Science.gov

Sample records for altered glutamatergic synaptic

  1. Mice lacking brain/kidney phosphate-activated glutaminase have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal-directed behavior and die shortly after birth.

    PubMed

    Masson, Justine; Darmon, Michèle; Conjard, Agnès; Chuhma, Nao; Ropert, Nicole; Thoby-Brisson, Muriel; Foutz, Arthur S; Parrot, Sandrine; Miller, Gretchen M; Jorisch, Renée; Polan, Jonathan; Hamon, Michel; Hen, René; Rayport, Stephen

    2006-04-26

    Neurotransmitter glutamate has been thought to derive mainly from glutamine via the action of glutaminase type 1 (GLS1). To address the importance of this pathway in glutamatergic transmission, we knocked out GLS1 in mice. The insertion of a STOP cassette by homologous recombination produced a null allele that blocked transcription, encoded no immunoreactive protein, and abolished GLS1 enzymatic activity. Null mutants were slightly smaller, were deficient in goal-directed behavior, hypoventilated, and died in the first postnatal day. No gross or microscopic defects were detected in peripheral organs or in the CNS. In cultured neurons from the null mutants, miniature EPSC amplitude and duration were normal; however, the amplitude of evoked EPSCs decayed more rapidly with sustained 10 Hz stimulation, consistent with an observed reduction in depolarization-evoked glutamate release. Because of this activity-dependent impairment in glutamatergic transmission, we surmised that respiratory networks, which require temporal summation of synaptic input, would be particularly affected. We found that the amplitude of inspirations was decreased in vivo, chemosensitivity to CO2 was severely altered, and the frequency of pacemaker activity recorded in the respiratory generator in the pre-Bötzinger complex, a glutamatergic brainstem network that can be isolated in vitro, was increased. Our results show that although alternate pathways to GLS1 glutamate synthesis support baseline glutamatergic transmission, the GLS1 pathway is essential for maintaining the function of active synapses, and thus the mutation is associated with impaired respiratory function, abnormal goal-directed behavior, and neonatal demise.

  2. Mice lacking brain/kidney phosphate-activated glutaminase (GLS1) have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal-directed behavior and die shortly after birth

    PubMed Central

    Masson, Justine; Darmon, Michèle; Conjard, Agnès; Chuhma, Nao; Ropert, Nicole; Thoby-Brisson, Muriel; Foutz, Arthur S.; Parrot, Sandrine; Miller, Gretchen M.; Jorisch, Renée; Polan, Jonathan; Hamon, Michel; Hen, René; Rayport, Stephen

    2009-01-01

    Neurotransmitter glutamate has been thought to derive mainly from glutamine via the action of glutaminase type 1 (GLS1). To address the importance of this pathway in glutamatergic transmission, we knocked out GLS1 in mice. The insertion of a STOP cassette by homologous recombination produced a null allele that blocked transcription, encoded no immunoreactive protein and abolished GLS1 enzymatic activity. Null mutants were slightly smaller, were deficient in goal-directed behavior, hypoventilated and died in the first post-natal day. No gross or microscopic defects were detected in peripheral organs or in the central nervous system. In cultured neurons from the null mutants, miniature EPSC amplitude and duration were normal; however, the amplitude of evoked EPSCs decayed more rapidly with sustained 10 Hz stimulation, consistent with an observed reduction in depolarization-evoked glutamate release. Because of this activity-dependent impairment in glutamatergic transmission, we surmised that respiratory networks, which require temporal summation of synaptic input, would be particularly affected. We found that the amplitude of inspirations was decreased in vivo, chemosensitivity to CO2 was severely altered, and the frequency of pacemaker activity recorded in the respiratory generator in the Pre-Bötzinger complex, a glutamatergic brainstem network that can be isolated in vitro, was increased. Our results show that while alternate pathways to GLS1 glutamate synthesis support baseline glutamatergic transmission, the GLS1 pathway is essential for maintaining the function of active synapses, and so the mutation is associated with impaired respiratory function, abnormal goal-directed behavior and neonatal demise. PMID:16641247

  3. Modulation of Synaptic Plasticity by Glutamatergic Gliotransmission: A Modeling Study

    PubMed Central

    De Pittà, Maurizio; Brunel, Nicolas

    2016-01-01

    Glutamatergic gliotransmission, that is, the release of glutamate from perisynaptic astrocyte processes in an activity-dependent manner, has emerged as a potentially crucial signaling pathway for regulation of synaptic plasticity, yet its modes of expression and function in vivo remain unclear. Here, we focus on two experimentally well-identified gliotransmitter pathways, (i) modulations of synaptic release and (ii) postsynaptic slow inward currents mediated by glutamate released from astrocytes, and investigate their possible functional relevance on synaptic plasticity in a biophysical model of an astrocyte-regulated synapse. Our model predicts that both pathways could profoundly affect both short- and long-term plasticity. In particular, activity-dependent glutamate release from astrocytes could dramatically change spike-timing-dependent plasticity, turning potentiation into depression (and vice versa) for the same induction protocol. PMID:27195153

  4. Analysis of Synaptic Gene Expression in the Neocortex of Primates Reveals Evolutionary Changes in Glutamatergic Neurotransmission

    PubMed Central

    Muntané, Gerard; Horvath, Julie E.; Hof, Patrick R.; Ely, John J.; Hopkins, William D.; Raghanti, Mary Ann; Lewandowski, Albert H.; Wray, Gregory A.; Sherwood, Chet C.

    2015-01-01

    Increased relative brain size characterizes the evolution of primates, suggesting that enhanced cognition plays an important part in the behavioral adaptations of this mammalian order. In addition to changes in brain anatomy, cognition can also be regulated by molecular changes that alter synaptic function, but little is known about modifications of synapses in primate brain evolution. The aim of the current study was to investigate the expression patterns and evolution of 20 synaptic genes from the prefrontal cortex of 12 primate species. The genes investigated included glutamate receptors, scaffolding proteins, synaptic vesicle components, as well as factors involved in synaptic vesicle release and structural components of the nervous system. Our analyses revealed that there have been significant changes during primate brain evolution in the components of the glutamatergic signaling pathway in terms of gene expression, protein expression, and promoter sequence changes. These results could entail functional modifications in the regulation of specific genes related to processes underlying learning and memory. PMID:24408959

  5. Analysis of synaptic gene expression in the neocortex of primates reveals evolutionary changes in glutamatergic neurotransmission.

