcia
2018-05-24
The importance of the proper identification of delirium, with its high incidence and adversities in the intensive care setting, has been widely recognized. One common screening instrument is the Intensive Care Delirium Screening Checklist (ICDSC); however, the symptom profile and key features of delirium dependent on the level of sedation have not yet been evaluated. In this prospective cohort study, the ICDSC was evaluated versus the Diagnostic and Statistical Manual, 4th edition, text revision, diagnosis of delirium set as standard with respect to the symptom profile, and correct identification of delirium. The aim of this study was to identify key features of delirium in the intensive care setting dependent on the Richmond Agitation and Sedation Scale levels of sedation: drowsiness versus alert and calmness.ResultThe 88 delirious patients of 225 were older, had more severe disease, and prolonged hospitalization. Irrespective of the level of sedation, delirium was correctly classified by items related to inattention, disorientation, psychomotor alterations, inappropriate speech or mood, and symptom fluctuation. In the drowsy patients, inattention reached substantial sensitivity and specificity, whereas psychomotor alterations and sleep-wake cycle disturbances were sensitive lacked specificity. The positive prediction was substantial across items, whereas the negative prediction was only moderate. In the alert and calm patient, the sensitivities were substantial for psychomotor alterations, sleep-wake cycle disturbances, and symptom fluctuations; however, these fluctuations were not specific. The positive prediction was moderate and the negative prediction substantial. Between the nondelirious drowsy and alert, the symptom profile was similar; however, drowsiness was associated with alterations in consciousness.Significance of resultsIn the clinical routine, irrespective of the level of sedation, delirium was characterized by the ICDSC items for inattention, disorientation, psychomotor alterations, inappropriate speech or mood and symptom fluctuation. Further, drowsiness caused altered levels of consciousness.
TCGA analysis of adrenocortical carcinoma - TCGA
In the most comprehensive molecular characterization to date of adrenocortical carcinoma, a rare cancer of the adrenal cortex, researchers extensively analyzed 91 cases for alterations in the tumor genomes.
Szafran, Adam T.; Stephan, Cliff; Bolt, Michael; Mancini, Maureen G.; Marcelli, Marco; Mancini, Michael A.
2018-01-01
Background AR-V7 is an androgen receptor (AR) splice variant that lacks the ligand-binding domain and is isolated from prostate cancer cell lines. Increased expression of AR-V7 is associated with the transition from hormone-sensitive prostate cancer to more advanced castration-resistant prostate cancer (CRPC). Due to the loss of the ligand-binding domain, AR-V7 is not responsive to traditional AR-targeted therapies, and the mechanisms that regulate AR-V7 are still incompletely understood. Therefore, we aimed to explore existing classes of small molecules that may regulate AR-V7 expression and intracellular localization and their potential therapeutic role in CRPC. Methods We used AR high-content analysis (AR-HCA) to characterize the effects of a focused library of well-characterized clinical compounds on AR-V7 expression at the single-cell level in PC3 prostate cancer cells stably expressing green fluorescent protein (GFP)-AR-V7 (GFP-AR-V7:PC3). In parallel, an orthogonal AR-HCA screen of a small interfering (si)RNA library targeting 635 protein kinases was performed in GFP-AR-V7:PC3. The effect of the Src-Abl inhibitor PD 180970 was further characterized using cell-proliferation assays, quantitative PCR, and western blot analysis in multiple hormone-sensitive and CRPC cell lines. Results Compounds that tended to target Akt, Abl, and Src family kinases (SFKs) decreased overall AR-V7 expression, nuclear translocation, absolute nuclear level, and/or altered nuclear distribution. We identified 20 protein kinases that, when knocked down, either decreased nuclear GFP-AR-V7 levels or altered AR-V7 nuclear distribution, a set that included the SFKs Src and Fyn. The Src-Abl dual kinase inhibitor PD180970 decreased expression of AR-V7 by greater than 46% and decreased ligand-independent transcription of AR target genes in the 22RV1 human prostate carcinoma cell line. Further, PD180970 inhibited androgen-independent cell proliferation in endogenous–AR-V7–expressing prostate cancer cell lines and also overcame bicalutamide resistance observed in the 22RV1 cell line. Conclusions SFKs, especially Src and Fyn, may be important upstream regulators of AR-V7 expression and represent promising targets in a subset of CRPCs expressing high levels of AR-V7. PMID:27699828
NASA Astrophysics Data System (ADS)
Moser, R. D.; Allison, P. G.; Chandler, M. Q.
2013-12-01
Little work has been done to study the fundamental material behaviors and failure mechanisms of cement-based materials including ordinary Portland cement concrete and ultra-high performance concretes (UHPCs) under high strain impact and penetration loads at lower length scales. These high strain rate loadings have many possible effects on UHPCs at the microscale and nanoscale, including alterations in the hydration state and bonding present in phases such as calcium silicate hydrate, in addition to fracture and debonding. In this work, the possible chemical and physical changes in UHPCs subjected to high strain rate impact and penetration loads were investigated using a novel technique wherein nanoindentation measurements were spatially correlated with images using scanning electron microscopy and chemical composition using energy dispersive x-ray microanalysis. Results indicate that impact degrades both the elastic modulus and indentation hardness of UHPCs, and in particular hydrated phases, with damage likely occurring due to microfracturing and debonding.
Roberts, Kathryn G.; Gu, Zhaohui; Payne-Turner, Debbie; McCastlain, Kelly; Harvey, Richard C.; Chen, I-Ming; Pei, Deqing; Iacobucci, Ilaria; Valentine, Marcus; Pounds, Stanley B.; Shi, Lei; Li, Yongjin; Zhang, Jinghui; Cheng, Cheng; Rambaldi, Alessandro; Tosi, Manuela; Spinelli, Orietta; Radich, Jerald P.; Minden, Mark D.; Rowe, Jacob M.; Luger, Selina; Litzow, Mark R.; Tallman, Martin S.; Wiernik, Peter H.; Bhatia, Ravi; Aldoss, Ibrahim; Kohlschmidt, Jessica; Mrózek, Krzysztof; Marcucci, Guido; Bloomfield, Clara D.; Stock, Wendy; Kornblau, Stephen; Kantarjian, Hagop M.; Konopleva, Marina; Paietta, Elisabeth; Willman, Cheryl L.
2017-01-01
Purpose Philadelphia chromosome (Ph) –like acute lymphoblastic leukemia (ALL) is a high-risk subtype of childhood ALL characterized by kinase-activating alterations that are amenable to treatment with tyrosine kinase inhibitors. We sought to define the prevalence and genomic landscape of Ph-like ALL in adults and assess response to conventional chemotherapy. Patients and Methods The frequency of Ph-like ALL was assessed by gene expression profiling of 798 patients with B-cell ALL age 21 to 86 years. Event-free survival and overall survival were determined for Ph-like ALL versus non–Ph-like ALL patients. Detailed genomic analysis was performed on 180 of 194 patients with Ph-like ALL. Results Patients with Ph-like ALL accounted for more than 20% of adults with ALL, including 27.9% of young adults (age 21 to 39 years), 20.4% of adults (age 40 to 59 years), and 24.0% of older adults (age 60 to 86 years). Overall, patients with Ph-like ALL had an inferior 5-year event-free survival compared with patients with non–Ph-like ALL (22.5% [95% CI, 14.9% to 29.3%; n = 155] v 49.3% [95% CI, 42.8% to 56.2%; n = 247], respectively; P < .001). We identified kinase-activating alterations in 88% of patients with Ph-like ALL, including CRLF2 rearrangements (51%), ABL class fusions (9.8%), JAK2 or EPOR rearrangements (12.4%), other JAK-STAT sequence mutations (7.2%), other kinase alterations (4.1%), and Ras pathway mutations (3.6%). Eleven new kinase rearrangements were identified, including four involving new kinase or cytokine receptor genes and seven involving new partners for previously identified genes. Conclusion Ph-like ALL is a highly prevalent subtype of ALL in adults and is associated with poor outcome. The diverse range of kinase-activating alterations in Ph-like ALL has important therapeutic implications. Trials comparing the addition of tyrosine kinase inhibitors to conventional therapy are required to evaluate the clinical utility of these agents in the treatment of Ph-like ALL. PMID:27870571
Characterization of MoS2-Graphene Composites for High-Performance Coin Cell Supercapacitors.
Bissett, Mark A; Kinloch, Ian A; Dryfe, Robert A W
2015-08-12
Two-dimensional materials, such as graphene and molybdenum disulfide (MoS2), can greatly increase the performance of electrochemical energy storage devices because of the combination of high surface area and electrical conductivity. Here, we have investigated the performance of solution exfoliated MoS2 thin flexible membranes as supercapacitor electrodes in a symmetrical coin cell arrangement using an aqueous electrolyte (Na2SO4). By adding highly conductive graphene to form nanocomposite membranes, it was possible to increase the specific capacitance by reducing the resistivity of the electrode and altering the morphology of the membrane. With continued charge/discharge cycles the performance of the membranes was found to increase significantly (up to 800%), because of partial re-exfoliation of the layered material with continued ion intercalation, as well as increasing the specific capacitance through intercalation pseudocapacitance. These results demonstrate a simple and scalable application of layered 2D materials toward electrochemical energy storage.
Actin filaments-A target for redox regulation.
Wilson, Carlos; Terman, Jonathan R; González-Billault, Christian; Ahmed, Giasuddin
2016-10-01
Actin and its ability to polymerize into dynamic filaments is critical for the form and function of cells throughout the body. While multiple proteins have been characterized as affecting actin dynamics through noncovalent means, actin and its protein regulators are also susceptible to covalent modifications of their amino acid residues. In this regard, oxidation-reduction (Redox) intermediates have emerged as key modulators of the actin cytoskeleton with multiple different effects on cellular form and function. Here, we review work implicating Redox intermediates in post-translationally altering actin and discuss what is known regarding how these alterations affect the properties of actin. We also focus on two of the best characterized enzymatic sources of these Redox intermediates-the NADPH oxidase NOX and the flavoprotein monooxygenase MICAL-and detail how they have both been identified as altering actin, but share little similarity and employ different means to regulate actin dynamics. Finally, we discuss the role of these enzymes and redox signaling in regulating the actin cytoskeleton in vivo and highlight their importance for neuronal form and function in health and disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Manteiga, Sara; Lee, Kyongbum
2017-04-01
A growing body of evidence links endocrine-disrupting chemicals (EDCs) with obesity-related metabolic diseases. While it has been shown that EDCs can predispose individuals toward adiposity by affecting developmental processes, little is known about the chemicals' effects on adult adipose tissue. Our aim was to study the effects of low, physiologically relevant doses of EDCs on differentiated murine adipocytes. We combined metabolomics, proteomics, and gene expression analysis to characterize the effects of mono-ethylhexyl phthalate (MEHP) in differentiated adipocytes. Repeated exposure to MEHP over several days led to changes in metabolite and enzyme levels indicating elevated lipogenesis and lipid oxidation. The chemical exposure also increased expression of major inflammatory cytokines, including chemotactic factors. Proteomic and gene expression analysis revealed significant alterations in pathways regulated by peroxisome proliferator activated receptor-γ (PPARγ). Inhibiting the nuclear receptor's activity using a chemical antagonist abrogated not only the alterations in PPARγ-regulated metabolic pathways, but also the increases in cytokine expression. Our results show that MEHP can induce a pro-inflammatory state in differentiated adipocytes. This effect is at least partially mediated PPARγ.
