Science.gov

Sample records for altered cellular functions

  1. Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells.

    PubMed

    Radde, Brandie N; Alizadeh-Rad, Negin; Price, Stephanie M; Schultz, David J; Klinge, Carolyn M

    2016-11-01

    Anacardic acid is a dietary and medicinal phytochemical that inhibits breast cancer cell proliferation and uncouples oxidative phosphorylation (OXPHOS) in isolated rat liver mitochondria. Since mitochondrial-targeted anticancer therapy (mitocans) may be useful in breast cancer, we examined the effect of anacardic acid on cellular bioenergetics and OXPHOS pathway proteins in breast cancer cells modeling progression to endocrine-independence: MCF-7 estrogen receptor α (ERα)+ endocrine-sensitive; LCC9 and LY2 ERα+, endocrine-resistant, and MDA-MB-231 triple negative breast cancer (TNBC) cells. At concentrations similar to cell proliferation IC50 s, anacardic acid reduced ATP-linked oxygen consumption rate (OCR), mitochondrial reserve capacity, and coupling efficiency while increasing proton leak, reflecting mitochondrial toxicity which was greater in MCF-7 compared to endocrine-resistant and TNBC cells. These results suggest tolerance in endocrine-resistant and TNBC cells to mitochondrial stress induced by anacardic acid. Since anacardic acid is an alkylated 2-hydroxybenzoic acid, the effects of salicylic acid (SA, 2-hydroxybenzoic acid moiety) and oleic acid (OA, monounsaturated alkyl moiety) were tested. SA inhibited whereas OA stimulated cell viability. In contrast to stimulation of basal OCR by anacardic acid (uncoupling effect), neither SA nor OA altered basal OCR- except OA inhibited basal and ATP-linked OCR, and increased ECAR, in MDA-MB-231 cells. Changes in OXPHOS proteins correlated with changes in OCR. Overall, neither the 2-hydroxybenzoic acid moiety nor the monounsaturated alky moiety of anacardic acid is solely responsible for the observed mitochondria-targeted anticancer activity in breast cancer cells and hence both moieties are required in the same molecule for the observed effects. J. Cell. Biochem. 117: 2521-2532, 2016. © 2016 Wiley Periodicals, Inc.

  2. Lead and cadmium induced alterations of cellular functions in leaves of Alocasia macrorrhiza L. Schott.

    PubMed

    Liu, Nan; Lin, Zhi-Fang; Lin, Gui-Zhu; Song, Li-Ying; Chen, Shao-Wei; Mo, Hui; Peng, Chang-Lian

    2010-09-01

    Alocasia macrorrhiza is a fast growing and propagating herbaceous species commonly found in South China. To determine its physiological responses to Pb and Cd stresses, the biochemical, histochemical and cytochemical changes under PbAC2 and CdCl2 phytotoxicity were detected using leaf discs as an experimental model. After leaf discs were infiltrated in different concentrations of PbAC2 and CdCl2 solutions (0, 50, 100, 150, 200 microM) for 72 h, the formation of reactive oxygen species (H2O2 and O2-) in plant tissue were found to be exaggerated together with elevated OH concentration and cell death. Changes in chlorophyll fluorescence (Fv/Fm, PhiPSII, qP and NPQ) imaging colours/areas of leaf discs indicated decreased photosystem II functions by both heavy metal treatments and positive reactions of antioxidants under Pb2+ stress. Results showed that fluorescent detection of hydroxylated terephthlate using terephthalic acid as OH trap is a simple, yet valuable and specific method for monitoring OH generation in plant tissue under heavy metal stresses. As compared with Cd2+, Pb2+ was found to be less toxic, indicating that A. macrorrhiza tissue might have a potential tolerance to Pb.

  3. Fine oil combustion particle bioavailable constituents induce molecular profiles of oxidative stress, altered function, and cellular injury in cardiomyocytes.

    PubMed

    Knuckles, Travis L; Dreher, Kevin L

    2007-11-01

    Epidemiological studies have shown a positive association between exposure to air particulate matter (PM) pollution and adverse cardiovascular health effects in susceptible subpopulations such as those with pre-existing cardiovascular disease. The mechanism(s) through which pulmonary deposited PM, particularly fine PM2.5, PM with mass median aerodynamic diameter <2.5 microm, affects the cardiovascular system is currently not known and remains a major focus of investigation. In the present study, the transcriptosome and transcription factor proteome were examined in rat neonatal cardiomyocyte (RCM) cultures, following an acute exposure to bioavailable constituents of PM2.5 oil combustion particles designated residual oil fly ash leachate (ROFA-L). Out of 3924 genes examined, 38 genes were suppressed and 44 genes were induced following a 1-h exposure to 3.5 microg/ml of a particle-free leachate of ROFA (ROFA-L). Genomic alterations in pathways related to IGF-1, VEGF, IL-2, PI3/AKT, cardiovascular disease, and free radical scavenging, among others, were detected 1 h postexposure to ROFA-L. Global gene expression was altered in a manner consistent with cardiac myocyte electrophysiological remodeling, cellular oxidative stress, and apoptosis. ROFA-L altered the transcription factor proteome by suppressing activity of 24 and activating 40 transcription factors out of a total of 149. Genomic alterations were found to correlate with changes in transcription factor proteome. These acute changes indicate pathological molecular alterations, which may lead to possible chronic alterations to the cardiac myocyte. These data also potentially relate underlying cardiovascular effects from occupational exposure to ROFA and identify how particles from specific emission sources may mediate ambient PM cardiac effects.

  4. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg2+ homeostasis and cytoskeletal architecture

    PubMed Central

    Stritt, Simon; Nurden, Paquita; Favier, Remi; Favier, Marie; Ferioli, Silvia; Gotru, Sanjeev K.; van Eeuwijk, Judith M M.; Schulze, Harald; Nurden, Alan T.; Lambert, Michele P.; Turro, Ernest; Burger-Stritt, Stephanie; Matsushita, Masayuki; Mittermeier, Lorenz; Ballerini, Paola; Zierler, Susanna; Laffan, Michael A.; Chubanov, Vladimir; Gudermann, Thomas; Nieswandt, Bernhard; Braun, Attila

    2016-01-01

    Mg2+ plays a vital role in platelet function, but despite implications for life-threatening conditions such as stroke or myocardial infarction, the mechanisms controlling [Mg2+]i in megakaryocytes (MKs) and platelets are largely unknown. Transient receptor potential melastatin-like 7 channel (TRPM7) is a ubiquitous, constitutively active cation channel with a cytosolic α-kinase domain that is critical for embryonic development and cell survival. Here we report that impaired channel function of TRPM7 in MKs causes macrothrombocytopenia in mice (Trpm7fl/fl-Pf4Cre) and likely in several members of a human pedigree that, in addition, suffer from atrial fibrillation. The defect in platelet biogenesis is mainly caused by cytoskeletal alterations resulting in impaired proplatelet formation by Trpm7fl/fl-Pf4Cre MKs, which is rescued by Mg2+ supplementation or chemical inhibition of non-muscle myosin IIA heavy chain activity. Collectively, our findings reveal that TRPM7 dysfunction may cause macrothrombocytopenia in humans and mice. PMID:27020697

  5. Cellular transformation by cigarette smoke extract involves alteration of glycolysis and mitochondrial function in esophageal epithelial cells.

    PubMed

    Kim, Myoung Sook; Huang, Yiping; Lee, Juna; Zhong, Xiaoli; Jiang, Wei-Wen; Ratovitski, Edward A; Sidransky, David

    2010-07-15

    Cigarette-smoking increases the risk of developing various types of human cancers including esophageal cancers. To test the effects of chronic cigarette smoke exposure directly on esophageal epithelium, cellular resistance to mainstream extract (MSE), or sidestream smoke extract (SSE) was developed in chronically exposed nonmalignant Het-1A cells. Anchorage-independent growth, in vitro invasion capacity and proliferation of the resistant cells increased compared with the unexposed, sensitive cells. An epithelial marker E-cadherin was down-regulated and mesenchymal markers N-cadherin and vimentin were up-regulated in the resistant cells. Het-1A cells resistant to MSE or SSE consumed more glucose, and produced more lactate than the sensitive cells. The increased anchorage-independent cell growth of the resistant cells was suppressed by a glycolysis inhibitor, 2-deoxy-D-glucose, indicating that these cells are highly dependent on the glycolytic pathway for survival. Decreased mitochondrial membrane potential and ATP production in the resistant cells indicate the presence of mitochondrial dysfunction induced by chronic exposure of cigarette smoke extract. Increased expression of nuclear genes in the glycolytic pathway and decreased levels of mitochondrial genes in the resistant cells support the notion that cigarette smoking significantly contributes to the transformation of nonmalignant esophageal epithelial cells into a tumorigenic phenotype.

  6. The Cellular Redox Environment Alters Antigen Presentation*

    PubMed Central

    Trujillo, Jonathan A.; Croft, Nathan P.; Dudek, Nadine L.; Channappanavar, Rudragouda; Theodossis, Alex; Webb, Andrew I.; Dunstone, Michelle A.; Illing, Patricia T.; Butler, Noah S.; Fett, Craig; Tscharke, David C.; Rossjohn, Jamie; Perlman, Stanley; Purcell, Anthony W.

    2014-01-01

    Cysteine-containing peptides represent an important class of T cell epitopes, yet their prevalence remains underestimated. We have established and interrogated a database of around 70,000 naturally processed MHC-bound peptides and demonstrate that cysteine-containing peptides are presented on the surface of cells in an MHC allomorph-dependent manner and comprise on average 5–10% of the immunopeptidome. A significant proportion of these peptides are oxidatively modified, most commonly through covalent linkage with the antioxidant glutathione. Unlike some of the previously reported cysteine-based modifications, this represents a true physiological alteration of cysteine residues. Furthermore, our results suggest that alterations in the cellular redox state induced by viral infection are communicated to the immune system through the presentation of S-glutathionylated viral peptides, resulting in altered T cell recognition. Our data provide a structural basis for how the glutathione modification alters recognition by virus-specific T cells. Collectively, these results suggest that oxidative stress represents a mechanism for modulating the virus-specific T cell response. PMID:25135637

  7. Altered cell function in microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie

    1991-01-01

    The paper overviews published results from investigations of changes in basic biological parameters taking place as a result of spaceflight exposure. These include changes in the rates of the DNA, mRNA, and protein biosyntheses; changes in the growth rate of an organism; and alterations in the cytoskeleton structure, differentiation, hormone accumulation, and collagen matrix secretion. These results, obtained both in complex biological organisms and on cultured cells, suggest that a basic cellular function is influenced and changed by microgravity. Many of the above mentioned changes are also found to take place in aging cells.

  8. Hox Targets and Cellular Functions

    PubMed Central

    Sánchez-Herrero, Ernesto

    2013-01-01

    Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function. PMID:24490109

  9. Muscle disuse alters skeletal muscle contractile function at the molecular and cellular levels in older adult humans in a sex-specific manner

    PubMed Central

    Callahan, Damien M; Miller, Mark S; Sweeny, Andrew P; Tourville, Timothy W; Slauterbeck, James R; Savage, Patrick D; Maugan, David W; Ades, Philip A; Beynnon, Bruce D; Toth, Michael J

    2014-01-01

    Physical inactivity that accompanies ageing and disease may hasten disability by reducing skeletal muscle contractility. To characterize skeletal muscle functional adaptations to muscle disuse, we compared contractile performance at the molecular, cellular and whole-muscle levels in healthy active older men and women (n = 15) and inactive older men and women with advanced-stage, symptomatic knee osteoarthritis (OA) (n = 16). OA patients showed reduced (P < 0.01) knee extensor function. At the cellular level, single muscle fibre force production was reduced in OA patients in myosin heavy chain (MHC) I and IIA fibres (both P < 0.05) and differences in IIA fibres persisted after adjustments for fibre cross-sectional area (P < 0.05). Although no group differences in contractile velocity or power output were found for any fibre type, sex was found to modify the effect of OA, with a reduction in MHC IIA power output and a trend towards reduced shortening velocity in women, but increases in both variables in men (P < 0.05 and P = 0.07, respectively). At the molecular level, these adaptations in MHC IIA fibre function were explained by sex-specific differences (P ≤ 0.05) in myosin–actin cross-bridge kinetics. Additionally, cross-bridge kinetics were slowed in MHC I fibres in OA patients (P < 0.01), attributable entirely to reductions in women with knee OA (P < 0.05), a phenotype that could be reproduced in vitro by chemical modification of protein thiol residues. Our results identify molecular and cellular functional adaptations in skeletal muscle that may contribute to reduced physical function with knee OA-associated muscle disuse, with sex-specific differences that may explain a greater disposition towards disability in women. PMID:25038243

  10. Cellular Alterations in Shock and Ischemia and Their Correction.

    ERIC Educational Resources Information Center

    Chaudry, Irshad H.

    1985-01-01

    Reviews recent advances in cellular alterations in shock to help physicians and physiologists keep abreast of current research. Specifically addresses changes occurring as a result of hemorrhagic shock and possible ways such lesions could be corrected. (DH)

  11. Utility of hesperidinase for food function research: enzymatic digestion of botanical extracts alters cellular antioxidant capacities and anti-inflammatory properties.

    PubMed

    Yu, Lu; Huang, Haiqiu; Yu, Liangli Lucy; Wang, Thomas T Y

    2014-08-27

    Food-derived phytochemicals, many known for their health beneficial effects, often exist in conjugated forms containing sugar moieties such as glucose or rhamnose in foods. The uptake of these compounds requires colonic bacterial cleavage of sugar moieties. However, most studies involved in screening extracts for biological activities do not take this process into account. This study seeks to determine the utility of commercially available hesperidinase to mimic colonic digestion and to test the effects of this treatment on the biological properties of extracts. Using hesperidinase resulted in efficient hydrolysis of Engelhardia roxburghiana Wall. extract containing rhamnose conjugates. Enzymatic digestion enhanced the extract's cellular antioxidant ability by 2-fold in HepG2/C3A and the anti-inflammatory effect on lipopolysaccharide-induced interleukin (IL)-1β and IL-6 expression in mouse macrophage J774A.1 and human monocyte THP-1 cells. Enzymatic digestion also efficiently processed extracts with mixed rhamnose and glucose conjugates and altered their biological activities. Results of the present study supported the importance of considering enzymatic digestion during the biological activity studies of botanicals.

  12. Cellular functions of the microprocessor.

    PubMed

    Macias, Sara; Cordiner, Ross A; Cáceres, Javier F

    2013-08-01

    The microprocessor is a complex comprising the RNase III enzyme Drosha and the double-stranded RNA-binding protein DGCR8 (DiGeorge syndrome critical region 8 gene) that catalyses the nuclear step of miRNA (microRNA) biogenesis. DGCR8 recognizes the RNA substrate, whereas Drosha functions as an endonuclease. Recent global analyses of microprocessor and Dicer proteins have suggested novel functions for these components independent of their role in miRNA biogenesis. A HITS-CLIP (high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation) experiment designed to identify novel substrates of the microprocessor revealed that this complex binds and regulates a large variety of cellular RNAs. The microprocessor-mediated cleavage of several classes of RNAs not only regulates transcript levels, but also modulates alternative splicing events, independently of miRNA function. Importantly, DGCR8 can also associate with other nucleases, suggesting the existence of alternative DGCR8 complexes that may regulate the fate of a subset of cellular RNAs. The aim of the present review is to provide an overview of the diverse functional roles of the microprocessor.

  13. Altered cell function in microgravity.

    PubMed

    Hughes-Fulford, M

    1991-01-01

    Physiological changes in humans during spaceflight upon return to earth have been attributed to systemic adaptation, response to stress, and lack of normal exercise. Studies from the Skylab, SL-3, and D-1 missions have demonstrated that significant physiological alterations are seen in single cell prokaryotes and eukaryotes, as well as in animal tissues. Basic cellular functions such as electrolyte concentration, cell growth rate, glucose utilization, bone formation, response to growth stimulation, and exocytosis are modified in microgravity. Many of the physiological changes seen in humans, vertebrate and simple organisms in spaceflight may originate from dysfunction of basic biological mechanisms caused by microgravity. Aging humans share many of the symptoms seen in astronauts during spaceflight. These include reduced cardiac function, loss of bone and reduced immune response and orthostatic hypotension. It is possible that some of physiological adaptations seen in aging may share common physiological basis with those changes seen in spaceflight. Since microgravity affects prokaryotic and eukaryotic cell function at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological mechanisms which are essential to life.

  14. Molecular and cellular alterations in Down syndrome: toward the identification of targets for therapeutics.

    PubMed

    Créau, Nicole

    2012-01-01

    Down syndrome is a complex disease that has challenged molecular and cellular research for more than 50 years. Understanding the molecular bases of morphological, cellular, and functional alterations resulting from the presence of an additional complete chromosome 21 would aid in targeting specific genes and pathways for rescuing some phenotypes. Recently, progress has been made by characterization of brain alterations in mouse models of Down syndrome. This review will highlight the main molecular and cellular findings recently described for these models, particularly with respect to their relationship to Down syndrome phenotypes.

  15. Complement Activation Alters Platelet Function

    DTIC Science & Technology

    2013-10-01

    mice and mice transfused with Syk inhibitor-treated platelets . Platelet lodging was remarkably decreased in lungs of mice transfused with Syk...AD_________________ Award Number: W81XWH-12-1-0523 TITLE: Complement Activation Alters Platelet ...30September2012–29September2013 4. TITLE AND SUBTITLE Complement Activation Alters Platelet Function 5a. CONTRACT NUMBER W81XWH-12-1-0523 5b. GRANT NUMBER

  16. Mutations in human C2CD3 cause skeletal dysplasia and provide new insights into phenotypic and cellular consequences of altered C2CD3 function

    PubMed Central

    Cortés, Claudio R.; McInerney-Leo, Aideen M.; Vogel, Ida; Rondón Galeano, Maria C.; Leo, Paul J.; Harris, Jessica E.; Anderson, Lisa K.; Keith, Patricia A.; Brown, Matthew A.; Ramsing, Mette; Duncan, Emma L.; Zankl, Andreas; Wicking, Carol

    2016-01-01

    Ciliopathies are a group of genetic disorders caused by defective assembly or dysfunction of the primary cilium, a microtubule-based cellular organelle that plays a key role in developmental signalling. Ciliopathies are clinically grouped in a large number of overlapping disorders, including the orofaciodigital syndromes (OFDS), the short rib polydactyly syndromes and Jeune asphyxiating thoracic dystrophy. Recently, mutations in the gene encoding the centriolar protein C2CD3 have been described in two families with a new sub-type of OFDS (OFD14), with microcephaly and cerebral malformations. Here we describe a third family with novel compound heterozygous C2CD3 mutations in two fetuses with a different clinical presentation, dominated by skeletal dysplasia with no microcephaly. Analysis of fibroblast cultures derived from one of these fetuses revealed a reduced ability to form cilia, consistent with previous studies in C2cd3-mutant mouse and chicken cells. More detailed analyses support a role for C2CD3 in basal body maturation; but in contrast to previous mouse studies the normal recruitment of the distal appendage protein CEP164 suggests that this protein is not sufficient for efficient basal body maturation and subsequent axonemal extension in a C2CD3-defective background. PMID:27094867

  17. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection

    PubMed Central

    Hermes, Gretchen; Ajioka, James W; Kelly, Krystyna A; Mui, Ernest; Roberts, Fiona; Kasza, Kristen; Mayr, Thomas; Kirisits, Michael J; Wollmann, Robert; Ferguson, David JP; Roberts, Craig W; Hwang, Jong-Hee; Trendler, Toria; Kennan, Richard P; Suzuki, Yasuhiro; Reardon, Catherine; Hickey, William F; Chen, Lieping; McLeod, Rima

    2008-01-01

    Background Worldwide, approximately two billion people are chronically infected with Toxoplasma gondii with largely unknown consequences. Methods To better understand long-term effects and pathogenesis of this common, persistent brain infection, mice were infected at a time in human years equivalent to early to mid adulthood and studied 5–12 months later. Appearance, behavior, neurologic function and brain MRIs were studied. Additional analyses of pathogenesis included: correlation of brain weight and neurologic findings; histopathology focusing on brain regions; full genome microarrays; immunohistochemistry characterizing inflammatory cells; determination of presence of tachyzoites and bradyzoites; electron microscopy; and study of markers of inflammation in serum. Histopathology in genetically resistant mice and cytokine and NRAMP knockout mice, effects of inoculation of isolated parasites, and treatment with sulfadiazine or αPD1 ligand were studied. Results Twelve months after infection, a time equivalent to middle to early elderly ages, mice had behavioral and neurological deficits, and brain MRIs showed mild to moderate ventricular dilatation. Lower brain weight correlated with greater magnitude of neurologic abnormalities and inflammation. Full genome microarrays of brains reflected inflammation causing neuronal damage (Gfap), effects on host cell protein processing (ubiquitin ligase), synapse remodeling (Complement 1q), and also increased expression of PD-1L (a ligand that allows persistent LCMV brain infection) and CD 36 (a fatty acid translocase and oxidized LDL receptor that mediates innate immune response to beta amyloid which is associated with pro-inflammation in Alzheimer's disease). Immunostaining detected no inflammation around intra-neuronal cysts, practically no free tachyzoites, and only rare bradyzoites. Nonetheless, there were perivascular, leptomeningeal inflammatory cells, particularly contiguous to the aqueduct of Sylvius and hippocampus

  18. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth M.; Haddad, Fadia

    2002-01-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  19. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms.

    PubMed

    Baldwin, Kenneth M; Haddad, Fadia

    2002-11-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  20. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    SciTech Connect

    Kelly, Catriona; Flatt, Peter R.; McClenaghan, Neville H.

    2010-08-20

    Research highlights: {yields} TGP52 cells display enhanced functionality in pseudoislet form. {yields} Somatostatin content was reduced, but secretion increased in high glucose conditions. {yields} Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.

  1. Molecular kinesis in cellular function and plasticity.

    PubMed

    Tiedge, H; Bloom, F E; Richter, D

    2001-06-19

    Intracellular transport and localization of cellular components are essential for the functional organization and plasticity of eukaryotic cells. Although the elucidation of protein transport mechanisms has made impressive progress in recent years, intracellular transport of RNA remains less well understood. The National Academy of Sciences Colloquium on Molecular Kinesis in Cellular Function and Plasticity therefore was devised as an interdisciplinary platform for participants to discuss intracellular molecular transport from a variety of different perspectives. Topics covered at the meeting included RNA metabolism and transport, mechanisms of protein synthesis and localization, the formation of complex interactive protein ensembles, and the relevance of such mechanisms for activity-dependent regulation and synaptic plasticity in neurons. It was the overall objective of the colloquium to generate momentum and cohesion for the emerging research field of molecular kinesis.

  2. Distinguishing between biochemical and cellular function: Are there peptide signatures for cellular function of proteins?

    PubMed

    Jain, Shruti; Bhattacharyya, Kausik; Bakshi, Rachit; Narang, Ankita; Brahmachari, Vani

    2017-04-01

    The genome annotation and identification of gene function depends on conserved biochemical activity. However, in the cell, proteins with the same biochemical function can participate in different cellular pathways and cannot complement one another. Similarly, two proteins of very different biochemical functions are put in the same class of cellular function; for example, the classification of a gene as an oncogene or a tumour suppressor gene is not related to its biochemical function, but is related to its cellular function. We have taken an approach to identify peptide signatures for cellular function in proteins with known biochemical function. ATPases as a test case, we classified ATPases (2360 proteins) and kinases (517 proteins) from the human genome into different cellular function categories such as transcriptional, replicative, and chromatin remodelling proteins. Using publicly available tool, MEME, we identify peptide signatures shared among the members of a given category but not between cellular functional categories; for example, no motif sharing is seen between chromatin remodelling and transporter ATPases, similarly between receptor Serine/Threonine Kinase and Receptor Tyrosine Kinase. There are motifs shared within each category with significant E value and high occurrence. This concept of signature for cellular function was applied to developmental regulators, the polycomb and trithorax proteins which led to the prediction of the role of INO80, a chromatin remodelling protein, in development. This has been experimentally validated earlier for its role in homeotic gene regulation and its interaction with regulatory complexes like the Polycomb and Trithorax complex. Proteins 2017; 85:682-693. © 2016 Wiley Periodicals, Inc.

  3. Functional and cellular adaptations of rodent skeletal muscle to weightlessness

    NASA Technical Reports Server (NTRS)

    Caiozzo, Vincent J.; Haddad, Fadia; Baker, Michael J.; Baldwin, Kenneth M.

    1995-01-01

    This paper describes the affects of microgravity upon three key cellular levels (functional, protein, and mRNA) that are linked to one another. It is clear that at each of these levels, microgravity produces rapid and substantial alterations. One of the key challenges facing the life science community is the development of effective countermeasures that prevent the loss of muscle function as described in this paper. The development of optimal countermeasures, however, awaits a clearer understanding of events occurring at the levels of transcription, translation, and degradation.

  4. Altered Cellular Kinetics in Growth Plate according to Alterations in Weight Bearing

    PubMed Central

    Park, Hoon; Kong, Sun Young; Kim, Hyun Woo

    2012-01-01

    Purpose To examine the effects of change in weight bearing on the growth plate metabolism, a simulated animal model of weightlessness was introduced and the chondrocytes' cellular kinetics was evaluated. Materials and Methods Unloading condition on the hind-limb of Sprague-Dawley rats was created by fixing a tail and lifting the hind-limb. Six rats aged 6 weeks old were assigned to each group of unloading, reloading, and control groups of unloading or reloading. Unloading was maintained for three weeks, and then reloading was applied for another one week thereafter. Histomorphometry for the assessment of vertical length of the growth plate, 5-bromo-2'-deoxyuridin immunohistochemistry for cellular kinetics, and biotin nick end labeling transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) assay for chondrocytes apoptosis in the growth plate were performed. Results The vertical length of the growth plate and the proliferative potential of chondrocytes were decreased in the unloading group compared to those of control groups. Inter-group differences were more significant in the proliferative and hypertrophic zones. Reloading increased the length of growth plate and proliferative potential of chondrocytes. However, apoptotic changes in the growth plate were not affected by the alterations of weight bearing. Conclusion Alterations in the weight bearing induced changes in the chondrocytic proliferative potential of the growth plate, however, had no effects on the apoptosis. This may explain why non-weight bearing in various clinical situations hampers normal longitudinal bone growth. Further studies on the factors for reversibility of chondrocytic proliferation upon variable mechanical stresses are needed. PMID:22477008

  5. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome

    PubMed Central

    Hu, Benxia; Li, Xin; Huo, Yongxia; Yu, Yafen; Zhang, Qiuping; Chen, Guijun; Zhang, Yaping; Fraser, Nigel W.; Wu, Dongdong; Zhou, Jumin

    2016-01-01

    Pathogen invasion triggers a number of cellular responses and alters the host transcriptome. Here we report that the type of changes to cellular transcriptome is related to the type of cellular functions affected by lytic infection of Herpes Simplex Virus type I in Human primary fibroblasts. Specifically, genes involved in stress responses and nuclear transport exhibited mostly changes in alternative polyadenylation (APA), cell cycle genes showed mostly alternative splicing (AS) changes, while genes in neurogenesis, rarely underwent these changes. Transcriptome wide, the infection resulted in 1,032 cases of AS, 161 incidences of APA, 1,827 events of isoform changes, and up regulation of 596 genes and down regulations of 61 genes compared to uninfected cells. Thus, these findings provided important and specific links between cellular responses to HSV-1 infection and the type of alterations to the host transcriptome, highlighting important roles of RNA processing in virus-host interactions. PMID:27354008

  6. Proteasome Modulates Mitochondrial Function During Cellular Senescence

    PubMed Central

    Torres, Claudio A.; Perez, Viviana I.

    2009-01-01

    Proteasome plays fundamental roles in the removal of oxidized proteins and in the normal degradation of short-lived proteins. Previously we have provided evidences that the impairment in proteasome observed during the replicative senescence of human fibroblasts has significant effects on MAPK signaling, proliferation, life span, senescent phenotype and protein oxidative status. These studies have demonstrated that proteasome inhibition and replicative senescence caused accumulation of intracellular protein carbonyl content. In this study, we have investigated the mechanisms by which proteasome dysfunction modulates protein oxidation during cellular senescence. The results indicate that proteasome inhibition during replicative senescence have significant effects on the intra and extracellular ROS production in vitro. The data also show that ROS impaired the proteasome function, which is partially reversible by antioxidants. Increases in ROS after proteasome inhibition correlated with a significant negative effect on the activity of most mitochondrial electron transporters. We propose that failures in proteasome during cellular senescence lead to mitochondrial dysfunction, ROS production and oxidative stress. Furthermore, it is likely that changes in proteasome dynamics could generate a pro-oxidative condition at the immediate extracellular microenvironment that could cause tissue injury during aging, in vivo. PMID:17976388

  7. Epigenetic Alterations in Cellular Immunity: New Insights into Autoimmune Diseases.

    PubMed

    Wang, Zijun; Lu, Qianjin; Wang, Zhihui

    2017-02-08

    Epigenetic modification is an additional regulator in immune responses as the genome-wide profiling somehow fails to explain the sophisticated mechanisms in autoimmune diseases. The effect of epigenetic modifications on adaptive immunity derives from their regulations to induce a permissive or negative gene expression. Epigenetic events, such as DNA methylation, histone modifications and microRNAs (miRNAs) are often found in T cell activation, differentiation and commitment which are the major parts in cellular immunity. Recognizing the complexity of interactions between epigenetic mechanisms and immune disturbance in autoimmune diseases is essential for the exploration of efficient therapeutic targets. In this review, we summarize a list of studies that indicate the significance of dysregulated epigenetic modifications in autoimmune diseases while focusing on T cell immunity.

  8. Altered Cellular Homeostasis in Murine MPS I Fibroblasts: Evidence of Cell-Specific Physiopathology.

    PubMed

    Viana, Gustavo Monteiro; do Nascimento, Cinthia Castro; Paredes-Gamero, Edgar Julian; D'Almeida, Vânia

    2017-02-21

    Mucopolysaccharidosis type I (MPS I), a rare autosomal recessive disease, is caused by a deficiency of the lysosomal enzyme alfa-L-iduronidase. Impaired enzyme activity promotes glycosaminoglycans accumulation in several tissues and organs, leading to complex multisystemic complications. Several studies using animal models indicated different intracellular pathways involving MPS I physiopathology; however, the exact mechanisms underlying this syndrome are still not understood. Previous results from our group showed alterations in ionic homeostasis and cell viability of splenocytes and macrophages in Idua-/- mice. In the present study, we found altered intracellular ionic homeostasis in a different cell type (fibroblasts) from the same murine model. Idua-/- fibroblasts from 3-month-old mice presented higher cytoplasmatic and endoplasmic reticulum Ca(2+) concentration, lower levels of mitochondrial Ca(2+) and mitochondrial membrane potential and higher cytoplasmatic pH when compared to Idua+/+ animals. Also, Idua-/- fibroblasts were more resistant to the apoptotic induction with staurosporine, indicating a possible resistance to apoptotic induction in those cells. In addition, despite the intracellular ionic imbalance, no significant alterations were found in apoptosis and autophagy in Idua-/- fibroblasts, which implies that the ionic alterations did not activate those pathways. The investigation of mechanisms underlying the cellular physiopathology of lysosomal diseases is crucial for a better understanding about the progression of these diseases. Since splenocytes, macrophages, and fibroblasts have different embryonic origins and distinct structural and functional features, potentially altered signaling pathways found in a cell-specific manner in an alfa-L-iduronidase-deficient environment provide additional understanding of the clinical multisystemic presentation of this disease and provide new basis for improved therapeutic approaches.

  9. Physical effects at the cellular level under altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Todd, Paul

    Several modifications of differentiated functions of animal cells cultivated in vitro have been reported when cultures have been exposed to increased or decreased inertial acceleration fields by centrifugation, clinorotation, and orbital space flight. Variables modified by clinorotation conditions include inertial acceleration, convection, hydrostatic pressure, sedimentation, and shear stress, which also affect transport processes in the extracellular chemical environment. Autocrine, paracrine and endocrine substances, to which cells are responsive via specific receptors, are usually transported in vitro (and possibly in certain embryos) by convection and in vivo by a circulatory system or ciliary action. Increased inertial acceleration increases convective flow, while microgravity nearly abolishes it. In the latter case the extracellular transport of macromolecules is governed by diffusion. By making certain assumptions it is possible to calculate the Peclet number, the ratio of convective transport to diffusive transport. Some, but not all, responses of cells in vitro to modified inertial environments could be manifestations of modified extracellular convective flow.

  10. Physical effects at the cellular level under altered gravity conditions

    NASA Technical Reports Server (NTRS)

    Todd, Paul

    1992-01-01

    Several modifications of differentiated functions of animal cells cultivated in vitro have been reported when cultures have been exposed to increased or decreased inertial acceleration fields by centrifugation, clinorotation, and orbital space flight. Variables modified by clinorotation conditions include inertial acceleration, convection, hydrostatic pressure, sedimentation, and shear stress, which also affect transport processes in the extracellular chemical environment. Autocrine, paracrine and endocrine substances, to which cells are responsive via specific receptors, are usually transported in vitro (and possibly in certain embryos) by convection and in vivo by a circulatory system or ciliary action. Increased inertial acceleration increases convective flow, while microgravity nearly abolishes it. In the latter case the extracellular transport of macromolecules is governed by diffusion. By making certain assumptions it is possible to calculate the Peclet number, the ratio of convective transport to diffusive transport. Some, but not all, responses of cells in vitro to modified inertial environments could be manifestations of modified extracellular convective flow.

  11. Metformin directly acts on mitochondria to alter cellular bioenergetics

    PubMed Central

    2014-01-01

    Background Metformin is widely used in the treatment of diabetes, and there is interest in ‘repurposing’ the drug for cancer prevention or treatment. However, the mechanism underlying the metabolic effects of metformin remains poorly understood. Methods We performed respirometry and stable isotope tracer analyses on cells and isolated mitochondria to investigate the impact of metformin on mitochondrial functions. Results We show that metformin decreases mitochondrial respiration, causing an increase in the fraction of mitochondrial respiration devoted to uncoupling reactions. Thus, cells treated with metformin become energetically inefficient, and display increased aerobic glycolysis and reduced glucose metabolism through the citric acid cycle. Conflicting prior studies proposed mitochondrial complex I or various cytosolic targets for metformin action, but we show that the compound limits respiration and citric acid cycle activity in isolated mitochondria, indicating that at least for these effects, the mitochondrion is the primary target. Finally, we demonstrate that cancer cells exposed to metformin display a greater compensatory increase in aerobic glycolysis than nontransformed cells, highlighting their metabolic vulnerability. Prevention of this compensatory metabolic event in cancer cells significantly impairs survival. Conclusions Together, these results demonstrate that metformin directly acts on mitochondria to limit respiration and that the sensitivity of cells to metformin is dependent on their ability to cope with energetic stress. PMID:25184038

  12. Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines.

    PubMed

    Vester, Diana; Rapp, Erdmann; Gade, Dörte; Genzel, Yvonne; Reichl, Udo

    2009-06-01

    Over the last years virus-host cell interactions were investigated in numerous studies. Viral strategies for evasion of innate immune response, inhibition of cellular protein synthesis and permission of viral RNA and protein production were disclosed. With quantitative proteome technology, comprehensive studies concerning the impact of viruses on the cellular machinery of their host cells at protein level are possible. Therefore, 2-D DIGE and nanoHPLC-nanoESI-MS/MS analysis were used to qualitatively and quantitatively determine the dynamic cellular proteome responses of two mammalian cell lines to human influenza A virus infection. A cell line used for vaccine production (MDCK) was compared with a human lung carcinoma cell line (A549) as a reference model. Analyzing 2-D gels of the proteomes of uninfected and influenza-infected host cells, 16 quantitatively altered protein spots (at least +/-1.7-fold change in relative abundance, p<0.001) were identified for both cell lines. Most significant changes were found for keratins, major components of the cytoskeleton system, and for Mx proteins, interferon-induced key components of the host cell defense. Time series analysis of infection processes allowed the identification of further proteins that are described to be involved in protein synthesis, signal transduction and apoptosis events. Most likely, these proteins are required for supporting functions during influenza viral life cycle or host cell stress response. Quantitative proteome-wide profiling of virus infection can provide insights into complexity and dynamics of virus-host cell interactions and may accelerate antiviral research and support optimization of vaccine manufacturing processes.

  13. Restriction of Receptor Movement Alters Cellular Response: Physical Force Sensing by EphA2

    SciTech Connect

    Salaita, Khalid; Nair, Pradeep M; Petit, Rebecca S; Neve, Richard M; Das, Debopriya; Gray, Joe W; Groves, Jay T

    2009-09-09

    Activation of the EphA2 receptor tyrosine kinase by ephrin-A1 ligands presented on apposed cell surfaces plays important roles in development and exhibits poorly understood functional alterations in cancer. We reconstituted this intermembrane signaling geometry between live EphA2-expressing human breast cancer cells and supported membranes displaying laterally mobile ephrin-A1. Receptor-ligand binding, clustering, and subsequent lateral transport within this junction were observed. EphA2 transport can be blocked by physical barriers nanofabricated onto the underlying substrate. This physical reorganization of EphA2 alters the cellular response to ephrin-A1, as observed by changes in cytoskeleton morphology and recruitment of a disintegrin and metalloprotease 10. Quantitative analysis of receptor-ligand spatial organization across a library of 26 mammary epithelial cell lines reveals characteristic differences that strongly correlate with invasion potential. These observations reveal a mechanism for spatio-mechanical regulation of EphA2 signaling pathways.

  14. Epstein-Barr virus growth/latency III program alters cellular microRNA expression

    SciTech Connect

    Cameron, Jennifer E. Fewell, Claire Yin, Qinyan McBride, Jane Wang Xia Lin Zhen

    2008-12-20

    The Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cancers. Initial EBV infection alters lymphocyte gene expression, inducing cellular proliferation and differentiation as the virus transitions through consecutive latency transcription programs. Cellular microRNAs (miRNAs) are important regulators of signaling pathways and are implicated in carcinogenesis. The extent to which EBV exploits cellular miRNAs is unknown. Using micro-array analysis and quantitative PCR, we demonstrate differential expression of cellular miRNAs in type III versus type I EBV latency including elevated expression of miR-21, miR-23a, miR-24, miR-27a, miR-34a, miR-146a and b, and miR-155. In contrast, miR-28 expression was found to be lower in type III latency. The EBV-mediated regulation of cellular miRNAs may contribute to EBV signaling and associated cancers.

  15. Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria.

    PubMed

    Agrawal, Anurag; Mabalirajan, Ulaganathan

    2016-01-15

    Altered bioenergetics with increased mitochondrial reactive oxygen species production and degradation of epithelial function are key aspects of pathogenesis in asthma and chronic obstructive pulmonary disease (COPD). This motif is not unique to obstructive airway disease, reported in related airway diseases such as bronchopulmonary dysplasia and parenchymal diseases such as pulmonary fibrosis. Similarly, mitochondrial dysfunction in vascular endothelium or skeletal muscles contributes to the development of pulmonary hypertension and systemic manifestations of lung disease. In experimental models of COPD or asthma, the use of mitochondria-targeted antioxidants, such as MitoQ, has substantially improved mitochondrial health and restored respiratory function. Modulation of noncoding RNA or protein regulators of mitochondrial biogenesis, dynamics, or degradation has been found to be effective in models of fibrosis, emphysema, asthma, and pulmonary hypertension. Transfer of healthy mitochondria to epithelial cells has been associated with remarkable therapeutic efficacy in models of acute lung injury and asthma. Together, these form a 3R model--repair, reprogramming, and replacement--for mitochondria-targeted therapies in lung disease. This review highlights the key role of mitochondrial function in lung health and disease, with a focus on asthma and COPD, and provides an overview of mitochondria-targeted strategies for rejuvenating cellular respiration and optimizing respiratory function in lung diseases.

  16. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution.

    PubMed

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments.

  17. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution

    PubMed Central

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments. PMID:27729845

  18. Pronounced alterations of cellular metabolism and structure due to hyper- or hypo-osmosis.

    PubMed

    Mao, Lei; Hartl, Daniela; Nolden, Tobias; Koppelstätter, Andrea; Klose, Joachim; Himmelbauer, Heinz; Zabel, Claus

    2008-09-01

    Cell volume alteration represents an important factor contributing to the pathology of late-onset diseases. Previously, it was reported that protein biosynthesis and degradation are inversely (trans) regulated during cell volume regulation. Upon cell shrinkage, protein biosynthesis was up-regulated and protein degradation down-regulated. Cell swelling showed opposite regulation. Recent evidence suggests a decrease of protein biodegradation activity in many neurodegenerative diseases and even during aging; both also show prominent cell shrinkage. To clarify the effect of cell volume regulation on the overall protein turnover dynamics, we investigated mouse embryonic stem cells under hyper- and hypotonic osmotic conditions using a 2-D gel based proteomics approach. These conditions cause cell swelling and shrinkage, respectively. Our results demonstrate that the adaption to altered osmotic conditions and therefore cell volume alterations affects a broad spectrum of cellular pathways, including stress response, cytoskeleton remodeling and importantly, cellular metabolism and protein degradation. Interestingly, protein synthesis and degradation appears to be cis-regulated (same direction) on a global level. Our findings also support the hypothesis that protein alterations due to osmotic stress contribute to the pathology of neurodegenerative diseases due to a 60% expression overlap with proteins found altered in Alzheimer's, Huntington's, or Parkinson's disease. Eighteen percent of the proteins altered are even shared with all three disorders.

  19. Diabetic rat testes: morphological and functional alterations.

    PubMed

    Ricci, G; Catizone, A; Esposito, R; Pisanti, F A; Vietri, M T; Galdieri, M

    2009-12-01

    Reproductive dysfunction is a consequence of diabetes, but the underlying mechanisms are poorly understood. This study investigated the histological and molecular alterations in the testes of rats injected with streptozotocin at prepuperal (SPI rats) and adult age (SAI rats) to understand whether diabetes affects testicular tissue with different severity depending on the age in which this pathological condition starts. The testes of diabetic animals showed frequent abnormal histology, and seminiferous epithelium cytoarchitecture appeared altered as well as the occludin distribution pattern. The early occurrence of diabetes increased the percentage of animals with high number of damaged tubules. The interstitial compartment of the testes was clearly hypertrophic in several portions of the organs both in SPI and SAI rats. Interestingly, fully developed Leydig cells were present in all the treated animals although abnormally distributed. Besides the above-described damages, we found a similar decrease in plasma testosterone levels both in SPI and SAI rats. Oxidative stress (OS) is involved in the pathogenesis of various diabetic complications, and in our experimental models we found that manganese superoxide dismutase was reduced in diabetic animals. We conclude that in STZ-induced diabetes, the altered spermatogenesis, more severe in SPI animals, is possibly due to the effect of OS on Leydig cell function which could cause the testosterone decrease responsible for the alterations found in the seminiferous epithelium of diabetic animals.

  20. Dysregulation of Ezrin phosphorylation prevents metastasis and alters cellular metabolism in osteosarcoma

    PubMed Central

    Ren, Ling; Hong, Sung-Hyeok; Chen, Qing-Rong; Briggs, Joseph; Cassavaugh, Jessica; Srinivasan, Satish; Lizardo, Michael M.; Mendoza, Arnulfo; Xia, Ashley Y.; Avadhani, Narayan; Khan, Javed; Khanna, Chand

    2013-01-01

    Ezrin links the plasma membrane to the actin cytoskeleton where it plays a pivotal role in the metastatic progression of several human cancers (1, 2), however, the precise mechanistic basis for its role remains unknown. Here we define transitions between active (phosphorylated open) and inactive (dephosphorylated closed) forms of Ezrin that occur during metastatic progression in osteosarcoma. In our evaluation of these conformations we expressed C-terminal mutant forms of Ezrin that are open (phosphomimetic T567D) or closed (phosphodeficient T567A) and compared their biological characteristics to full length wild-type Ezrin in osteosarcoma cells. Unexpectedly, cells expressing open, active Ezrin could form neither primary orthotopic tumors nor lung metastases. In contrast, cells expressing closed, inactive Ezrin were also deficient in metastasis but were unaffected in their capacity for primary tumor growth. By imaging single metastatic cells in the lung, we found that cells expressing either open or closed Ezrin displayed increased levels of apoptosis early after their arrival in the lung. Gene expression analysis suggested dysregulation of genes that are functionally linked to carbohydrate and amino acid metabolism. In particular, cells expressing closed, inactive Ezrin exhibited reduced lactate production and basal or ATP-dependent oxygen consumption. Collectively, our results suggest that dynamic regulation of Ezrin phosphorylation at amino acid T567 that controls structural transitions of this protein plays a pivotal role in tumor progression and metastasis, possibly in part by altering cellular metabolism. PMID:22147261

  1. Alteration of heme metabolism in a cellular model of Diamond-Blackfan anemia.

    PubMed

    Mercurio, Sonia; Aspesi, Anna; Silengo, Lorenzo; Altruda, Fiorella; Dianzani, Irma; Chiabrando, Deborah

    2016-04-01

    Diamond-Blackfan anemia (DBA) is a congenital pure red cell aplasia often associated with skeletal malformations. Mutations in ribosomal protein coding genes, mainly in RPS19, account for the majority of DBA cases. The molecular mechanisms underlying DBA pathogenesis are still not completely understood. Alternative spliced isoforms of FLVCR1 (feline leukemia virus subgroup C receptor 1) transcript coding for non-functional proteins have been reported in some DBA patients. Consistently, a phenotype very close to DBA has been described in animal models of FLVCR1 deficiency. FLVCR1 gene codes for two proteins: the plasma membrane heme exporter FLVCR1a and the mitochondrial heme exporter FLVCR1b. The coordinated expression of both FLVCR1 isoforms regulates an intracellular heme pool, necessary for proper expansion and differentiation of erythroid precursors. Here, we investigate the role of FLVCR1 isoforms in a cellular model of DBA. RPS19-downregulated TF1 cells show reduced FLVCR1a and FLVCR1b mRNA levels associated with heme overload. The downregulation of FLVCR1 isoforms affects cell cycle progression and apoptosis in differentiating K562 cells, a phenotype similar to DBA. Taken together, these data suggest that alteration of heme metabolism could play a role in the pathogenesis of DBA.

  2. Cellular and molecular basis of cholinergic function

    SciTech Connect

    Dowdall, M.J.; Hawthorne, J.N.

    1987-01-01

    This book contains 105 selections. Some of the titles are: Functional correlates of brain nicotine receptors; Muscarinic receptor subclasses; Cholinergic innervation and levels of nerve growth factor and its mRNA in the central nervous system; Developmentally regulated neurontrophic activities of Torpedo electric organ tissue; and Association of a regulatory peptide with cholinergic neurons.

  3. Cell Type Specific Analysis of Human Brain Transcriptome Data to Predict Alterations in Cellular Composition.

    PubMed

    Xu, Xiaoxiao; Nehorai, Arye; Dougherty, Joseph

    2013-07-01

    The central nervous system (CNS) is composed of hundreds of distinct cell types, each expressing different subsets of genes from the genome. High throughput gene expression analysis of the CNS from patients and controls is a common method to screen for potentially pathological molecular mechanisms of psychiatric disease. One mechanism by which gene expression might be seen to vary across samples would be alterations in the cellular composition of the tissue. While the expressions of gene 'markers' for each cell type can provide certain information of cellularity, for many rare cell types markers are not well characterized. Moreover, if only small sets of markers are known, any substantial variation of a marker's expression pattern due to experiment conditions would result in poor sensitivity and specificity. Here, our proposed method combines prior information from mice cell-specific transcriptome profiling experiments with co-expression network analysis, to select large sets of potential cell type-specific gene markers in a systematic and unbiased manner. The method is efficient and robust, and identifies sufficient markers for further cellularity analysis. We then employ the markers to analytically detect changing cellular composition in human brain. Application of our method to temporal human brain microarray data successfully detects changes in cellularity over time that roughly correspond to known epochs of human brain development. Furthermore, application of our method to human brain samples with the neurodevelopmental disorder of autism supports the interpretation that the changes in astrocytes and neurons might contribute to the disorder.

  4. Microgravity and Cellular Consequences in Lymphocyte Function

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Sundaresan, Alamelu

    2004-01-01

    Mammalian cells adapt to the environment of low gravity and express a series of responses, some possibly from direct effects on cells and others based on environmental conditions created by microgravity. Human lymphocytes in microgravity culture are functionally diminished in activation and locomotion. Both processes are integral to optimal immune response to fight pathogens. The NASA Rotating-wall vessel (RWV) is a well-accepted analog for microgravity culture on the ground. Gene array experiments and immunoblotting identified upstream events in human lymphocytes adapting to microgravity analog culture. Microgravity induces selective changes, many of which are cell membrane related. Results showed that upstream of PKC in the T cell activation cascade, PLC-gamma and LAT are significantly diminished. ZAP 70 which controls LAT activation is also down regulated in modeled microgravity. Thus events governing cell shape might warrant attention in microgravity conditions. The goal of this study is to delineate response suites that are consequential, direct or indirect effects of the microgravity environment and which of these are essential to lymphocytes

  5. Cellular function of neuropathy target esterase in lysophosphatidylcholine action

    SciTech Connect

    Vose, Sarah C.; Fujioka, Kazutoshi; Gulevich, Alex G.; Lin, Amy Y.; Holland, Nina T.; Casida, John E.

    2008-11-01

    Neuropathy target esterase (NTE) plays critical roles in embryonic development and maintenance of peripheral axons. It is a secondary target of some organophosphorus toxicants including analogs of insecticides and chemical warfare agents. Although the mechanistic role of NTE in vivo is poorly defined, it is known to hydrolyze lysophosphatidylcholine (LPC) in vitro and may protect cell membranes from cytotoxic accumulation of LPC. To determine the cellular function of NTE, Neuro-2a and COS-7 cells were transfected with a full-length human NTE-containing plasmid yielding recombinant NTE (rNTE). We find the same inhibitor sensitivity and specificity profiles for rNTE assayed with LPC or phenyl valerate (a standard NTE substrate) and that this correlation extends to the LPC hydrolases of human brain, lymphocytes and erythrocytes. All of these LPC hydrolases are therefore very similar to each other in respect to a conserved inhibitor binding site conformation. NTE is expressed in brain and lymphocytes and contributes to LPC hydrolase activities in these tissues. The enzyme or enzymes responsible for erythrocyte LPC hydrolase activity remain to be identified. We also show that rNTE protects Neuro-2a and COS-7 cells from exogenous LPC cytotoxicity. Expression of rNTE in Neuro-2a cells alters their phospholipid balance (analyzed by liquid chromatography-mass spectrometry with single ion monitoring) by lowering LPC-16:0 and LPC-18:0 and elevating glycerophosphocholine without a change in phosphatidylcholine-16:0/18:1 or 16:0/18:2. NTE therefore serves an important function in LPC homeostasis and action.

  6. Cellular alterations upon IR-laser (890 nm) exposures, in vivo.

    PubMed

    Kolesnikova, A I; Kubasova, T; Konoplyannikov, A G; Köteles, G J

    1998-01-01

    Exposure of cultured cells and small animals to ionizing radiation as well as irradiation of cultured cells with He-Ne laser can cause changes in the functional condition of plasma membranes. The ionizing radiation-induced cell membrane alterations have been determined after either partial or local exposures. The aim of the present study was to reveal whether the local laser treatments cause a general, distant, so called abscopal" effect measured at cellular level, when the laser treatment is intended as a stimulatory procedure. The biological effect of infrared laser (mean power of 5 Watts, 150 Hz frequency, 890 nm wavelength) was demonstrated through 3H-concanavalin A binding by blood cells of daily irradiated (altogether 10 exposures) oncological and non-oncological patients as well as by changes in the proliferation of bone marrow cells of whole body gamma-irradiated (4 Gy) rats, partially laser-treated. The lectin binding of lymphocytes of oncological, as well as ischaemic heart disease patients was increased immediately after the first laser treatment. However, it was decreased after completion of the full course. In cases of inflammatory diseases the test parameters were either unchanged or decreased as compared to their self-control values. The platelets and erythrocytes did not react in any group. Gamma irradiation caused a deep inhibition of proliferation of rat bone marrow cells. The number of fibroblast colony-forming units (CFU-F) could be increased again if the animals were partially exposed to laser. Laser irradiation of one of the femurs led to some recovery of CFU-F values in the exposed as well as unexposed femur. Thus, local infrared laser treatment induces abscopal effects on the cell membrane and cell proliferation characteristics.

  7. Cellular effects of fluorodeoxyglucose: Global changes in the lipidome and alteration in intracellular transport

    PubMed Central

    Kavaliauskiene, Simona; Torgersen, Maria Lyngaas; Lingelem, Anne Berit Dyve; Klokk, Tove Irene; Lintonen, Tuulia; Simolin, Helena; Ekroos, Kim; Skotland, Tore; Sandvig, Kirsten

    2016-01-01

    2-fluoro-2-deoxy-D-glucose (FDG), labeled with 18F radioisotope, is the most common imaging agent used for positron emission tomography (PET) in oncology. However, little is known about the cellular effects of FDG. Another glucose analogue, 2-deoxy-D-glucose (2DG), has been shown to affect many cellular functions, including intracellular transport and lipid metabolism, and has been found to improve the efficacy of cancer chemotherapeutic agents in vivo. Thus, in the present study, we have investigated cellular effects of FDG with the focus on changes in cellular lipids and intracellular transport. By quantifying more than 200 lipids from 17 different lipid classes in HEp-2 cells and by analyzing glycosphingolipids from MCF-7, HT-29 and HBMEC cells, we have discovered that FDG treatment inhibits glucosylceramide synthesis and thus reduces cellular levels of glycosphingolipids. In addition, in HEp-2 cells the levels and/or species composition of other lipid classes, namely diacylglycerols, phosphatidic acids and phosphatidylinositols, were found to change upon treatment with FDG. Furthermore, we show here that FDG inhibits retrograde Shiga toxin transport and is much more efficient in protecting cells against the toxin than 2DG. In summary, our data reveal novel effects of FDG on cellular transport and glycosphingolipid metabolism, which suggest a potential clinical application of FDG as an adjuvant for cancer chemotherapy. PMID:27829218

  8. Alterations in macrophage functions by environmental chemicals.

    PubMed Central

    Gardner, D E

    1984-01-01

    The establishment of infectious diseases is rarely entirely attributed to a single entity, but instead is the result of a primary stress and one or more secondary factors that interfere with homeostasis and the ability of the host to cope with the primary etiologic assault. Any environmental chemical that can suppress the normal functioning of the host's body defenses would be expected to increase the risk of the host to such diseases. Within the lung, the alveolar macrophages are the crucial elements responsible for defending the body against such airborne viable agents. The effects of inhaled gases and particulates on these defense cells are a major concern of the environmental health scientist since such chemicals have the capability of adversely affecting the integrity and functioning of these pulmonary defense cells. The objective of this report is to provide an overview that will improve our understanding of how a variety of environmental chemicals can alter the biochemical, physiological and immunological functioning of these cells. PMID:6376106

  9. Altered thyroid function in severely injured patients

    PubMed Central

    Grill, Elena; Strong, Michelle; Sonnad, Seema S.; Sarani, Babak; Pascual, Jose; Collins, Heather; Sims, Carrie A.

    2013-01-01

    Background Hemorrhagic shock profoundly affects the neuroendocrine profile of trauma patients, and we hypothesized that massive resuscitation would negatively impact thyroid function. Methods A prospective, observational study investigating thyroid function in hypotensive trauma patients (systolic blood pressure <90 mm Hg × 2) who survived >48 h was conducted at a Level I center over a 6-mo period. Blood samples for thyroid function were collected at time of presentation to the trauma bay and serially for 48 h. Collected data included demographics, injury data, vital signs, transfusion needs, crystalloid use, and vasopressor requirements. Patients receiving >5 units packed red blood cells (PRBC) within 12 h were compared with those receiving ≥ 5 units. Results Patients who required >5 units of PRBC/12 h had significantly lower total and free T4 levels on initial presentation, and levels remained significantly depressed over the next 48 h when compared with patients who required a less aggressive resuscitative effort. T3 values were markedly suppressed during the initial 48 h post trauma in all patients, but were significantly lower in patients requiring >5 units PRBC. TSH levels remained within the normal range for all time points. Lower trauma admission T4 levels were associated with the need for greater crystalloid resuscitation within the first 24 h. Conclusion Measurements of thyroid function are significantly altered in severely injured patients on initial presentation, and low T4 levels predict the need for large resuscitation. Further research investigating the profile and impact of thyroid function in trauma patients during resuscitation and recovery is warranted. PMID:23043865

  10. Altered Functional Connectivity in Essential Tremor

    PubMed Central

    Benito-León, Julián; Louis, Elan D.; Romero, Juan Pablo; Hernández-Tamames, Juan Antonio; Manzanedo, Eva; Álvarez-Linera, Juan; Bermejo-Pareja, Félix; Posada, Ignacio; Rocon, Eduardo

    2015-01-01

    Abstract Essential tremor (ET) has been associated with a spectrum of clinical features, with both motor and nonmotor elements, including cognitive deficits. We employed resting-state functional magnetic resonance imaging (fMRI) to assess whether brain networks that might be involved in the pathogenesis of nonmotor manifestations associated with ET are altered, and the relationship between abnormal connectivity and ET severity and neuropsychological function. Resting-state fMRI data in 23 ET patients (12 women and 11 men) and 22 healthy controls (HC) (12 women and 10 men) were analyzed using independent component analysis, in combination with a “dual-regression” technique, to identify the group differences of resting-state networks (RSNs) (default mode network [DMN] and executive, frontoparietal, sensorimotor, cerebellar, auditory/language, and visual networks). All participants underwent a neuropsychological and neuroimaging session, where resting-state data were collected. Relative to HC, ET patients showed increased connectivity in RSNs involved in cognitive processes (DMN and frontoparietal networks) and decreased connectivity in the cerebellum and visual networks. Changes in network integrity were associated not only with ET severity (DMN) and ET duration (DMN and left frontoparietal network), but also with cognitive ability. Moreover, in at least 3 networks (DMN and frontoparietal networks), increased connectivity was associated with worse performance on different cognitive domains (attention, executive function, visuospatial ability, verbal memory, visual memory, and language) and depressive symptoms. Further, in the visual network, decreased connectivity was associated with worse performance on visuospatial ability. ET was associated with abnormal brain connectivity in major RSNs that might be involved in both motor and nonmotor symptoms. Our findings underscore the importance of examining RSNs in this population as a biomarker of disease. PMID:26656325

  11. Computer Modeling of the Earliest Cellular Structures and Functions

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chipot, Christophe; Schweighofer, Karl

    2000-01-01

    In the absence of extinct or extant record of protocells (the earliest ancestors of contemporary cells). the most direct way to test our understanding of the origin of cellular life is to construct laboratory models of protocells. Such efforts are currently underway in the NASA Astrobiology Program. They are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs for molecules that perform proto-cellular functions. Many of these functions, such as import of nutrients, capture and storage of energy. and response to changes in the environment are carried out by proteins bound to membrane< We will discuss a series of large-scale, molecular-level computer simulations which demonstrate (a) how small proteins (peptides) organize themselves into ordered structures at water-membrane interfaces and insert into membranes, (b) how these peptides aggregate to form membrane-spanning structures (eg. channels), and (c) by what mechanisms such aggregates perform essential proto-cellular functions, such as proton transport of protons across cell walls, a key step in cellular bioenergetics. The simulations were performed using the molecular dynamics method, in which Newton's equations of motion for each item in the system are solved iteratively. The problems of interest required simulations on multi-nanosecond time scales, which corresponded to 10(exp 6)-10(exp 8) time steps.

  12. Tat is a multifunctional viral protein that modulates cellular gene expression and functions.

    PubMed

    Clark, Evan; Nava, Brenda; Caputi, Massimo

    2017-02-07

    The human immunodeficiency virus type I (HIV-1) has developed several strategies to condition the host environment to promote viral replication and spread. Viral proteins have evolved to perform multiple functions, aiding in the replication of the viral genome and modulating the cellular response to the infection. Tat is a small, versatile, viral protein that controls transcription of the HIV genome, regulates cellular gene expression and generates a permissive environment for viral replication by altering the immune response and facilitating viral spread to multiple tissues. Studies carried out utilizing biochemical, cellular, and genomic approaches show that the expression and activity of hundreds of genes and multiple molecular networks are modulated by Tat via multiple mechanisms.

  13. Mitochondrial function in pluripotent stem cells and cellular reprogramming.

    PubMed

    Bukowiecki, Raul; Adjaye, James; Prigione, Alessandro

    2014-01-01

    Mitochondria are organelles playing pivotal roles in a range of diverse cellular functions, from energy generation to redox homeostasis and apoptosis regulation. Their loss of functionality may indeed contribute to the development of aging and age-related neurodegenerative disorders. Recently, mitochondria have been shown to exhibit peculiar features in pluripotent stem cells (PSCs). Moreover, an extensive restructuring of mitochondria has been observed during the process of cellular reprogramming, i.e. the conversion of somatic cells into induced pluripotent stem cells (iPSCs). These transformation events impact mitochondrial number, morphology, activity, cellular metabolism, and mtDNA integrity. PSCs retain the capability to self-renew indefinitely and to give rise to virtually any cell type of the body and thus hold great promise in medical research. Understanding the mitochondrial properties of PSCs, and how to modulate them, may thus help to shed light on the features of stemness and possibly increase our knowledge on cellular identity and differentiation pathways. Here, we review these recent findings and discuss their implications in the context of stem cell biology, aging research, and regenerative medicine.

  14. Nanoscale intracellular organization and functional architecture mediating cellular behavior.

    PubMed

    LeDuc, Philip P; LeDuc, Philip R; Bellin, Robert R; Bellin, Robert M

    2006-01-01

    Cells function based on a complex set of interactions that control pathways resulting in ultimate cell fates including proliferation, differentiation, and apoptosis. The inter-workings of this immensely dense network of intracellular molecules are influenced by more than random protein and nucleic acid distribution where their interactions culminate in distinct cellular function. By probing the design of these biological systems from an engineering perspective, researchers can gain great insight that will aid in building and utilizing systems that are on this size scale where traditional large-scale rules may fail to apply. The organized interaction and gradient distribution in intracellular space imply a structural architecture that modulates cellular processes by influencing biochemical interactions including transport and binding-reactions. One significant structure that plays a role in this modulation is the cell cytoskeleton. Here, we discuss the cytoskeleton as a central and integrating functional structure in influencing cell processes and we describe technology useful for probing this structure. We explain the nanometer scale science of cytoskeletal structure with respect to intracellular organization, mechanotransduction, cytoskeletal-associated proteins, and motor molecules, as well as nano- and microtechnologies that are applicable for experimental studies of the cytoskeleton. This biological architecture of the cytoskeleton influences molecular, cellular, and physiological processes through structured multimodular and hierarchical principles centered on these functional filaments. Through investigating these organic systems that have evolved over billions of years, understanding in biology, engineering, and nanometer-scaled science will be advanced.

  15. Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments

    PubMed Central

    Ridge, Karen M.; Shumaker, Dale; Robert, Amélie; Hookway, Caroline; Gelfand, Vladimir I.; Janmey, Paul A.; Lowery, Jason; Guo, Ming; Weitz, David A.; Kuczmarski, Edward; Goldman, Robert D.

    2016-01-01

    The type III intermediate filament protein vimentin was once thought to function mainly as a static structural protein in the cytoskeleton of cells of mesenchymal origin. Now, however, vimentin is known to form a dynamic, flexible network that plays an important role in a number of signaling pathways. Here, we describe various methods that have been developed to investigate the cellular functions of the vimentin protein and intermediate filament network, including chemical disruption, photoactivation and photoconversion, biolayer interferometry, soluble bead binding assay, three-dimensional substrate experiments, collagen gel contraction, optical-tweezer active microrheology, and force spectrum microscopy. Using these techniques, the contributions of vimentin to essential cellular processes can be probed in ever further detail. PMID:26795478

  16. A cellular perspective on brain energy metabolism and functional imaging.

    PubMed

    Magistretti, Pierre J; Allaman, Igor

    2015-05-20

    The energy demands of the brain are high: they account for at least 20% of the body's energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and point at a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales.

  17. Cellular strategies for regulating functional and nonfunctional protein aggregation.

    PubMed

    Gsponer, Jörg; Babu, M Madan

    2012-11-29

    Growing evidence suggests that aggregation-prone proteins are both harmful and functional for a cell. How do cellular systems balance the detrimental and beneficial effect of protein aggregation? We reveal that aggregation-prone proteins are subject to differential transcriptional, translational, and degradation control compared to nonaggregation-prone proteins, which leads to their decreased synthesis, low abundance, and high turnover. Genetic modulators that enhance the aggregation phenotype are enriched in genes that influence expression homeostasis. Moreover, genes encoding aggregation-prone proteins are more likely to be harmful when overexpressed. The trends are evolutionarily conserved and suggest a strategy whereby cellular mechanisms specifically modulate the availability of aggregation-prone proteins to (1) keep concentrations below the critical ones required for aggregation and (2) shift the equilibrium between the monomeric and oligomeric/aggregate form, as explained by Le Chatelier's principle. This strategy may prevent formation of undesirable aggregates and keep functional assemblies/aggregates under control.

  18. Oxystressed tumor microenvironment potentiates epithelial to mesenchymal transition and alters cellular bioenergetics towards cancer progression.