    PubMed

    Muntané, Gerard; Horvath, Julie E; Hof, Patrick R; Ely, John J; Hopkins, William D; Raghanti, Mary Ann; Lewandowski, Albert H; Wray, Gregory A; Sherwood, Chet C

    2015-06-01

    Increased relative brain size characterizes the evolution of primates, suggesting that enhanced cognition plays an important part in the behavioral adaptations of this mammalian order. In addition to changes in brain anatomy, cognition can also be regulated by molecular changes that alter synaptic function, but little is known about modifications of synapses in primate brain evolution. The aim of the current study was to investigate the expression patterns and evolution of 20 synaptic genes from the prefrontal cortex of 12 primate species. The genes investigated included glutamate receptors, scaffolding proteins, synaptic vesicle components, as well as factors involved in synaptic vesicle release and structural components of the nervous system. Our analyses revealed that there have been significant changes during primate brain evolution in the components of the glutamatergic signaling pathway in terms of gene expression, protein expression, and promoter sequence changes. These results could entail functional modifications in the regulation of specific genes related to processes underlying learning and memory. PMID:24408959

  6. ADAR-mediated RNA editing suppresses sleep by acting as a brake on glutamatergic synaptic plasticity

    PubMed Central

    Robinson, J. E.; Paluch, J.; Dickman, D. K.; Joiner, W. J.

    2016-01-01

    It has been postulated that synaptic potentiation during waking is offset by a homoeostatic reduction in net synaptic strength during sleep. However, molecular mechanisms to support such a process are lacking. Here we demonstrate that deficiencies in the RNA-editing gene Adar increase sleep due to synaptic dysfunction in glutamatergic neurons in Drosophila. Specifically, the vesicular glutamate transporter is upregulated, leading to over-activation of NMDA receptors, and the reserve pool of glutamatergic synaptic vesicles is selectively expanded in Adar mutants. Collectively these changes lead to sustained neurotransmitter release under conditions that would otherwise result in synaptic depression. We propose that a shift in the balance from synaptic depression towards synaptic potentiation in sleep-promoting neurons underlies the increased sleep pressure of Adar-deficient animals. Our findings provide a plausible molecular mechanism linking sleep and synaptic plasticity. PMID:26813350

  7. ADAR-mediated RNA editing suppresses sleep by acting as a brake on glutamatergic synaptic plasticity.

    PubMed

    Robinson, J E; Paluch, J; Dickman, D K; Joiner, W J

    2016-01-01

    It has been postulated that synaptic potentiation during waking is offset by a homoeostatic reduction in net synaptic strength during sleep. However, molecular mechanisms to support such a process are lacking. Here we demonstrate that deficiencies in the RNA-editing gene Adar increase sleep due to synaptic dysfunction in glutamatergic neurons in Drosophila. Specifically, the vesicular glutamate transporter is upregulated, leading to over-activation of NMDA receptors, and the reserve pool of glutamatergic synaptic vesicles is selectively expanded in Adar mutants. Collectively these changes lead to sustained neurotransmitter release under conditions that would otherwise result in synaptic depression. We propose that a shift in the balance from synaptic depression towards synaptic potentiation in sleep-promoting neurons underlies the increased sleep pressure of Adar-deficient animals. Our findings provide a plausible molecular mechanism linking sleep and synaptic plasticity.

  8. Modeling glutamatergic synapses: insights into mechanisms regulating synaptic efficacy.

    PubMed

    Bouteiller, Jean-Marie C; Baudry, Michel; Allam, Sushmita L; Greget, Renaud J; Bischoff, Serge; Berger, Theodore W

    2008-06-01

    The hippocampal formation is critically involved for the long-term storage of various forms of information, and it is widely believed that the phenomenon of long-term potentiation (LTP) of synaptic transmission is a molecular/cellular mechanism participating in memory formation. Although several high level models of hippocampal function have been developed, they do not incorporate detailed molecular information of the type necessary to understand the contribution of individual molecular events to the mechanisms underlying LTP and learning and memory. We are therefore developing new technological tools based on mathematical modeling and computer simulation of the molecular processes taking place in realistic biological networks to reach such an understanding. This article briefly summarizes the approach we are using and illustrates it by presenting data regarding the effects of changing the number of AMPA receptors on various features of glutamatergic transmission, including NMDA receptor-mediated responses and paired-pulse facilitation. We conclude by discussing the significance of these results and providing some ideas for future directions with this approach.

  9. Forebrain glutamatergic neurons mediate leptin action on depression-like behaviors and synaptic depression.

    PubMed

    Guo, Ming; Lu, Yuan; Garza, Jacob C; Li, Yuqing; Chua, Streamson C; Zhang, Wei; Lu, Bai; Lu, Xin-Yun

    2012-01-01

    The glutamatergic system has been implicated in the pathophysiology of depression and the mechanism of action of antidepressants. Leptin, an adipocyte-derived hormone, has antidepressant-like properties. However, the functional role of leptin receptor (Lepr) signaling in glutamatergic neurons remains to be elucidated. In this study, we generated conditional knockout mice in which the long form of Lepr was ablated selectively in glutamatergic neurons located in the forebrain structures, including the hippocampus and prefrontal cortex (Lepr cKO). Lepr cKO mice exhibit normal growth and body weight. Behavioral characterization of Lepr cKO mice reveals depression-like behavioral deficits, including anhedonia, behavioral despair, enhanced learned helplessness and social withdrawal, with no evident signs of anxiety. In addition, loss of Lepr in forebrain glutamatergic neurons facilitates NMDA-induced hippocampal long-term synaptic depression (LTD), whereas conventional LTD or long-term potentiation (LTP) was not affected. The facilitated LTD induction requires activation of the GluN2B subunit as it was completely blocked by a selective GluN2B antagonist. Moreover, Lepr cKO mice are highly sensitive to the antidepressant-like behavioral effects of the GluN2B antagonist but resistant to leptin. These results support important roles for Lepr signaling in glutamatergic neurons in regulating depression-related behaviors and modulating excitatory synaptic strength, suggesting a possible association between synaptic depression and behavioral manifestations of depression.