Actin filaments – a target for redox regulation
Wilson, Carlos; Terman, Jonathan R.; González-Billault, Christian; Ahmed, Giasuddin
2016-01-01
Actin and its ability to polymerize into dynamic filaments is critical for the form and function of cells throughout the body. While multiple proteins have been characterized as affecting actin dynamics through non-covalent means, actin and its protein regulators are also susceptible to covalent modifications of their amino acid residues. In this regard, oxidation-reduction (Redox) intermediates have emerged as key modulators of the actin cytoskeleton with multiple different effects on cellular form and function. Here, we review work implicating Redox intermediates in post-translationally altering actin and discuss what is known regarding how these alterations affect the properties of actin. We also focus on two of the best characterized enzymatic sources of these Redox intermediates – the NADPH oxidase NOX and the flavoprotein monooxygenase MICAL – and detail how they have both been identified as altering actin, but share little similarity and employ different means to regulate actin dynamics. Finally, we discuss the role of these enzymes and redox signaling in regulating the actin cytoskeleton in vivo and highlight their importance for neuronal form and function in health and disease. PMID:27309342
Wiskerke, Joost; Irimia, Cristina; Cravatt, Benjamin F; De Vries, Taco J; Schoffelmeer, Anton N M; Pattij, Tommy; Parsons, Loren H
2012-05-16
The present experiments employed in vivo microdialysis to characterize the effects of commonly used endocannabinoid clearance inhibitors on basal and depolarization-induced alterations in interstitial endocannabinoid levels in the nucleus accumbens of rat brain. Compounds targeting the putative endocannabinoid transporter and hydrolytic enzymes (FAAH and MAGL) were compared. The transporter inhibitor AM404 modestly enhanced depolarization-induced increases in 2-arachidonoyl glycerol (2-AG) levels but did not alter levels of N-arachidonoyl-ethanolamide (anandamide, AEA). The transport inhibitor UCM707 did not alter dialysate levels of either endocannabinoid. The FAAH inhibitors URB597 and PF-3845 robustly increased AEA levels during depolarization without altering 2-AG levels. The MAGL inhibitor URB602 significantly enhanced depolarization-induced increases in 2-AG, but did not alter AEA levels. In contrast, the MAGL inhibitor JZL184 did not alter 2-AG or AEA levels under any condition tested. Finally, the dual FAAH/MAGL inhibitor JZL195 significantly enhanced depolarization-induced increases in both AEA and 2-AG levels. In contrast to the present observations in rats, prior work in mice has demonstrated a robust JZL184-induced enhancement of depolarization-induced increases in dialysate 2-AG. Thus, to further investigate species differences, additional tests with JZL184, PF-3845, and JZL195 were performed in mice. Consistent with prior reports, JZL184 significantly enhanced depolarization-induced increases in 2-AG without altering AEA levels. PF-3845 and JZL195 produced profiles in mouse dialysates comparable to those observed in rats. These findings confirm that interstitial endocannabinoid levels in the brain can be selectively manipulated by endocannabinoid clearance inhibitors. While PF-3845 and JZL195 produce similar effects in both rats and mice, substantial species differences in JZL184 efficacy are evident, which is consistent with previous studies.
The evaluation of the interfacial behavior of LaRC-TPI/Graphite Composites
NASA Technical Reports Server (NTRS)
Ogden, A. L.; Wilkes, G. L.; Hyer, M. W.; Loos, A. C.; Muellerleile, J. T.
1992-01-01
Discussed are the results of several approaches recently considered for improving the interfacial adhesion of LaRC-TPI/graphite composites. Two approaches were investigated, namely altering the matrix and altering the fiber. As a result, three types of LaRC-TPI laminates were produced: amorphous/AS-4, amorphous/XAS, and semicrystalline/AS-4. The laminates were characterized using the transverse tensile test, scanning electron microscopy, optical microscopy, and thermal analysis.
NASA Astrophysics Data System (ADS)
Beaumais, A.; Teagle, D. A. H.; James, R. H.; Pearce, C. R.; Milton, J. A.; Alt, J.; Coggon, R. M.
2017-12-01
Alteration of the oceanic crust is thought to be the principal sink of Mg in seawater, but the effect of this process on the Mg isotope (δ26Mg) composition of the oceans remains unclear. Here we present the first measurements of Mg isotopes in altered oceanic crust from ODP Holes 504B and 896A, located in 5.9 Ma crust, 200 km south of the intermediate spreading rate Costa Rica Rift. Hole 504B penetrates: (i) A volcanic section, consisting of partially altered basalt that was open to seawater circulation under oxic-suboxic conditions at temperatures of <150°C. (ii) A transition zone, characterized by mixing between upwelling hydrothermal fluid and seawater between 100 and 350°C. (iii) A sheeted dike complex consisting of diabase partially altered to greenschist facies minerals. Hole 896A penetrates volcanic rocks altered at low temperature (<100 °C) under oxic-suboxic conditions. The overall range in δ26Mg values is -0.53 to -0.01‰; significantly greater than the range observed in unaltered mid-ocean ridge basalts (MORB: -0.25 ± 0.06‰ [1]). δ26Mg values decrease with depth in the volcanic sections of both Holes 504B and 896A. The highest δ26Mg values are found in saponite-bearing basalts at the top of the volcanic sections of both holes, and are attributed to the preferential incorporation of heavy Mg isotopes into secondary clays (Mg-saponite). Lower δ26Mg values recorded in the deeper part of the volcanic section may be a result of fluid-rock interaction with isotopically lighter evolved seawater. The transition zone is characterised by MORB-like to relatively high δ26Mg values in the chlorite-smectite bearing basalts. The sheeted dike complex yields a narrow range of MORB-like δ26Mg values suggesting that limited fractionation occurs during high-temperature alteration and that the fluids have very low Mg concentrations. Low temperature fluid-rock interactions modify the Mg isotopic composition of the upper part of the oceanic crust. Therefore, this process could potentially play a role in balancing the δ26Mg of (i) the seawater via lateral fluid flow through oceanic crust off-axis ridge flanks, and (ii) the mantle via recycling of oceanic lithosphere at subduction zones. [1] Teng et al., (2010) GCA 74, 4150-4166.
NASA Astrophysics Data System (ADS)
Martínez, Darwin; Mahalingam, Jamuna J.; Soddu, Andrea; Franco, Hugo; Lepore, Natasha; Laureys, Steven; Gómez, Francisco
2015-01-01
Disorders of consciousness (DOC) are a consequence of a variety of severe brain injuries. DOC commonly results in anatomical brain modifications, which can affect cortical and sub-cortical brain structures. Postmortem studies suggest that severity of brain damage correlates with level of impairment in DOC. In-vivo studies in neuroimaging mainly focus in alterations on single structures. Recent evidence suggests that rather than one, multiple brain regions can be simultaneously affected by this condition. In other words, DOC may be linked to an underlying cerebral network of structural damage. Recently, geometrical spatial relationships among key sub-cortical brain regions, such as left and right thalamus and brain stem, have been used for the characterization of this network. This approach is strongly supported on automatic segmentation processes, which aim to extract regions of interests without human intervention. Nevertheless, patients with DOC usually present massive structural brain changes. Therefore, segmentation methods may highly influence the characterization of the underlying cerebral network structure. In this work, we evaluate the level of characterization obtained by using the spatial relationships as descriptor of a sub-cortical cerebral network (left and right thalamus) in patients with DOC, when different segmentation approaches are used (FSL, Free-surfer and manual segmentation). Our results suggest that segmentation process may play a critical role for the construction of robust and reliable structural characterization of DOC conditions.
Charlie Schrader-Patton; Nancy E. Grulke; Melissa E. Dressen
2016-01-01
Forest disturbances are increasing in extent and intensity, annually altering the structure and function of affected systems across millions of acres. Land managers need rapid assessment tools that can be used to characterize disturbance events across space and to meet forest planning needs. Unlike vegetation management projects and wildfire events, which typically are...
Parker, Kimberly M; Zeng, Teng; Harkness, Jennifer; Vengosh, Avner; Mitch, William A
2014-10-07
The disposal and leaks of hydraulic fracturing wastewater (HFW) to the environment pose human health risks. Since HFW is typically characterized by elevated salinity, concerns have been raised whether the high bromide and iodide in HFW may promote the formation of disinfection byproducts (DBPs) and alter their speciation to more toxic brominated and iodinated analogues. This study evaluated the minimum volume percentage of two Marcellus Shale and one Fayetteville Shale HFWs diluted by fresh water collected from the Ohio and Allegheny Rivers that would generate and/or alter the formation and speciation of DBPs following chlorination, chloramination, and ozonation treatments of the blended solutions. During chlorination, dilutions as low as 0.01% HFW altered the speciation toward formation of brominated and iodinated trihalomethanes (THMs) and brominated haloacetonitriles (HANs), and dilutions as low as 0.03% increased the overall formation of both compound classes. The increase in bromide concentration associated with 0.01-0.03% contribution of Marcellus HFW (a range of 70-200 μg/L for HFW with bromide = 600 mg/L) mimics the increased bromide levels observed in western Pennsylvanian surface waters following the Marcellus Shale gas production boom. Chloramination reduced HAN and regulated THM formation; however, iodinated trihalomethane formation was observed at lower pH. For municipal wastewater-impacted river water, the presence of 0.1% HFW increased the formation of N-nitrosodimethylamine (NDMA) during chloramination, particularly for the high iodide (54 ppm) Fayetteville Shale HFW. Finally, ozonation of 0.01-0.03% HFW-impacted river water resulted in significant increases in bromate formation. The results suggest that total elimination of HFW discharge and/or installation of halide-specific removal techniques in centralized brine treatment facilities may be a better strategy to mitigate impacts on downstream drinking water treatment plants than altering disinfection strategies. The potential formation of multiple DBPs in drinking water utilities in areas of shale gas development requires comprehensive monitoring plans beyond the common regulated DBPs.