    PubMed

    Sridaran, Dhivya; Ramamoorthi, Ganesan; MahaboobKhan, Rasool; Kumpati, Premkumar

    2016-10-01

    During tumorigenesis, cancer cells generate complex, unresolved interactions with the surrounding oxystressed cellular milieu called tumor microenvironment (TM) that favors spread of cancer to other body parts. This dissemination of cancer cells from the primary tumor site is the main clinical challenge in cancer treatment. In addition, the significance of enhanced oxidative stress in TM during cancer progression still remains elusive. Thus, the present study was performed to investigate the molecular and cytoskeletal alterations in breast cancer cells associated with oxystressed TM that potentiates metastasis. Our results showed that depending on the extent of oxidative stress in TM, cancer cells exhibited enhanced migration and survival with reduction of chemosensitivity. Corresponding ultrastructural analysis showed radical cytoskeletal modifications that reorganize cell-cell interactions fostering transition of epithelial cells to mesenchymal morphology (EMT) marking metastasis, which was reversed upon antioxidant treatment. Decreased E-cadherin and increased vimentin, Twist1/2 expression corroborated the initiation of EMT in oxystressed TM-influenced cells. Further evaluation of cellular energetics demonstrated significant metabolic reprogramming with inclination towards glucose or external glutamine from TM as energy source depending on the breast cancer cell type. These observations prove the elemental role of oxystressed TM in cancer progression, initiating EMT and metabolic reprogramming. Further cell-type specific metabolomic analysis would unravel the alternate mechanisms in cancer progression for effective therapeutic intervention. Graphical abstract Schematic representation of the study and proposed mechanism of oxystressed TM influenced cancer progression. Cancer cells exhibit a close association with tumor microenvironment (TM), and oxystressed TM enhances cancer cell migration and survival and reduces chemosensitivity. Oxystressed TM induces dynamic

  19. The phosphate makes a difference: cellular functions of NADP.

    PubMed

    Agledal, Line; Niere, Marc; Ziegler, Mathias

    2010-01-01

    Recent research has unraveled a number of unexpected functions of the pyridine nucleotides. In this review, we will highlight the variety of known physiological roles of NADP. In its reduced form (NADPH), this molecule represents a universal electron donor, not only to drive biosynthetic pathways. Perhaps even more importantly, NADPH is the unique provider of reducing equivalents to maintain or regenerate the cellular detoxifying and antioxidative defense systems. The roles of NADPH in redox sensing and as substrate for NADPH oxidases to generate reactive oxygen species further extend its scope of functions. NADP(+), on the other hand, has acquired signaling functions. Its conversion to second messengers in calcium signaling may have critical impact on important cellular processes. The generation of NADP by NAD kinases is a key determinant of the cellular NADP concentration. The regulation of these enzymes may, therefore, be critical to feed the diversity of NADP-dependent processes adequately. The increasing recognition of the multiple roles of NADP has thus led to exciting new insights in this expanding field.

  20. Different Candida parapsilosis clinical isolates and lipase deficient strain trigger an altered cellular immune response

    PubMed Central

    Tóth, Renáta; Alonso, Maria F.; Bain, Judith M.; Vágvölgyi, Csaba; Erwig, Lars-Peter; Gácser, Attila

    2015-01-01

    Numerous human diseases can be associated with fungal infections either as potential causative agents or as a result of changed immune status due to a primary disease. Fungal infections caused by Candida species can vary from mild to severe dependent upon the site of infection, length of exposure, and past medical history. Patients with impaired immune status are at increased risk for chronic fungal infections. Recent epidemiologic studies have revealed the increasing incidence of candidiasis caused by non-albicans species such as Candida parapsilosis. Due to its increasing relevance we chose two distinct C. parapsilosis strains, to describe the cellular innate immune response toward this species. In the first section of our study we compared the interaction of CLIB 214 and GA1 cells with murine and human macrophages. Both strains are commonly used to investigate C. parapsilosis virulence properties. CLIB 214 is a rapidly pseudohyphae-forming strain and GA1 is an isolate that mainly exists in a yeast form. Our results showed, that the phagocyte response was similar in terms of overall uptake, however differences were observed in macrophage migration and engulfment of fungal cells. As C. parapsilosis releases extracellular lipases in order to promote host invasion we further investigated the role of these secreted components during the distinct stages of the phagocytic process. Using a secreted lipase deficient mutant strain and the parental strain GA1 individually and simultaneously, we confirmed that fungal secreted lipases influence the fungi's virulence by detecting altered innate cellular responses. In this study we report that two isolates of a single species can trigger markedly distinct host responses and that lipase secretion plays a role on the cellular level of host–pathogen interactions. PMID:26528256

  1. Membrane-Based Functions in the Origin of Cellular Life

    NASA Technical Reports Server (NTRS)

    Chipot, Christophe; New, Michael H.; Schweighofer, Karl; Pohorille, Andrew; Wilson, Michael A.

    1999-01-01

    Our objective is to help explain how the earliest ancestors of contemporary cells (protocells) performed their essential functions employing only the molecules available in the protobiological milieu. Our hypothesis is that vesicles, built of amphiphilic, membrane-forming materials, emerged early in protobiological evolution and served as precursors to protocells. We further assume that the cellular functions associated with contemporary membranes, such as capturing and, transducing of energy, signaling, or sequestering organic molecules and ions, evolved in these membrane environments. An alternative hypothesis is that these functions evolved in different environments and were incorporated into membrane-bound structures at some later stage of evolution. We focus on the application of the fundamental principles of physics and chemistry to determine how they apply to the formation of a primitive, functional cell. Rather than attempting to develop specific models for cellular functions and to identify the origin of the molecules which perform these functions, our goal is to define the structural and energetic conditions that any successful model must fulfill, therefore providing physico-chemical boundaries for these models. We do this by carrying out large-scale, molecular level computer simulations on systems of interest.

  2. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states

    NASA Astrophysics Data System (ADS)

    Lancaster, Gemma; Suprunenko, Yevhen F.; Jenkins, Kirsten; Stefanovska, Aneta

    2016-08-01

    Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states.

  3. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states

    PubMed Central

    Lancaster, Gemma; Suprunenko, Yevhen F.; Jenkins, Kirsten; Stefanovska, Aneta

    2016-01-01

    Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states. PMID:27483987

  4. Using RNA as Molecular Code for Programming Cellular Function.

    PubMed

    Kushwaha, Manish; Rostain, William; Prakash, Satya; Duncan, John N; Jaramillo, Alfonso

    2016-08-19

    RNA is involved in a wide-range of important molecular processes in the cell, serving diverse functions: regulatory, enzymatic, and structural. Together with its ease and predictability of design, these properties can lead RNA to become a useful handle for biological engineers with which to control the cellular machinery. By modifying the many RNA links in cellular processes, it is possible to reprogram cells toward specific design goals. We propose that RNA can be viewed as a molecular programming language that, together with protein-based execution platforms, can be used to rewrite wide ranging aspects of cellular function. In this review, we catalogue developments in the use of RNA parts, methods, and associated computational models that have contributed to the programmability of biology. We discuss how RNA part repertoires have been combined to build complex genetic circuits, and review recent applications of RNA-based parts and circuitry. We explore the future potential of RNA engineering and posit that RNA programmability is an important resource for firmly establishing an era of rationally designed synthetic biology.

  5. Violent Video Games Alter Brain Function in Young Men

    MedlinePlus

    ... RSS feed News from the RSNA Annual Meeting Violent Video Games Alter Brain Function in Young Men ... Using functional MRI, researchers have found that playing violent video games for one week causes changes in ...

  6. Violent Video Games Alter Brain Function in Young Men

    MedlinePlus

    ... News from the RSNA Annual Meeting Violent Video Games Alter Brain Function in Young Men At A ... MRI, researchers have found that playing violent video games for one week causes changes in brain function. ...

  7. Altered glucocorticoid receptor expression and function during mouse skin carcinogenesis.

    PubMed

    Budunova, I V; Carbajal, S; Kang, H; Viaje, A; Slaga, T J

    1997-03-01

    Glucocorticoids are the most potent inhibitors of tumor promotion in mouse skin, when applied with a promoting agent at the early stages of promotion. However, established skin papillomas become resistant to growth inhibition by glucocorticoids. Glucocorticoid control of cellular functions is mediated by the glucocorticoid receptor (GR), a well-known transcription factor. Here we present data on GR expression and function in mouse papillomas and squamous cell carcinomas. Tumors were produced in SENCAR mice by a 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate two-stage protocol. In early papillomas (after 15-20 wk of promotion), northern blotting revealed a decrease in the GR mRNA level that was confirmed by a binding assay. However, in late papillomas (after 30-40 wk of promotion), and especially in squamous cell carcinomas, the level of GR in both assays was similar to or higher than the GR level in normal epidermis. To test the functional capability of GR in tumors, we compared the effect of the synthetic glucocorticoid fluocinolone acetonide (FA) on keratinocyte proliferation and on expression of glucocorticoid-responsive genes in normal epidermis, hyperplastic skin surrounding tumors, and mouse skin papillomas. FA strongly inhibited DNA synthesis in keratinocytes in normal skin and tumor-surrounding skin but had no effect on DNA synthesis in papillomas. In addition, FA strongly induced metallothionein 1 expression and inhibited connexin 26 expression in skin but did not affect expression of these genes in tumors. These data suggest that alteration of both the expression and function of GR may be an important mechanism of tumor promotion in skin.

  8. β-carotene treatment alters the cellular death process in oxidative stress-induced K562 cells.

    PubMed

    Akçakaya, Handan; Tok, Sabiha; Dal, Fulya; Cinar, Suzan Adin; Nurten, Rustem

    2017-03-01

    Oxidizing agents (e.g., H2 O2 ) cause structural and functional disruptions of molecules by affecting lipids, proteins, and nucleic acids. As a result, cellular mechanisms related to disrupted macro molecules are affected and cell death is induced. Oxidative damage can be prevented at a certain point by antioxidants or the damage can be reversed. In this work, we studied the cellular response against oxidative stress induced by H2 O2 and antioxidant-oxidant (β-carotene-H2 O2 ) interactions in terms of time, concentration, and treatment method (pre-, co-, and post) in K562 cells. We showed that co- or post-treatment with β-carotene did not protect cells from the damage of oxidative stress furthermore co- and post-β-carotene-treated oxidative stress induced cells showed similar results with only H2 O2 treated cells. However, β-carotene pre-treatment prevented oxidative damage induced by H2 O2 at concentrations lower than 1,000 μM compared with only H2 O2 -treated and co- and post-β-carotene-treated oxidative stress-induced cells in terms of studied cellular parameters (mitochondrial membrane potential [Δψm ], cell cycle and apoptosis). Prevention effect of β-carotene pre-treatment was lost at concentrations higher than 1,000 μM H2 O2 (2-10 mM). These findings suggest that β-carotene pre-treatment alters the effects of oxidative damage induced by H2 O2 and cell death processes in K562 cells.

  9. Environmental exposure and altered menstrual function

    SciTech Connect

    Keye, W.R. Jr.

    1984-01-01

    The impact of environmental agents and occupational factors on hypothalamic and pituitary function and menstruation are poorly understood. To date, most research related to environment, occupation, and reproduction has focused on pregnancy outcome, not menstrual function. It is imperative, however, that menstrual function be considered as an outcome variable in the study of reproduction and occupation.

  10. 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications.

    PubMed

    Kumar, Sachin; Azam, Dilkash; Raj, Shammy; Kolanthai, Elayaraja; Vasu, K S; Sood, A K; Chatterjee, Kaushik

    2016-05-01

    Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81° to 87° whereas GO decreased it to 77°. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites.

  11. Assemblages: Functional units formed by cellular phase separation

    PubMed Central

    Wright, Peter E.

    2014-01-01

    The partitioning of intracellular space beyond membrane-bound organelles can be achieved with collections of proteins that are multivalent or contain low-complexity, intrinsically disordered regions. These proteins can undergo a physical phase change to form functional granules or other entities within the cytoplasm or nucleoplasm that collectively we term “assemblage.” Intrinsically disordered proteins (IDPs) play an important role in forming a subset of cellular assemblages by promoting phase separation. Recent work points to an involvement of assemblages in disease states, indicating that intrinsic disorder and phase transitions should be considered in the development of therapeutics. PMID:25179628

  12. Alterations of Cellular Immune Reactions in Crew Members Overwintering in the Antarctic Research Station Concordia

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Feuerecker, Matthias; Moreels, Marjan; Crucian, Brian; Kaufmann, Ines; Salam, Alex Paddy; Rybka, Alex; Ulrike, Thieme; Quintens, Roel; Sams, Clarence F.; Schelling, Gustav; Thiel, Manfred; Baatout, Sarah; Chouker, Alexander

    2012-01-01

    Background: Concordia Station is located inside Antarctica about 1000km from the coast at an altitude of 3200m (Dome C). Hence, individuals living in this harsh environment are exposed to two major conditions: 1.) hypobaric hypoxia and 2.) confinement and extreme isolation. Both hypoxia and confinement can affect human immunity and health, and are likely to be present during exploration class space missions. This study focused on immune alterations measured by a new global immunity test assay, similar to the phased out delayed type hypersensitivity (DTH) skin test. Methods: After informed written consent 14 healthy male subjects were included to the CHOICE-study (Consequences-of-longterm-Confinement-and-Hypobaric-HypOxia-on-Immunity-in-the Antarctic-Concordia-Environment). Data collection occurred during two winter-over periods lasting each one year. During the first campaign 6 healthy male were enrolled followed by a second campaign with 8 healthy males. Blood was drawn monthly and incubated for 48h with various bacterial, viral and fungal antigens followed by an analysis of plasma cytokine levels (TNF-alpha, IL2, IFN-gamma, IL10). As a control, blood was incubated without stimulation ("resting condition"). Goals: The scope of this study was to assess the consequences of hypoxia and confinement on cellular immunity as assessed by a new in vitro DTH-like test. Results: Initial results indicate that under resting conditions the in vitro DTH-like test showed low cytokine levels which remained almost unchanged during the entire observation period. However, cytokine responses to viral, bacterial and fungal antigens were remarkably reduced at the first month after arrival at Concordia when compared to levels measured in Europe prior to departure for Antarctica. With incrementing months of confinement this depressed DTH-like response tended to reverse, and in fact to show an "overshooting" immune reaction after stimulation. Conclusion: The reduced in vitro DTH-like test

  13. HIV-1 transgenic rats display alterations in immunophenotype and cellular responses associated with aging.

    PubMed

    Abbondanzo, Susan J; Chang, Sulie L

    2014-01-01

    Advances in anti-retroviral therapy over the last two decades have allowed life expectancy in patients infected with the human immunodeficiency virus to approach that of the general population. The process of aging in mammalian species, including rats, results in immune response changes, alterations in immunological phenotypes, and ultimately increased susceptibility to many infectious diseases. In order to investigate the immunological pathologies associated with chronic HIV-1 disease, particularly in aging individuals, the HIV-1 transgenic (HIV-1Tg) rat model was utilized. HIV-1Tg rats were challenged with lipopolysaccharide (LPS) to determine immunological alterations during the aging process. LPS is known to cause an imbalance in cytokine and chemokine release, and provides a method to identify changes in immune responses to bacterial infection in an HIV animal model. An immune profile and accompanying cellular consequences as well as changes in inflammatory cytokine and chemokine release related to age and genotype were assessed in HIV-1Tg rats. The percentage of T cells decreased with age, particularly T cytotoxic cells, whereas T helper cells increased with age. Neutrophils and monocytes increased in HIV-1Tg rats during maturation compared to age-matched F344 control rats. Aging HIV-1Tg rats displayed a significant increase in the pro-inflammatory cytokines, IL-6 and TNF-α, along with an increase in the chemokine, KC/GRO, in comparison to age-matched controls. Our data indicate that immunophenotype and immune responses can change during aging in HIV-positive individuals. This information could be important in determining the most beneficial age-dependent therapeutic treatment for HIV patients.

  14. Separating discriminative and function-altering effects of verbal stimuli.

    PubMed

    Schlinger, H D

    1993-01-01

    Ever since Skinner's first discussion of rule-governed behavior, behavior analysts have continued to define rules, either explicitly or implicitly, as verbal discriminative stimuli. Consequently, it is not difficult to find, in the literature on rule-governed behavior, references to stimulus control, antecedent control, or to rules occasioning behavior. However, some verbal stimuli have effects on behavior that are not easily described as discriminative. Such stimuli don't evoke behavior as discriminative stimuli, but rather alter the functions of other stimuli in a manner analogous to operant and respondent conditioning. Hence, this type of control has been called function altering. Any known stimulus function (e.g., evocative, or [conditioned] reinforcing or punishing functions) can apparently be altered by such function-altering stimuli. Describing these stimuli as discriminative stimuli obscures their possible function-altering effects and consequently may retard inquiry into them. This paper encourages behavior analysts to begin separating the discriminative and function-altering effects of verbal stimuli and suggests that by doing so, behavior analysts may better understand what may be most unique about these stimuli. Results from several experiments, especially those in which children served as subjects, are analyzed. Finally, some speculations are offered concerning the genesis of function-altering stimuli.

  15. Opt2 mediates the exposure of phospholipids during cellular adaptation to altered lipid asymmetry.

    PubMed

    Yamauchi, Saori; Obara, Keisuke; Uchibori, Kenya; Kamimura, Akiko; Azumi, Kaoru; Kihara, Akio

    2015-01-01

    Plasma membrane lipid asymmetry is important for various membrane-associated functions and is regulated by membrane proteins termed flippases and floppases. The Rim101 pathway senses altered lipid asymmetry in the yeast plasma membrane. The mutant lem3Δ cells, in which lipid asymmetry is disturbed owing to the inactivation of the plasma membrane flippases, showed a severe growth defect when the Rim101 pathway was impaired. To identify factors involved in the Rim101-pathway-dependent adaptation to altered lipid asymmetry, we performed DNA microarray analysis and found that Opt2 induced by the Rim101 pathway plays an important role in the adaptation to altered lipid asymmetry. Biochemical investigation of Opt2 revealed its localization to the plasma membrane and the Golgi, and provided several lines of evidence for the Opt2-mediated exposure of phospholipids. In addition, Opt2 was found to be required for the maintenance of vacuolar morphology and polarized cell growth. These results suggest that Opt2 is a novel factor involved in cell homeostasis by regulating lipid asymmetry.

  16. Neurophysiology of HCN channels: from cellular functions to multiple regulations.

    PubMed

    He, Chao; Chen, Fang; Li, Bo; Hu, Zhian

    2014-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels are encoded by HCN1-4 gene family and have four subtypes. These channels are activated upon hyperpolarization of membrane potential and conduct an inward, excitatory current Ih in the nervous system. Ih acts as pacemaker current to initiate rhythmic firing, dampen dendritic excitability and regulate presynaptic neurotransmitter release. This review summarizes recent insights into the cellular functions of Ih and associated behavior such as learning and memory, sleep and arousal. HCN channels are excellent targets of various cellular signals to finely regulate neuronal responses to external stimuli. Numerous mechanisms, including transcriptional control, trafficking, as well as channel assembly and modification, underlie HCN channel regulation. In the next section, we discuss how the intracellular signals, especially recent findings concerning protein kinases and interacting proteins such as cGKII, Ca(2+)/CaMKII and TRIP8b, regulate function and expression of HCN channels, and subsequently provide an overview of the effects of neurotransmitters on HCN channels and their corresponding intracellular mechanisms. We also discuss the dysregulation of HCN channels in pathological conditions. Finally, insight into future directions in this exciting area of ion channel research is provided.

  17. Cellular Strategies for Regulating Functional and Nonfunctional Protein Aggregation

    PubMed Central

    Gsponer, Jörg; Babu, M. Madan

    2012-01-01

    Summary Growing evidence suggests that aggregation-prone proteins are both harmful and functional for a cell. How do cellular systems balance the detrimental and beneficial effect of protein aggregation? We reveal that aggregation-prone proteins are subject to differential transcriptional, translational, and degradation control compared to nonaggregation-prone proteins, which leads to their decreased synthesis, low abundance, and high turnover. Genetic modulators that enhance the aggregation phenotype are enriched in genes that influence expression homeostasis. Moreover, genes encoding aggregation-prone proteins are more likely to be harmful when overexpressed. The trends are evolutionarily conserved and suggest a strategy whereby cellular mechanisms specifically modulate the availability of aggregation-prone proteins to (1) keep concentrations below the critical ones required for aggregation and (2) shift the equilibrium between the monomeric and oligomeric/aggregate form, as explained by Le Chatelier’s principle. This strategy may prevent formation of undesirable aggregates and keep functional assemblies/aggregates under control. PMID:23168257

  18. Modulating cellular recombination potential through alterations in RecA structure and regulation.

    PubMed

    Bakhlanova, Irina V; Dudkina, Alexandra V; Baitin, Dima M; Knight, Kendall L; Cox, Michael M; Lanzov, Vladislav A

    2010-12-01

    The wild-type Escherichia coli RecA protein is a recombinase platform with unrealized recombination potential. We have explored the factors affecting recombination during conjugation with a quantitative assay. Regulatory proteins that affect RecA function have the capacity to increase or decrease recombination frequencies by factors up to sixfold. Autoinhibition by the RecA C-terminus can affect recombination frequency by factors up to fourfold. The greatest changes in recombination frequency measured here are brought about by point mutations in the recA gene. RecA variants can increase recombination frequencies by more than 50-fold. The RecA protein thus possesses an inherently broad functional range. The RecA protein of E. coli (EcRecA) is not optimized for recombination function. Instead, much of the recombination potential of EcRecA is structurally suppressed, probably reflecting cellular requirements. One point mutation in EcRecA with a particularly dramatic effect on recombination frequency, D112R, exhibits an enhanced capacity to load onto SSB-coated ssDNA, overcome the effects of regulatory proteins such as PsiB and RecX, and to pair homologous DNAs. Comparisons of key RecA protein mutants reveal two components to RecA recombination function - filament formation and the inherent DNA pairing activity of the formed filaments.

  19. Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function.

    PubMed

    Li, Xiaohua; Thompson, David; Kumar, Brajesh; DeMartino, George N

    2014-06-20

    We investigated molecular features and cellular roles of PI31 (PSMF1) on regulation of proteasome function. PI31 has a C-terminal HbYX (where Hb is a hydrophobic amino acid, Y is tyrosine, and X is any amino acid) motif characteristic of several proteasome activators. Peptides corresponding to the PI31 C terminus also bind to and activate the 20 S proteasome in an HbYX-dependent manner, but intact PI31protein inhibits in vitro 20 S activity. Binding to and inhibition of the proteasome by PI31 are conferred by the HbYX-containing proline-rich C-terminal domain but do not require HbYX residues. Thus, multiple regions of PI31 bind independently to the proteasome and collectively determine effects on activity. PI31 blocks the ATP-dependent in vitro assembly of 26 S proteasome from 20 S proteasome and PA700 subcomplexes but has no effect on in vitro activity of the intact 26 S proteasome. To determine the physiologic significance of these in vitro effects, we assessed multiple aspects of cellular proteasome content and function after altering PI31 levels. We detected no change in overall cellular proteasome content or function when PI31 levels were either increased by moderate ectopic overexpression or decreased by RNA interference (RNAi). We also failed to identify a role of PI31 ADP-ribosylation as a mechanism for regulation of overall 26 S proteasome content and function, as recently proposed. Thus, despite its in vitro effects on various proteasome activities and its structural relationship to established proteasome regulators, cellular roles and mechanisms of PI31 in regulation of proteasome function remain unclear and require future definition.

  20. USP1 deubiquitinase: cellular functions, regulatory mechanisms and emerging potential as target in cancer therapy

    PubMed Central

    2013-01-01

    Reversible protein ubiquitination is emerging as a key process for maintaining cell homeostasis, and the enzymes that participate in this process, in particular E3 ubiquitin ligases and deubiquitinases (DUBs), are increasingly being regarded as candidates for drug discovery. Human DUBs are a group of approximately 100 proteins, whose cellular functions and regulatory mechanisms remain, with some exceptions, poorly characterized. One of the best-characterized human DUBs is ubiquitin-specific protease 1 (USP1), which plays an important role in the cellular response to DNA damage. USP1 levels, localization and activity are modulated through several mechanisms, including protein-protein interactions, autocleavage/degradation and phosphorylation, ensuring that USP1 function is carried out in a properly regulated spatio-temporal manner. Importantly, USP1 expression is deregulated in certain types of human cancer, suggesting that USP1 could represent a valid target in cancer therapy. This view has gained recent support with the finding that USP1 inhibition may contribute to revert cisplatin resistance in an in vitro model of non-small cell lung cancer (NSCLC). Here, we describe the current knowledge on the cellular functions and regulatory mechanisms of USP1. We also summarize USP1 alterations found in cancer, combining data from the literature and public databases with our own data. Finally, we discuss the emerging potential of USP1 as a target, integrating published data with our novel findings on the effects of the USP1 inhibitor pimozide in combination with cisplatin in NSCLC cells. PMID:23937906

  1. Protozoa as model systems for the study of cellular responses to altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Hemmersbach-Krause, R.; Briegleb, W.; Häder, D.-P.; Vogel, K.; Klein, S.; Mulisch, M.

    1994-08-01

    The orientation behavior of Paramecium changed in a similar way after transition to conditions of free-fall in a sounding rocket and after transition to conditions of simulated weightlessness on a fast rotating clinostat. After a period of residual orientation, Paramecium cells distributed themselves randomly 80 s (120 s) after onset of free-fall (simulated weightlessness). Swimming velocity increased significantly; however, the increase was transient and subsided after 3 min in the rocket experiments, while the velocity remained enhanced even during 2 h of rotation on a fast clinostat. Trichocysts were present and without morphological changes in Paramecium cells which had been exposed to a rocket flight, as well as to fast or slow rotation on a clinostat. Regeneration of the oral apparatus of Stentor and morphogenesis of Eufolliculina proceeded normally on the clinostat. The results demonstrate that the clinostat is a useful tool to stimulate the conditions of weightlessness on earth and to detect gravisensitive cellular functions.

  2. Characterizing neuromorphologic alterations with additive shape functionals

    NASA Astrophysics Data System (ADS)

    Barbosa, M. S.; Costa, L. Da F.; Bernardes, E. S.; Ramakers, G.; van Pelt, J.

    2004-01-01

    The complexity of a neuronal cell shape is known to be related to its function. Specifically, among other indicators, a decreased complexity in the dendritic trees of cortical pyramidal neurons has been associated with mental retardation. In this paper we develop a procedure to address the characterization of morphological changes induced in cultured neurons by over-expressing a gene involved in mental retardation. Measures associated with the multiscale connectivity, an additive image functional, are found to give a reasonable separation criterion between two categories of cells. One category consists of a control group and two transfected groups of neurons, and the other, a class of cat ganglionary cells. The reported framework also identified a trend towards lower complexity in one of the transfected groups. Such results establish the suggested measures as an effective descriptors of cell shape.

  3. Altered Functional Performance in Patients with Fibromyalgia.

    PubMed

    Costa, Isis da Silva; Gamundí, Antoni; Miranda, José G Vivas; França, Lucas G Souza; De Santana, Charles Novaes; Montoya, Pedro

    2017-01-01

    Fibromyalgia is a common chronic pain condition that exerts a considerable impact on patients' daily activities and quality of life. Objectives: The main objective of the present study was to evaluate kinematic parameters of gait, functional performance, and balance in women with fibromyalgia syndrome. Methods: The study included 26 female patients with fibromyalgia (49.2 ± 8.0 years) according to the criteria of the American College of Rheumatology, as well as 16 pain-free women (43.5 ± 8.5 years). Gait and balance parameters were extracted from video recordings of participants performing several motor tasks. Non-linear dynamic of body sway time series was also analyzed by computing the Hurst exponent. In addition, functional performance and clinical pain were obtained by using standardized motor tests (Berg's balance scale, 6-min walking test, timed up and go task, Romberg's balance test) and self-report questionnaires (Fibromyalgia Impact Questionnaire). Results: Walking speed was significantly diminished (p < 0.001) in FM patients as compared to pain-free controls, probably due to significant reductions in stride length (p < 0.001) and cycle frequency (p < 0.001). Analyses of balance also revealed significant differences between fibromyalgia and pain-free controls on body sway in the medial-lateral and anterior-posterior axes (all ps < 0.01). Several parameters of gait and balance were significantly associated with high levels of pain, depression, stiffness, anxiety, and fatigue in fibromyalgia. Conclusion: Our data revealed that both gait and balance were severely impaired in FM, and that subjective complaints associated with FM could contribute to functional disability in these patients. These findings suggest that optimal rehabilitation and fall prevention in fibromyalgia require a comprehensive assessment of both psychological responses to pain and physical impairments during postural control and gait.

  4. Altered Functional Performance in Patients with Fibromyalgia

    PubMed Central

    Costa, Isis da Silva; Gamundí, Antoni; Miranda, José G. Vivas; França, Lucas G. Souza; De Santana, Charles Novaes; Montoya, Pedro

    2017-01-01

    Fibromyalgia is a common chronic pain condition that exerts a considerable impact on patients' daily activities and quality of life. Objectives: The main objective of the present study was to evaluate kinematic parameters of gait, functional performance, and balance in women with fibromyalgia syndrome. Methods: The study included 26 female patients with fibromyalgia (49.2 ± 8.0 years) according to the criteria of the American College of Rheumatology, as well as 16 pain-free women (43.5 ± 8.5 years). Gait and balance parameters were extracted from video recordings of participants performing several motor tasks. Non-linear dynamic of body sway time series was also analyzed by computing the Hurst exponent. In addition, functional performance and clinical pain were obtained by using standardized motor tests (Berg's balance scale, 6-min walking test, timed up and go task, Romberg's balance test) and self-report questionnaires (Fibromyalgia Impact Questionnaire). Results: Walking speed was significantly diminished (p < 0.001) in FM patients as compared to pain-free controls, probably due to significant reductions in stride length (p < 0.001) and cycle frequency (p < 0.001). Analyses of balance also revealed significant differences between fibromyalgia and pain-free controls on body sway in the medial-lateral and anterior-posterior axes (all ps < 0.01). Several parameters of gait and balance were significantly associated with high levels of pain, depression, stiffness, anxiety, and fatigue in fibromyalgia. Conclusion: Our data revealed that both gait and balance were severely impaired in FM, and that subjective complaints associated with FM could contribute to functional disability in these patients. These findings suggest that optimal rehabilitation and fall prevention in fibromyalgia require a comprehensive assessment of both psychological responses to pain and physical impairments during postural control and gait. PMID:28184193

  5. Spaceflight alters immune cell function and distribution

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Mandel, Adrian D.; Konstantinova, Irina V.; Berry, Wallace D.; Taylor, Gerald R.; Lesniak, A. T.; Fuchs, Boris B.; Rakhmilevich, Alexander L.

    1992-01-01

    Experiments are described which were performed onboard Cosmos 2044 to determine spaceflight effects on immunologically important cell function and distribution. Results indicate that bone marrow cells from flown and suspended rats exhibited a decreased response to a granulocyte/monocyte colony-stimulating factor compared with the bone marrow cells from control rats. Bone marrow cells showed an increase in the percentage of cells expressing markers for helper T-cells in the myelogenous population and increased percentages of anti-asialo granulocyte/monocyte-1-bearing interleulin-2 receptor bearing pan T- and helper T-cells in the lymphocytic population.

  6. Altered cellular metabolism of HepG2 cells caused by microcystin-LR.

    PubMed

    Ma, Junguo; Feng, Yiyi; Jiang, Siyu; Li, Xiaoyu

    2017-03-21

    This study aimed to evaluate the possible effects of microcystin-LR (MC-LR) exposure on the metabolism and drug resistance of human hepatocellular carcinoma (HepG2) cells. For this purpose, we first conducted an experiment to make sure that MC-LR could penetrate the HepG2 cell membrane effectively. The transcriptional levels of phase I (such as CYP2E1, CYP3A4, and CYP26B1) and phase II (such as EPHX1, SULTs, and GSTM) enzymes and export pump genes (such as MRP1 and MDR1) were altered by MC-LR-exposure for 24 h, indicating that MC-LR treatment may destabilize the metabolism of HepG2 cells. Further research showed that the CYP inducers omeprazole, ethanol, and rifampicin inhibited cell viability, in particular, ethanol, a CYP2E1 inducer, induced ROS generation, lipid peroxidation, and apoptosis in HepG2 cells treated with MC-LR. The CYP2E1 inhibitor chlormethiazole inhibited ROS generation, mitochondrial membrane potential loss, caspase-3 activity, and cytotoxicity caused by MC-LR. Meanwhile, the results also showed that co-incubation with the ROS scavenger l-ascorbic acid and MC-LR decreased ROS levels and effectively prevented apoptosis. These findings provide an interesting mechanistic explanation of cellular metabolism associated with MC-LR, i.e., MC-LR-exposure exerted toxicity on HepG2 cells and induced apoptosis of HepG2 cells via promoting CYP2E1 expression and inducing excessive ROS in HepG2 cells.

  7. Estradiol-induced promotion of hepatocarcinogenesis in medaka: Relationship of foci of cellular alteration to neoplasia

    SciTech Connect

    Cooke, J.B.; Hinton, D.E.

    1995-12-31

    In some laboratory and field studies, female fish have higher prevalences of liver tumors than do males. The authors hypothesize gender and site-specific differences in prevalence are due to variable exposures of previously initiated fish to tumor modulating compounds. Estradiol, a growth promoter, increases incidences of hepatic tumors in carcinogen-treated rainbow trout and medaka (Oryzias latipes). Estradiol also increases incidences of hepatic foci of cellular alteration (FCA) in medaka. FCA are found in subadults of tumor-bearing feral populations. Lack of knowledge about the relationship of various phenotypes of FCA to eventual tumors, however, has prevented use of FCA as a biomarker. The authors examined fate and growth of liver FCA using a 2-step, initiation-promotion protocol. Three week old medaka were exposed to 200 ppm diethylnitrosamine (DEN) for 24 hr. and then fed 0.1 ppm 17-{beta}-estradiol (E2) continuously through sampling at weeks 4--26. Percent volume of FCA and morphometric characteristics of normal and focal hepatocytes, including numerical density and average hepatocyte volume were quantified using computer-assisted stereology. E2 increased percentage of liver occupied by DEN-initiated amphophilic, basophilic and eosinophilic FCA in both sexes. Focal parameters of young, DEN-initiated and estradiol-treated medaka were not reached until much later in fish given only DEN. Non-focal hepatocytes in estradiol-treated medaka were smaller and more numerous than in DEN-only counterparts. Morphometric analysis is quantitatively tracking the fate of specific phenotypes of FCA to determine their role in progression to cancer.

  8. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment.

    PubMed

    Reddy, Panga Jaipal; Sinha, Sneha; Ray, Sandipan; Sathe, Gajanan J; Chatterjee, Aditi; Prasad, T S Keshava; Dhali, Snigdha; Srikanth, Rapole; Panda, Dulal; Srivastava, Sanjeeva

    2015-01-01

    Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.

  9. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    PubMed Central

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  10. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.

    PubMed

    Walker, Nancy M; Liu, Jinghua; Stein, Sydney R; Stefanski, Casey D; Strubberg, Ashlee M; Clarke, Lane L

    2016-01-15

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine.

  11. Cardiac function in an endothermic fish: cellular mechanisms for overcoming acute thermal challenges during diving

    PubMed Central

    Shiels, H. A.; Galli, G. L. J.; Block, B. A.

    2015-01-01

    Understanding the physiology of vertebrate thermal tolerance is critical for predicting how animals respond to climate change. Pacific bluefin tuna experience a wide range of ambient sea temperatures and occupy the largest geographical niche of all tunas. Their capacity to endure thermal challenge is due in part to enhanced expression and activity of key proteins involved in cardiac excitation–contraction coupling, which improve cardiomyocyte function and whole animal performance during temperature change. To define the cellular mechanisms that enable bluefin tuna hearts to function during acute temperature change, we investigated the performance of freshly isolated ventricular myocytes using confocal microscopy and electrophysiology. We demonstrate that acute cooling and warming (between 8 and 28°C) modulates the excitability of the cardiomyocyte by altering the action potential (AP) duration and the amplitude and kinetics of the cellular Ca2+ transient. We then explored the interactions between temperature, adrenergic stimulation and contraction frequency, and show that when these stressors are combined in a physiologically relevant way, they alter AP characteristics to stabilize excitation–contraction coupling across an acute 20°C temperature range. This allows the tuna heart to maintain consistent contraction and relaxation cycles during acute thermal challenges. We hypothesize that this cardiac capacity plays a key role in the bluefin tunas' niche expansion across a broad thermal and geographical range. PMID:25540278

  12. Stably Expressed Genes Involved in Basic Cellular Functions

    PubMed Central

    Wang, Kejian; Fuscoe, James C.

    2017-01-01

    Stably Expressed Genes (SEGs) whose expression varies within a narrow range may be involved in core cellular processes necessary for basic functions. To identify such genes, we re-analyzed existing RNA-Seq gene expression profiles across 11 organs at 4 developmental stages (from immature to old age) in both sexes of F344 rats (n = 4/group; 320 samples). Expression changes (calculated as the maximum expression / minimum expression for each gene) of >19000 genes across organs, ages, and sexes ranged from 2.35 to >109-fold, with a median of 165-fold. The expression of 278 SEGs was found to vary ≤4-fold and these genes were significantly involved in protein catabolism (proteasome and ubiquitination), RNA transport, protein processing, and the spliceosome. Such stability of expression was further validated in human samples where the expression variability of the homologous human SEGs was significantly lower than that of other genes in the human genome. It was also found that the homologous human SEGs were generally less subject to non-synonymous mutation than other genes, as would be expected of stably expressed genes. We also found that knockout of SEG homologs in mouse models was more likely to cause complete preweaning lethality than non-SEG homologs, corroborating the fundamental roles played by SEGs in biological development. Such stably expressed genes and pathways across life-stages suggest that tight control of these processes is important in basic cellular functions and that perturbation by endogenous (e.g., genetics) or exogenous agents (e.g., drugs, environmental factors) may cause serious adverse effects. PMID:28125669

  13. Halothane-induced alterations in cellular structure and proliferation of A549 cells.

    PubMed

    Stephanova, E; Topouzova-Hristova, T; Hazarosova, R; Moskova, V

    2008-12-01

    Genotoxicity, cytotoxicity or teratogenicity are among the well-known detrimental effects of the volatile anaesthetics. The aim of the present work was to study the structural changes, proliferative activity and the possibility of alveolar A549 cells to recover after in vitro exposure to halothane at 1.5 and 2.1mM concentrations. Our data indicated significant reduction of viability, suppression of mitotic activity more than 60%, and that these alterations were accompanied by disturbances of nuclear and nucleolar structures. The most prominent negative effect was the destruction of the lamellar bodies, the main storage organelles of pulmonary surfactant, substantial for the lung physiology. In conclusion, halothane applied at clinically relevant concentrations exerts genotoxic and cytotoxic effect on the alveolar cells in vitro, most likely as a consequence of stress-induced apoptosis, thus modulating the respiratory function.

  14. Altered cardiac autonomic nervous function in depression

    PubMed Central

    2013-01-01

    Background Depression is an independent risk factor for coronary artery disease. Autonomic instability may play a mediating or moderating role in this relationship; however this is not well understood. The objective of this study was to explore cardiac autonomic function and cardiac arrhythmia in depression, the correlation between depression severity and Heart Rate Variability (HRV) related indices, and the prevalence of arrhythmia. Methods Individuals (n = 53) with major depression as assessed by the Diagnostic and Statistical Manual of Mental Disorders, who had a Hamilton Rating Scale for Depression (HAMD) score ≥20 and a Zung Self-Rating Depression Scale score > 53 were compared to 53 healthy individuals, matched for age and gender. Multichannel Electrocardiograph ECG-92C data were collected over 24 hours. Long-term changes in HRV were used to assess the following vagally mediated changes in autonomic tone, expressed as time domain indices: Standard deviation of the NN intervals (SDNN), standard deviation of 5 min averaged NN intervals (SDANN), Root Mean Square of the Successive Differences (RMSSD) and percentage of NN intervals > 50 ms different from preceding interval (pNN50). Pearson’s correlations were conducted to explore the strength of the association between depression severity (using the SDS and HRV related indices, specifically SDNN and low frequency domain / high frequency domain (LF/HF)). Results The values of SDNN, SDANN, RMSSD, PNN50 and HF were lower in the depression group compared to the control group (P<.05). The mean value of the LF in the depression group was higher than the in control group (P<.05). Furthermore the ratio of LF/HF was higher among the depression group than the control group (P<.05). A linear relationship was shown to exist between the severity of the depression and HRV indices. In the depression group, the prevalence of arrhythmia was significantly higher than in the control group (P<.05), particularly

  15. Comprehensive analysis of cellular galectin-3 reveals no consistent oncogenic function in pancreatic cancer cells.

    PubMed

    Hann, Alexander; Gruner, Anja; Chen, Ying; Gress, Thomas M; Buchholz, Malte

    2011-01-01

    Galectin-3 (Gal-3), a 31 kDa member of the family of beta-galactoside-binding proteins, has been implicated in the progression of different human cancers. However, the proposed roles differ widely, ranging from tumor-promoting cellular functions and negative impact on patient prognosis to tumor-suppressive properties and positive prognostic impact. We and others have previously identified Gal-3 as overexpressed in pancreatic cancer as compared to chronic pancreatitis and normal pancreatic tissue. The purpose of this study was thus the comprehensive analysis of putative cellular functions of Gal-3 by transient as well as stable silencing or overexpression of Gal-3 in a panel of 6 well-established pancreatic cancer cell lines. Our results confirm that galectin-3 is upregulated at the mRNA level in pancreatic cancer and strongly expressed in the majority of pancreatic cancer cell lines. In individual cell lines, transient knockdown of Gal-3 expression resulted in moderate inhibitory effects on proliferation, migration or anchorage-independent growth of the cells, but these effects were not consistent across the spectrum of analyzed cell lines. Moreover, functional effects of the modulation of Gal-3 expression were not observed in stable knockdown or overexpression approaches in vitro and did not alter the growth characteristics of nude mouse xenograft tumors in vivo. Our data thus do not support a direct functional role of Gal-3 in the malignant transformation of pancreatic epithelial cells, although paracrine or systemic effects of Gal-3 expression are not excluded.

  16. Purification, Cellular Levels, and Functional Domains of LMF1

    PubMed Central

    Babilonia-Rosa, Melissa; Neher, Saskia B.

    2014-01-01

    Over a third of the US adult population has hypertriglyceridemia, resulting in an increased risk of atherosclerosis, pancreatitis, and metabolic syndrome. Lipoprotein lipase (LPL)1, a dimeric enzyme, is the main lipase responsible for TG clearance from the blood after food intake. LPL requires an endoplasmic reticulum (ER)-resident, transmembrane protein known as lipase maturation factor 1 (LMF1) for secretion and enzymatic activity. LMF1 is believed to act as a client specific chaperone for dimeric lipases, but the precise mechanism by which LMF1 functions is not understood. Here, we examine which domains of LMF1 contribute to dimeric lipase maturation by assessing the function of truncation variants. N-terminal truncations of LMF1 show that all the domains are necessary for LPL maturation. Fluorescence microscopy and protease protection assays confirmed that these variants were properly oriented in the ER. We measured cellular levels of LMF1 and found that it is expressed at low levels and each molecule of LMF1 promotes the maturation of 50 or more molecules of LPL. Thus we provide evidence for the critical role of the N-terminus of LMF1 for the maturation of LPL and relevant ratio of chaperone to substrate. PMID:24909692

  17. Membrane-Based Functions in the Origin of Cellular Life

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.

    2003-01-01

    How simple membrane peptides performed such essential proto-cellular functions as transport of ions and organic matter across membranes separating the interior of the cell from the environment, capture and utilization of energy, and transduction of environmental signals, is a key question in protobiological evolution. On the basis of detailed, molecular-level computer simulations we investigate how these peptides insert into membranes, self-assemble into higher-order structures and acquire functions. We have studied the insertion of an a-helical peptide containing leucine (L) and serine (S) of the form (LSLLLSL)S into a model membrane. The transmembrane state is metastable, and approximately 15 kcal/mol is required to insert the peptide into the membrane. Investigations of dimers formed by (LSLLLSL)S and glycophorin A demonstrate how the favorable free energy of helix association can offset the unfavorable free energy of insertion, leading to self- assembly of peptide helices in the membrane. An example of a self-assembled structure is the tetrameric transmembrane pore of the influenza virus M2 protein, which is an efficient and selective voltage-gated proton channel. Our simulations explain the gating mechanism and provide guidelines how to reengineering the channel to act as a simple proton pump. In general, emergence of integral membrane proteins appears to be quite feasible and may be easier to envision than the emergence of water-soluble proteins.

  18. BRCA1 haploinsufficiency leads to altered expression of genes involved in cellular proliferation and development.

    PubMed

    Feilotter, Harriet E; Michel, Claire; Uy, Paolo; Bathurst, Lauren; Davey, Scott

    2014-01-01

    The assessment of BRCA1 and BRCA2 coding sequences to identify pathogenic mutations associated with inherited breast/ovarian cancer syndrome has provided a method to identify high-risk individuals, allowing them to seek preventative treatments and strategies. However, the current test is expensive, and cannot differentiate between pathogenic variants and those that may be benign. Focusing only on one of the two BRCA partners, we have developed a biological assay for haploinsufficiency of BRCA1. Using a series of EBV-transformed cell lines, we explored gene expression patterns in cells that were BRCA1 wildtype compared to those that carried (heterozygous) BRCA1 pathogenic mutations. We identified a subset of 43 genes whose combined expression pattern is a sensitive predictor of BRCA1 status. The gene set was disproportionately made up of genes involved in cellular differentiation, lending credence to the hypothesis that single copy loss of BRCA1 function may impact differentiation, rendering cells more susceptible to undergoing malignant processes.

  19. The alteration of profile analysis to accommodate testing functions

    NASA Technical Reports Server (NTRS)

    Myers, R. H.

    1979-01-01

    The development of a methodology was studied for testing differences among several pilot functions, where the data points represent averages at various frequencies. Topics discussed include: basic assumptions, hypothesis, profile analysis, alteration of profile analysis to accommodate testing functions, test and procedures, and power of tests.

  20. Altered resting brain function and structure in professional badminton players.

    PubMed

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

  1. Toxicity of cadmium in Japanese quail: Evaluation of body weight, hepatic and renal function, and cellular immune response

    SciTech Connect

    Sant'Ana, M.G.; Moraes, R.; Bernardi, M.M. . E-mail: bernarde@usp.com

    2005-10-01

    Cadmium (Cd) is an environmental pollutant that is able to alter the immune function. Previous studies have shown that, in mammals, chronic exposure to Cd decreases the release of macrophagic cytokines such as IL1 and TN{alpha} and decreases phagocytosis activity. On the other hand contradictory results showed an increase in the humoral response. The cellular response could be decreased by exposure to Cd. These alterations were observed in mammals. The present study aimed to investigate some of the toxic effects of Cd exposure in birds. In particular, the main objective of this work was to elucidate the effects of exposure to this pollutant on the cellular immune function of the Japanese quail as a model for the study of toxicity in animals exposed in nature. The animals were exposed to the metal (100 ppm, per os) during development, i.e., from 1 to 28 days old. Body weight, biochemical parameters, and cellular immune response were measured during and at the end of treatment. The results showed that the exposure to Cd for 28 days significantly reduced the body weight and induced hepatic toxicity. The kidney function and cellular immune response were not affected by the Cd exposure.

  2. Deletion or overexpression of mitochondrial NAD+ carriers in Saccharomyces cerevisiae alters cellular NAD and ATP contents and affects mitochondrial metabolism and the rate of glycolysis.

    PubMed

    Agrimi, Gennaro; Brambilla, Luca; Frascotti, Gianni; Pisano, Isabella; Porro, Danilo; Vai, Marina; Palmieri, Luigi

    2011-04-01

    The modification of enzyme cofactor concentrations can be used as a method for both studying and engineering metabolism. We varied Saccharomyces cerevisiae mitochondrial NAD levels by altering expression of its specific mitochondrial carriers. Changes in mitochondrial NAD levels affected the overall cellular concentration of this coenzyme and the cellular metabolism. In batch culture, a strain with a severe NAD depletion in mitochondria succeeded in growing, albeit at a low rate, on fully respiratory media. Although the strain increased the efficiency of its oxidative phosphorylation, the ATP concentration was low. Under the same growth conditions, a strain with a mitochondrial NAD concentration higher than that of the wild type similarly displayed a low cellular ATP level, but its growth rate was not affected. In chemostat cultures, when cellular metabolism was fully respiratory, both mutants showed low biomass yields, indicative of impaired energetic efficiency. The two mutants increased their glycolytic fluxes, and as a consequence, the Crabtree effect was triggered at lower dilution rates. Strikingly, the mutants switched from a fully respiratory metabolism to a respirofermentative one at the same specific glucose flux as that of the wild type. This result seems to indicate that the specific glucose uptake rate and/or glycolytic flux should be considered one of the most important independent variables for establishing the long-term Crabtree effect. In cells growing under oxidative conditions, bioenergetic efficiency was affected by both low and high mitochondrial NAD availability, which suggests the existence of a critical mitochondrial NAD concentration in order to achieve optimal mitochondrial functionality.

  3. Altered default mode network functional connectivity in schizotypal personality disorder.

    PubMed

    Zhang, Qing; Shen, Jing; Wu, Jianlin; Yu, Xiao; Lou, Wutao; Fan, Hongyu; Shi, Lin; Wang, Defeng

    2014-12-01

    The default mode network (DMN) has been identified to play a critical role in many mental disorders, but such abnormalities have not yet been determined in patients with schizotypal personality disorder (SPD). The purpose of this study was to analyze the alteration of the DMN functional connectivity in subjects with (SPD) and compared it to healthy control subjects. Eighteen DSM-IV diagnosed SPD subjects (all male, average age: 19.7±0.9) from a pool of 3000 first year college students, and eighteen age and gender matched healthy control subjects were recruited (all male, average age: 20.3±0.9). Independent component analysis (ICA) was used to analyze the DMN functional connectivity alteration. Compared to the healthy control group, SPD subjects had significantly decreased functional connectivity in the frontal areas, including the superior and medial frontal gyrus, and greater functional connectivity in the bilateral superior temporal gyrus and sub-lobar regions, including the bilateral putamen and caudate. Compared to subjects with SPD, the healthy control group showed decreased functional connectivity in the bilateral posterior cingulate gyrus, but showed greater functional connectivity in the right transverse temporal gyrus and left middle temporal gyrus. The healthy control group also showed greater activation in the cerebellum compared to the SPD group. These findings suggest that DMN functional connectivity, particularly that involving cognitive or emotional regulation, is altered in SPD subjects, and thus may be helpful in studying schizophrenia.

  4. Efflux Pump Control Alters Synthetic Gene Circuit Function.

    PubMed

    Diao, Junchen; Charlebois, Daniel A; Nevozhay, Dmitry; Bódi, Zoltán; Pál, Csaba; Balázsi, Gábor

    2016-07-15

    Synthetic biology aims to design new biological systems for predefined purposes, such as the controlled secretion of biofuels, pharmaceuticals, or other chemicals. Synthetic gene circuits regulating an efflux pump from the ATP-binding cassette (ABC) protein family could achieve this. However, ABC efflux pumps can also drive out intracellular inducer molecules that control the gene circuits. This will introduce an implicit feedback that could alter gene circuit function in ways that are poorly understood. Here, we used two synthetic gene circuits inducible by tetracycline family molecules to regulate the expression of a yeast ABC pump (Pdr5p) that pumps out the inducer. Pdr5p altered the dose-responses of the original gene circuits substantially in Saccharomyces cerevisiae. While one aspect of the change could be attributed to the efflux pumping function of Pdr5p, another aspect remained unexplained. Quantitative modeling indicated that reduced regulator gene expression in addition to efflux pump function could fully explain the altered dose-responses. These predictions were validated experimentally. Overall, we highlight how efflux pumps can alter gene circuit dynamics and demonstrate the utility of mathematical modeling in understanding synthetic gene circuit function in new circumstances.

  5. A priming dose of protons alters the early cardiac cellular and molecular response to 56Fe irradiation

    PubMed Central

    Ramadan, Samy S.; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R.; Hauer-Jensen, Martin; Nelson, Gregory A.; Boerma, Marjan

    2015-01-01

    Purpose Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a “priming” dose of protons on the cardiac cellular and molecular response to a “challenge” dose of 56Fe in a mouse model. Methods Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of 56Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of 56Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Results Exposure to 56Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before 56Fe prevented all of the responses to 56Fe. Conclusions This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions. PMID:26948008

  6. A priming dose of protons alters the early cardiac cellular and molecular response to 56Fe irradiation

    NASA Astrophysics Data System (ADS)

    Ramadan, Samy S.; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R.; Hauer-Jensen, Martin; Nelson, Gregory A.; Boerma, Marjan

    2016-02-01

    Purpose: Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a ;priming; dose of protons on the cardiac cellular and molecular response to a ;challenge; dose of 56Fe in a mouse model. Methods: Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of 56Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of 56Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Results: Exposure to 56Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before 56Fe prevented all of the responses to 56Fe. Conclusions: This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions.

  7. Renal function alterations during skeletal muscle disuse in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Tucker, Bryan J.

    1992-01-01

    This project was to examine the alterations in renal functions during skeletal muscle disuse in simulated microgravity. Although this area could cover a wide range of investigative efforts, the limited funding resulted in the selection of two projects. These projects would result in data contributing to an area of research deemed high priority by NASA and would address issues of the alterations in renal response to vasoactive stimuli during conditions of skeletal muscle disuse as well as investigate the contribution of skeletal muscle disuse, conditions normally found in long term human exposure to microgravity, to the balance of fluid and macromolecules within the vasculature versus the interstitium. These two projects selected are as follows: investigate the role of angiotensin 2 on renal function during periods of simulated microgravity and skeletal muscle disuse to determine if the renal response is altered to changes in circulating concentrations of angiotensin 2 compared to appropriate controls; and determine if the shift of fluid balance from vasculature to the interstitium, the two components of extracellular fluid volume, that occur during prolonged exposure to microgravity and skeletal muscle disuse is a result, in part, to alterations in the fluid and macromolecular balance in the peripheral capillary beds, of which the skeletal muscle contains the majority of recruitment capillaries. A recruitment capillary bed would be most sensitive to alterations in Starling forces and fluid and macromolecular permeability.

  8. Preterm birth alters neonatal, functional rich club organization.

    PubMed

    Scheinost, Dustin; Kwon, Soo Hyun; Shen, Xilin; Lacadie, Cheryl; Schneider, Karen C; Dai, Feng; Ment, Laura R; Constable, R Todd

    2016-07-01

    Alterations in neural networks are associated with the cognitive difficulties of the prematurely born. Using functional magnetic resonance imaging, we analyzed functional connectivity for preterm (PT) and term neonates at term equivalent age. Specifically, we constructed whole-brain networks and examined rich club (RC) organization, a common construct among complex systems where important (or "rich") nodes connect preferentially to other important nodes. Both PT and term neonates showed RC organization with PT neonates exhibiting significantly reduced connections between these RC nodes. Additionally, PT neonates showed evidence of weaker functional segregation. Our results suggest that PT birth is associated with fundamental changes of functional organization in the developing brain.

  9. Development of mechano-responsive polymeric scaffolds using functionalized silica nano-fillers for the control of cellular functions.

    PubMed

    Griffin, Michelle; Nayyer, Leila; Butler, Peter E; Palgrave, Robert G; Seifalian, Alexander M; Kalaskar, Deepak M

    2016-08-01

    We demonstrate an efficient method to produce mechano-responsive polymeric scaffolds which can alter cellular functions using two different functionalized (OH and NH2) silica nano-fillers. Fumed silica-hydroxyl and fumed silica-amine nano-fillers were mixed with a biocompatible polymer (POSS-PCU) at various wt% to produce scaffolds. XPS and mechanical testing demonstrate that bulk mechanical properties are modified without changing the scaffold's surface chemistry. Mechanical testing showed significant change in bulk properties of POSS-PCU scaffolds with an addition of silica nanofillers as low as 1% (P<0.01). Scaffolds modified with NH2 silica showed significantly higher bulk mechanical properties compared to the one modified with the OH group. Enhanced cell adhesion, proliferation and collagen production over 14days were observed on scaffolds with higher bulk mechanical properties (NH2) compared to those with lower ones (unmodified and OH modified) (P<0.05) during in vitro analysis. This study provides an effective method of manufacturing mechano-responsive polymeric scaffolds, which can help to customize cellular responses for biomaterial applications.

  10. Analyses of Dynein Heavy Chain Mutations Reveal Complex Interactions Between Dynein Motor Domains and Cellular Dynein Functions

    PubMed Central

    Sivagurunathan, Senthilkumar; Schnittker, Robert R.; Razafsky, David S.; Nandini, Swaran; Plamann, Michael D.; King, Stephen J.

    2012-01-01

    Cytoplasmic dynein transports cargoes for a variety of crucial cellular functions. However, since dynein is essential in most eukaryotic organisms, the in-depth study of the cellular function of dynein via genetic analysis of dynein mutations has not been practical. Here, we identify and characterize 34 different dynein heavy chain mutations using a genetic screen of the ascomycete fungus Neurospora crassa, in which dynein is nonessential. Interestingly, our studies show that these mutations segregate into five different classes based on the in vivo localization of the mutated dynein motors. Furthermore, we have determined that the different classes of dynein mutations alter vesicle trafficking, microtubule organization, and nuclear distribution in distinct ways and require dynactin to different extents. In addition, biochemical analyses of dynein from one mutant strain show a strong correlation between its in vitro biochemical properties and the aberrant intracellular function of that altered dynein. When the mutations were mapped to the published dynein crystal structure, we found that the three-dimensional structural locations of the heavy chain mutations were linked to particular classes of altered dynein functions observed in cells. Together, our data indicate that the five classes of dynein mutations represent the entrapment of dynein at five separate points in the dynein mechanochemical and transport cycles. We have developed N. crassa as a model system where we can dissect the complexities of dynein structure, function, and interaction with other proteins with genetic, biochemical, and cell biological studies. PMID:22649085

  11. Alteration of cellular lipids and lipid metabolism markers in RTL-W1 cells exposed to model endocrine disrupters.

    PubMed

    Dimastrogiovanni, Giorgio; Córdoba, Marlon; Navarro, Isabel; Jáuregui, Olga; Porte, Cinta

    2015-08-01

    This work investigates the suitability of the rainbow trout liver cell line (RTL-W1) as an in-vitro model to study the ability of model endocrine disrupters, namely TBT, TPT, 4-NP, BPA and DEHP, to act as metabolic disrupters by altering cellular lipids and markers of lipid metabolism. Among the tested compounds, BPA and DEHP significantly increased the intracellular accumulation of triacylglycerols (TAGs), while all the compounds -apart from TPT-, altered membrane lipids - phosphatidylcholines (PCs) and plasmalogen PCs - indicating a strong interaction of the toxicants with cell membranes and cell signaling. RTL-W1 expressed a number of genes involved in lipid metabolism that were modulated by exposure to BPA, TBT and TPT (up-regulation of FATP1 and FAS) and 4-NP and DEHP (down-regulation of FAS and LPL). Multiple and complex modes of action of these chemicals were observed in RTL-W1 cells, both in terms of expression of genes related to lipid metabolism and alteration of cellular lipids. Although further characterization is needed, this might be a useful model for the detection of chemicals leading to steatosis or other diseases associated with lipid metabolism in fish.

  12. Extinction order and altered community structure rapidly disrupt ecosystem functioning.

    PubMed

    Larsen, Trond H; Williams, Neal M; Kremen, Claire

    2005-05-01

    By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.

  13. Altered stoichiometry and nuclear delocalization of NonO and PSF promote cellular senescence

    PubMed Central

    Huang, Ching-Jung; Das, Utsab; Xie, Weijun; Ducasse, Miryam; Tucker, Haley O.

    2016-01-01

    While cellular senescence is a critical mechanism to prevent malignant transformation of potentially mutated cells, persistence of senescent cells can also promote cancer and aging phenotypes. NonO/p54nrb and PSF are multifunctional hnRNPs typically found as a complex exclusively within the nuclei of all mammalian cells. We demonstrate here that either increase or reduction of expression of either factor results in cellular senescence. Coincident with this, we observe expulsion of NonO and PSF-containing nuclear paraspeckles and posttranslational modification at G2/M. That senescence is mediated most robustly by overexpression of a cytoplasmic C-truncated form of NonO further indicated that translocation of NonO and PSF from the nucleus is critical to senescence induction. Modulation of NonO and PSF expression just prior to or coincident with senescence induction disrupts the normally heterodimeric NonO-PSF nuclear complex resulting in a dramatic shift in stoichiometry to heterotetramers and monomer with highest accumulation within the cytoplasm. This is accompanied by prototypic cell cycle checkpoint activation and chromatin condensation. These observations identify yet another role for these multifunctional factors and provide a hitherto unprecedented mechanism for cellular senescence and nuclear-cytoplasmic trafficking. PMID:27992859

  14. Altered stoichiometry and nuclear delocalization of NonO and PSF promote cellular senescence.

    PubMed

    Huang, Ching-Jung; Das, Utsab; Xie, Weijun; Ducasse, Miryam; Tucker, Haley O

    2016-12-13

    While cellular senescence is a critical mechanism to prevent malignant transformation of potentially mutated cells, persistence of senescent cells can also promote cancer and aging phenotypes. NonO/p54nrb and PSF are multifunctional hnRNPs typically found as a complex exclusively within the nuclei of all mammalian cells. We demonstrate here that either increase or reduction of expression of either factor results in cellular senescence. Coincident with this, we observe expulsion of NonO and PSF-containing nuclear paraspeckles and posttranslational modification at G2/M. That senescence is mediated most robustly by overexpression of a cytoplasmic C-truncated form of NonO further indicated that translocation of NonO and PSF from the nucleus is critical to senescence induction. Modulation of NonO and PSF expression just prior to or coincident with senescence induction disrupts the normally heterodimeric NonO-PSF nuclear complex resulting in a dramatic shift in stoichiometry to heterotetramers and monomer with highest accumulation within the cytoplasm. This is accompanied by prototypic cell cycle checkpoint activation and chromatin condensation. These observations identify yet another role for these multifunctional factors and provide a hitherto unprecedented mechanism for cellular senescence and nuclear-cytoplasmic trafficking.

  15. The polycystins are modulated by cellular oxygen-sensing pathways and regulate mitochondrial function

    PubMed Central

    Padovano, Valeria; Kuo, Ivana Y.; Stavola, Lindsey K.; Aerni, Hans R.; Flaherty, Benjamin J.; Chapin, Hannah C.; Ma, Ming; Somlo, Stefan; Boletta, Alessandra; Ehrlich, Barbara E.; Rinehart, Jesse; Caplan, Michael J.

    2017-01-01

    Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC1) and polycystin-2 (PC2), which form an ion channel complex that may mediate ciliary sensory processes and regulate endoplasmic reticulum (ER) Ca2+ release. Loss of PC1 expression profoundly alters cellular energy metabolism. The mechanisms that control the trafficking of PC1 and PC2, as well as their broader physiological roles, are poorly understood. We found that O2 levels regulate the subcellular localization and channel activity of the polycystin complex through its interaction with the O2-sensing prolyl hydroxylase domain containing protein EGLN3 (or PHD3), which hydroxylates PC1. Moreover, cells lacking PC1 expression use less O2 and show less mitochondrial Ca2+ uptake in response to bradykinin-induced ER Ca2+ release, indicating that PC1 can modulate mitochondrial function. These data suggest a novel role for the polycystins in sensing and responding to cellular O2 levels. PMID:27881662

  16. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    NASA Astrophysics Data System (ADS)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that

  17. Prenatal stress alters amygdala functional connectivity in preterm neonates.

    PubMed

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R

    2016-01-01

    Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p < 0.05). Similarly, when compared to extremely preterm neonates without exposure to prenatal stress, extremely preterm neonates with exposure to prenatal stress show significantly less connectivity between the left amygdala and the thalamus, the hypothalamus, and the peristriate cortex (p < 0.05). Exploratory analysis of the combined cohorts suggests additive effects of prenatal stress on alterations in amygdala connectivity associated with preterm birth. Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these

  18. Mapping brain structure and function: cellular resolution, global perspective.

    PubMed

    Zupanc, Günther K H

    2017-04-01

    A comprehensive understanding of the brain requires analysis, although from a global perspective, with cellular, and even subcellular, resolution. An important step towards this goal involves the establishment of three-dimensional high-resolution brain maps, incorporating brain-wide information about the cells and their connections, as well as the chemical architecture. The progress made in such anatomical brain mapping in recent years has been paralleled by the development of physiological techniques that enable investigators to generate global neural activity maps, also with cellular resolution, while simultaneously recording the organism's behavioral activity. Combination of the high-resolution anatomical and physiological maps, followed by theoretical systems analysis of the deduced network, will offer unprecedented opportunities for a better understanding of how the brain, as a whole, processes sensory information and generates behavior.

  19. Cellular sources and immune functions of interleukin-9.

    PubMed

    Noelle, Randolph J; Nowak, Elizabeth C

    2010-10-01

    Interleukin-9 (IL-9) has attracted renewed interest owing to the identification of its expression by multiple T helper (T(H)) cell subsets, including T(H)2 cells, T(H)9 cells, T(H)17 cells and regulatory T (T(Reg)) cells. Here, we provide a broad overview of the conditions that are required for cells to produce IL-9 and describe the cellular targets and nature of the immune responses that are induced by IL-9.

  20. A Distinct Role for Interleukin‐6 as a Major Mediator of Cellular Adjustment to an Altered Culture Condition

    PubMed Central

    Son, Hwa‐Kyung; Park, Iha; Kim, Jue Young; Kim, Do Kyeong; Illeperuma, Rasika P.; Bae, Jung Yoon; Lee, Doo Young; Oh, Eun‐Sang; Jung, Da‐Woon; Williams, Darren R.