  10. Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections.

    PubMed

    Duman, Ronald S

    2014-03-01

    Despite the complexity and heterogeneity of mood disorders, basic and clinical research studies have begun to elucidate the pathophysiology of depression and to identify rapid, efficacious antidepressant agents. Stress and depression are associated with neuronal atrophy, characterized by loss of synaptic connections in key cortical and limbic brain regions implicated in depression. This is thought to occur in part via decreased expression and function of growth factors, such as brain-derived neurotrophic factor (BDNF), in the prefrontal cortex (PFC) and hippocampus. These structural alterations are difficult to reverse with typical antidepressants. However, recent studies demonstrate that ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist that produces rapid antidepressant actions in treatment-resistant depressed patients, rapidly increases spine synapses in the PFC and reverses the deficits caused by chronic stress. This is thought to occur by disinhibition of glutamate transmission, resulting in a rapid but transient burst of glutamate, followed by an increase in BDNF release and activation of downstream signaling pathways that stimulate synapse formation. Recent work demonstrates that the rapid-acting antidepressant effects of scopolamine, a muscarinic receptor antagonist, are also associated with increased glutamate transmission and synapse formation. These findings have resulted in testing and identification of additional targets and agents that influence glutamate transmission and have rapid antidepressant actions in rodent models and in clinical trials. Together these studies have created tremendous excitement and hope for a new generation of rapid, efficacious antidepressants.

  11. Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections

    PubMed Central

    Duman, Ronald S.

    2014-01-01

    Despite the complexity and heterogeneity of mood disorders, basic and clinical research studies have begun to elucidate the pathophysiology of depression and to identify rapid, efficacious antidepressant agents. Stress and depression are associated with neuronal atrophy, characterized by loss of synaptic connections in key cortical and limbic brain regions implicated in depression. This is thought to occur in part via decreased expression and function of growth factors, such as brain-derived neurotrophic factor (BDNF), in the prefrontal cortex (PFC) and hippocampus. These structural alterations are difficult to reverse with typical antidepressants. However, recent studies demonstrate that ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist that produces rapid antidepressant actions in treatment-resistant depressed patients, rapidly increases spine synapses in the PFC and reverses the deficits caused by chronic stress. This is thought to occur by disinhibition of glutamate transmission, resulting in a rapid but transient burst of glutamate, followed by an increase in BDNF release and activation of downstream signaling pathways that stimulate synapse formation. Recent work demonstrates that the rapid-acting antidepressant effects of scopolamine, a muscarinic receptor antagonist, are also associated with increased glutamate transmission and synapse formation. These findings have resulted in testing and identification of additional targets and agents that influence glutamate transmission and have rapid antidepressant actions in rodent models and in clinical trials. Together these studies have created tremendous excitement and hope for a new generation of rapid, efficacious antidepressants. PMID:24733968

  12. Interneuronal Nitric Oxide Signaling Mediates Post-synaptic Long-Term Depression of Striatal Glutamatergic Synapses.

    PubMed

    Rafalovich, Igor V; Melendez, Alexandria E; Plotkin, Joshua L; Tanimura, Asami; Zhai, Shenyu; Surmeier, D James

    2015-11-17

    Experience-driven plasticity of glutamatergic synapses on striatal spiny projection neurons (SPNs) is thought to be essential to goal-directed behavior and habit formation. One major form of striatal plasticity, long-term depression (LTD), has long appeared to be expressed only pre-synaptically. Contrary to this view, nitric oxide (NO) generated by striatal interneurons was found to induce a post-synaptically expressed form of LTD at SPN glutamatergic synapses. This form of LTD was dependent on signaling through guanylyl cyclase and protein kinase G, both of which are abundantly expressed by SPNs. NO-LTD was unaffected by local synaptic activity or antagonism of endocannabinoid (eCb) and dopamine receptors, all of which modulate canonical, pre-synaptic LTD. Moreover, NO signaling disrupted induction of this canonical LTD by inhibiting dendritic Ca(2+) channels regulating eCb synthesis. These results establish an interneuron-dependent, heterosynaptic form of post-synaptic LTD that could act to promote stability of the striatal network during learning.

  13. Reduced SNAP-25 alters short-term plasticity at developing glutamatergic synapses.

    PubMed

    Antonucci, Flavia; Corradini, Irene; Morini, Raffaella; Fossati, Giuliana; Menna, Elisabetta; Pozzi, Davide; Pacioni, Simone; Verderio, Claudia; Bacci, Alberto; Matteoli, Michela

    2013-07-01

    SNAP-25 is a key component of the synaptic-vesicle fusion machinery, involved in several psychiatric diseases including schizophrenia and ADHD. SNAP-25 protein expression is lower in different brain areas of schizophrenic patients and in ADHD mouse models. How the reduced expression of SNAP-25 alters the properties of synaptic transmission, leading to a pathological phenotype, is unknown. We show that, unexpectedly, halved SNAP-25 levels at 13-14 DIV not only fail to impair synaptic transmission but instead enhance evoked glutamatergic neurotransmission. This effect is possibly dependent on presynaptic voltage-gated calcium channel activity and is not accompanied by changes in spontaneous quantal events or in the pool of readily releasable synaptic vesicles. Notably, synapses of 13-14 DIV neurons with reduced SNAP-25 expression show paired-pulse depression as opposed to paired-pulse facilitation occurring in their wild-type counterparts. This phenotype disappears with synapse maturation. As alterations in short-term plasticity represent a new mechanism contributing to cognitive impairments in intellectual disabilities, our data provide mechanistic clues for neuronal circuit alterations in psychiatric diseases characterized by reduced expression of SNAP-25. PMID:23732542

  14. Synaptic and extrasynaptic plasticity in glutamatergic circuits involving dentate granule cells following chronic N-methyl-d-aspartate receptor inhibition