Tajebe, Fitsumbrhan; Getahun, Mulusew; Adem, Emebet; Hailu, Asrat; Lemma, Mulualem; Fikre, Helina; Raynes, John; Tamiru, Aschalew; Mulugeta, Zemenay; Diro, Ermias; Toulza, Frederic; Shkedy, Ziv; Ayele, Tadesse; Modolell, Manuel; Munder, Markus; Müller, Ingrid; Takele, Yegnasew; Kropf, Pascale
2017-07-01
Visceral leishmaniasis (VL) is a neglected tropical disease that affects the poorest communities and can cause substantial morbidity and mortality. Visceral leishmaniasis is characterized by the presence of Leishmania parasites in the spleen, liver and bone marrow, hepatosplenomegaly, pancytopenia, prolonged fever, systemic inflammation and low body mass index (BMI). The factors impacting on the severity of VL are poorly characterized. Here we performed a cross-sectional study to assess whether co-infection of VL patients with intestinal parasites influences disease severity, assessed with clinical and haematological data, inflammation, cytokine profiles and BMI. Data from VL patients was similar to VL patients co-infected with intestinal parasites, suggesting that co-infection of VL patients with intestinal parasites does not alter disease severity.
Adem, Emebet; Hailu, Asrat; Lemma, Mulualem; Fikre, Helina; Raynes, John; Tamiru, Aschalew; Mulugeta, Zemenay; Diro, Ermias; Toulza, Frederic; Shkedy, Ziv; Ayele, Tadesse; Modolell, Manuel; Munder, Markus; Müller, Ingrid; Takele, Yegnasew
2017-01-01
Visceral leishmaniasis (VL) is a neglected tropical disease that affects the poorest communities and can cause substantial morbidity and mortality. Visceral leishmaniasis is characterized by the presence of Leishmania parasites in the spleen, liver and bone marrow, hepatosplenomegaly, pancytopenia, prolonged fever, systemic inflammation and low body mass index (BMI). The factors impacting on the severity of VL are poorly characterized. Here we performed a cross-sectional study to assess whether co-infection of VL patients with intestinal parasites influences disease severity, assessed with clinical and haematological data, inflammation, cytokine profiles and BMI. Data from VL patients was similar to VL patients co-infected with intestinal parasites, suggesting that co-infection of VL patients with intestinal parasites does not alter disease severity. PMID:28732017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauly, Markus; Hake, Sarah
2013-10-31
The objectives of this program are to 1) characterize novel maize mutants with altered cell walls for enhanced biorefinery characteristics and 2) find quantitative trait loci (QTLs) related to biorefinery characteristics by taking advantage of the genetic diversity of maize. As a result a novel non-transgenic maize plant (cal1) has been identified, whose stover (leaves and stalk) contain more glucan in their walls leading to a higher saccharification yield, when subjected to a standard enzymatic digestion cocktail. Stacking this trait with altered lignin mutants yielded evene higher saccharification yields. Cal-1 mutants do not show a loss of kernel and ormore » biomass yield when grown in the field . Hence, cal1 biomass provides an excellent feedstock for the biofuel industry.« less
Li, Xiaojuan; Guo, Chengjin; Gu, Juntao; Duan, Weiwei; Zhao, Miao; Ma, Chunying; Du, Xiaoming; Lu, Wenjing; Xiao, Kai
2014-02-01
Establishing crop cultivars with strong tolerance to P and N deprivation, high salinity, and drought is an effective way to improve crop yield and promote sustainable agriculture worldwide. A vacuolar H+-pyrophosphatase (V-H+-PPase) gene in wheat (TaVP) was functionally characterized in this study. TaVP cDNA is 2586-bp long and encodes a 775-amino-acid polypeptide that contains 10 conserved membrane-spanning domains. Transcription of TaVP was upregulated by inorganic phosphate (Pi) and N deprivation, high salinity, and drought. Transgene analysis revealed that TaVP overexpression improved plant growth under normal conditions and specifically under Pi and N deprivation stresses, high salinity, and drought. The improvement of growth of the transgenic plants was found to be closely related to elevated V-H+-PPase activities in their tonoplasts and enlarged root systems, which possibly resulted from elevated expression of auxin transport-associated genes. TaVP-overexpressing plants showed high dry mass, photosynthetic efficiencies, antioxidant enzyme activities, and P, N, and soluble carbohydrate concentrations under various growth conditions, particularly under the stress conditions. The transcription of phosphate and nitrate transporter genes was not altered in TaVP-overexpressing plants compared with the wild type, suggesting that high P and N concentrations regulated by TaVP were caused by increased root absorption area instead of alteration of Pi and NO3- acquisition kinetics. TaVP is important in the tolerance of multiple stresses and can serve as a useful genetic resource to improve plant P- and N-use efficiencies and to increase tolerance to high salinity and drought.
Associations of stream health to altered flow and water temperature in the Sierra Nevada, California
Carlisle, Daren M.; S. Mark Nelson,; May, Jason
2016-01-01
Alteration of streamflow and thermal conditions may adversely affect lotic invertebrate communities, but few studies have assessed these phenomena using indicators that control for the potentially confounding influence of natural variability. We designed a study to assess how flow and thermal alteration influence stream health – as indicated by the condition of invertebrate communities. We studied thirty streams in the Sierra Nevada, California, that span a wide range of hydrologic modification due to storage reservoirs and hydroelectric diversions. Daily water temperature and streamflows were monitored, and basic chemistry and habitat conditions were characterized when invertebrate communities were sampled. Streamflow alteration, thermal alteration, and invertebrate condition were quantified by predicting site-specific natural expectations using statistical models developed using data from regional reference sites. Monthly flows were typically depleted (relative to natural expectations) during fall, winter, and spring. Most hydrologically altered sites experienced cooled thermal conditions in summer, with mean daily temperatures as much 12 °C below natural expectations. The most influential predictor of invertebrate community condition was the degree of alteration of March flows, which suggests that there are key interactions between hydrological and biological processes during this month in Sierra Nevada streams. Thermal alteration was also an important predictor – particularly at sites with the most severe hydrological alteration.
Zhou, Peng; Hummel, Alyssa D.; Pywell, Cameron M.; Dong, X. Charlie; Duffield, Giles E.
2014-01-01
Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated that Id2 null mice have altered expression of circadian genes involved in lipid metabolism, altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue. Here we further characterized the Id2−/− mouse metabolic phenotype in a sex-specific context and under low and high fat diets, and examined metabolic and endocrine parameters associated with lipid and glucose metabolism. Under the low-fat diet Id2−/− mice showed decreased weight gain, reduced gonadal fat mass, and a lower survival rate. Under the high-fat diet, body weight and gonadal fat gain of Id2−/− male mice was comparable to control mice and survival rate improved markedly. Furthermore, the high-fat diet treated Id2−/− male mice lost the enhanced glucose tolerance feature observed in the other Id2−/− groups, and there was a sex-specific difference in white adipose tissue storage of Id2−/− mice. Additionally, a distinct pattern of hepatic lipid accumulation was observed in Id2−/− males: low lipids on the low-fat diet and steatosis on the high-fat diet. In summary, these data provides valuable insights into the impact of Id2 deficiency on metabolic homeostasis of mice in a sex-specific manner. PMID:25108156
Gajardo, Karina; Rodiles, Ana; Kortner, Trond M; Krogdahl, Åshild; Bakke, Anne Marie; Merrifield, Daniel L; Sørum, Henning
2016-08-03
Gut health challenges, possibly related to alterations in gut microbiota, caused by plant ingredients in the diets, cause losses in Atlantic salmon production. To investigate the role of the microbiota for gut function and health, detailed characterization of the gut microbiota is needed. We present the first in-depth characterization of salmon gut microbiota based on high-throughput sequencing of the 16S rRNA gene's V1-V2 region. Samples were taken from five intestinal compartments: digesta from proximal, mid and distal intestine and of mucosa from mid and distal intestine of 67.3 g salmon kept in seawater (12-14 °C) and fed a commercial diet for 4 weeks. Microbial richness and diversity differed significantly and were higher in the digesta than the mucosa. In mucosa, Proteobacteria dominated the microbiota (90%), whereas in digesta both Proteobacteria (47%) and Firmicutes (38%) showed high abundance. Future studies of diet and environmental impacts on gut microbiota should therefore differentiate between effects on mucosa and digesta in the proximal, mid and the distal intestine. A core microbiota, represented by 22 OTUs, was found in 80% of the samples. The gut microbiota of Atlantic salmon showed similarities with that of mammals.
Rollinson, Andrew N; Williams, Orla
2016-05-01
Samples of torrefied wood pellet produced by low-temperature microwave pyrolysis were tested through a series of experiments relevant to present and near future waste to energy conversion technologies. Operational performance was assessed using a modern small-scale downdraft gasifier. Owing to the pellet's shape and surface hardness, excellent flow characteristics were observed. The torrefied pellet had a high energy density, and although a beneficial property, this highlighted the present inflexibility of downdraft gasifiers in respect of feedstock tolerance due to the inability to contain very high temperatures inside the reactor during operation. Analyses indicated that the torrefaction process had not significantly altered inherent kinetic properties to a great extent; however, both activation energy and pre-exponential factor were slightly higher than virgin biomass from which the pellet was derived. Thermogravimetric analysis-derived reaction kinetics (CO2 gasification), bomb calorimetry, proximate and ultimate analyses, and the Bond Work Index grindability test provided a more comprehensive characterization of the torrefied pellet's suitability as a fuel for gasification and also other combustion applications. It exhibited significant improvements in grindability energy demand and particle size control compared to other non-treated and thermally treated biomass pellets, along with a high calorific value, and excellent resistance to water.
Rollinson, Andrew N.; Williams, Orla
2016-01-01
Samples of torrefied wood pellet produced by low-temperature microwave pyrolysis were tested through a series of experiments relevant to present and near future waste to energy conversion technologies. Operational performance was assessed using a modern small-scale downdraft gasifier. Owing to the pellet's shape and surface hardness, excellent flow characteristics were observed. The torrefied pellet had a high energy density, and although a beneficial property, this highlighted the present inflexibility of downdraft gasifiers in respect of feedstock tolerance due to the inability to contain very high temperatures inside the reactor during operation. Analyses indicated that the torrefaction process had not significantly altered inherent kinetic properties to a great extent; however, both activation energy and pre-exponential factor were slightly higher than virgin biomass from which the pellet was derived. Thermogravimetric analysis-derived reaction kinetics (CO2 gasification), bomb calorimetry, proximate and ultimate analyses, and the Bond Work Index grindability test provided a more comprehensive characterization of the torrefied pellet's suitability as a fuel for gasification and also other combustion applications. It exhibited significant improvements in grindability energy demand and particle size control compared to other non-treated and thermally treated biomass pellets, along with a high calorific value, and excellent resistance to water. PMID:27293776
Radiation in controlled environments: influence of lamp type and filter material
NASA Technical Reports Server (NTRS)
Bubenheim, D. L.; Bugbee, B.; Salisbury, F. B.