    2015-01-01

    ABSTRACT Tissue microenvironment adjusts biological properties of different cells by modulating signaling pathways and cell to cell interactions. This study showed that epithelial–mesenchymal transition (EMT)/ mesenchymal–epithelial transition (MET) can be modulated by altering culture conditions. HPV E6/E7‐transfected immortalized oral keratinocytes (IHOK) cultured in different media displayed reversible EMT/MET accompanied by changes in cell phenotype, proliferation, gene expression at transcriptional, and translational level, and migratory and invasive activities. Cholera toxin, a major supplement to culture medium, was responsible for inducing the morphological and biological changes of IHOK. Cholera toxin per se induced EMT by triggering the secretion of interleukin 6 (IL‐6) from IHOK. We found IL‐6 to be a central molecule that modulates the reversibility of EMT based not only on the mRNA level but also on the level of secretion. Taken together, our results demonstrate that IL‐6, a cytokine whose transcription is activated by alterations in culture conditions, is a key molecule for regulating reversible EMT/MET. This study will contribute to understand one way of cellular adjustment for surviving in unfamiliar conditions. J. Cell. Biochem. 116: 2552–2562, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:25939389

  1. Altered striatal intrinsic functional connectivity in pediatric anxiety

    PubMed Central

    Dorfman, Julia; Benson, Brenda; Farber, Madeline; Pine, Daniel; Ernst, Monique

    2016-01-01

    Anxiety disorders are among the most common psychiatric disorders of adolescence. Behavioral and task-based imaging studies implicate altered reward system function, including striatal dysfunction, in adolescent anxiety. However, no study has yet examined alterations of the striatal intrinsic functional connectivity in adolescent anxiety disorders. The current study examines striatal intrinsic functional connectivity (iFC), using six bilateral striatal seeds, among 35 adolescents with anxiety disorders and 36 healthy comparisons. Anxiety is associated with abnormally low iFC within the striatum (e.g., between nucleus accumbens and caudate nucleus), and between the striatum and prefrontal regions, including subgenual anterior cingulate cortex, posterior insula and supplementary motor area. The current findings extend prior behavioral and task-based imaging research, and provide novel data implicating decreased striatal iFC in adolescent anxiety. Alterations of striatal neurocircuitry identified in this study may contribute to the perturbations in the processing of motivational, emotional, interoceptive, and motor information seen in pediatric anxiety disorders. This pattern of the striatal iFC perturbations can guide future research on specific mechanisms underlying anxiety. PMID:27004799

  2. Insertion of Foreign DNA into an Established Mammalian Genome Can Alter the Methylation of Cellular DNA Sequences†

    PubMed Central

    Remus, Ralph; Kämmer, Christina; Heller, Hilde; Schmitz, Birgit; Schell, Gudrun; Doerfler, Walter

    1999-01-01

    The insertion of adenovirus type 12 (Ad12) DNA into the hamster genome and the transformation of these cells by Ad12 can lead to marked alterations in the levels of DNA methylation in several cellular genes and DNA segments. Since such alterations in DNA methylation patterns are likely to affect the transcription patterns of cellular genes, it is conceivable that these changes have played a role in the generation or the maintenance of the Ad12-transformed phenotype. We have now isolated clonal BHK21 hamster cell lines that carry in their genomes bacteriophage λ and plasmid pSV2neo DNAs in an integrated state. Most of these cell lines contain one or multiple copies of integrated λ DNA, which often colocalize with the pSV2neo DNA, usually in a single chromosomal site as determined by the fluorescent in situ hybridization technique. In different cell lines, the loci of foreign DNA insertion are different. The inserted bacteriophage λ DNA frequently becomes de novo methylated. In some of the thus-generated hamster cell lines, the levels of DNA methylation in the retrotransposon genomes of the endogenous intracisternal A particles (IAP) are increased in comparison to those in the non-λ-DNA-transgenic BHK21 cell lines. These changes in the methylation patterns of the IAP subclone I (IAPI) segment have been documented by restriction analyses with methylation-sensitive restriction endonucleases followed by Southern transfer hybridization and phosphorimager quantitation. The results of genomic sequencing experiments using the bisulfite protocol yielded additional evidence for alterations in the patterns of DNA methylation in selected segments of the IAPI sequences. In these experiments, the nucleotide sequences in >330 PCR-generated cloned DNA molecules were determined. Upon prolonged cultivation of cell lines with altered cellular methylation patterns, these differences became less apparent, perhaps due to counterselection of the transgenic cells. The possibility

  3. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    SciTech Connect

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R. . E-mail: nerurkar@pbrc.hawaii.edu

    2006-02-20

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML.

  4. Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis

    NASA Astrophysics Data System (ADS)

    Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh M.; Turzhitsky, Vladimir; Subramanian, Hariharan; Roy, Hemant K.; Taflove, Allen; Dravid, Vinayak P.; Backman, Vadim

    2011-04-01

    Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed. Originally submitted for the special focus issue on physical oncology.

  5. Identification of Yeast Mutants Exhibiting Altered Sensitivity to Valinomycin and Nigericin Demonstrate Pleiotropic Effects of Ionophores on Cellular Processes

    PubMed Central

    Bhatia-Kissova, Ingrid; Valachovic, Martin; Klobucnikova, Vlasta; Zeiselova, Lucia; Griac, Peter; Nosek, Jozef

    2016-01-01

    Ionophores such as valinomycin and nigericin are potent tools for studying the impact of ion perturbance on cellular functions. To obtain a broader picture about molecular components involved in mediating the effects of these drugs on yeast cells under respiratory growth conditions, we performed a screening of the haploid deletion mutant library covering the Saccharomyces cerevisiae nonessential genes. We identified nearly 130 genes whose absence leads either to resistance or to hypersensitivity to valinomycin and/or nigericin. The processes affected by their protein products range from mitochondrial functions through ribosome biogenesis and telomere maintenance to vacuolar biogenesis and stress response. Comparison of the results with independent screenings performed by our and other laboratories demonstrates that although mitochondria might represent the main target for both ionophores, cellular response to the drugs is very complex and involves an intricate network of proteins connecting mitochondria, vacuoles, and other membrane compartments. PMID:27711131

  6. Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

    PubMed Central

    2015-01-01

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding. PMID:24901212

  7. Photosynthetic pathway alters hydraulic structure and function in woody plants.

    PubMed

    Kocacinar, Ferit; Sage, Rowan F

    2004-04-01

    Xylem structure and function is proposed to reflect an evolutionary balance between demands for efficient movement of water to the leaf canopy and resistance to cavitation during high xylem tension. Water use efficiency (WUE) affects this balance by altering the water cost of photosynthesis. Therefore species of greater WUE, such as C(4) plants, should have altered xylem properties. To evaluate this hypothesis, we assessed the hydraulic and anatomical properties of 19 C(3) and C(4) woody species from arid regions of the American west and central Asia. Specific conductivity of stem xylem ( K(s) ) was 16%-98% lower in the C(4) than C(3) shrubs from the American west. In the Asian species, the C(3) Nitraria schoberi had similar and Halimodendron halodendron higher K(s) values compared with three C(4) species. Leaf specific conductivity ( K(L); hydraulic conductivity per leaf area) was 60%-98% lower in the C(4) than C(3) species, demonstrating that the presence of the C(4) pathway alters the relationship between leaf area and the ability of the xylem to transport water. C(4) species produced similar or smaller vessels than the C(3) shrubs except in Calligonum, and most C(4) shrubs exhibited higher wood densities than the C(3) species. Together, smaller conduit size and higher wood density indicate that in most cases, the C(4) shrubs exploited higher WUE by altering xylem structure to enhance safety from cavitation. In a minority of cases, the C(4) shrubs maintained similar xylem properties but enhanced the canopy area per branch. By establishing a link between C(4) photosynthesis and xylem structure, this study indicates that other phenomena that affect WUE, such as atmospheric CO(2) variation, may also affect the evolution of wood structure and function.

  8. Lymphocyte maintenance during healthy aging requires no substantial alterations in cellular turnover.

    PubMed

    Westera, Liset; van Hoeven, Vera; Drylewicz, Julia; Spierenburg, Gerrit; van Velzen, Jeroen F; de Boer, Rob J; Tesselaar, Kiki; Borghans, José A M

    2015-04-01

    In healthy humans, lymphocyte populations are maintained at a relatively constant size throughout life, reflecting a balance between lymphocyte production and loss. Given the profound immunological changes that occur during healthy aging, including a significant decline in T-cell production by the thymus, lymphocyte maintenance in the elderly is generally thought to require homeostatic alterations in lymphocyte dynamics. Surprisingly, using in vivo (2) H2 O labeling, we find similar dynamics of most lymphocyte subsets between young adult and elderly healthy individuals. As the contribution of thymic output to T-cell production is only minor from young adulthood onward, compensatory increases in peripheral T-cell division rates are not required to maintain the T-cell pool, despite a tenfold decline in thymic output. These fundamental insights will aid the interpretation of further research into aging and clinical conditions related to disturbed lymphocyte dynamics.

  9. Antioxidant-Rich Fraction of Urtica dioica Mediated Rescue of Striatal Mito-Oxidative Damage in MPTP-Induced Behavioral, Cellular, and Neurochemical Alterations in Rats.

    PubMed

    Bisht, Rohit; Joshi, Bhuwan Chandra; Kalia, Ajudhiya Nath; Prakash, Atish

    2016-09-13

    Parkinson's disease (PD) having a complex and multi-factorial neuropathology includes mainly the degeneration of the dopaminergic nigrostriatal pathway, which is a cumulative effect of depleted endogenous antioxidant enzymes, increased oxidative DNA damage, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. The present study was designed to investigate the neuroprotective effect of a potent antioxidant from Urtica dioica in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. MPTP was administered intranigrally for the induction of PD in male Wistar rats. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and different biochemical, cellular, and neurochemical parameters were measured. Intranigrally repeated administration of MPTP showed significant impairment of motor co-ordination and marked increase of mito-oxidative damage and neuroinflammation in rats. Intranigral MPTP significantly decreases the dopamine and its metabolites with impairment of dopaminergic cell density in rat brain. However, post-treatment with the potent antioxidant fraction of Urtica dioica Linn. (UD) (20, 40, 80 mg/kg) improved the motor function, mito-oxidative defense alteration significantly and dose dependently in MPTP-treated rats. In addition, the potent antioxidant fraction of UD attenuated the pro-inflammatory cytokines (TNF-α and IL-β) and restored the level of dopamine and its metabolites in MPTP-induced PD in rats. Moreover, minocycline (30 mg/kg) with lower dose of UD (20 mg/kg) had significantly potentiated the protective effect of minocycline as compared to its effect with other individual drug-treated groups. In conclusion, Urtica dioica protected the dopaminergic neurons probably by reducing mito-oxidative damage, neuroinflammation, and cellular alteration along with enhanced neurotrophic potential. The above results revealed that the antioxidant rich

  10. Fine tuning of Rac1 and RhoA alters cuspal shapes by remolding the cellular geometry

    PubMed Central

    Li, Liwen; Tang, Qinghuang; Nakamura, Takashi; Suh, Jun-Gyo; Ohshima, Hayato; Jung, Han-Sung

    2016-01-01

    The anatomic and functional combinations of cusps and lophs (ridges) define the tooth shape of rodent molars, which distinguishes species. The species-specific cusp patterns result from the spatiotemporal induction of enamel knots (EKs), which require precisely controlled cellular behavior to control the epithelial invagination. Despite the well-defined roles of EK in cusp patterning, the determinants of the ultimate cuspal shapes and involvement of epithelial cellular geometry are unknown. Using two typical tooth patterns, the lophodont in gerbils and the bunodont in mice, we showed that the cuspal shape is determined by the dental epithelium at the cap stage, whereas the cellular geometry in the inner dental epithelium (IDE) is correlated with the cuspal shape. Intriguingly, fine tuning Rac1 and RhoA interconvert cuspal shapes between two species by remolding the cellular geometry. Either inhibition of Rac1 or ectopic expression of RhoA could region-distinctively change the columnar shape of IDE cells in gerbils to drive invagination to produce cusps. Conversely, RhoA reduction in mice inhibited invagination and developed lophs. Furthermore, we found that Rac1 and RhoA modulate the choices of cuspal shape by coordinating adhesion junctions, actin distribution, and fibronectin localization to drive IDE invagination. PMID:27892530

  11. Molecular and cellular alterations in tobacco smoke-associated larynx cancer.

    PubMed

    Szyfter, K; Szmeja, Z; Szyfter, W; Hemminki, K; Banaszewski, J; Jaskuła-Sztul, R; Louhelainen, J

    1999-09-30

    Tumours of head and neck belong to the most frequent types of cancer world-wide. In Poland, mortality from larynx cancer among males has been continuously increasing during the last decades up to 8.4 deaths per 100,000 men in 1993, which exceeds epidemiological records from other countries. The aetiology of laryngeal cancer is strongly associated with exposure to carcinogens present in tobacco smoke. The review describes a sequence of molecular and cellular events from carcinogenic exposure, DNA adduct formation, detection of mutations in the p53 gene, loss of heterozygosity (LOH) in chromosomal loci encoding the p53 and p16 genes, and loss of control of the cell cycle. The section concerning DNA adducts includes a discussion of the role of such confounders as exogenous exposure, the age and sex of the subject, and disease progression. The significance of genetic factors as individual risk determinants is discussed in relation to bleomycin-induced chromosome instability and in connection with the occurrence of defects in genes encoding detoxifying enzymes. The question concerning the substantial difference between men and women in larynx cancer morbidity and mortality remains open, even when the significantly higher adduct formation in male DNA compared with female material was taken into account. Preliminary experiments suggest a role of the frequently observed loss of the Y-chromosome.

  12. Cellular and molecular alterations in human epithelial cells transformed by high let radiation

    NASA Astrophysics Data System (ADS)

    Hei, T. K.; Piao, C. Q.; Sutter, T.; Willey, J. C.; Suzuki, K.

    An understanding of the radiobiological effects of high LET radiation is essential for human risk estimation and radiation protection. In the present study, we show that a single, 30 cGy dose of 150 keV/mum ^4He ions can malignantly transform human papillomavirus immortalized human bronchial epithelial [BEP2D] cells. Transformed cells produce progressively growing tumors in nude mice. The transformation frequency by the single dose of alpha particles is estimated to be approximately 4 x 10^-7. Based on the average cross-sectional area of BEP2D cells, it can be calculated that a mean traversal of 1.4 particles per cell is sufficient to induce tumorigenic conversion of these cells 3 to 4 months post-irradiation. Tumorigenic BEP2D cells overexpress mutated p53 tumor suppressor oncoproteins in addition to the cell cycle control gene cyclin D1 and D2. This model provides an opportunity to study the cellular and molecular changes at the various stages in radiation carcinogenesis involving human cells.

  13. Mycoplasma fermentans Inhibits the Activity of Cellular DNA Topoisomerase I by Activation of PARP1 and Alters the Efficacy of Its Anti-Cancer Inhibitor

    PubMed Central

    Afriat, Reuven; Horowitz, Shulamith; Priel, Esther

    2013-01-01

    To understand the effects of the interaction between Mycoplasma and cells on the host cellular function, it is important to elucidate the influences of infection of cells with Mycoplasma on nuclear enzymes such as DNA Topoisomerase type I (Topo I). Human Topo I participates in DNA transaction processes and is the target of anti-cancer drugs, the camptothecins (CPTs). Here we investigated the mechanism by which infection of human tumor cells with Mycoplasma fermentans affects the activity and expression of cellular Topo I, and the anti-cancer efficacy of CPT. Human cancer cells were infected or treated with live or sonicated M. fermentans and the activity and expression of Topo I was determined. M. fermentans significantly reduced (by 80%) Topo I activity in the infected/treated tumor cells without affecting the level of Topo I protein. We demonstrate that this reduction in enzyme activity resulted from ADP-ribosylation of the Topo I protein by Poly-ADP-ribose polymerase (PARP-1). In addition, pERK was activated as a result of the induction of the MAPK signal transduction pathway by M. fermentans. Since PARP-1 was shown to be activated by pERK, we concluded that M. fermentans modified the cellular Topo I activity by activation of PARP-I via the induction of the MAPK signal transduction pathway. Moreover, the infection of tumor cells with M. fermentans diminished the inhibitory effect of CPT. The results of this study suggest that modification of Topo I activity by M. fermentans may alter cellular gene expression and the response of tumor cells to Topo I inhibitors, influencing the anti-cancer capacity of Topo I antagonists. PMID:24013388

  14. Photothermal cellular stimulation in functional bio-polymer interfaces

    PubMed Central

    Martino, Nicola; Feyen, Paul; Porro, Matteo; Bossio, Caterina; Zucchetti, Elena; Ghezzi, Diego; Benfenati, Fabio; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2015-01-01

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications, bearing a huge potential, from basic researches to clinical applications. In particular, light sensitive conjugated polymers can be exploited as a new approach for optical modulation of cellular activity. In this work we focus on light-induced changes in the membrane potential of Human Embryonic Kidney (HEK-293) cells grown on top of a poly(3-hexylthiophene) (P3HT) thin film. On top of a capacitive charging of the polymer interface, we identify and fully characterize two concomitant mechanisms, leading to membrane depolarization and hyperpolarisation, both mediated by a thermal effect. Our results can be usefully exploited in the creation of a new platform for light-controlled cell manipulation, with possible applications in neuroscience and medicine. PMID:25753132

  15. CG hypomethylation in Lsh-/- mouse embryonic fibroblasts is associated with de novo H3K4me1 formation and altered cellular plasticity.

    PubMed

    Yu, Weishi; Briones, Victorino; Lister, Ryan; McIntosh, Carl; Han, Yixing; Lee, Eunice Y; Ren, Jianke; Terashima, Minoru; Leighty, Robert M; Ecker, Joseph R; Muegge, Kathrin

    2014-04-22

    DNA methylation patterns are established in early embryogenesis and are critical for cellular differentiation. To investigate the role of CG methylation in potential enhancer formation, we assessed H3K4me1 modification in murine embryonic fibroblasts (MEFs) derived from the DNA methylation mutant Lsh(-/-) mice. We report here de novo formation of putative enhancer elements at CG hypomethylated sites that can be dynamically altered. We found a subset of differentially enriched H3K4me1 regions clustered at neuronal lineage genes and overlapping with known cis-regulatory elements present in brain tissue. Reprogramming of Lsh(-/-) MEFs into induced pluripotent stem (iPS) cells leads to increased neuronal lineage gene expression of premarked genes and enhanced differentiation potential of Lsh(-/-) iPS cells toward the neuronal lineage pathway compared with WT iPS cells in vitro and in vivo. The state of CG hypomethylation and H3K4me1 enrichment is partially maintained in Lsh(-/-) iPS cells. The acquisition of H3K27ac and activity of subcloned fragments in an enhancer reporter assay indicate functional activity of several of de novo H3K4me1-marked sequences. Our results suggest a functional link of H3K4me1 enrichment at CG hypomethylated sites, enhancer formation, and cellular plasticity.

  16. Alterations in cellular metabolome after pharmacological inhibition of Notch in glioblastoma cells.

    PubMed

    Kahlert, Ulf D; Cheng, Menglin; Koch, Katharina; Marchionni, Luigi; Fan, Xing; Raabe, Eric H; Maciaczyk, Jarek; Glunde, Kristine; Eberhart, Charles G

    2016-03-01

    Notch signaling can promote tumorigenesis in the nervous system and plays important roles in stem-like cancer cells. However, little is known about how Notch inhibition might alter tumor metabolism, particularly in lesions arising in the brain. The gamma-secretase inhibitor MRK003 was used to treat glioblastoma neurospheres, and they were subdivided into sensitive and insensitive groups in terms of canonical Notch target response. Global metabolomes were then examined using proton magnetic resonance spectroscopy, and changes in intracellular concentration of various metabolites identified which correlate with Notch inhibition. Reductions in glutamate were verified by oxidation-based colorimetric assays. Interestingly, the alkylating chemotherapeutic agent temozolomide, the mTOR-inhibitor MLN0128, and the WNT inhibitor LGK974 did not reduce glutamate levels, suggesting that changes to this metabolite might reflect specific downstream effects of Notch blockade in gliomas rather than general sequelae of tumor growth inhibition. Global and targeted expression analyses revealed that multiple genes important in glutamate homeostasis, including glutaminase, are dysregulated after Notch inhibition. Treatment with an allosteric inhibitor of glutaminase, compound 968, could slow glioblastoma growth, and Notch inhibition may act at least in part by regulating glutaminase and glutamate.

  17. Ethanol alters cellular activation and CD14 partitioning in lipid rafts

    SciTech Connect

    Dai Qun; Zhang Jun; Pruett, Stephen B. . E-mail: spruet@lsuhsc.edu

    2005-06-24

    Alcohol consumption interferes with innate immunity. In vivo EtOH administration suppresses cytokine responses induced through Toll-like receptor 4 (TLR4) and inhibits TLR4 signaling. Actually, EtOH exhibits a generalized suppressive effect on signaling and cytokine responses induced by through most TLRs. However, the underlying mechanism remains unknown. RAW264.7 cells were treated with LPS or co-treated with EtOH or with lipid raft-disrupting drugs. TNF-{alpha} production, IRAK-1 activation, and CD14 partition were evaluated. EtOH or nystatin, a lipid raft-disrupting drug, suppressed LPS-induced production of TNF-{alpha}. The suppressive effect of EtOH on LPS-induced TNF-{alpha} production was additive with that of methyl-{beta}-cyclodextrin (MCD), another lipid raft-disrupting drug. EtOH interfered with IRAK-1 activation, an early TLR4 intracellular signaling event. Cell fractionation analyses show that acute EtOH altered LPS-related partition of CD14, a critical component of the LPS receptor complex. These results suggest a novel mechanism of EtOH action that involves interference with lipid raft clustering induced by LPS. This membrane action of EtOH might be one of the mechanisms by which EtOH acts as a generalized suppressor for TLR signaling.

  18. Connectomics and neuroticism: an altered functional network organization.

    PubMed

    Servaas, Michelle N; Geerligs, Linda; Renken, Remco J; Marsman, Jan-Bernard C; Ormel, Johan; Riese, Harriëtte; Aleman, André

    2015-01-01

    The personality trait neuroticism is a potent risk marker for psychopathology. Although the neurobiological basis remains unclear, studies have suggested that alterations in connectivity may underlie it. Therefore, the aim of the current study was to shed more light on the functional network organization in neuroticism. To this end, we applied graph theory on resting-state functional magnetic resonance imaging (fMRI) data in 120 women selected based on their neuroticism score. Binary and weighted brain-wide graphs were constructed to examine changes in the functional network structure and functional connectivity strength. Furthermore, graphs were partitioned into modules to specifically investigate connectivity within and between functional subnetworks related to emotion processing and cognitive control. Subsequently, complex network measures (ie, efficiency and modularity) were calculated on the brain-wide graphs and modules, and correlated with neuroticism scores. Compared with low neurotic individuals, high neurotic individuals exhibited a whole-brain network structure resembling more that of a random network and had overall weaker functional connections. Furthermore, in these high neurotic individuals, functional subnetworks could be delineated less clearly and the majority of these subnetworks showed lower efficiency, while the affective subnetwork showed higher efficiency. In addition, the cingulo-operculum subnetwork demonstrated more ties with other functional subnetworks in association with neuroticism. In conclusion, the 'neurotic brain' has a less than optimal functional network organization and shows signs of functional disconnectivity. Moreover, in high compared with low neurotic individuals, emotion and salience subnetworks have a more prominent role in the information exchange, while sensory(-motor) and cognitive control subnetworks have a less prominent role.

  19. Cellular proliferation and infiltration following interstitial irradiation of normal dog brain is altered by an inhibitor of polyamine synthesis

    SciTech Connect

    Fike, J.R.; Gobbel, G.T.; Chou, D.

    1995-07-15

    The objectives of this study were to quantitatively define proliferative and infiltrative cell responses after focal {sup 125}I irradiation of normal brain, and to determine the effects of an intravenous infusion of {alpha}-defluoromethylornithine (DFMO) on those responses. Adult beagle dogs were irradiated using high activity {sup 125}I sources. Cellular responses were quantified using a histomorphometric analysis. After radiation alone, cellular events included a substantial acute inflammatory response followed by increased BrdU labeling and progressive increases in numbers of capillaries and astrocytes. {alpha}-Difluoromethylornithine treatment significantly affected the measured cell responses. As in controls, an early inflammatory response was measured, but after 2 weeks there were more PMNs/unit area than in controls. The onset of measurable BrdU labeling was delayed in DFMO-treated animals, and the magnitude of labeling was significantly reduced. Increases in astrocyte and vessel numbers/mm{sup 2} were observed after a 2-week delay. At the site of implant, astrocytes from DFMO-treated dogs were significantly smaller than those from controls. There is substantial cell proliferation and infiltration in response to interstitial irradiation of normal brain, and these responses are significantly altered by DFMO treatment. Although the precise mechanisms by which DFMO exerts its effects in this model are not known, the results from this study suggest that modification of radiation injury may be possible by manipulating the response of normal cells to injury. 57 refs., 6 figs.

  20. Alterations of idiotypic profiles: The cellular basis of T15 dominance in BALB/c mice

    SciTech Connect

    Wemhoff, G.A.; Quintans, J. )

    1987-01-01

    Phosphorylcholine (PC) is a component of cell walls and membranes from a variety of widely distributed microorganisms. It is highly immunogenic in mice and most murine strains have circulating anti-PC antibodies which are known to confer protection against certain bacterial infections. BALB/c mice offer a striking example of a high responsiveness to PC, a propensity to generate PC-binding myelomas, and a great restriction of idiotype expression in anti-PC antibodies; in fact, most BALB/c anti-PC IgM antibodies express the T15 idiotype marker. Although it has been suspected that T15 dominance is somewhat related to the continuous antigenic load presented by microorganismal flora found in conventional mice, a complete experimental account of how antigenic selection brings about such extreme idiotypic dominance is not yet available. In the studies presented below, we investigated the role played by the host environment, T cells, and antigen in affecting the generation of the anti-PC T15 idiotype profile in lethally irradiated adoptive hosts reconstituted with syngeneic neonatal liver cells. The results presented herein indicate that the transfer of mature carrier-primed T cells with neonatal liver cells does not influence the generation of the T15 idiotype profile. We also demonstrated that anti-T15 idiotype suppressed mice, used as lethally irradiated hosts of immature immunocompetent cells, allow an increased rate of reconstitution of the anti-PC response when compared to nonsuppressed hosts. Since the administration of a T15+ anti-PC antibody inhibits both reconstitution and idiotype expansion, we conclude that T15+ B cells do not self-promote themselves. In contrast, we observed that exposure of adoptive hosts to PC antigens can enhance the anti-PC response and alter the idiotypic profile in favor of T15-bearing clones.

  1. Alterations in microRNA Expression in Stress-induced Cellular Senescence

    PubMed Central

    Li, Guorong; Luna, Coralia; Qiu, Jianming; Epstein, David L.; Gonzalez, Pedro

    2009-01-01

    Summary We investigated miRNA expression changes associated with stress-induced premature senescence (SIPS) in primary cultures of human diploid fibroblasts (HDF) and human trabecular meshwork (HTM) cells. Twenty-five miRNAs were identified by miRNA microarray analysis and their changes in expression were validated by TaqMan realtime RT-PCR in three independent cell lines of HTM and HDF. SIPS in both HTM and HDF cell types was associated with significant down-regulation of four members of the miR-15 family and five miRNAs of the miR-106b family located in the oncogenic clusters miR-17–92, miR-106a-363, and miR-106b-25. SIPS was also associated with up-regulation of two miRNAs (182 and 183) from the miR-183-96-182 cluster. Transfection with miR-106a agomir inhibited the up-regulation of p21CDKN1A associated with SIPS while transfection with miR-106a antagomir led to increased p21CDKN1A expression in senescent cells. In addition, we identified retinoic acid receptor gamma (RARG) as a target of miR-182 and showed that this protein was down-regulated during SIPS in HDF and HTM cells. These results suggest that changes in miRNA expression might contribute to phenotypic alterations of senescent cells by modulating the expression of key regulatory proteins such as p21CDKN1A as well as by targeting genes that are down-regulated in senescent cells such as RARG. PMID:19782699

  2. Improved cellular uptake of functionalized single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Antonelli, A.; Serafini, S.; Menotta, M.; Sfara, C.; Pierigé, F.; Giorgi, L.; Ambrosi, G.; Rossi, L.; Magnani, M.

    2010-10-01

    Single-walled carbon nanotubes (SWNTs) due to their unique structural and physicochemical properties, have been proposed as delivery systems for a variety of diagnostic and therapeutic agents. However, SWNTs have proven difficult to solubilize in aqueous solution, limiting their use in biological applications. In an attempt to improve SWNTs' solubility, biocompatibility, and to increase cell penetration we have thoroughly investigated the construction of carbon scaffolds coated with aliphatic carbon chains and phospholipids to obtain micelle-like structures. At first, oxidized SWNTs (2370 ± 30 nmol mg - 1 of SWNTs) were covalently coupled with an alcoholic chain (stearyl alcohol, C18H37OH; 816 nmol mg - 1 of SWNTs). Subsequently, SWNTs-COOC18H37 derivatives were coated with phosphatidylethanolamine (PE) or -serine (PS) phospholipids obtaining micelle-like structures. We found that cellular uptake of these constructs by phagocytic cells occurs via an endocytotic mechanism for constructs larger than 400 nm while occurs via diffusion through the cell membrane for constructs up to 400 nm. The material that enters the cell by phagocytosis is actively internalized by macrophages and localizes inside endocytotic vesicles. In contrast the material that enters the cells by diffusion is found in the cell cytosol. In conclusion, we have realized new biomimetic constructs based on alkylated SWNTs coated with phospholipids that are efficiently internalized by different cell types only if their size is lower than 400 nm. These constructs are not toxic to the cells and could now be explored as delivery systems for non-permeant cargoes.

  3. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice

    PubMed Central

    Zabielski, Piotr; Lanza, Ian R.; Gopala, Srinivas; Holtz Heppelmann, Carrie J.; Bergen, H. Robert; Dasari, Surendra

    2016-01-01

    Insulin plays pivotal role in cellular fuel metabolism in skeletal muscle. Despite being the primary site of energy metabolism, the underlying mechanism on how insulin deficiency deranges skeletal muscle mitochondrial physiology remains to be fully understood. Here we report an important link between altered skeletal muscle proteome homeostasis and mitochondrial physiology during insulin deficiency. Deprivation of insulin in streptozotocin-induced diabetic mice decreased mitochondrial ATP production, reduced coupling and phosphorylation efficiency, and increased oxidant emission in skeletal muscle. Proteomic survey revealed that the mitochondrial derangements during insulin deficiency were related to increased mitochondrial protein degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved in mitochondrial respiration and β-oxidation. However, a paradoxical upregulation of proteins involved in cellular uptake of fatty acids triggered an accumulation of incomplete fatty acid oxidation products in skeletal muscle. These data implicate a mismatch of β-oxidation and fatty acid uptake as a mechanism leading to increased oxidative stress in diabetes. This notion was supported by elevated oxidative stress in cultured myotubes exposed to palmitate in the presence of a β-oxidation inhibitor. Together, these results indicate that insulin deficiency alters the balance of proteins involved in fatty acid transport and oxidation in skeletal muscle, leading to impaired mitochondrial function and increased oxidative stress. PMID:26718503

  4. The immune system which adversely alter thyroid functions: a review on the concept of autoimmunity.

    PubMed

    Mansourian, Azad Reza

    2010-08-15

    The immune system protect individual from many pathogens exists within our environment and in human body, by destroying them through molecular and cellular mechanism of B and T cells of immune system. Autoimmunity is an adverse relation of immune system against non- foreign substances leaving behind either alters the normal function or destroying the tissue involved. Autoimmunity occur in genetically predispose persons with familial connections. The autoimmunity to the thyroid gland mainly consists of Hashimato thyroiditis and Grave's disease, the two end of spectrum in thyroid function of hypo and hyperactivity, respectively. The thyroid stimulating hormone receptor, thyroglobuline, enzymes of thyroid hormones synthesis are targeted by autoantibodies and cell- mediated reactions. The aim of this review is to explore the studies reported on the autoimmunity to the thyroid gland.

  5. Gravity-induced cellular and molecular processes in plants studied under altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Vagt, Nicole; Braun, Markus

    -rupting the actomyosin system did not impair the sedimentation of statoliths and did not prevent the activation of gravireceptors. However, experiments in microgravity and inhibitor experiments have demonstrated that the actomyosin system optimizes the statolith-receptor interactions by keeping the sedimented statoliths in motion causing a consistent activation of different gravireceptor molecules. Thereby, a triggered gravitropic signal is created which is the basis for a highly sensitive control and readjustment mechanism. In addition, the results of recent parabolic flight studies on the effects of altered gravity conditions on the gene expres-sion pattern of Arabidopsis seedlings support these findings and provide new insight into the molecular basis of the plants response to different acceleration conditions. The work was financially supported by DLR on behalf of Bundesministerium für Wirtschaft und Technologie (50WB0815).

  6. Asbestos-Induced Cellular and Molecular Alteration of Immunocompetent Cells and Their Relationship with Chronic Inflammation and Carcinogenesis

    PubMed Central

    Matsuzaki, Hidenori; Maeda, Megumi; Lee, Suni; Nishimura, Yasumitsu; Kumagai-Takei, Naoko; Hayashi, Hiroaki; Yamamoto, Shoko; Hatayama, Tamayo; Kojima, Yoko; Tabata, Rika; Kishimoto, Takumi; Hiratsuka, Junichi; Otsuki, Takemi

    2012-01-01

    Asbestos causes lung fibrosis known as asbestosis as well as cancers such as malignant mesothelioma and lung cancer. Asbestos is a mineral silicate containing iron, magnesium, and calcium with a core of SiO2. The immunological effect of silica, SiO2, involves the dysregulation of autoimmunity because of the complications of autoimmune diseases found in silicosis. Asbestos can therefore cause alteration of immunocompetent cells to result in a decline of tumor immunity. Additionally, due to its physical characteristics, asbestos fibers remain in the lung, regional lymph nodes, and the pleural cavity, particularly at the opening sites of lymphatic vessels. Asbestos can induce chronic inflammation in these areas due to the production of reactive oxygen/nitrogen species. As a consequence, immunocompetent cells can have their cellular and molecular features altered by chronic and recurrent encounters with asbestos fibers, and there may be modification by the surrounding inflammation, all of which eventually lead to decreased tumor immunity. In this paper, the brief results of our investigation regarding reduction of tumor immunity of immunocompetent cells exposed to asbestos in vitro are discussed, as are our findings concerned with an investigation of chronic inflammation and analyses of peripheral blood samples derived from patients with pleural plaque and mesothelioma that have been exposed to asbestos. PMID:22500091

  7. Neighborhood functions alter unbalanced facilitation on a stress gradient.

    PubMed

    Malanson, George P; Resler, Lynn M

    2015-01-21

    The stress-gradient hypothesis states that individual and species competitive and facilitative effects change in relative importance or intensity along environmental gradients of stress. The importance of the number of facilitators in the neighborhood of a potential beneficiary has not been explored. Evenly distributed and stress-correlated facilitation and the increase in the intensity of facilitation with neighbors as linear, logarithmic, and unimodal functions is simulated for two hypothetical species, both of which improve the local environment. The mutualism is unbalanced in that the establishment of one species is enhanced by neighbors more than the other. Compared to no facilitation or evenly distributed facilitation, the stress gradient produces more edges in the spatially advancing population, more overall intensity of facilitation, and more individuals further advanced into the area of higher stress; the more enhanced species has increased population relative to the other - to the point where they are equal. Among three neighborhood functions, little difference exists in outcomes between the linear and logarithmic functions, but the unimodal function, which shifts peak facilitation intensity to fewer neighbors, increases the above state variables more than the differences between the even and stress gradient facilitation scenarios; the population of the beneficiary species exceeds that of the other. Different neighborhood functions change the effects of spatial pattern on the biological outcome. The unbalanced mutualism may be important where additional species alter the basic interaction in the high stress area of the environmental gradient, such as ecotones where the spatial pattern becomes central to facilitation.

  8. Altered expression of prohibitin in psoriatic lesions and its cellular implication

    SciTech Connect

    Kim, Soon Young; Kim, Younghwa; Hwang, Ha Young; Kim, Tae-Yoon . E-mail: tykimder@catholic.ac.kr

    2007-08-31

    Psoriasis is characterized by excessive proliferation of keratinocytes accompanying acanthosis and incomplete differentiation. Prohibitin was investigated by examining its function of HaCaT as well as psoriasis. Psoriatic involved skin revealed high level of prohibitin in the basal layer. Prohibitin was analyzed by applying RNAi (PHBi) with HaCaT, which demonstrated increased S-phase. PHBi showed enhanced sensitivity to anthralin-mediated cell death due to enhanced loss of mitochondrial membrane potential, suggesting a protective role of prohibitin against apoptosis. Collectively, prohibitin plays a role both in cell cycle regulation and in maintaining mitochondrial integrity, implying its association with pathogenesis of psoriasis.

  9. Cooperative interactions of LPPR family members in membrane localization and alteration of cellular morphology

    PubMed Central

    Yu, Panpan; Agbaegbu, Chinyere; Malide, Daniela A.; Wu, Xufeng; Katagiri, Yasuhiro; Hammer, John A.; Geller, Herbert M.

    2015-01-01

    ABSTRACT The lipid phosphate phosphatase-related proteins (LPPRs), also known as plasticity-related genes (PRGs), are classified as a new brain-enriched subclass of the lipid phosphate phosphatase (LPP) superfamily. They induce membrane protrusions, neurite outgrowth or dendritic spine formation in cell lines and primary neurons. However, the exact roles of LPPRs and the mechanisms underlying their effects are not certain. Here, we present the results of a large-scale proteome analysis to determine LPPR1-interacting proteins using co-immunoprecipitation coupled to mass spectrometry. We identified putative LPPR1-binding proteins involved in various biological processes. Most interestingly, we identified the interaction of LPPR1 with its family member LPPR3, LPPR4 and LPPR5. Their interactions were characterized by co-immunoprecipitation and colocalization analysis using confocal and super-resolution microscopy. Moreover, co-expressing two LPPR members mutually elevated their protein levels, facilitated their plasma membrane localization and resulted in an increased induction of membrane protrusions as well as the phosphorylation of S6 ribosomal protein. Taken together, we revealed a new functional cooperation between LPPR family members and discovered for the first time that LPPRs likely exert their function through forming complex with its family members. PMID:26183180

  10. Colonic insult impairs lymph flow, increases cellular content of the lymph, alters local lymphatic micro-environment and leads to sustained inflammation in the rat ileum

    PubMed Central

    Cromer, Walter; Wang, Wei; Zawieja, Scott D.; von der Weid, Pierre-Yves; Newell Rogers, M. Karen; Zawieja, David C.

    2015-01-01

    Background Lymphatic dysfunction has been linked to inflammation since the 1930’s. Lymphatic function in the gut and mesentery is grossly underexplored in models of IBD despite the use of lymphatic occlusion in early models of IBD. Activation of the innate and adaptive immune system is a hallmark of TNBS-induced inflammation and is linked to disruption of the intrinsic lymph pump. Recent identification of crosstalk between lymphatic vessel resident immune cells and regulation of lymphatic vessel contractility underscore the importance of the timing of lymphatic dysfunction during tissue inflammation in response to TNBS. Methods To evaluate lymphatic function in TNBS induced inflammation, lymph was collected and flow measured from mesenteric lymphatics. Cellularity and cytokine profile of the lymph was also measured. Histopathology was performed to determine severity of injury and immunofluorescent staining of the mesentery was done to evaluate changes in the population of immune cells that reside near and on gastro-intestinal collecting lymphatics. Results Lymph transport fell 24hrs after TNBS administration and began recovering at 72hrs. Significant reduction of lymph flow preceded significant increase in histopathological score and occurred simultaneously with increased MPO activity. These changes were preceded by increased MHCII+ cells surrounding mesenteric lymphatics leading to an altered lymphatic environment that would favor dysfunction. Conclusions Alterations in environmental factors that effect lymphatic function occur before the development of gross GI inflammation. Reduced lymphatic function in TNBS-mediated inflammation is likely an early factor in the development of injury and that recovery of function is associated with resolution of inflammation. PMID:25939039

  11. Alterations to functional analysis methodology to clarify the functions of low rate, high intensity problem behavior.

    PubMed

    Davis, Barbara J; Kahng, Sungwoo; Schmidt, Jonathan; Bowman, Lynn G; Boelter, Eric W

    2012-01-01

    Current research provides few suggestions for modifications to functional analysis procedures to accommodate low rate, high intensity problem behavior. This study examined the results of the extended duration functional analysis procedures of Kahng, Abt, and Schonbachler (2001) with six children admitted to an inpatient hospital for the treatment of severe problem behavior. Results of initial functional analyses (Iwata, Dorsey, Slifer, Bauman, & Richman, 1982/1994) were inconclusive for all children because of low levels of responding. The altered functional analyses, which changed multiple variables including the duration of the functional analysis (i.e., 6 or 7 hrs), yielded clear behavioral functions for all six participants. These results add additional support for the utility of an altered analysis of low rate, high intensity problem behavior when standard functional analyses do not yield differentiated results.

  12. Alterations to Functional Analysis Methodology to Clarify the Functions of Low Rate, High Intensity Problem Behavior

    PubMed Central

    Davis, Barbara J; Kahng, SungWoo; Schmidt, Jonathan; Bowman, Lynn G; Boelter, Eric W

    2012-01-01

    Current research provides few suggestions for modifications to functional analysis procedures to accommodate low rate, high intensity problem behavior. This study examined the results of the extended duration functional analysis procedures of Kahng, Abt, and Schonbachler (2001) with six children admitted to an inpatient hospital for the treatment of severe problem behavior. Results of initial functional analyses (Iwata, Dorsey, Slifer, Bauman, & Richman, 1982/1994) were inconclusive for all children because of low levels of responding. The altered functional analyses, which changed multiple variables including the duration of the functional analysis (i.e., 6 or 7 hrs), yielded clear behavioral functions for all six participants. These results add additional support for the utility of an altered analysis of low rate, high intensity problem behavior when standard functional analyses do not yield differentiated results. PMID:23326628

  13. Mnk kinase pathway: Cellular functions and biological outcomes

    PubMed Central

    Joshi, Sonali; Platanias, Leonidas C

    2014-01-01

    The mitogen-activated protein kinase (MAPK) interacting protein kinases 1 and 2 (Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs (p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E (eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4E. The role of Mnk kinases in inflammation and inflammation-induced malignancies is also discussed. PMID:25225600

  14. Anks3 alters the sub-cellular localization of the Nek7 kinase

    SciTech Connect

    Ramachandran, Haribaskar; Engel, Christina; Müller, Barbara; Dengjel, Jörn; Walz, Gerd; Yakulov, Toma A.

    2015-08-28

    Nephronophthisis (NPH) is an autosomal recessive cystic kidney disease, and a frequent cause of end-stage renal failure in children. To date, 17 NPH-associated gene products (NPHPs) have been identified. Most NPHPs participate in large multi-protein complexes that localize to the cilium and/or basal body; however, the precise composition of these complexes and their biological function remain largely unknown. We recently observed that the ankyrin repeat protein Anks3 interacts with the NPH family member Anks6. Both Anks3 and Anks6 form complexes with multiple other NPHPs, suggesting that both proteins function in similar or overlapping signaling pathways. Here, we show that Anks3, but not Anks6 interacted with the NIMA-related kinase Nek7, and was heavily modified in the presence of Nek7, resulting in an approximately 20 kD increase in molecular weight. Although mass spectrometry revealed increased serine and threonine phosphorylation of Anks3 primarily within the N-terminal ankyrin repeats also required for Nek7 interaction, the molecular weight increase occurred even in the presence of a kinase-dead Nek7 mutant, indicating that this modification was not caused by Nek7-dependent Anks3 phosphorylation. Furthermore, the Anks3 modification was specific for Nek7, and did not occur in the presence of Nek8. Importantly, Anks3 retained Nek7 in the cytoplasm, suggesting that, Nek7 triggers the modification of Anks3, which in turn prevents the nuclear localization of Nek7. - Highlights: • Anks3 interacted with Nek7 kinase, and was heavily modified in the presence of Nek7. • Anks3 N-terminal ankyrin repeats, but not SAM domain required for Nek7 interaction. • Nek7 increased Ser/Thr phosphorylation of Anks3 primarily within ankyrin domain. • Interaction with Anks3 led to cytoplasmic retention and nuclear exclusion of Nek7.

  15. Altered osteoblast structure and function in parabolic flight

    NASA Astrophysics Data System (ADS)

    Zhong-Quan, Dai; Ying-Hui, Li; Fen, Yang; Bai, Ding; Ying-Jun, Tan

    Introduction Bone loss has a significant impact on astronauts during spaceflight being one of the main obstacles preventing interplanetary missions However the exact mechanism is not well understood In the present study we investigated the effects of acute gravitational changes generated by parabolic flight on the structure and function of osteoblasts ROS17 2 8 carried by airbus A300 Methods The alteration of microfilament cytoskeleton was observed by the Texas red conjugated Phalloidin and Alexa Fluor 488 conjugated DNase I immunofluorescence stain ALP activity and expression COL1A1 expression osteocalcin secrete which presenting the osteoblast function were detected by modified calcium and cobalt method RT-PCR and radioimmunity methods respectively Results The changed gravity induced the reorganization of microfilament cytoskeleton of osteoblast After 3 hours parabolic flight F-actin of osteoblast cytoskeleton became more thickness and directivity whereas G-actin reduced and relatively concentrated at the edge of nucleus observed by confocal fluorescence microscopy This phenomenon is identical with structure alternation observed in hypergravity but the osteoblast function decrease The excretion of osteocalcin the activity and mRNA expression of ALP decrease but the COL1A1 expression has no changes These results were similar to the changes in simulated or real microgravity Conclusion Above results suggest that short time gravity alternative change induce osteoblast structure and function

  16. Exposure to atheroma-relevant 7-oxysterols causes proteomic alterations in cell death, cellular longevity, and lipid metabolism in THP-1 macrophages

    PubMed Central

    Ljunggren, Stefan A.; Karlsson, Helen; Li, Wei; Yuan, Xi-Ming

    2017-01-01

    The 7-oxysterols are recognised as strong enhancers of inflammatory processes in foamy macrophages. Atheroma-relevant 7-oxysterol mixtures induce a mixed type of cell death in macrophages, and trigger cellular oxidative stress responses, which mimic oxidative exposures observed in atherosclerotic lesions. However, the macrophage proteome has not previously been determined in the 7-oxysterol treated cell model. The aim of the present study was to determine the specific effects of an atheroma-relevant 7-oxysterol mixture on human macrophage proteome. Human THP-1 macrophages were exposed to an atheroma-relevant mixture of 7β-hydroxycholesterol and 7-ketocholesterol. Two-dimensional gel electrophoresis and mass spectrometry techniques were used to analyse the alterations in macrophage proteome, which resulted in the identification of 19 proteins with significant differential expression upon oxysterol loading; 8 increased and 11 decreased. The expression patterns of 11 out of 19 identified significant proteins were further confirmed by tandem-mass spectrometry, including further validation of increased histone deacetylase 2 and macrophage scavenger receptor types I and II expressions by western blot analysis. Identified proteins with differential expression in the cell model have been associated with i) signalling imbalance in cell death and cellular longevity; ii) lipid uptake and metabolism in foam cells; and iii) inflammatory proteins. The presented findings highlight a new proteomic platform for further studies into the functional roles of macrophages in atherosclerosis, and present a cell model for future studies to modulate the macrophage proteome by potential anti-atherosclerotic agents. PMID:28350877

  17. Cellular functions of gamma-secretase-related proteins.

    PubMed

    Haffner, Christof; Haass, Christian

    2006-01-01

    Amyloid-beta peptide (Abeta) is generated by gamma-secretase, a membrane protein complex with an unusual aspartyl protease activity consisting of the four components presenilin, nicastrin, APH-1 and PEN-2. Presenilin is considered the catalytic subunit of this complex since it represents the prototype of the new family of intramembrane-cleaving GxGD-type aspartyl proteases. Recently, five novel members of this family and a nicastrin-like protein were identified. Whereas one of the GxGD-type proteins was shown to be identical with signal peptide peptidase (SPP), the function of the others, now called SPP-like proteins (SPPLs), is not known. We therefore analyzed SPPL2b and SPPL3 and demonstrated that they localize to different subcellular compartments suggesting nonredundant functions. This was supported by different phenotypes obtained in knockdown studies in zebrafish embryos. In addition, these phenotypes could be phenocopied by ectopic expression of putative active site mutants, providing strong evidence for a proteolytic function of SPPL2b and SPPL3. We also identified and characterized the nicastrin-like protein nicalin which, together with the 130-kDa protein NOMO (Nodal modulator), forms a membrane protein complex different from gamma-secretase. We found that during zebrafish embryogenesis this complex is involved in the patterning of the axial mesendoderm, a process controlled by the Nodal signaling pathway.

  18. Hyperoxia-Induced Protein Alterations in Renal Rat Tissue: A Quantitative Proteomic Approach to Identify Hyperoxia-Induced Effects in Cellular Signaling Pathways

    PubMed Central

    Hinkelbein, Jochen; Böhm, Lennert; Spelten, Oliver; Sander, David; Soltész, Stefan; Braunecker, Stefan

    2015-01-01

    Introduction. In renal tissue as well as in other organs, supranormal oxygen pressure may lead to deleterious consequences on a cellular level. Additionally, hyperoxia-induced effect in cells and related free radicals may potentially contribute to renal failure. The aim of this study was to analyze time-dependent alterations of rat kidney protein expression after short-term normobaric hyperoxia using proteomics and bioinformatic approaches. Material and Methods. N = 36 Wistar rats were randomized into six different groups: three groups with normobaric hyperoxia (exposure to 100% oxygen for 3 h) and three groups with normobaric normoxia (NN; room air). After hyperoxia exposure, kidneys were removed immediately, after 3 days and after 7 days. Kidney lysates were analyzed by two-dimensional gel electrophoresis followed by peptide mass fingerprinting using tandem mass spectrometry. Statistical analysis was performed with DeCyder 2D software (p < 0.01). Biological functions of differential regulated proteins were studied using functional network analysis (Ingenuity Pathways Analysis and PathwayStudio). Results. Expression of 14 proteins was significantly altered (p < 0.01): eight proteins (MEP1A_RAT, RSSA_RAT, F16P1_RAT, STML2_RAT, BPNT1_RAT, LGMN_RAT, ATPA_RAT, and VDAC1_RAT) were downregulated and six proteins (MTUS1_RAT, F16P1_RAT, ACTG_RAT, ACTB_RAT, 2ABA_RAT, and RAB1A_RAT) were upregulated. Bioinformatic analyses revealed an association of regulated proteins with inflammation. Conclusions. Significant alterations in renal protein expression could be demonstrated for up to 7 days even after short-term hyperoxia. The identified proteins indicate an association with inflammation signaling cascades. MEP1A and VDAC1 could be promising candidates to identify hyperoxic injury in kidney cells. PMID:26106253

  19. Loss of VHL in RCC Reduces Repair and Alters Cellular Response to Benzo[a]pyrene

    PubMed Central

    Schults, Marten A.; Oligschlaeger, Yvonne; Godschalk, Roger W.; Van Schooten, Frederik-Jan; Chiu, Roland K.

    2013-01-01

    Mutations of the von Hippel-Lindau (VHL) tumor suppressor gene occur in the majority of sporadic renal-cell carcinomas (RCC). Loss of VHL function is associated with stabilization of hypoxia-inducible factor α (HIFα). We and others demonstrated that there is a two-way interaction between the aryl hydrocarbon receptor, which is an important mediator in the metabolic activation and detoxification of carcinogens, and the HIF1-pathway leading to an increased genetic instability when both pathways are simultaneously activated. The aim of this study was to investigate how environmental carcinogens, such as benzo[a]pyrene (BaP), which can be metabolically activated to BaP-7,8-diOH-9,10-epoxide (BPDE) play a role in the etiology of RCC. We exposed VHL-deficient RCC4 cells, in which HIFα is stabilized regardless of oxygen tension, to 0.1 μM BaP for 18 h. The mutagenic BPDE-DNA adduct levels were increased in HIFα stabilized cells. Using qRT-PCR, we demonstrated that absence of VHL significantly induced the mRNA levels of AhR downstream target CYP1A1. Furthermore, HPLC analysis indicated that loss of VHL increased the concentration of BaP-7,8-dihydroxydiol, the pre-cursor metabolite of BPDE. Interestingly, the capacity to repair BPDE-DNA adducts in the HIFα stabilized RCC4 cells, was markedly reduced. Taken together, these data indicate that loss of VHL affects BaP-mediated genotoxic responses in RCC and decreases repair capacity. PMID:24195061

  20. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape

    NASA Technical Reports Server (NTRS)

    Sims, J. R.; Karp, S.; Ingber, D. E.

    1992-01-01

    Studies were carried out with capillary endothelial cells cultured on fibronectin (FN)-coated dishes in order to analyze the mechanism of cell and nuclear shape control by extracellular matrix (ECM). To examine the role of the cytoskeleton in shape determination independent of changes in transmembrane osmotic pressure, membranes of adherent cells were permeabilized with saponin (25 micrograms/ml) using a buffer that maintains the functional integrity of contractile microfilaments. Real-time videomicroscopic studies revealed that addition of 250 microM ATP resulted in time-dependent retraction and rounding of permeabilized cells and nuclei in a manner similar to that observed in intact living cells following detachment using trypsin-EDTA. Computerized image analysis confirmed that permeabilized cells remained essentially rigid in the absence of ATP and that retraction was stimulated in a dose-dependent manner as the concentration of ATP was raised from 10 to 250 microM. Maximal rounding occurred by 30 min with projected cell and nuclear areas being reduced by 69 and 41%, respectively. ATP-induced rounding was also accompanied by a redistribution of microfilaments resulting in formation of a dense net of F-actin surrounding retracted nuclei. Importantly, ATP-stimulated changes in cell, cytoskeletal, and nuclear form were prevented in permeabilized cells using a synthetic myosin peptide (IRICRKG) that has been previously shown to inhibit actomyosin filament sliding in muscle. In contrast, both the rate and extent of cell and nuclear rounding were increased in permeabilized cells exposed to ATP when the soluble FN peptide, GRGDSP, was used to dislodge immobilized FN from cell surface integrin receptors.(ABSTRACT TRUNCATED AT 250 WORDS).

  1. Adolescent social defeat alters markers of adult dopaminergic function.

    PubMed

    Novick, Andrew M; Forster, Gina L; Tejani-Butt, Shanaz M; Watt, Michael J

    2011-08-10

    Stressful experiences during adolescence can alter the trajectory of neural development and contribute to psychiatric disorders in adulthood. We previously demonstrated that adolescent male rats exposed to repeated social defeat stress show changes in mesocorticolimbic dopamine content both at baseline and in response to amphetamine when tested in adulthood. In the present study we examined whether markers of adult dopamine function are also compromised by adolescent experience of social defeat. Given that the dopamine transporter as well as dopamine D1 receptors act as regulators of psychostimulant action, are stress sensitive and undergo changes during adolescence, quantitative autoradiography was used to measure [(3)H]-GBR12935 binding to the dopamine transporter and [(3)H]-SCH23390 binding to dopamine D1 receptors, respectively. Our results indicate that social defeat during adolescence led to higher dopamine transporter binding in the infralimbic region of the medial prefrontal cortex and higher dopamine D1 receptor binding in the caudate putamen, while other brain regions analyzed were comparable to controls. Thus it appears that social defeat during adolescence causes specific changes to the adult dopamine system, which may contribute to behavioral alterations and increased drug seeking.

  2. Adolescent social defeat alters markers of adult dopaminergic function

    PubMed Central

    Novick, Andrew M.; Forster, Gina L.; Tejani-Butt, Shanaz M.; Watt, Michael J.

    2011-01-01

    Stressful experiences during adolescence can alter the trajectory of neural development and contribute to psychiatric disorders in adulthood. We previously demonstrated that adolescent male rats exposed to repeated social defeat stress show changes in mesocorticolimbic dopamine content both at baseline and in response to amphetamine when tested in adulthood. In the present study we examined whether markers of adult dopamine function are also compromised by adolescent experience of social defeat. Given that the dopamine transporter as well as dopamine D1 receptors act as regulators of psychostimulant action, are stress sensitive and undergo changes during adolescence, quantitative autoradiography was used to measure [3H]-GBR12935 binding to the dopamine transporter and [3H]-SCH23390 binding to dopamine D1 receptors, respectively. Our results indicate that social defeat during adolescence led to higher dopamine transporter binding in the infralimbic region of the medial prefrontal cortex and higher dopamine D1 receptor binding in the caudate putamen, while other brain regions analyzed were comparable to controls. Thus it appears that social defeat during adolescence causes specific changes to the adult DA system, which may contribute to behavioral alterations and increased drug seeking. PMID:21741457

  3. Loss of cone cyclic nucleotide-gated channel leads to alterations in light response modulating system and cellular stress response pathways: a gene expression profiling study

    PubMed Central

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie M.; Michalakis, Stylianos; Biel, Martin; Frank, Mark Barton; Bebak, Melissa; Ding, Xi-Qin

    2013-01-01

    The cone photoreceptor cyclic nucleotide-gated (CNG) channel is essential for central and color vision and visual acuity. Mutations in the channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophy. We investigated the gene expression profiles in mouse retina with CNG channel deficiency using whole genome expression microarrays. As cones comprise only 2 to 3% of the total photoreceptor population in the wild-type mouse retina, the mouse lines with CNG channel deficiency on a cone-dominant background, i.e. Cnga3−/−/Nrl−/− and Cngb3−/−/Nrl−/− mice, were used in our study. Comparative data analysis revealed a total of 105 genes altered in Cnga3−/−/Nrl−/− and 92 in Cngb3−/−/Nrl−/− retinas, relative to Nrl−/− retinas, with 27 genes changed in both genotypes. The differentially expressed genes primarily encode proteins associated with cell signaling, cellular function maintenance and gene expression. Ingenuity pathway analysis (IPA) identified 26 and 9 canonical pathways in Cnga3−/−/Nrl−/− and Cngb3−/−/Nrl−/− retinas, respectively, with 6 pathways being shared. The shared pathways include phototransduction, cAMP/PKA-mediated signaling, endothelin signaling, and EIF2/endoplasmic reticulum (ER) stress, whereas the IL-1, CREB, and purine metabolism signaling were found to specifically associate with Cnga3 deficiency. Thus, CNG channel deficiency differentially regulates genes that affect cell processes such as phototransduction, cellular survival and gene expression, and such regulations play a crucial role(s) in the retinal adaptation to impaired cone phototransduction. Though lack of Cnga3 and Cngb3 shares many common pathways, deficiency of Cnga3 causes more significant alterations in gene expression. This work provides insights into how cones respond to impaired phototransduction at the gene expression levels. PMID:23740940

  4. Two Independent Regions of Simian Virus 40 T Antigen Increase CBP/p300 Levels, Alter Patterns of Cellular Histone Acetylation, and Immortalize Primary Cells

    PubMed Central

    Sáenz Robles, Maria Teresa; Shivalila, Chikdu; Wano, Jeremy; Sorrells, Shelly; Roos, Alison

    2013-01-01

    Simian virus 40 (SV40) large T antigen (SVT) interferes with normal cell regulation and thus has been used to identify cellular components controlling proliferation and homeostasis. We have previously shown that SVT-mediated transformation requires interaction with the histone acetyltransferases (HATs) CBP/p300 and now report that the ectopic expression of SVT in several cell types in vivo and in vitro results in a significant increase in the steady-state levels of CBP/p300. Furthermore, SVT-expressing cells contain higher levels of acetylated CBP/p300, a modification that has been linked to increased HAT activity. Concomitantly, the acetylation levels of histone residues H3K56 and H4K12 are markedly increased in SVT-expressing cells. Other polyomavirus-encoded large T antigens also increase the levels of CBP/p300 and sustain a rise in the acetylation levels of H3K56 and H4K12. SVT does not affect the transcription of CBP/p300, but rather, alters their overall levels through increasing the loading of CBP/p300 mRNAs onto polysomes. Two distinct regions within SVT, one located in the amino terminus and one in the carboxy terminus, can independently alter both the levels of CBP/p300 and the loading of CBP/p300 transcripts onto polysomes. Within the amino-terminal fragment, a functional J domain is necessary for increasing CBP/p300 and specific histone acetylation levels, as well as for immortalizing primary cells. These studies uncover the action of polyomavirus T antigens on cellular CBP/p300 and suggest that additional mechanisms are used by T antigens to induce cell immortalization and transformation. PMID:24089570

  5. Altered mitochondrial function after acute alteration of the endogenous insulin/glucagon ratio

    SciTech Connect

    Rohweder-Dunn, G.; Aprille, J.R.

    1986-05-01

    Mannoheptulose (MH) affects pancreatic Islet cells to cause a drop in serum insulin and a rise in glucagon. This effect peaks 1 hr after injection and results in a 3-fold increase in serum glucose. Here they examined whether metabolic functions of liver mitochondria (mito) are altered by this change in hormone status. Rats fed ad lib on 12 hr light/dark cycles were given MH (2g/kg) or vehicle i.p. during the first 2 hrs of the light cycle. Liver mito were isolated 1 hr later. Acid-extracts were assayed for ATP+ADP+AMP (nmol/mg prot). Citrulline synthesis and pyruvate carboxylation rates (nmol/min/mg prot) were assayed by following H(/sup 14/C)O/sub 3//sup -/ fixation in appropriate media. State 3 and 2,4-DNP-uncoupled respiratory rates (1/2 nmol O/sub 2//min/mg prot) were assayed polarographically with succinate. The effects of MH on mito are comparable to reported effects of glucagon injection. MH evokes acute reciprocal changes in insulin and glucagon that are highly reproducible. Thus, MH offers an interesting model for studying the effect of endogenous hormones on mito functions.

  6. Principles of cellular-molecular mechanisms underlying neuron functions.

    PubMed

    Ratushnyak, Alexander S; Zapara, Tatiana A

    2009-12-01

    In the present work, it was experimentally shown that a neuron in vitro was capable of responding in a manner similar to habituation, Pavlov's reflex and avoidance of the reinforcements. The locality of plastic property modifications and molecular morphology, as well as the connection between functional activity and cytoskeleton have been revealed. A hypothesis is formulated that the neuron is a molecular system which may exercise the control, forecast, recognition, and classification. The basic principles of the molecular mechanisms of the responses underlying integrative activity, learning and memory at the neuronal level are discussed.

  7. Cellular consequences of the microgravity environment on lymphocyte function

    NASA Astrophysics Data System (ADS)

    Sundaresan, A.; Pellis, N. R.

    Microgravity induces a cascade of changes in cell morphology and function. Mammalian cells adapt to the environment of low gravity and express a series of responses, some possibly from direct effects on cells and others based on environmental conditions created by microgravity. Human lymphocytes in microgravity culture are functionally diminished in activation and locomotion. Both processes are integral to optimal immune response to fight pathogens. The NASA Rotating-wall vessel (RWV) is an analog to many aspects of microgravity and is used to model microgravity for ground-based experiments. We found that lymphocyte activation and locomotion were significantly down-regulated in spaceflight and in the RWV. Using this analog culture system, we have isolated a signal transduction lesion either at the level of, or upstream from, Protein kinase C (PKC) activation. Analysis of expression and adaptation by gene array experiments and immunoblotting to identified upstream events in human lymphocytes adapting to microgravity analog culture. Microgravity induces selective changes, many of which are cell membrane related. Results showed that upstream of PKC in the T cell activation cascade, PLC-gamma and LAT are significantly diminished. ZAP 70 which controls LAT activation is also down-regulated in modeled microgravity indicating that events governing cell shape might warrant special attention in microgravity conditions. The goal of this study is to delineate response suites which are consequential, direct or indirect effects of the microgravity environment and which of these are essential to lymphocytes.

  8. Alterations in cognitive and psychological functioning after organic solvent exposure

    SciTech Connect

    Morrow, L.A.; Ryan, C.M.; Hodgson, M.J.; Robin, N. )

    1990-05-01

    Exposure to organic solvents has been linked repeatedly to alterations in both personality and cognitive functioning. To assess the nature and extent of these changes more thoroughly, 32 workers with a history of exposure to mixtures of organic solvents and 32 age- and education-matched blue-collar workers with no history of exposure were assessed with a comprehensive battery of neuropsychological tests. Although both groups were comparable on measures of general intelligence, significant differences were found in virtually all other cognitive domains tested (Learning and Memory, Visuospatial, Attention and Mental Flexibility, Psychomotor Speed). In addition, Minnesota Multiphasic Personality Inventories of exposed workers indicated clinically significant levels of depression, anxiety, somatic concerns and disturbances in thinking. The reported psychological distress was unrelated to degree of cognitive deficit. Finally, several exposure-related variables were associated with poorer performance on tests of memory and visuospatial ability.

  9. Maternal obesity drives functional alterations in uterine NK cells

    PubMed Central

    Perdu, Sofie; Castellana, Barbara; Kim, Yoona; Chan, Kathy; DeLuca, Lauren; Beristain, Alexander G.

    2016-01-01

    Over one-fifth of North American women of childbearing age are obese, putting these women at risk for a variety of detrimental chronic diseases. In addition, obesity increases the risk for developing major complications during pregnancy. The mechanisms by which obesity contributes to pregnancy complications and loss remain unknown. Increasing evidence indicates that obesity results in major changes to adipose tissue immune cell composition and function; whether or not obesity also affects immune function in the uterus has not been explored. Here we investigated the effect of obesity on uterine natural killer (uNK) cells, which are essential for uterine artery remodeling and placental development. Using a cohort of obese or lean women, we found that obesity led to a significant reduction in uNK cell numbers accompanied with impaired uterine artery remodeling. uNK cells isolated from obese women had altered expression of genes and pathways associated with extracellular matrix remodeling and growth factor signaling. Specifically, uNK cells were hyper-responsive to PDGF, resulting in overexpression of decorin. Functionally, decorin strongly inhibited placental development by limiting trophoblast survival. Together, these findings establish a potentially new link between obesity and poor pregnancy outcomes, and indicate that obesity-driven changes to uterine-resident immune cells critically impair placental development. PMID:27699222

  10. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins.

    PubMed Central

    Gillooly, D J; Simonsen, A; Stenmark, H

    2001-01-01

    PtdIns3P is a phosphoinositide 3-kinase product that has been strongly implicated in regulating membrane trafficking in both mammalian and yeast cells. PtdIns3P has been shown to be specifically located on membranes associated with the endocytic pathway. Proteins that contain FYVE zinc-finger domains are recruited to PtdIns3P-containing membranes. Structural information is now available concerning the interaction between FYVE domains and PtdIns3P. A number of proteins have been identified which contain a FYVE domain, and in this review we discuss the functions of PtdIns3P and its FYVE-domain-containing effector proteins in membrane trafficking, cytoskeletal regulation and receptor signalling. PMID:11284710

  11. Functional and Structural Mimicry of Cellular Protein Kinase A Anchoring Proteins by a Viral Oncoprotein

    PubMed Central

    King, Cason R.; Cohen, Michael J.; Fonseca, Gregory J.; Dirk, Brennan S.; Dikeakos, Jimmy D.; Mymryk, Joe S.

    2016-01-01

    The oncoproteins of the small DNA tumor viruses interact with a plethora of cellular regulators to commandeer control of the infected cell. During infection, adenovirus E1A deregulates cAMP signalling and repurposes it for activation of viral gene expression. We show that E1A structurally and functionally mimics a cellular A-kinase anchoring protein (AKAP). E1A interacts with and relocalizes protein kinase A (PKA) to the nucleus, likely to virus replication centres, via an interaction with the regulatory subunits of PKA. Binding to PKA requires the N-terminus of E1A, which bears striking similarity to the amphipathic α-helical domain present in cellular AKAPs. E1A also targets the same docking-dimerization domain of PKA normally bound by cellular AKAPs. In addition, the AKAP like motif within E1A could restore PKA interaction to a cellular AKAP in which its normal interaction motif was deleted. During infection, E1A successfully competes with endogenous cellular AKAPs for PKA interaction. E1A’s role as a viral AKAP contributes to viral transcription, protein expression and progeny production. These data establish HAdV E1A as the first known viral AKAP. This represents a unique example of viral subversion of a crucial cellular regulatory pathway via structural mimicry of the PKA interaction domain of cellular AKAPs. PMID:27137912

  12. [Effects of electromagnetic radiation from handsets of cellular telephone on neurobehavioral function].