    PubMed Central

    He, Shuijin; Shao, Li-Rong; Wang, Yu

    2013-01-01

    Chronic global N-methyl-d-aspartate receptor (NMDAR) blockade leads to changes in glutamatergic transmission. The impact of more subunit-selective NMDAR inhibition on glutamatergic circuits remains incomplete. To this end, organotypic hippocampal slice cultures were treated for 17–21 days with the high-affinity competitive antagonist d-aminophosphonovaleric acid (d-APV), the allosteric GluN2B-selective antagonist Ro25-6981, or the newer competitive GluN2A-preferring antagonist NVP-AAM077. Electrophysiological recordings from dentate granule cells revealed that chronic d-APV treatment increased, whereas chronic Ro25-6981 reduced, epileptiform event-associated large-amplitude spontaneous excitatory postsynaptic currents (sEPSC) compared with all other treatment groups, consistent with opposite effects on glutamatergic networks. Presynaptically, chronic d-APV or Ro25-6981 increased small-amplitude sEPSCs and AMPA/kainate receptor-mediated miniature EPSCs (mEPSCAMPAR) frequency. Chronic d-APV or NVP-AAM077, but not Ro25-6981, increased putative vGlut1-positive glutamatergic synapses. Postsynaptically, chronic d-APV dramatically increased mEPSCAMPAR and profoundly decreased NMDAR-mediated mEPSC (mEPSCNMDAR) measures, suggesting increased AMPAR/NMDAR ratio. Ro25-6981 decreased mEPSCAMPAR charge transfer and modestly decreased mEPSCNMDAR frequency and decay, suggesting downward scaling of AMPAR and NMDAR function without dramatically altering AMPAR/NMDAR ratio. Extrasynaptically, threo-β-benzyloxyaspartate-enhanced “tonic” NMDAR current amplitude and activated channel number estimates were significantly increased only by chronic Ro25-6981. For intrinsic excitability, action potential threshold was slightly more negative following chronic d-APV or NVP-AAM077. The predominant pro-excitatory effects of chronic d-APV are consistent with increased glutamatergic transmission and network excitability. The minor effects of chronic NVP-AAM077 on action potential threshold

  15. The NG2 Protein Is Not Required for Glutamatergic Neuron-NG2 Cell Synaptic Signaling.

    PubMed

    Passlick, Stefan; Trotter, Jacqueline; Seifert, Gerald; Steinhäuser, Christian; Jabs, Ronald

    2016-01-01

    NG2 glial cells (as from now NG2 cells) are unique in receiving synaptic input from neurons. However, the components regulating formation and maintenance of these neuron-glia synapses remain elusive. The transmembrane protein NG2 has been considered a potential mediator of synapse formation and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) clustering, because it contains 2 extracellular Laminin G/Neurexin/Sex Hormone-Binding Globulin domains, which in neurons are crucial for formation of transsynaptic neuroligin-neurexin complexes. NG2 is connected via Glutamate Receptor-Interacting Protein with GluA2/3-containing AMPARs, thereby possibly mediating receptor clustering in glial postsynaptic density. To elucidate the role of NG2 in neuron-glia communication, we investigated glutamatergic synaptic transmission in juvenile and aged hippocampal NG2 cells of heterozygous and homozygous NG2 knockout mice. Neuron-NG2 cell synapses readily formed in the absence of NG2. Short-term plasticity, synaptic connectivity, postsynaptic AMPAR current kinetics, and density were not affected by NG2 deletion. During development, an NG2-independent acceleration of AMPAR current kinetics and decreased synaptic connectivity were observed. Our results indicate that the lack of NG2 does not interfere with genesis and basic properties of neuron-glia synapses. In addition, we demonstrate frequent expression of neuroligins 1-3 in juvenile and aged NG2 cells, suggesting a role of these molecules in synapse formation between NG2 glia and neurons.

  16. CNQX and AMPA inhibit electrical synaptic transmission: a potential interaction between electrical and glutamatergic synapses

    PubMed Central

    Li, Qin; Burrell, Brian D.

    2008-01-01

    Electrical synapses play an important role in signaling between neurons and the synaptic connections between many neurons possess both electrical and chemical components. Although modulation of electrical synapses is frequently observed, the cellular processes that mediate such changes have not been studied as thoroughly as plasticity in chemical synapses. In the leech (Hirudo sp), the competitive AMPA receptor antagonist CNQX inhibited transmission at the rectifying electrical synapse of a mixed glutamatergic/electrical synaptic connection. This CNQX-mediated inhibition of the electrical synapse was blocked by concanavalin A (Con A) and dynamin inhibitory peptide (DIP), both of which are known to inhibit endocytosis of neurotransmitter receptors. CNQX-mediated inhibition was also blocked by pep2-SVKI (SVKI), a synthetic peptide that prevents internalization of AMPA-type glutamate receptor. AMPA itself also inhibited electrical synaptic transmission and this AMPA-mediated inhibition was partially blocked by Con A, DIP and SVKI. Low frequency stimulation induced long-term depression (LTD) in both the electrical and chemical components of these synapses and this LTD was blocked by SVKI. GYKI 52466, a selective non-competitive antagonist of AMPA receptors, did not affect the electrical EPSP, although it did block the chemical component of these synapses. CNQX did not affect non-rectifying electrical synapses in two different pairs of neurons. These results suggest an interaction between AMPA-type glutamate receptors and the gap junction proteins that mediate electrical synaptic transmission. This putative interaction between glutamate receptors and gap junction proteins represents a novel mechanism for regulating the strength of synaptic transmission. PMID:18601913

  17. Diversity of Glutamatergic Synaptic Strength in Lateral Prefrontal versus Primary Visual Cortices in the Rhesus Monkey

    PubMed Central

    Luebke, Jennifer I.

    2015-01-01

    Understanding commonalities and differences in glutamatergic synaptic signaling is essential for understanding cortical functional diversity, especially in the highly complex primate brain. Previously, we have shown that spontaneous EPSCs differed markedly in layer 3 pyramidal neurons of two specialized cortical areas in the rhesus monkey, the high-order lateral prefrontal cortex (LPFC) and the primary visual cortex (V1). Here, we used patch-clamp recordings and confocal and electron microscopy to determine whether these distinct synaptic responses are due to differences in firing rates of presynaptic neurons and/or in the features of presynaptic or postsynaptic entities. As with spontaneous EPSCs, TTX-insensitive (action potential-independent) miniature EPSCs exhibited significantly higher frequency, greater amplitude, and slower kinetics in LPFC compared with V1 neurons. Consistent with these physiological differences, LPFC neurons possessed higher densities of spines, and the mean width of large spines was greater compared with those on V1 neurons. Axospinous synapses in layers 2–3 of LPFC had larger postsynaptic density surface areas and a higher proportion of large perforated synapses compared with V1. Axonal boutons in LPFC were also larger in volume and contained ∼1.6× more vesicles than did those in V1. Further, LPFC had a higher density of AMPA GluR2 receptor labeling than V1. The properties of spines and synaptic currents of individual layer 3 pyramidal neurons measured here were significantly correlated, consistent with the idea that significantly more frequent and larger synaptic currents are likely due to more numerous, larger, and more powerful synapses in LPFC compared with V1. PMID:25568107