1988-01-01
Radiation in controlled environments was characterized using fluorescent and various high-intensity-discharge (HID) lamps, including metal halide, low-pressure sodium, and high-pressure sodium as the radiation source. The effects of water, glass, or Plexiglas filters on radiation were determined. Photosynthetic photon flux (PPF, 400 to 700 nm), spectra (400 to 1000 nm), shortwave radiation (285-2800 nm), and total radiation (300 to 100,000 nm) were measured, and photosynthetically active radiation (PAR, 400 to 700 nm) and longwave radiation (2800 to 100,000 nm) were calculated. Measurement of PPF alone was not an adequate characterization of the radiation environment. Total radiant flux varied among lamp types at equal PPF. HID lamps provided a lower percentage of longwave radiation than fluorescent lamps, but, when HID lamps provided PPF levels greater than that possible with fluorescent lamps, the amount of longwave radiation was high. Water was the most effective longwave radiation filter. Glass and Plexiglas similarly filtered longwave more than shortwave radiation, but transmission of nonphotosynthetic shortwave radiation was less with Plexiglas than glass. The filter materials tested would not be expected to influence photomorphogenesis because radiation in the action spectrum of phytochrome was not altered, but this may not be the only pigment involved.
NASA Astrophysics Data System (ADS)
Abdulkadir, Yahya Ali; Eritro, Tigistu Haile
2017-09-01
Electrical resistivity imaging and magnetic surveys were carried out at Gergedi thermal springs, located in the Main Ethiopian Rift, to characterize the geothermal condition of the area. The area is geologically characterized by alluvial and lacustrine deposits, basaltic lava, ignimbrites, and rhyolites. The prominent structural feature in this part of the Main Ethiopian Rift, the SW -NE trending structures of the Wonji Fault Belt System, crosse over the study area. Three lines of imaging data and numerous magnetic data, encompassing the active thermal springs, were collected. Analysis of the geophysical data shows that the area is covered by low resistivity response regions at shallow depths which resulted from saline moisturized soil subsurface horizon. Relatively medium and high resistivity responses resulting from the weathered basalt, rhyolites, and ignimbrites are also mapped. Qualitative interpretation of the magnetic data shows the presence of structures that could act as pathways for heat and fluids manifesting as springs and also characterize the degree of thermal alteration of the area. Results from the investigations suggest that the Gergedi thermal springs area is controlled by fault systems oriented parallel and sub-parallel to the main tectonic lines of the Main Ethiopian Rift.
Töpfer, Nadine; Caldana, Camila; Grimbs, Sergio; Willmitzer, Lothar; Fernie, Alisdair R.; Nikoloski, Zoran
2013-01-01
Understanding metabolic acclimation of plants to challenging environmental conditions is essential for dissecting the role of metabolic pathways in growth and survival. As stresses involve simultaneous physiological alterations across all levels of cellular organization, a comprehensive characterization of the role of metabolic pathways in acclimation necessitates integration of genome-scale models with high-throughput data. Here, we present an integrative optimization-based approach, which, by coupling a plant metabolic network model and transcriptomics data, can predict the metabolic pathways affected in a single, carefully controlled experiment. Moreover, we propose three optimization-based indices that characterize different aspects of metabolic pathway behavior in the context of the entire metabolic network. We demonstrate that the proposed approach and indices facilitate quantitative comparisons and characterization of the plant metabolic response under eight different light and/or temperature conditions. The predictions of the metabolic functions involved in metabolic acclimation of Arabidopsis thaliana to the changing conditions are in line with experimental evidence and result in a hypothesis about the role of homocysteine-to-Cys interconversion and Asn biosynthesis. The approach can also be used to reveal the role of particular metabolic pathways in other scenarios, while taking into consideration the entirety of characterized plant metabolism. PMID:23613196
NASA Astrophysics Data System (ADS)
Matosziuk, L.; Gallo, A.; Hatten, J. A.; Heckman, K. A.; Nave, L. E.; Sanclements, M.; Strahm, B. D.; Weiglein, T.
2017-12-01
Wildfire can dramatically affect the quantity and quality of soil organic matter (SOM), producing thermally altered organic material such as pyrogenic carbon (PyC) and polyaromatic hydrocarbons (PAHs). The movement of this thermally altered material through terrestrial and aquatic ecosystems can differ from that of unburned SOM, with far-reaching consequences for soil carbon cycling and water quality. Unfortunately, due to the rapid ecological changes following fire and the lack of robust pre-fire controls, the cycling of fire-altered carbon is still poorly understood. In December 2016, the Chimney Tops 2 fire in Great Smoky Mountains National Park burned over co-located terrestrial and aquatic NEON sites. We have leveraged the wealth of pre-fire data at these sites (chemical, physical, and microbial characterization of soils, continuous measurements of both soil and stream samples, and five soil cores up to 110 cm in depth) to conduct a thorough study of the movement of fire-altered organic matter through terrestrial and aquatic ecosystems. Stream samples have been collected weekly beginning 5 weeks post-fire. Grab samples of soil were taken at discrete time points in the first two months after the fire. Eight weeks post-fire, a second set of cores was taken and resin lysimeters installed at three different depths. A third set of cores and grab samples will be taken 8-12 months after the fire. In addition to routine soil characterization techniques, solid samples from cores and grab samples at all time points will be analyzed for PyC and PAHs. To determine the effect of fire on dissolved organic matter (DOM), hot water extracts of these soil samples, as well as the stream samples and lysimeter samples, will also be analyzed for PyC and PAHs. Selected samples will be analyzed by 1D- and 2D-NMR to further characterize the chemical composition of DOM. This extensive investigation of the quantity and quality of fire-altered organic material at discrete time points will provide insight into the production and cycling of thermally-altered SOM and DOM. We hypothesize that PyC will be an important source of SOM to surface mineral soil horizons, and that the quantity of DOM will increase after fire, providing a rapid pulse of C to deep soils and aquatic systems.
Fan, Xingjun; Song, Jianzhong; Peng, Ping'an
2013-11-01
Humic-like substances (HULIS) are significant constituents of aerosols, and the isolation and characterization of HULIS by solid-phase extraction methods are dependent on the sorbents used. In this study, we used the following five methods: ENVI-18, HLB-M, HLB-N, XAD-8 and DEAE, to isolate atmospheric HULIS at an urban site. Then we conducted a comparative investigation of the HULIS chemical characteristics by means of elemental analysis, Fourier transform infrared spectroscopy, (1)H nuclear magnetic resonance spectroscopy and off-line thermochemolysis with tetramethylammonium hydroxide. The results indicate that HULIS isolated using different methods show many similarities in chemical composition and structure. Some differences were however also observed between the five isolated HULIS: HULISHLB-M contains a relatively high content of OCH group, compared to HULISENVI-18 and HULISXAD-8; HULISXAD-8 contains a relatively high content of hydrophobic and aromatic components, compared to HULISENVI-18 and HULISHLB-M; HULISDEAE contains the highest content of aromatic functional groups, as inferred by (1)H NMR spectra, but a great amount of salts generally present in the HULISDEAE and thereby limited the choices for characterizing the materials (i.e., elemental analysis and TMAH thermochemolysis); HULISHLB-N has relatively high levels of H and N, a high N/C atomic ratio, and includes N-containing functional groups, which suggests that it has been altered by 2% ammonia introduced in the eluents. In summary, we found that ENVI-18, HLB-M, and XAD-8 are preferable methods for isolation and characterization of HULIS in atmospheric aerosols. These results also suggest that caution is required when applying DEAE and HLB-N isolating methods for characterizing atmospheric HULIS. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Campbell, Kirby R.; Campagnola, Paul J.
2017-11-01
The collagen architecture in all human ovarian cancers is substantially remodeled, where these alterations are manifested in different fiber widths, fiber patterns, and fibril size and packing. Second harmonic generation (SHG) microscopy has differentiated normal tissues from high-grade serous (HGS) tumors with high accuracy; however, the classification between low-grade serous, endometrioid, and benign tumors was less successful. We postulate this is due to known higher genetic variation in these tissues relative to HGS tumors, which are genetically similar, and this results in more heterogeneous collagen remodeling in the respective matrix. Here, we examine fiber widths and SHG emission intensity and directionality locally within images (e.g., 10×10 microns) and show that normal tissues and HGS tumors are more uniform in fiber properties as well as in fibril size and packing than the other tissues. Moreover, these distributions are in good agreement with phase matching considerations relating SHG emission directionality and intensity. The findings show that in addition to average collagen assembly properties the intrinsic heterogeneity must also be considered as another aspect of characterization. These local analyses showed differences not shown in pure intensity-based image analyses and may provide further insight into disease etiology of the different tumor subtypes.
NASA Astrophysics Data System (ADS)
Großerueschkamp, Frederik; Bracht, Thilo; Diehl, Hanna C.; Kuepper, Claus; Ahrens, Maike; Kallenbach-Thieltges, Angela; Mosig, Axel; Eisenacher, Martin; Marcus, Katrin; Behrens, Thomas; Brüning, Thomas; Theegarten, Dirk; Sitek, Barbara; Gerwert, Klaus
2017-03-01
Diffuse malignant mesothelioma (DMM) is a heterogeneous malignant neoplasia manifesting with three subtypes: epithelioid, sarcomatoid and biphasic. DMM exhibit a high degree of spatial heterogeneity that complicates a thorough understanding of the underlying different molecular processes in each subtype. We present a novel approach to spatially resolve the heterogeneity of a tumour in a label-free manner by integrating FTIR imaging and laser capture microdissection (LCM). Subsequent proteome analysis of the dissected homogenous samples provides in addition molecular resolution. FTIR imaging resolves tumour subtypes within tissue thin-sections in an automated and label-free manner with accuracy of about 85% for DMM subtypes. Even in highly heterogeneous tissue structures, our label-free approach can identify small regions of interest, which can be dissected as homogeneous samples using LCM. Subsequent proteome analysis provides a location specific molecular characterization. Applied to DMM subtypes, we identify 142 differentially expressed proteins, including five protein biomarkers commonly used in DMM immunohistochemistry panels. Thus, FTIR imaging resolves not only morphological alteration within tissue but it resolves even alterations at the level of single proteins in tumour subtypes. Our fully automated workflow FTIR-guided LCM opens new avenues collecting homogeneous samples for precise and predictive biomarkers from omics studies.