    PubMed

    Cao, Z; Liu, J; Li, S; Zhao, X

    2000-03-30

    In order to study the effects of electromagnetic radiation from handsets of cellular telephone on neurobehavioral function, 81 staff with handsets of cellular telephone and 63 staff without handsets of cellular telephone from corporations were selected as the subjects. The subjects were investigated by questionnaire on their general health, lifestyle habit, suppress of spirit, handset using of cellular telephone, environmental exposure, morbidity, and the neurobehavioral core test battery(NCTB). The data was analyzed by chi-square, stepwise regression analysis and covariance statistics. The results showed that the average reaction time in user's group was longer than that in control group (P < 0.01). The time of using handset was negatively associated with corrected reaction number (P < 0.01). The fast reaction time and the slowest reaction time were positively associated with the length of handset using (P < 0.01, P < 0.05). The results suggested that the handset using could cause adverse health effects in neurobehavioral function.

  13. Integrative Chemistry: Advanced functional cellular materials bearing multiscale porosity

    NASA Astrophysics Data System (ADS)

    Depardieu, M.; Kinadjian, N.; Backov, R.

    2015-07-01

    With this mini review we show through the sol-gel and emulsion-based Integrative Chemistry how it is possible to trigger materials dimensionality and beyond their functionalities when reaching enhanced applications. In here we focus on 3D macrocellular monolithic foams bearing hierarchical porosities and applications thereof. We first depict the general background of emulsions focusing on concentrated ones, acting as soft templates for the design of PolyHIPE foams, HIPE being the acronym of High Internal Phase Emulsions while encompassing both sol-gel and polymer chemistry. Secondly we extend this approach toward the design of hybrid organic-inorganic foams, labeled Organo-Si(HIPE), where photonics and heterogeneous catalysis applications are addressed. In a third section we show how inorganic Si(HIPE) matrices can be employed as sacrificial hard templates for the generation carbonaceous foams, labeled Carbon(HIPE). These foams being conductive we show applications when employed as electrodes for Li-S battery and as hosts for Li(BH4)-based hydrogen storage.

  14. Structural and functional alterations in Malpighian tubules as biomarkers of environmental pollution: synopsis and prospective.

    PubMed

    Giglio, Anita; Brandmayr, Pietro

    2017-03-06

    Although a number of biomarkers of pollutant exposure have been identified in invertebrate species, little is known about the effect on Malpighian tubules playing an essential role in excretion and osmoregulation. Analyses of structural and functional alterations on this organ can be useful to predict the effects at the organism and population level in monitoring studies of environmental pollution. The aim of the present review is to provide a synthesis of existing knowledge on cellular damages induced by xenobiotics in Malpighian tubules both under laboratory and field conditions. We compared studies of exposure to pesticides and heavy metals as mainly environmental contaminants from anthropogenic activities. This report provided evidence that the exposure to xenobiotics has an effect on this organ and reinforces the need for further research integrating molecular biomarkers with analysis on Malpighian tubules. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    SciTech Connect

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet; Casas, Josefina; Lacorte, Sílvia; Porte, Cinta

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  16. Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function.

    PubMed

    Marguet, Maïté; Bonduelle, Colin; Lecommandoux, Sébastien

    2013-01-21

    The cell is certainly one of the most complex and exciting systems in Nature that scientists are still trying to fully understand. Such a challenge pushes material scientists to seek to reproduce its perfection by building biomimetic materials with high-added value and previously unmatched properties. Thanks to their versatility, their robustness and the current state of polymer chemistry science, we believe polymer-based materials to constitute or represent ideal candidates when addressing the challenge of biomimicry, which defines the focus of this review. The first step consists in mimicking the structure of the cell: its inner compartments, the organelles, with a multicompartmentalized structure, and the rest, i.e. the cytoplasm minus the organelles (mainly cytoskeleton/cytosol) with gels or particular solutions (highly concentrated for example) in one compartment, and finally the combination of both. Achieving this first structural step enables us to considerably widen the gap of possibilities in drug delivery systems. Another powerful property of the cell lies in its metabolic function. The second step is therefore to achieve enzymatic reactions in a compartment, as occurs in the organelles, in a highly controlled, selective and efficient manner. We classify the most exciting polymersome nanoreactors reported in our opinion into two different subsections, depending on their very final concept or purpose of design. We also highlight in a thorough table the experimental sections crucial to such work. Finally, after achieving control over these prerequisites, scientists are able to combine them and push the frontiers of biomimicry further: from cell structure mimics towards a controlled biofunctionality. Such a biomimetic approach in material design and the future research it will stimulate, are believed to bring considerable enrichments to the fields of drug delivery, (bio)sensors, (bio)catalysis and (bio)technology.

  17. Glycosaminoglycan-functionalized poly-lactide-co-glycolide nanoparticles: synthesis, characterization, cytocompatibility, and cellular uptake

    PubMed Central

    Lamichhane, Surya P; Arya, Neha; Ojha, Nirdesh; Kohler, Esther; Shastri, V Prasad

    2015-01-01

    The efficient delivery of chemotherapeutics to the tumor via nanoparticle (NP)-based delivery systems remains a significant challenge. This is compounded by the fact that the tumor is highly dynamic and complex environment composed of a plurality of cell types and extracellular matrix. Since glycosaminoglycan (GAG) production is altered in many diseases (or pathologies), NPs bearing GAG moieties on the surface may confer some unique advantages in interrogating the tumor microenvironment. In order to explore this premise, in the study reported here poly-lactide-co-glycolide (PLGA) NPs in the range of 100–150 nm bearing various proteoglycans were synthesized by a single-step nanoprecipitation and characterized. The surface functionalization of the NPs with GAG moieties was verified using zeta potential measurements and X-ray photoelectron spectroscopy. To establish these GAG-bearing NPs as carriers of therapeutics, cellular toxicity assays were undertaken in lung epithelial adenocarcinoma (A549) cells, human pulmonary microvascular endothelial cells (HPMEC), and renal proximal tubular epithelial cells. In general NPs were well tolerated over a wide concentration range (100–600 μg/mL) by all cell types and were taken up to appreciable extents without any adverse cell response in A549 cells and HPMEC. Further, GAG-functionalized PLGA NPs were taken up to different extents in A459 cells and HPMEC. In both cell systems, the uptake of heparin-modified NPs was diminished by 50%–65% in comparison to that of unmodified PLGA. Interestingly, the uptake of chondroitin sulfate NPs was the highest in both cell systems with 40%–60% higher uptake when compared with that of PLGA, and this represented an almost twofold difference over heparin-modified NPs. These findings suggest that GAG modification can be explored as means of changing the uptake behavior of PLGA NPs and these NP systems have potential in cancer therapy. PMID:25632234

  18. Alterations in endogenous opioid functional measures in chronic back pain.

    PubMed

    Martikainen, Ilkka K; Peciña, Marta; Love, Tiffany M; Nuechterlein, Emily B; Cummiford, Chelsea M; Green, Carmen R; Harris, Richard E; Stohler, Christian S; Zubieta, Jon-Kar

    2013-09-11

    The absence of consistent end organ abnormalities in many chronic pain syndromes has led to a search for maladaptive CNS mechanisms that may explain their clinical presentations and course. Here, we addressed the role of brain regional μ-opioid receptor-mediated neurotransmission, one of the best recognized mechanisms of pain regulation, in chronic back pain in human subjects. We compared μ-opioid receptor availability in vivo at baseline, during pain expectation, and with moderate levels of sustained pain in 16 patients with chronic nonspecific back pain (CNBP) and in 16 age- and gender-matched healthy control subjects, using the μ-opioid receptor-selective radioligand [(11)C]carfentanil and positron emission tomography. We found that CNBP patients showed baseline increases in thalamic μ-opioid receptor availability, contrary to a previously studied sample of patients diagnosed with fibromyalgia. During both pain expectation and sustained pain challenges, CNBP patients showed regional reductions in the capacity to activate this neurotransmitter system compared with their control sample, further associated with clinical pain and affective state ratings. Our results demonstrate heterogeneity in endogenous opioid system functional measures across pain conditions, and alterations in both receptor availability and endogenous opioid function in CNBP that are relevant to the clinical presentation of these patients and the effects of opioid analgesics on μ-opioid receptors.

  19. Bovine spongiform encephalopathy induces misfolding of alleged prion-resistant species cellular prion protein without altering its pathobiological features.

    PubMed

    Vidal, Enric; Fernández-Borges, Natalia; Pintado, Belén; Ordóñez, Montserrat; Márquez, Mercedes; Fondevila, Dolors; Torres, Juan María; Pumarola, Martí; Castilla, Joaquín

    2013-05-01

    Bovine spongiform encephalopathy (BSE) prions were responsible for an unforeseen epizootic in cattle which had a vast social, economic, and public health impact. This was primarily because BSE prions were found to be transmissible to humans. Other species were also susceptible to BSE either by natural infection (e.g., felids, caprids) or in experimental settings (e.g., sheep, mice). However, certain species closely related to humans, such as canids and leporids, were apparently resistant to BSE. In vitro prion amplification techniques (saPMCA) were used to successfully misfold the cellular prion protein (PrP(c)) of these allegedly resistant species into a BSE-type prion protein. The biochemical and biological properties of the new prions generated in vitro after seeding rabbit and dog brain homogenates with classical BSE were studied. Pathobiological features of the resultant prion strains were determined after their inoculation into transgenic mice expressing bovine and human PrP(C). Strain characteristics of the in vitro-adapted rabbit and dog BSE agent remained invariable with respect to the original cattle BSE prion, suggesting that the naturally low susceptibility of rabbits and dogs to prion infections should not alter their zoonotic potential if these animals became infected with BSE. This study provides a sound basis for risk assessment regarding prion diseases in purportedly resistant species.

  20. Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy

    NASA Astrophysics Data System (ADS)

    Misra, Santosh K.; Mukherjee, Prabuddha; Chang, Huei-Huei; Tiwari, Saumya; Gryka, Mark; Bhargava, Rohit; Pan, Dipanjan

    2016-07-01

    Typically, multiplexing high nanoparticle uptake, imaging, and therapy requires careful integration of three different functions of a multiscale molecular-particle assembly. Here, we present a simpler approach to multiplexing by utilizing one component of the system for multiple functions. Specifically, we successfully synthesized and characterized colloidal carotene carbon nanoparticle (C3-NP), in which a single functional molecule served a threefold purpose. First, the presence of carotene moieties promoted the passage of the particle through the cell membrane and into the cells. Second, the ligand acted as a potent detrimental moiety for cancer cells and, finally, the ligands produced optical contrast for robust microscopic detection in complex cellular environments. In comparative tests, C3-NP were found to provide effective intracellular delivery that enables both robust detection at cellular and tissue level and presents significant therapeutic potential without altering the mechanism of intracellular action of β-carotene. Surface coating of C3 with phospholipid was used to generate C3-Lipocoat nanoparticles with further improved function and biocompatibility, paving the path to eventual in vivo studies.

  1. Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy

    PubMed Central

    Misra, Santosh K.; Mukherjee, Prabuddha; Chang, Huei-Huei; Tiwari, Saumya; Gryka, Mark; Bhargava, Rohit; Pan, Dipanjan

    2016-01-01

    Typically, multiplexing high nanoparticle uptake, imaging, and therapy requires careful integration of three different functions of a multiscale molecular-particle assembly. Here, we present a simpler approach to multiplexing by utilizing one component of the system for multiple functions. Specifically, we successfully synthesized and characterized colloidal carotene carbon nanoparticle (C3-NP), in which a single functional molecule served a threefold purpose. First, the presence of carotene moieties promoted the passage of the particle through the cell membrane and into the cells. Second, the ligand acted as a potent detrimental moiety for cancer cells and, finally, the ligands produced optical contrast for robust microscopic detection in complex cellular environments. In comparative tests, C3-NP were found to provide effective intracellular delivery that enables both robust detection at cellular and tissue level and presents significant therapeutic potential without altering the mechanism of intracellular action of β-carotene. Surface coating of C3 with phospholipid was used to generate C3-Lipocoat nanoparticles with further improved function and biocompatibility, paving the path to eventual in vivo studies. PMID:27405011

  2. Altered Functional Response to Risky Choice in HIV Infection

    PubMed Central

    Connolly, Colm G.; Bischoff-Grethe, Amanda; Jordan, Stephan J.; Woods, Steven Paul; Ellis, Ronald J.; Paulus, Martin P.; Grant, Igor

    2014-01-01

    Background Risky decision-making is commonly observed in persons at risk for and infected with HIV and is associated with executive dysfunction. Yet it is currently unknown whether HIV alters brain processing of risk-taking decision-making. Methods This study examined the neural substrate of a risky decision-making task in 21 HIV seropositive (HIV+) and 19 seronegative (HIV-) comparison participants. Functional magnetic resonance imaging was conducted while participants performed the risky-gains task, which involves choosing among safe (20 cents) and risky (40/80 cent win or loss) choices. Linear mixed effects analyses examining group and decision type were conducted. Robust regressions were performed to examine the relationship between nadir CD4 count and Kalichman sexual compulsivity and brain activation in the HIV+ group. The overlap between the task effects and robust regressions was explored. Results Although there were no serostatus effects in behavioral performance on the risky-gains task, HIV+ individuals exhibited greater activation for risky choices in the basal ganglia, i.e. the caudate nucleus, but also in the anterior cingulate, dorsolateral prefrontal cortex, and insula relative to the HIV- group. The HIV+ group also demonstrated reduced functional responses to safe choices in the anterior cingulate and dorsolateral prefrontal cortex relative to the HIV- group. HIV+ individuals with higher nadir CD4 count and greater sexual compulsivity displayed lower differential responses to safe versus risky choices in many of these regions. Conclusions This study demonstrated fronto-striatal loop dysfunction associated with HIV infection during risky decision-making. Combined with similar between-group task behavior, this suggests an adaptive functional response in regions critical to reward and behavioral control in the HIV+ group. HIV-infected individuals with higher CD4 nadirs demonstrated activation patterns more similar to seronegative individuals. This

  3. Physiological enzymology: The next frontier in understanding protein structure and function at the cellular level.

    PubMed

    Lee, Irene; Berdis, Anthony J

    2016-01-01

    Historically, the study of proteins has relied heavily on characterizing the activity of a single purified protein isolated from other cellular components. This classic approach allowed scientists to unambiguously define the intrinsic kinetic and chemical properties of that protein. The ultimate hope was to extrapolate this information toward understanding how the enzyme or receptor behaves within its native cellular context. These types of detailed in vitro analyses were necessary to reduce the innate complexities of measuring the singular activity and biochemical properties of a specific enzyme without interference from other enzymes and potential competing substrates. However, recent developments in fields encompassing cell biology, molecular imaging, and chemical biology now provide the unique chemical tools and instrumentation to study protein structure, function, and regulation in their native cellular environment. These advancements provide the foundation for a new field, coined physiological enzymology, which quantifies the function and regulation of enzymes and proteins at the cellular level. In this Special Edition, we explore the area of Physiological Enzymology and Protein Function through a series of review articles that focus on the tools and techniques used to measure the cellular activity of proteins inside living cells. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.

  4. Reduction of Cellular Expression Levels Is a Common Feature of Functionally Affected Pendrin (SLC26A4) Protein Variants

    PubMed Central

    de Moraes, Vanessa C S; Bernardinelli, Emanuele; Zocal, Nathalia; Fernandez, Jhonathan A; Nofziger, Charity; Castilho, Arthur M; Sartorato, Edi L; Paulmichl, Markus; Dossena, Silvia

    2016-01-01

    Sequence alterations in the pendrin gene (SLC26A4) leading to functionally affected protein variants are frequently involved in the pathogenesis of syndromic and nonsyndromic deafness. Considering the high number of SLC26A4 sequence alterations reported to date, discriminating between functionally affected and unaffected pendrin protein variants is essential in contributing to determine the genetic cause of deafness in a given patient. In addition, identifying molecular features common to the functionally affected protein variants can be extremely useful to design future molecule-directed therapeutic approaches. Here we show the functional and molecular characterization of six previously uncharacterized pendrin protein variants found in a cohort of 58 Brazilian deaf patients. Two variants (p.T193I and p.L445W) were undetectable in the plasma membrane, completely retained in the endoplasmic reticulum and showed no transport function; four (p.P142L, p.G149R, p.C282Y and p.Q413R) showed reduced function and significant, although heterogeneous, expression levels in the plasma membrane. Importantly, total expression levels of all of the functionally affected protein variants were significantly reduced with respect to the wild-type and a fully functional variant (p.R776C), regardless of their subcellular localization. Interestingly, reduction of expression may also reduce the transport activity of variants with an intrinsic gain of function (p.Q413R). As reduction of overall cellular abundance was identified as a common molecular feature of pendrin variants with affected function, the identification of strategies to prevent reduction in expression levels may represent a crucial step of potential future therapeutic interventions aimed at restoring the transport activity of dysfunctional pendrin variants. PMID:26752218

  5. Magnesium regulates neural stem cell proliferation in the mouse hippocampus by altering mitochondrial function.

    PubMed

    Jia, Shanshan; Mou, Chengzhi; Ma, Yihe; Han, Ruijie; Li, Xue

    2016-04-01

    In the adult brain, neural stem cells from the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the cortex progress through the following five developmental stages: radial glia-like cells, neural progenitor cells, neuroblasts, immature neurons, and mature neurons. These developmental stages are linked to both neuronal microenvironments and energy metabolism. Neurogenesis is restricted and has been demonstrated to arise from tissue microenvironments. We determined that magnesium, a key nutrient in cellular energy metabolism, affects neural stem cell (NSC) proliferation in cells derived from the embryonic hippocampus by influencing mitochondrial function. Densities of proliferating cells and NSCs both showed their highest values at 0.8 mM [Mg(2+) ]o , whereas lower proliferation rates were observed at 0.4 and 1.4 mM [Mg(2+) ]o . The numbers and sizes of the neurospheres reached the maximum at 0.8 mM [Mg(2+) ]o and were weaker under both low (0.4 mM) and high (1.4 mM) concentrations of magnesium. In vitro experimental evidence demonstrates that extracellular magnesium regulates the number of cultured hippocampal NSCs, affecting both magnesium homeostasis and mitochondrial function. Our findings indicate that the effect of [Mg(2+) ]o on NSC proliferation may lie downstream of alterations in mitochondrial function because mitochondrial membrane potential was highest in the NSCs in the moderate [Mg(2+) ]o (0.8 mM) group and lower in both the low (0.4 mM) and high (1.4 mM) [Mg(2+) ]o groups. Overall, these findings demonstrate a new function for magnesium in the brain in the regulation of hippocampal neural stem cells: affecting their cellular energy metabolism.

  6. Dynamic alteration in splenic function during acute falciparum malaria

    SciTech Connect

    Looareesuwan, S.; Ho, M.; Wattanagoon, Y.; White, N.J.; Warrell, D.A.; Bunnag, D.; Harinasuta, T.; Wyler, D.J.

    1987-09-10

    Plasmodium-infected erythrocytes lose their normal deformability and become susceptible to splenic filtration. In animal models, this is one mechanism of antimalarial defense. To assess the effect of acute falciparum malaria on splenic filtration, we measured the clearance of heated /sup 51/Cr-labeled autologous erythrocytes in 25 patients with acute falciparum malaria and in 10 uninfected controls. Two groups of patients could be distinguished. Sixteen patients had splenomegaly, markedly accelerated clearance of the labeled erythrocytes (clearance half-time, 8.4 +/- 4.4 minutes (mean +/- SD) vs. 62.5 +/- 36.5 minutes in controls; P less than 0.001), and a lower mean hematocrit than did the patients without splenomegaly (P less than 0.001). In the nine patients without splenomegaly, clearance was normal. After institution of antimalarial chemotherapy, however, the clearance in this group accelerated to supernormal rates similar to those in the patients with splenomegaly, but without the development of detectable splenomegaly. Clearance was not significantly altered by treatment in the group with splenomegaly. Six weeks later, normal clearance rates were reestablished in most patients in both groups. We conclude that splenic clearance of labeled erythrocytes is enhanced in patients with malaria if splenomegaly is present and is enhanced only after treatment if splenomegaly is absent. Whether this enhanced splenic function applies to parasite-infected erythrocytes in patients with malaria and has any clinical benefit will require further studies.

  7. Alterations of blood brain barrier function in hyperammonemia: an overview.

    PubMed

    Skowrońska, Marta; Albrecht, Jan

    2012-02-01

    Ammonia is a neurotoxin involved in the pathogenesis of neurological conditions associated with hyperammonemia, including hepatic encephalopathy, a condition associated with acute--(ALF) or chronic liver failure. This article reviews evidence that apart from directly affecting the metabolism and function of the central nervous system cells, ammonia influences the passage of different molecules across the blood brain barrier (BBB). A brief description is provided of the tight junctions, which couple adjacent cerebral capillary endothelial cells to each other to form the barrier. Ammonia modulates the transcellular passage of low-to medium-size molecules, by affecting their carriers located at the BBB. Ammonia induces interrelated aberrations of the transport of the large neutral amino acids and aromatic amino acids (AAA), whose influx is augmented by exchange with glutamine produced in the course of ammonia detoxification, and maybe also modulated by the extracellularly acting gamma-glutamyl moiety transferring enzyme, gamma-glutamyl-transpeptidase. Impaired AAA transport affects neurotransmission by altering intracerebral synthesis of catecholamines (serotonin and dopamine), and producing "false neurotransmitters" (octopamine and phenylethylamine). Ammonia also modulates BBB transport of the cationic amino acids: the nitric oxide precursor, arginine, and ornithine, which is an ammonia trap, and affects the transport of energy metabolites glucose and creatine. Moreover, ammonia acting either directly or in synergy with liver injury-derived inflammatory cytokines also evokes subtle increases of the transcellular passage of molecules of different size (BBB "leakage"), which appears to be responsible for the vasogenic component of cerebral edema associated with ALF.

  8. Inflammation-associated extracellular β-glucuronidase alters cellular responses to the chemical carcinogen benzo[a]pyrene.

    PubMed

    Shi, Q; Haenen, G R; Maas, L; Arlt, V M; Spina, D; Vasquez, Y Riffo; Moonen, E; Veith, C; Van Schooten, F J; Godschalk, R W L

    2016-09-01

    Neutrophils infiltrate tissues during inflammation, and when activated, they release β-glucuronidase. Since inflammation is associated with carcinogenesis, we investigated how extracellular β-glucuronidase changed the in vitro cellular response to the chemical carcinogen benzo(a)pyrene (B[a]P). For this we exposed human liver (HepG2) and lung (A549) cells to B[a]P in the presence or absence of β-glucuronidase. β-Glucuronidase reduced B[a]P-induced expression of CYP1A1 and CYP1B1 at 6 h after exposure, which did not depend on β-glucuronidase activity, because the inhibitor D-saccharic acid 1,4-lactone monohydrate did not antagonize the effect of β-glucuronidase. On the other hand, the inhibitory effect of β-glucuronidase on CYP expression was dependent on signalling via the insulin-like growth factor receptor (IGF2R, a known receptor for β-glucuronidase), because co-incubation with the IGF2R inhibitor mannose-6-phosphate completely abolished the effect of β-glucuronidase. Extracellular β-glucuronidase also reduced the formation of several B[a]P metabolites and B[a]P-DNA adducts. Interestingly, at 24 h of exposure, β-glucuronidase significantly enhanced CYP expression, probably because β-glucuronidase de-glucuronidated B[a]P metabolites, which continued to trigger the aryl hydrocarbon receptor (Ah receptor) and induced expression of CYP1A1 (in both cell lines) and CYP1B1 (in A549 only). Consequently, significantly higher concentrations of B[a]P metabolites and DNA adducts were found in β-glucuronidase-treated cells at 24 h. DNA adduct levels peaked at 48 h in cells that were exposed to B[a]P and treated with β-glucuronidase. Overall, these data show that β-glucuronidase alters the cellular response to B[a]P and ultimately enhances B[a]P-induced DNA adduct levels.

  9. Does drought alter hydrological functions in forest soils?

    NASA Astrophysics Data System (ADS)

    Gimbel, Katharina; Puhlmann, Heike; Weiler, Markus

    2014-05-01

    Climate change will probably alter precipitation patterns across central Europe, and (summer) droughts are expected to be more frequent and severe in future. Droughts may modify soil properties, such as the pore volume distribution, soil aggregation, water repellency and rooting patterns. These changes in soil properties affect the hydrological functioning of the soil like water retention, infiltration and percolation and thereby the site conditions for plants. The aim of this research is to investigate the effect of droughts on the hydrological functioning of forest soils. We conducted rainfall-reduction experiments in three woodlands (nine investigation sites) across Germany. We established adaptive roofing systems which allow a flexible reduction of the precipitation between 15 % and 65 % of the incoming precipitation depending on the actual precipitation. The impact of the imposed droughts on the soil properties was assessed by repeated analyses of soil aggregation, hydrophobicity and pore volume distribution. Hydrological functioning of the soil was assessed by means of repeated dye tracer sprinkling experiments. Comparing dye tracer images of 2011 with images taken after two years of imposed drought, we found a general shift in infiltration processes depending on the soil type. Sandy soils showed a shift from front-like infiltration towards a more fingered and scattered infiltration. Soils rich in clay tend to develop unstained (= not wetted) areas in the top layer, which might hint to evolving hydrophobicity. This was confirmed by field and laboratory hydrophobicity tests. Further, the same profiles were showing signs of lower permeability in the bottom layers. Similar to hydrophobicity, we want to link the results of soil aggregation and pore volume distribution to the changes in the infiltration pattern. Our study shows that changes in precipitation pattern can severely affect forest soil properties and their hydrological functions. The results of this

  10. Altered neuronal excitability underlies impaired hippocampal function in an animal model of psychosis

    PubMed Central

    Grüter, Thomas; Wiescholleck, Valentina; Dubovyk, Valentyna; Aliane, Verena; Manahan-Vaughan, Denise

    2015-01-01

    Psychosis is accompanied by severe attentional deficits, and impairments in associational-memory processing and sensory information processing that are ascribed to dysfunctions in prefrontal and hippocampal function. Disruptions of glutamatergic signaling may underlie these alterations: Antagonism of the N-methyl-D-aspartate receptor (NMDAR) results in similar molecular, cellular, cognitive and behavioral changes in rodents and/or humans as those that occur in psychosis, raising the question as to whether changes in glutamatergic transmission may be intrinsic to the pathophysiology of the disease. In an animal model of psychosis that comprises treatment with the irreversible NMDAR-antagonist, MK801, we explored the cellular mechanisms that may underlie hippocampal dysfunction in psychosis. MK801-treatment resulted in a profound loss of hippocampal LTP that was evident 4 weeks after treatment. Whereas neuronal expression of the immediate early gene, Arc, was enhanced in the hippocampus by spatial learning in controls, MK801-treated animals failed to show activity-dependent increases in Arc expression. By contrast, a significant increase in basal Arc expression in the absence of learning was evident compared to controls. Paired-pulse (PP) facilitation was increased at the 40 ms interval indicating that NMDAR and/or fast GABAergic-mediated neurotransmission was disrupted. In line with this, MK801-treatment resulted in a significant decrease in GABA(A), and increase in GABA(B)-receptor-expression in PFC, along with a significant increase of GABA(B)- and NMDAR-GluN2B expression in the dentate gyrus. NMDAR-GluN1 or GluN2A subunit expression was unchanged. These data suggest that in psychosis, deficits in hippocampus-dependent memory may be caused by a loss of hippocampal LTP that arises through enhanced hippocampal neuronal excitability, altered GluN2B and GABA receptor expression and an uncoupling of the hippocampus-prefrontal cortex circuitry. PMID:26042007

  11. The interplay between p16 serine phosphorylation and arginine methylation determines its function in modulating cellular apoptosis and senescence

    PubMed Central

    Lu, Yang; Ma, Wenlong; Li, Zhongwei; Lu, Jun; Wang, Xiuli

    2017-01-01

    Cyclin-dependent kinase inhibitor p16INK4a (p16) primarily functions as a negative regulator of the retinoblastoma protein (Rb) -E2F pathway, thus plays critical role in cell cycle progression, cellular senescence and apoptosis. In this study, we showed that the methylation of Arg 138 and the phosphorylation of Ser 140 on p16 were critical for the control of cell proliferation and apoptosis. Compared to wild type p16, mutant p16R138K possessed improved function in preventing cell proliferation and inducing apoptosis, while the Ser 140 mutation (p16S140A) exhibited the opposite alteration. We also demonstrated that H2O2 was able to induce the phosphorylation of p16, which facilitated the interaction between CDK4 (Cyclin-dependent protein kinase) and p16, in 293T (human emborynic kidney) cells. Furthermore, the elevated arginine methylation in p16S140A mutant and increased serine phosphorylation in p16R138K mutant suggest that a antagonizing mechanism coordinating Arg 138 methylation and Ser 140 phosphorylation to regulates p16 function as well as cellular apoptosis and senescence. These findings will therefore contribute to therapeutic treatment for p16-related gene therapy by providing theoretical and experimental evidence. PMID:28120917

  12. The interplay between p16 serine phosphorylation and arginine methylation determines its function in modulating cellular apoptosis and senescence.

    PubMed

    Lu, Yang; Ma, Wenlong; Li, Zhongwei; Lu, Jun; Wang, Xiuli

    2017-01-25

    Cyclin-dependent kinase inhibitor p16(INK4a) (p16) primarily functions as a negative regulator of the retinoblastoma protein (Rb) -E2F pathway, thus plays critical role in cell cycle progression, cellular senescence and apoptosis. In this study, we showed that the methylation of Arg 138 and the phosphorylation of Ser 140 on p16 were critical for the control of cell proliferation and apoptosis. Compared to wild type p16, mutant p16R138K possessed improved function in preventing cell proliferation and inducing apoptosis, while the Ser 140 mutation (p16S140A) exhibited the opposite alteration. We also demonstrated that H2O2 was able to induce the phosphorylation of p16, which facilitated the interaction between CDK4 (Cyclin-dependent protein kinase) and p16, in 293T (human emborynic kidney) cells. Furthermore, the elevated arginine methylation in p16S140A mutant and increased serine phosphorylation in p16R138K mutant suggest that a antagonizing mechanism coordinating Arg 138 methylation and Ser 140 phosphorylation to regulates p16 function as well as cellular apoptosis and senescence. These findings will therefore contribute to therapeutic treatment for p16-related gene therapy by providing theoretical and experimental evidence.

  13. Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?

    PubMed

    Karunamuni, Ganga; Gu, Shi; Doughman, Yong Qiu; Peterson, Lindsy M; Mai, Katherine; McHale, Quinn; Jenkins, Michael W; Linask, Kersti K; Rollins, Andrew M; Watanabe, Michiko

    2014-02-01

    Alcohol-induced congenital heart defects are frequently among the most life threatening and require surgical correction in newborns. The etiology of these defects, collectively known as fetal alcohol syndrome, has been the focus of much study, particularly involving cellular and molecular mechanisms. Few studies have addressed the influential role of altered cardiac function in early embryogenesis because of a lack of tools with the capability to assay tiny beating hearts. To overcome this gap in our understanding, we used optical coherence tomography (OCT), a nondestructive imaging modality capable of micrometer-scale resolution imaging, to rapidly and accurately map cardiovascular structure and hemodynamics in real time under physiological conditions. In this study, we exposed avian embryos to a single dose of alcohol/ethanol at gastrulation when the embryo is sensitive to the induction of birth defects. Late-stage hearts were analyzed using standard histological analysis with a focus on the atrio-ventricular valves. Early cardiac function was assayed using Doppler OCT, and structural analysis of the cardiac cushions was performed using OCT imaging. Our results indicated that ethanol-exposed embryos developed late-stage valvuloseptal defects. At early stages, they exhibited increased regurgitant flow and developed smaller atrio-ventricular cardiac cushions, compared with controls (uninjected and saline-injected embryos). The embryos also exhibited abnormal flexion/torsion of the body. Our evidence suggests that ethanol-induced alterations in early cardiac function have the potential to contribute to late-stage valve and septal defects, thus demonstrating that functional parameters may serve as early and sensitive gauges of cardiac normalcy and abnormalities.

  14. α-Viniferin-Induced Structural and Functional Alterations in Raillietina echinobothrida, a Poultry Tapeworm.

    PubMed

    Roy, Bishnupada; Giri, Bikash R

    2015-04-01

    α-Viniferin, an active component of the plant Carex baccans L., is known for its anticancer, antidiabetic, and anti-inflammatory properties. In Northeast India, different tribes traditionally consume C. baccans to control intestinal helminth infections. Therefore, the present study was carried out to assess the extent of tegumental alteration caused by α-viniferin in Raillietina echinobothrida, a widely prevalent poultry helminth in northeast India. Helminths were exposed in vitro to various doses of α-viniferin (50, 100, and 200 µM/mL of physiological buffered saline) and their motility and mortality were recorded. Stereoscan observations on the parasite exposed to the active compound showed extensive distortion and destruction of the surface fine topography of the tegument compared with controls. The compound also caused extensive damage to the tegument by disintegration of microtriches, disorganization of muscle bundles, and loss of cellular organelles combined with distortion and disruption of the plasma membrane, nuclear membrane, nucleolus, mitochondrial membrane, and cristae. Histochemical and biochemical studies carried out parasites exposed to α-viniferin revealed a decline in the activity of vital tegumental enzymes like acid phosphatase, alkaline phosphatase, and adenosine triphosphatase. Extensive structural and functional alterations observed in the treated parasites are indicative of efficient cestocidal activity of the compound.

  15. Perfluorinated chemicals: differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells.

    PubMed

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet; Casas, Josefina; Lacorte, Sílvia; Porte, Cinta

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs--PFOS, PFDoA, PFNA, PFOA--showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA>PFOS≫PFNA>PFOA>PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57-80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells.

  16. Sex-related long-term behavioral and hippocampal cellular alterations after nociceptive stimulation throughout postnatal development in rats.

    PubMed

    Lima, Márcia; Malheiros, Jackeline; Negrigo, Aline; Tescarollo, Fabio; Medeiros, Magda; Suchecki, Deborah; Tannús, Alberto; Guinsburg, Ruth; Covolan, Luciene

    2014-02-01

    Early noxious stimuli may alter the neurogenesis rate in the dentate gyrus and the behavioral repertoire of adult rats. This study evaluated the long-term effects of noxious stimulation, imposed in different phases of development, on nociceptive and anxiety-like behaviors, hippocampal activation, cell proliferation, hippocampal BDNF and plasma corticosterone levels in 40 day-old male and female adolescents. Noxious stimulation was induced by intra-plantar injection of Complete Freund's adjuvant (CFA), on postnatal days (P) 1 (group P1), 8 (P8) or 21 (P21). Control animals were not stimulated in any way. On P21 a subset of animals from each group received BrdU and was perfused on P40 for identification of proliferating cells in the granule cell layer of the dentate gyrus. Another subset of rats was subjected to behavioral testing on P40 and one week later, to magnetic resonance imaging (MRI) acquisition. Noxious stimulation evoked hypoalgesia in adolescents, mainly in females (P < 0.02), reflected by greater latency to withdraw the paw and less paw lickings in the hot plate test than controls (P < 0.001). It also resulted in more time spent in the open arms, e.g., less anxiety-like behavior than controls (P < 0.01), especially in females (P < 0.01, compared with males). Proliferative cell rate in the dentate gyrus was the highest in P8 males and females (P < 0.001), with males exhibiting more proliferation than females on P1 and P8, which was directly related to the hippocampal levels of BDNF and inversely related to plasma corticosterone. Sex differences were also detected in manganese-enhanced MRI signal, which was more prominent in P1 females than males (P < 0.01). This study represents the first step of investigation on the cellular basis of the sex-dependent long-term consequences of nociceptive stimuli in newborns.

  17. Muscle fatigue in frog semitendinosus: alterations in contractile function

    NASA Technical Reports Server (NTRS)

    Thompson, L. V.; Balog, E. M.; Riley, D. A.; Fitts, R. H.

    1992-01-01

    The purpose of this study was to characterize the contractile properties of the frog semitendinosus (ST) muscle before and during recovery from fatigue, to relate the observed functional changes to alterations in specific steps in the crossbridge model of muscle contraction, and to determine how fatigue affects the force-frequency relationship. The frog ST (22 degrees C) was fatigued by direct electrical stimulation with 100-ms 150-Hz trains at 1/s for 5 min. The fatigue protocol reduced peak twitch (Pt) and tetanic (Po) force to 32 and 8.5% of initial force, respectively. The decline in Pt was less than Po, in part due to a prolongation in the isometric contraction time (CT), which increased to 300% of the initial value. The isometric twitch duration was greatly prolonged as reflected by the lengthened CT and the 800% increase in the one-half relaxation time (1/2RT). Both Pt and Po showed a biphasic recovery, a rapid initial phase (2 min) followed by a slower (40 min) return to the prefatigue force. CT and 1/2RT also recovered in two phases, returning to 160 and 265% of control in the first 5 min. CT returned to the prefatigue value between 35 and 40 min, whereas even at 60 min 1/2RT was 133% of control. The maximal velocity of shortening, determined by the slack test, was significantly reduced [from 6.7 +/- 0.5 to 2.5 +/- 0.4 optimal muscle length/s] at fatigue. The force-frequency relationship was shifted to the left, so that optimal frequency for generating Po was reduced.(ABSTRACT TRUNCATED AT 250 WORDS).

  18. Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity

    PubMed Central

    Botelho, Danielle J.; Leo, Bey Fen; Massa, Christopher B.; Sarkar, Srijata; Tetley, Terry D.; Chung, Kian Fan; Chen, Shu; Ryan, Mary P.; Porter, Alexandra E.; Zhang, Junfeng; Schwander, Stephan K.; Gow, Andrew J.

    2016-01-01

    Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 µg/g body weight) 20 and 110nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered. PMID:26152688

  19. Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity.

    PubMed

    Botelho, Danielle J; Leo, Bey Fen; Massa, Christopher B; Sarkar, Srijata; Tetley, Terry D; Chung, Kian Fan; Chen, Shu; Ryan, Mary P; Porter, Alexandra E; Zhang, Junfeng; Schwander, Stephan K; Gow, Andrew J

    2016-01-01

    Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 μg/g body weight) 20 and 110 nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110 nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered.

  20. Supportive Evidence for Altered Platelet Function in the Dived Rat

    DTIC Science & Technology

    1974-11-01

    decompression in animals, as well as in man. Among the effec Is of diving on various cellular and molecular blood components either in the presence or...rat is a suitable laboratory model for investigating the effects of diving on blood components and should provide the means for pursuing future

  1. Exponential stability of delayed and impulsive cellular neural networks with partially Lipschitz continuous activation functions.

    PubMed

    Song, Xueli; Xin, Xing; Huang, Wenpo

    2012-05-01

    The paper discusses exponential stability of distributed delayed and impulsive cellular neural networks with partially Lipschitz continuous activation functions. By relative nonlinear measure method, some novel criteria are obtained for the uniqueness and exponential stability of the equilibrium point. Our method abandons usual assumptions on global Lipschitz continuity, boundedness and monotonicity of activation functions. Our results are generalization and improvement of some existing ones. Finally, two examples and their simulations are presented to illustrate the correctness of our analysis.

  2. Disruption of Src Is Associated with Phenotypes Related to Williams-Beuren Syndrome and Altered Cellular Localization of TFII-I1,2

    PubMed Central

    Ivakine, Evgueni A.; Lam, Emily; Deurloo, Marielle; Dida, Joana; Zirngibl, Ralph A.

    2015-01-01

    Abstract Src is a nonreceptor protein tyrosine kinase that is expressed widely throughout the central nervous system and is involved in diverse biological functions. Mice homozygous for a spontaneous mutation in Src (Src thl/thl) exhibited hypersociability and hyperactivity along with impairments in visuospatial, amygdala-dependent, and motor learning as well as an increased startle response to loud tones. The phenotype of Src thl/thl mice showed significant overlap with Williams-Beuren syndrome (WBS), a disorder caused by the deletion of several genes, including General Transcription Factor 2-I (GTF2I). Src phosphorylation regulates the movement of GTF2I protein (TFII-I) between the nucleus, where it is a transcriptional activator, and the cytoplasm, where it regulates trafficking of transient receptor potential cation channel, subfamily C, member 3 (TRPC3) subunits to the plasma membrane. Here, we demonstrate altered cellular localization of both TFII-I and TRPC3 in the Src mutants, suggesting that disruption of Src can phenocopy behavioral phenotypes observed in WBS through its regulation of TFII-I. PMID:26464974

  3. Functional Task Test: 1. Sensorimotor changes Associated with Postflight Alterations in Astronaut Functional Task Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Arzeno, N. H.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Platts, S. H.; Peters, B. T.; Phillips, T.; Ploutz-Snyder, L. L.; Reschke, M. F.; Ryder, J. W.; Spiering, B. A.; Stenger, M. B.; Taylor, L. C.; Wickwire, P. J.; Wood, S. J.

    2011-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. This presentation will focus on the sensorimotor contributions to postflight functional performance.

  4. Quantum dots for tracking cellular transport of lectin-functionalized nanoparticles

    SciTech Connect

    Gao Xiaoling; Wang Tao; Wu Bingxian; Chen Jun; Chen Jiyao; Yue Yang; Dai Ning; Chen Hongzhuan Jiang Xinguo

    2008-12-05

    Successful drug delivery by functionalized nanocarriers largely depends on their efficient intracellular transport which has not yet been fully understood. We developed a new tracking technique by encapsulating quantum dots into the core of wheat germ agglutinin-conjugated nanoparticles (WGA-NP) to track cellular transport of functionalized nanocarriers. The resulting nanoparticles showed no changes in particle size, zeta potential or biobinding activity, and the loaded probe presented excellent photostability and tracking ability. Taking advantage of these properties, cellular transport profiles of WGA-NP in Caco-2 cells was demonstrated. The cellular uptake begins with binding of WGA to its receptor at the cell surface. The subsequent endocytosis happened in a cytoskeleton-dependent manner and by means of clathrin and caveolae-mediated mechanisms. After endosome creating, transport occurs to both trans-Golgi and lysosome. Our study provides new evidences for quantum dots as a cellular tracking probe of nanocarriers and helps understand intracellular transport profile of lectin-functionalized nanoparticles.

  5. A new method for the re-implementation of threshold logic functions with cellular neural networks.

    PubMed

    Bénédic, Y; Wira, P; Mercklé, J

    2008-08-01

    A new strategy is presented for the implementation of threshold logic functions with binary-output Cellular Neural Networks (CNNs). The objective is to optimize the CNNs weights to develop a robust implementation. Hence, the concept of generative set is introduced as a convenient representation of any linearly separable Boolean function. Our analysis of threshold logic functions leads to a complete algorithm that automatically provides an optimized generative set. New weights are deduced and a more robust CNN template assuming the same function can thus be implemented. The strategy is illustrated by a detailed example.

  6. Divalent metals stabilize cellular prion proteins and alter the rate of proteinase-K dependent limited proteolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The key biochemical event in the pathogenesis of prion diseases is the conversion of normal cellular prion proteins (PrP**c) to the proteinase K (PK) resistant, abnormal form (PrP**sc); however, the cellular mechanisms underlying the conversion remain enigmatic. Binding of divalent ca...

  7. Molecular and cellular mechanisms of cognitive function: implications for psychiatric disorders.

    PubMed

    Silva, A J; Elgersma, Y; Costa, R M

    2000-02-01

    Recent studies on the molecular and cellular basis of learning and memory have brought us closer than ever to understanding the mechanisms of synaptic plasticity and their relevance to memory formation. Genetic approaches have played a central role in these new findings because the same mutant mice can be studied with molecular, cellular, circuit, and behavioral tools. Therefore, the results can be used to construct models that cut across levels of analytical complexity, forging connections from the biochemistry of the modified protein to the behavior of the mutant mice. These findings are not only improving our understanding of learning and memory, they are also enriching our understanding of cognitive disorders, such as neurofibromatosis type I. Mechanisms underlying long-term changes in synaptic function are likely to be at the heart of many cognitive and emotional processes in humans. Therefore, molecular and cellular insights into learning and memory undoubtedly will have a profound impact on the understanding and treatment of psychiatric disorders.

  8. Needle puncture in rabbit functional spinal units alters rotational biomechanics

    PubMed Central

    Hartman, Robert A.; Bell, Kevin M.; Quan, Bichun; Nuzhao, Yao; Sowa, Gwendolyn A.; Kang, James D.

    2014-01-01

    Study Design An in vitro biomechanical study for rabbit lumbar functional spinal units (FSUs) using a robot-based spine testing system. Objective To elucidate the effect of annular puncture with a 16G needle on mechanical properties in flexion/extension, axial rotation, and lateral bending. Summary of Background Data Needle puncture of the intervertebral disc has been shown to alter mechanical properties of the disc in compression, torsion, and bending. The effect of needle puncture in FSUs, where intact spinal ligaments and facet joints may mitigate or amplify these changes in the disc, on spinal motion segment stability subject to physiological rotations remains unknown. Methods Rabbit FSUs were tested using a robot testing system whose force/moment and position precision were assessed to demonstrate system capability. Flexibility testing methods were developed by load-to-failure testing in flexion/extension, axial rotation, and lateral bending. Subsequent testing methods were used to examine a 16G needle disc puncture and No. 11 blade disc stab (positive control for mechanical disruption). Flexibility testing was used to assess segmental range-of-motion (°), neutral zone stiffness (Nm/°) and width (° and Nm), and elastic zone stiffness before and after annular injury. Results The robot-based system was capable of performing flexibility testing on FSUs—mean precision of force/moment measurements and robot system movements were less than 3% and 1%, respectively, of moment-rotation target values. Flexibility moment targets were 0.3 Nm for flexion and axial rotation and 0.15 Nm for extension and lateral bending. Needle puncture caused significant (p<0.05) changes only in flexion/extension range-of-motion and neutral zone stiffness and width (Nm) compared to pre-intervention. No.11 blade-stab significantly increased range-of-motion in all motions, decreased neutral zone stiffness and width (Nm) in flexion/extension, and increased elastic zone stiffness in

  9. From cells to embryos: the application of femtosecond laser pulses for altering cellular material in complex biological systems

    NASA Astrophysics Data System (ADS)

    Kohli, V.; Elezzabi, A. Y.

    2008-02-01

    We report the application of high-intensity femtosecond laser pulses as a novel tool for manipulating biological specimens. When femtosecond laser pulses were focused to a near diffraction-limited focal spot, cellular material within the laser focal volume was surgically ablated. Several dissection cuts were made in the membrane of live mammalian cells, and membrane surgery was accomplished without inducing cell collapse or disassociation. By altering how the laser pulses were applied, focal adhesions joining live epithelial cells were surgically removed, resulting in single cell isolation. To further examine the versatility of this reported tool, cells were transiently permeabilized for introducing foreign material into the cytoplasm of live mammalian cells. Localizing focused femtosecond laser pulses on the biological membrane resulted in the formation of transient pores, which were harnessed as a pathway for the delivery of exogenous material. Individual mammalian cells were permeabilized in the presence of a hyperosmotic cryoprotective disaccharide. Material delivery was confirmed by measuring the volumetric response of cells permeabilized in 0.2, 0.3, 0.4 and 0.5 M cryoprotective sugar. The survival of permeabilized cells in increasing osmolarity of sugar was assessed using a membrane integrity assay. Further demonstrating the novelty of this reported tool, laser surgery of an aquatic embryo, the zebrafish (Danio rerio), was also performed. Utilizing the transient pores that were formed in the embryonic cells of the zebrafish embryo, an exogenous fluorescent probe FITC, Streptavidin-conjugated quantum dots or plasmid DNA (sCMV) encoding EGFP was introduced into the developing embryonic cells. To determine if the laser induced any short- or long-term effects on development, laser-manipulated embryos were reared to 2 and 7 days post-fertilization and compared to control embryos at the same developmental stages. Light microscopy and scanning electron microscopy

  10. Alteration of SLP2-like immunolabeling in mitochondria signifies early cellular damage in developing and adult mouse brain.

    PubMed

    Morozov, Yury M; Sun, Yu-Yo; Kuan, Chia-Yi; Rakic, Pasko

    2016-01-01

    Mitochondria play a critical role in various pathways of regulated cell death. Here we propose a novel method for detection of initial derangement of mitochondria in degenerating and dying neuronal cells. The method is based on our recent finding that antibodies directed against the cannabinoid type 1 receptor (CB1) also bind the mitochondrial stomatin-like protein 2 (SLP2) that belongs to an inner mitochondrial membrane protein complex. It is well established that SLP2 regulates mitochondrial biogenesis and respiratory functions. We now show that anti-CB1 antibodies recognize conformational epitopes but not the linear amino acid sequence of SLP2. In addition we found that anti-CB1 serum mostly labels swollen mitochondria with early or advanced stages of pathology in mouse brain while other proteins of the complex may mask epitopes of SLP2 in the normal mitochondria. Although neurons and endothelial cells in healthy brains contain occasional immunopositive mitochondria detectable with anti-CB1 serum, their numbers increase significantly after hypoxic insults in parallel with signs of cellular damage. Moreover, use of electron microscopy suggests relocation of SLP2 from its normal functional position in the inner mitochondrial membrane into the mitochondrial matrix in pathological cells. Thus, SLP2-like immunolabeling serves as an in situ histochemical target detecting early derangement of mitochondria. Anti-CB1 serum is crucial for this purpose because available anti-SLP2 antibodies do not provide selective labeling of mitochondria in the fixed tissue. This new method of detecting mitochondrial dysfunction can benefit the in vitro research of human diseases and developmental disorders by enabling analysis in live animal models.

  11. Altered hippocampal function before emotional trauma in rats susceptible to PTSD-like behaviors.

    PubMed

    Nalloor, Rebecca; Bunting, Kristopher M; Vazdarjanova, Almira

    2014-07-01

    Posttraumatic stress disorder (PTSD) is an anxiety disorder that occurs after experiencing a traumatic event. Susceptibility to PTSD exists, as only some trauma-exposed individuals develop this condition. Investigating susceptibilities in animal models can contribute to understanding the etiology of the disorder. We previously reported an animal model which allows reliable pre-classification of rats as susceptible (Sus) or resistant (Res) to developing a PTSD-like phenotype after a later trauma. Here we report that Sus, compared to Res, rats have altered hippocampal function, along the septo-temporal axis, prior to experiencing a traumatic event. In Experiment I, Res and Sus rats explored a novel box twice. Using a cellular imaging method for assessing plasticity-related immediate-early gene expression in large neuronal ensembles, Arc/Homer1a catFISH, we show that Sus rats have smaller vCA3 ensembles during the second exploration. This suppressed vCA3 activation in Sus rats was not due to a difference in exploratory behavior, or to a difference in Arc/Homer1a expression in the basolateral amygdala (BLA). BLA is a main source of inputs to vCA3, but both the ensemble size and overlap of BLA ensembles activated during the two explorations was similar to that of Res rats. Additionally, Sus rats had significant 'infidelity' in their dorsal hippocampal representations of the second event: a lower overlap, compared to Res rats, of Arc/Homer1a-expressing ensembles activated during the two explorations (the size of the ensembles were similar to those of Res rats). These differences were revealed only in conditions of relatively low stress, because they were not observed when Sus and Res rats experienced fear conditioning (Experiment II). Combined, the findings show that altered hippocampal function exists before experiencing emotional trauma in susceptible rats and suggest that this is a risk factor for PTSD.

  12. Early Disruption of Extracellular Pleiotrophin Distribution Alters Cerebellar Neuronal Circuit Development and Function.

    PubMed

    Hamza, M M; Rey, S A; Hilber, P; Arabo, A; Collin, T; Vaudry, D; Burel, D

    2016-10-01

    The cerebellum is a structure of the central nervous system involved in balance, motor coordination, and voluntary movements. The elementary circuit implicated in the control of locomotion involves Purkinje cells, which receive excitatory inputs from parallel and climbing fibers, and are regulated by cerebellar interneurons. In mice as in human, the cerebellar cortex completes its development mainly after birth with the migration, differentiation, and synaptogenesis of granule cells. These cellular events are under the control of numerous extracellular matrix molecules including pleiotrophin (PTN). This cytokine has been shown to regulate the morphogenesis of Purkinje cells ex vivo and in vivo via its receptor PTPζ. Since Purkinje cells are the unique output of the cerebellar cortex, we explored the consequences of their PTN-induced atrophy on the function of the cerebellar neuronal circuit in mice. Behavioral experiments revealed that, despite a normal overall development, PTN-treated mice present a delay in the maturation of their flexion reflex. Moreover, patch clamp recording of Purkinje cells revealed a significant increase in the frequency of spontaneous excitatory postsynaptic currents in PTN-treated mice, associated with a decrease of climbing fiber innervations and an abnormal perisomatic localization of the parallel fiber contacts. At adulthood, PTN-treated mice exhibit coordination impairment on the rotarod test associated with an alteration of the synchronization gait. Altogether these histological, electrophysiological, and behavior data reveal that an early ECM disruption of PTN composition induces short- and long-term defaults in the establishment of proper functional cerebellar circuit.

  13. INVASIVE PLANTS HARBOR HUNGRY DETRITIVORES THAT ALTER ECOSYSTEM FUNCTION

    EPA Science Inventory

    Ecosystems are expected to function more efficiently in response to a diverse community of inhabitants. However, biological invasions may change expected relationships between ecosystem function and diversity. We observed increased decomposition, a measure of ecosystem function...

  14. Chronic zinc deficiency alters chick gut microbiota composition and function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc (Zn) deficiency is a prevalent micronutrient insufficiency. Although the gut is a vital organ for Zn utilization, and Zn deficiency is associated with impaired intestinal permeability and a global decrease in gastrointestinal health, alterations in the gut microbial ecology of the host under co...

  15. Virus Innexins induce alterations in insect cell and tissue function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polydnaviruses are dsDNA viruses that induce immune and developmental alterations in their caterpillar hosts. Characterization of polydnavirus gene families and family members is necessary to understand mechanisms of pathology and evolution of these viruses, and may aid to elucidate the role of host...

  16. Hydrologic Alteration and Response of Ecosystem Functions to River Restoration

    NASA Astrophysics Data System (ADS)

    Orr, C. H.; Stanley, E. H.

    2005-12-01

    Stream ecology theory suggests that physical and hydrologic setting is often a dominant determinant of ecosystem structure in fluvial systems. Restorationist practitioners may work under the assumption that if the hydrologic parameters that control biological processes are restored, biotic components of interest should be restored as well. This method is sometimes called passive habitat restoration, or an eco-hydromorphic approach. An alternate to this hypothesis is that biological recovery is constrained by a number of other limitations such as distance to a source population, site history, and presence of invasive species. In this scenario, systems will not be restored by hydrologic alterations alone. To address the influence physical setting has on ecological process, we measured three specific ecological responses of streams to hydrologic manipulations separate restoration projects in Central Wisconsin. The projects shared the common trait of being primarily hydrologic alterations. We measured phosphorus retention capacity in a second-order stream before and after a pair of small dam removals, denitrification rates following the reflooding of a leveed floodplain and an approximately 50-year time series of vegetation recolonization on exposed mud flats following dam removal. In each case the measured responses showed unexpectedly large variability and there was not close correlation between physical and ecologic parameters. Such high variability in response to alterations also made it difficult to determine if the restorations met their goals. One conclusion of these studies may be that we need to move beyond hydrologic alterations to address additional manipulations to better meet the goals of specific projects.

  17. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins.

    PubMed

    Michishita, Eriko; Park, Jean Y; Burneskis, Jenna M; Barrett, J Carl; Horikawa, Izumi

    2005-10-01

    Sir2 is a NAD+-dependent protein deacetylase that extends lifespan in yeast and worms. This study examines seven human proteins homologous to Sir2 (SIRT1 through SIRT7) for cellular localization, expression profiles, protein deacetylation activity, and effects on human cell lifespan. We found that: 1) three nuclear SIRT proteins (SIRT1, SIRT6, and SIRT7) show different subnuclear localizations: SIRT6 and SIRT7 are associated with heterochromatic regions and nucleoli, respectively, where yeast Sir2 functions; 2) SIRT3, SIRT4, and SIRT5 are localized in mitochondria, an organelle that links aging and energy metabolism; 3) cellular p53 is a major in vivo substrate of SIRT1 deacetylase, but not the other six SIRT proteins; 4) SIRT1, but not the other two nuclear SIRT proteins, shows an in vitro deacetylase activity on histone H4 and p53 peptides; and 5) overexpression of any one of the seven SIRT proteins does not extend cellular replicative lifespan in normal human fibroblasts or prostate epithelial cells. This study supports the notion that multiple human SIRT proteins have evolutionarily conserved and nonconserved functions at different cellular locations and reveals that the lifespan of normal human cells, in contrast to that of lower eukaryotes, cannot be manipulated by increased expression of a single SIRT protein.

  18. Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense

    PubMed Central

    Vasu, Kommireddy

    2013-01-01

    SUMMARY Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population. PMID:23471617

  19. Cellular senescence checkpoint function determines differential Notch1-dependent oncogenic and tumor-suppressor activities.

    PubMed

    Kagawa, S; Natsuizaka, M; Whelan, K A; Facompre, N; Naganuma, S; Ohashi, S; Kinugasa, H; Egloff, A M; Basu, D; Gimotty, P A; Klein-Szanto, A J; Bass, A J; Wong, K-K; Diehl, J A; Rustgi, A K; Nakagawa, H

    2015-04-30

    Notch activity regulates tumor biology in a context-dependent and complex manner. Notch may act as an oncogene or a tumor-suppressor gene even within the same tumor type. Recently, Notch signaling has been implicated in cellular senescence. Yet, it remains unclear as to how cellular senescence checkpoint functions may interact with Notch-mediated oncogenic and tumor-suppressor activities. Herein, we used genetically engineered human esophageal keratinocytes and esophageal squamous cell carcinoma cells to delineate the functional consequences of Notch activation and inhibition along with pharmacological intervention and RNA interference experiments. When expressed in a tetracycline-inducible manner, the ectopically expressed activated form of Notch1 (ICN1) displayed oncogene-like characteristics inducing cellular senescence corroborated by the induction of G0/G1 cell-cycle arrest, Rb dephosphorylation, flat and enlarged cell morphology and senescence-associated β-galactosidase activity. Notch-induced senescence involves canonical CSL/RBPJ-dependent transcriptional activity and the p16(INK4A)-Rb pathway. Loss of p16(INK4A) or the presence of human papilloma virus (HPV) E6/E7 oncogene products not only prevented ICN1 from inducing senescence but permitted ICN1 to facilitate anchorage-independent colony formation and xenograft tumor growth with increased cell proliferation and reduced squamous-cell differentiation. Moreover, Notch1 appears to mediate replicative senescence as well as transforming growth factor-β-induced cellular senescence in non-transformed cells and that HPV E6/E7 targets Notch1 for inactivation to prevent senescence, revealing a tumor-suppressor attribute of endogenous Notch1. In aggregate, cellular senescence checkpoint functions may influence dichotomous Notch activities in the neoplastic context.

  20. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq

    PubMed Central

    Watters, Kyle E.; Abbott, Timothy R.; Lucks, Julius B.

    2016-01-01

    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure–function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA–RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA–RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell. PMID:26350218

  1. Functional alterations in immature cultured rat hippocampal neurons after sustained exposure to static magnetic fields.

    PubMed

    Hirai, Takao; Yoneda, Yukio

    2004-01-15

    In cultured rat hippocampal neurons, gradual increases were seen in the expression of microtubule-associated protein-2 (MAP-2), neuronal nuclei (NeuN) and growth-associated protein-43 (GAP-43), in proportion to increased duration, up to 9 days in vitro (DIV). Sustained exposure to static magnetic fields at 100 mT for up to 9 DIV significantly decreased expression of MAP-2 and NeuN in cultured rat hippocampal neurons without markedly affecting GAP-43 expression. Although a significant increase was seen in the expression of glial fibrillary acidic protein (GFAP) in hippocampal neuronal preparations cultured for 6-9 DIV under sustained magnetism, GFAP and proliferating cell nuclear antigen expression were not affected markedly in cultured astrocytes prepared from rat hippocampus and neocortex, irrespective of cellular maturity. No significant alteration was seen in cell survivability of hippocampal neurons or astrocytes cultured under sustained magnetism. In hippocampal neurons cultured for 3 DIV under sustained magnetism, marked mRNA expression was seen for N-methyl-D-aspartate (NMDA) receptor subunits, NR1, NR2A-2C, NR2D, and NR3A. In addition, significant potentiation of the ability of NMDA to increase intracellular free Ca(2+) ions was observed. Differential display analysis revealed a significant decrease in mRNA expression for the transcription factor ALF1 in response to sustained magnetism for 3 DIV. These results suggest that sustained exposure to static magnetic fields may affect cellular functionality and maturity in immature cultured rat hippocampal neurons through modulation of expression of particular NMDA receptor subunits.

  2. Myofibroblasts Electrotonically Coupled to Cardiomyocytes Alter Conduction: Insights at the Cellular Level from a Detailed In silico Tissue Structure Model

    PubMed Central

    Jousset, Florian; Maguy, Ange; Rohr, Stephan; Kucera, Jan P.

    2016-01-01

    Fibrotic myocardial remodeling is typically accompanied by the appearance of myofibroblasts (MFBs). In vitro, MFBs were shown to slow conduction and precipitate ectopic activity following gap junctional coupling to cardiomyocytes (CMCs). To gain further mechanistic insights into this arrhythmogenic MFB-CMC crosstalk, we performed numerical simulations in cell-based high-resolution two-dimensional tissue models that replicated experimental conditions. Cell dimensions were determined using confocal microscopy of single and co-cultured neonatal rat ventricular CMCs and MFBs. Conduction was investigated as a function of MFB density in three distinct cellular tissue architectures: CMC strands with endogenous MFBs, CMC strands with coating MFBs of two different sizes, and CMC strands with MFB inserts. Simulations were performed to identify individual contributions of heterocellular gap junctional coupling and of the specific electrical phenotype of MFBs. With increasing MFB density, both endogenous and coating MFBs slowed conduction. At MFB densities of 5–30%, conduction slowing was most pronounced in strands with endogenous MFBs due to the MFB-dependent increase in axial resistance. At MFB densities >40%, very slow conduction and spontaneous activity was primarily due to MFB-induced CMC depolarization. Coating MFBs caused non-uniformities of resting membrane potential, which were more prominent with large than with small MFBs. In simulations of MFB inserts connecting two CMC strands, conduction delays increased with increasing insert lengths and block appeared for inserts >1.2 mm. Thus, electrophysiological properties of engineered CMC-MFB co-cultures depend on MFB density, MFB size and their specific positioning in respect to CMCs. These factors may influence conduction characteristics in the heterocellular myocardium. PMID:27833567

  3. Myofibroblasts Electrotonically Coupled to Cardiomyocytes Alter Conduction: Insights at the Cellular Level from a Detailed In silico Tissue Structure Model.

    PubMed

    Jousset, Florian; Maguy, Ange; Rohr, Stephan; Kucera, Jan P

    2016-01-01

    Fibrotic myocardial remodeling is typically accompanied by the appearance of myofibroblasts (MFBs). In vitro, MFBs were shown to slow conduction and precipitate ectopic activity following gap junctional coupling to cardiomyocytes (CMCs). To gain further mechanistic insights into this arrhythmogenic MFB-CMC crosstalk, we performed numerical simulations in cell-based high-resolution two-dimensional tissue models that replicated experimental conditions. Cell dimensions were determined using confocal microscopy of single and co-cultured neonatal rat ventricular CMCs and MFBs. Conduction was investigated as a function of MFB density in three distinct cellular tissue architectures: CMC strands with endogenous MFBs, CMC strands with coating MFBs of two different sizes, and CMC strands with MFB inserts. Simulations were performed to identify individual contributions of heterocellular gap junctional coupling and of the specific electrical phenotype of MFBs. With increasing MFB density, both endogenous and coating MFBs slowed conduction. At MFB densities of 5-30%, conduction slowing was most pronounced in strands with endogenous MFBs due to the MFB-dependent increase in axial resistance. At MFB densities >40%, very slow conduction and spontaneous activity was primarily due to MFB-induced CMC depolarization. Coating MFBs caused non-uniformities of resting membrane potential, which were more prominent with large than with small MFBs. In simulations of MFB inserts connecting two CMC strands, conduction delays increased with increasing insert lengths and block appeared for inserts >1.2 mm. Thus, electrophysiological properties of engineered CMC-MFB co-cultures depend on MFB density, MFB size and their specific positioning in respect to CMCs. These factors may influence conduction characteristics in the heterocellular myocardium.

  4. Cellular resolution functional imaging in behaving rats using voluntary head restraint

    PubMed Central

    Scott, Benjamin B.; Brody, Carlos D.; Tank, David W.

    2013-01-01

    SUMMARY High-throughput operant conditioning systems for rodents provide efficient training on sophisticated behavioral tasks. Combining these systems with technologies for cellular resolution functional imaging would provide a powerful approach to study neural dynamics during behavior. Here we describe an integrated two-photon microscope and behavioral apparatus that allows cellular resolution functional imaging of cortical regions during epochs of voluntary head restraint. Rats were trained to initiate periods of restraint up to 8 seconds in duration, which provided the mechanical stability necessary for in vivo imaging while allowing free movement between behavioral trials. A mechanical registration system repositioned the head to within a few microns, allowing the same neuronal populations to be imaged on each trial. In proof-of-principle experiments, calcium dependent fluorescence transients were recorded from GCaMP-labeled cortical neurons. In contrast to previous methods for head restraint, this system can also be incorporated into high-throughput operant conditioning systems. PMID:24055015

  5. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes.

    PubMed

    Bastida, F; Selevsek, N; Torres, I F; Hernández, T; García, C

    2015-10-27

    A hot topic in recent decades, the application of organic amendments to arid-degraded soils has been shown to benefit microbially-mediated processes. However, despite the importance of soils for global sustainability, a gap has not been addressed yet in soil science: is there any connection between ecosystem-community processes, cellular functionality, and microbial lifestyles (i.e. oligotrophy-copiotrophy) in restored soils? Together with classical ecosystem indicators (fatty-acids, extracellular-enzyme activities, basal respiration), state-of-the-art metaproteomics was applied to fill this gap in a model-restoration experiment initiated 10-years ago by the addition of sewage-sludge and compost. Organic amendment strongly impacted ecosystem processes. Furthermore, the type of material used induced differences in the cellular functionalities through variations in the percentages of proteins involved in translation, transcription, energy production and C-fixation. We conclude that the long-term impact of organic restoration goes beyond ecosystem processes and affects cellular functionalities and phyla-lifestyles coupled with differences in microbial-community structures.