  18. Dysfunctional Astrocytic and Synaptic Regulation of Hypothalamic Glutamatergic Transmission in a Mouse Model of Early-Life Adversity: Relevance to Neurosteroids and Programming of the Stress Response

    PubMed Central

    Gunn, Benjamin G.; Cunningham, Linda; Cooper, Michelle A.; Corteen, Nicole L.; Seifi, Mohsen; Swinny, Jerome D.; Lambert, Jeremy J.

    2013-01-01

    Adverse early-life experiences, such as poor maternal care, program an abnormal stress response that may involve an altered balance between excitatory and inhibitory signals. Here, we explored how early-life stress (ELS) affects excitatory and inhibitory transmission in corticotrophin-releasing factor (CRF)-expressing dorsal-medial (mpd) neurons of the neonatal mouse hypothalamus. We report that ELS associates with enhanced excitatory glutamatergic transmission that is manifested as an increased frequency of synaptic events and increased extrasynaptic conductance, with the latter associated with dysfunctional astrocytic regulation of glutamate levels. The neurosteroid 5α-pregnan-3α-ol-20-one (5α3α-THPROG) is an endogenous, positive modulator of GABAA receptors (GABAARs) that is abundant during brain development and rises rapidly during acute stress, thereby enhancing inhibition to curtail stress-induced activation of the hypothalamic-pituitary-adrenocortical axis. In control mpd neurons, 5α3α-THPROG potently suppressed neuronal discharge, but this action was greatly compromised by prior ELS exposure. This neurosteroid insensitivity did not primarily result from perturbations of GABAergic inhibition, but rather arose functionally from the increased excitatory drive onto mpd neurons. Previous reports indicated that mice (dams) lacking the GABAAR δ subunit (δ0/0) exhibit altered maternal behavior. Intriguingly, δ0/0 offspring showed some hallmarks of abnormal maternal care that were further exacerbated by ELS. Moreover, in common with ELS, mpd neurons of δ0/0 pups exhibited increased synaptic and extrasynaptic glutamatergic transmission and consequently a blunted neurosteroid suppression of neuronal firing. This study reveals that increased synaptic and tonic glutamatergic transmission may be a common maladaptation to ELS, leading to enhanced excitation of CRF-releasing neurons, and identifies neurosteroids as putative early regulators of the stress

  19. Morphological, biophysical and synaptic properties of glutamatergic neurons of the mouse spinal dorsal horn

    PubMed Central

    Punnakkal, Pradeep; Schoultz, Carolin; Haenraets, Karen; Wildner, Hendrik; Zeilhofer, Hanns Ulrich

    2014-01-01

    Interneurons of the spinal dorsal horn are central to somatosensory and nociceptive processing. A mechanistic understanding of their function depends on profound knowledge of their intrinsic properties and their integration into dorsal horn circuits. Here, we have used BAC transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the vesicular glutamate transporter (vGluT2) gene (vGluT2::eGFP mice) to perform a detailed electrophysiological and morphological characterisation of excitatory dorsal horn neurons, and to compare their properties to those of GABAergic (Gad67::eGFP tagged) and glycinergic (GlyT2::eGFP tagged) neurons. vGluT2::eGFP was detected in about one-third of all excitatory dorsal horn neurons and, as demonstrated by the co-expression of vGluT2::eGFP with different markers of subtypes of glutamatergic neurons, probably labelled a representative fraction of these neurons. Three types of dendritic tree morphologies (vertical, central, and radial), but no islet cell-type morphology, were identified in vGluT2::eGFP neurons. vGluT2::eGFP neurons had more depolarised action potential thresholds and longer action potential durations than inhibitory neurons, while no significant differences were found for the resting membrane potential, input resistance, cell capacitance and after-hyperpolarisation. Delayed firing and single action potential firing were the single most prevalent firing patterns in vGluT2::eGFP neurons of the superficial and deep dorsal horn, respectively. By contrast, tonic firing prevailed in inhibitory interneurons of the dorsal horn. Capsaicin-induced synaptic inputs were detected in about half of the excitatory and inhibitory neurons, and occurred more frequently in superficial than in deep dorsal horn neurons. Primary afferent-evoked (polysynaptic) inhibitory inputs were found in the majority of glutamatergic and glycinergic neurons, but only in less than half of the GABAergic population. Excitatory

  20. Effects of Fluoxetine and Visual Experience on Glutamatergic and GABAergic Synaptic Proteins in Adult Rat Visual Cortex.

    PubMed

    Beshara, Simon; Beston, Brett R; Pinto, Joshua G A; Murphy, Kathryn M

    2015-01-01

    Fluoxetine has emerged as a novel treatment for persistent amblyopia because in adult animals it reinstates critical period-like ocular dominance plasticity and promotes recovery of visual acuity. Translation of these results from animal models to the clinic, however, has been challenging because of the lack of understanding of how this selective serotonin reuptake inhibitor affects glutamatergic and GABAergic synaptic mechanisms that are essential for experience-dependent plasticity. An appealing hypothesis is that fluoxetine recreates a critical period (CP)-like state by shifting synaptic mechanisms to be more juvenile. To test this we studied the effect of fluoxetine treatment in adult rats, alone or in combination with visual deprivation [monocular deprivation (MD)], on a set of highly conserved presynaptic and postsynaptic proteins (synapsin, synaptophysin, VGLUT1, VGAT, PSD-95, gephyrin, GluN1, GluA2, GluN2B, GluN2A, GABAAα1, GABAAα3). We did not find evidence that fluoxetine shifted the protein amounts or balances to a CP-like state. Instead, it drove the balances in favor of the more mature subunits (GluN2A, GABAAα1). In addition, when fluoxetine was paired with MD it created a neuroprotective-like environment by normalizing the glutamatergic gain found in adult MDs. Together, our results suggest that fluoxetine treatment creates a novel synaptic environment dominated by GluN2A- and GABAAα1-dependent plasticity. PMID:26730408

  1. Effects of Fluoxetine and Visual Experience on Glutamatergic and GABAergic Synaptic Proteins in Adult Rat Visual Cortex123

    PubMed Central

    Beshara, Simon; Beston, Brett R.; Pinto, Joshua G. A.