Großerueschkamp, Frederik; Bracht, Thilo; Diehl, Hanna C; Kuepper, Claus; Ahrens, Maike; Kallenbach-Thieltges, Angela; Mosig, Axel; Eisenacher, Martin; Marcus, Katrin; Behrens, Thomas; Brüning, Thomas; Theegarten, Dirk; Sitek, Barbara; Gerwert, Klaus
2017-03-30
Diffuse malignant mesothelioma (DMM) is a heterogeneous malignant neoplasia manifesting with three subtypes: epithelioid, sarcomatoid and biphasic. DMM exhibit a high degree of spatial heterogeneity that complicates a thorough understanding of the underlying different molecular processes in each subtype. We present a novel approach to spatially resolve the heterogeneity of a tumour in a label-free manner by integrating FTIR imaging and laser capture microdissection (LCM). Subsequent proteome analysis of the dissected homogenous samples provides in addition molecular resolution. FTIR imaging resolves tumour subtypes within tissue thin-sections in an automated and label-free manner with accuracy of about 85% for DMM subtypes. Even in highly heterogeneous tissue structures, our label-free approach can identify small regions of interest, which can be dissected as homogeneous samples using LCM. Subsequent proteome analysis provides a location specific molecular characterization. Applied to DMM subtypes, we identify 142 differentially expressed proteins, including five protein biomarkers commonly used in DMM immunohistochemistry panels. Thus, FTIR imaging resolves not only morphological alteration within tissue but it resolves even alterations at the level of single proteins in tumour subtypes. Our fully automated workflow FTIR-guided LCM opens new avenues collecting homogeneous samples for precise and predictive biomarkers from omics studies.
Carelli-Alinovi, Cristiana; Tellone, Ester; Russo, Anna Maria; Ficarra, Silvana; Pirolli, Davide; Galtieri, Antonio; Giardina, Bruno; Misiti, Francesco
2014-01-01
Palytoxin (PTX), a marine toxin, represents an increasing hazard for human health. Despite its high toxicity for biological systems, the mechanisms triggered by PTX, are not well understood. The high affinity of PTX for erythrocyte Na(+)/K(+)-ATPase pump is largely known, and it indicates PTX as a sensitive tool to characterize the signal transducer role for Na(+)/K(+)-ATPase pump. Previously, it has been reported that in red blood cells (RBC), probably via a signal transduction generated by the formation of a PTX-Na(+)/K(+)-ATPase complex, PTX alters band 3 functions and glucose metabolism. The present study addresses the question of which other signaling pathways are regulated by Na(+)/K(+)-ATPase in RBC. Here it has been evidenced that PTX following its interaction with Na(+)/K(+)-ATPase pump, alters RBC morphology and this event is correlated to decreases by 30% in nitrites and nitrates levels, known as markers of plasma membrane eNOS activity. Orthovanadate (OV), an antagonist of PTX binding to Na(+)/K(+)-ATPase pump, was able to reverse the effects elicited by PTX. Finally, current investigation firstly suggests that Na(+)/K(+)-ATPase pump, following its interaction with PTX, triggers a signal transduction involved in NO metabolism regulation.
Cox, David P.; Drury, Bertram E.; Gould, Timothy R.; Kavanagh, Terrance J.; Paulsen, Michael H.; Sheppard, Lianne; Simpson, Christopher D.; Stewart, James A.; Larson, Timothy V.; Kaufman, Joel D.
2014-01-01
Epidemiologic studies have linked diesel exhaust (DE) to cardiovascular and respiratory morbidity and mortality, as well as lung cancer. DE composition is known to vary with many factors, although it is unclear how this influences toxicity. We generated eight DE atmospheres by applying a 2×2×2 factorial design and altering three parameters in a controlled exposure facility: (1) engine load (27 vs 82 %), (2) particle aging (residence time ~5 s vs ~5 min prior to particle collection), and (3) oxidation (with or without ozonation during dilution). Selected exposure concentrations of both diesel exhaust particles (DEPs) and DE gases, DEP oxidative reactivity via DTT activity, and in vitro DEP toxicity in murine endothelial cells were measured for each DE atmosphere. Cell toxicity was assessed via measurement of cell proliferation (colony formation assay), cell viability (MTT assay), and wound healing (scratch assay). Differences in DE composition were observed as a function of engine load. The mean 1-nitropyrene concentration was 15 times higher and oxidative reactivity was two times higher for low engine load versus high load. There were no substantial differences in measured toxicity among the three DE exposure parameters. These results indicate that alteration of applied engine load shifts the composition and can modify the biological reactivity of DE. While engine conditions did not affect the selected in vitro toxicity measures, the change in oxidative reactivity suggests that toxicological studies with DE need to take into account engine conditions in characterizing biological effects. PMID:26539254
Huang, Yu; Mao, Yang; Buczek-Thomas, Jo Ann; Nugent, Matthew A.; Zaia, Joseph
2014-01-01
Sulfs are extracellular endosulfatases that selectively remove the 6-O-sulfate groups from cell surface heparan sulfate (HS) chain. By altering the sulfation at these particular sites, Sulfs function to remodel HS chains. As a result of the remodeling activity, HSulf2 regulates a multitude of cell-signaling events that depend on interactions between proteins and HS. Previous efforts to characterize the substrate specificity of human Sulfs (HSulfs) focused on the analysis of HS disaccharides and synthetic repeating units. In this study, we characterized the substrate preferences of human HSulf2 using HS oligosaccharides with various lengths and sulfation degrees from several naturally occurring HS sources by applying liquid chromatography mass spectrometry based glycomics methods. The results showed that HSulf2 preferentially digests highly sulfated HS oligosaccharides with zero acetyl groups and this preference is length dependent. In terms of length of oligosaccharides, HSulf2 digestion induced more sulfation decrease on DP6 (DP: degree of polymerization) compared to DP2, DP4 and DP8. In addition, the HSulf2 preferentially digests the oligosaccharide domain located at the non-reducing end (NRE) of the HS and heparin chain. In addition, the HSulf2 digestion products were altered only for specific isomers. HSulf2 treated NRE oligosaccharides also showed greater decrease in cell proliferation than those from internal domains of the HS chain. After further chromatographic separation, we identified the three most preferred unsaturated hexasaccharide for HSulf2. PMID:25127119
Pizzini, Francesca B; Farace, Paolo; Manganotti, Paolo; Zoccatelli, Giada; Bongiovanni, Luigi G; Golay, Xavier; Beltramello, Alberto; Osculati, Antonio; Bertini, Giuseppe; Fabene, Paolo F
2013-07-01
Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Romano, Nunzio; De Falco, Melania; Speranza, Giuseppe; Tarolli, Paolo
2015-04-01
Mediterranean environments are characterized by a climatic regime with a strong seasonal variability. More uniform precipitations usually occur during the winter season, whereas short and very intense rainfalls occur during the fall and early spring that, in turn, trigger surface runoff and severe soil erosion phenomena. When this typical seasonality interacts with a territory substantially altered by anthropic actions, conditions can easily arise for environmental imbalances with serious risks for flash floods and landslides. Many of the degradation dynamics recorded during the last decades in western countries are also the result of the socio-economic changes after the II world war which yielded land-use changes with the urban sprawl process and the increase in human settlements of the natural environments. We are also witnessing a change in the perception of the natural environment and the relevant values. This study benefits from the availability of historical maps and rainfall time series to analyze the profound landscape changes occurred during the last century along the hillsides of the Somma-Vesuvio volcano, in the renowned piedmont area located at east of Napoli city. We are specifically interested in the changes and disturbances made to the hydrographic network to evaluate the increasing potential risks for flood and landslides along these hillslopes characterized by the presence of highly vulnerable volcanic soils, the construction of roads, and other negative alterations of the natural overland flow patterns.
Responses of Saccharomyces cerevisiae Strains from Different Origins to Elevated Iron Concentrations
Martínez-Garay, Carlos Andrés; de Llanos, Rosa; Romero, Antonia María; Martínez-Pastor, María Teresa
2016-01-01
Iron is an essential micronutrient for all eukaryotic organisms. However, the low solubility of ferric iron has tremendously increased the prevalence of iron deficiency anemia, especially in women and children, with dramatic consequences. Baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, a fermentative microorganism, and a feed supplement. In this report, we explore the genetic diversity of 123 wild and domestic strains of S. cerevisiae isolated from different geographical origins and sources to characterize how yeast cells respond to elevated iron concentrations in the environment. By using two different forms of iron, we selected and characterized both iron-sensitive and iron-resistant yeast strains. We observed that when the iron concentration in the medium increases, iron-sensitive strains accumulate iron more rapidly than iron-resistant isolates. We observed that, consistent with excess iron leading to oxidative stress, the redox state of iron-sensitive strains was more oxidized than that of iron-resistant strains. Growth assays in the presence of different oxidative reagents ruled out that this phenotype was due to alterations in the general oxidative stress protection machinery. It was noteworthy that iron-resistant strains were more sensitive to iron deficiency conditions than iron-sensitive strains, which suggests that adaptation to either high or low iron is detrimental for the opposite condition. An initial gene expression analysis suggested that alterations in iron homeostasis genes could contribute to the different responses of distant iron-sensitive and iron-resistant yeast strains to elevated environmental iron levels. PMID:26773083
Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael
2008-04-16
The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.
Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael
2008-01-01
Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains. PMID:18412983
Short Range-Ordered Minerals: Insight into Aqueous Alteration Processes on Mars
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Morris, R. V.; Golden, D. C.