  6. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes

    PubMed Central

    Bastida, F.; Selevsek, N.; Torres, I. F.; Hernández, T.; García, C.

    2015-01-01

    A hot topic in recent decades, the application of organic amendments to arid-degraded soils has been shown to benefit microbially-mediated processes. However, despite the importance of soils for global sustainability, a gap has not been addressed yet in soil science: is there any connection between ecosystem-community processes, cellular functionality, and microbial lifestyles (i.e. oligotrophy-copiotrophy) in restored soils? Together with classical ecosystem indicators (fatty-acids, extracellular-enzyme activities, basal respiration), state-of-the-art metaproteomics was applied to fill this gap in a model-restoration experiment initiated 10-years ago by the addition of sewage-sludge and compost. Organic amendment strongly impacted ecosystem processes. Furthermore, the type of material used induced differences in the cellular functionalities through variations in the percentages of proteins involved in translation, transcription, energy production and C-fixation. We conclude that the long-term impact of organic restoration goes beyond ecosystem processes and affects cellular functionalities and phyla-lifestyles coupled with differences in microbial-community structures. PMID:26503516

  7. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes

    NASA Astrophysics Data System (ADS)

    Bastida, F.; Selevsek, N.; Torres, I. F.; Hernández, T.; García, C.

    2015-10-01

    A hot topic in recent decades, the application of organic amendments to arid-degraded soils has been shown to benefit microbially-mediated processes. However, despite the importance of soils for global sustainability, a gap has not been addressed yet in soil science: is there any connection between ecosystem-community processes, cellular functionality, and microbial lifestyles (i.e. oligotrophy-copiotrophy) in restored soils? Together with classical ecosystem indicators (fatty-acids, extracellular-enzyme activities, basal respiration), state-of-the-art metaproteomics was applied to fill this gap in a model-restoration experiment initiated 10-years ago by the addition of sewage-sludge and compost. Organic amendment strongly impacted ecosystem processes. Furthermore, the type of material used induced differences in the cellular functionalities through variations in the percentages of proteins involved in translation, transcription, energy production and C-fixation. We conclude that the long-term impact of organic restoration goes beyond ecosystem processes and affects cellular functionalities and phyla-lifestyles coupled with differences in microbial-community structures.

  8. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning.

    PubMed

    Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D; Luo, Yiqi; Zhou, Jizhong

    2016-01-01

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.

  9. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    PubMed Central

    Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Zhou, Jizhong

    2016-01-01

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming. PMID:27199978

  10. Functions of the cellular prion protein, the end of Moore's law, and Ockham's razor theory

    PubMed Central

    del Río, José A.; Gavín, Rosalina

    2016-01-01

    ABSTRACT Since its discovery the cellular prion protein (encoded by the Prnp gene) has been associated with a large number of functions. The proposed functions rank from basic cellular processes such as cell cycle and survival to neural functions such as behavior and neuroprotection, following a pattern similar to that of Moore's law for electronics. In addition, particular interest is increasing in the participation of Prnp in neurodegeneration. However, in recent years a redefinition of these functions has begun, since examples of previously attributed functions were increasingly re-associated with other proteins. Most of these functions are linked to so-called “Prnp-flanking genes” that are close to the genomic locus of Prnp and which are present in the genome of some Prnp mouse models. In addition, their role in neuroprotection against convulsive insults has been confirmed in recent studies. Lastly, in recent years a large number of models indicating the participation of different domains of the protein in apoptosis have been uncovered. However, after more than 10 years of molecular dissection our view is that the simplest mechanistic model in PrPC-mediated cell death should be considered, as Ockham's razor theory suggested. PMID:26890218

  11. Functions of the cellular prion protein, the end of Moore's law, and Ockham's razor theory.

    PubMed

    del Río, José A; Gavín, Rosalina

    2016-01-01

    Since its discovery the cellular prion protein (encoded by the Prnp gene) has been associated with a large number of functions. The proposed functions rank from basic cellular processes such as cell cycle and survival to neural functions such as behavior and neuroprotection, following a pattern similar to that of Moore's law for electronics. In addition, particular interest is increasing in the participation of Prnp in neurodegeneration. However, in recent years a redefinition of these functions has begun, since examples of previously attributed functions were increasingly re-associated with other proteins. Most of these functions are linked to so-called "Prnp-flanking genes" that are close to the genomic locus of Prnp and which are present in the genome of some Prnp mouse models. In addition, their role in neuroprotection against convulsive insults has been confirmed in recent studies. Lastly, in recent years a large number of models indicating the participation of different domains of the protein in apoptosis have been uncovered. However, after more than 10 years of molecular dissection our view is that the simplest mechanistic model in PrP(C)-mediated cell death should be considered, as Ockham's razor theory suggested.

  12. Mitochondrial function is altered in horse atypical myopathy.

    PubMed

    Lemieux, Hélène; Boemer, François; van Galen, Gaby; Serteyn, Didier; Amory, Hélène; Baise, Etienne; Cassart, Dominique; van Loon, Gunther; Marcillaud-Pitel, Christel; Votion, Dominique-M

    2016-09-01

    Equine atypical myopathy in Europe is a fatal rhabdomyolysis syndrome that results from the ingestion of hypoglycin A contained in seeds and seedlings of Acer pseudoplatanus (sycamore maple). Acylcarnitine concentrations in serum and muscle OXPHOS capacity were determined in 15 atypical myopathy cases. All but one acylcarnitine were out of reference range and mitochondrial respiratory capacity was severely decreased up to 49% as compared to 10 healthy controls. The hallmark of atypical myopathy thus consists of a severe alteration in the energy metabolism including a severe impairment in muscle mitochondrial respiration that could contribute to its high death rate.

  13. Functional Alteration of Tumor-infiltrating Myeloid Cells in RNA Adjuvant Therapy.

    PubMed

    Seya, Tsukasa; Shime, Hiroaki; Matsumoto, Misako

    2015-08-01

    Macrophages, as well as dendritic cells (DCs), are derived from myeloid progenitor cells. Recent evidence suggests that tumor-infiltrating macrophages differ in many aspects from conventional tissue macrophages, including nature, function and markers. Tumors usually contain various myeloid lineage cells in their non-parenchymal environment. In immunotherapy for cancer, tumor cells and non-parenchymal cells are exposed to tumor-associated antigens (TAA) and tumor-cell-derived nucleic acids. In addition, a dsRNA mimic, polyinosinic:polycytidylic acid (polyI:C), exhibits strong adjuvant activity, which acts both on the immune system and tumor constituents. Herein we discuss the RNA recognition system and unique cellular output in tumor-associated myeloid cells in response to immunotherapy. We especially focus on the mechanism by which RNA adjuvant alters the tumor-supportive nature of tumor-infiltrated myeloid cells to those with tumoricidal activity. We discuss how RNA administration makes tumor cells collapse and its significance of evoking cell death signals in tumor cells and macrophages. This knowledge will be applicable to the development of an alternative immunotherapy for cancer.

  14. Chronic Zinc Deficiency Alters Chick Gut Microbiota Composition and Function

    PubMed Central

    Reed, Spenser; Neuman, Hadar; Moscovich, Sharon; Glahn, Raymond P.; Koren, Omry; Tako, Elad

    2015-01-01

    Zinc (Zn) deficiency is a prevalent micronutrient insufficiency. Although the gut is a vital organ for Zn utilization, and Zn deficiency is associated with impaired intestinal permeability and a global decrease in gastrointestinal health, alterations in the gut microbial ecology of the host under conditions of Zn deficiency have yet to be studied. Using the broiler chicken (Gallus gallus) model, the aim of this study was to characterize distinct cecal microbiota shifts induced by chronic dietary Zn depletion. We demonstrate that Zn deficiency induces significant taxonomic alterations and decreases overall species richness and diversity, establishing a microbial profile resembling that of various other pathological states. Through metagenomic analysis, we show that predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways responsible for macro- and micronutrient uptake are significantly depleted under Zn deficiency; along with concomitant decreases in beneficial short chain fatty acids, such depletions may further preclude optimal host Zn availability. We also identify several candidate microbes that may play a significant role in modulating the bioavailability and utilization of dietary Zn during prolonged deficiency. Our results are the first to characterize a unique and dysbiotic cecal microbiota during Zn deficiency, and provide evidence for such microbial perturbations as potential effectors of the Zn deficient phenotype. PMID:26633470

  15. THE MITOCHONDRIAL PARADIGM FOR CARDIOVASCULAR DISEASE SUSCEPTIBILITY AND CELLULAR FUNCTION: A COMPLEMENTARY CONCEPT TO MENDELIAN GENETICS

    PubMed Central

    Kryzwanski, David M.; Moellering, Douglas; Fetterman, Jessica L.; Dunham-Snary, Kimberly J.; Sammy, Melissa J.; Ballinger, Scott W.

    2013-01-01

    While there is general agreement that cardiovascular disease (CVD) development is influenced by a combination of genetic, environmental, and behavioral contributors, the actual mechanistic basis of how these factors initiate or promote CVD development in some individuals while others with identical risk profiles do not, is not clearly understood. This review considers the potential role for mitochondrial genetics and function in determining CVD susceptibility from the standpoint that the original features that molded cellular function were based upon mitochondrial-nuclear relationships established millions of years ago and were likely refined during prehistoric environmental selection events that today, are largely absent. Consequently, contemporary risk factors that influence our susceptibility to a variety of age-related diseases, including CVD were probably not part of the dynamics that defined the processes of mitochondrial – nuclear interaction, and thus, cell function. In this regard, the selective conditions that contributed to cellular functionality and evolution should be given more consideration when interpreting and designing experimental data and strategies. Finally, future studies that probe beyond epidemiologic associations are required. These studies will serve as the initial steps for addressing the provocative concept that contemporary human disease susceptibility is the result of selection events for mitochondrial function that increased chances for prehistoric human survival and reproductive success. PMID:21647091

  16. Alteration of some cellular function in amikacin resistant Pseudomonas aeruginosa transfected macrophages: a time dependent approach

    PubMed Central

    Chakraborty, Subhankari Prasad; KarMahapatra, Santanu; Das, Sabyasachi; Roy, Somenath

    2011-01-01

    Objective To evaluate the free radical generation and antioxidant enzymes status in murine peritoneal macrophage during in vitro amikacin resistant Pseudomonas aeruginosa (ARPA) treatment with different time interval. Methods Peritoneal macrophages were treated with 1×108 CFU/mL ARPA cell suspension in vitro for different time interval (1, 2, 3, 6, 12, and 24 h) and super oxide anion generation, NO generation, reduced glutathione level and antioxidant enzymes status were analyzed. Results Super oxide anion generation and NO generation got peak at 12 h, indicating maximal free radical generation through activation of NADPH oxidase in murine peritoneal macrophages during ARPA transfection. Reduced glutathione level and antioxidant enzymes status were decreased significantly (P<0.05) with increasing time of ARPA transfection. All the changes in peritoneal macrophages after 12 h in vitro ARPA transfection had significant difference (P<0.05). Conclusions From this study, it may be summarized that in vitro ARPA infection not only generates excess free radical but also affects the antioxidant system and glutathione cycle in murine peritoneal macrophage. PMID:23569818

  17. The Role of the Transmembrane RING Finger Proteins in Cellular and Organelle Function

    PubMed Central

    Nakamura, Nobuhiro

    2011-01-01

    A large number of RING finger (RNF) proteins are present in eukaryotic cells and the majority of them are believed to act as E3 ubiquitin ligases. In humans, 49 RNF proteins are predicted to contain transmembrane domains, several of which are specifically localized to membrane compartments in the secretory and endocytic pathways, as well as to mitochondria and peroxisomes. They are thought to be molecular regulators of the organization and integrity of the functions and dynamic architecture of cellular membrane and membranous organelles. Emerging evidence has suggested that transmembrane RNF proteins control the stability, trafficking and activity of proteins that are involved in many aspects of cellular and physiological processes. This review summarizes the current knowledge of mammalian transmembrane RNF proteins, focusing on their roles and significance. PMID:24957874

  18. Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization

    NASA Astrophysics Data System (ADS)

    Lovreglio, Ruggiero; Ronchi, Enrico; Nilsson, Daniel

    2015-11-01

    The formulation of pedestrian floor field cellular automaton models is generally based on hypothetical assumptions to represent reality. This paper proposes a novel methodology to calibrate these models using experimental trajectories. The methodology is based on likelihood function optimization and allows verifying whether the parameters defining a model statistically affect pedestrian navigation. Moreover, it allows comparing different model specifications or the parameters of the same model estimated using different data collection techniques, e.g. virtual reality experiment, real data, etc. The methodology is here implemented using navigation data collected in a Virtual Reality tunnel evacuation experiment including 96 participants. A trajectory dataset in the proximity of an emergency exit is used to test and compare different metrics, i.e. Euclidean and modified Euclidean distance, for the static floor field. In the present case study, modified Euclidean metrics provide better fitting with the data. A new formulation using random parameters for pedestrian cellular automaton models is also defined and tested.

  19. Regulation of mammalian microRNA processing and function by cellular signaling and subcellular localization

    PubMed Central

    Smalheiser, Neil R.

    2008-01-01

    For many microRNAs, in many normal tissues and in cancer cells, the cellular levels of mature microRNAs are not simply determined by transcription of microRNA genes. This mini-review will discuss how microRNA biogenesis and function can be regulated by various nuclear and cytoplasmic processing events, including emerging evidence that microRNA pathway components can be selectively regulated by control of their subcellular localization and by modifications that occur during dynamic cellular signaling. Finally, I will briefly summarize studies of microRNAs in synaptic fractions of adult mouse forebrain, which may serve as a model for other cell types as well. PMID:18433727

  20. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes.

    PubMed Central

    Dougherty, W G; Semler, B L

    1993-01-01

    Many viruses express their genome, or part of their genome, initially as a polyprotein precursor that undergoes proteolytic processing. Molecular genetic analyses of viral gene expression have revealed that many of these processing events are mediated by virus-encoded proteinases. Biochemical activity studies and structural analyses of these viral enzymes reveal that they have remarkable similarities to cellular proteinases. However, the viral proteinases have evolved unique features that permit them to function in a cellular environment. In this article, the current status of plant and animal virus proteinases is described along with their role in the viral replication cycle. The reactions catalyzed by viral proteinases are not simple enzyme-substrate interactions; rather, the processing steps are highly regulated, are coordinated with other viral processes, and frequently involve the participation of other factors. Images PMID:8302216

  1. Diquat-induced cellular pyridine nucleotide redox changes and alteration of metabolic enzyme activities in colonic carcinoma cells.

    PubMed

    Circu, Magdalena L; Maloney, Ronald E; Aw, Tak Yee

    2017-02-25

    Previously we have shown that the redox cycler menadione (MQ) induced cellular pyridine nucleotide redox imbalance that was linked to a decrease in aerobic glycolysis and perturbation of the mitochondrial respiratory activity due to the redox cycling of the compound; these processes were potentiated by low glucose. In this study, we investigated how colonic epithelial cells maintained pyridine nucleotide (NAD(+)/NADH and NADP(+)/NADPH) redox homeostasis upon acute metabolic variation and exposure to the redox cycling diquat (DQ). Our results show that DQ challenge disrupted cellular NADH/NAD(+) redox status and enhanced cellular NADPH generation. Notably, DQ-induced NADH decrease was associated with enhanced lactate production, a process that was potentiated by glucose availability, but not by the mitochondrial substrates, succinate or malate/glutamate. In addition, DQ increased glucose 6-phoshate dehydrogenase (G6PDH) activity consistent with glucose diversion towards pentose phosphate pathway. As a consequence, steady-state NADPH levels were maintained during MQ challenge at normal glucose. In contrast and despite increased G6PDH and malic enzyme (ME) activities, DQ induced cellular NADPH-to-NADP(+) shift at low glucose, a situation that was reversed by mitochondrial substrates. Collectively, these results are consistent with increased aerobic glycolysis by DQ and specific metabolic changes leading to enhanced NADPH generation upon oxidative challenge.

  2. Functionalized Single-Walled Carbon Nanotubes: Cellular Uptake, Biodistribution and Applications in Drug Delivery.

    PubMed

    Li, Zixian; de Barros, Andre Luis Branco; Soares, Daniel Cristian Ferreira; Moss, Sara Nicole; Alisaraie, Laleh

    2017-03-11

    The unique properties of single-walled carbon nanotubes (SWNTs) enable them to play important roles in many fields. One of their functional roles is to transport cargo into the cell. SWNTs are able to traverse amphipathic cell membranes due to their large surface area, flexible interactions with cargo, customizable dimensions, and surface chemistry. The cargoes delivered by SWNTs include peptides, proteins, nucleic acids, as well as drug molecules for therapeutic purpose. The drug delivery functions of SWNTs have been explored over the past decade. Many breakthrough studies have shown the high specificity and potency of functionalized SWNT-based drug delivery systems for the treatment of cancers and other diseases. In this review, we discuss different aspects of drug delivery by functionalized SWNT carriers, diving into the cellular uptake mechanisms, biodistribution of the delivery system, and safety concerns on degradation of the carriers. We emphasize the delivery of several common drugs to highlight the recent achievements of SWNT-based drug delivery.

  3. A global genetic interaction network maps a wiring diagram of cellular function.

    PubMed

    Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D; Pelechano, Vicent; Styles, Erin B; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F; Li, Sheena C; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; San Luis, Bryan-Joseph; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M; Moore, Claire L; Rosebrock, Adam P; Caudy, Amy A; Myers, Chad L; Andrews, Brenda; Boone, Charles

    2016-09-23

    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell.

  4. The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease

    PubMed Central

    Babu, M. Madan

    2016-01-01

    In the 1960s, Christian Anfinsen postulated that the unique three-dimensional structure of a protein is determined by its amino acid sequence. This work laid the foundation for the sequence–structure–function paradigm, which states that the sequence of a protein determines its structure, and structure determines function. However, a class of polypeptide segments called intrinsically disordered regions does not conform to this postulate. In this review, I will first describe established and emerging ideas about how disordered regions contribute to protein function. I will then discuss molecular principles by which regulatory mechanisms, such as alternative splicing and asymmetric localization of transcripts that encode disordered regions, can increase the functional versatility of proteins. Finally, I will discuss how disordered regions contribute to human disease and the emergence of cellular complexity during organismal evolution. PMID:27911701

  5. Hyperbaric oxygenation alters carotid body ultrastructure and function.

    PubMed

    Torbati, D; Sherpa, A K; Lahiri, S; Mokashi, A; Albertine, K H; DiGiulio, C

    1993-05-01

    We previously demonstrated that chronic normobaric hyperoxia (NH) for 60-67 h attenuated the carotid chemosensory response to hypoxia, probably initiated by the generation of reactive oxygen species (ROS). Since biological systems are affected by oxygen in a dose-dependent manner, we hypothesized that hyperbaric oxygenation (HBO) would affect the cellular mechanisms of oxygen chemoreception in a shorter time. To test the hypothesis, we studied the effects of oxygen at 5 atmospheres absolute (ATA) on cats (n = 7) carotid body ultrastructure and chemosensory responses to hypoxia, hypercapnia, and to bolus injections of cyanide, nicotine and dopamine. Four control cats breathed room air at 1 ATA. At the termination of the experiments, carotid bodies from 4 cats in each group were fixed and prepared for electron microscopy and morphometry. On the average, HBO diminished the chemosensory responsiveness to hypoxia (P < 0.01, unpaired t-test) within about 2 h, supporting the hypothesis. The responses to hypercapnia or bolus injections of cyanide, nicotine and dopamine were normal. HBO did not diminish the distribution of the dense-cored vesicles but significantly increased the mean volume-density of mitochondria and decreased the cristated area per mitochondrion in the glomus cells. The latter suggests a link between oxidative metabolism and chemosensing, and the former excludes availability of neurotransmitters being the cause of the blunted chemosensory response to hypoxia.

  6. Radiation-induced functional connectivity alterations in nasopharyngeal carcinoma patients with radiotherapy

    PubMed Central

    Ma, Qiongmin; Wu, Donglin; Zeng, Ling-Li; Shen, Hui; Hu, Dewen; Qiu, Shijun

    2016-01-01

    Abstract The study aims to investigate the radiation-induced brain functional alterations in nasopharyngeal carcinoma (NPC) patients who received radiotherapy (RT) using functional magnetic resonance imaging (fMRI) and statistic scale. The fMRI data of 35 NPC patients with RT and 24 demographically matched untreated NPC patients were acquired. Montreal Cognitive Assessment (MoCA) was also measured to evaluate their global cognition performance. Multivariate pattern analysis was performed to find the significantly altered functional connections between these 2 groups, while the linear correlation level was detected between the altered functional connections and the MoCA scores. Forty-five notably altered functional connections were found, which were mainly located between 3 brain networks, the cerebellum, sensorimotor, and cingulo-opercular. With strictly false discovery rate correction, 5 altered functional connections were shown to have significant linear correlations with the MoCA scores, that is, the connections between the vermis and hippocampus, cerebellum lobule VI and dorsolateral prefrontal cortex, precuneus and dorsal frontal cortex, cuneus and middle occipital lobe, and insula and cuneus. Besides, the connectivity between the vermis and hippocampus was also significantly correlated with the attention score, 1 of the 7 subscores of the MoCA. The present study provides new insights into the radiation-induced functional connectivity impairments in NPC patients. The results showed that the RT may induce the cognitive impairments, especially the attention alterations. The 45 altered functional connections, especially the 5 altered functional connections that were significantly correlated to the MoCA scores, may serve as the potential biomarkers of the RT-induced brain functional impairments and provide valuable targets for further functional recovery treatment. PMID:27442663

  7. Radiation-induced functional connectivity alterations in nasopharyngeal carcinoma patients with radiotherapy.

    PubMed

    Ma, Qiongmin; Wu, Donglin; Zeng, Ling-Li; Shen, Hui; Hu, Dewen; Qiu, Shijun

    2016-07-01

    The study aims to investigate the radiation-induced brain functional alterations in nasopharyngeal carcinoma (NPC) patients who received radiotherapy (RT) using functional magnetic resonance imaging (fMRI) and statistic scale.The fMRI data of 35 NPC patients with RT and 24 demographically matched untreated NPC patients were acquired. Montreal Cognitive Assessment (MoCA) was also measured to evaluate their global cognition performance. Multivariate pattern analysis was performed to find the significantly altered functional connections between these 2 groups, while the linear correlation level was detected between the altered functional connections and the MoCA scores.Forty-five notably altered functional connections were found, which were mainly located between 3 brain networks, the cerebellum, sensorimotor, and cingulo-opercular. With strictly false discovery rate correction, 5 altered functional connections were shown to have significant linear correlations with the MoCA scores, that is, the connections between the vermis and hippocampus, cerebellum lobule VI and dorsolateral prefrontal cortex, precuneus and dorsal frontal cortex, cuneus and middle occipital lobe, and insula and cuneus. Besides, the connectivity between the vermis and hippocampus was also significantly correlated with the attention score, 1 of the 7 subscores of the MoCA.The present study provides new insights into the radiation-induced functional connectivity impairments in NPC patients. The results showed that the RT may induce the cognitive impairments, especially the attention alterations. The 45 altered functional connections, especially the 5 altered functional connections that were significantly correlated to the MoCA scores, may serve as the potential biomarkers of the RT-induced brain functional impairments and provide valuable targets for further functional recovery treatment.

  8. Molecular and Cellular Mechanisms Elucidating Neurocognitive Basis of Functional Impairments Associated with Intellectual Disability in Down Syndrome

    ERIC Educational Resources Information Center

    Rachidi, Mohammed; Lopes, Carmela

    2010-01-01

    Down syndrome, the most common genetic cause of intellectual disability, is associated with brain disorders due to chromosome 21 gene overdosage. Molecular and cellular mechanisms involved in the neuromorphological alterations and cognitive impairments are reported herein in a global model. Recent advances in Down syndrome research have lead to…

  9. Emerging microfluidic tools for functional cellular immunophenotyping: a new potential paradigm for immune status characterization.

    PubMed

    Chen, Weiqiang; Huang, Nien-Tsu; Li, Xiang; Yu, Zeta Tak For; Kurabayashi, Katsuo; Fu, Jianping

    2013-01-01

    Rapid, accurate, and quantitative characterization of immune status of patients is of utmost importance for disease diagnosis and prognosis, evaluating efficacy of immunotherapeutics and tailoring drug treatments. Immune status of patients is often dynamic and patient-specific, and such complex heterogeneity has made accurate, real-time measurements of patient immune status challenging in the clinical setting. Recent advances in microfluidics have demonstrated promising applications of the technology for immune monitoring with minimum sample requirements and rapid functional immunophenotyping capability. This review will highlight recent developments of microfluidic platforms that can perform rapid and accurate cellular functional assays on patient immune cells. We will also discuss the future potential of integrated microfluidics to perform rapid, accurate, and sensitive cellular functional assays at a single-cell resolution on different types or subpopulations of immune cells, to provide an unprecedented level of information depth on the distribution of immune cell functionalities. We envision that such microfluidic immunophenotyping tools will allow for comprehensive and systems-level immunomonitoring, unlocking the potential to transform experimental clinical immunology into an information-rich science.

  10. [Functional alterations in the retina following a 10 Gy gamma irradiation localized in the eye].

    PubMed

    Bagot, J D; Courant, D; Court, L

    1980-11-17

    A single-eye irradiation of 10 Gy (0.8 Gy. min-1) induces impairments of the electrical responses of the rabbit retina in dark adaptation. These are associated with reversible alteration of the photoreceptors and the preganglionic neurons and a disturbance of all the mechanisms of adaptation. Possible relationships between these functional alterations and the effects of irradiation are discussed.

  11. Bilingualism alters children's frontal lobe functioning for attentional control.

    PubMed

    Arredondo, Maria M; Hu, Xiao-Su; Satterfield, Teresa; Kovelman, Ioulia

    2016-01-06

    Bilingualism is a typical linguistic experience, yet relatively little is known about its impact on children's cognitive and brain development. Theories of bilingualism suggest that early dual-language acquisition can improve children's cognitive abilities, specifically those relying on frontal lobe functioning. While behavioral findings present much conflicting evidence, little is known about its effects on children's frontal lobe development. Using functional near-infrared spectroscopy (fNIRS), the findings suggest that Spanish-English bilingual children (n = 13, ages 7-13) had greater activation in left prefrontal cortex during a non-verbal attentional control task relative to age-matched English monolinguals. In contrast, monolinguals (n = 14) showed greater right prefrontal activation than bilinguals. The present findings suggest that early bilingualism yields significant changes to the functional organization of children's prefrontal cortex for attentional control and carry implications for understanding how early life experiences impact cognition and brain development.

  12. Kaempferol inhibits Entamoeba histolytica growth by altering cytoskeletal functions.

    PubMed

    Bolaños, Verónica; Díaz-Martínez, Alfredo; Soto, Jacqueline; Marchat, Laurence A; Sanchez-Monroy, Virginia; Ramírez-Moreno, Esther

    2015-11-01

    The flavonoid kaempferol obtained from Helianthemum glomeratum, an endemic Mexican medicinal herb used to treat gastrointestinal disorders, has been shown to inhibit growth of Entamoeba histolytica trophozoites in vitro; however, the mechanisms associated with this activity have not been documented. Several works reported that kaempferol affects cytoskeleton in mammalian cells. In order to gain insights into the action mechanisms involved in the anti-amoebic effect of kaempferol, here we evaluated the effect of this compound on the pathogenic events driven by the cytoskeleton during E. histolytica infection. We also carried out a two dimensional gel-based proteomic analysis to evidence modulated proteins that could explain the phenotypical changes observed in trophozoites. Our results showed that kaempferol produces a dose-dependent effect on trophozoites growth and viability with optimal concentration being 27.7 μM. Kaempferol also decreased adhesion, it increased migration and phagocytic activity, but it did not affect erythrocyte binding nor cytolytic capacity of E. histolytica. Congruently, proteomic analysis revealed that the cytoskeleton proteins actin, myosin II heavy chain and cortexillin II were up-regulated in response to kaempferol treatment. In conclusion, kaempferol anti-amoebic effects were associated with deregulation of proteins related with cytoskeleton, which altered invasion mechanisms.

  13. Developmental alterations in the functional properties of excitatory neocortical synapses

    PubMed Central

    Feldmeyer, Dirk; Radnikow, Gabriele

    2009-01-01

    In the neocortex, most excitatory, glutamatergic synapses are established during the first 4–5 weeks after birth. During this period profound changes in the properties of synaptic transmission occur. Excitatory postsynaptic potentials (EPSPs) at immature synaptic connections are profoundly and progressively reduced in response to moderate to high frequency (5–100 Hz) stimulation. With maturation, this frequency-dependent depression becomes progressively weaker and may eventually transform into a weak to moderate EPSP facilitation. In parallel to changes in the short-term plasticity, a reduction in the synaptic reliability occurs at most glutamatergic neocortical synapses: immature synapses show a high probability of neurotransmitter release as indicated by their low failure rate and small EPSP amplitude variation. This high reliability is reduced in mature synapses, which show considerably higher failure rates and more variable EPSP amplitudes. During early neocortical development synaptic vesicle pools are not yet fully differentiated and their replenishment may be slow, thus resulting in EPSP amplitude depression. The decrease in the probability of neurotransmitter release may be the result of an altered Ca2+ control in the presynaptic terminal with a reduced Ca2+ influx and/or a higher Ca2+ buffering capacity. This may lead to a lower synaptic reliability and a weaker short-term synaptic depression with maturation. PMID:19273572

  14. Impact of ultraviolet-B radiation on planktonic fish larvae: alteration of the osmoregulatory function.

    PubMed

    Sucré, Elliott; Vidussi, Francesca; Mostajir, Behzad; Charmantier, Guy; Lorin-Nebel, Catherine

    2012-03-01

    Coastal marine ecosystems are submitted to variations of several abiotic and biotic parameters, some of them related to global change. Among them the ultraviolet-B (UV-B) radiation (UVBR: 280-320 nm) may strongly impact planktonic fish larvae. The consequences of an increase of UVBR on the osmoregulatory function of Dicentrarchus labrax larvae have been investigated in this study. In young larvae of D. labrax, as in other teleosts, osmoregulation depends on tegumentary ion transporting cells, or ionocytes, mainly located on the skin of the trunk and of the yolk sac. As early D. labrax larvae passively drift in the top water column, ionocytes are exposed to solar radiation. The effect of UVBR on larval osmoregulation in seawater was evaluated through nanoosmometric measurements of the blood osmolality after exposure to different UV-B treatments. A loss of osmoregulatory capability occured in larvae after 2 days of low (50 μWcm(-2): 4 h L/20 h D) and medium (80 μWcm(-2): 4 h L/20 h D) UVBR exposure. Compared to control larvae kept in the darkness, a significant increase in blood osmolality, abnormal behavior and high mortalities were detected in larvae exposed to UVBR from 2 days on. At the cellular level, an important decrease in abundance of tegumentary ionocytes and mucous cells was observed after 2 days of exposure to UVBR. In the ionocytes, two major osmoeffectors were immunolocalized, the Na+/K(+)-ATPase and the Na+/K+/2Cl- cotransporter. Compared to controls, the fluorescent immunostaining was lower in UVBR-exposed larvae. We hypothesize that the impaired osmoregulation in UVBR-exposed larvae originates from the lower number of tegumentary ionocytes and mucous cells. This alteration of the osmoregulatory function could negatively impact the survival of young larvae at the surface water exposed to UVBR.

  15. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.

  16. Does Exercise Alter Immune Function and Respiratory Infections?

    ERIC Educational Resources Information Center

    Nieman, David C.

    2001-01-01

    This paper examines whether physical activity influences immune function as a consequence risk of infection from the common cold and other upper respiratory tract infections (URTI) and whether the immune system responds differently to moderate versus intense physical exertion. Research indicates that people who participate in regular moderate…

  17. PCBs Alter Dopamine Mediated Function in Aging Workers

    DTIC Science & Technology

    2006-01-01

    subjects are elderly and must travel considerable distances to undergo testing at these two sites. We are nearing the end of the data collection...neurotoxicants in the etiology of parkinsonism (e.g., dioxins and furans) on human DA function, including Parkinson =s disease. Supported by grants from the

  18. Abdominal Pain, the Adolescent and Altered Brain Structure and Function

    PubMed Central

    Becerra, Lino; Heinz, Nicole; Ludwick, Allison; Rasooly, Tali; Wu, Rina; Johnson, Adriana; Schechter, Neil L.; Borsook, David; Nurko, Samuel

    2016-01-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder of unknown etiology. Although relatively common in children, how this condition affects brain structure and function in a pediatric population remains unclear. Here, we investigate brain changes in adolescents with IBS and healthy controls. Imaging was performed with a Siemens 3 Tesla Trio Tim MRI scanner equipped with a 32-channel head coil. A high-resolution T1-weighted anatomical scan was acquired followed by a T2-weighted functional scan. We used a surface-based morphometric approach along with a seed-based resting-state functional connectivity (RS-FC) analysis to determine if groups differed in cortical thickness and whether areas showing structural differences also showed abnormal RS-FC patterns. Patients completed the Abdominal Pain Index and the GI Module of the Pediatric Quality of Life Inventory to assess abdominal pain severity and impact of GI symptoms on health-related quality of life (HRQOL). Disease duration and pain intensity were also assessed. Pediatric IBS patients, relative to controls, showed cortical thickening in the posterior cingulate (PCC), whereas cortical thinning in posterior parietal and prefrontal areas were found, including the dorsolateral prefrontal cortex (DLPFC). In patients, abdominal pain severity was related to cortical thickening in the intra-abdominal area of the primary somatosensory cortex (SI), whereas HRQOL was associated with insular cortical thinning. Disease severity measures correlated with cortical thickness in bilateral DLPFC and orbitofrontal cortex. Patients also showed reduced anti-correlations between PCC and DLPFC compared to controls, a finding that may reflect aberrant connectivity between default mode and cognitive control networks. We are the first to demonstrate concomitant structural and functional brain changes associated with abdominal pain severity, HRQOL related to GI-specific symptoms, and disease-specific measures in

  19. Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity.

    PubMed

    Macho, Alberto P

    2016-04-01

    Most bacterial plant pathogens employ a type-III secretion system to inject type-III effector (T3E) proteins directly inside plant cells. These T3Es manipulate host cellular processes in order to create a permissive niche for bacterial proliferation, allowing development of the disease. An important role of T3Es in plant pathogenic bacteria is the suppression of plant immune responses. However, in recent years, research has uncovered T3E functions different from direct immune suppression, including the modulation of plant hormone signaling, metabolism or organelle function. This insight article discusses T3E functions other than suppression of immunity, which may contribute to the modulation of plant cells in order to promote bacterial survival, nutrient release, and bacterial replication and dissemination.

  20. Comprehensive Interrogation of the Cellular Response to Fluorescent, Detonation and Functionalized Nanodiamonds

    PubMed Central

    Moore, L.; Grobárová, V.; Shen, H.; Man, H. B.; Míčová, J.; Ledvina, M.; Štursa, J.; Nesladek, M.

    2015-01-01

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation. PMID:25037888

  1. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds.

    PubMed

    Moore, Laura; Grobárová, Valéria; Shen, Helen; Man, Han Bin; Míčová, Júlia; Ledvina, Miroslav; Štursa, Jan; Nesladek, Milos; Fišerová, Anna; Ho, Dean

    2014-10-21

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, thus demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation.

  2. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds

    NASA Astrophysics Data System (ADS)

    Moore, Laura; Grobárová, Valéria; Shen, Helen; Man, Han Bin; Míčová, Júlia; Ledvina, Miroslav; Štursa, Jan; Nesladek, Milos; Fišerová, Anna; Ho, Dean

    2014-09-01

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, thus demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation.

  3. The functional micro-organization of grid cells revealed by cellular-resolution imaging.

    PubMed

    Heys, James G; Rangarajan, Krsna V; Dombeck, Daniel A

    2014-12-03

    Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater microcircuit-level understanding of the brain's representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to nongrid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: the similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a "Mexican hat"-shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart.

  4. Interfacing Inorganic Nanowire Arrays and Living Cells for Cellular Function Analysis.

    PubMed

    Kwak, Minsuk; Han, Lin; Chen, Jonathan J; Fan, Rong

    2015-11-11

    Inorganic nanowires are among the most attractive functional materials, which have emerged in the past two decades. They have demonstrated applications in information technology and energy conversion, but their utility in biological or biomedical research remains relatively under-explored. Although nanowire-based sensors have been frequently reported for biomolecular detection, interfacing nanowire arrays and living mammalian cells for the direct analysis of cellular functions is a very recent endeavor. Cell-penetrating nanowires enabled effective delivery of biomolecules, electrical and optical stimulation and recording of intracellular signals over a long period of time. Non-penetrating, high-density nanowire arrays display rich interactions between the nanostructured substrate and the micro/nanoscale features of cell surfaces. Such interactions enable efficient capture of rare cells including circulating tumor cells and trafficking leukocytes from complex biospecimens. It also serves as a platform for probing cell traction force and neuronal guidance. The most recent advances in the field that exploits nanowire arrays (both penetrating and non-penetrating) to perform rapid analysis of cellular functions potentially for disease diagnosis and monitoring are reviewed.

  5. Adrenal morpho-functional alterations in patients with acromegaly.

    PubMed

    Scaroni, C; Selice, R; Benedini, S; De Menis, E; Arosio, M; Ronchi, C; Gasperi, M; Manetti, L; Arnaldi, G; Polenta, B; Boscaro, M; Albiger, N; Martino, E; Mantero, F

    2008-07-01

    Acromegaly is associated with a greater morbidity and higher incidence of tumors, possibly due to the permissive role of elevated GH and IGF-I levels. In the general population, adrenal masses are frequently discovered (prevalence 1-5%) at computed tomography (CT). We evaluated the prevalence of adrenal lesions in patients with acromegaly. We studied 94 acromegalic patients, 54 females (mean age 55.0+/-16.0 yr) and 40 males (mean age 50+/-14 yr) referred to 5 Endocrinology Units between 2001-2003; 49 had active disease and 45 had been treated with surgery and/or were controlled with medical therapy. Abdominal CT showed adrenal lesions in 27 patients; 9 of them had unilateral masses (10%) with benign features (diameter 0.5-3 cm) and 18 had hyperplasia (14 monolateral and 4 bilateral), with no significant differences between patients with active vs controlled disease, and with no correlation between prevalence of masses and duration of disease, GH and IGF-I levels. Hormone study (urinary free cortisol, catecholamines/metanephrines, upright plasma renin activity and aldosterone, morning plasma ACTH and low-dose dexamethasone suppression test) disclosed no major endocrine alterations. During a 1-yr follow-up, the adrenal masses increased in size in 3 cases and 1 patient also developed subclinical Cushing's syndrome. Adrenal lesions seem more frequent in acromegaly than in the general population, but no single factor (GH/IGF-I levels or disease duration) predicts them. The masses appear to be benign and nonhypersecreting, but a longer follow-up is recommended to disclose any changes in their morphofunctional state.

  6. Bacterial Filament Systems: Toward Understanding Their Emergent Behavior and Cellular Functions*

    PubMed Central

    Eun, Ye-Jin; Kapoor, Mrinal; Hussain, Saman; Garner, Ethan C.

    2015-01-01

    Bacteria use homologs of eukaryotic cytoskeletal filaments to conduct many different tasks, controlling cell shape, division, and DNA segregation. These filaments, combined with factors that regulate their polymerization, create emergent self-organizing machines. Here, we summarize the current understanding of the assembly of these polymers and their spatial regulation by accessory factors, framing them in the context of being dynamical systems. We highlight how comparing the in vivo dynamics of the filaments with those measured in vitro has provided insight into the regulation, emergent behavior, and cellular functions of these polymeric systems. PMID:25957405

  7. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response

    NASA Astrophysics Data System (ADS)

    Nikiforov, M. P.; Reukov, V. V.; Thompson, G. L.; Vertegel, A. A.; Guo, S.; Kalinin, S. V.; Jesse, S.

    2009-10-01

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  8. Age-Related Impairment of Pancreatic Beta-Cell Function: Pathophysiological and Cellular Mechanisms

    PubMed Central

    De Tata, Vincenzo

    2014-01-01

    The incidence of type 2 diabetes significantly increases with age. The relevance of this association is dramatically magnified by the concomitant global aging of the population, but the underlying mechanisms remain to be fully elucidated. Here, some recent advances in this field are reviewed at the level of both the pathophysiology of glucose homeostasis and the cellular senescence of pancreatic islets. Overall, recent results highlight the crucial role of beta-cell dysfunction in the age-related impairment of pancreatic endocrine function and delineate the possibility of new original therapeutic interventions. PMID:25232350

  9. New insights into the regulation and cellular functions of the ARP2/3 complex.

    PubMed

    Rotty, Jeremy D; Wu, Congying; Bear, James E

    2013-01-01

    The actin-related protein 2/3 (ARP2/3) complex nucleates branched actin filament networks, but requires nucleation promoting factors (NPFs) to stimulate this activity. NPFs include proteins such as Wiskott-Aldrich syndrome protein (WASP), neural WASP (NWASP), WASP family verprolin-homologous protein (WAVE; also known as SCAR) and the recently identified WASP and SCAR homologue (WASH) complex. The mechanisms underlying NPF-dependent regulation and the cellular functions of ARP2/3 are being unravelled using new chemical and genetic approaches. Of particular interest is the role of the ARP2/3 complex in vesicular trafficking and directional cell motility.

  10. Functional Genomics of Dopaminergic Neurons and Cellular Susceptibility in Parkinson’s Disease

    DTIC Science & Technology

    2005-07-01

    AD Award Number: W81XWH-04-1-0599 TITLE: Functional Genomics of Dopaminergic Neurons and Cellular Susceptibility in Parkinson’s Disease PRINCIPAL... Disease 5b. GRANTNUMBER W81XWH-04-1-0599 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Stefano Gustincich, Ph.D. 5e. TASK NUMBER 5f. WORK UNIT...vulnerability of selected classes of dopaminergic cells in Parkinson’s Disease (PD). During the first year of research we have established an in house cDNA

  11. GABA FUNCTION IS ALTERED FOLLOWING DEVELOPMENTAL HYPOTHYROIDISM: NEUROANATOMICAL AND NEUROPHYSIOLOGICAL EVIDENCE.

    EPA Science Inventory

    Thyroid hormone deficiency during development produces changes in the structure of neurons and glial cells and alters synaptic function in the hippocampus. GABAergic interneurons comprise the bulk of local inhibitory neuronal circuitry and a subpopulation of these interneurons ...

  12. Altered auditory function in rats exposed to hypergravic fields

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Hoffman, L.; Horowitz, J. M.

    1982-01-01

    The effect of an orthodynamic hypergravic field of 6 G on the brainstem auditory projections was studied in rats. The brain temperature and EEG activity were recorded in the rats during 6 G orthodynamic acceleration and auditory brainstem responses were used to monitor auditory function. Results show that all animals exhibited auditory brainstem responses which indicated impaired conduction and transmission of brainstem auditory signals during the exposure to the 6 G acceleration field. Significant increases in central conduction time were observed for peaks 3N, 4P, 4N, and 5P (N = negative, P = positive), while the absolute latency values for these same peaks were also significantly increased. It is concluded that these results, along with those for fields below 4 G (Jones and Horowitz, 1981), indicate that impaired function proceeds in a rostro-caudal progression as field strength is increased.

  13. Transient Receptor Potential Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades Underlying Visceral Hypersensitivity.

    PubMed

    Balemans, Dafne; Boeckxstaens, Guy E; Talavera, Karel; Wouters, Mira M

    2017-04-06

    Visceral hypersensitivity is an important mechanism underlying increased abdominal pain perception in functional gastrointestinal disorders (FGID) including functional dyspepsia, irritable bowel syndrome (IBS) and inflammatory bowel disease in remission. Although the exact pathophysiological mechanisms are poorly understood, recent studies described upregulation and altered functions of nociceptors and their signaling pathways in aberrant visceral nociception, in particular the transient receptor potential (TRP) channel family. A variety of TRP channels are present in the gastrointestinal tract (TRPV1, TRPV3, TRPV4, TRPA1, TRPM2, TRPM5 and TRPM8) and modulation of their function by increased activation or sensitization (decreased activation threshold) or altered expression in visceral afferents, have been reported in visceral hypersensitivity. TRP channels directly detect or transduce osmotic, mechanical, thermal and chemosensory stimuli. In addition, pro-inflammatory mediators released in tissue damage or inflammation can activate receptors of the G-protein coupled receptor (GPCR) superfamily leading to TRP channel sensitization and activation, which amplify pain and neurogenic inflammation. In this review, we highlight the current knowledge on the functional roles of neuronal TRP channels in visceral hypersensitivity and discuss the signaling pathways that underlie TRP channel modulation. We propose that a better understanding of TRP channels and their modulators may facilitate the development of more selective and effective therapies to treat visceral hypersensitivity.

  14. Intestinal anastomotic injury alters spatially defined microbiome composition and function

    PubMed Central

    2014-01-01

    Background When diseased intestine (i.e., from colon cancer, diverticulitis) requires resection, its reconnection (termed anastomosis) can be complicated by non-healing of the newly joined intestine resulting in spillage of intestinal contents into the abdominal cavity (termed anastomotic leakage). While it is suspected that the intestinal microbiota have the capacity to both accelerate and complicate anastomotic healing, the associated genotypes and functions have not been characterized. Results Using 16S rRNA amplicon sequencing of samples collected on the day of surgery (postoperative day 0 (POD0)) and the 6th day following surgery (postoperative day 0 (POD6)), we analyzed the changes in luminal versus tissue-associated microbiota at anastomotic sites created in the colon of rats. Results indicated that anastomotic injury induced significant changes in the anastomotic tissue-associated microbiota with minimal differences in the luminal microbiota. The most striking difference was a 500-fold and 200-fold increase in the relative abundance of Enterococcus and Escherichia/Shigella, respectively. Functional profiling predicted the predominance of bacterial virulence-associated pathways in post-anastomotic tissues, including production of hemolysin, cytolethal toxins, fimbriae, invasins, cytotoxic necrotizing factors, and coccolysin. Conclusion Taken together, our results suggest that compositional and functional changes accompany anastomotic tissues and may potentially accelerate or complicate anastomotic healing. PMID:25250176

  15. Characterizing genomic alterations in cancer by complementary functional associations | Office of Cancer Genomics

    Cancer.gov

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment.

  16. Functional Assessment of Magno, Parvo and Konio-Cellular Pathways; Current State and Future Clinical Applications

    PubMed Central

    Yoonessi, Ali; Yoonessi, Ahmad

    2011-01-01

    The information generated by cone photoreceptors in the retina is compressed and transferred to higher processing centers through three distinct types of ganglion cells known as magno, parvo and konio cells. These ganglion cells, which travel from the retina to the lateral geniculate nucleus (LGN) and then to the primary visual cortex, have different structural and functional characteristics, and are organized in distinct layers in the LGN and the primary visual cortex. Magno cells are large, have thick axons and usually collect input from many retinal cells. Parvo cells are smaller, with fine axons and less myelin than mango cells. Konio cells are diverse small cells with wide fields of input consisting of different cells types. The three cellular pathways also differ in function. Magno cells respond rapidly to changing stimuli, while parvo cells need time to respond. The distinct patterns of structure and function in these cells have provided an opportunity for clinical assessment of their function. Functional assessment of these cells is currently used in the field of ophthalmology where frequency-doubling technology perimetry selectively assesses the function of magno cells. Evidence has accrued that the three pathways show characteristic patterns of malfunctions in multiple sclerosis, schizophrenia, Parkinson’s and Alzheimer’s diseases, and several other disorders. The combination of behavioral assessment with other techniques, such as event related potentials and functional magnetic resonance imaging, seems to bear promising future clinical applications. PMID:22454721

  17. Investigation of Biogeochemical Functional Proxies in Headwater Streams Across a Range of Channel and Catchment Alterations

    NASA Astrophysics Data System (ADS)

    Berkowitz, Jacob F.; Summers, Elizabeth A.; Noble, Chris V.; White, John R.; DeLaune, Ronald D.

    2014-03-01

    Historically, headwater streams received limited protection and were subjected to extensive alteration from logging, farming, mining, and development activities. Despite these alterations, headwater streams provide essential ecological functions. This study examines proxy measures of biogeochemical function across a range of catchment alterations by tracking nutrient cycling (i.e., inputs, processing, and stream loading) with leaf litter fall, leaf litter decomposition, and water quality parameters. Nutrient input and processing remained highest in second growth forests (the least altered areas within the region), while recently altered locations transported higher loads of nutrients, sediments, and conductivity. Biogeochemical functional proxies of C and N input and processing significantly, positively correlated with rapid assessment results (Pearson coefficient = 0.67-0.81; P = 0.002-0.016). Additionally, stream loading equations demonstrate that N and P transport, sediment, and specific conductivity negatively correlated with rapid assessment scores (Pearson coefficient = 0.56-0.81; P = 0.002-0.048). The observed increase in stream loading with lower rapid assessment scores indicates that catchment alterations impact stream chemistry and that rapid assessments provide useful proxy measures of function in headwater ecosystems. Significant differences in nutrient processing, stream loading, water quality, and rapid assessment results were also observed between recently altered (e.g., mined) headwater streams and older forested catchments (Mann-Whitney U = 24; P = 0.01-0.024). Findings demonstrate that biogeochemical function is reduced in altered catchments, and rapid assessment scores respond to a combination of alteration type and recovery time. An analysis examining time and economic requirements of proxy measurements highlights the benefits of rapid assessment methods in evaluating biogeochemical functions.

  18. Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity.

    PubMed

    Li, Ruibin; Wang, Xiang; Ji, Zhaoxia; Sun, Bingbing; Zhang, Haiyuan; Chang, Chong Hyun; Lin, Sijie; Meng, Huan; Liao, Yu-Pei; Wang, Meiying; Li, Zongxi; Hwang, Angela A; Song, Tze-Bin; Xu, Run; Yang, Yang; Zink, Jeffrey I; Nel, André E; Xia, Tian

    2013-03-26

    Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored. In this study, we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes' pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylate (COOH), polyethylene glycol (PEG), amine (NH2), sidewall amine (sw-NH2), and polyetherimide (PEI)-modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs and comprehensively characterized by TEM, XPS, FTIR, and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size, and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1, and PDGF-AA), while neutral and weak cationic functionalization (NH2 and sw-NH2) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity toward lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEI-MWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These

  19. Altered locus coeruleus-norepinephrine function following single prolonged stress.

    PubMed

    George, Sophie A; Knox, Dayan; Curtis, Andre L; Aldridge, J Wayne; Valentino, Rita J; Liberzon, Israel

    2013-03-01

    Data from preclinical and clinical studies have implicated the norepinephrine system in the development and maintenance of post-traumatic stress disorder. The primary source of norepinephrine in the forebrain is the locus coeruleus (LC); however, LC activity cannot be directly measured in humans, and previous research has often relied upon peripheral measures of norepinephrine to infer changes in central LC-norepinephrine function. To directly assess LC-norepinephrine function, we measured single-unit activity of LC neurons in a validated rat model of post-traumatic stress disorder - single prolonged stress (SPS). We also examined tyrosine hydroxylase mRNA levels in the LC of SPS and control rats as an index of norepinephrine utilisation. For electrophysiological recordings, 92 LC neurons were identified from 19 rats (SPS, 12; control, 7), and spontaneous and evoked responses to a noxious event (paw compression) were recorded. Baseline and restraint stress-evoked tyrosine hydroxylase mRNA expression levels were measured in SPS and control rats (n = 16 per group) in a separate experiment. SPS rats showed lower spontaneous activity but higher evoked responses, leading to an enhanced signal-to-noise ratio of LC neurons, accompanied by impaired recovery from post-stimulus inhibition. In concert, tyrosine hydroxylase mRNA expression in the LC of SPS rats tended to be lower at baseline, but was exaggerated following restraint stress. These data demonstrate persistent changes in LC function following stress/trauma in a rat model of post-traumatic stress, as measured by differences in both the electrophysiological properties of LC neurons and tyrosine hydroxylase mRNA transcription.

  20. Sustained deep-tissue pain alters functional brain connectivity.

    PubMed

    Kim, Jieun; Loggia, Marco L; Edwards, Robert R; Wasan, Ajay D; Gollub, Randy L; Napadow, Vitaly

    2013-08-01

    Recent functional brain connectivity studies have contributed to our understanding of the neurocircuitry supporting pain perception. However, evoked-pain connectivity studies have employed cutaneous and/or brief stimuli, which induce sensations that differ appreciably from the clinical pain experience. Sustained myofascial pain evoked by pressure cuff affords an excellent opportunity to evaluate functional connectivity change to more clinically relevant sustained deep-tissue pain. Connectivity in specific networks known to be modulated by evoked pain (sensorimotor, salience, dorsal attention, frontoparietal control, and default mode networks: SMN, SLN, DAN, FCN, and DMN) was evaluated with functional-connectivity magnetic resonance imaging, both at rest and during a sustained (6-minute) pain state in healthy adults. We found that pain was stable, with no significant changes of subjects' pain ratings over the stimulation period. Sustained pain reduced connectivity between the SMN and the contralateral leg primary sensorimotor (S1/M1) representation. Such SMN-S1/M1 connectivity decreases were also accompanied by and correlated with increased SLN-S1/M1 connectivity, suggesting recruitment of activated S1/M1 from SMN to SLN. Sustained pain also increased DAN connectivity to pain processing regions such as mid-cingulate cortex, posterior insula, and putamen. Moreover, greater connectivity during pain between contralateral S1/M1 and posterior insula, thalamus, putamen, and amygdala was associated with lower cuff pressures needed to reach the targeted pain sensation. These results demonstrate that sustained pain disrupts resting S1/M1 connectivity by shifting it to a network known to process stimulus salience. Furthermore, increased connectivity between S1/M1 and both sensory and affective processing areas may be an important contribution to interindividual differences in pain sensitivity.

  1. Alteration of renal function of rats following spaceflight.

    PubMed

    Wade, C E; Morey-Holton, E

    1998-10-01

    Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.

  2. Alteration of renal function of rats following spaceflight

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Morey-Holton, E.

    1998-01-01

    Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.

  3. CELLULAR BIOAVAILABILITY OF NATURAL HORMONES AND ENVIRONMENTAL CONTAMINANTS AS A FUNCTION OF SERUM AND CYTOSOLIC BINDING FACTORS

    EPA Science Inventory

    Environmental contaminants have been reported to function as hormone mimics in various wildlife species. To investigate a potential mechanism for the interaction of contaminants with the endocrine system, we evaluated the cellular bioavailability of numerous chemicals. Hormone bi...

  4. Enhanced cellular functions through induction of LPA2 by cisplatin in fibrosarcoma HT1080 cells.

    PubMed

    Takahashi, Kaede; Fukushima, Kaori; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2017-02-15

    Lysophosphatidic acid (LPA) is a simple biophysical lipid which interacts with at least six subtypes of G protein-coupled LPA receptors (LPA1-LPA6). In cancer cells, LPA signaling via LPA receptors is involved in the regulation of malignant properties, such as cell growth, motility, and invasion. The aim of this study was to assess whether LPA receptors regulate cellular functions of fibrosarcoma cells treated with anticancer drug. HT1080 cells were maintained by the stepwise treatment of cisplatin (CDDP) at a range of 0.01 to 1.0 µM for approximately 6 months. The cell motile and invasive activities of long-term CDDP-treated (HT-CDDP) cells were significantly stimulated by LPA treatment, while HT-CDDP cells in the static state showed the low cell motile and invasive activities in comparison with HT1080 cells. Since the expression level of LPAR2 gene was markedly elevated in HT-CDDP cells, LPA2 knockdown cells were generated from HT-CDDP cells. The cell motile and invasive activities of HT-CDDP cells were reduced by LPA2 knockdown. In colony assay, large-sized colonies formed by long-term CDDP treatment were suppressed by LPA2 knockdown. In addition, LPA2 knockdown cells reduced LPA production by autotaxin (ATX), correlating with ATX expression level. These results suggest that LPA signaling via LPA2 may play an important role in the regulation of cellular functions in HT1080 cells treated with CDDP.

  5. Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review

    PubMed Central

    Balentova, Sona; Adamkov, Marian

    2015-01-01

    Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors. PMID:26610477

  6. Neurotransmitter Specific, Cellular-Resolution Functional Brain Mapping Using Receptor Coated Nanoparticles: Assessment of the Possibility

    PubMed Central

    Forati, Ebrahim; Sabouni, Abas; Ray, Supriyo; Head, Brian; Schoen, Christian; Sievenpiper, Dan

    2015-01-01

    Receptor coated resonant nanoparticles and quantum dots are proposed to provide a cellular-level resolution image of neural activities inside the brain. The functionalized nanoparticles and quantum dots in this approach will selectively bind to different neurotransmitters in the extra-synaptic regions of neurons. This allows us to detect neural activities in real time by monitoring the nanoparticles and quantum dots optically. Gold nanoparticles (GNPs) with two different geometries (sphere and rod) and quantum dots (QDs) with different sizes were studied along with three different neurotransmitters: dopamine, gamma-Aminobutyric acid (GABA), and glycine. The absorption/emission spectra of GNPs and QDs before and after binding of neurotransmitters and their corresponding receptors are reported. The results using QDs and nanorods with diameter 25nm and aspect rations larger than three were promising for the development of the proposed functional brain mapping approach. PMID:26717196

  7. Lactose-Functionalized Dendrimers Arbitrate the Interaction of Galectin-3/MUC1 Mediated Cancer Cellular Aggregation

    PubMed Central

    Michel, Anna K.; Nangia-Makker, Pratima; Raz, Avraham

    2015-01-01

    By using lactose-functionalized poly(amidoamine) dendrimers as a tunable multivalent platform, we studied cancer cell aggregation in three different cell lines (A549, DU-145, and HT-1080) with galectin-3. We found that small lactose-functionalized G(2)-dendrimer 1 inhibited galectin-3-induced aggregation of the cancer cells. In contrast, dendrimer 4 (a larger, generation 6 dendrimer with 100 carbohydrate end groups) caused cancer cells to aggregate through a galectin-3 pathway. This study indicates that inhibition of cellular aggregation occurred because 1 provided competitive binding sites for galectin-3 (compared to its putative cancer cell ligand, TF-antigen on MUC1). Dendrimer 4, in contrast, provided an excess of ligands for galectin-3 binding; this caused crosslinking and aggregation of cells to be increased. PMID:25138772

  8. Controlling Cellular Uptake and Toxicity of Polyphenylene Dendrimers by Chemical Functionalization.

    PubMed

    Hammer, Brenton; Wu, Yuzhou; Fischer, Stephan; Liu, Weina; Weil, Tanja; Müllen, Klaus

    2017-02-21

    Polyphenylene dendrimers (PPDs) represent a unique class of macromolecules based on their monodisperse and shape-persistent nature. These characteristics have enabled the synthesis of a new genre of "patched" surface dendrimers where their exterior can be functionalized with a variety of polar and unpolar substituents to yield lipophilic binding sites in a site-specific way. While such materials have proven capable of complexing biologically relevant molecules, shown high cellular uptake in various cell lines, and low to no toxicity; there is minimal understanding of the driving forces to these characteristics. Therefore, the present work aims at investigating whether it is the specific chemical functionalities, relative quantities of each moiety, or the "patched" surface patterning on the dendrimers that more significantly influences their behavior in biological media.

  9. Manipulation of cellular GSH biosynthetic capacity via TAT-mediated protein transduction of wild-type or a dominant-negative mutant of glutamate cysteine ligase alters cell sensitivity to oxidant-induced cytotoxicity

    SciTech Connect

    Backos, Donald S.; Brocker, Chad N.; Franklin, Christopher C.

    2010-02-15

    The glutathione (GSH) antioxidant defense system plays a central role in protecting mammalian cells against oxidative injury. Glutamate cysteine ligase (GCL) is the rate-limiting enzyme in GSH biosynthesis and is a heterodimeric holoenzyme composed of catalytic (GCLC) and modifier (GCLM) subunits. As a means of assessing the cytoprotective effects of enhanced GSH biosynthetic capacity, we have developed a protein transduction approach whereby recombinant GCL protein can be rapidly and directly transferred into cells when coupled to the HIV TAT protein transduction domain. Bacterial expression vectors encoding TAT fusion proteins of both GCL subunits were generated and recombinant fusion proteins were synthesized and purified to near homogeneity. The TAT-GCL fusion proteins were capable of heterodimerization and formation of functional GCL holoenzyme in vitro. Exposure of Hepa-1c1c7 cells to the TAT-GCL fusion proteins resulted in the time- and dose-dependent transduction of both GCL subunits and increased cellular GCL activity and GSH levels. A heterodimerization-competent, enzymatically deficient GCLC-TAT mutant was also generated in an attempt to create a dominant-negative suppressor of GCL. Transduction of cells with a catalytically inactive GCLC(E103A)-TAT mutant decreased cellular GCL activity in a dose-dependent manner. TAT-mediated manipulation of cellular GCL activity was also functionally relevant as transduction with wild-type GCLC(WT)-TAT or mutant GCLC(E103A)-TAT conferred protection or enhanced sensitivity to H{sub 2}O{sub 2}-induced cell death, respectively. These findings demonstrate that TAT-mediated transduction of wild-type or dominant-inhibitory mutants of the GCL subunits is a viable means of manipulating cellular GCL activity to assess the effects of altered GSH biosynthetic capacity.

  10. Alterations in functional connectivity for language in prematurely born adolescents.

    PubMed

    Schafer, Robin J; Lacadie, Cheryl; Vohr, Betty; Kesler, Shelli R; Katz, Karol H; Schneider, Karen C; Pugh, Kenneth R; Makuch, Robert W; Reiss, Allan L; Constable, R Todd; Ment, Laura R

    2009-03-01

    Recent data suggest recovery of language systems but persistent structural abnormalities in the prematurely born. We tested the hypothesis that subjects who were born prematurely develop alternative networks for processing language. Subjects who were born prematurely (n = 22; 600-1250 g birth weight), without neonatal brain injury on neonatal cranial ultrasound, and 26 term control subjects were examined with a functional magnetic resonance imaging (fMRI) semantic association task, the Wechsler Intelligence Scale for Children-III (WISC-III) and the Clinical Evaluation of Language Fundamentals (CELF). In-magnet task accuracy and response times were calculated, and fMRI data were evaluated for the effect of group on blood oxygen level dependent (BOLD) activation, the correlation between task accuracy and activation and the functional connectivity between regions activating to task. Although there were differences in verbal IQ and CELF scores between the preterm (PT) and term control groups, there were no significant differences for either accuracy or response time for the in-magnet task. Both groups activated classic semantic processing areas including the left superior and middle temporal gyri and inferior frontal gyrus, and there was no significant difference in activation patterns between groups. Clear differences between the groups were observed in the correlation between task accuracy and activation to task at P < 0.01, corrected for multiple comparisons. Left inferior frontal gyrus correlated with accuracy only for term controls and left sensory motor areas correlated with accuracy only for PT subjects. Left middle temporal gyri correlated with task accuracy for both groups. Connectivity analyses at P < 0.001 revealed the importance of a circuit between left middle temporal gyri and inferior frontal gyrus for both groups. In addition, the PT subjects evidenced greater connectivity between traditional language areas and sensory motor areas but significantly

  11. Alterations in functional connectivity for language in prematurely born adolescents

    PubMed Central

    Lacadie, Cheryl; Vohr, Betty; Kesler, Shelli R.; Katz, Karol H.; Schneider, Karen C.; Pugh, Kenneth R.; Makuch, Robert. W.; Reiss, Allan L.; Constable, R. Todd; Ment, Laura R.

    2009-01-01

    Recent data suggest recovery of language systems but persistent structural abnormalities in the prematurely born. We tested the hypothesis that subjects who were born prematurely develop alternative networks for processing language. Subjects who were born prematurely (n = 22; 600–1250 g birth weight), without neonatal brain injury on neonatal cranial ultrasound, and 26 term control subjects were examined with a functional magnetic resonance imaging (fMRI) semantic association task, the Wechsler Intelligence Scale for Children-III (WISC-III) and the Clinical Evaluation of Language Fundamentals (CELF). In-magnet task accuracy and response times were calculated, and fMRI data were evaluated for the effect of group on blood oxygen level dependent (BOLD) activation, the correlation between task accuracy and activation and the functional connectivity between regions activating to task. Although there were differences in verbal IQ and CELF scores between the preterm (PT) and term control groups, there were no significant differences for either accuracy or response time for the in-magnet task. Both groups activated classic semantic processing areas including the left superior and middle temporal gyri and inferior frontal gyrus, and there was no significant difference in activation patterns between groups. Clear differences between the groups were observed in the correlation between task accuracy and activation to task at P < 0.01, corrected for multiple comparisons. Left inferior frontal gyrus correlated with accuracy only for term controls and left sensory motor areas correlated with accuracy only for PT subjects. Left middle temporal gyri correlated with task accuracy for both groups. Connectivity analyses at P < 0.001 revealed the importance of a circuit between left middle temporal gyri and inferior frontal gyrus for both groups. In addition, the PT subjects evidenced greater connectivity between traditional language areas and sensory motor areas but significantly

  12. Altered structure and function of astrocytes following status epilepticus.

    PubMed

    Wilcox, Karen S; Gee, James M; Gibbons, Meredith B; Tvrdik, Petr; White, John A

    2015-08-01

    Temporal lobe epilepsy (TLE) is a devastating seizure disorder that is often caused by status epilepticus (SE). Temporal lobe epilepsy can be very difficult to control with currently available antiseizure drugs, and there are currently no disease-modifying therapies that can prevent the development of TLE in those patients who are at risk. While the functional changes that occur in neurons following SE and leading to TLE have been well studied, only recently has research attention turned to the role in epileptogenesis of astrocytes, the other major cell type of the brain. Given that epilepsy is a neural circuit disorder, innovative ways to evaluate the contributions that both neurons and astrocytes make to aberrant circuit activity will be critical for the understanding of the emergent network properties that result in seizures. Recently described approaches using genetically encoded calcium-indicating proteins can be used to image dynamic calcium transients, a marker of activity in both neurons and glial cells. It is anticipated that this work will lead to novel insights into the process of epileptogenesis at the network level and may identify disease-modifying therapeutic targets that have been missed because of a largely neurocentric view of seizure generation following SE. This article is part of a Special Issue entitled "Status Epilepticus".