    2015-01-01

    Abstract Fluoxetine has emerged as a novel treatment for persistent amblyopia because in adult animals it reinstates critical period-like ocular dominance plasticity and promotes recovery of visual acuity. Translation of these results from animal models to the clinic, however, has been challenging because of the lack of understanding of how this selective serotonin reuptake inhibitor affects glutamatergic and GABAergic synaptic mechanisms that are essential for experience-dependent plasticity. An appealing hypothesis is that fluoxetine recreates a critical period (CP)-like state by shifting synaptic mechanisms to be more juvenile. To test this we studied the effect of fluoxetine treatment in adult rats, alone or in combination with visual deprivation [monocular deprivation (MD)], on a set of highly conserved presynaptic and postsynaptic proteins (synapsin, synaptophysin, VGLUT1, VGAT, PSD-95, gephyrin, GluN1, GluA2, GluN2B, GluN2A, GABAAα1, GABAAα3). We did not find evidence that fluoxetine shifted the protein amounts or balances to a CP-like state. Instead, it drove the balances in favor of the more mature subunits (GluN2A, GABAAα1). In addition, when fluoxetine was paired with MD it created a neuroprotective-like environment by normalizing the glutamatergic gain found in adult MDs. Together, our results suggest that fluoxetine treatment creates a novel synaptic environment dominated by GluN2A- and GABAAα1-dependent plasticity. PMID:26730408

  2. LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory.

    PubMed

    Beccano-Kelly, Dayne A; Volta, Mattia; Munsie, Lise N; Paschall, Sarah A; Tatarnikov, Igor; Co, Kimberley; Chou, Patrick; Cao, Li-Ping; Bergeron, Sabrina; Mitchell, Emma; Han, Heather; Melrose, Heather L; Tapia, Lucia; Raymond, Lynn A; Farrer, Matthew J; Milnerwood, Austen J

    2015-03-01

    Mutations in leucine-rich repeat kinase 2 (Lrrk2) are the most common genetic cause of Parkinson's disease (PD), a neurodegenerative disorder affecting 1-2% of those >65 years old. The neurophysiology of LRRK2 remains largely elusive, although protein loss suggests a role in glutamatergic synapse transmission and overexpression studies show altered dopamine release in aged mice. We show that glutamate transmission is unaltered onto striatal projection neurons (SPNs) of adult LRRK2 knockout mice and that adult animals exhibit no detectable cognitive or motor deficits. Basal synaptic transmission is also unaltered in SPNs of LRRK2 overexpressing mice, but they do exhibit clear alterations to D2-receptor-mediated short-term synaptic plasticity, behavioral hypoactivity and impaired recognition memory. These phenomena are associated with decreased striatal dopamine tone and abnormal dopamine- and cAMP-regulated phosphoprotein 32 kDa signal integration. The data suggest that LRRK2 acts at the nexus of dopamine and glutamate signaling in the adult striatum, where it regulates dopamine levels, presynaptic glutamate release via D2-dependent synaptic plasticity and dopamine-receptor signal transduction. PMID:25343991

  3. LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory.

    PubMed

    Beccano-Kelly, Dayne A; Volta, Mattia; Munsie, Lise N; Paschall, Sarah A; Tatarnikov, Igor; Co, Kimberley; Chou, Patrick; Cao, Li-Ping; Bergeron, Sabrina; Mitchell, Emma; Han, Heather; Melrose, Heather L; Tapia, Lucia; Raymond, Lynn A; Farrer, Matthew J; Milnerwood, Austen J

    2015-03-01

    Mutations in leucine-rich repeat kinase 2 (Lrrk2) are the most common genetic cause of Parkinson's disease (PD), a neurodegenerative disorder affecting 1-2% of those >65 years old. The neurophysiology of LRRK2 remains largely elusive, although protein loss suggests a role in glutamatergic synapse transmission and overexpression studies show altered dopamine release in aged mice. We show that glutamate transmission is unaltered onto striatal projection neurons (SPNs) of adult LRRK2 knockout mice and that adult animals exhibit no detectable cognitive or motor deficits. Basal synaptic transmission is also unaltered in SPNs of LRRK2 overexpressing mice, but they do exhibit clear alterations to D2-receptor-mediated short-term synaptic plasticity, behavioral hypoactivity and impaired recognition memory. These phenomena are associated with decreased striatal dopamine tone and abnormal dopamine- and cAMP-regulated phosphoprotein 32 kDa signal integration. The data suggest that LRRK2 acts at the nexus of dopamine and glutamate signaling in the adult striatum, where it regulates dopamine levels, presynaptic glutamate release via D2-dependent synaptic plasticity and dopamine-receptor signal transduction.

  4. 17β-Estradiol Acutely Potentiates Glutamatergic Synaptic Transmission in the Hippocampus through Distinct Mechanisms in Males and Females

    PubMed Central

    Oberlander, Joseph G.