2011-01-01
Short range-ordered (SRO) aluminosilicates (e.g., allophane) and nanophase ferric oxides (npOx) are common SRO minerals derived during aqueous alteration of basaltic materials. NpOx refers to poorly crystalline or amorphous alteration products that can be any combination of superparamagnetic hematite and/or goethite, akaganeite, schwertmannite, ferrihydrite, iddingsite, and nanometer-sized ferric oxide particles that pigment palagonitic tephra. Nearly 30 years ago, SRO phases were suggested as alteration phases on Mars based on similar spectral properties for altered basaltic tephra on the slopes of Mauna Kea in Hawaii and Martian bright regions measured by Earth-based telescopes. Detailed characterization of altered basaltic tephra on Mauna Kea have identified a variety of alteration phases including allophane, npOx, hisingerite, jarosite, alunite, hematite, goethite, ferrihydrite, halloysite, kaolinite, smectite, and zeolites. The presence of npOx and other Fe-bearing minerals (jarosite, hematite, goethite) was confirmed by the M ssbauer Spectrometer onboard the Mars Exploration Rovers. Although the presence of allophane has not been definitely identified on Mars robotic missions, chemical analysis by the Spirit and Opportunity rovers and thermal infrared spectral orbital measurements suggest the presence of allophane or allophane-like phases on Mars. SRO phases form under a variety of environmental conditions on Earth ranging from cold and arid to warm and humid, including hydrothermal conditions. The formation of SRO aluminosilicates such as allophane (and crystalline halloysite) from basaltic material is controlled by several key factors including activity of water, extent of leaching, Si activity in solution, and available Al. Generally, a low leaching index (e.g., wet-dry cycles) and slightly acidic to alkaline conditions are necessary. NpOx generally form under aqueous oxidative weathering conditions, although thermal oxidative alteration may occasional be involved. The style of aqueous alteration (hydrolytic vs. acid sulfate) impacts which phases will form (e.g., oxides, oxysulfates, and oxyhydroxides). Knowledge on the formation processes of SRO phases in basaltic materials on Earth has allowed significant enhancement in our understanding of the aqueous processes at work on Mars. The 2011 Mars Science Laboratory (MSL) will provide an instrument suite that should improve our understanding of the mineralogical and chemical compositions of SRO phases. CheMin is an X-ray diffraction instrument that may provide broad X-ray diffraction peaks for SRO phases; e.g., broad peaks around 0.33 and 0.23 nm for allophane. Sample Analysis at Mars (SAM) heats samples and detects evolved gases of volatile-bearing phases including SRO phases (i.e., carbonates, sulfates, hydrated minerals). The Alpha Particle X-ray Spectrometer (APXS) and ChemCam element analyzers will provide chemical characterization of samples. The identification of SRO phases in surface materials on MSL will be challenging due to their nanocrystalline properties; their detection and identification will require utilizing the MSL instrument suite in concert. Ultimately, sample return missions will be required to definitively identify and fully characterize SRO minerals with state-of-the-art laboratory instrumentation back on Earth.
Liu, Juan; Zhang, XueJiao; Zhang, FangPeng; Hong, Ni; Wang, GuoPing; Wang, Aiming; Wang, LiPing
2015-11-16
MicroRNAs (miRNAs) have functions in diverse biological processes such as growth, signal transduction, disease resistance, and stress responses in plants. Thermotherapy is an effective approach for elimination of viruses from fruit trees. However, the role of miRNAs in this process remains elusive. Previously, we showed that high temperature treatment reduces the titers of Apple stem grooving virus (ASGV) from the tips of in vitro-grown Pyrus pyrifolia plants. In this study, we identified high temperature-altered pear miRNAs using the next generation sequencing technology, and futher molecularly characterized miRNA-mediated regulaton of target gene expression in the meristem tip and base tissues of in vitro-grown, ASGV-infected pear shoots under different temperatures. Using in vitro-grown P. pyrifolia shoot meristem tips infected with ASGV, a total of 22,592,997 and 20,411,254 clean reads were obtained from Illumina high-throughput sequencing of small RNA libraries at 24 °C and 37 °C, respectively. We identified 149 conserved and 141 novel miRNAs. Seven conserved miRNAs and 77 novel miRNAs were differentially expressed at different temperatures. Target genes for differentially expressed known and novel miRNAs were predicted and functionally annotated. Gene Ontology (GO) analysis showed that high-ranking miRNA target genes were involved in metabolic processes, responses to stress, and signaling, indicating that these high temperature-responsive miRNAs have functions in diverse gene regulatory networks. Spatial expression patterns of the miRNAs and their target genes were found to be expressed in shoot tip and base tissues by qRT-PCR. In addition, high temperature reduced viral titers in the shoot meristem tip, while negatively regulated miRNA-mediated target genes related to resistance disease defense and hormone signal transduction pathway were up-regulated in the P. pyrifolia shoot tip in response to high temperature. These results suggested that miRNAs may have important functions in the high temperature-dependent decrease of ASGV titer in in vitro-grown pear shoots. This is the first report of miRNAs differentially expressed at 24 °C and 37 °C in the meristem tip of pear shoots infected with ASGV. The results of this study provide valuable information for further exploration of the function of high temperature-altered miRNAs in suppressing viral infections in pear and other fruit trees.
Morrison, Thomas R.; Sikes, Robert W.; Melloni, Richard H.
2016-01-01
Syrian hamsters exposed to anabolic/androgenic steroids (AAS) during adolescence consistently show increased aggressive behavior across studies. Although the behavioral and anatomical profiles of AAS-induced alterations have been well characterized, there is a lack of data describing physiological changes that accompany these alterations. For instance, behavioral pharmacology and neuroanatomical studies show that AAS-induced changes in the vasopressin (AVP) neural system within the latero-anterior hypothalamus (LAH) interact with the serotonin (5HT) and dopamine (DA) systems to modulate aggression. To characterize the electrophysiological profile of the AAS aggression circuit, we recorded LAH neurons in adolescent male hamsters in vivo and microiontophoretically applied agonists and antagonists of aggressive behavior. The interspike interval (ISI) of neurons from AAS-treated animals correlated positively with aggressive behaviors, and adolescent AAS exposure altered parameters of activity in regular firing neurons while also changing the proportion of neuron types (i.e., bursting, regular, irregular). AAS treated animals had more responsive neurons that were excited by AVP application, while cells from control animals showed the opposite effect and were predominantly inhibited by AVP. Both DA D2 antagonists and 5HT increased the firing frequency of AVP responsive cells from AAS animals and dual application of AVP and D2 antagonists doubled the excitatory effect of AVP or D2 antagonist administration alone. These data suggest that multiple DA circuits in the LAH modulate AAS-induced aggressive responding. More broadly, these data show that multiple neurochemical interactions at the neurophysiological level are altered by adolescent AAS exposure. PMID:26691962
NASA Astrophysics Data System (ADS)
Shah, Amy T.; Cannon, Taylor M.; Higginbotham, Jim N.; Skala, Melissa C.
2016-02-01
Tumor heterogeneity poses challenges for devising optimal treatment regimens for cancer patients. In particular, subpopulations of cells can escape treatment and cause relapse. There is a need for methods to characterize tumor heterogeneity of treatment response. Cell metabolism is altered in cancer (Warburg effect), and cells use the autofluorescent cofactor NADH in numerous metabolic reactions. Previous studies have shown that microscopy measurements of NADH autofluorescence are sensitive to treatment response in breast cancer, and these techniques typically assess hundreds of cells per group. An alternative approach is flow cytometry, which measures fluorescence on a single-cell level and is attractive for characterizing tumor heterogeneity because it achieves high-throughput analysis and cell sorting in millions of cells per group. Current applications for flow cytometry rely on staining with fluorophores. This study characterizes flow cytometry measurements of NADH autofluorescence in breast cancer cells. Preliminary results indicate flow cytometry of NADH is sensitive to cyanide perturbation, which inhibits oxidative phosphorylation, in nonmalignant MCF10A cells. Additionally, flow cytometry is sensitive to higher NADH intensity for HER2-positive SKBr3 cells compared with triple-negative MDA-MB-231 cells. These results agree with previous microscopy studies. Finally, a mixture of SKBr3 and MDA-MB-231 cells were sorted into each cell type using NADH intensity. Sorted cells were cultured, and microscopy validation showed the expected morphology for each cell type. Ultimately, flow cytometry could be applied to characterize tumor heterogeneity based on treatment response and sort cell subpopulations based on metabolic profile. These achievements could enable individualized treatment strategies and improved patient outcomes.
Spectral properties and ASTER-based alteration mapping of Masahim volcano facies, SE Iran
NASA Astrophysics Data System (ADS)
Tayebi, Mohammad H.; Tangestani, Majid H.; Vincent, Robert K.; Neal, Devin
2014-10-01
This study applies Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and the Mixture Tuned Matched Filtering (MTMF) algorithm to map the sub-pixel distribution of alteration minerals associated with the Masahim volcano, SE Iran for understanding the spatial relationship between alteration minerals and volcano facies. Investigations of the alteration mineralogy were conducted using field-spectroscopy, X-ray diffraction (XRD) analysis and ASTER Short Wave Infrared (SWIR) spectral data. In order to spectrally characterize the stratovolcano deposits, lithological units and alteration minerals, the volcano was divided into three facies: the Central, Proximal, and Medial-distal facies. The reflectance spectra of rock samples show absorption features of a number of minerals including white mica, kaolinite, montmorillonite, illite, goethite, hematite, jarosite, opal, and chlorite. The end-members of key alteration minerals including sericite (phyllic zone), kaolinite (argillic zone) and chlorite (propylitic zone) were extracted from imagery using the Pixel Purity Index (PPI) method and were used to map alteration minerals. Accuracy assessment through field observations was used to verify the fraction maps. The results showed that most prominent altered rocks situated at the central facies of volcano. The alteration minerals were discriminated with the coefficient of determination (R2) of 0.74, 0.81, and 0.68 for kaolinite, sericite, and chlorite, respectively. The results of this study have the potential to refine the map of alteration zones in the Masahim volcano.
NASA Astrophysics Data System (ADS)
Black, S.; Hynek, B. M.; Kierein-Young, K. S.; Avard, G.; Alvarado-Induni, G.
2015-12-01
Proper characterization of mineralogy is an essential part of geologic interpretation. This process becomes even more critical when attempting to interpret the history of a region remotely, via satellites and/or landed spacecraft. Orbiters and landed missions to Mars carry with them a wide range of analytical tools to aid in the interpretation of Mars' geologic history. However, many instruments make a single type of measurement (e.g., APXS: elemental chemistry; XRD: mineralogy), and multiple data sets must be utilized to develop a comprehensive understanding of a sample. Hydrothermal alteration products often exist in intimate mixtures, and vary widely across a site due to changing pH, temperature, and fluid/gas chemistries. These characteristics require that we develop a detailed understanding regarding the possible mineral mixtures that may exist, and their detectability in different instrument data sets. This comparative analysis study utilized several analytical methods on existing or planned Mars rovers (XRD Raman, LIBS, Mössbauer, and APXS) combined with additional characterization (thin section, VNIR, XRF, SEM-EMP) to develop a comprehensive suite of data for hydrothermal alteration products collected from Poás and Turrialba volcanoes in Costa Rica. Analyzing the same samples across a wide range of instruments allows for direct comparisons of results, and identification of instrumentation "blind spots." This provides insight into the ability of in-situ analyses to comprehensively characterize sites on Mars exhibiting putative hydrothermal characteristics, such as the silica and sulfate deposits at Gusev crater [eg: Squyres et al., 2008], as well as valuable information for future mission planning and data interpretation. References: Squyres et al. (2008), Detection of Silica-Rich Deposits on Mars, Science, 320, 1063-1067, doi:10.1126/science.1155429.