  13. Alteration in sensory nerve function following electrical shock.

    PubMed

    Abramov, G S; Bier, M; Capelli-Schellpfeffer, M; Lee, R C

    1996-12-01

    A study of the effects of electrical shock on peripheral nerve fibres is presented. Strength and duration of the applied shocks were similar to those encountered in a typical industrial electrical accident. The purpose of this study is: (i) to identify the electrophysiological and morphological change in nerve fibres after the application of electrical current shocks; (ii) to examine the ability of the peripheral nerve fibres to spontaneously regain function and; (iii) to demonstrate the usefulness of the sensory refractory spectrum as an additional technique in assessing the damage. Three groups of animals received twelve 4-ms electric field pulses of approximately 37 V/cm (n = 5), 75 V/cm (n = 9) and 150 V/cm (n = 6), respectively. Group 4 was a control group and received a direct application of 2 per cent lidocaine over the sciatic nerve for 30 min. Thermal effects of the shocks were negligible. The sensory refractory spectrum shows that electrical shock damage was mainly to the large, fast myelinated fibres and that higher field strengths do more damage. Also in a histological examination it was found that the more heavily shocked myelinated fibres had sustained more damage.

  14. Altered structure and function of astrocytes following status epilepticus

    PubMed Central

    Wilcox, Karen S.; Gee, James M.; Gibbons, Meredith B.; Tvrdik, Petr; White, John A.

    2016-01-01

    Temporal lobe epilepsy (TLE) is a devastating seizure disorder that is often caused by status epilepticus (SE). Temporal lobe epilepsy can be very difficult to control with currently available antiseizure drugs, and there are currently no disease-modifying therapies that can prevent the development of TLE in those patients who are at risk. While the functional changes that occur in neurons following SE and leading up to TLE have been well studied, only recently has attention turned to the role in epileptogenesis of astrocytes, the other major cell type of the brain. Given that epilepsy is a neural circuit disorder, innovative ways to evaluate the contributions that both neurons and astrocytes make to aberrant circuit activity will be critical for the understanding of the emergent network properties that result in seizures. Recently described approaches using genetically encoded calcium-indicating proteins can be used to image dynamic calcium transients, a marker of activity in both neurons and glial cells. It is anticipated that this work will lead to novel insights into the process of epileptogenesis at the network level and may identify disease-modifying therapeutic targets that have been missed because of a largely neurocentric view of seizure generation following SE. PMID:26219575

  15. Free p-Cresol Alters Neutrophil Function in Dogs.

    PubMed

    Bosco, Anelise Maria; Pereira, Priscila Preve; Almeida, Breno Fernando Martins; Narciso, Luis Gustavo; Dos Santos, Diego Borba; Santos-Neto, Álvaro José Dos; Ferreira, Wagner Luis; Ciarlini, Paulo César

    2016-05-01

    To achieve a clearer understanding of the mechanisms responsible for neutrophil dysfunction recently described in dogs with chronic renal failure (CRF), the plasma concentrations of free p-cresol in healthy dogs (n = 20) and those with CRF (n = 20) were compared. The degree of correlation was determined between plasma levels of p-cresol and markers of oxidative stress and function of neutrophils in these dogs. The effect of this compound on oxidative metabolism and apoptosis was assessed in neutrophils isolated from 16 healthy dogs incubated in RPMI 1640 supplemented with p-cresol (0.405 mg/L) and compared with medium supplemented with uremic plasma (50%). To achieve this, the plasma concentration of p-cresol was quantified by liquid phase high-performance liquid chromatography. The neutrophil oxidative metabolism was determined using the probes hydroethidine and 2',7'-dichlorofluorescein diacetate and apoptosis was measured using Annexin V-PE by capillary flow cytometry. Compared with the healthy dogs, uremic dogs presented higher concentrations of free p-cresol, greater oxidative stress, and neutrophils primed for accelerated apoptosis. The free p-cresol induced in neutrophils from healthy dogs increased apoptosis and decreased reactive oxygen species production. We conclude that the health status presented during uremia concomitant with the increase in plasma free p-cresol can contribute to the presence of immunosuppression in dogs with CRF.

  16. Allosteric control in a metalloprotein dramatically alters function

    PubMed Central

    Baxter, Elizabeth Leigh; Zuris, John A.; Wang, Charles; Vo, Phu Luong T.; Axelrod, Herbert L.; Cohen, Aina E.; Paddock, Mark L.; Nechushtai, Rachel; Onuchic, Jose N.; Jennings, Patricia A.

    2013-01-01

    Metalloproteins (MPs) comprise one-third of all known protein structures. This diverse set of proteins contain a plethora of unique inorganic moieties capable of performing chemistry that would otherwise be impossible using only the amino acids found in nature. Most of the well-studied MPs are generally viewed as being very rigid in structure, and it is widely thought that the properties of the metal centers are primarily determined by the small fraction of amino acids that make up the local environment. Here we examine both theoretically and experimentally whether distal regions can influence the metal center in the diabetes drug target mitoNEET. We demonstrate that a loop (L2) 20 Å away from the metal center exerts allosteric control over the cluster binding domain and regulates multiple properties of the metal center. Mutagenesis of L2 results in significant shifts in the redox potential of the [2Fe-2S] cluster and orders of magnitude effects on the rate of [2Fe-2S] cluster transfer to an apo-acceptor protein. These surprising effects occur in the absence of any structural changes. An examination of the native basin dynamics of the protein using all-atom simulations shows that twisting in L2 controls scissoring in the cluster binding domain and results in perturbations to one of the cluster-coordinating histidines. These allosteric effects are in agreement with previous folding simulations that predicted L2 could communicate with residues surrounding the metal center. Our findings suggest that long-range dynamical changes in the protein backbone can have a significant effect on the functional properties of MPs. PMID:23271805

  17. Imbalanced Expression of Vcan mRNA Splice Form Proteins Alters Heart Morphology and Cellular Protein Profiles

    PubMed Central

    Burns, Tara A.; Dours-Zimmermann, Maria T.; Zimmermann, Dieter R.; Krug, Edward L.; Comte-Walters, Susana; Reyes, Leticia; Davis, Monica A.; Schey, Kevin L.; Schwacke, John H.; Kern, Christine B.; Mjaatvedt, Corey H.

    2014-01-01

    The fundamental importance of the proteoglycan versican to early heart formation was clearly demonstrated by the Vcan null mouse called heart defect (hdf). Total absence of the Vcan gene halts heart development at a stage prior to the heart’s pulmonary/aortic outlet segment growth. This creates a problem for determining the significance of versican’s expression in the forming valve precursors and vascular wall of the pulmonary and aortic roots. This study presents data from a mouse model, Vcan(tm1Zim), of heart defects that results from deletion of exon 7 in the Vcan gene. Loss of exon 7 prevents expression of two of the four alternative splice forms of the Vcan gene. Mice homozygous for the exon 7 deletion survive into adulthood, however, the inability to express the V2 or V0 forms of versican results in ventricular septal defects, smaller cushions/valve leaflets with diminished myocardialization and altered pulmonary and aortic outflow tracts. We correlate these phenotypic findings with a large-scale differential protein expression profiling to identify compensatory alterations in cardiac protein expression at E13.5 post coitus that result from the absence of Vcan exon 7. The Vcan(tm1Zim) hearts show significant changes in the relative abundance of several cytoskeletal and muscle contraction proteins including some previously associated with heart disease. These alterations define a protein fingerprint that provides insight to the observed deficiencies in pre-valvular/septal cushion mesenchyme and the stability of the myocardial phenotype required for alignment of the outflow tract with the heart ventricles. PMID:24586547

  18. Enterococcus faecalis plasmid pAD1-encoded Fst toxin affects membrane permeability and alters cellular responses to lantibiotics.

    PubMed

    Weaver, Keith E; Weaver, Dariel M; Wells, Carol L; Waters, Christopher M; Gardner, Marshall E; Ehli, Erik A

    2003-04-01

    Fst is a peptide toxin encoded by the par toxin-antitoxin stability determinant of Enterococcus faecalis plasmid pAD1. Intracellular overproduction of Fst resulted in simultaneous inhibition of all cellular macromolecular synthesis concomitant with cell growth inhibition and compromised the integrity of the cell membrane. Cells did not lyse or noticeably leak intracellular contents but had specific defects in chromosome partitioning and cell division. Extracellular addition of synthetic Fst had no effect on cell growth. Spontaneous Fst-resistant mutants had a phenotype consistent with changes in membrane composition. Interestingly, overproduction of Fst sensitized cells to the lantibiotic nisin, and Fst-resistant mutants were cross-resistant to nisin and the pAD1-encoded cytolysin.

  19. Dietary Restriction Mitigates Cocaine-Induced Alterations of Olfactory Bulb Cellular Plasticity and Gene Expression, and Behavior

    PubMed Central

    Xu, Xiangru; Mughal, Mohamed R.; Hall, F. Scott; Perona, Maria T.G.; Pistell, Paul J.; Lathia, Justin D; Chigurupati, Srinivasulu; Becker, Kevin G; Ladenheim, Bruce; Niklason, Laura E; Uhl, George R.; Cadet, Jean Lud; Mattson, Mark P.

    2010-01-01

    Because the olfactory system plays a major role in food consumption, and because “food addiction” and associated morbidities have reached epidemic proportions, we tested the hypothesis that dietary energy restriction can modify adverse effects of cocaine on behavior and olfactory cellular and molecular plasticity. Mice maintained on an alternate day fasting (ADF) diet exhibited increased baseline locomotion and increased cocaine-sensitized locomotion during cocaine conditioning, despite no change in cocaine conditioned place preference, compared to mice fed ad libitum. Levels of dopamine and its metabolites in the olfactory bulb (OB) were suppressed in mice on the ADF diet compared to mice on the control diet, independent of acute or chronic cocaine treatment. The expression of several enzymes involved in dopamine metabolism including tyrosine hydroxylase, monoamine oxidases A and B (MAOA), and catechol-O-methyltransferase were significantly reduced in OBs of mice on the ADF diet. Both acute and chronic administration of cocaine suppressed the production of new OB cells, and this effect of cocaine was attenuated in mice on the ADF diet. Cocaine administration to mice on the control diet resulted in up-regulation of OB genes involved in mitochondrial energy metabolism, synaptic plasticity, cellular stress responses, and calcium- and cyclic AMP-mediated signaling, whereas multiple olfactory receptor genes were down-regulated by cocaine treatment. ADF abolished many of the effects of cocaine on OB gene expression. Our findings reveal that dietary energy intake modifies the neural substrates underlying some of the behavioral and physiological responses to repeated cocaine treatment, and also suggest novel roles for the olfactory system in addiction. The data further suggest that modification of dietary energy intake could provide a novel potential approach to addiction treatments. PMID:20456017

  20. Biomaterial design for specific cellular interactions: Role of surface functionalization and geometric features

    NASA Astrophysics Data System (ADS)

    Kolhar, Poornima

    The areas of drug delivery and tissue engineering have experienced extraordinary growth in recent years with the application of engineering principles and their potential to support and improve the field of medicine. The tremendous progress in nanotechnology and biotechnology has lead to this explosion of research and development in biomedical applications. Biomaterials can now be engineered at a nanoscale and their specific interactions with the biological tissues can be modulated. Various design parameters are being established and researched for design of drug-delivery carriers and scaffolds to be implanted into humans. Nanoparticles made from versatile biomaterial can deliver both small-molecule drugs and various classes of bio-macromolecules, such as proteins and oligonucleotides. Similarly in the field of tissue engineering, current approaches emphasize nanoscale control of cell behavior by mimicking the natural extracellular matrix (ECM) unlike, traditional scaffolds. Drug delivery and tissue engineering are closely connected fields and both of these applications require materials with exceptional physical, chemical, biological, and biomechanical properties to provide superior therapy. In the current study the surface functionalization and the geometric features of the biomaterials has been explored. In particular, a synthetic surface for culture of human embryonic stem cells has been developed, demonstrating the importance of surface functionalization in maintaining the pluripotency of hESCs. In the second study, the geometric features of the drug delivery carriers are investigated and the polymeric nanoneedles mediated cellular permeabilization and direct cytoplasmic delivery is reported. In the third study, the combined effect of surface functionalization and geometric modification of carriers for vascular targeting is enunciated. These studies illustrate how the biomaterials can be designed to achieve various cellular behaviors and control the

  1. A Current View of Functional Biomaterials for Wound Care, Molecular and Cellular Therapies

    PubMed Central

    Piraino, Francesco; Selimović, Šeila

    2015-01-01

    The intricate process of wound healing involves activation of biological pathways that work in concert to regenerate a tissue microenvironment consisting of cells and external cellular matrix (ECM) with enzymes, cytokines, and growth factors. Distinct stages characterize the mammalian response to tissue injury: hemostasis, inflammation, new tissue formation, and tissue remodeling. Hemostasis and inflammation start right after the injury, while the formation of new tissue, along with migration and proliferation of cells within the wound site, occurs during the first week to ten days after the injury. In this review paper, we discuss approaches in tissue engineering and regenerative medicine to address each of these processes through the application of biomaterials, either as support to the native microenvironment or as delivery vehicles for functional hemostatic, antibacterial, or anti-inflammatory agents. Molecular therapies are also discussed with particular attention to drug delivery methods and gene therapies. Finally, cellular treatments are reviewed, and an outlook on the future of drug delivery and wound care biomaterials is provided. PMID:26509154

  2. Altered carnitine homeostasis is associated with decreased mitochondrial function and altered nitric oxide signaling in lambs with pulmonary hypertension

    PubMed Central

    Sharma, Shruti; Sud, Neetu; Wiseman, Dean A.; Carter, A. Lee; Kumar, Sanjiv; Hou, Yali; Rau, Thomas; Wilham, Jason; Harmon, Cynthia; Oishi, Peter; Fineman, Jeffrey R.; Black, Stephen M.

    2008-01-01

    Utilizing aortopulmonary vascular graft placement in the fetal lamb, we have developed a model (shunt) of pulmonary hypertension that mimics congenital heart disease with increased pulmonary blood flow. Our previous studies have identified a progressive development of endothelial dysfunction in shunt lambs that is dependent, at least in part, on decreased nitric oxide (NO) signaling. The purpose of this study was to evaluate the possible role of a disruption in carnitine metabolism in shunt lambs and to determine the effect on NO signaling. Our data indicate that at 2 wk of age, shunt lambs have significantly reduced expression (P < 0.05) of the key enzymes in carnitine metabolism: carnitine palmitoyltransferases 1 and 2 as well as carnitine acetyltransferase (CrAT). In addition, we found that CrAT activity was inhibited due to increased nitration. Furthermore, free carnitine levels were significantly decreased whereas acylcarnitine levels were significantly higher in shunt lambs (P < 0.05). We also found that alterations in carnitine metabolism resulted in mitochondrial dysfunction, since shunt lambs had significantly decreased pyruvate, increased lactate, and a reduced pyruvate/lactate ratio. In pulmonary arterial endothelial cells cultured from juvenile lambs, we found that mild uncoupling of the mitochondria led to a decrease in cellular ATP levels and a reduction in both endothelial NO synthase-heat shock protein 90 (eNOS-HSP90) interactions and NO signaling. Similarly, in shunt lambs we found a loss of eNOS-HSP90 interactions that correlated with a progressive decrease in NO signaling. Our data suggest that mitochondrial dysfunction may play a role in the development of endothelial dysfunction and pulmonary hypertension and increased pulmonary blood flow. PMID:18024721

  3. Enhancing Cellular Uptake and Doxorubicin Delivery of Mesoporous Silica Nanoparticles via Surface Functionalization: Effects of Serum.

    PubMed

    Shahabi, Shakiba; Döscher, Svea; Bollhorst, Tobias; Treccani, Laura; Maas, Michael; Dringen, Ralf; Rezwan, Kurosch

    2015-12-09

    In this study, we demonstrate how functional groups on the surface of mesoporous silica nanoparticles (MSNPs) can influence the encapsulation and release of the anticancer drug doxorubicin, as well as cancer cell response in the absence or presence of serum proteins. To this end, we synthesized four differently functionalized MSNPs with amine, sulfonate, polyethylene glycol, or polyethylene imine functional surface groups, as well as one type of antibody-conjugated MSNP for specific cellular targeting, and we characterized these MSNPs regarding their physicochemical properties, colloidal stability in physiological media, and uptake and release of doxorubicin in vitro. Then, the MSNPs were investigated for their cytotoxic potential on cancer cells. Cationic MSNPs could not be loaded with doxorubicin and did therefore not show any cytotoxic and antiproliferative potential on osteosarcoma cells, although they were efficiently taken up into the cells in the presence or absence of serum. In contrast, substantial amounts of doxorubicin were loaded into negatively charged and unfunctionalized MSNPs. Especially, sulfonate-functionalized doxorubicin-loaded MSNPs were efficiently taken up into the cells in the presence of serum and showed an accelerated toxic and antiproliferative potential compared to unfunctionalized MSNPs, antibody-conjugated MSNPs, and even free doxorubicin. These findings stress the high importance of the surface charge as well as of the protein corona for designing and applying nanoparticles for targeted drug delivery.

  4. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions

    PubMed Central

    2014-01-01

    DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction. PMID:24995125

  5. [Effects of electromagnetic field from cellular phones on selected central nervous system functions: a literature review].

    PubMed

    Bak, Marek; Zmyślony, Marek

    2010-01-01

    In the opinion of some experts, a growing emission of man-made electromagnetic fields (EMF), also known as electromagnetic is a source of continuously increasing health hazards to the general population. Due to their large number and very close proximity to the user's head, mobile phones deserve special attention. This work is intended to give a systematic review of objective studies, assessing the effects of mobile phone EMF on the functions of the central nervous system (CNS) structures. Our review shows that short exposures to mobile phone EMF, experienced by telephone users during receiving calls, do not affect the cochlear function. Effects of GSM mobile phone EMF on the conduction of neural impulses from the inner car neurons to the brainstem auditory centres have not been detected either. If Picton's principle, saying that P300 amplitude varies with the improbability of the targets and its latency varies with difficulty of discriminating the target stimulus from standard stimuli, is true, EMF changes the improbability of the targets without hindering their discrimination. Experiments with use of indirect methods do not enable unequivocal verification of EMF effects on the cognitive functions due to the CNS anatomical and functional complexity. Thus, it seems advisable to develop a model of EMF effects on the excitable brain structures at the cellular level.

  6. ERα-XPO1 Cross Talk Controls Tamoxifen Sensitivity in Tumors by Altering ERK5 Cellular Localization.

    PubMed

    Wrobel, Kinga; Zhao, Yiru Chen; Kulkoyluoglu, Eylem; Chen, Karen Lee Ann; Hieronymi, Kadriye; Holloway, Jamie; Li, Sarah; Ray, Tania; Ray, Partha Sarathi; Landesman, Yosef; Lipka, Alexander Edward; Smith, Rebecca Lee; Madak-Erdogan, Zeynep

    2016-10-01

    Most breast cancer deaths occur in women with recurrent, estrogen receptor (ER)-α(+), metastatic tumors. There is a critical need for therapeutic approaches that include novel, targetable mechanism-based strategies by which ERα (+) tumors can be resensitized to endocrine therapies. The objective of this study was to validate a group of nuclear transport genes as potential biomarkers to predict the risk of endocrine therapy failure and to evaluate the inhibition of XPO1, one of these genes as a novel means to enhance the effectiveness of endocrine therapies. Using advanced statistical methods, we found that expression levels of several of nuclear transport genes including XPO1 were associated with poor survival and predicted recurrence of tamoxifen-treated breast tumors in human breast cancer gene expression data sets. In mechanistic studies we showed that the expression of XPO1 determined the cellular localization of the key signaling proteins and the response to tamoxifen. We demonstrated that combined targeting of XPO1 and ERα in several tamoxifen-resistant cell lines and tumor xenografts with the XPO1 inhibitor, Selinexor, and tamoxifen restored tamoxifen sensitivity and prevented recurrence in vivo. The nuclear transport pathways have not previously been implicated in the development of endocrine resistance, and given the need for better strategies for selecting patients to receive endocrine modulatory reagents and improving therapy response of relapsed ERα(+) tumors, our findings show great promise for uncovering the role these pathways play in reducing cancer recurrences.

  7. ERα-XPO1 Cross Talk Controls Tamoxifen Sensitivity in Tumors by Altering ERK5 Cellular Localization

    PubMed Central

    Wrobel, Kinga; Zhao, Yiru Chen; Kulkoyluoglu, Eylem; Chen, Karen Lee Ann; Hieronymi, Kadriye; Holloway, Jamie; Li, Sarah; Ray, Tania; Ray, Partha Sarathi; Landesman, Yosef; Lipka, Alexander Edward; Smith, Rebecca Lee

    2016-01-01

    Most breast cancer deaths occur in women with recurrent, estrogen receptor (ER)-α(+), metastatic tumors. There is a critical need for therapeutic approaches that include novel, targetable mechanism-based strategies by which ERα (+) tumors can be resensitized to endocrine therapies. The objective of this study was to validate a group of nuclear transport genes as potential biomarkers to predict the risk of endocrine therapy failure and to evaluate the inhibition of XPO1, one of these genes as a novel means to enhance the effectiveness of endocrine therapies. Using advanced statistical methods, we found that expression levels of several of nuclear transport genes including XPO1 were associated with poor survival and predicted recurrence of tamoxifen-treated breast tumors in human breast cancer gene expression data sets. In mechanistic studies we showed that the expression of XPO1 determined the cellular localization of the key signaling proteins and the response to tamoxifen. We demonstrated that combined targeting of XPO1 and ERα in several tamoxifen-resistant cell lines and tumor xenografts with the XPO1 inhibitor, Selinexor, and tamoxifen restored tamoxifen sensitivity and prevented recurrence in vivo. The nuclear transport pathways have not previously been implicated in the development of endocrine resistance, and given the need for better strategies for selecting patients to receive endocrine modulatory reagents and improving therapy response of relapsed ERα(+) tumors, our findings show great promise for uncovering the role these pathways play in reducing cancer recurrences. PMID:27533791

  8. Antrodia cinnamomea profoundly exalted the reversion of activated hepatic stellate cells by the alteration of cellular proteins.

    PubMed

    Chen, Yi-Ren; Chang, Kai-Ting; Tsai, May-Jywan; Lee, Chia-Hung; Huang, Kao-Jean; Cheng, Henrich; Ho, Yen-Peng; Chen, Jian-Chyi; Yang, Hsueh-Hui; Weng, Ching-Feng

    2014-07-01

    The direct modulation of Antrodia cinnamomea (AC) on the prominent role of liver fibrosis-hepatic stellate cells (HSCs) in situ remains unclear. Firstly, the administration of A. cinnamomea mycelial extract (ACME) could improve liver morphology and histological changes including collagen formation and GPT activity in the liver of thioacetamide (TAA)-injured rats. The morphology and fatty acid restore of TAA-induced HSCs (THSCs) returned to the non-chemical induced HSCs (NHSCs) type as measured by immunofluorescence and Oil Red O staining. PPARγ was upregulated associated with the lowering of α-SMA protein in NHSC-ACME. ACME inhibited the MMP-2 activity in NHSCs by gelatin Zymography. After LC-MS/MS, the cytoskeleton (tubulin, lamin A) and heat shock protein 8 in NHSC-ACME, and guanylate kinase, brain-specific kinase, SG-II and p55 proteins were downregulated in THSC-ACME. Whereas MHC class II, SMC6 protein, and phospholipase D were upregulated in NHSC-ACME. Furthermore, PKG-1 was downregulated in NHSC-ACME and upregulated in THSC-ACME. SG-II and p55 proteins were downregulated in NHSC-ACME and THSC-ACME by Western blotting. Taken together, the beneficial effect of A. cinnamomea on the induction of HSC cellular proteins is potentially applied as an alternative and complementary medicine for the prevention and amelioration of a liver injury.

  9. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays.

    PubMed

    Murr, L E; Gaytan, S M; Medina, F; Lopez, H; Martinez, E; Machado, B I; Hernandez, D H; Martinez, L; Lopez, M I; Wicker, R B; Bracke, J

    2010-04-28

    In this paper, we examine prospects for the manufacture of patient-specific biomedical implants replacing hard tissues (bone), particularly knee and hip stems and large bone (femoral) intramedullary rods, using additive manufacturing (AM) by electron beam melting (EBM). Of particular interest is the fabrication of complex functional (biocompatible) mesh arrays. Mesh elements or unit cells can be divided into different regions in order to use different cell designs in different areas of the component to produce various or continually varying (functionally graded) mesh densities. Numerous design elements have been used to fabricate prototypes by AM using EBM of Ti-6Al-4V powders, where the densities have been compared with the elastic (Young) moduli determined by resonant frequency and damping analysis. Density optimization at the bone-implant interface can allow for bone ingrowth and cementless implant components. Computerized tomography (CT) scans of metal (aluminium alloy) foam have also allowed for the building of Ti-6Al-4V foams by embedding the digital-layered scans in computer-aided design or software models for EBM. Variations in mesh complexity and especially strut (or truss) dimensions alter the cooling and solidification rate, which alters the alpha-phase (hexagonal close-packed) microstructure by creating mixtures of alpha/alpha' (martensite) observed by optical and electron metallography. Microindentation hardness measurements are characteristic of these microstructures and microstructure mixtures (alpha/alpha') and sizes.

  10. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling

    PubMed Central

    Barca-Mayo, Olga; Pons-Espinal, Meritxell; Follert, Philipp; Armirotti, Andrea; Berdondini, Luca; De Pietri Tonelli, Davide

    2017-01-01

    Circadian rhythms are controlled by a network of clock neurons in the central pacemaker, the suprachiasmatic nucleus (SCN). Core clock genes, such as Bmal1, are expressed in SCN neurons and in other brain cells, such as astrocytes. However, the role of astrocytic clock genes in controlling rhythmic behaviour is unknown. Here we show that ablation of Bmal1 in GLAST-positive astrocytes alters circadian locomotor behaviour and cognition in mice. Specifically, deletion of astrocytic Bmal1 has an impact on the neuronal clock through GABA signalling. Importantly, pharmacological modulation of GABAA-receptor signalling completely rescues the behavioural phenotypes. Our results reveal a crucial role of astrocytic Bmal1 for the coordination of neuronal clocks and propose a new cellular target, astrocytes, for neuropharmacology of transient or chronic perturbation of circadian rhythms, where alteration of astrocytic clock genes might contribute to the impairment of the neurobehavioural outputs such as cognition. PMID:28186121

  11. Flow-cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS).

    PubMed

    Berney, Michael; Weilenmann, Hans-Ulrich; Egli, Thomas

    2006-06-01

    The effectiveness of solar disinfection (SODIS), a low-cost household water treatment method for developing countries, was investigated with flow cytometry and viability stains for the enteric bacterium Escherichia coli. A better understanding of the process of injury or death of E. coli during SODIS could be gained by investigating six different cellular functions, namely: efflux pump activity (Syto 9 plus ethidium bromide), membrane potential [bis-(1,3-dibutylbarbituric acid)trimethine oxonol; DiBAC4(3)], membrane integrity (LIVE/DEAD BacLight), glucose uptake activity (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose; 2-NBDG), total ATP concentration (BacTiter-Glo) and culturability (pour-plate method). These variables were measured in E. coli K-12 MG1655 cells that were exposed to either sunlight or artificial UVA light. The inactivation pattern of cellular functions was very similar for both light sources. A UVA light dose (fluence) of <500 kJ m(-2) was enough to lower the proton motive force, such that efflux pump activity and ATP synthesis decreased significantly. The loss of membrane potential, glucose uptake activity and culturability of >80 % of the cells was observed at a fluence of approximately 1500 kJ m(-2), and the cytoplasmic membrane of bacterial cells became permeable at a fluence of >2500 kJ m(-2). Culturable counts of stressed bacteria after anaerobic incubation on sodium pyruvate-supplemented tryptic soy agar closely correlated with the loss of membrane potential. The results strongly suggest that cells exposed to >1500 kJ m(-2) solar UVA (corresponding to 530 W m(-2) global sunlight intensity for 6 h) were no longer able to repair the damage and recover. Our study confirms the lethal effect of SODIS with cultivation-independent methods and gives a detailed picture of the 'agony' of E. coli when it is stressed with sunlight.

  12. Post-shock mesenteric lymph drainage ameliorates cellular immune function in rats following hemorrhagic shock.

    PubMed

    Liu, Hua; Zhao, Zi-Gang; Xing, Li-Qiang; Zhang, Li-Min; Niu, Chun-Yu

    2015-04-01

    Disturbance of immunity is an important factor to modulate inflammatory responses after severe shock. Post-shock mesenteric lymph (PSML) return plays an adverse role in multiple organ injuries induced by the hemorrhagic shock, and the inflammatory factors are involved in this process. However, whether the PSML can exacerbate immune dysfunctions that modulate inflammatory response to the hemorrhagic shock remains unknown. In the present study, the effects of PSML drainage on the distribution of T lymphocyte subgroup, the release of inflammatory factors, and apoptosis of thymocytes were investigated; the effect of PSML on the specific parameters of cellular immune function was also determined. Results showed that PSML drainage reduced the increased levels of CD3+, CD3+CD4+, CD4+CD25+ lymphocytes, IFN-γ, and the ratios of CD3 + CD4+/CD3 + CD4- in blood of the shocked rats at 3 h after resuscitation; PSML drainage also abolished the decreased IL-4 level and restored the higher ratio of IFN-γ/IL-4 to normal levels. Tissue injury, including enlarged intermembrance space and edema with congestion in the medulla, increased apoptotic cells and bax expression, decreased number of cells in the S phase, and bcl-2 expression were observed in the thymus after hemorrhagic shock. PSML drainage reversed these effects. In particular, PSML drainage increased the proliferation index and decreased p53 expression of thymocytes. These results suggest that hyperimmunity occurred at early stages of hemorrhagic shock with resuscitation and that PSML drainage could markedly improve cellular immune function that is responsible for the reduced inflammatory responses.

  13. Epoxy-functionalized mesostructured cellular foams as effective support for covalent immobilization of penicillin G acylase

    NASA Astrophysics Data System (ADS)

    Xue, Ping; Xu, Fang; Xu, Lidong

    2008-12-01

    The epoxy-functionalized mesoporous cellular foams (G-MCFs) with high specific surface area (˜400 m 2/g) and large-size mesopores (˜17 nm) were obtained by condensation of 3-glycidoxypropyltriethoxysilane (GPTS) and the surface silanol groups of mesoporous cellular foams (MCFs) and used as the support for immobilization of penicillin G acylase (PGA). The structural properties of G-MCF were characterized by FT-IR, N 2 adsorption, TG-DTA and 29Si MAS NMR. The studies indicated that the glycidoxypropyl groups were chemically bonded to the silicon atoms on the surface of MCF. The epoxy-functionalized mesoporous cellular foams can provide the microenvironments suitable for the immobilization of PGA, and the enzyme molecules could be immobilized covalently onto the G-MCF under mild conditions by reaction between the amino groups of the enzyme molecules and the epoxy groups on the surface of G-MCF. The PGA immobilized on G-MCF (PGA/G-MCF) exhibited the apparent activity of 1782 IU/g and 46.6% of activity recovery for hydrolyzing penicillin G potassium to produce 6-aminopenicillanic acid at 37 °C which were higher than that of PGA on pure silica MCF (1521 IU/g and 39.8%, respectively). The kinetic study also indicated that PGA immobilized on G-MCF has a Km of 2.1 × 10 -2 mol/L lower than that of PGA immobilized on the pure silica MCF (5.0 × 10 -2 mol/L). These may be attributed to the enhanced surface affinity between G-MCF support and the substrate molecules. Due to the covalent immobilization of PGA molecules on the surface of G-MCF, the immobilized PGA with considerable operational stability was achieved. The activity of PGA/G-MCF is still about 91.4% of its initial activity at the 10th cycle reuse while that of PGA/MCF only remains 41.5% of its initial activity at the same reuse numbers. In addition, the investigation results show the thermal stability and durability on acid or basic medium of PGA immobilized on G-MCF were improved remarkably.

  14. Prefrontal Compensatory Engagement in TBI is due to Altered Functional Engagement Of Existing Networks and not Functional Reorganization.

    PubMed

    Turner, Gary R; McIntosh, Anthony R; Levine, Brian

    2011-01-01

    Functional neuroimaging studies of traumatic brain injury (TBI) have demonstrated altered neural recruitment, specifically within prefrontal cortex (PFC). This is manifest typically as increased recruitment of homologous regions of PFC (e.g., right ventrolateral PFC during performance of a verbal working memory task, possibly in response to damage involving the left PFC). The behavioral correlates of these functional changes are poorly understood. We used fMRI and multivariate analytic methods to investigate changes in spatially distributed activity patterns and their behavioral correlates in a sample of TBI patients with diffuse axonal injury (DAI, but without focal injury) and matched healthy controls. Participants performed working memory tasks with varying memory load and executive demand. We identified networks within left and right PFC that uniquely and positively correlated with performance in our control and TBI samples respectively, providing evidence of compensatory functional recruitment. Next we combined brain-behavior and functional connectivity analyses to investigate whether compensatory brain changes were facilitated by functional reorganization (i.e., recruitment of brain regions not engaged by our control sample) or altered functional engagement (i.e., differential recruitment of similar brain regions between the two groups based on task demands). In other words, does altered recruitment represent the instantiation of novel neural networks to support working memory performance after injury or the unmasking of extant, but behaviorally latent, functional connectivity? Our results support an altered functional engagement hypothesis. Areas within PFC that are normally coactivated during working memory are behaviorally relevant at an earlier stage of difficulty for TBI patients as compared to controls. This altered functional engagement, also evident in the aging literature, is attributable to distributed changes owing to significant DAI.

  15. Altered Competitive Fitness, Antimicrobial Susceptibility, and Cellular Morphology in a Triclosan-Induced Small-Colony Variant of Staphylococcus aureus

    PubMed Central

    Forbes, Sarah; Latimer, Joe; Bazaid, Abdulrahman

    2015-01-01

    Staphylococcus aureus can produce small-colony variants (SCVs) that express various phenotypes. While their significance is unclear, SCV propagation may be influenced by relative fitness, antimicrobial susceptibility, and the underlying mechanism. We have investigated triclosan-induced generation of SCVs in six S. aureus strains, including methicillin-resistant S. aureus (MRSA). Parent strains (P0) were repeatedly passaged on concentration gradients of triclosan using a solid-state exposure system to generate P10. P10 was subsequently passaged without triclosan to generate X10. Susceptibility to triclosan and 7 antibiotics was assessed at all stages. For S. aureus ATCC 6538, SCVs were further characterized by determining microbicide susceptibility and competitive fitness. Cellular morphology was examined using electron microscopy, and protein expression was evaluated through proteomics. Triclosan susceptibility in all SCVs (which could be generated from 4/6 strains) was markedly decreased, while antibiotic susceptibility was significantly increased in the majority of cases. An SCV of S. aureus ATCC 6538 exhibited significantly increased susceptibility to all tested microbicides. Cross-wall formation was impaired in this bacterium, while expression of FabI, a target of triclosan, and IsaA, a lytic transglycosylase involved in cell division, was increased. The P10 SCV was 49% less fit than P0. In summary, triclosan exposure of S. aureus produced SCVs in 4/6 test bacteria, with decreased triclosan susceptibility but with generally increased antibiotic susceptibility. An SCV derived from S. aureus ATCC 6538 showed reduced competitive fitness, potentially due to impaired cell division. In this SCV, increased FabI expression could account for reduced triclosan susceptibility, while IsaA may be upregulated in response to cell division defects. PMID:26033734

  16. Altered Competitive Fitness, Antimicrobial Susceptibility, and Cellular Morphology in a Triclosan-Induced Small-Colony Variant of Staphylococcus aureus.

    PubMed

    Forbes, Sarah; Latimer, Joe; Bazaid, Abdulrahman; McBain, Andrew J

    2015-08-01

    Staphylococcus aureus can produce small-colony variants (SCVs) that express various phenotypes. While their significance is unclear, SCV propagation may be influenced by relative fitness, antimicrobial susceptibility, and the underlying mechanism. We have investigated triclosan-induced generation of SCVs in six S. aureus strains, including methicillin-resistant S. aureus (MRSA). Parent strains (P0) were repeatedly passaged on concentration gradients of triclosan using a solid-state exposure system to generate P10. P10 was subsequently passaged without triclosan to generate X10. Susceptibility to triclosan and 7 antibiotics was assessed at all stages. For S. aureus ATCC 6538, SCVs were further characterized by determining microbicide susceptibility and competitive fitness. Cellular morphology was examined using electron microscopy, and protein expression was evaluated through proteomics. Triclosan susceptibility in all SCVs (which could be generated from 4/6 strains) was markedly decreased, while antibiotic susceptibility was significantly increased in the majority of cases. An SCV of S. aureus ATCC 6538 exhibited significantly increased susceptibility to all tested microbicides. Cross-wall formation was impaired in this bacterium, while expression of FabI, a target of triclosan, and IsaA, a lytic transglycosylase involved in cell division, was increased. The P10 SCV was 49% less fit than P0. In summary, triclosan exposure of S. aureus produced SCVs in 4/6 test bacteria, with decreased triclosan susceptibility but with generally increased antibiotic susceptibility. An SCV derived from S. aureus ATCC 6538 showed reduced competitive fitness, potentially due to impaired cell division. In this SCV, increased FabI expression could account for reduced triclosan susceptibility, while IsaA may be upregulated in response to cell division defects.

  17. Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice

    PubMed Central

    Dombeck, Daniel A.; Graziano, Michael S.; Tank, David W.

    2010-01-01

    Macroscopic (millimeter scale) functional clustering is a hallmark characteristic of motor cortex spatial organization in awake behaving mammals; however, almost no information is known about the functional micro-organization (~100 microns scale). Here, we optically recorded intracellular calcium transients of layer 2/3 neurons with cellular resolution over ~200 micron diameter fields in the forelimb motor cortex of mobile, head-restrained mice during two distinct movements (running and grooming). We showed that the temporal correlation between neurons was statistically larger the closer the neurons were to each other. We further explored this correlation by using two separate methods to spatially segment the neurons within each imaging field: K-means clustering and correlations between single neuron activity and mouse movements. The two methods segmented the neurons similarly and led to the conclusion that the origin of the inverse relationship between correlation and distance seen statistically was two-fold: clusters of highly temporally correlated neurons were often spatially distinct from one another and (even when the clusters were spatially intermingled) within the clusters, the more correlated the neurons were to each other, the shorter the distance between them. Our results represent a direct observation of functional clustering within the micro-circuitry of the awake mouse motor cortex. PMID:19889987

  18. Biological functions of p53 isoforms through evolution: lessons from animal and cellular models.

    PubMed

    Marcel, V; Dichtel-Danjoy, M-L; Sagne, C; Hafsi, H; Ma, D; Ortiz-Cuaran, S; Olivier, M; Hall, J; Mollereau, B; Hainaut, P; Bourdon, J-C

    2011-12-01

    The TP53 tumour-suppressor gene is expressed as several protein isoforms generated by different mechanisms, including use of alternative promoters, splicing sites and translational initiation sites, that are conserved through evolution and within the TP53 homologues, TP63 and TP73. Although first described in the eighties, the importance of p53 isoforms in regulating the suppressive functions of p53 has only become evident in the last 10 years, by analogy with observations that p63 and p73 isoforms appeared indispensable to fully understand the biological functions of TP63 and TP73. This review summarizes recent advances in the field of 'p53 isoforms', including new data on p63 and p73 isoforms. Details of the alternative mechanisms that produce p53 isoforms and cis- and trans-regulators identified are provided. The main focus is on their biological functions (apoptosis, cell cycle, aging and so on) in cellular and animal models, including mouse, zebrafish and Drosophila. Finally, the deregulation of p53 isoform expression in human cancers is reviewed. Based on these latest results, several developments are expected in the future: the identification of drugs modulating p53 isoform expression; the generation of animal models and the evaluation of the use of p53 isoform as biomarkers in human cancers.

  19. The functional micro-organization of grid cells revealed by cellular-resolution imaging

    PubMed Central

    Heys, James G.; Rangarajan, Krsna V.; Dombeck, Daniel A.

    2015-01-01

    Summary Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater micro-circuit level understanding of the brain’s representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to non-grid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: The similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a “Mexican Hat” shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. PMID:25467986

  20. Alteration and Reorganization of Functional Networks: A New Perspective in Brain Injury Study

    PubMed Central

    Castellanos, Nazareth P.; Bajo, Ricardo; Cuesta, Pablo; Villacorta-Atienza, José Antonio; Paúl, Nuria; Garcia-Prieto, Juan; del-Pozo, Francisco; Maestú, Fernando

    2011-01-01

    Plasticity is the mechanism underlying the brain’s potential capability to compensate injury. Recently several studies have shown how functional connections among the brain areas are severely altered by brain injury and plasticity leading to a reorganization of the networks. This new approach studies the impact of brain injury by means of alteration of functional interactions. The concept of functional connectivity refers to the statistical interdependencies between physiological time series simultaneously recorded in various areas of the brain and it could be an essential tool for brain functional studies, being its deviation from healthy reference an indicator for damage. In this article, we review studies investigating functional connectivity changes after brain injury and subsequent recovery, providing an accessible introduction to common mathematical methods to infer functional connectivity, exploring their capabilities, future perspectives, and clinical uses in brain injury studies. PMID:21960965

  1. Persistent Morbillivirus Infection Leads to Altered Cortactin Distribution in Histiocytic Sarcoma Cells with Decreased Cellular Migration Capacity.

    PubMed

    Pfankuche, Vanessa Maria; Sayed-Ahmed, Mohamed; Contioso, Vanessa Bono; Spitzbarth, Ingo; Rohn, Karl; Ulrich, Reiner; Deschl, Ulrich; Kalkuhl, Arno; Baumgärtner, Wolfgang; Puff, Christina

    2016-01-01

    Histiocytic sarcomas represent rare but fatal neoplasms in humans. Based on the absence of a commercially available human histiocytic sarcoma cell line the frequently affected dog displays a suitable translational model. Canine distemper virus, closely related to measles virus, is a highly promising candidate for oncolytic virotherapy. Therapeutic failures in patients are mostly associated with tumour invasion and metastasis often induced by misdirected cytoskeletal protein activities. Thus, the impact of persistent canine distemper virus infection on the cytoskeletal protein cortactin, which is frequently overexpressed in human cancers with poor prognosis, was investigated in vitro in a canine histiocytic sarcoma cell line (DH82). Though phagocytic activity, proliferation and apoptotic rate were unaltered, a significantly reduced migration activity compared to controls (6 hours and 1 day after seeding) accompanied by a decreased number of cortactin mRNA transcripts (1 day) was detected. Furthermore, persistently canine distemper virus infected DH82 cells showed a predominant diffuse intracytoplasmic cortactin distribution at 6 hours and 1 day compared to controls with a prominent membranous expression pattern (p ≤ 0.05). Summarized, persistent canine distemper virus infection induces reduced tumour cell migration associated with an altered intracellular cortactin distribution, indicating cytoskeletal changes as one of the major pathways of virus-associated inhibition of tumour spread.

  2. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-05-01

    Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs.

  3. Persistent Morbillivirus Infection Leads to Altered Cortactin Distribution in Histiocytic Sarcoma Cells with Decreased Cellular Migration Capacity

    PubMed Central

    Pfankuche, Vanessa Maria; Sayed-Ahmed, Mohamed; Contioso, Vanessa Bono; Spitzbarth, Ingo; Rohn, Karl; Ulrich, Reiner; Deschl, Ulrich; Kalkuhl, Arno; Baumgärtner, Wolfgang; Puff, Christina

    2016-01-01

    Histiocytic sarcomas represent rare but fatal neoplasms in humans. Based on the absence of a commercially available human histiocytic sarcoma cell line the frequently affected dog displays a suitable translational model. Canine distemper virus, closely related to measles virus, is a highly promising candidate for oncolytic virotherapy. Therapeutic failures in patients are mostly associated with tumour invasion and metastasis often induced by misdirected cytoskeletal protein activities. Thus, the impact of persistent canine distemper virus infection on the cytoskeletal protein cortactin, which is frequently overexpressed in human cancers with poor prognosis, was investigated in vitro in a canine histiocytic sarcoma cell line (DH82). Though phagocytic activity, proliferation and apoptotic rate were unaltered, a significantly reduced migration activity compared to controls (6 hours and 1 day after seeding) accompanied by a decreased number of cortactin mRNA transcripts (1 day) was detected. Furthermore, persistently canine distemper virus infected DH82 cells showed a predominant diffuse intracytoplasmic cortactin distribution at 6 hours and 1 day compared to controls with a prominent membranous expression pattern (p ≤ 0.05). Summarized, persistent canine distemper virus infection induces reduced tumour cell migration associated with an altered intracellular cortactin distribution, indicating cytoskeletal changes as one of the major pathways of virus-associated inhibition of tumour spread. PMID:27911942

  4. Alterations in sarcomere function modify the hyperplastic to hypertrophic transition phase of mammalian cardiomyocyte development

    PubMed Central

    Nixon, Benjamin R.; Williams, Alexandra F.; Glennon, Michael S.; de Feria, Alejandro E.; Sebag, Sara C.; Baldwin, H. Scott; Becker, Jason R.

    2017-01-01

    It remains unclear how perturbations in cardiomyocyte sarcomere function alter postnatal heart development. We utilized murine models that allowed manipulation of cardiac myosin-binding protein C (MYBPC3) expression at critical stages of cardiac ontogeny to study the response of the postnatal heart to disrupted sarcomere function. We discovered that the hyperplastic to hypertrophic transition phase of mammalian heart development was altered in mice lacking MYBPC3 and this was the critical period for subsequent development of cardiomyopathy. Specifically, MYBPC3-null hearts developed evidence of increased cardiomyocyte endoreplication, which was accompanied by enhanced expression of cell cycle stimulatory cyclins and increased phosphorylation of retinoblastoma protein. Interestingly, this response was self-limited at later developmental time points by an upregulation of the cyclin-dependent kinase inhibitor p21. These results provide valuable insights into how alterations in sarcomere protein function modify postnatal heart development and highlight the potential for targeting cell cycle regulatory pathways to counteract cardiomyopathic stimuli. PMID:28239655

  5. Functional characterization and cellular dynamics of the CDC-42 - RAC - CDC-24 module in Neurospora crassa.

    PubMed

    Araujo-Palomares, Cynthia L; Richthammer, Corinna; Seiler, Stephan; Castro-Longoria, Ernestina

    2011-01-01

    Rho-type GTPases are key regulators that control eukaryotic cell polarity, but their role in fungal morphogenesis is only beginning to emerge. In this study, we investigate the role of the CDC-42 - RAC - CDC-24 module in Neurospora crassa. rac and cdc-42 deletion mutants are viable, but generate highly compact colonies with severe morphological defects. Double mutants carrying conditional and loss of function alleles of rac and cdc-42 are lethal, indicating that both GTPases share at least one common essential function. The defects of the GTPase mutants are phenocopied by deletion and conditional alleles of the guanine exchange factor (GEF) cdc-24, and in vitro GDP-GTP exchange assays identify CDC-24 as specific GEF for both CDC-42 and RAC. In vivo confocal microscopy shows that this module is organized as membrane-associated cap that covers the hyphal apex. However, the specific localization patterns of the three proteins are distinct, indicating different functions of RAC and CDC-42 within the hyphal tip. CDC-42 localized as confined apical membrane-associated crescent, while RAC labeled a membrane-associated ring excluding the region labeled by CDC42. The GEF CDC-24 occupied a strategic position, localizing as broad apical membrane-associated crescent and in the apical cytosol excluding the Spitzenkörper. RAC and CDC-42 also display distinct localization patterns during branch initiation and germ tube formation, with CDC-42 accumulating at the plasma membrane before RAC. Together with the distinct cellular defects of rac and cdc-42 mutants, these localizations suggest that CDC-42 is more important for polarity establishment, while the primary function of RAC may be maintaining polarity. In summary, this study identifies CDC-24 as essential regulator for RAC and CDC-42 that have common and distinct functions during polarity establishment and maintenance of cell polarity in N. crassa.

  6. In Vivo Bystander Effect: Cranial X-Irradiation Leads to Elevated DNA Damage, Altered Cellular Proliferation and Apoptosis, and Increased p53 Levels in Shielded Spleen

    SciTech Connect

    Koturbash, Igor; Loree, Jonathan; Kutanzi, Kristy; Koganow, Clayton; Pogribny, Igor; Kovalchuk, Olga

    2008-02-01

    Purpose: It is well accepted that irradiated cells may 'forward' genome instability to nonirradiated neighboring cells, giving rise to the 'bystander effect' phenomenon. Although bystander effects were well studied by using cell cultures, data for somatic bystander effects in vivo are relatively scarce. Methods and Materials: We set out to analyze the existence and molecular nature of bystander effects in a radiation target-organ spleen by using a mouse model. The animal's head was exposed to X-rays while the remainder of the body was completely protected by a medical-grade shield. Using immunohistochemistry, we addressed levels of DNA damage, cellular proliferation, apoptosis, and p53 protein in the spleen of control animals and completely exposed and head-exposed/body bystander animals. Results: We found that localized head radiation exposure led to the induction of bystander effects in the lead-shielded distant spleen tissue. Namely, cranial irradiation led to increased levels of DNA damage and p53 expression and also altered levels of cellular proliferation and apoptosis in bystander spleen tissue. The observed bystander changes were not caused by radiation scattering and were observed in two different mouse strains; C57BL/6 and BALB/c. Conclusion: Our study proves that bystander effects occur in the distant somatic organs on localized exposures. Additional studies are required to characterize the nature of an enigmatic bystander signal and analyze the long-term persistence of these effects and possible contribution of radiation-induced bystander effects to secondary radiation carcinogenesis.

  7. Dual function of Yap in the regulation of lens progenitor cells and cellular polarity.

    PubMed

    Song, Ji Yun; Park, Raehee; Kim, Jin Young; Hughes, Lucinda; Lu, Li; Kim, Seonhee; Johnson, Randy L; Cho, Seo-Hee

    2014-02-15

    Hippo-Yap signaling has been implicated in organ size determination via its regulation of cell proliferation, growth and apoptosis (Pan, 2007). The vertebrate lens comprises only two major cell types, lens progenitors and differentiated fiber cells, thereby providing a relatively simple system for studying size-controlling mechanisms. In order to investigate the role of Hippo-Yap signaling in lens size regulation, we conditionally ablated Yap in the developing mouse lens. Lens progenitor-specific deletion of Yap led to near obliteration of the lens primarily due to hypocellularity in the lens epithelium (LE) and accompanying lens fiber (LF) defects. A significantly reduced LE progenitor pool resulted mainly from failed self-renewal and increased apoptosis. Additionally, Yap-deficient lens progenitor cells precociously exited the cell cycle and expressed the LF marker, β-Crystallin. The mutant progenitor cells also exhibited multiple cellular and subcellular alterations including cell and nuclear shape change, organellar polarity disruption, and disorganized apical polarity complex and junction proteins such as Crumbs, Pals1, Par3 and ZO-1. Yap-deficient LF cells failed to anchor to the overlying LE layer, impairing their normal elongation and packaging. Furthermore, our localization study results suggest that, in the developing LE, Yap participates in the cell context-dependent transition from the proliferative to differentiation-competent state by integrating cell density information. Taken together, our results shed new light on Yap's indispensable and novel organizing role in mammalian organ size control by coordinating multiple events including cell proliferation, differentiation, and polarity.

  8. In utero and postnatal exposure to arsenic alters pulmonary structure and function

    SciTech Connect

    Lantz, R. Clark Chau, Binh; Sarihan, Priyanka; Witten, Mark L.; Pivniouk, Vadim I.; Chen, Guan Jie

    2009-02-15

    In addition to cancer endpoints, arsenic exposures can also lead to non-cancerous chronic lung disease. Exposures during sensitive developmental time points can contribute to the adult disease. Using a mouse model, in utero and early postnatal exposures to arsenic (100 ppb or less in drinking water) were found to alter airway reactivity to methacholine challenge in 28 day old pups. Removal of mice from arsenic exposure 28 days after birth did not reverse the alterations in sensitivity to methacholine. In addition, adult mice exposed to similar levels of arsenic in drinking water did not show alterations. Therefore, alterations in airway reactivity were irreversible and specific to exposures during lung development. These functional changes correlated with protein and gene expression changes as well as morphological structural changes around the airways. Arsenic increased the whole lung levels of smooth muscle actin in a dose dependent manner. The level of smooth muscle mass around airways was increased with arsenic exposure, especially around airways smaller than 100 {mu}m in diameter. This increase in smooth muscle was associated with alterations in extracellular matrix (collagen, elastin) expression. This model system demonstrates that in utero and postnatal exposure to environmentally relevant levels of arsenic can irreversibly alter pulmonary structure and function in the adults.

  9. Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models

    NASA Astrophysics Data System (ADS)

    Sud, Dhruv; Zhong, Wei; Beer, David G.; Mycek, Mary-Ann

    2006-05-01

    A fluorescence lifetime imaging microscopy (FLIM) method was developed and applied to investigate metabolic function in living human normal esophageal (HET-1) and Barrett’s adenocarcinoma (SEG-1) cells. In FLIM, image contrast is based on fluorophore excited state lifetimes, which reflect local biochemistry and molecular activity. Unique FLIM system attributes, including variable ultrafast time gating (≥ 200 ps), wide spectral tunability (337.1 - 960 nm), large temporal dynamic range (≥ 600 ps), and short data acquisition and processing times (15 s), enabled the study of two key molecules consumed at the termini of the oxidative phosphorylation pathway, NADH and oxygen, in living cells under controlled and calibrated environmental conditions. NADH is an endogenous cellular fluorophore detectable in living human tissues that has been shown to be a quantitative biomarker of dysplasia in the esophagus. Lifetime calibration of an oxygen-sensitive, ruthenium-based cellular stain enabled in vivo oxygen level measurements with a resolution of 8 μM over the entire physiological range (1 - 300 μM). Starkly higher intracellular oxygen and NADH levels in living SEG-1 vs. HET-1 cells were detected by FLIM and attributed to altered metabolic pathways in malignant cells.

  10. Gain of cellular adaptation due to prolonged p53 impairment leads to functional switchover from p53 to p73 during DNA damage in acute myeloid leukemia cells.

    PubMed

    Chakraborty, Juni; Banerjee, Shuvomoy; Ray, Pallab; Hossain, Dewan Md Sakib; Bhattacharyya, Sankar; Adhikary, Arghya; Chattopadhyay, Sreya; Das, Tanya; Sa, Gaurisankar

    2010-10-22

    Tumor suppressor p53 plays the central role in regulating apoptosis in response to genotoxic stress. From an evolutionary perspective, the activity of p53 has to be backed up by other protein(s) in case of any functional impairment of this protein, to trigger DNA damage-induced apoptosis in cancer cells. We adopted multiple experimental approaches to demonstrate that in p53-impaired cancer cells, DNA damage caused accumulation of p53 paralogue p73 via Chk-1 that strongly impacted Bax expression and p53-independent apoptosis. On the contrary, when p53 function was restored by ectopic expression, Chk-2 induced p53 accumulation that in turn overshadowed p73 activity, suggesting an antagonistic interaction between p53 family members. To understand such interaction better, p53-expressing cells were impaired differentially for p53 activity. In wild-type p53-expressing cancer cells that were silenced for p53 for several generations, p73 was activated, whereas no such trend was observed when p53 was transiently silenced. Prolonged p53 interference, even in functional p53 settings, therefore, leads to the "gain of cellular adaptation" in a way that alters the cellular microenvironment in favor of p73 activation by altering p73-regulatory proteins, e.g. Chk1 activation and dominant negative p73 down-regulation. These findings not only unveil a hitherto unexplained mechanism underlying the functional switchover from p53 to p73, but also validate p73 as a promising and potential target for cancer therapy in the absence of functional p53.

  11. Respiratory symptoms, lung function, and nasal cellularity in Indonesian wood workers: a dose-response analysis

    PubMed Central

    Borm, P; Jetten, M; Hidayat, S; van de Burgh, N; Leunissen, P; Kant, I; Houba, R; Soeprapto, H

    2002-01-01

    Objectives: It was hypothesised that inflammation plays a dominant part in the respiratory effects of exposure to wood dust. The purpose of this study was to relate the nasal inflammatory responses of workers exposed to meranti wood dust to (a) levels of exposure, (b) respiratory symptoms and (c) respiratory function. Methods: A cross sectional study was carried out in 1997 in a woodworking plant that used mainly meranti, among 982 workers exposed to different concentrations of wood dust. Personal sampling (n=243) of inhalable dust measurements indicated mean exposure in specific jobs, and enabled classification of 930 workers in three exposure classes (<2, 2–5, and >5 mg/m3) based on job title. Questionnaires were used to screen respiratory symptoms in the entire population. Lung function was measured with two different techniques, conventional flow-volume curves and the forced oscillation technique. Nasal lavage was done to assess inflammation in the upper respiratory tract. Results: A negative trend between years of employment and most flow-volume variables was found in men, but not in women workers. Current exposure, however, was not related to spirometric outcomes, respiratory symptoms, or nasal cellularity. Some impedance variables were related to current exposure but also with better function at higher exposure. Conclusions: Exposure to meranti wood dust did not cause an inflammation in the upper respiratory tract nor an increase of respiratory symptoms or decrease of lung function. These data do not corroborate the hypothesis that inflammation plays a part in airway obstruction induced by wood dust. PMID:11983850

  12. Alterations in cellular pharmacokinetics and pharmacodynamics of elvitegravir in response to ethanol exposure in HIV-1 infected monocytic (U1) cells

    PubMed Central

    Midde, Narasimha M.; Sinha, Namita; Lukka, Pradeep B.; Meibohm, Bernd

    2017-01-01

    Ethanol consumption is negatively associated with antiretroviral therapy (ART) adherence and general health in HIV positive individuals. Previously, we demonstrated ethanol-mediated alterations to metabolism of elvitegravir (EVG) in human liver microsomes. In the current study, we investigated ethanol influence on the pharmacokinetic and pharmacodynamic interactions of EVG in HIV infected monocytic (U1) cells. U1 cells were treated with 5 μM EVG, 2 μM Cobicistat (COBI), a booster drug, and 20 mM ethanol for up to 24 hours. EVG, HIV p24 levels, alterations in cytochrome P450 (CYP) 3A4, MRP1, and MDR1 protein expressions were measured. Presence of ethanol demonstrated a significant effect on the total exposures of both EVG and EVG in combination with COBI. Ethanol also increased the HIV replication despite the presence of drugs and this elevated HIV replication was reduced in the presence of MRP1 and MDR1 inhibitors. Consequently, a slight increase in EVG concentration was observed in the presence of MRP1 inhibitor but not with MDR1 inhibitor. Furthermore, CYP3A4, MRP1 and MDR1 protein levels were significantly induced in treatment groups which included ethanol compared to those with no treatment. In summary, these findings suggest that Ethanol reduces intra cellular EVG exposure by modifying drug metabolism and transporter protein expression. This study provides valuable evidence for further investigation of ethanol effects on the intracellular concentration of EVG in ex vivo or in vivo studies. PMID:28231276

  13. Maternal obesity induced by a high fat diet causes altered cellular development in fetal brains suggestive of a predisposition of offspring to neurological disorders in later life.

    PubMed

    Stachowiak, Ewa K; Srinivasan, Malathi; Stachowiak, Michal K; Patel, Mulchand S

    2013-12-01

    Fetal development in an obese maternal intrauterine environment has been shown to predispose the offspring for a number of metabolic disorders in later life. The observation that a large percentage of women of child-bearing age in the US are overweight/obese during pregnancy is therefore a source of concern. A high fat (HF) diet-induced obesity in female rats has been used as a model for maternal obesity. The objective of this study was to determine cellular development in brains of term fetuses of obese rats fed a HF diet from the time of weaning. Fetal brains were dissected out on gestational day 21 and processed for immunohistochemical analysis in the hypothalamic as well as extra-hypothalamic regions. The major observation of this study is that fetal development in the obese HF female rat induced several alterations in the HF fetal brain. Marked increases were observed in orexigenic signaling and a significant decrease was observed for anorexigenic signaling in the vicinity of the 3rd ventricle in HF brains. Additionally, our results indicated diminished migration and maturation of stem-like cells in the 3rd ventricular region as well as in the brain cortex. The results from the present study indicate developmental alterations in the hypothalamic and extra-hypothalamic regions in the HF fetal brain suggestive of a predisposition for the development of obesity and possibly neurodevelopmental abnormalities in the offspring.

  14. Cellular functions of the ADF/cofilin family at a glance.

    PubMed

    Kanellos, Georgios; Frame, Margaret C

    2016-09-01

    The actin depolymerizing factor (ADF)/cofilin family comprises small actin-binding proteins with crucial roles in development, tissue homeostasis and disease. They are best known for their roles in regulating actin dynamics by promoting actin treadmilling and thereby driving membrane protrusion and cell motility. However, recent discoveries have increased our understanding of the functions of these proteins beyond their well-characterized roles. This Cell Science at a Glance article and the accompanying poster serve as an introduction to the diverse roles of the ADF/cofilin family in cells. The first part of the article summarizes their actions in actin treadmilling and the main mechanisms for their intracellular regulation; the second part aims to provide an outline of the emerging cellular roles attributed to the ADF/cofilin family, besides their actions in actin turnover. The latter part discusses an array of diverse processes, which include regulation of intracellular contractility, maintenance of nuclear integrity, transcriptional regulation, nuclear actin monomer transfer, apoptosis and lipid metabolism. Some of these could, of course, be indirect consequences of actin treadmilling functions, and this is discussed.

  15. Morphological and biochemical re-evaluation of the process of cavitation in the rat knee joint: cellular and cell strata alterations in the interzone

    PubMed Central

    ITO, MASAAKI M.; KIDA, MASAHIKO Y.

    2000-01-01

    To assess the contribution of apoptosis to the mechanism of synovial joint cavitation, and to clarify morphological cellular changes during cavitation, we investigated the development of the rat knee joint by light and electron microscopy, TUNEL methods, and electrophoresis of DNA fragments. Although cavitation occurred within the interzone, which consists of 2 outer and a middle layer termed the intermediate zone, no morphological or biochemical signs of cell death, in particular apoptosis, were seen in the interzone at any embryonic stage. Microscopic and ultrastructural alterations affecting cell differentiation were clearly observed in the interzone, i.e. mesenchymal cells gradually showed elongation, cytoplasmic vacuolation and pyknosis in the intermediate zone where the elongated cells were arranged in parallel in some strata. Some of these cells were further flattened into spindle cells and the number of strata decreased to 2. The rest of the cells were incorporated secondarily into the outer layers, becoming chondroblasts. Collagen fibrils were arranged in a network structure in the outer layers, which obviously differed from the directional pattern parallel to the long axis of elongated cells in the intermediate zone. In addition, the density of collagen fibrils was higher in the outer layers than in the intermediate zone. During cavitation, the initial separation was detected between the elongated cells in the intermediate zone in paraffin sections at E16.5 and the spindle cells in epoxy sections at E18.5. The spindle cells lining the cavity, namely, the surfaces of the epiphysis and meniscus, finally became chondrocytes. The diminution of proteoglycans and collagen fibrils and the synthesis of hyaluronan in the extracellular matrix are now generally believed to be parts of the mechanism for cavitation based on the concept of ‘loss of cohesion’. The microscopic and ultrastructural alterations in the interzone seemed to reflect differences in the

  16. [LeuB24]insulin and [AlaB24]insulin: altered structures and cellular processing of B24-substituted insulin analogs.

    PubMed Central

    Assoian, R K; Thomas, N E; Kaiser, E T; Tager, H S

    1982-01-01

    We have used insulin analogs having leucine or alanine substitutions at positions B24 and B25 to examine the structural basis for insulin binding and insulin metabolism by isolated rat hepatocytes. Apparent receptor binding affinities for the analogs were in the order insulin greater than [LeuB24]insulin greater than [LeuB25]insulin = [AlaB24]insulin. Incubation of the corresponding 125I-labeled peptides with hepatocytes followed by analysis of the cell-associated products showed that [125I]iodoinsulin and [125I]iodo-[LeuB25]insulin were processed to a peptide intermediate which appeared as an ascending shoulder on the peak of cell-associated hormone during gel filtration; similar incubations using [125I]iodo-[LeuB24]insulin or [125I]iodo-[AlaB24]insulin failed to yield detectable amounts of the intermediate. In addition, assessment of the structures of insulin and the three insulin analogs by tyrosine radioiodination showed that [LeuB24]insulin and [AlaB24]insulin maintain similar solution conformations which differ from the conformations taken by insulin and [LeuB25]insulin. We conclude that (a) alterations in side-chain bulk at position B24 result in long-range structural perturbations in the insulin molecule, (b) these structural alterations lead to an altered cellular processing of the two B24 insulin analogs, and (c) the selectivity of this processing arises from events subsequent to ligand-receptor recognition. Images PMID:6752939

  17. The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease.

    PubMed

    Ooms, Lisa M; Horan, Kristy A; Rahman, Parvin; Seaton, Gillian; Gurung, Rajendra; Kethesparan, Dharini S; Mitchell, Christina A

    2009-04-01

    plethora of cellular functions by regulating the levels of specific phosphoinositides. Emerging studies have implicated their loss or gain of function in human disease.

  18. Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging

    NASA Astrophysics Data System (ADS)

    Bartelmess, Juergen; de Luca, Elisa; Signorelli, Angelo; Baldrighi, Michele; Becce, Michele; Brescia, Rosaria; Nardone, Valentina; Parisini, Emilio; Echegoyen, Luis; Pompa, Pier Paolo; Giordani, Silvia

    2014-10-01

    Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes.Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical

  19. Human mesenchymal stroma/stem cells exchange membrane proteins and alter functionality during interaction with different tumor cell lines.