    2016-01-01

    Estradiol (E2) acutely potentiates glutamatergic synaptic transmission in the hippocampus of both male and female rats. Here, we investigated whether E2-induced synaptic potentiation occurs via presynaptic and/or postsynaptic mechanisms and which estrogen receptors (ERs) mediate E2's effects in each sex. Whole-cell voltage-clamp recordings of mEPSCs in CA1 pyramidal neurons showed that E2 increases both mEPSC frequency and amplitude within minutes, but often in different cells. This indicated that both presynaptic and postsynaptic mechanisms are involved, but that they occur largely at different synapses. Two-photon (2p) glutamate uncaging at individual dendritic spines showed that E2 increases the amplitude of uncaging-evoked EPSCs (2pEPSCs) and calcium transients (2pCaTs) at a subset of spines on a dendrite, demonstrating synapse specificity of E2's postsynaptic effects. All of these results were essentially the same in males and females. However, additional experiments using ER-selective agonists indicated sex differences in the mechanisms underlying E2-induced potentiation. In males, an ERβ agonist mimicked the postsynaptic effects of E2 to increase mEPSC, 2pEPSC, and 2pCaT amplitude, whereas in females, these effects were mimicked by an agonist of G protein-coupled ER-1. The presynaptic effect of E2, increased mEPSC frequency, was mimicked by an ERα agonist in males, whereas in females, an ERβ agonist increased mEPSC frequency. Thus, E2 acutely potentiates glutamatergic synapses similarly in both sexes, but distinct ER subtypes mediate the presynaptic and postsynaptic aspects of potentiation in each sex. This indicates a latent sex difference in which different molecular mechanisms converge to the same functional endpoint in males versus females. SIGNIFICANCE STATEMENT Some sex differences in the brain may be latent differences, in which the same functional endpoint is achieved through distinct underlying mechanisms in males versus females. Here we report a

  5. Glutamatergic receptor kinetics are not altered by perinatal exposure to aspartame.

    PubMed

    Reilly, M A; Lajtha, A

    1995-03-01

    Observation of reduced levels of glutamic acid and aspartic acid in brain of weanling rats exposed perinatally to aspartame prompted a study of the effect of this food additive on glutamatergic receptor kinetics. Aspartame 500 mg/kg/day in drinking water was administered to Sprague-Dawley rats throughout gestation and lactation. Brain was excised from weanlings 20-22 days old, and kinetics of the N-methyl-D-aspartate receptor and total glutamatergic binding in cerebral cortex and hippocampus were found to be unaffected by perinatal exposure to high levels of aspartame. Glutamic acid was decreased in both brain regions studied, and aspartic acid was decreased in hippocampus following perinatal aspartame exposure. These changes were reversible when aspartame administration was terminated. It is concluded that perinatal exposure to high doses of aspartame does not alter glutamatergic neurotransmission in cerebral cortex or hippocampus from weanling rats.

  6. Altered kynurenine pathway metabolism in autism: Implication for immune-induced glutamatergic activity.

    PubMed

    Lim, Chai K; Essa, Musthafa M; de Paula Martins, Roberta; Lovejoy, David B; Bilgin, Ayse A; Waly, Mostafa I; Al-Farsi, Yahya M; Al-Sharbati, Marwan; Al-Shaffae, Mohammed A; Guillemin, Gilles J

    2016-06-01

    Dysfunction of the serotoninergic and glutamatergic systems is implicated in the pathogenesis of autism spectrum disorder (ASD) together with various neuroinflammatory mediators. As the kynurenine pathway (KP) of tryptophan degradation is activated in neuroinflammatory states, we hypothesized that there may be a link between inflammation in ASD and enhanced KP activation resulting in reduced serotonin synthesis from tryptophan and production of KP metabolites capable of modulating glutamatergic activity. A cross-sectional study of 15 different Omani families with newly diagnosed children with ASD (n = 15) and their age-matched healthy siblings (n = 12) was designed. Immunological profile and the KP metabolic signature were characterized in the study participants. Our data indicated that there were alterations to the KP in ASD. Specifically, increased production of the downstream metabolite, quinolinic acid, which is capable of enhancing glutamatergic neurotransmission was noted. Correlation studies also demonstrated that the presence of inflammation induced KP activation in ASD. Until now, previous studies have failed to establish a link between inflammation, glutamatergic activity, and the KP. Our findings also suggest that increased quinolinic acid may be linked to 16p11.2 mutations leading to abnormal glutamatergic activity associated with ASD pathogenesis and may help rationalize the efficacy of sulforaphane treatment in ASD. Autism Res 2016, 9: 621-631. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  7. Impairment of adenylyl cyclase-mediated glutamatergic synaptic plasticity in the periaqueductal grey in a rat model of neuropathic pain

    PubMed Central

    Ho, Yu-Cheng; Cheng, Jen-Kun; Chiou, Lih-Chu

    2015-01-01

    Key points Long-lasting neuropathic pain has been attributed to elevated neuronal plasticity changes in spinal, peripheral and cortical levels. Here, we found that reduced neuronal plasticity in the ventrolateral periaqueductal grey (vlPAG), a midbrain region important for initiating descending pain inhibition, may also contribute to neuropathic pain. Forskolin- and isoproterenol (isoprenaline)-elicited EPSC potentiation was impaired in the vlPAG of a rat model of neuropathic pain induced by spinal nerve injury. Down-regulation of adenylyl cyclase–cAMP– PKA signalling, due to impaired adenylyl cyclase, but not phosphodiesterase, in glutamatergic terminals may contribute to the hypofunction of excitatory synaptic plasticity in the vlPAG of neuropathic rats and the subsequent descending pain inhibition, ultimately leading to long-lasting neuropathic pain. Our results suggest that drugs that activate adenylyl cyclase in the vlPAG have the potential for relieving neuropathic pain. Abstract Neuropathic pain has been attributed to nerve injury-induced elevation of peripheral neuronal discharges and spinal excitatory synaptic plasticity while little is known about the contribution of neuroplasticity changes in the brainstem. Here, we examined synaptic plasticity changes in the ventrolateral (vl) periaqueductal grey (PAG), a crucial midbrain region for initiating descending pain inhibition, in spinal nerve ligation (SNL)-induced neuropathic rats. In vlPAG slices of sham-operated rats, forskolin, an adenylyl cyclase (AC) activator, produced long-lasting enhancement of EPSCs. This is a presynaptic effect since forskolin decreased the paired-pulse ratio and failure rate of EPSCs, and increased the frequency, but not the amplitude, of miniature EPSCs. Forskolin-induced EPSC potentiation was mimicked by a β-adrenergic agonist (isoproterenol (isoprenaline)), and prevented by an AC inhibitor (SQ 22536) and a cAMP-dependent protein kinase (PKA) inhibitor (H89), but not by a

  8. Synaptic protein alterations in Parkinson's disease.

    PubMed

    Pienaar, Ilse S; Burn, David; Morris, Christopher; Dexter, David

    2012-02-01

    Alterations occur within distal neuronal compartments, including axons and synapses, during the course of neurodegenerative diseases such as Parkinson's disease (PD). These changes could hold important implications for the functioning of neural networks, especially since research studies have shown a loss of dendritic spines locating to medium spiny projection neurons and impaired axonal transport in PD-affected brains. However, despite ever-increasing awareness of the vulnerability of synapses and axons, inadequate understanding of the independent mechanisms regulating non-somatic neurodegeneration prevails. This has resulted in limited therapeutic strategies capable of targeting these distinct cellular compartments. Deregulated protein synthesis, folding and degrading proteins, and protein quality-control systems have repeatedly been linked with morphological and functional alterations of synapses in the PD-affected brains. Here, we review current understanding concerning the proteins involved in structural and functional changes that affect synaptic contact-points in PD. The collection of studies discussed emphasizes the need for developing therapeutics aimed at deregulated protein synthesis and degradation pathways operating at axonal and dendritic synapses for preserving "normal" circuitry and function, for as long as possible.