Altered brain activation and connectivity during anticipation of uncertain threat in trait anxiety.
Geng, Haiyang; Wang, Yi; Gu, Ruolei; Luo, Yue-Jia; Xu, Pengfei; Huang, Yuxia; Li, Xuebing
2018-06-08
In the research field of anxiety, previous studies generally focus on emotional responses following threat. A recent model of anxiety proposes that altered anticipation prior to uncertain threat is related with the development of anxiety. Behavioral findings have built the relationship between anxiety and distinct anticipatory processes including attention, estimation of threat, and emotional responses. However, few studies have characterized the brain organization underlying anticipation of uncertain threat and its role in anxiety. In the present study, we used an emotional anticipation paradigm with functional magnetic resonance imaging (fMRI) to examine the aforementioned topics by employing brain activation and general psychophysiological interactions (gPPI) analysis. In the activation analysis, we found that high trait anxious individuals showed significantly increased activation in the thalamus, middle temporal gyrus (MTG), and dorsomedial prefrontal cortex (dmPFC), as well as decreased activation in the precuneus, during anticipation of uncertain threat compared to the certain condition. In the gPPI analysis, the key regions including the amygdala, dmPFC, and precuneus showed altered connections with distributed brain areas including the ventromedial prefrontal cortex (vmPFC), dorsolateral prefrontal cortex (dlPFC), inferior parietal sulcus (IPS), insula, para-hippocampus gyrus (PHA), thalamus, and MTG involved in anticipation of uncertain threat in anxious individuals. Taken together, our findings indicate that during the anticipation of uncertain threat, anxious individuals showed altered activations and functional connectivity in widely distributed brain areas, which may be critical for abnormal perception, estimation, and emotion reactions during the anticipation of uncertain threat. © 2018 Wiley Periodicals, Inc.
Zhai, Xiuhong; Malakhova, Margarita L; Pike, Helen M; Benson, Linda M; Bergen, H Robert; Sugár, István P; Malinina, Lucy; Patel, Dinshaw J; Brown, Rhoderick E
2009-05-15
Glycolipid transfer proteins (GLTPs) are small, soluble proteins that selectively accelerate the intermembrane transfer of glycolipids. The GLTP fold is conformationally unique among lipid binding/transfer proteins and serves as the prototype and founding member of the new GLTP superfamily. In the present study, changes in human GLTP tryptophan fluorescence, induced by membrane vesicles containing glycolipid, are shown to reflect glycolipid binding when vesicle concentrations are low. Characterization of the glycolipid-induced "signature response," i.e. approximately 40% decrease in Trp intensity and approximately 12-nm blue shift in emission wavelength maximum, involved various modes of glycolipid presentation, i.e. microinjection/dilution of lipid-ethanol solutions or phosphatidylcholine vesicles, prepared by sonication or extrusion and containing embedded glycolipids. High resolution x-ray structures of apo- and holo-GLTP indicate that major conformational alterations are not responsible for the glycolipid-induced GLTP signature response. Instead, glycolipid binding alters the local environment of Trp-96, which accounts for approximately 70% of total emission intensity of three Trp residues in GLTP and provides a stacking platform that aids formation of a hydrogen bond network with the ceramide-linked sugar of the glycolipid headgroup. The changes in Trp signal were used to quantitatively assess human GLTP binding affinity for various lipids including glycolipids containing different sugar headgroups and homogenous acyl chains. The presence of the glycolipid acyl chain and at least one sugar were essential for achieving a low-to-submicromolar dissociation constant that was only slightly altered by increased sugar headgroup complexity.
Zhai, Xiuhong; Malakhova, Margarita L.; Pike, Helen M.; Benson, Linda M.; Bergen, H. Robert; Sugár, István P.; Malinina, Lucy; Patel, Dinshaw J.; Brown, Rhoderick E.
2009-01-01
Glycolipid transfer proteins (GLTPs) are small, soluble proteins that selectively accelerate the intermembrane transfer of glycolipids. The GLTP fold is conformationally unique among lipid binding/transfer proteins and serves as the prototype and founding member of the new GLTP superfamily. In the present study, changes in human GLTP tryptophan fluorescence, induced by membrane vesicles containing glycolipid, are shown to reflect glycolipid binding when vesicle concentrations are low. Characterization of the glycolipid-induced “signature response,” i.e. ∼40% decrease in Trp intensity and ∼12-nm blue shift in emission wavelength maximum, involved various modes of glycolipid presentation, i.e. microinjection/dilution of lipid-ethanol solutions or phosphatidylcholine vesicles, prepared by sonication or extrusion and containing embedded glycolipids. High resolution x-ray structures of apo- and holo-GLTP indicate that major conformational alterations are not responsible for the glycolipid-induced GLTP signature response. Instead, glycolipid binding alters the local environment of Trp-96, which accounts for ∼70% of total emission intensity of three Trp residues in GLTP and provides a stacking platform that aids formation of a hydrogen bond network with the ceramide-linked sugar of the glycolipid headgroup. The changes in Trp signal were used to quantitatively assess human GLTP binding affinity for various lipids including glycolipids containing different sugar headgroups and homogenous acyl chains. The presence of the glycolipid acyl chain and at least one sugar were essential for achieving a low-to-submicromolar dissociation constant that was only slightly altered by increased sugar headgroup complexity. PMID:19270338
Yakovenko, Maria L.; Cherkasova, Elena A.; Rezapkin, Gennady V.; Ivanova, Olga E.; Ivanov, Alexander P.; Eremeeva, Tatyana P.; Baykova, Olga Y.; Chumakov, Konstantin M.; Agol, Vadim I.
2006-01-01
The Sabin oral poliovirus vaccine (OPV) readily undergoes changes in antigenic sites upon replication in humans. Here, a set of antigenically altered descendants of the three OPV serotypes (76 isolates) was characterized to determine the driving forces behind these changes and their biological implications. The amino acid residues of OPV derivatives that lie within or close to the known antigenic sites exhibited a marked tendency to be replaced by residues characteristic of homotypic wild polioviruses, and these changes may occur very early in OPV evolution. The specific amino acid alterations nicely correlated with serotype-specific changes in the reactivity of certain individual antigenic sites, as revealed by the recently devised monoclonal antibody-based enzyme-linked immunosorbent assay. In comparison to the original vaccine, small changes, if any, in the neutralizing capacity of human or rabbit sera were observed in highly diverged vaccine polioviruses of three serotypes, in spite of strong alterations of certain epitopes. We propose that the common antigenic alterations in evolving OPV strains largely reflect attempts to eliminate fitness-decreasing mutations acquired either during the original selection of the vaccine or already present in the parental strains. Variability of individual epitopes does not appear to be primarily caused by, or lead to, a significant immune evasion, enhancing only slightly, if at all, the capacity of OPV derivatives to overcome immunity in human populations. This study reveals some important patterns of poliovirus evolution and has obvious implications for the rational design of live viral vaccines. PMID:16501074
Evolution of interstellar organic compounds under asteroidal hydrothermal conditions
NASA Astrophysics Data System (ADS)
Vinogradoff, V.; Bernard, S.; Le Guillou, C.; Remusat, L.
2018-05-01
Carbonaceous chondrites (CC) contain a diversity of organic compounds. No definitive evidence for a genetic relationship between these complex organic molecules and the simple organic molecules detected in the interstellar medium (ISM) has yet been reported. One of the many difficulties arises from the transformations of organic compounds during accretion and hydrothermal alteration on asteroids. Here, we report results of hydrothermal alteration experiments conducted on a common constituent of interstellar ice analogs, Hexamethylenetetramine (HMT - C6H12N4). We submitted HMT to asteroidal hydrothermal conditions at 150 °C, for various durations (up to 31 days) and under alkaline pH. Organic products were characterized by gas chromatography mass spectrometry, infrared spectroscopy and synchrotron-based X-ray absorption near edge structure spectroscopy. Results show that, within a few days, HMT has evolved into (1) a very diverse suite of soluble compounds dominated by N-bearing aromatic compounds (> 150 species after 31 days), including for instance formamide, pyridine, pyrrole and their polymers (2) an aromatic and N-rich insoluble material that forms after only 7 days of experiment and then remains stable through time. The reaction pathways leading to the soluble compounds likely include HMT dissociation, formose and Maillard-type reactions, e.g. reactions of sugar derivatives with amines. The present study demonstrates that, if interstellar organic compounds such as HMT had been accreted by chondrite parent bodies, they would have undergone chemical transformations during hydrothermal alteration, potentially leading to the formation of high molecular weight insoluble organic molecules. Some of the diversity of soluble and insoluble organic compounds found in CC may thus result from asteroidal hydrothermal alteration.
NASA Technical Reports Server (NTRS)
Nguyen, A. N.; Keller, L. P.; Messenger, S.; Rahman, Z.
2016-01-01
Carbonaceous chondrites contain a mixture of solar system condensates, pre-solar grains, and primitive organic matter. Each of these materials record conditions and processes in different regions of the solar nebula, on the meteorite parent body, and beyond the solar system. Oxygen isotopic studies of meteorite components can trace interactions of distinct oxygen isotopic reservoirs in the early solar system and secondary alteration processes. The O isotopic compositions of the earliest solar system condensates fall along a carbonaceous chondrite anhydrous mineral (CCAM) line of slope approximately 1 in a plot of delta 17O against delta 18O. This trend is attributed to mixing of material from 16O-poor and 16O-rich reservoirs. Secondary processing can induce mass-dependent fractionation of the O isotopes, shifting these compositions along a line of slope approximately 0.52. Substantial mass-dependent fractionation of O isotopes has been observed in secondary minerals in CAIs, calcite, and FUN inclusions. These fractionations were caused by significant thermal or aqueous alteration. We recently reported the identification of four silicate grains with extremely fractionated O isotopic ratios (delta 18O equals 37 - 55 per mille) in the minimally altered CR3 chondrite QUE 99177. TEM analysis of one grain indicates it is a nebular condensate that did not experience substantial alteration. The history of these grains is thus distinct from those of the aforementioned fractionated materials. To constrain the origin of the silicate grains, we conducted further Mg and Fe isotopic studies and TEM analyses of two grains.
Phenotype- and genotype-specific structural alterations in spasmodic dysphonia.