    PubMed

    Yang, Yuanyuan; Otte, Anna; Hass, Ralf

    2015-05-15

    To analyze effects of cellular interaction between human mesenchymal stroma/stem cells (MSC) and different cancer cells, direct co-cultures were performed and revealed significant growth stimulation of the tumor populations and a variety of protein exchanges. More than 90% of MCF-7 and primary human HBCEC699 breast cancer cells as well as NIH:OVCAR-3 ovarian adenocarcinoma cells acquired CD90 proteins during MSC co-culture, respectively. Furthermore, SK-OV-3 ovarian cancer cells progressively elevated CD105 and CD90 proteins in co-culture with MSC. Primary small cell hypercalcemic ovarian carcinoma cells (SCCOHT-1) demonstrated undetectable levels of CD73 and CD105; however, both proteins were significantly increased in the presence of MSC. This co-culture-mediated protein induction was also observed at transcriptional levels and changed functionality of SCCOHT-1 cells by an acquired capability to metabolize 5'cAMP. Moreover, exchange between tumor cells and MSC worked bidirectional, as undetectable expression of epithelial cell adhesion molecule (EpCAM) in MSC significantly increased after co-culture with SK-OV-3 or NIH:OVCAR-3 cells. In addition, a small population of chimeric/hybrid cells appeared in each MSC/tumor cell co-culture by spontaneous cell fusion. Immune fluorescence demonstrated nanotube structures and exosomes between MSC and tumor cells, whereas cytochalasin-D partially abolished the intercellular protein transfer. More detailed functional analysis of FACS-separated MSC and NIH:OVCAR-3 cells after co-culture revealed the acquisition of epithelial cell-specific properties by MSC, including increased gene expression for cytokeratins and epithelial-like differentiation factors. Vice versa, a variety of transcriptional regulatory genes were down-modulated in NIH:OVCAR-3 cells after co-culture with MSC. Together, these mutual cellular interactions contributed to functional alterations in MSC and tumor cells.

  20. Exploring Patterns of Alteration in Alzheimer's Disease Brain Networks: A Combined Structural and Functional Connectomics Analysis

    PubMed Central

    Palesi, Fulvia; Castellazzi, Gloria; Casiraghi, Letizia; Sinforiani, Elena; Vitali, Paolo; Gandini Wheeler-Kingshott, Claudia A. M.; D'Angelo, Egidio

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a severe derangement of cognitive functions, primarily memory, in elderly subjects. As far as the functional impairment is concerned, growing evidence supports the “disconnection syndrome” hypothesis. Recent investigations using fMRI have revealed a generalized alteration of resting state networks (RSNs) in patients affected by AD and mild cognitive impairment (MCI). However, it was unclear whether the changes in functional connectivity were accompanied by corresponding structural network changes. In this work, we have developed a novel structural/functional connectomic approach: resting state fMRI was used to identify the functional cortical network nodes and diffusion MRI to reconstruct the fiber tracts to give a weight to internodal subcortical connections. Then, local and global efficiency were determined for different networks, exploring specific alterations of integration and segregation patterns in AD and MCI patients compared to healthy controls (HC). In the default mode network (DMN), that was the most affected, axonal loss, and reduced axonal integrity appeared to compromise both local and global efficiency along posterior-anterior connections. In the basal ganglia network (BGN), disruption of white matter integrity implied that main alterations occurred in local microstructure. In the anterior insular network (AIN), neuronal loss probably subtended a compromised communication with the insular cortex. Cognitive performance, evaluated by neuropsychological examinations, revealed a dependency on integration and segregation of brain networks. These findings are indicative of the fact that cognitive deficits in AD could be associated not only with cortical alterations (revealed by fMRI) but also with subcortical alterations (revealed by diffusion MRI) that extend beyond the areas primarily damaged by neurodegeneration, toward the support of an emerging concept of AD as a

  1. Thymus-Associated Parathyroid Hormone Has Two Cellular Origins with Distinct Endocrine and Immunological Functions

    PubMed Central

    Liu, Zhijie; Farley, Alison; Chen, Lizhen; Kirby, Beth J.; Kovacs, Christopher S.; Blackburn, C. Clare; Manley, Nancy R.

    2010-01-01

    In mammals, parathyroid hormone (PTH) is a key regulator of extracellular calcium and inorganic phosphorus homeostasis. Although the parathyroid glands were thought to be the only source of PTH, extra-parathyroid PTH production in the thymus, which shares a common origin with parathyroids during organogenesis, has been proposed to provide an auxiliary source of PTH, resulting in a higher than expected survival rate for aparathyroid Gcm2 −/− mutants. However, the developmental ontogeny and cellular identity of these “thymic” PTH–expressing cells is unknown. We found that the lethality of aparathyroid Gcm2 −/− mutants was affected by genetic background without relation to serum PTH levels, suggesting a need to reconsider the physiological function of thymic PTH. We identified two sources of extra-parathyroid PTH in wild-type mice. Incomplete separation of the parathyroid and thymus organs during organogenesis resulted in misplaced, isolated parathyroid cells that were often attached to the thymus; this was the major source of thymic PTH in normal mice. Analysis of thymus and parathyroid organogenesis in human embryos showed a broadly similar result, indicating that these results may provide insight into human parathyroid development. In addition, medullary thymic epithelial cells (mTECs) express PTH in a Gcm2-independent manner that requires TEC differentiation and is consistent with expression as a self-antigen for negative selection. Genetic or surgical removal of the thymus indicated that thymus-derived PTH in Gcm2 −/− mutants did not provide auxiliary endocrine function. Our data show conclusively that the thymus does not serve as an auxiliary source of either serum PTH or parathyroid function. We further show that the normal process of parathyroid organogenesis in both mice and humans leads to the generation of multiple small parathyroid clusters in addition to the main parathyroid glands, that are the likely source of physiologically relevant

  2. PERINATAL EXPOSURE TO THE PESTICIDE HEPTACHLOR PRODUCES ALTERATIONS IN IMMUNE FUNCTION PARAMETERS IN SPRAGUE DAWLEY RATS

    EPA Science Inventory

    PERINATAL EXPOSURE TO THE PESTICIDE HEPTACHLOR PRODUCES ALTERATIONS IN IMMUNE FUNCTION PARAMETERS IN SPRAGUE DAWLEY RATS. R A Matulka1, AA Rooney3, W Williams2, CB Copeland2, and R J Smialowicz2. 1Curriculum in Toxicology, UNC, Chapel Hill, NC, USA; 2US EPA, ITB, ETD, NHEERL, RT...

  3. Exploring the human microbiome from multiple perspectives: factors altering its composition and function.

    PubMed

    Rojo, David; Méndez-García, Celia; Raczkowska, Beata Anna; Bargiela, Rafael; Moya, Andrés; Ferrer, Manuel; Barbas, Coral

    2017-02-25

    Our microbiota presents peculiarities and characteristics that may be altered by multiple factors. The degree and consequences of these alterations depend on the nature, strength and duration of the perturbations as well as the structure and stability of each microbiota. The aim of this review is to sketch a very broad picture of the factors commonly influencing different body sites, and which have been associated with alterations in the human microbiota in terms of composition and function. To do so, first, a graphical representation of bacterial, fungal and archaeal genera reveals possible associations among genera affected by different factors. Then, the revision of sequence-based predictions provides associations with functions that become part of the active metabolism. Finally, examination of microbial metabolite contents and fluxes reveals whether metabolic alterations are a reflection of the differences observed at the level of population structure, and in the last step, link microorganisms to functions under perturbations that differ in nature and aetiology. The utilisation of complementary technologies and methods, with a special focus on metabolomics research, is thoroughly discussed to obtain a global picture of microbiota composition and microbiome function and to convey the urgent need for the standardisation of protocols.

  4. Cellular and metabolic alterations in the hippocampus caused by insulin signalling dysfunction and its association with cognitive impairment during aging and Alzheimer's disease: studies in animal models.

    PubMed

    Calvo-Ochoa, Erika; Arias, Clorinda

    2015-01-01

    A growing body of animal and epidemiological studies suggest that metabolic diseases such as obesity, insulin resistance, metabolic syndrome and type 2 diabetes mellitus are associated with the development of cognitive impairment, dementia and Alzheimer's disease, particularly in aging. Several lines of evidence suggest that insulin signalling dysfunction produces these metabolic alterations and underlie the development of these neurodegenerative diseases. In this article, we address normal insulin function in the synapse; we review and discuss the physiopathological hallmarks of synaptic insulin signalling dysfunction associated with metabolic alterations. Additionally, we describe and review the major animal models of obesity, insulin resistance, metabolic syndrome and type 2 diabetes mellitus. The comprehensive knowledge of the molecular mechanisms behind the association of metabolic alterations and cognitive impairment could facilitate the early detection of neurodegenerative diseases in patients with metabolic alterations, with treatment that focus on neuroprotection. It could also help in the development of metabolic-based therapies and drugs for using in dementia and Alzheimer's disease patients to alleviate their symptoms in a more efficient and comprehensive way.

  5. Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands.

    PubMed

    Berthrong, Sean T; Schadt, Christopher W; Piñeiro, Gervasio; Jackson, Robert B

    2009-10-01

    Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, we analyzed functional genes using the GeoChip 2.0 microarray, which simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grassland differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Most grassland profiles were similar, but plantation profiles generally differed from those of grasslands due to differences in functional gene abundance across diverse taxa. Eucalypts decreased ammonification and N fixation functional genes by 11% and 7.9% (P < 0.01), which correlated with decreased microbial biomass N and more NH(4)(+) in plantation soils. Chitinase abundance decreased 7.8% in plantations compared to levels in grassland (P = 0.017), and C polymer-degrading genes decreased by 1.5% overall (P < 0.05), which likely contributed to 54% (P < 0.05) more C in undecomposed extractable soil pools and 27% less microbial C (P < 0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes, corresponding with changes in soil biogeochemistry, in part through altered abundance of overall functional gene types rather than simply through changes in specific taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils.

  6. Altered vestibular function in fetal and newborn rats gestated in space

    NASA Technical Reports Server (NTRS)

    Ronca, A. E.; Alberts, J. R.

    1997-01-01

    Researchers evaluated vestibular development and function in rat pups flown during gestation on the NASA-NIH R1 and R2 missions. Fetal and postnatal vestibular function were examined. Altered vestibular-mediated responses in the experimental fetal pups are attributed to either direct effect of gravity on the vestibular system or indirect effects of microgravity transduced through the mother. The postnatal tests confirmed the hypothesis that the vestibular system continually adapts and responds to tonic stimulation.

  7. Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands

    SciTech Connect

    Berthrong, Sean T; Schadt, Christopher Warren; Pineiro, Gervasio; Jackson, Robert B

    2009-01-01

    Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, we analyzed functional genes using the GeoChip 2.0 microarray, which simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grassland differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Most grassland profiles were similar, but plantation profiles generally differed from those of grasslands due to differences in functional gene abundance across diverse taxa. Eucalypts decreased ammonification and N fixation functional genes by 11% and 7.9% (P < 0.01), which correlated with decreased microbial biomass N and more NH{sub 4}{sup +} in plantation soils. Chitinase abundance decreased 7.8% in plantations compared to levels in grassland (P = 0.017), and C polymer-degrading genes decreased by 1.5% overall (P < 0.05), which likely contributed to 54% (P < 0.05) more C in undecomposed extractable soil pools and 27% less microbial C (P < 0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes, corresponding with changes in soil biogeochemistry, in part through altered abundance of overall functional gene types rather than simply through changes in specific taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils.

  8. Bilingualism alters brain functional connectivity between "control" regions and "language" regions: Evidence from bimodal bilinguals.

    PubMed

    Li, Le; Abutalebi, Jubin; Zou, Lijuan; Yan, Xin; Liu, Lanfang; Feng, Xiaoxia; Wang, Ruiming; Guo, Taomei; Ding, Guosheng

    2015-05-01

    Previous neuroimaging studies have revealed that bilingualism induces both structural and functional neuroplasticity in the dorsal anterior cingulate cortex (dACC) and the left caudate nucleus (LCN), both of which are associated with cognitive control. Since these "control" regions should work together with other language regions during language processing, we hypothesized that bilingualism may also alter the functional interaction between the dACC/LCN and language regions. Here we tested this hypothesis by exploring the functional connectivity (FC) in bimodal bilinguals and monolinguals using functional MRI when they either performed a picture naming task with spoken language or were in resting state. We found that for bimodal bilinguals who use spoken and sign languages, the FC of the dACC with regions involved in spoken language (e.g. the left superior temporal gyrus) was stronger in performing the task, but weaker in the resting state as compared to monolinguals. For the LCN, its intrinsic FC with sign language regions including the left inferior temporo-occipital part and right inferior and superior parietal lobules was increased in the bilinguals. These results demonstrate that bilingual experience may alter the brain functional interaction between "control" regions and "language" regions. For different control regions, the FC alters in different ways. The findings also deepen our understanding of the functional roles of the dACC and LCN in language processing.

  9. A genetic algorithms approach for altering the membership functions in fuzzy logic controllers

    NASA Technical Reports Server (NTRS)

    Shehadeh, Hana; Lea, Robert N.

    1992-01-01

    Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.

  10. Interneurons. Fast-spiking, parvalbumin⁺ GABAergic interneurons: from cellular design to microcircuit function.

    PubMed

    Hu, Hua; Gan, Jian; Jonas, Peter

    2014-08-01

    The success story of fast-spiking, parvalbumin-positive (PV(+)) GABAergic interneurons (GABA, γ-aminobutyric acid) in the mammalian central nervous system is noteworthy. In 1995, the properties of these interneurons were completely unknown. Twenty years later, thanks to the massive use of subcellular patch-clamp techniques, simultaneous multiple-cell recording, optogenetics, in vivo measurements, and computational approaches, our knowledge about PV(+) interneurons became more extensive than for several types of pyramidal neurons. These findings have implications beyond the "small world" of basic research on GABAergic cells. For example, the results provide a first proof of principle that neuroscientists might be able to close the gaps between the molecular, cellular, network, and behavioral levels, representing one of the main challenges at the present time. Furthermore, the results may form the basis for PV(+) interneurons as therapeutic targets for brain disease in the future. However, much needs to be learned about the basic function of these interneurons before clinical neuroscientists will be able to use PV(+) interneurons for therapeutic purposes.

  11. The arginine metabolite agmatine protects mitochondrial function and confers resistance to cellular apoptosis.

    PubMed

    Arndt, Mary Ann; Battaglia, Valentina; Parisi, Eva; Lortie, Mark J; Isome, Masato; Baskerville, Christopher; Pizzo, Donald P; Ientile, Riccardo; Colombatto, Sebastiano; Toninello, Antonio; Satriano, Joseph

    2009-06-01

    Agmatine, an endogenous metabolite of arginine, selectively suppresses growth in cells with high proliferative kinetics, such as transformed cells, through depletion of intracellular polyamine levels. In the present study, we depleted intracellular polyamine content with agmatine to determine if attrition by cell death contributes to the growth-suppressive effects. We did not observe an increase in necrosis, DNA fragmentation, or chromatin condensation in Ha-Ras-transformed NIH-3T3 cells administered agmatine. In response to Ca(2+)-induced oxidative stress in kidney mitochondrial preparations, agmatine demonstrated attributes of a free radical scavenger by protecting against the oxidation of sulfhydryl groups and decreasing hydrogen peroxide content. The functional outcome was a protective effect against Ca(2+)-induced mitochondrial swelling and mitochondrial membrane potential collapse. We also observed decreased expression of proapoptotic Bcl-2 family members and of execution caspase-3, implying antiapoptotic potential. Indeed, we found that apoptosis induced by camptothecin or 5-fluorourocil was attenuated in cells administered agmatine. Agmatine may offer an alternative to the ornithine decarboxylase inhibitor difluoromethyl ornithine for depletion of intracellular polyamine content while avoiding the complications of increasing polyamine import and reducing the intracellular free radical scavenger capacity of polyamines. Depletion of intracellular polyamine content with agmatine suppressed cell growth, yet its antioxidant capacity afforded protection from mitochondrial insult and resistance to cellular apoptosis. These results could explain the beneficial outcomes observed with agmatine in models of injury and disease.

  12. In vitro cellular uptake and cytotoxic effect of functionalized nickel nanoparticles on leukemia cancer cells.

    PubMed

    Guo, Dadong; Wu, Chunhui; Li, Xiaomao; Jiang, Hui; Wang, Xuemei; Chen, Baoan

    2008-05-01

    Nickel nanoparticles (Ni NPs) have been applied in a wide range of areas because of their unique structure and properties such as catalysts, high-density magnetic recording media and others. However, little effort has been paid to their biological application and the concrete effect of Ni NPs on biological systems is still unknown. In this study, the possibility of the utilization of the magnetic Ni NPs in cancer cell studies was explored and the effects of the Ni NPs capped with positively charged tetraheptylammonium on leukemia K562 cells in vitro were investigated. Our observations of optical microscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM) studies indicate that the morphological changes of cancer cells induced by Ni NPs could be apparently observed. The results of 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide (MTT) assay, DNA fragmentation and flow cytometry studies demonstrate that the Ni NPs could exert cytotoxicity to leukemia K562 cells at high concentration, and subsequently induce both apoptosis and necrosis of target cancer cells, whilst it had little impact on target cells when at low concentration. Meanwhile, functionalized Ni NPs with positively charged groups could enhance the permeability of cell membrane and facilitate the cellular uptake of outer target molecules into cancer cells. These findings reveal the potential mechanism of Ni NPs to target cancer cells which could induce the cytotoxicity to leukemia cancer cells and suggest the possibility for applications of the Ni NPs in related clinical and biomedical areas.

  13. Cellular functions of genetically imprinted genes in human and mouse as annotated in the gene ontology.

    PubMed

    Hamed, Mohamed; Ismael, Siba; Paulsen, Martina; Helms, Volkhard

    2012-01-01

    By analyzing the cellular functions of genetically imprinted genes as annotated in the Gene Ontology for human and mouse, we found that imprinted genes are often involved in developmental, transport and regulatory processes. In the human, paternally expressed genes are enriched in GO terms related to the development of organs and of anatomical structures. In the mouse, maternally expressed genes regulate cation transport as well as G-protein signaling processes. Furthermore, we investigated if imprinted genes are regulated by common transcription factors. We identified 25 TF families that showed an enrichment of binding sites in the set of imprinted genes in human and 40 TF families in mouse. In general, maternally and paternally expressed genes are not regulated by different transcription factors. The genes Nnat, Klf14, Blcap, Gnas and Ube3a contribute most to the enrichment of TF families. In the mouse, genes that are maternally expressed in placenta are enriched for AP1 binding sites. In the human, we found that these genes possessed binding sites for both, AP1 and SP1.

  14. Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles

    PubMed Central

    Chaudhary, Suman; Smith, Carol Anne; del Pino, Pablo; de la Fuente, Jesus M.; Mullin, Margaret; Hursthouse, Andrew; Stirling, David; Berry, Catherine C.

    2013-01-01

    Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs) have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation) blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake. PMID:24275948

  15. LPA signaling through LPA receptors regulates cellular functions of endothelial cells treated with anticancer drugs.

    PubMed

    Mori, Shiori; Araki, Mutsumi; Ishii, Shuhei; Hirane, Miku; Fukushima, Kaori; Tomimatsu, Ayaka; Takahashi, Kaede; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2015-10-01

    Lysophosphatidic acid (LPA) signaling via LPA receptors provides a variety of cellular functions, including angiogenesis. In this study, to assess an involvement of LPA receptors in cell motile activities of endothelial cells during chemotherapy, F-2 cells were treated with cisplatin (CDDP) and doxorubicin (DOX) at a concentration of 0.01 μM every 24 h for at least 1 month. The treatment of CDDP and DOX inhibited the expression levels of the LPA receptor-1 (Lpar1), Lpar2, and Lpar3 genes in F-2 cells. The cell motile activities of CDDP and DOX treated cells were relatively lower than those of untreated cells. Next, we investigated whether cancer cells could stimulate the cell motile activities of F-2 cells treated with CDDP and DOX. For cell motility assay, CDDP- and DOX-treated cells were co-cultured with pancreatic cancer PANC-1 cells. The cell motile activities of CDDP- and DOX-treated cells were significantly enhanced by the existence of PANC-1 cells, correlating with the LPA receptor expressions. In addition, the elevated cell motile activities were suppressed by the pretreatment of an autotaxin inhibitor S32826. These results suggest that LPA signaling via LPA receptors may regulate the cell motile activities of F-2 cells treated with anticancer drugs.

  16. Molecular and cellular studies on the absorption, function, and safety of food components in intestinal epithelial cells.

    PubMed

    Satsu, Hideo

    2017-03-01

    The intestinal tract comes into direct contact with the external environment despite being inside the body. Intestinal epithelial cells, which line the inner face of the intestinal tract, have various important functions, including absorption of food substances, immune functions such as cytokine secretion, and barrier function against xenobiotics by means of detoxification enzymes. It is likely that the functions of intestinal epithelial cells are regulated or modulated by these components because they are frequently exposed to food components at high concentrations. This review summarizes our research on the interaction between intestinal epithelial cells and food components at cellular and molecular levels. The influence of xenobiotic contamination in foods on the cellular function of intestinal epithelial cells is also described in this review.

  17. Cellular, Molecular and Functional Characterisation of YAC Transgenic Mouse Models of Friedreich Ataxia

    PubMed Central

    Anjomani Virmouni, Sara; Sandi, Chiranjeevi; Al-Mahdawi, Sahar; Pook, Mark A.

    2014-01-01

    Background Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder, caused by a GAA repeat expansion mutation within intron 1 of the FXN gene. We have previously established and performed preliminary characterisation of several human FXN yeast artificial chromosome (YAC) transgenic FRDA mouse models containing GAA repeat expansions, Y47R (9 GAA repeats), YG8R (90 and 190 GAA repeats) and YG22R (190 GAA repeats). Methodology/Principal Findings We now report extended cellular, molecular and functional characterisation of these FXN YAC transgenic mouse models. FXN transgene copy number analysis of the FRDA mice demonstrated that the YG22R and Y47R lines each have a single copy of the FXN transgene while the YG8R line has two copies. Single integration sites of all transgenes were confirmed by fluorescence in situ hybridisation (FISH) analysis of metaphase and interphase chromosomes. We identified significant functional deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8R and YG22R FRDA mice compared to Y47R and wild-type control mice. We also confirmed increased somatic GAA repeat instability in the cerebellum and brain of YG22R and YG8R mice, together with significantly reduced levels of FXN mRNA and protein in the brain and liver of YG8R and YG22R compared to Y47R. Conclusions/Significance Together these studies provide a detailed characterisation of our GAA repeat expansion-based YAC transgenic FRDA mouse models that will help investigations of FRDA disease mechanisms and therapy. PMID:25198290

  18. Molecular characterization and functions of zebrafish ABCC2 in cellular efflux of heavy metals.

    PubMed

    Long, Yong; Li, Qing; Zhong, Shan; Wang, Youhui; Cui, Zongbin

    2011-05-01

    Multidrug-resistance associated protein 2 (MRP2/ABCC2) plays crucial roles in bile formation and detoxification by transporting a wide variety of endogenous compounds and xenobiotics, but its functions in zebrafish (Danio rerio) remain to be characterized. In this study, we obtained the full-length cDNA of zebrafish abcc2, analyzed its expression in developing embryos and adult tissues, investigated its transcriptional response to heavy metals, and evaluated its roles in efflux of heavy metals including cadmium, mercury and lead. Zebrafish abcc2 gene is located on chromosome 13 and composed of 32 exons. The deduced polypeptide of zebrafish ABCC2 consists of 1567 amino acids and possesses most of functional domains and critical residues defined in human ABCC2. Zebrafish abcc2 gene is not maternally expressed and its earliest expression was detected in embryos at 72hpf. In larval zebrafish, abcc2 gene was found to be exclusively expressed in liver, intestine and pronephric tubules. In adult zebrafish, the highest expression of abcc2 gene was found in intestine followed by those in liver and kidney, while relative low expression was detected in brain and muscle. Expression of abcc2 in excretory organs including kidney, liver and intestine of zebrafish larvae was induced by exposure to 0.5μM mercury or 5μM lead. Moreover, exposure to 0.125-1μM of mercury or lead also significantly induced abcc2 expression in these excretory organs of adult zebrafish. Furthermore, overexpression of zebrafish ABCC2 in ZF4 cells and zebrafish embryos decreased the cellular accumulation of heavy metals including cadmium, mercury and lead as determined by MRE (metal responsive element)- or EPRE (electrophile response element)-driven luciferase reporters and atomic absorption spectrometry. These results suggest that zebrafish ABCC2/MRP2 is capable of effluxing heavy metals from cells and may play important roles in the detoxification of toxic metals.

  19. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy.

    PubMed

    Liang, Hao; Zhang, Xiao-Bing; Lv, Yifan; Gong, Liang; Wang, Ruowen; Zhu, Xiaoyan; Yang, Ronghua; Tan, Weihong

    2014-06-17

    CONSPECTUS: DNA performs a vital function as a carrier of genetic code, but in the field of nanotechnology, DNA molecules can catalyze chemical reactions in the cell, that is, DNAzymes, or bind with target-specific ligands, that is, aptamers. These functional DNAs with different modifications have been developed for sensing, imaging, and therapeutic systems. Thus, functional DNAs hold great promise for future applications in nanotechnology and bioanalysis. However, these functional DNAs face challenges, especially in the field of biomedicine. For example, functional DNAs typically require the use of cationic transfection reagents to realize cellular uptake. Such reagents enter the cells, increasing the difficulty of performing bioassays in vivo and potentially damaging the cell's nucleus. To address this obstacle, nanomaterials, such as metallic, carbon, silica, or magnetic materials, have been utilized as DNA carriers or assistants. In this Account, we describe selected examples of functional DNA-containing nanomaterials and their applications from our recent research and those of others. As models, we have chosen to highlight DNA/nanomaterial complexes consisting of gold nanoparticles, graphene oxides, and aptamer-micelles, and we illustrate the potential of such complexes in biosensing, imaging, and medical diagnostics. Under proper conditions, multiple ligand-receptor interactions, decreased steric hindrance, and increased surface roughness can be achieved from a high density of DNA that is bound to the surface of nanomaterials, resulting in a higher affinity for complementary DNA and other targets. In addition, this high density of DNA causes a high local salt concentration and negative charge density, which can prevent DNA degradation. For example, DNAzymes assembled on gold nanoparticles can effectively catalyze chemical reactions even in living cells. And it has been confirmed that DNA-nanomaterial complexes can enter cells more easily than free single

  20. The role of STATs in transcriptional control and their impact on cellular function.

    PubMed

    Bromberg, J; Darnell, J E

    2000-05-15

    The STAT proteins (Signal Transducers and Activators of Transcription), were identified in the last decade as transcription factors which were critical in mediating virtually all cytokine driven signaling. These proteins are latent in the cytoplasm and become activated through tyrosine phosphorylation which typically occurs through cytokine receptor associated kinases (JAKs) or growth factor receptor tyrosine kinases. Recently a number of non-receptor tyrosine kinases (for example src and abl) have been found to cause STAT phosphorylation. Phosphorylated STATs form homo- or hetero-dimers, enter the nucleus and working coordinately with other transcriptional co-activators or transcription factors lead to increased transcriptional initiation. In normal cells and in animals, ligand dependent activation of the STATs is a transient process, lasting for several minutes to several hours. In contrast, in many cancerous cell lines and tumors, where growth factor dysregulation is frequently at the heart of cellular transformation, the STAT proteins (in particular Stats 1, 3 and 5) are persistently tyrosine phosphorylated or activated. The importance of STAT activation to growth control in experiments using anti-sense molecules or dominant negative STAT protein encoding constructs performed in cell lines or studies in animals lacking specific STATs strongly indicate that STATs play an important role in controlling cell cycle progression and apoptosis. Stat1 plays an important role in growth arrest, in promoting apoptosis and is implicated as a tumor suppressor; while Stats 3 and 5 are involved in promoting cell cycle progression and cellular transformation and preventing apoptosis. Many questions remain including: (1) a better understanding of how the STAT proteins through association with other factors increase transcription initiation; (2) a more complete definition of the sets of genes which are activated by different STATs and (3) how these sets of activated genes differ

  1. Short Term, Low Dose Simvastatin Pretreatment Alters Memory Immune Function Following Secondary Staphylococcus aureus Infection.

    PubMed

    Smelser, Lisa K; Walker, Callum; Burns, Erin M; Curry, Michael; Black, Nathanael; Metzler, Jennifer A; McDowell, Susan A; Bruns, Heather A

    Statins are potent modulators of immune responses, resulting in their ability to enhance host survival from primary bacterial infections. Alterations in primary immune responses that may be beneficial for survival following infection may also result in alterations in the generation of the immunologic memory response and subsequently affect immune responses mounted during secondary bacterial infection. In this study, we report that levels of total serum IgG2c, following primary infection, were decreased in simvastatin pretreated mice, and investigate the effect of simvastatin treatment, prior to primary infection, on immune responses activated during secondary S. aureus infection. A secondary infection model was implemented whereby simvastatin pretreated and control mice were reinfected with S. aureus 14 days after primary infection, with no additional simvastatin treatment, and assessed for survival and alterations in immune function. While survivability to secondary S. aureus infection was not different between simvastatin pretreated and control mice, memory B and T lymphocyte functions were altered. Memory B cells, isolated 14 days after secondary infection, from simvastatin pretreated mice and stimulated ex vivo produced increased levels of IgG1 compared to memory B cells isolated from control mice, while levels of IgM and IgG2c remained similar. Furthermore, memory B and T lymphocytes from simvastatin pretreated mice exhibited a decreased proliferative response when stimulated ex vivo compared to memory cells isolated from control mice. These findings demonstrate the ability of a short term, low dose simvastatin treatment to modulate memory immune function.

  2. Effectiveness of ecological rescue for altered soil microbial communities and functions.

    PubMed

    Calderón, Kadiya; Spor, Aymé; Breuil, Marie-Christine; Bru, David; Bizouard, Florian; Violle, Cyrille; Barnard, Romain L; Philippot, Laurent

    2017-01-01

    Soil ecosystems worldwide are subjected to marked modifications caused by anthropogenic disturbances and global climate change, resulting in microbial diversity loss and alteration of ecosystem functions. Despite the paucity of studies, restoration ecology provides an appropriate framework for testing the potential of manipulating soil microbial communities for the recovery of ecosystem functioning. We used a reciprocal transplant design in experimentally altered microbial communities to investigate the effectiveness of introducing microbial communities in degraded soil ecosystems to restore N-cycle functioning. Microbial diversity loss resulted in alternative compositional states associated with impaired N-cycle functioning. Here, the addition of complex microbial communities to these altered communities revealed a pivotal role of deterministic community assembly processes. The diversity of some alternative compositional states was successfully increased but without significant restoration of soil N-cycle functioning. However, in the most degraded alternative state, the introduction of new microbial communities caused an overall decrease in phylogenetic diversity and richness. The successful soil colonization by newly introduced species for some compositional states indicates that priority effects could be overridden when attempting to manipulate microbial communities for soil restoration. Altogether, our result showed consistent patterns within restoration treatments with minor idiosyncratic effects. This suggests the predominance of deterministic processes and the predictability of restoration trajectories, which could be used to guide the effective management of microbial community assemblages for ecological restoration of soils.

  3. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function

    NASA Astrophysics Data System (ADS)

    Nilsson, Göran E.; Dixson, Danielle L.; Domenici, Paolo; McCormick, Mark I.; Sørensen, Christina; Watson, Sue-Ann; Munday, Philip L.

    2012-03-01

    Predicted future CO2 levels have been found to alter sensory responses and behaviour of marine fishes. Changes include increased boldness and activity, loss of behavioural lateralization, altered auditory preferences and impaired olfactory function. Impaired olfactory function makes larval fish attracted to odours they normally avoid, including ones from predators and unfavourable habitats. These behavioural alterations have significant effects on mortality that may have far-reaching implications for population replenishment, community structure and ecosystem function. However, the underlying mechanism linking high CO2 to these diverse responses has been unknown. Here we show that abnormal olfactory preferences and loss of behavioural lateralization exhibited by two species of larval coral reef fish exposed to high CO2 can be rapidly and effectively reversed by treatment with an antagonist of the GABA-A receptor. GABA-A is a major neurotransmitter receptor in the vertebrate brain. Thus, our results indicate that high CO2 interferes with neurotransmitter function, a hitherto unrecognized threat to marine populations and ecosystems. Given the ubiquity and conserved function of GABA-A receptors, we predict that rising CO2 levels could cause sensory and behavioural impairment in a wide range of marine species, especially those that tightly control their acid-base balance through regulatory changes in HCO3- and Cl- levels.

  4. Altered resting-state whole-brain functional networks of neonates with intrauterine growth restriction.

    PubMed

    Batalle, Dafnis; Muñoz-Moreno, Emma; Tornador, Cristian; Bargallo, Nuria; Deco, Gustavo; Eixarch, Elisenda; Gratacos, Eduard

    2016-04-01

    The feasibility to use functional MRI (fMRI) during natural sleep to assess low-frequency basal brain activity fluctuations in human neonates has been demonstrated, although its potential to characterise pathologies of prenatal origin has not yet been exploited. In the present study, we used intrauterine growth restriction (IUGR) as a model of altered neurodevelopment due to prenatal condition to show the suitability of brain networks to characterise functional brain organisation at neonatal age. Particularly, we analysed resting-state fMRI signal of 20 neonates with IUGR and 13 controls, obtaining whole-brain functional networks based on correlations of blood oxygen level-dependent (BOLD) signal in 90 grey matter regions of an anatomical atlas (AAL). Characterisation of the networks obtained with graph theoretical features showed increased network infrastructure and raw efficiencies but reduced efficiency after normalisation, demonstrating hyper-connected but sub-optimally organised IUGR functional brain networks. Significant association of network features with neurobehavioral scores was also found. Further assessment of spatiotemporal dynamics displayed alterations into features associated to frontal, cingulate and lingual cortices. These findings show the capacity of functional brain networks to characterise brain reorganisation from an early age, and their potential to develop biomarkers of altered neurodevelopment.

  5. Functional Connectivity with the Default Mode Network Is Altered in Fibromyalgia Patients

    PubMed Central

    Chiu, Yee; Nurmikko, Turo; Stancak, Andrej

    2016-01-01

    Fibromyalgia syndrome (FMS) patients show altered connectivity with the network maintaining ongoing resting brain activity, known as the default mode network (DMN). The connectivity patterns of DMN with the rest of the brain in FMS patients are poorly understood. This study employed seed-based functional connectivity analysis to investigate resting-state functional connectivity with DMN structures in FMS. Sixteen female FMS patients and 15 age-matched, healthy control subjects underwent T2-weighted resting-state MRI scanning and functional connectivity analyses using DMN network seed regions. FMS patients demonstrated alterations to connectivity between DMN structures and anterior midcingulate cortex, right parahippocampal gyrus, left superior parietal lobule and left inferior temporal gyrus. Correlation analysis showed that reduced functional connectivity between the DMN and the right parahippocampal gyrus was associated with longer duration of symptoms in FMS patients, whereas augmented connectivity between the anterior midcingulate and posterior cingulate cortices was associated with tenderness and depression scores. Our findings demonstrate alterations to functional connectivity between DMN regions and a variety of regions which are important for pain, cognitive and emotional processing in FMS patients, and which may contribute to the development or maintenance of chronic symptoms in FMS. PMID:27442504

  6. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers.

    PubMed

    Lundbaek, J A; Andersen, O S

    1994-10-01

    Lipid metabolites, free fatty acids and lysophospholipids, modify the function of membrane proteins including ion channels. Such alterations can occur through signal transduction pathways, but may also result from "direct" effects of the metabolite on the protein. To investigate possible mechanisms for such direct effects, we examined the alterations of gramicidin channel function by lysophospholipids (LPLs): lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), lysophosphatidylserine (LPS), and lysophosphatidylinositol (LPI). The experiments were done on planar bilayers formed by diphytanoylphosphatidylcholine in n-decane a system where receptor-mediated effects can be excluded. At aqueous concentrations below the critical micelle concentration (CMC), LPLs can increase the dimerization constant for membrane-bound gramicidin up to 500-fold (at 2 microM). The relative potency increases as a function of the size of the polar head group, but does not seem to vary as a function of head group charge. The increased dimerization constant results primarily from an increase in the rate constant for channel formation, which can increase more than 100-fold (in the presence of LPC and LPI), whereas the channel dissociation rate constant decreases only about fivefold. The LPL effect cannot be ascribed to an increased membrane fluidity, which would give rise to an increased channel dissociation rate constant. The ability of LPC to decrease the channel dissociation rate constant varies as a function of channel length (which is always less than the membrane's equilibrium thickness): as the channel length is decreased, the potency of LPC is increased. LPC has no effect on membrane thickness or the surface tension of monolayers at the air/electrolyte interface. The bilayer-forming glycerolmonooleate does not decrease the channel dissociation rate constant. These results show that LPLs alter gramicidin channel function by altering the membrane deformation energy, and

  7. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers

    PubMed Central

    1994-01-01

    Lipid metabolites, free fatty acids and lysophospholipids, modify the function of membrane proteins including ion channels. Such alterations can occur through signal transduction pathways, but may also result from "direct" effects of the metabolite on the protein. To investigate possible mechanisms for such direct effects, we examined the alterations of gramicidin channel function by lysophospholipids (LPLs): lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), lysophosphatidylserine (LPS), and lysophosphatidylinositol (LPI). The experiments were done on planar bilayers formed by diphytanoylphosphatidylcholine in n-decane a system where receptor- mediated effects can be excluded. At aqueous concentrations below the critical micelle concentration (CMC), LPLs can increase the dimerization constant for membrane-bound gramicidin up to 500-fold (at 2 microM). The relative potency increases as a function of the size of the polar head group, but does not seem to vary as a function of head group charge. The increased dimerization constant results primarily from an increase in the rate constant for channel formation, which can increase more than 100-fold (in the presence of LPC and LPI), whereas the channel dissociation rate constant decreases only about fivefold. The LPL effect cannot be ascribed to an increased membrane fluidity, which would give rise to an increased channel dissociation rate constant. The ability of LPC to decrease the channel dissociation rate constant varies as a function of channel length (which is always less than the membrane's equilibrium thickness): as the channel length is decreased, the potency of LPC is increased. LPC has no effect on membrane thickness or the surface tension of monolayers at the air/electrolyte interface. The bilayer-forming glycerolmonooleate does not decrease the channel dissociation rate constant. These results show that LPLs alter gramicidin channel function by altering the membrane deformation energy, and

  8. Keeping Nanoparticles Fully Functional: Long-Term Storage and Alteration of Magnetite

    PubMed Central

    Widdrat, Marc; Kumari, Monika; Tompa, Éva; Pósfai, Mihály; Hirt, Ann M; Faivre, Damien

    2014-01-01

    Magnetite is an iron oxide found in rocks. Its magnetic properties are used for paleoclimatic reconstructions. It can also be synthesized in the laboratory to exploit its magnetic properties for bio- and nanotechnological applications. However, although the magnetic properties depend on particle size in a well-understood manner, they also depend on the structure of the oxide, because magnetite oxidizes to maghemite under environmental conditions. The dynamics of this process have not been well described. Here, a study of the alteration of magnetite particles of different sizes as a function of their storage conditions is presented. Smaller nanoparticles are shown to oxidize more rapidly than larger ones, and that the lower the storage temperature, the lower the measured oxidation. In addition, the magnetic properties of the altered particles are not decreased dramatically, thus suggesting that this alteration will not impact the use of such nanoparticles as medical carriers. PMID:26366334

  9. Altered-function p53 missense mutations identified in breast cancers can have subtle effects on transactivation.

    PubMed

    Jordan, Jennifer J; Inga, Alberto; Conway, Kathleen; Edmiston, Sharon; Carey, Lisa A; Wu, Lin; Resnick, Michael A

    2010-05-01

    Mutations of the sequence-specific master regulator p53 that alter transactivation function from promoter response elements (RE) could result in changes in the strength of gene activation or spectra of genes regulated. Such mutations in this tumor suppressor might lead to dramatic phenotypic changes and diversification of cell responses to stress. We have determined "functional fingerprints" of sporadic breast cancer-related p53 mutants, many of which are also associated with familial cancer proneness such as the Li-Fraumeni syndrome and germline BRCA1/2 mutant-associated cancers. The ability of p53, wild-type and mutants, to transactivate from 11 human target REs has been assessed at variable expression levels using a cellular, isogenomic yeast model system that allows for the rapid analysis of p53 function using a qualitative and a quantitative reporter. Among 50 missense mutants, 29 were classified as loss of function. The remaining 21 retained transactivation toward at least one RE. At high levels of galactose-induced p53 expression, 12 of 21 mutants that retain transactivation seemed similar to wild-type. When the level of galactose was reduced, transactivation defects could be revealed, suggesting that some breast cancer-related mutants can have subtle changes in transcription. These findings have been compared with clinical data from an ongoing neoadjuvant chemotherapy treatment trial for locally advanced breast tumors. The functional and nonfunctional missense mutations may distinguish tumors in terms of demographics, appearance, and relapse, implying that heterogeneity in the functionality of specific p53 mutations could affect clinical behavior and outcome.

  10. [An applied research on effective health care planning using cellular phone with the digital still camera function].

    PubMed

    Yoshiyama, Naoki; Hashimoto, Akihiro; Nakajima, Kieko; Hattori, Shin; Sugita, Fukashi

    2004-12-01

    In order to make effective health care plans for elder home care patients, we have tried an easy communication tool between medical doctors and their patients. This tool is the cellular phone with digital still camera function (CP-DSC). We have achieved successful results using this type of technology.

  11. Inhibition of Coxsackie B Virus Infection by Soluble Forms of Its Receptors: Binding Affinities, Altered Particle Formation, and Competition with Cellular Receptors

    PubMed Central

    Goodfellow, Ian G.; Evans, David J.; Blom, Anna M.; Kerrigan, Dave; Miners, J. Scott; Morgan, B. Paul; Spiller, O. Brad

    2005-01-01

    We previously reported that soluble decay-accelerating factor (DAF) and coxsackievirus-adenovirus receptor (CAR) blocked coxsackievirus B3 (CVB3) myocarditis in mice, but only soluble CAR blocked CVB3-mediated pancreatitis. Here, we report that the in vitro mechanisms of viral inhibition by these soluble receptors also differ. Soluble DAF inhibited virus infection through the formation of reversible complexes with CVB3, while binding of soluble CAR to CVB induced the formation of altered (A) particles with a resultant irreversible loss of infectivity. A-particle formation was characterized by loss of VP4 from the virions and required incubation of CVB3-CAR complexes at 37°C. Dimeric soluble DAF (DAF-Fc) was found to be 125-fold-more effective at inhibiting CVB3 than monomeric DAF, which corresponded to a 100-fold increase in binding affinity as determined by surface plasmon resonance analysis. Soluble CAR and soluble dimeric CAR (CAR-Fc) bound to CVB3 with 5,000- and 10,000-fold-higher affinities than the equivalent forms of DAF. While DAF-Fc was 125-fold-more effective at inhibiting virus than monomeric DAF, complement regulation by DAF-Fc was decreased 4 fold. Therefore, while the virus binding was a cooperative event, complement regulation was hindered by the molecular orientation of DAF-Fc, indicating that the regions responsible for complement regulation and virus binding do not completely overlap. Relative contributions of CVB binding affinity, receptor binding footprint on the virus capsid, and induction of capsid conformation alterations for the ability of cellular DAF and CAR to act as receptors are discussed. PMID:16140777

  12. Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells

    SciTech Connect

    Raza, Haider John, Annie; Brown, Eric M.; Benedict, Sheela; Kambal, Amr

    2008-01-15

    Cellular oxidative stress and alterations in redox metabolisms have been implicated in the etiology and pathology of many diseases including cancer. Antioxidant treatments have been proven beneficial in controlling these diseases. We have recently shown that 4-hydroxynonenal (4-HNE), a by-product of lipid peroxidation, induces oxidative stress in PC12 cells by compromising the mitochondrial redox metabolism. In this study, we have further investigated the deleterious effects of 4-HNE on mitochondrial respiratory functions and apoptosis using the same cell line. In addition, we have also compared the effects of two antioxidants, curcumin and melatonin, used as chemopreventive agents, on mitochondrial redox metabolism and respiratory functions in these cells. 4-HNE treatment has been shown to cause a reduction in glutathione (GSH) pool, an increase in reactive oxygen species (ROS), protein carbonylation and apoptosis. A marked inhibition in the activities of the mitochondrial respiratory enzymes, cytochrome c oxidase and aconitase was observed after 4-HNE treatment. Increased nuclear translocation of NF-kB/p65 protein was also observed after 4-HNE treatment. Curcumin and melatonin treatments, on the other hand, maintained the mitochondrial redox and respiratory functions without a marked effect on ROS production and cell viability. These results suggest that 4-HNE-induced cytotoxicity may be associated, at least in part, with the altered mitochondrial redox and respiratory functions. The alterations in mitochondrial energy metabolism and redox functions may therefore be critical in determining the difference between cell death and survival.

  13. Effects of acamprosate on attentional set-shifting and cellular function in the prefrontal cortex of chronic alcohol-exposed mice

    NASA Astrophysics Data System (ADS)

    Hu, Wei

    Background: The medial prefrontal cortex (mPFC) inhibits impulsive and compulsive behaviors that characterize drug abuse and dependence. Acamprosate is the leading medication approved for the maintenance of abstinence, shown to reduce craving and relapse in animal models and human alcoholics. Whether acamprosate can modulate executive functions that are impaired by chronic ethanol exposure is unknown. Here we explored the effects of acamprosate on an attentional set-shifting task, and tested whether these behavioral effects are correlated with modulation of glutamatergic synaptic transmission and intrinsic excitability of mPFC neurons. Methods: We induced alcohol dependence in mice via chronic intermittent ethanol (CIE) exposure in vapor chambers and measured changes in alcohol consumption in a limited access 2-bottle choice paradigm. Impairments of executive function were assessed in an attentional set-shifting task. Acamprosate was applied subchronically for 2 days during withdrawal before the final behavioral test. Alcohol-induced changes in cellular function of layer 5/6 pyramidal neurons, and the potential modulation of these changes by acamprosate, were measured using patch clamp recordings in brain slices. Results: Chronic ethanol exposure impaired cognitive flexibility in the attentional set-shifting task. Acamprosate improved overall performance and reduced perseveration. Recordings of mPFC neurons showed that chronic ethanol exposure increased use-dependent presynaptic transmitter release and enhanced postsynaptic N-methyl-D-aspartate receptor (NMDAR) function. Moreover, CIE-treatment lowered input resistance, and decreased the threshold and the afterhyperpolarization (AHP) of action potentials, suggesting chronic ethanol exposure also impacted membrane excitability of mPFC neurons. However, acamprosate treatment did not reverse these ethanol-induced changes cellular function. Conclusion: Acamprosate improved attentional control of ethanol exposed animals

  14. Cellular and behavioral outcomes of dorsal striatonigral neuron ablation: new insights into striatal functions.

    PubMed

    Révy, Delphine; Jaouen, Florence; Salin, Pascal; Melon, Christophe; Chabbert, Dorian; Tafi, Elisiana; Concetta, Lena; Langa, Francina; Amalric, Marianne; Kerkerian-Le Goff, Lydia; Marie, Hélène; Beurrier, Corinne

    2014-10-01

    The striatum is the input structure of the basal ganglia network that contains heterogeneous neuronal populations, including two populations of projecting neurons called the medium spiny neurons (MSNs), and different types of interneurons. We developed a transgenic mouse model enabling inducible ablation of the striatonigral MSNs constituting the direct pathway by expressing the human diphtheria toxin (DT) receptor under the control of the Slc35d3 gene promoter, a gene enriched in striatonigral MSNs. DT injection into the striatum triggered selective elimination of the majority of striatonigral MSNs. DT-mediated ablation of striatonigral MSNs caused selective loss of cholinergic interneurons in the dorsal striatum but not in the ventral striatum (nucleus accumbens), suggesting a region-specific critical role of the direct pathway in striatal cholinergic neuron homeostasis. Mice with DT injection into the dorsal striatum showed altered basal and cocaine-induced locomotion and dramatic reduction of L-DOPA-induced dyskinesia in the parkinsonian condition. In addition, these mice exhibited reduced anxiety, revealing a role of the dorsal striatum in the modulation of behaviors involving an emotional component, behaviors generally associated with limbic structures. Altogether, these results highlight the implication of the direct striatonigral pathway in the regulation of heterogeneous functions from cell survival to regulation of motor and emotion-associated behaviors.

  15. Cellular and Behavioral Outcomes of Dorsal Striatonigral Neuron Ablation: New Insights into Striatal Functions

    PubMed Central

    Révy, Delphine; Jaouen, Florence; Salin, Pascal; Melon, Christophe; Chabbert, Dorian; Tafi, Elisiana; Concetta, Lena; Langa, Francina; Amalric, Marianne; Kerkerian-Le Goff, Lydia; Marie, Hélène; Beurrier, Corinne

    2014-01-01

    The striatum is the input structure of the basal ganglia network that contains heterogeneous neuronal populations, including two populations of projecting neurons called the medium spiny neurons (MSNs), and different types of interneurons. We developed a transgenic mouse model enabling inducible ablation of the striatonigral MSNs constituting the direct pathway by expressing the human diphtheria toxin (DT) receptor under the control of the Slc35d3 gene promoter, a gene enriched in striatonigral MSNs. DT injection into the striatum triggered selective elimination of the majority of striatonigral MSNs. DT-mediated ablation of striatonigral MSNs caused selective loss of cholinergic interneurons in the dorsal striatum but not in the ventral striatum (nucleus accumbens), suggesting a region-specific critical role of the direct pathway in striatal cholinergic neuron homeostasis. Mice with DT injection into the dorsal striatum showed altered basal and cocaine-induced locomotion and dramatic reduction of L-DOPA-induced dyskinesia in the parkinsonian condition. In addition, these mice exhibited reduced anxiety, revealing a role of the dorsal striatum in the modulation of behaviors involving an emotional component, behaviors generally associated with limbic structures. Altogether, these results highlight the implication of the direct striatonigral pathway in the regulation of heterogeneous functions from cell survival to regulation of motor and emotion-associated behaviors. PMID:24903652

  16. Exercise alters resting state functional connectivity of motor circuits in Parkinsonian rats

    PubMed Central

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I.; Holschneider, Daniel P.

    2014-01-01

    Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson’s disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (a) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (b) emergence of the ventrolateral striatum as a new broadly connected network hub; (c) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the Parkinsonian rats, which could underlie recovery in motor functions observed in these rats. PMID:25219465

  17. Fear of negative evaluation is associated with altered brain function in nonclinical subjects.

    PubMed

    Kajimura, Shogo; Kochiyama, Takanori; Nakai, Ryusuke; Abe, Nobuhito; Nomura, Michio

    2015-12-30

    Social anxiety disorder (SAD), which involves excessive anxiety and fear of negative evaluation, is accompanied by abnormalities in brain function. While social anxiety appears to be represented on a spectrum ranging from nonclinical behavior to clinical manifestation, neural alteration in nonclinical populations remains unclear. This study examined the relationship between psychological measures of social anxiety, mainly using the Fear of Negative Evaluation Scale (FNES), and brain function (functional connectivity, degree centrality, and regional betweenness centrality). Results showed that FNES scores and functional connectivity of the parahippocampal gyrus and orbitofrontal cortex and the betweenness centrality of the right parietal cortex were negatively correlated. These regions are altered in SAD patients, and each is associated with social cognition and emotional processing. The results supported the perspective that social anxiety occurs on a spectrum and indicated that the FNES is a useful means of detecting neural alterations that may relate to the social anxiety spectrum. In addition, the findings indicated that graph analysis was useful in investigating the neural underpinnings of SAD in addition to other psychiatric symptoms.

  18. Exercise alters resting-state functional connectivity of motor circuits in parkinsonian rats.

    PubMed

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I; Holschneider, Daniel P

    2015-01-01

    Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson's disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (1) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (2) emergence of the ventrolateral striatum as a new broadly connected network hub; and (3) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the parkinsonian rats, which could underlie recovery in motor functions observed in these animals.

  19. Phytochemical Ginkgolide B Attenuates Amyloid-β1-42 Induced Oxidative Damage and Altered Cellular Responses in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Gill, Iqbal; Kaur, Sukhchain; Kaur, Navrattan; Dhiman, Monisha; Mantha, Anil K

    2017-02-20

    Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1 - 42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-oxo-G base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1 - 42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1 - 42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1 - 42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1 - 42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1 - 42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.

  20. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system.

    PubMed

    Tinker, Andrew; Aziz, Qadeer; Thomas, Alison

    2014-01-01

    ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system.

  1. Amino-functionalized mesostructured cellular foams as carriers of glucose oxidase.

    PubMed

    Li, Jun; Yin, Guangfu; Ding, Yi; Liao, Xiaoming; Chen, Xianchun; Huang, Zhongbing; Yao, Yadong; Pu, Ximing

    2013-11-01

    The mesostructured cellular foams (MCFs) were synthesized in aqueous hydrochloric acid by using dilute Pluronic P123 solutions in the presence of 1,3,5-trimethylbenzene (TMB) as organic cosolvent. And the amino-functionalized MCFs (NH₂-MCFs) were prepared from primary MCFs by post-synthesis method using 3-aminopropyl-trimethoxysilane (APTMS) as the chemical modifier. The SEM and TEM observations showed the similar morphologies and pore structures of both MCFs and NH₂-MCFs, indicating that the surface modification had little effect on the morphologies and pore structures. Glucose oxidase (GOD) was physically adsorbed on MCFs and NH₂-MCFs at different pH. The maximum immobilized amount of GOD on NH₂-MCFs (487 mg g⁻¹) was much higher than that of MCFs (216 mg g⁻¹) at pH 5.0. The larger loading capacity of NH₂-MCFs suggested that the electrostatic interaction was the dominant force for GOD adsorption. Furthermore, the immobilized GOD exhibited improved thermal and storable stabilities. The GOD immobilized on NH₂-MCFs (NH₂-MCFs-GOD) still maintained 80% of initial activity after incubation at 60°C for 1 h, whereas the free GOD and the GOD immobilized on MCFs (MCFs-GOD) remained only 40% and 60%, respectively. Moreover, after stored at 4°C for 30 days, the free GOD, the MCFs-GOD and the NH₂-MCFs-GOD retained 37%, 52% and 73% of initial activities, respectively. Based on these results, possible mechanisms were also discussed.

  2. Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc

    PubMed Central

    Mitchell, Colin J.; Shawki, Ali; Ganz, Tomas; Nemeth, Elizabeta

    2013-01-01

    Iron homeostasis is achieved by regulating the intestinal absorption of the metal and its recycling by macrophages. Iron export from enterocytes or macrophages to blood plasma is thought to be mediated by ferroportin under the control of hepcidin. Although ferroportin was identified over a decade ago, little is understood about how it works. We expressed in Xenopus oocytes a human ferroportin-enhanced green fluorescent protein fusion protein and observed using confocal microscopy its exclusive plasma-membrane localization. As a first step in its characterization, we established an assay to detect functional expression of ferroportin by microinjecting oocytes with 55Fe and measuring efflux. Ferroportin expression increased the first-order rate constants describing 55Fe efflux up to 300-fold over control. Ferroportin-mediated 55Fe efflux was saturable, temperature-dependent (activation energy, Ea ≈ 17 kcal/mol), maximal at extracellular pH ≈ 7.5, and inactivated at extracellular pH < 6.0. We estimated that ferroportin reacts with iron at its intracellular aspect with apparent affinity constant < 10−7 M. Ferroportin expression also stimulated efflux of 65Zn and 57Co but not of 64Cu, 109Cd, or 54Mn. Hepcidin treatment of oocytes inhibited efflux of 55Fe, 65Zn, and 57Co. Whereas hepcidin administration in mice resulted in a marked hypoferremia within 4 h, we observed no effect on serum zinc levels in those same animals. We conclude that ferroportin is an iron-preferring cellular metal-efflux transporter with a narrow substrate profile that includes cobalt and zinc. Whereas hepcidin strongly regulated serum iron levels in the mouse, we found no evidence that ferroportin plays an important role in zinc homeostasis. PMID:24304836

  3. MicroRNA Expression Is Altered in an Ovalbumin-Induced Asthma Model and Targeting miR-155 with Antagomirs Reveals Cellular Specificity.

    PubMed

    Plank, Maximilian W; Maltby, Steven; Tay, Hock L; Stewart, Jessica; Eyers, Fiona; Hansbro, Philip M; Foster, Paul S

    2015-01-01

    MicroRNAs are post-transcriptional regulators of gene expression that are differentially regulated during development and in inflammatory diseases. A role for miRNAs in allergic asthma is emerging and further investigation is required to determine whether they may serve as potential therapeutic targets. We profiled miRNA expression in murine lungs from an ovalbumin-induced allergic airways disease model, and compared expression to animals receiving dexamethasone treatment and non-allergic controls. Our analysis identified 29 miRNAs that were significantly altered during allergic inflammation. Target prediction analysis revealed novel genes with altered expression in allergic airways disease and suggests synergistic miRNA regulation of target mRNAs. To assess the impacts of one induced miRNA on pathology, we targeted miR-155-5p using a specific antagomir. Antagomir administration successfully reduced miR-155-5p expression with high specificity, but failed to alter the disease phenotype. Interestingly, further investigation revealed that antagomir delivery has variable efficacy across different immune cell types, effectively targeting myeloid cell populations, but exhibiting poor uptake in lymphocytes. Our findings demonstrate that antagomir-based targeting of miRNA function in the lung is highly specific, but highlights cell-specificity as a key limitation to be considered for antagomir-based strategies as therapeutics.

  4. Chronic loss of noradrenergic tone produces β-arrestin2-mediated cocaine hypersensitivity and alters cellular D2 responses in the nucleus accumbens.

    PubMed

    Gaval-Cruz, Meriem; Goertz, Richard B; Puttick, Daniel J; Bowles, Dawn E; Meyer, Rebecca C; Hall, Randy A; Ko, Daijin; Paladini, Carlos A; Weinshenker, David

    2016-01-01

    Cocaine blocks plasma membrane monoamine transporters and increases extracellular levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT). The addictive properties of cocaine are mediated primarily by DA, while NE and 5-HT play modulatory roles. Chronic inhibition of dopamine β-hydroxylase (DBH), which converts DA to NE, increases the aversive effects of cocaine and reduces cocaine use in humans, and produces behavioral hypersensitivity to cocaine and D2 agonism in rodents, but the underlying mechanism is unknown. We found a decrease in β-arrestin2 (βArr2) in the nucleus accumbens (NAc) following chronic genetic or pharmacological DBH inhibition, and overexpression of βArr2 in the NAc normalized cocaine-induced locomotion in DBH knockout (Dbh -/-) mice. The D2/3 agonist quinpirole decreased excitability in NAc medium spiny neurons (MSNs) from control, but not Dbh -/- animals, where instead there was a trend for an excitatory effect. The Gαi inhibitor NF023 abolished the quinpirole-induced decrease in excitability in control MSNs, but had no effect in Dbh -/- MSNs, whereas the Gαs inhibitor NF449 restored the ability of quinpirole to decrease excitability in Dbh -/- MSNs, but had no effect in control MSNs. These results suggest that chronic loss of noradrenergic tone alters behavioral responses to cocaine via decreases in βArr2 and cellular responses to D2/D3 activation, potentially via changes in D2-like receptor G-protein coupling in NAc MSNs.

  5. Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS

    PubMed Central

    Hiolski, Emma M; Kendrick, Preston S; Frame, Elizabeth R; Myers, Mark S; Bammler, Theo K; Beyer, Richard P; Farin, Federico M; Wilkerson, Hui-wen; Smith, Donald R; Marcinek, David J; Lefebvre, Kathi A

    2014-01-01

    Domoic acid is an algal-derived seafood toxin that functions as a glutamate agonist and exerts excitotoxicity via overstimulation of glutamate receptors (AMPA, NMDA) in the central nervous system (CNS). At high (symptomatic) doses, domoic acid is well-known to cause seizures, brain lesions and memory loss; however, a significant knowledge gap exists regarding the health impacts of repeated low-level (asymptomatic) exposure. Here, we investigated the impacts of low-level repetitive domoic acid exposure on gene transcription and mitochondrial function in the vertebrate CNS using a zebrafish model in order to: 1) identify transcriptional biomarkers of exposure; and 2) examine potential pathophysiology that may occur in the absence of overt excitotoxic symptoms. We found that transcription of genes related to neurological function and development were significantly altered, and that asymptomatic exposure impaired mitochondrial function. Interestingly, the transcriptome response was highly-variable across the exposure duration (36 weeks), with little to no overlap of specific genes across the six exposure time points (2, 6, 12, 18, 24, and 36 weeks). Moreover, there were no apparent similarities at any time point with the gene transcriptome profile exhibited by the glud1 mouse model of chronic moderate excess glutamate release. These results suggest that although the fundamental mechanisms of toxicity may be similar, gene transcriptome responses to domoic acid exposure do not extrapolate well between different exposure durations. However, the observed impairment of mitochondrial function based on respiration rates and mitochondrial protein content suggests that repetitive low-level exposure does have fundamental cellular level impacts that could contribute to chronic health consequences. PMID:25033243

  6. Altered structure-function relations of semantic processing in youths with high-functioning autism: a combined diffusion and functional MRI study.

    PubMed

    Lo, Yu-Chun; Chou, Tai-Li; Fan, Li-Ying; Gau, Susan Shur-Fen; Chiu, Yen-Nan; Tseng, Wen-Yih Isaac

    2013-12-01

    Deficits in language and communication are among the core symptoms of autism, a common neurodevelopmental disorder with long-term impairment. Despite the striking nature of the autistic language impairment, knowledge about its corresponding alterations in the brain is still evolving. We hypothesized that the dual stream language network is altered in autism, and that this alteration could be revealed by changes in the relationships between microstructural integrity and functional activation. The study recruited 20 right-handed male youths with autism and 20 carefully matched individually, typically developing (TD) youths. Microstructural integrity of the left dorsal and left ventral pathways responsible for language processing and the functional activation of the connected brain regions were investigated by using diffusion spectrum imaging and functional magnetic resonance imaging of a semantic task, respectively. Youths with autism had significantly poorer language function, and lower functional activation in left dorsal and left ventral regions of the language network, compared with TD youths. The TD group showed a significant correlation of the functional activation of the left dorsal region with microstructural integrity of the left ventral pathway, whereas the autism group showed a significant correlation of the functional activation of the left ventral region with microstructural integrity of the left dorsal pathway, and moreover verbal comprehension index was correlated with microstructural integrity of the left ventral pathway. These altered structure-function relationships in autism suggest possible involvement of the dual pathways in supporting deficient semantic processing.

  7. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair.

    PubMed

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli

    2014-10-03

    The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.

  8. Cellular Expression, Trafficking, and Function of Two Isoforms of Human ULBP5/RAET1G

    PubMed Central

    Eagle, Robert A.; Flack, Gillian; Warford, Anthony; Martínez-Borra, Jesús; Jafferji, Insiya; Traherne, James A.; Ohashi, Maki; Boyle, Louise H.; Barrow, Alexander D.; Caillat-Zucman, Sophie; Young, Neil T.; Trowsdale, John

    2009-01-01

    Background The activating immunoreceptor NKG2D is expressed on Natural Killer (NK) cells and subsets of T cells. NKG2D contributes to anti-tumour and anti-viral immune responses in vitro and in vivo. The ligands for NKG2D in humans are diverse proteins of the MIC and ULBP/RAET families that are upregulated on the surface of virally infected cells and tumours. Two splicing variants of ULBP5/RAET1G have been cloned previously, but not extensively characterised. Methodology/Principal Findings We pursue a number of approaches to characterise the expression, trafficking, and function of the two isoforms of ULBP5/RAET1G. We show that both transcripts are frequently expressed in cell lines derived from epithelial cancers, and in primary breast cancers. The full-length transcript, RAET1G1, is predicted to encode a molecule with transmembrane and cytoplasmic domains that are unique amongst NKG2D ligands. Using specific anti-RAET1G1 antiserum to stain tissue microarrays we show that RAET1G1 expression is highly restricted in normal tissues. RAET1G1 was expressed at a low level in normal gastrointestinal epithelial cells in a similar pattern to MICA. Both RAET1G1 and MICA showed increased expression in the gut of patients with celiac disease. In contrast to healthy tissues the RAET1G1 antiserum stained a wide variety or different primary tumour sections. Both endogenously expressed and transfected RAET1G1 was mainly found inside the cell, with a minority of the protein reaching the cell surface. Conversely the truncated splicing variant of RAET1G2 was shown to encode a soluble molecule that could be secreted from cells. Secreted RAET1G2 was shown to downregulate NKG2D receptor expression on NK cells and hence may represent a novel tumour immune evasion strategy. Conclusions/Significance We demonstrate that the expression patterns of ULBP5RAET1G are very similar to the well-characterised NKG2D ligand, MICA. However the two isoforms of ULBP5/RAET1G have very different cellular

  9. Growth hormone receptor antagonist (GHA) transgenic mice have increased subcutaneous adipose tissue mass, altered glucose homeostasis, and no change in white adipose tissue cellular senescence

    PubMed Central

    Comisford, Ross; Lubbers, Ellen R.; Householder, Lara; Suer, Ozan; Tchkonia, Tamara; Kirkland, James L.; List, Edward O.; Kopchick, John J.; Berryman, Darlene E.

    2015-01-01

    Background Growth hormone (GH) resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests long-lived GH resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice. OBJECTIVE The objective of this study was to examine white adipose tissue (WAT) senescence, WAT distribution, and glucose homeostasis in dwarf growth hormone receptor antagonist (GHA) transgenic mice, a unique mouse strain having decreased GH action but normal longevity. METHODS 18mo old female GHA mice and wild type (WT) littermate controls were used. Prior to dissection, body composition, fasting blood glucose, and glucose and insulin tolerance tests were performed. WAT distribution was determined by weighing four distinct WAT depots at the time of dissection. Cellular senescence in four WAT depots was assessed using senescence-associated β-galactosidase (SA-β-gal) staining to quantify the senescent cell burden and real time qPCR to quantify gene expression of senescence markers p16 and IL-6. RESULTS GHA mice had a 22% reduction in total body weight, 33% reduction in lean mass, and a 10% increase in body fat percentage compared to WT controls. GHA mice had normal fasting blood glucose and improved insulin sensitivity; however, they exhibited impaired glucose tolerance. Moreover, GHA mice displayed enhanced lipid storage in the inguinal subcutaneous WAT depot (p<.05) and a 1.7 fold increase in extra-/intraperitoneal WAT ratio compared to controls (p<.05). Measurements of WAT cellular senescence showed no difference between GHA mice and WT controls. CONCLUSIONS Similar to other mice with decreased GH action, female GHA mice display reduced age-related lipid redistribution and improved insulin

  10. Synthesis and characterization of dual-functionalized core-shell fluorescent microspheres for bioconjugation and cellular delivery.