Bianchi, Serena; Battistella, Giovanni; Huddleston, Hailey; Scharf, Rebecca; Fleysher, Lazar; Rumbach, Anna F; Frucht, Steven J; Blitzer, Andrew; Ozelius, Laurie J; Simonyan, Kristina
2017-04-01
Spasmodic dysphonia is a focal dystonia characterized by involuntary spasms in the laryngeal muscles that occur selectively during speaking. Although hereditary trends have been reported in up to 16% of patients, the causative etiology of spasmodic dysphonia is unclear, and the influences of various phenotypes and genotypes on disorder pathophysiology are poorly understood. In this study, we examined structural alterations in cortical gray matter and white matter integrity in relationship to different phenotypes and putative genotypes of spasmodic dysphonia to elucidate the structural component of its complex pathophysiology. Eighty-nine patients with spasmodic dysphonia underwent high-resolution magnetic resonance imaging and diffusion-weighted imaging to examine cortical thickness and white matter fractional anisotropy in adductor versus abductor forms (distinct phenotypes) and in sporadic versus familial cases (distinct genotypes). Phenotype-specific abnormalities were localized in the left sensorimotor cortex and angular gyrus and the white matter bundle of the right superior corona radiata. Genotype-specific alterations were found in the left superior temporal gyrus, supplementary motor area, and the arcuate portion of the left superior longitudinal fasciculus. Our findings suggest that phenotypic differences in spasmodic dysphonia arise at the level of the primary and associative areas of motor control, whereas genotype-related pathophysiological mechanisms may be associated with dysfunction of regions regulating phonological and sensory processing. Identification of structural alterations specific to disorder phenotype and putative genotype provides an important step toward future delineation of imaging markers and potential targets for novel therapeutic interventions for spasmodic dysphonia. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Identification and Evaluation of Integration and Cross Cutting Issues Across HRP Risks
NASA Technical Reports Server (NTRS)
Steinberg, S. L.; Shelhamer, Mark
2015-01-01
The HRP Integrated Research Plan contains the research plans for the 32 risks requiring research to characterize and mitigate. These risks to human health and performance in spaceflight are identified by evidence and each one focuses on a single aspect of human physiology or performance. They are further categorized by aspects of the spaceflight environment, such as altered gravity or space radiation, that that play a major role in their likelihood and consequence. From its inception the "integrate" in the Research Plan has denoted the integrated nature of risks to human health and performance, the connectedness of physiological systems within the human body regardless of the spaceflight environment, and the integrated response of the human body to the spaceflight environment. Common characteristics of the spaceflight environment include altered gravity, atmospheres and light/dark cycles, space radiation, isolation, noise, and periods of high or low workload. Long term exposure to this unique environment produces a suite of physiological effects such as stress; vision, neurocognitive and anthropometric changes; circadian misalignment; fluid shifts, deconditioning; immune dysregulation; and altered nutritional requirements. Matrix diagraming was used to systematically identify, analyze and rate the many-to-many relationships between environmental characteristics and the suite of physiological effects. It was also to identify patterns in the relationships of common physiological effects to each other. Analyses of patterns or relationships in these diagrams help to identify issues that cut across multiple risks. Cross cutting issues benefit from a multidisciplinary approach that synthesizes concepts or data from two or more disciplines to identify and characterize risk factors or develop countermeasures relevant to multiple risks. They also help to illuminate possible problem areas that may arise when a countermeasure impacts risks other than those which it was developed to mitigate, or identify groupings of physiological changes that are likely to occur that may impact the overall risk posture.
Genomic profile in gestational and non-gestational choriocarcinomas.
Mello, Julia Bette Homem de; Ramos Cirilo, Priscila Daniele; Michelin, Odair Carlito; Custódio Domingues, Maria Aparecida; Cunha Rudge, Marilza Vieira; Rogatto, Silvia Regina; Maestá, Izildinha
2017-02-01
Gestational (GC) (derived from the placenta) and non-gestational (NGC) choriocarcinomas are trophoblastic diseases originated from abnormal proliferation of trophoblastic cells. These rare tumors share similar morphology and pathological features and differ on chemotherapy response, genetic origin and prognosis. In this study, the genomic profile of choriocarcinomas was performed according to their origin (GC or NGC) aiming to better understand these poorly characterized diseases. Thirteen patients were included in this study; 10 presented previous history of hydatidiform mole and six developed metastasis. Twelve polymorphic microsatellite markers (D15S659, APOC2, D5S816, BAT25, D3S1614, D3S1311, D1S1656, APC-D5S346, D3S1601, D18S70, D8S1110 and D11S1999) were investigated to distinguish GC from NGC. All choriocarcinomas were evaluated by copy number alterations using array CGH. Eight cases were classified as GC and five as NGC. Although potentially polymorphic, NGC exhibited significant gain of 21p11. Rare copy number alterations (CNA) were detected as a frequent event in GC including gains of 1p36.33-p36.32 (3 cases), 17q25.3 (4 cases), and losses of 9q33.1 (5 cases), 17q21.3 (3 cases) and 18q22.1 (4 cases) (varying from 724 to 3,053 Kb). Two tumor suppressor genes are candidates to be involved in GC: TRIM32 (9q33.1) and CDH19 (18q22.1). Gains of CBX2, CBX4 and CBX8 were frequently found in high risk prognostic score in GC. The in silico functional interaction analysis revealed the involvement of PTEN and PI3K-Akt signaling pathways. These data pointed out significant genomic alterations in GC, opening new avenues to better characterize the pathobiology of this disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Deschuyteneer, Aude; Boeckstaens, Mélanie; De Mees, Christelle; Van Vooren, Pascale; Wintjens, René; Marini, Anna Maria
2013-01-01
Proteins of the conserved Mep-Amt-Rh family, including mammalian Rhesus factors, mediate transmembrane ammonium transport. Ammonium is an important nitrogen source for the biosynthesis of amino acids but is also a metabolic waste product. Its disposal in urine plays a critical role in the regulation of the acid/base homeostasis, especially with an acid diet, a trait of Western countries. Ammonium accumulation above a certain concentration is however pathologic, the cytotoxicity causing fatal cerebral paralysis in acute cases. Alteration in ammonium transport via human Rh proteins could have clinical outcomes. We used a yeast-based expression assay to characterize human Rh variants resulting from non synonymous single nucleotide polymorphisms (nsSNPs) with known or unknown clinical phenotypes and assessed their ammonium transport efficiency, protein level, localization and potential trans-dominant impact. The HsRhAG variants (I61R, F65S) associated to overhydrated hereditary stomatocytosis (OHSt), a disease affecting erythrocytes, proved affected in intrinsic bidirectional ammonium transport. Moreover, this study reveals that the R202C variant of HsRhCG, the orthologue of mouse MmRhcg required for optimal urinary ammonium excretion and blood pH control, shows an impaired inherent ammonium transport activity. Urinary ammonium excretion was RHcg gene-dose dependent in mouse, highlighting MmRhcg as a limiting factor. HsRhCGR202C may confer susceptibility to disorders leading to metabolic acidosis for instance. Finally, the analogous R211C mutation in the yeast ScMep2 homologue also impaired intrinsic activity consistent with a conserved functional role of the preserved arginine residue. The yeast expression assay used here constitutes an inexpensive, fast and easy tool to screen nsSNPs reported by high throughput sequencing or individual cases for functional alterations in Rh factors revealing potential causal variants. PMID:23967154
Study of Hydrothermal Mineralization in 2013 Drill Core from Hawaii Island
NASA Astrophysics Data System (ADS)
Lautze, N. C.; Calvin, W. M.; Moore, J.; Haskins, E.; Thomas, D. M.
2014-12-01
The Humu'ula Groundwater Research Project (HGRP) drilled a continuously-cored hole to nearly 2 km depth near the Saddle Road between Mauna Loa and Mauna Kea volcanoes on Hawaii Island in March of 2013. Temperatures at the bottom of the hole were unexpectedly high and reached over 100 C. A study is underway to characterize hydrothermal (secondary) mineralization in the core at depths below ~ 1 km. Secondary mineralization can indicate the presence, chemistry, and temperature of hydrothermal fluids, therein helping to characterize a present and/or past geothermal system. To date, the study is two pronged. In collaboration with University Nevada Reno (UNR) we used an Analytical Spectral Devices (ASD) FieldSpec instrument to obtain nearly 800 spectra from core depths spanning 3190 to 5785 feet. This device has a 2 cm contact probe that measures from 0.4 to 2.5 mm, and has been used successfully by UNR to identify depth-associated changes in alteration mineralogy and zoning in drill core from other pilot studies. The spectra indicate that rocks above a depth of ~1 km are only weakly altered. At greater depths to the base of the well, chlorite, possibly with some mica, and zeolites are common. The majority of zeolites are spectrally similar to each other at these wavelengths, however analcime and natrolite are uniquely identified in some sections. Epidote was not observed. The secondary mineral assemblages suggest that the alteration was produced by moderate temperature neutral pH fluids. Here, we used the spectral data as a survey tool to help identify and select over 20 sections of core for sampling and more detailed mineralogical analysis using traditional X-Ray Diffraction (XRD) and petrographic techniques, conducted in collaboration with University of Utah. This presentation will include mineral maps with depth and results of the petrographic analyses.
Laser Rewelding of 304L Stainless Steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maguire, Michael Christopher; Rodelas, Jeffrey
Laser welding of 304L stainless steel during component fabrication has been found to alter the chemical composition of the steel due to material evaporation. During repair or rework, or during potential reuse/ rewelding of certain components, the potential exists to alter the composition to the extent that the material becomes prone to solidification cracking. This work aims to characterize the extent of this susceptibility in order to make informed decisions regarding rewelding practice and base metal chemistry allowances.
The evaluation of the interfacial behavior of LaRC-TPI/Graphite Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogden, A.L.; Wilkes, G.L.; Hyer, M.W.
1992-07-01
Discussed are the results of several approaches recently considered for improving the interfacial adhesion of LaRC-TPI/graphite composites. Two approaches were investigated, namely altering the matrix and altering the fiber. As a result, three types of LaRC-TPI laminates were produced: amorphous/AS-4, amorphous/XAS, and semicrystalline/AS-4. The laminates were characterized using the transverse tensile test, scanning electron microscopy, optical microscopy, and thermal analysis. 17 refs.
Cheaib, Miriam; Dehghani Amirabad, Azim; Nordström, Karl J V; Schulz, Marcel H; Simon, Martin
2015-08-01
Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Characterization of Enzymes Involved in Fatty Acid Elongation
2007-04-11
dihydroxyacetone reductase involved in phosphatidic acid biosynthesis [111]. Therefore, altered glycerophospholipid metabolism, along with reduced...2007 Title of Dissertation: "Characterization of Enzymes Involved in Fatty Acid Elongation" APPROVAL SHEET Ernest Maynard, P .D. Department of...Fatty Acid Elongation" is appropriately acknowledged and, beyond brief excerpts, is with the permission of the copyright owner. , /1:1 IJA"" 1< .IIVCf