    PubMed

    Behrendt, Jonathan M; Nagel, David; Chundoo, Evita; Alexander, Lois M; Dupin, Damien; Hine, Anna V; Bradley, Mark; Sutherland, Andrew J

    2013-01-01

    The efficient transport of micron-sized beads into cells, via a non-endocytosis mediated mechanism, has only recently been described. As such there is considerable scope for optimization and exploitation of this procedure to enable imaging and sensing applications to be realized. Herein, we report the design, synthesis and characterization of fluorescent microsphere-based cellular delivery agents that can also carry biological cargoes. These core-shell polymer microspheres possess two distinct chemical environments; the core is hydrophobic and can be labeled with fluorescent dye, to permit visual tracking of the microsphere during and after cellular delivery, whilst the outer shell renders the external surfaces of the microspheres hydrophilic, thus facilitating both bioconjugation and cellular compatibility. Cross-linked core particles were prepared in a dispersion polymerization reaction employing styrene, divinylbenzene and a thiol-functionalized co-monomer. These core particles were then shelled in a seeded emulsion polymerization reaction, employing styrene, divinylbenzene and methacrylic acid, to generate orthogonally functionalized core-shell microspheres which were internally labeled via the core thiol moieties through reaction with a thiol reactive dye (DY630-maleimide). Following internal labeling, bioconjugation of green fluorescent protein (GFP) to their carboxyl-functionalized surfaces was successfully accomplished using standard coupling protocols. The resultant dual-labeled microspheres were visualized by both of the fully resolvable fluorescence emissions of their cores (DY630) and shells (GFP). In vitro cellular uptake of these microspheres by HeLa cells was demonstrated conventionally by fluorescence-based flow cytometry, whilst MTT assays demonstrated that 92% of HeLa cells remained viable after uptake. Due to their size and surface functionalities, these far-red-labeled microspheres are ideal candidates for in vitro, cellular delivery of proteins.

  11. The knock-out of ARP3a gene affects F-actin cytoskeleton organization altering cellular tip growth, morphology and development in moss Physcomitrella patens.

    PubMed

    Finka, Andrija; Saidi, Younousse; Goloubinoff, Pierre; Neuhaus, Jean-Marc; Zrÿd, Jean-Pierre; Schaefer, Didier G

    2008-10-01

    The seven subunit Arp2/3 complex is a highly conserved nucleation factor of actin microfilaments. We have isolated the genomic sequence encoding a putative Arp3a protein of the moss Physcomitrella patens. The disruption of this ARP3A gene by allele replacement has generated loss-of-function mutants displaying a complex developmental phenotype. The loss-of function of ARP3A gene results in shortened, almost cubic chloronemal cells displaying affected tip growth and lacking differentiation to caulonemal cells. In moss arp3a mutants, buds differentiate directly from chloronemata to form stunted leafy shoots having differentiated leaves similar to wild type. Yet, rhizoids never differentiate from stem epidermal cells. To characterize the F-actin organization in the arp3a-mutated cells, we disrupted ARP3A gene in the previously described HGT1 strain expressing conditionally the GFP-talin marker. In vivo observation of the F-actin cytoskeleton during P. patens development demonstrated that loss-of-function of Arp3a is associated with the disappearance of specific F-actin cortical structures associated with the establishment of localized cellular growth domains. Finally, we show that constitutive expression of the P. patens Arp3a and its Arabidopsis thaliana orthologs efficiently complement the mutated phenotype indicating a high degree of evolutionary conservation of the Arp3 function in land plants.

  12. [The altered function of the epidermic desmosomes and its clinical repercusion (penphigus)].

    PubMed

    Robledo Aguilar, Alfredo

    2005-01-01

    Dermatology is mainly a speciality based on the macro and miscroscopic morphology. In the second half of the 20th century, the physiological and physiopathological knowledge have undergone a great change and shown a non-stop progress. The aim of this work is the physiopathology of the penphigus. This works starts with the description of the structure, molecular composition and function of the epidermic desmosomes, given that its alteration leads to the appearance of the illness.

  13. Altered functional connectivity within the central reward network in overweight and obese women

    PubMed Central

    Coveleskie, K; Gupta, A; Kilpatrick, L A; Mayer, E D; Ashe-McNalley, C; Stains, J; Labus, J S; Mayer, E A

    2015-01-01

    Background/Objectives: Neuroimaging studies in obese subjects have identified abnormal activation of key regions of central reward circuits, including the nucleus accumbens (NAcc), in response to food-related stimuli. We aimed to examine whether women with elevated body mass index (BMI) show structural and resting state (RS) functional connectivity alterations within regions of the reward network. Subjects/Methods: Fifty healthy, premenopausal women, 19 overweight and obese (high BMI=26–38 kg m−2) and 31 lean (BMI=19–25 kg m−2) were selected from the University of California Los Angeles' Oppenheimer Center for Neurobiology of Stress database. Structural and RS functional scans were collected. Group differences in grey matter volume (GMV) of the NAcc, oscillation dynamics of intrinsic brain activity and functional connectivity of the NAcc to regions within the reward network were examined. Results: GMV of the left NAcc was significantly greater in the high BMI group than in the lean group (P=0.031). Altered frequency distributions were observed in women with high BMI compared with lean group in the left NAcc (P=0.009) in a medium-frequency (MF) band, and in bilateral anterior cingulate cortex (ACC) (P=0.014, <0.001) and ventro-medial prefrontal cortex (vmPFC) (P=0.034, <0.001) in a high-frequency band. Subjects with high BMI had greater connectivity of the left NAcc with bilateral ACC (P=0.024) and right vmPFC (P=0.032) in a MF band and with the left ACC (P=0.03) in a high frequency band. Conclusions: Overweight and obese women in the absence of food-related stimuli show significant structural and functional alterations within regions of reward-related brain networks, which may have a role in altered ingestive behaviors. PMID:25599560

  14. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    PubMed Central

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and

  15. Structural white matter and functional connectivity alterations in patients with shoulder apprehension

    PubMed Central

    Zanchi, Davide; Cunningham, Gregory; Lädermann, Alexandre; Ozturk, Mehmet; Hoffmeyer, Pierre; Haller, Sven

    2017-01-01

    Previous functional magnetic resonance imaging (fMRI) findings indicate that shoulder apprehension is more complex than a pure mechanical problem of the shoulder, showing a direct modification in functional brain networks associated with motor inhibition and emotional regulation. The current study extends these findings by investigating further structural alterations in patients with shoulder apprehension compared to controls. 14 aged patients with shoulder apprehension (27.3 ± 2.0 years) and 10 matched healthy controls (29.6 ± 1.3 years) underwent clinical and fMRI examination including fMRI and diffusion tensor imaging (DTI). Tract-based spatial statistics procedure was used to analyze white matter (WM) alterations. Functional images were analyzed investigating resting state network connectivity. DTI results were correlated with different shoulder clinical scores and functional connectivity networks. Fractional anisotropy (FA), representing white matter integrity, is increased in the left internal capsule and partially in the thalamus in patients compared to controls. Moreover, FA correlates negatively with simple shoulder test (SST) scores (p < .05) and positively with a functional connectivity network qualitatively replicating previous results (p < .01). This study extends previous findings, showing that in addition to functional changes, structural white matter changes are also present in patients with shoulder apprehension. PMID:28176877

  16. Alterations in left ventricular diastolic function in conscious dogs with pacing-induced heart failure

    NASA Technical Reports Server (NTRS)

    Komamura, K.; Shannon, R. P.; Pasipoularides, A.; Ihara, T.; Lader, A. S.; Patrick, T. A.; Bishop, S. P.; Vatner, S. F.

    1992-01-01

    We investigated in conscious dogs (a) the effects of heart failure induced by chronic rapid ventricular pacing on the sequence of development of left ventricular (LV) diastolic versus systolic dysfunction and (b) whether the changes were load dependent or secondary to alterations in structure. LV systolic and diastolic dysfunction were evident within 24 h after initiation of pacing and occurred in parallel over 3 wk. LV systolic function was reduced at 3 wk, i.e., peak LV dP/dt fell by -1,327 +/- 105 mmHg/s and ejection fraction by -22 +/- 2%. LV diastolic dysfunction also progressed over 3 wk of pacing, i.e., tau increased by +14.0 +/- 2.8 ms and the myocardial stiffness constant by +6.5 +/- 1.4, whereas LV chamber stiffness did not change. These alterations were associated with increases in LV end-systolic (+28.6 +/- 5.7 g/cm2) and LV end-diastolic stresses (+40.4 +/- 5.3 g/cm2). When stresses and heart rate were matched at the same levels in the control and failure states, the increases in tau and myocardial stiffness were no longer observed, whereas LV systolic function remained depressed. There were no increases in connective tissue content in heart failure. Thus, pacing-induced heart failure in conscious dogs is characterized by major alterations in diastolic function which are reversible with normalization of increased loading condition.

  17. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  18. Pioglitazone ameliorates behavioral, biochemical and cellular alterations in quinolinic acid induced neurotoxicity: possible role of peroxisome proliferator activated receptor-Upsilon (PPARUpsilon) in Huntington's disease.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2010-08-01

    Emerging evidence indicates that PPARUpsilon activators attenuate neurodegeneration and related complications. Therefore, the present study focused on the neuroprotective potential of pioglitazone against quinolinic acid (QUIN) induced neurotoxicity. Intrastriatal (unilaterally) administration of QUIN significantly altered body weight and motor function (locomotor activity, rotarod and beam walk performance). Further, QUIN treatment significantly caused oxidative damage (increased lipid peroxidation, nitrite concentration and depleted endogenous antioxidant defense enzymes), altered mitochondrial enzyme complex (I, II and IV) activities and TNF-alpha level as compared to sham treated animals. Pioglitazone (10, 20 and 40mg/kg, p.o.) treatment significantly improved body weight and motor functions, oxidative defense. Further, pioglitazone treatment restored mitochondrial enzyme complex activity as well as TNF-alpha level as compared to QUIN treated group. While Bisphenol A diglycidyl ether (BADGE) (15mg/kg), PPARUpsilon antagonist significantly reversed the protective effect of the pioglitazone (40mg/kg) in the QUIN treated animals. Further, pioglitazone treatment significantly attenuated the striatal lesion volume in QUIN treated animals, suggesting a role for the PPARUpsilon pathway in QUIN induced neurotoxicity. Altogether, this evidence indicates that PPARUpsilon activation by pioglitazone attenuated QUIN induced neurotoxicity in animals and which could be an important therapeutic avenue to ameliorate Huntington like symptoms.

  19. Pathogen virulence factors as molecular probes of basic plant cellular functions

    PubMed Central

    Speth, Elena Bray; Lee, Young Nam; He, Sheng Yang

    2007-01-01

    Summary To successfully colonize plants, pathogens have evolved a myriad of virulence factors that allow them to manipulate host cellular pathways in order to gain entry into, multiply and move within, and eventually exit the host for a new infection cycle. In the past few years, substantial progress has been made in characterizing the host targets of viral and bacterial virulence factors, providing unique insights into basic plant cellular processes such as gene silencing, vesicle trafficking, hormone signaling, and innate immunity. Identification of the host targets of additional pathogen virulence factors promises to continue shedding light on fundamental cellular mechanisms in plants, thus enhancing our understanding of plant signaling, metabolism and cell biology. PMID:17884715

  20. Altered Neural Function to Happy Faces in Adolescents with and at Risk for Depression

    PubMed Central

    Kerestes, Rebecca; Segreti, Anna Maria; Pan, Lisa A.; Phillips, Mary L.; Birmaher, Boris; Brent, David A.; Ladouceur, Cecile D.

    2016-01-01

    Background There is accumulating evidence of alterations in neural circuitry underlying the processing of social-affective information in adolescent Major Depressive Disorder (MDD). However the extent to which such alterations are present in youth at risk for mood disorders remains unclear. Method Whole-brain blood oxygenation level-dependent task responses and functional connectivity using generalized psychophysiological interaction (gPPI) analyses to mild and intense happy face stimuli was examined in 29 adolescents with MDD (MDD; M age, 16.0, SD 1.2 years), 38 healthy adolescents at risk of a mood disorder, by virtue of having a parent diagnosed with either Bipolar Disorder (BD) or MDD (Mood-risk; M age 13.4, SD 2.5 years) and 43 healthy control adolescents, having parents with no psychiatric disorder (HC; M age 14.6, SD 2.2 years). Results Relative to HC adolescents, Mood-risk adolescents showed elevated right dorsolateral prefrontal cortex (DLPFC) activation to 100% intensity happy (vs. neutral) faces and concomitant lowered ventral putamen activity to 50% intensity happy (vs. neutral) faces. gPPI analyses revealed that MDD adolescents showed significantly lower right DLPFC functional connectivity with the ventrolateral PFC (VLPFC) compared to HC to all happy faces. Limitations The current study is limited by the smaller number of healthy offspring at risk for MDD compared to BD. Conclusions Because Mood-risk adolescents were healthy at the time of the scan, elevated DLPFC and lowered ventral striatal activity in Mood-risk adolescents may be associated with risk or resiliency. In contrast, altered DLPFC-VLPFC functional connectivity in MDD adolescents may be associated with depressed mood state. Such alterations may affect social-affective development and progression to a mood disorder in Mood-risk adolescents. Future longitudinal follow-up studies are needed to directly answer this research question. PMID:26724693

  1. Neuropsychiatric symptoms in Alzheimer's disease are related to functional connectivity alterations in the salience network.

    PubMed

    Balthazar, Marcio L F; Pereira, Fabrício R S; Lopes, Tátila M; da Silva, Elvis L; Coan, Ana Carolina; Campos, Brunno M; Duncan, Niall W; Stella, Florindo; Northoff, Georg; Damasceno, Benito P; Cendes, Fernando

    2014-04-01

    Neuropsychiatric syndromes are highly prevalent in Alzheimer's disease (AD), but their neurobiology is not completely understood. New methods in functional magnetic resonance imaging, such as intrinsic functional connectivity or "resting-state" analysis, may help to clarify this issue. Using such approaches, alterations in the default-mode and salience networks (SNs) have been described in Alzheimer's, although their relationship with specific symptoms remains unclear. We therefore carried out resting-state functional connectivity analysis with 20 patients with mild to moderate AD, and correlated their scores on neuropsychiatric inventory syndromes (apathy, hyperactivity, affective syndrome, and psychosis) with maps of connectivity in the default mode network and SN. In addition, we compared network connectivity in these patients with that in 17 healthy elderly control subjects. All analyses were controlled for gray matter density and other potential confounds. Alzheimer's patients showed increased functional connectivity within the SN compared with controls (right anterior cingulate cortex and left medial frontal gyrus), along with reduced functional connectivity in the default-mode network (bilateral precuneus). A correlation between increased connectivity in anterior cingulate cortex and right insula areas of the SN and hyperactivity syndrome (agitation, irritability, aberrant motor behavior, euphoria, and disinhibition) was found. These findings demonstrate an association between specific network changes in AD and particular neuropsychiatric symptom types. This underlines the potential clinical significance of resting state alterations in future diagnosis and therapy.

  2. Altered Intranetwork and Internetwork Functional Connectivity in Type 2 Diabetes Mellitus With and Without Cognitive Impairment

    PubMed Central

    Yang, Shi-Qi; Xu, Zhi-Peng; Xiong, Ying; Zhan, Ya-Feng; Guo, Lin-Ying; Zhang, Shun; Jiang, Ri-Feng; Yao, Yi-Hao; Qin, Yuan-Yuan; Wang, Jian-Zhi; Liu, Yong; Zhu, Wen-Zhen

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is associated with cognitive impairment. We investigated whether alterations of intranetwork and internetwork functional connectivity with T2DM progression exist, by using resting-state functional MRI. MRI data were analysed from 19 T2DM patients with normal cognition (DMCN) and 19 T2DM patients with cognitive impairment (DMCI), 19 healthy controls (HC). Functional connectivity among 36 previously well-defined brain regions which consisted of 5 resting-state network (RSN) systems [default mode network (DMN), dorsal attention network (DAN), control network (CON), salience network (SAL) and sensorimotor network (SMN)] was investigated at 3 levels (integrity, network and connectivity). Impaired intranetwork and internetwork connectivity were found in T2DM, especially in DMCI, on the basis of the three levels of analysis. The bilateral posterior cerebellum, the right insula, the DMN and the CON were mainly involved in these changes. The functional connectivity strength of specific brain architectures in T2DM was found to be associated with haemoglobin A1c (HbA1c), cognitive score and illness duration. These network alterations in intergroup differences, which were associated with brain functional impairment due to T2DM, indicate that network organizations might be potential biomarkers for predicting the clinical progression, evaluating the cognitive impairment, and further understanding the pathophysiology of T2DM. PMID:27622870

  3. Liver disease alters high-density lipoprotein composition, metabolism and function.

    PubMed

    Trieb, Markus; Horvath, Angela; Birner-Gruenberger, Ruth; Spindelboeck, Walter; Stadlbauer, Vanessa; Taschler, Ulrike; Curcic, Sanja; Stauber, Rudolf E; Holzer, Michael; Pasterk, Lisa; Heinemann, Akos; Marsche, Gunther

    2016-07-01

    High-density lipoproteins (HDL) are important endogenous inhibitors of inflammatory responses. Functional impairment of HDL might contribute to the excess mortality experienced by patients with liver disease, but the effect of cirrhosis on HDL metabolism and function remain elusive. To get an integrated measure of HDL quantity and quality, we assessed several metrics of HDL function using apolipoprotein (apo) B-depleted sera from patients with compensated cirrhosis, patients with acutely decompensated cirrhosis and healthy controls. We observed that sera of cirrhotic patients showed reduced levels of HDL-cholesterol and profoundly suppressed activities of several enzymes involved in HDL maturation and metabolism. Native gel electrophoresis analyses revealed that cirrhotic serum HDL shifts towards the larger HDL2 subclass. Proteomic assessment of isolated HDL identified several proteins, including apoA-I, apoC-III, apoE, paraoxonase 1 and acute phase serum amyloid A to be significantly altered in cirrhotic patients. With regard to function, these alterations in levels, composition and structure of HDL were strongly associated with metrics of function of apoB-depleted sera, including cholesterol efflux capability, paraoxonase activity, the ability to inhibit monocyte production of cytokines and endothelial regenerative activities. Of particular interest, cholesterol efflux capacity appeared to be strongly associated with liver disease mortality. Our findings may be clinically relevant and improve our ability to monitor cirrhotic patients at high risk.

  4. Conducting polymer scaffolds for electrical control of cellular functions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Inal, Sahika; Wan, Alwin M.; Williams, Tiffany V.; Giannelis, Emmanuel P.; Fischbach-Teschl, Claudia; Gourdon, Delphine; Owens, Róisín. M.; Malliaras, George G.

    2016-09-01

    Considering the limited physiological relevance of 2D cell culture experiments, significant effort was devoted to the development of materials that could more accurately recreate the in vivo cellular microenvironment, and support 3D cell cultures in vitro. (1) One such class of materials is conducting polymers, which are promising due to their compliant mechanical properties, compatibility with biological systems, mixed electrical and ionic conductivity, and ability to form porous structures. (2) In this work, we report the fabrication of a single component, macroporous scaffold made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) via an ice-templating method. (3) PEDOT:PSS scaffolds offer tunable pore size, morphology and shape through facile changes in preparation conditions, and are capable of supporting 3D cell cultures due to their biocompatibility and tissue-like elasticity. Moreover, these materials are functional: they exhibit excellent electrochemical switching behavior and significantly lower impedance compared to films. Their electrochemical activity enables their use in the active channel of a state of the art diagnostic tool in the field of bioelectronics, i.e., the organic electrochemical transistor (OECT). The inclusion of cells within the porous architecture affects the impedance of the electrically-conducting polymer network and, thus, may be used as a method to quantify cell growth. The adhesion and pro-angiogenic secretions of mouse fibroblasts cultured within the scaffolds can be controlled by switching the electrochemical state of the polymer prior to cell-seeding. In summary, these smart materials hold promise not only as extracellular matrix-mimicking structures for cell culture, but also as high-performance bioelectronic tools for diagnostic and signaling applications. References [1] M. Holzwarth, P. X. Ma, Journal of Materials Chemistry, 21, 10243-10251 (2011). [2] L. H. Jimison, J. Rivnay, R. M. Owens, in Organic

  5. Exposure to N-Ethyl-N-Nitrosourea in Adult Mice Alters Structural and Functional Integrity of Neurogenic Sites

    PubMed Central

    Capilla-Gonzalez, Vivian; Gil-Perotin, Sara; Ferragud, Antonio; Bonet-Ponce, Luis; Canales, Juan Jose; Garcia-Verdugo, Jose Manuel

    2012-01-01

    Background Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis. Methodology/Principal Findings 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two functions primarily related to the SVZ and the DG regions, respectively. Conclusions/Significance The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits. PMID:22238669

  6. Experimental approaches to identify cellular G-quadruplex structures and functions.

    PubMed

    Di Antonio, Marco; Rodriguez, Raphaël; Balasubramanian, Shankar

    2012-05-01

    Guanine-rich nucleic acids can fold into non-canonical DNA secondary structures called G-quadruplexes. The formation of these structures can interfere with the biology that is crucial to sustain cellular homeostases and metabolism via mechanisms that include transcription, translation, splicing, telomere maintenance and DNA recombination. Thus, due to their implication in several biological processes and possible role promoting genomic instability, G-quadruplex forming sequences have emerged as potential therapeutic targets. There has been a growing interest in the development of synthetic molecules and biomolecules for sensing G-quadruplex structures in cellular DNA. In this review, we summarise and discuss recent methods developed for cellular imaging of G-quadruplexes, and the application of experimental genomic approaches to detect G-quadruplexes throughout genomic DNA. In particular, we will discuss the use of engineered small molecules and natural proteins to enable pull-down, ChIP-Seq, ChIP-chip and fluorescence imaging of G-quadruplex structures in cellular DNA.

  7. Long-term consequences of childhood maltreatment: Altered amygdala functional connectivity

    PubMed Central

    Jedd, Kelly; Hunt, Ruskin H.; Cicchetti, Dante; Hunt, Emily; Cowell, Raquel; Rogosch, Fred; Toth, Sheree; Thomas, Kathleen M.

    2015-01-01

    Childhood maltreatment is a serious individual, familial, and societal threat that compromises healthy development and is associated with lasting alterations to emotion perception, processing, and regulation (Cicchetti & Curtis, 2005; Pollak, Cicchetti, Hornung, & Reed, 2000; Pollak & Tolley-Schell, 2003). Individuals with a history of maltreatment show altered structural and functional brain development in both frontal and limbic structures (Hart & Rubia, 2012). In particular, previous research has identified hyperactive amygdala responsivity associated with childhood maltreatment (e.g. Dannlowski et al., 2012). Less is known, however, about the impact of maltreatment on the relationship between the amygdala and other brain regions. The present study employed an emotion processing fMRI task to examine task-based activation and functional connectivity in adults who experienced maltreatment as children. The sample included adults with a history of substantiated childhood maltreatment (n = 33) and comparison adults (n = 38) who were well matched on demographic variables, all of whom have been studied prospectively since childhood. The maltreated group exhibited greater activation than comparison participants in prefrontal cortex and basal ganglia. In addition, maltreated adults showed increased amygdala connectivity with the hippocampus and prefrontal cortex. The results suggest that the intense early stress of childhood maltreatment is associated with lasting alterations to fronto-limbic circuitry. PMID:26535945

  8. Forest to reclaimed mine land use change leads to altered ecosystem structure and function

    SciTech Connect

    Simmons, J.A.; Currie, W.S.; Eshleman, K.N.; Kuers, K.; Monteleone, S.; Negley, T.L.; Pohlad, B.R.; Thomas, C.L.

    2008-01-15

    The United States' use of coal results in many environmental alterations. In the Appalachian coal belt region, one widespread alteration is conversion of forest to reclaimed mineland. The goal of this study was to quantify the changes to ecosystem structure and function associated with a conversion from forest to reclaimed mine grassland by comparing a small watershed containing a 15-year-old reclaimed mine with a forested, reference watershed in western Maryland. Major differences were apparent between the two watersheds in terms of biogeochemistry. Total C, N, and P pools were all substantially lower at the mined site, mainly due to the removal of woody biomass but also, in the case of P, to reductions in soil pools. Mineral soil C, N, and P pools were 96%, 79%, and 69% of native soils, respectively. Although annual runoff from the watersheds was similar, the mined watershed exhibited taller, narrower storm peaks as a result of a higher soil bulk density and decreased infiltration rates. Stream export of N was much lower in the mined watershed due to lower net nitrification rates and nitrate concentrations in soil. However, stream export of sediment and P and summer stream temperature were much higher. Stream leaf decomposition was reduced and macroinvertebrate community structure was altered as a result of these changes to the stream environment. This land use change leads to substantial, long-term changes in ecosystem capital and function.

  9. Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder

    PubMed Central

    Tornador, Cristian; Falcón, Carles; López‐Solà, Marina; Hernández‐Ribas, Rosa; Pujol, Jesús; Menchón, José M.; Ritter, Petra; Cardoner, Narcis; Soriano‐Mas, Carles; Deco, Gustavo

    2016-01-01

    Abstract Resting‐state fMRI (RS‐fMRI) has become a useful tool to investigate the connectivity structure of mental health disorders. In the case of major depressive disorder (MDD), recent studies regarding the RS‐fMRI have found abnormal connectivity in several regions of the brain, particularly in the default mode network (DMN). Thus, the relevance of the DMN to self‐referential thoughts and ruminations has made the use of the resting‐state approach particularly important for MDD. The majority of such research has relied on the grand averaged functional connectivity measures based on the temporal correlations between the BOLD time series of various brain regions. We, in our study, investigated the variations in the functional connectivity over time at global and local level using RS‐fMRI BOLD time series of 27 MDD patients and 27 healthy control subjects. We found that global synchronization and temporal stability were significantly increased in the MDD patients. Furthermore, the participants with MDD showed significantly increased overall average (static) functional connectivity (sFC) but decreased variability of functional connectivity (vFC) within specific networks. Static FC increased to predominance among the regions pertaining to the default mode network (DMN), while the decreased variability of FC was observed in the connections between the DMN and the frontoparietal network. Hum Brain Mapp 37:2918–2930, 2016. © 2016 Wiley Periodicals, Inc. PMID:27120982

  10. Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder.

    PubMed

    Demirtaş, Murat; Tornador, Cristian; Falcón, Carles; López-Solà, Marina; Hernández-Ribas, Rosa; Pujol, Jesús; Menchón, José M; Ritter, Petra; Cardoner, Narcis; Soriano-Mas, Carles; Deco, Gustavo

    2016-08-01

    Resting-state fMRI (RS-fMRI) has become a useful tool to investigate the connectivity structure of mental health disorders. In the case of major depressive disorder (MDD), recent studies regarding the RS-fMRI have found abnormal connectivity in several regions of the brain, particularly in the default mode network (DMN). Thus, the relevance of the DMN to self-referential thoughts and ruminations has made the use of the resting-state approach particularly important for MDD. The majority of such research has relied on the grand averaged functional connectivity measures based on the temporal correlations between the BOLD time series of various brain regions. We, in our study, investigated the variations in the functional connectivity over time at global and local level using RS-fMRI BOLD time series of 27 MDD patients and 27 healthy control subjects. We found that global synchronization and temporal stability were significantly increased in the MDD patients. Furthermore, the participants with MDD showed significantly increased overall average (static) functional connectivity (sFC) but decreased variability of functional connectivity (vFC) within specific networks. Static FC increased to predominance among the regions pertaining to the default mode network (DMN), while the decreased variability of FC was observed in the connections between the DMN and the frontoparietal network. Hum Brain Mapp 37:2918-2930, 2016. © 2016 Wiley Periodicals, Inc.

  11. Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants

    PubMed Central

    Qiu, A; Anh, T T; Li, Y; Chen, H; Rifkin-Graboi, A; Broekman, B F P; Kwek, K; Saw, S-M; Chong, Y-S; Gluckman, P D; Fortier, M V; Meaney, M J

    2015-01-01

    Prenatal maternal depression is associated with alterations in the neonatal amygdala microstructure, shedding light on the timing for the influence of prenatal maternal depression on the brain structure of the offspring. This study aimed to examine the association between prenatal maternal depressive symptomatology and infant amygdala functional connectivity and to thus establish the neural functional basis for the transgenerational transmission of vulnerability for affective disorders during prenatal development. Twenty-four infants were included in this study with both structural magnetic resonance imaging (MRI) and resting-state functional MRI (fMRI) at 6 months of age. Maternal depression was assessed at 26 weeks of gestation and 3 months after delivery using the Edinburgh Postnatal Depression Scale. Linear regression was used to identify the amygdala functional networks and to examine the associations between prenatal maternal depressive symptoms and amygdala functional connectivity. Our results showed that at 6 months of age, the amygdala is functionally connected to widespread brain regions, forming the emotional regulation, sensory and perceptual, and emotional memory networks. After controlling for postnatal maternal depressive symptoms, infants born to mothers with higher prenatal maternal depressive symptoms showed greater functional connectivity of the amygdala with the left temporal cortex and insula, as well as the bilateral anterior cingulate, medial orbitofrontal and ventromedial prefrontal cortices, which are largely consistent with patterns of connectivity observed in adolescents and adults with major depressive disorder. Our study provides novel evidence that prenatal maternal depressive symptomatology alters the amygdala's functional connectivity in early postnatal life, which reveals that the neuroimaging correlates of the familial transmission of phenotypes associated with maternal mood are apparent in infants at 6 months of age. PMID:25689569

  12. Sediment contaminated with the Azo Dye disperse yellow 7 alters cellular stress- and androgen-related transcription in Silurana tropicalis larvae.

    PubMed

    Mathieu-Denoncourt, Justine; Martyniuk, Christopher J; de Solla, Shane R; Balakrishnan, Vimal K; Langlois, Valérie S

    2014-01-01

    Azo dyes are the most commonly used type of dye, accounting for 60-70% of all organic dye production worldwide. They are used as direct dyes in the textile, leather, printing ink, and cosmetic industries. The aim of this study was to assess the lethal and sublethal effects of the disazo dye Disperse Yellow 7 (DY7) in frogs to address a knowledge gap regarding mechanisms of toxicity and the potential for endocrine disrupting properties. Larvae of Silurana tropicalis (Western clawed frog) were exposed to DY7-contaminated water (0 to 22 μg/L) and sediment (0 to 209 μg/g) during early larval development. The concentrations used included the range of similar azo dyes found in surface waters in Canada. A significant decrease in tadpole survivorship was observed at 209 μg/g while there was a significant increase in malformations at the two highest concentrations tested in sediment. In the 209 μg/g treatment, DY7 significantly induced hsp70 (2.5-fold) and hsp90 (2.4-fold) mRNA levels, suggesting that cells required oxidative protection. The same treatment also altered the expression of two androgen-related genes: decreased ar (2-fold) and increased srd5a2 (2.6-fold). Furthermore, transcriptomics generated new hypotheses regarding the mechanisms of toxic action of DY7. Gene network analysis revealed that high concentrations of DY7 in sediment induced cellular stress-related gene transcription and affected genes associated with necrotic cell death, chromosome condensation, and mRNA processing. This study is the first to report on sublethal end points for azo dyes in amphibians, a growing environmental pollutant of concern for aquatic species.

  13. Increased susceptibility to ATP via alteration of P2X receptor function in dystrophic mdx mouse muscle cells.

    PubMed

    Yeung, Davy; Zablocki, Krzysztof; Lien, Chun-Fu; Jiang, Taiwen; Arkle, Stephen; Brutkowski, Wojciech; Brown, James; Lochmuller, Hanns; Simon, Joseph; Barnard, Eric A; Górecki, Dariusz C

    2006-04-01

    Pathological cellular hallmarks of Duchenne muscular dystrophy (DMD) include, among others, abnormal calcium homeostasis. Changes in the expression of specific receptors for extracellular ATP in dystrophic muscle have been recently documented: here, we demonstrate that at the earliest, myoblast stage of developing dystrophic muscle a purinergic dystrophic phenotype arises. In myoblasts of a dystrophin-negative muscle cell line established from the mdx mouse model of DMD but not in normal myoblasts, exposure to extracellular ATP triggered a strong increase in cytoplasmic Ca2+ concentrations. Influx of extracellular Ca2+ was stimulated by ATP and BzATP and inhibited by zinc, Coomassie Brilliant Blue-G, and KN-62, demonstrating activation of P2X7 receptors. Significant expression of P2X4 and P2X7 proteins was immunodetected in dystrophic myoblasts. Therefore, full-length dystrophin appears, surprisingly, to play an important role in myoblasts in controlling responses to ATP. Our results suggest that altered function of P2X receptors may be an important contributor to pathogenic Ca2+ entry in dystrophic mouse muscle and may have implications for the pathogenesis of muscular dystrophies. Treatments aiming at inhibition of specific ATP receptors could be of a potential therapeutic benefit.

  14. Alteration of mitochondrial function in adult rat offspring of malnourished dams

    PubMed Central

    Reusens, Brigitte; Theys, Nicolas; Remacle, Claude

    2011-01-01

    Under-nutrition as well as over-nutrition during pregnancy has been associated with the development of adult diseases such as diabetes and obesity. Both epigenetic modifications and programming of the mitochondrial function have been recently proposed to explain how altered intrauterine metabolic environment may produce such a phenotype. This review aims to report data reported in several animal models of fetal malnutrition due to maternal low protein or low calorie diet, high fat diet as well as reduction in placental blood flow. We focus our overview on the β cell. We highlight that, notwithstanding early nutritional events, mitochondrial dysfunctions resulting from different alteration by diet or gender are programmed. This may explain the higher propensity to develop obesity and diabetes in later life. PMID:21954419

  15. Structural and functional alterations of catalase induced by acriflavine, a compound causing apoptosis and necrosis.

    PubMed

    Attar, Farnoosh; Khavari-Nejad, Sarah; Keyhani, Jacqueline; Keyhani, Ezzatollah

    2009-08-01

    Acriflavine is an antiseptic agent causing both apoptosis and necrosis in yeast. In this work, its effect on the structure and function of catalase, a vital enzyme actively involved in protection against oxidative stress, was investigated. In vitro kinetic studies showed that acriflavine inhibited the enzymatic activity in a competitive manner. The residual activity detectable after preincubation of catalase (1.5 nmol/L) with various concentrations of acriflavine went from 50% to 20% of the control value as the acriflavine concentration increased from 30 to 90 micromol/L. Correlatively with the decrease in activity, alterations in the enzyme's conformation were observed as indicated by fluorescence spectroscopy, circular dichroism spectroscopy, and electronic absorption spectroscopy. The enzyme's intrinsic fluorescence obtained upon excitation at either 297 nm (tryptophan residues) or 280 nm (tyrosine and tryptophan residues) decreased as a function of acriflavine concentration. Circular dichroism studies showed alterations of the protein structure by acriflavine with up to 13% decrease in alpha helix, 16% increase in beta-sheet content, 17% increase in random coil, and 4% increase in beta turns. Spectrophotometric studies showed a blueshift and modifications in the chromicity of catalase at 405 nm, corresponding to an absorbance band due to the enzyme's prosthetic group. Thus, acriflavine induced in vitro a profound change in the structure of catalase so that the enzyme could no longer function. Our results showed that acriflavine, a compound producing apoptosis and necrosis, can have a direct effect on vital functions in cells by disabling key enzymes.

  16. The brain functional connectome is robustly altered by lack of sleep.

    PubMed

    Kaufmann, Tobias; Elvsåshagen, Torbjørn; Alnæs, Dag; Zak, Nathalia; Pedersen, Per Ø; Norbom, Linn B; Quraishi, Sophia H; Tagliazucchi, Enzo; Laufs, Helmut; Bjørnerud, Atle; Malt, Ulrik F; Andreassen, Ole A; Roussos, Evangelos; Duff, Eugene P; Smith, Stephen M; Groote, Inge R; Westlye, Lars T

    2016-02-15

    Sleep is a universal phenomenon necessary for maintaining homeostasis and function across a range of organs. Lack of sleep has severe health-related consequences affecting whole-body functioning, yet no other organ is as severely affected as the brain. The neurophysiological mechanisms underlying these deficits are poorly understood. Here, we characterize the dynamic changes in brain connectivity profiles inflicted by sleep deprivation and how they deviate from regular daily variability. To this end, we obtained functional magnetic resonance imaging data from 60 young, adult male participants, scanned in the morning and evening of the same day and again the following morning. 41 participants underwent total sleep deprivation before the third scan, whereas the remainder had another night of regular sleep. Sleep deprivation strongly altered the connectivity of several resting-state networks, including dorsal attention, default mode, and hippocampal networks. Multivariate classification based on connectivity profiles predicted deprivation state with high accuracy, corroborating the robustness of the findings on an individual level. Finally, correlation analysis suggested that morning-to-evening connectivity changes were reverted by sleep (control group)-a pattern which did not occur after deprivation. We conclude that both, a day of waking and a night of sleep deprivation dynamically alter the brain functional connectome.

  17. Longitudinal alterations of executive function in non-psychotic adolescents at familial risk for schizophrenia.

    PubMed

    Bhojraj, Tejas S; Diwadkar, Vaibhav A; Sweeney, John A; Prasad, Konasale M; Eack, Shaun M; Montrose, Debra M; Keshavan, Matcheri S

    2010-04-16

    Genetic diathesis to schizophrenia may involve alterations of adolescent neurodevelopment manifesting as cognitive deficits. Brain regions mediating executive function (fronto-striatal circuits) develop during adolescence while those supporting elementary aspects of attention (e.g. sustained focused attention) have a more protracted maturation beginning in childhood. We hence predicted that adolescents at risk for schizophrenia would show a failure of normal maturation of executive function. We prospectively assessed 18 offspring and 6 siblings of schizophrenia patients (HR) and 28 healthy controls at baseline, year-1 and year-2 follow-up using the Continuous Performance Test [visual-d'] and Wisconsin Card Sort Test (WCST). Perseverative errors on the WCST in HR remained stable but decreased in controls over the follow-up (study-group by assessment-time interaction, p=0.01, controlling for IQ). No significant study-group by assessment-time interactions were seen for sustained attentional performance. HR may not improve while healthy subjects progressively improve on executive function during adolescence and early adulthood. Our results suggest an altered maturational trajectory of executive function during adolescence in individuals at familial risk for schizophrenia.

  18. Alterations in Cardiovascular Regulation and Function During Long-Term Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Cohen, Richard J.

    1999-01-01

    The Cardiovascular Alterations Team is conducting studies of hemodynamic regulation and susceptibility to arrhythmias resulting from sixteen days of simulated microgravity exposure. In these studies very intensive measurements are made during a short duration of bed rest. In this collaborative effort are making many of the same measurements, however much less frequently, on subjects who are exposed to a much longer duration of simulated microgravity. Alterations in cardiovascular regulation and function that occur during and after space flight have been reported. These alterations are manifested, for example, by reduced orthostatic tolerance upon reentry to the earth's gravity from space. However, the precise physiologic mechanisms responsible for these alterations remain to be fully elucidated. Perhaps, as a result, effective countermeasures have yet to be developed. In addition, numerous reports from the past 30 years suggest that the incidence of ventricular arrhythmias among astronauts is increased during space flight. However, the effects of space flight and the associated physiologic stresses on cardiac conduction processes are not known, and an increase in cardiac susceptibility to arrhythmias has never been quantified. In this project we are applying the most powerful technologies available to determine, in a ground-based study of long duration space flight, the mechanisms by which space flight affects cardiovascular function, and then on the basis of an understanding of these mechanisms to develop rational and specific countermeasures. To this end we are conducting a collaborative project with the Bone Demineralization/Calcium Metabolism Team of the National Space Biomedical Research Institute (NSBRI). The Bone Team is conducting bed rest studies in human subjects lasting 17 weeks, which provides a unique opportunity to study the effects of long duration microgravity exposure on the human cardiovascular system. We are applying a number of powerful new

  19. Altered resting perfusion and functional connectivity of default mode network in youth with autism spectrum disorder

    PubMed Central

    Jann, Kay; Hernandez, Leanna M; Beck-Pancer, Devora; McCarron, Rosemary; Smith, Robert X; Dapretto, Mirella; Wang, Danny J J

    2015-01-01

    Background Neuroimaging studies can shed light on the neurobiological underpinnings of autism spectrum disorders (ASD). Studies of the resting brain have shown both altered baseline metabolism from PET/SPECT and altered functional connectivity (FC) of intrinsic brain networks based on resting-state fMRI. To date, however, no study has investigated these two physiological parameters of resting brain function jointly, or explored the relationship between these measures and ASD symptom severity. Methods Here, we used pseudo-continuous arterial spin labeling with 3D background-suppressed GRASE to assess resting cerebral blood flow (CBF) and FC in 17 youth with ASD and 22 matched typically developing (TD) children. Results A pattern of altered resting perfusion was found in ASD versus TD children including frontotemporal hyperperfusion and hypoperfusion in the dorsal anterior cingulate cortex. We found increased local FC in the anterior module of the default mode network (DMN) accompanied by decreased CBF in the same area. In our cohort, both alterations were associated with greater social impairments as assessed with the Social Responsiveness Scale (SRS-total T scores). While FC was correlated with CBF in TD children, this association between FC and baseline perfusion was disrupted in children with ASD. Furthermore, there was reduced long-range FC between anterior and posterior modules of the DMN in children with ASD. Conclusion Taken together, the findings of this study – the first to jointly assess resting CBF and FC in ASD – highlight new avenues for identifying novel imaging markers of ASD symptomatology. PMID:26445698

  20. Species-Specific Effects on Ecosystem Functioning Can Be Altered by Interspecific Interactions.

    PubMed

    Clare, David S; Spencer, Matthew; Robinson, Leonie A; Frid, Christopher L J

    2016-01-01

    Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions) and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions) but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive) or antagonistic (negative) depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed.

  1. HDL-S1P: cardiovascular functions, disease-associated alterations, and therapeutic applications.

    PubMed

    Levkau, Bodo

    2015-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid contained in High-density lipoproteins (HDL) and has drawn considerable attention in the lipoprotein field as numerous studies have demonstrated its contribution to several functions inherent to HDL. Some of them are partly and some entirely due to the S1P contained in HDL (HDL-S1P). Despite the presence of over 1000 different lipids in HDL, S1P stands out as it possesses its own cell surface receptors through which it exercises key physiological functions. Most of the S1P in human plasma is associated with HDL, and the amount of HDL-S1P influences the quality and quantity of HDL-dependent functions. The main binding partner of S1P in HDL is apolipoprotein M but others may also exist particularly under conditions of acute S1P elevations. HDL not only exercise functions through their S1P content but have also an impact on genuine S1P signaling by influencing S1P bioactivity and receptor presentation. HDL-S1P content is altered in human diseases such as atherosclerosis, coronary artery disease, myocardial infarction, renal insufficiency and diabetes mellitus. Low HDL-S1P has also been linked to impaired HDL functions associated with these disorders. Although the pathophysiological and molecular reasons for such disease-associated shifts in HDL-S1P are little understood, there have been successful approaches to circumvent their adverse implications by pharmacologically increasing HDL-S1P as means to improve HDL function. This mini-review will cover the current understanding of the contribution of HDL-S1P to physiological HDL function, its alteration in disease and ways for its restoration to correct HDL dysfunction.

  2. Invasive carnivores alter ecological function and enhance complementarity in scavenger assemblages on ocean beaches.

    PubMed

    Brown, Marion B; Schlacher, Thomas A; Schoeman, David S; Weston, Michael A; Huijbers, Chantal M; Olds, Andrew D; Connolly, Rod M

    2015-10-01

    Species composition is expected to alter ecological function in assemblages if species traits differ strongly. Such effects are often large and persistent for nonnative carnivores invading islands. Alternatively, high similarity in traits within assemblages creates a degree of functional redundancy in ecosystems. Here we tested whether species turnover results in functional ecological equivalence or complementarity, and whether invasive carnivores on islands significantly alter such ecological function. The model system consisted of vertebrate scavengers (dominated by raptors) foraging on animal carcasses on ocean beaches on two Australian islands, one with and one without invasive red foxes (Vulpes vulpes). Partitioning of scavenging events among species, carcass removal rates, and detection speeds were quantified using camera traps baited with fish carcasses at the dune-beach interface. Complete segregation of temporal foraging niches between mammals (nocturnal) and birds (diurnal) reflects complementarity in carrion utilization. Conversely, functional redundancy exists within the bird guild where several species of raptors dominate carrion removal in a broadly similar way. As predicted, effects of red foxes were large. They substantially changed the nature and rate of the scavenging process in the system: (1) foxes consumed over half (55%) of all carrion available at night, compared with negligible mammalian foraging at night on the fox-free island, and (2) significant shifts in the composition of the scavenger assemblages consuming beach-cast carrion are the consequence of fox invasion at one island. Arguably, in the absence of other mammalian apex predators, the addition of red foxes creates a new dimension of functional complementarity in beach food webs. However, this functional complementarity added by foxes is neither benign nor neutral, as marine carrion subsidies to coastal red fox populations are likely to facilitate their persistence as exotic

  3. Species-Specific Effects on Ecosystem Functioning Can Be Altered by Interspecific Interactions

    PubMed Central

    Spencer, Matthew; Robinson, Leonie A.; Frid, Christopher L. J.

    2016-01-01

    Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions) and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions) but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive) or antagonistic (negative) depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed. PMID:27812164

  4. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats.

    PubMed

    van den Brom, Charissa E; Boly, Chantal A; Bulte, Carolien S E; van den Akker, Rob F P; Kwekkeboom, Rick F J; Loer, Stephan A; Boer, Christa; Bouwman, R Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state.

  5. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats

    PubMed Central

    van den Brom, Charissa E.; Boly, Chantal A.; Bulte, Carolien S. E.; van den Akker, Rob F. P.; Kwekkeboom, Rick F. J.; Loer, Stephan A.; Boer, Christa; Bouwman, R. Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state. PMID:26824042

  6. Lysophosphatidic acid signaling via LPA1 and LPA3 regulates cellular functions during tumor progression in pancreatic cancer cells.

    PubMed

    Fukushima, Kaori; Takahashi, Kaede; Yamasaki, Eri; Onishi, Yuka; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2017-03-01

    Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors exhibits a variety of biological effects, such as cell proliferation, motility and differentiation. The aim of this study was to evaluate the roles of LPA1 and LPA3 in cellular functions during tumor progression in pancreatic cancer cells. LPA1 and LPA3 knockdown cells were generated from PANC-1 cells. The cell motile and invasive activities of PANC-1 cells were inhibited by LPA1 and LPA3 knockdown. In gelatin zymography, LPA1 and LPA3 knockdown cells indicated the low activation of matrix metalloproteinase-2 (MMP-2) in the presence of LPA. Next, to assess whether LPA1 and LPA3 regulate cellular functions induced by anticancer drug, PANC-1 cells were treated with cisplatin (CDDP) for approximately 6 months. The cell motile and invasive activities of long-term CDDP treated cells were markedly higher than those of PANC-1 cells, correlating with the expression levels of LPAR1 and LPAR3 genes. In soft agar assay, the long-term CDDP treated cells formed markedly large sized colonies. In addition, the cell motile and invasive activities enhanced by CDDP were significantly suppressed by LPA1 and LPA3 knockdown as well as colony formation. These results suggest that LPA signaling via LPA1 and LPA3 play an important role in the regulation of cellular functions during tumor progression in PANC-1 cells.

  7. Perinatal exposure to diethylstilbestrol alters the functional differentiation of the adult rat uterus.

    PubMed

    Bosquiazzo, Verónica L; Vigezzi, Lucía; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2013-11-01

    The exposure to endocrine disrupters and female reproductive tract disorders has not been totally clarified. The present study assessed the long-term effect of perinatal (gestation+lactation) exposure to diethylstilbestrol (DES) on the rat uterus and the effect of estrogen replacement therapy. DES (5μg/kg bw/day) was administered in the drinking water from gestational day 9 until weaning and we studied the uterus of young adult (PND90) and adult (PND360) females. To investigate whether perinatal exposure to DES modified the uterine response to a long-lasting estrogen treatment, 12-month-old rats exposed to DES were ovariectomized and treated with 17β-estradiol for 3 months (PND460). In young adult rats (PND90), the DES treatment decreased both the proliferation of glandular epithelial cells and the percentage of glandular perimeter occupied by α-smooth muscle actin-positive cells. The other tissue compartments remained unchanged. Cell apoptosis was not altered in DES-exposed females. In control adult rats (PND360), there were some morphologically abnormal uterine glands. In adult rats exposed to DES, the incidence of glands with cellular anomalies increased. In response to estrogens (PND460), the incidence of cystic glands increased in the DES group. We observed glands with daughter glands and conglomerates of glands only on PND460 and in response to estrogen replacement therapy, independently of DES exposure. The p63 isoforms were expressed without changes on PND460. Estrogen receptors α and β showed no changes, while the progesterone receptor decreased in the subepithelial stroma of DES-exposed animals with estrogen treatment. The long-lasting effects of perinatal exposure to DES included the induction of abnormalities in uterine tissues of aged female rats and an altered response of the adult uterus to estradiol.

  8. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery

    PubMed Central

    Goldwater, Deena S.; Pavlides, Constantine; Hunter, Richard G.; Bloss, Erik B.; Hof, Patrick R.; McEwen, Bruce S.; Morrison, John H.

    2009-01-01

    Chronic stress has been shown in animal models to result in altered dendritic morphology of pyramidal neurons of the medial prefrontal cortex (mPFC). It has been hypothesized that the stress-induced dendritic retractions and spine loss lead to disrupted connectivity that results in stress-induced functional impairment of mPFC. While these alterations were initially viewed as a neurodegenerative event, it has recently been established that stress induced dendritic alterations are reversible if animals are given time to recover from chronic stress. However, whether spine growth accompanies dendritic extension remains to be demonstrated. It is also not known if recovery-phase dendritic extension allows for re-establishment of functional capacity. The goal of this study, therefore, was to characterize the structural and functional effects of chronic stress and recovery on the infralimbic (IL) region of the rat mPFC. We compared neuronal morphology of layer V IL pyramidal neurons from animals subjected to 21 days of chronic restraint stress (CRS) to those that experienced CRS followed by a 21 day recovery period. Layer V pyramidal cell functional capacity was assessed by intra-IL long-term potentiation (LTP) both in the absence and presence of SKF38393, a dopamine receptor partial agonist and a known PFC LTP modulator. We found that stress-induced IL apical dendritic retraction and spine loss co-occur with receptor-mediated impairments to catecholaminergic facilitation of synaptic plasticity. We also found that while post-stress recovery did not reverse distal dendritic retraction, it did result in over-extension of proximal dendritic neuroarchitecture and spine growth as well as a full reversal of CRS-induced impairments to catecholaminergic-mediated synaptic plasticity. Our results support the hypothesis that disease-related PFC dysfunction is a consequence of network disruption secondary to altered structural and functional plasticity and that circuitry

  9. Conserved and novel functions of programmed cellular senescence during vertebrate development

    PubMed Central

    Davaapil, Hongorzul; Brockes, Jeremy P.

    2017-01-01

    Cellular senescence, a form of stable cell cycle arrest that is traditionally associated with tumour suppression, has been recently found to occur during mammalian development. Here, we show that cell senescence is an intrinsic part of the developmental programme in amphibians. Programmed senescence occurs in specific structures during defined time windows during amphibian development. It contributes to the physiological degeneration of the amphibian pronephros and to the development of the cement gland and oral cavity. In both contexts, senescence depends on TGFβ but is independent of ERK/MAPK activation. Furthermore, elimination of senescent cells through temporary TGFβ inhibition leads to developmental defects. Our findings uncover conserved and new roles of senescence in vertebrate organogenesis and support the view that cellular senescence may have arisen in evolution as a developmental mechanism. PMID:27888193

  10. Hydrogen peroxide sensors for cellular imaging based on horse radish peroxidase reconstituted on polymer-functionalized TiO₂ nanorods.

    PubMed

    Tahir, Muhammad Nawaz; André, Rute; Sahoo, Jugal Kishore; Jochum, Florian D; Theato, Patrick; Natalio, Filipe; Berger, Rüdiger; Branscheid, Robert; Kolb, Ute; Tremel, Wolfgang

    2011-09-01

    We describe the reconstitution of apo-horse radish peroxidase (apo-HRP) onto TiO(2) nanorods functionalized with a multifunctional polymer. After functionalization, the horse radish peroxidase (HRP) functionalized TiO(2) nanorods were well dispersible in aqueous solution, catalytically active and biocompatible, and they could be used to quantify and image H(2)O(2) which is a harmful secondary product of cellular metabolism. The shape, size and structure of TiO(2) nanorods (anatase) were analyzed by transmission electron microscopy (TEM), high resolution TEM (HRTEM), electron diffraction (ED) and X-ray diffraction (XRD). The surface functionalization, HRP reconstitution and catalytic activity were confirmed by UV-Vis, FT-IR, CLSM and atomic force microscopy (AFM). Biocompatibility and cellular internalization of active HRP reconstituted TiO(2) nanorods were confirmed by a classical MTT cytotoxicity assay and confocal laser scanning microscopy (CLSM) imaging, respectively. The intracellular localization allowed H(2)O(2) detection, imaging and quantification in HeLa cells. The polymer functionalized hybrid system creates a complete sensor including a "cell positioning system" in each single particle. The flexible synthetic concept with functionalization by post-polymerization modification allows introduction of various dyes for sensitisation at different wavelengths and introduction of various anchor groups for anchoring on different particles.

  11. [Alteration of cognitive functions during extended wakefulness: role of the brain functional asymmetry].

    PubMed

    Volf, N V

    1996-01-01

    The study was aimed at looking into the effects of prolonged wakefulness on the activities predominantly governed by the left or right hemisphere. To this end, the subjects were requested to fulfill tests of manual/verbal interaction (1), establishment of similarity through the names of two tachistoscopic letters (2), evaluation of spatial proportions when using the right or left hand (3). The experiment was run with 16 male-subjects eight of which were tested following sleepless night whereas the other eight subjects had a normal night rest. In test 1, the deprived subjects exhibited lower tapping rate of both right and left hands than their counterparts; this fact may point to deteriorated function of anterior hemisphere compartments. The fact that under the effect of competing verbal activity both groups slowed down tapping by either hand at the same rate speaks in favor of immutability of the relative activation of anterior compartments of the right and left hemispheres, maintenance of the norm-specific basal profile of functional asymmetry after sleep deprivation. During prolonged sleep deprivation, test 2 displayed dominance of the right hemisphere in correct identification of letters which was not the case in the control. In deprived subjects test 3 showed overestimation of the left part of space when determining line lengths. Hence, results of experiments 2 and 3 suggest a relative activation of the caudal compartments of the right hemisphere during long wakefulness.

  12. miR-194 functions as a novel modulator of cellular senescence in mouse embryonic fibroblasts.

    PubMed

    Xu, Shun; Zhang, Bing; Zhu, Yanmei; Huang, Haijiao; Yang, Wenping; Huang, Haiyong; Zheng, Hui-Ling; Liu, Xinguang

    2017-03-01

    MicroRNA-194 (miR-194), a typical p53 responsive miRNA, serves as a tumor suppressor similar as p53, and has been demonstrated to play an anti-proliferation role in various human cancers. In spite of the pivotal role of p53 during aging process, the knowledge of miR-194's contribution to cellular senescence is limited. We herein sought to explore the role of miR-194 in the replicative senescence and stress-induced senescence of mouse embryonic fibroblasts. Our results unraveled that, compared to young cells, miR-194 is highly expressed in senescent cells, and extra expression of miR-194 significantly triggers the replicative senescence of MEFs and H2 O2 -induced senescence of NIH/3T3 cells, while inhibition of miR-194 exhibited the opposite effect. We further unveiled that DNMT3A was a direct and authentic target of miR-194, which has been reported to be closely associated with cellular senescence. Taken together, our data suggest that miR-194 may significantly promote the development of cellular senescence in mouse embryonic fibroblasts, which potentially occurs through inhibiting the DNMT3A expression.

  13. Insights on altered mitochondrial function and dynamics in the pathogenesis of neurodegeneration

    PubMed Central

    2013-01-01

    In neurons, mitochondria are enriched to provide energy and calcium buffering required for synaptic transmission. Additionally, mitochondria localize to the synapse, where they are critical for the mobilization of reserve pool vesicles and for neurotransmitter release. Previously, functional defects in mitochondria were considered to be downstream effects of neurodegenerative diseases. However, more recent findings suggest mitochondria may serve as key mediators in the onset and progression of some types of neurodegeneration. In this review, we explore the possible roles of altered mitochondrial function and dynamics in the pathogenesis of neurodegenerative disorders, with a particular focus on Alzheimer’s disease (AD) and Parkinson’s disease (PD), which have highlighted the important role of mitochondria in neurodegeneration. While inheritable diseases like Charcot-Marie-Tooth disease type 2A are concretely linked to gene mutations affecting mitochondrial function, the cause of mitochondrial dysfunction in primarily sporadic diseases such as AD and PD is less clear. Neuronal death in PD is associated with defects in mitochondrial function and dynamics arising from mutations in proteins affecting these processes, including α-synuclein, DJ-1, LRRK2, Parkin and Pink1. In the case of AD, however, the connection between mitochondria and the onset of neurodegeneration has been less clear. Recent findings, however, have implicated altered function of ER-mitochondria contact sites and amyloid beta- and/or tau-induced defects in mitochondrial function and dynamics in the pathogenesis of AD, suggesting that mitochondrial defects may act as key mediators in the pathogenesis of AD as well. With recent findings at hand, it may be postulated that defects in mitochondrial processes comprise key events in the onset of neurodegeneration. PMID:23711354

  14. Does moderate hypoxia alter working memory and executive function during prolonged exercise?

    PubMed

    Komiyama, Takaaki; Sudo, Mizuki; Higaki, Yasuki; Kiyonaga, Akira; Tanaka, Hiroaki; Ando, Soichi

    2015-02-01

    It has been suggested that acute exercise improves cognitive function. However, little is known about how exercise under hypoxia affects cognitive function. The purpose of this study was to determine if hypoxia alters working memory and executive function during prolonged exercise. Sixteen participants performed cognitive tasks at rest and during exercise under normoxia and hypoxia [fraction of inspired oxygen (FIO2)=0.15, corresponding to an altitude of approximately 2600 m]. The level of hypoxia was moderate. We used a combination of Spatial Delayed Response (Spatial DR) task and Go/No-Go (GNG) task, where spatial working memory and executive function are required. Working memory was assessed by the accuracy of the Spatial DR task, and executive function was assessed by the accuracy and reaction time in the GNG task. The participants cycled an ergometer for 30 min under normoxia and moderate hypoxia while keeping their heart rate (HR) at 140 beats/min. They performed the cognitive tasks 5 min and 23 min after their HR reached 140 beats/min. Moderate hypoxia did not alter the accuracy of the Spatial DR (P=0.38) and GNG tasks (P=0.14). In contrast, reaction time in the GNG task significantly decreased during exercise relative to rest under normoxia and moderate hypoxia (P=0.02). These results suggest that moderate hypoxia and resultant biological processes did not provide sufficient stress to impair working memory and executive function during prolonged exercise. The beneficial effects on speed of response appear to persist during prolonged exercise under moderate hypoxia.

  15. Female mice with loss-of-function ITCH display an altered reproductive phenotype.

    PubMed

    Stermer, Angela R; Myers, Jessica L; Murphy, Caitlin J; Di Bona, Kristin R; Matesic, Lydia; Richburg, John H

    2016-02-01

    Major progress in deciphering the role of the E3 ligase, ITCH, in animal physiology has come from the generation and identification of Itch loss-of-function mutant mice (itchy). Mutant mice display an autoimmune-like phenotype characterized by chronic dermatitis, which has been attributed to increased levels of ITCH target proteins (e.g. transcription factors JUNB and CJUN) in T cells. Autoimmune disorders also exist in humans with Itch frameshift mutations resulting in loss of functional ITCH protein. Recent phenotypic analysis of male itchy mice revealed reduced sperm production, although cross breeding experiments showed no difference in litter size when male itchy mice were bred to wild type females. However, a reduction in litter sizes did occur when itchy females were bred to wild type males. Based on these results, characterization of female reproductive function in itchy mice was performed. Developmental analysis of fetuses at gestational day 18.5, cytological evaluation of estrous cyclicity, histopathological analysis of ovaries, and protein analysis were used to investigate the itchy reproductive phenotype. Gross skeletal and soft tissue analysis of gestational day 18.5 itchy fetuses indicated no gross developmental deformities. Itchy females had reduced implantation sites, decreased corpora lutea, and increased estrous cycle length due to increased number of days in estrus compared to controls. Alterations in the expression of prototypical ITCH targets in the ovaries were not indicated, suggesting that an alteration in an as yet defined ovary-specific ITCH substrate or interaction with the altered immune system likely accounts for the disruption of female reproduction. This report indicates the importance of the E3 ligase, ITCH, in female reproduction.

  16. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways

    PubMed Central

    Rogers, G B; Keating, D J; Young, R L; Wong, M-L; Licinio, J; Wesselingh, S

    2016-01-01

    The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut–brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies. PMID:27090305

  17. Maternal Hyperleptinemia Is Associated with Male Offspring’s Altered Vascular Function and Structure in Mice

    PubMed Central

    Pollock, Kelly E.; Talton, Omonseigho O.; Foote, Christopher A.; Reyes-Aldasoro, Constantino C.; Wu, Ho-Hsiang; Ji, Tieming; Martinez-Lemus, Luis A.; Schulz, Laura C.

    2016-01-01

    Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT) offspring of hyperleptinemic, normoglycemic, Leprdb/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD) for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under a standard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post -natal environments to contribute to altered vascular function in offspring of diabetic pregnancies. PMID:27187080

  18. Investigations of the Effects of Altered Vestibular System Function on Hindlimb Anti-Gravity Muscles

    NASA Technical Reports Server (NTRS)

    Lowery, Mary Sue

    1998-01-01

    Exposure to different gravitational environments, both the microgravity of spaceflight and the hypergravity of centrifugation, result in altered vestibulo-spinal function which can be reversed by reacclimation to earth gravity (2). Control of orientation, posture, and locomotion are functions of the vestibular system which are altered by changes in gravitational environment. Not only is the vestibular system involved with coordination and proprioception, but the gravity sensing portion of the vestibular system also plays a major role in maintaining muscle tone through projections to spinal cord motoneurons that control anti-gravity muscles. I have been involved with investigations of several aspects of the link between vestibular inputs and muscle morphology and function during my work with Dr. Nancy Daunton this summer and the previous summer. We have prepared a manuscript for submission (4) to Aviation, Space, and Environmental Medicine based on work that I performed last summer in Dr. Daunton's lab. Techniques developed for that project will be utilized in subsequent experiments begun in the summer of 1998. I have been involved with the development of a pilot project to test the effects of vestibular galvanic stimulation (VGS) on anti-gravity muscles and in another project testing the effects of the ototoxic drug streptomycin on the otolith-spinal reflex and anti-gravity muscle morphology.

  19. Altered Functional Connectivity of the Insular Cortex across Prefrontal Networks in Cocaine Addiction

    PubMed Central

    Cisler, Josh M.; Elton, Amanda; Kennedy, Ashley P.; Young, Jonathan; Smitherman, Sonet; James, George Andrew; Kilts, Clinton D.

    2013-01-01

    Interoception is theorized to be an important process mediating substance use disorders, and the insular cortex is recognized as a core neural region supporting interoception. The purpose of this study was to compare the integration of the insular cortex into prefrontal-related resting-state networks between individuals with cocaine dependence and healthy controls. 41 participants with cocaine dependence and 19 control participants underwent a resting-state 3T fMRI scan. Individuals with cocaine dependence demonstrated altered functional connectivity of the insular cortex, predominantly the right insular cortex, with all eight prefrontal-related resting-state networks identified through Independent Component Analysis (ICA). A conjunction analysis demonstrated that the right insular cortex was the neural region with the highest number of common group differences across the networks. There was no evidence that insular cortex connectivity commonly differed between groups for non-prefrontal-related networks. Further, seed-based functional connectivity analyses extended the network analyses and indicated that cocaine dependence was associated with greater connectivity of the right insula with the dorsomedial PFC, inferior frontal gyrus, and bilateral dlPFC. These data support the hypothesis that cocaine dependence is related to altered functional interactions of the insular cortex with prefrontal networks. The results suggest possible neural mechanisms by which the insular cortex and interoceptive information influence cognitive control and decision-making processes presumably mediated by prefrontal networks in the cocaine dependence process. PMID:23684980

  20. Functional network alterations and their structural substrate in drug-resistant epilepsy

    PubMed Central

    Caciagli, Lorenzo; Bernhardt, Boris C.; Hong, Seok-Jun; Bernasconi, Andrea; Bernasconi, Neda

    2014-01-01

    The advent of MRI has revolutionized the evaluation and management of drug-resistant epilepsy by allowing the detection of the lesion associated with the region that gives rise to seizures. Recent evidence indicates marked chronic alterations in the functional organization of lesional tissue and large-scale cortico-subcortical networks. In this review, we focus on recent methodological developments in functional MRI (fMRI) analysis techniques and their application to the two most common drug-resistant focal epilepsies, i.e., temporal lobe epilepsy related to mesial temporal sclerosis and extra-temporal lobe epilepsy related to focal cortical dysplasia. We put particular emphasis on methodological developments in the analysis of task-free or “resting-state” fMRI to probe the integrity of intrinsic networks on a regional, inter-regional, and connectome-wide level. In temporal lobe epilepsy, these techniques have revealed disrupted connectivity of the ipsilateral mesiotemporal lobe, together with contralateral compensatory reorganization and striking reconfigurations of large-scale networks. In cortical dysplasia, initial observations indicate functional alterations in lesional, peri-lesional, and remote neocortical regions. While future research is needed to critically evaluate the reliability, sensitivity, and specificity, fMRI mapping promises to lend distinct biomarkers for diagnosis, presurgical planning, and outcome prediction. PMID:25565942

  1. CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning.

    PubMed

    Hamilton, Trevor James; Holcombe, Adam; Tresguerres, Martin

    2014-01-22

    The average surface pH of the ocean is dropping at a rapid rate due to the dissolution of anthropogenic CO2, raising concerns for marine life. Additionally, some coastal areas periodically experience upwelling of CO2-enriched water with reduced pH. Previous research has demonstrated ocean acidification (OA)-induced changes in behavioural and sensory systems including olfaction, which is due to altered function of neural gamma-aminobutyric acid type A (GABAA) receptors. Here, we used a camera-based tracking software system to examine whether OA-dependent changes in GABAA receptors affect anxiety in juvenile Californian rockfish (Sebastes diploproa). Anxiety was estimated using behavioural tests that measure light/dark prefere