  9. Alteration in synaptic junction proteins following traumatic brain injury.

    PubMed

    Merlo, Lucia; Cimino, Francesco; Angileri, Filippo Flavio; La Torre, Domenico; Conti, Alfredo; Cardali, Salvatore Massimiliano; Saija, Antonella; Germanò, Antonino

    2014-08-15

    Extensive research and scientific efforts have been focused on the elucidation of the pathobiology of cellular and axonal damage following traumatic brain injury (TBI). Conversely, few studies have specifically addressed the issue of synaptic dysfunction. Synaptic junction proteins may be involved in post-TBI alterations, leading to synaptic loss or disrupted plasticity. A Synapse Protein Database on synapse ontology identified 109 domains implicated in synaptic activities and over 5000 proteins, but few of these demonstrated to play a role in the synaptic dysfunction after TBI. These proteins are involved in neuroplasticity and neuromodulation and, most importantly, may be used as novel neuronal markers of TBI for specific intervention.

  10. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts.

    PubMed

    Emanuele, Marco; Esposito, Alessandro; Camerini, Serena; Antonucci, Flavia; Ferrara, Silvia; Seghezza, Silvia; Catelani, Tiziano; Crescenzi, Marco; Marotta, Roberto; Canale, Claudio; Matteoli, Michela; Menna, Elisabetta; Chieregatti, Evelina

    2016-05-01

    Alpha-synuclein (αSyn) interferes with multiple steps of synaptic activity at pre-and post-synaptic terminals, however the mechanism/s by which αSyn alters neurotransmitter release and synaptic potentiation is unclear. By atomic force microscopy we show that human αSyn, when incubated with reconstituted membrane bilayer, induces lipid rafts' fragmentation. As a consequence, ion channels and receptors are displaced from lipid rafts with consequent changes in their activity. The enhanced calcium entry leads to acute mobilization of synaptic vesicles, and exhaustion of neurotransmission at later stages. At the post-synaptic terminal, an acute increase in glutamatergic transmission, with increased density of PSD-95 puncta, is followed by disruption of the interaction between N-methyl-d-aspartate receptor (NMDAR) and PSD-95 with ensuing decrease of long term potentiation. While cholesterol loading prevents the acute effect of αSyn at the presynapse; inhibition of casein kinase 2, which appears activated by reduction of cholesterol, restores the correct localization and clustering of NMDARs.

  11. The effects of JM-20 on the glutamatergic system in synaptic vesicles, synaptosomes and neural cells cultured from rat brain.

    PubMed

    Nuñez-Figueredo, Yanier; Pardo Andreu, Gilberto L; Oliveira Loureiro, Samanta; Ganzella, Marcelo; Ramírez-Sánchez, Jeney; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Delgado-Hernández, René; Souza, Diogo O

    2015-02-01

    JM-20 (3-ethoxycarbonyl-2-methyl-4-(2-nitrophenyl)-4,11-dihydro-1H-pyrido[2,3-b][1,5]benzodiazepine) is a novel benzodiazepine dihydropyridine hybrid molecule, which has been shown to be a neuroprotective agent in brain disorders involving glutamate receptors. However, the effect of JM-20 on the functionality of the glutamatergic system has not been investigated. In this study, by using different in vitro preparations, we investigated the effects of JM-20 on (i) rat brain synaptic vesicles (L-[(3)H]-glutamate uptake, proton gradient built-up and bafilomycin-sensitive H(+)-ATPase activity), (ii) rat brain synaptosomes (glutamate release) and (iii) primary cultures of rat cortical neurons, astrocytes and astrocyte-neuron co-cultures (L-[(3)H]-glutamate uptake and glutamate release). We observed here that JM-20 impairs H(+)-ATPase activity and consequently reduces vesicular glutamate uptake. This molecule also inhibits glutamate release from brain synaptosomes and markedly increases glutamate uptake in astrocytes alone, and co-cultured neurons and astrocytes. The impairment of vesicular glutamate uptake by inhibition of the H(+)-ATPase caused by JM-20 could decrease the amount of the transmitter stored in synaptic vesicles, increase the cytosolic levels of glutamate, and will thus down-regulate neurotransmitter release. Together, these results contribute to explain the anti-excitotoxic effect of JM-20 and its strong neuroprotective effect observed in different in vitro and in vivo models of brain ischemia.

  12. Factors explaining heterogeneity in short-term synaptic dynamics of hippocampal glutamatergic synapses in the neonatal rat.

    PubMed

    Hanse, E; Gustafsson, B

    2001-11-15

    1. Quantal release from single hippocampal glutamatergic (CA3-CA1) synapses was examined in the neonatal rat during a 10 impulse, 50 Hz stimulus train. These synapses contain a single release site only, thus allowing for an analysis of frequency facilitation/depression at the single release site level. 2. These synapses displayed a considerable heterogeneity with respect to short-term synaptic dynamics, from a pronounced facilitation to a pronounced depression. Facilitation/depression was the same whether evaluated using the magnitude or the probability of occurrence of the postsynaptic response. This result suggests that postsynaptic factors, such as desensitisation, play little role. 3. Release probabilities initially and late during the train were uncorrelated. Initially, release is determined by the number of immediately release-ready vesicles and by the probability of releasing such vesicles (P(ves)). Within the first five stimuli this vesicle pool is depleted. The deciding factor for release is thereafter the rate at which new vesicles can be recruited for release, rather than P(ves). 4. Heterogeneity in facilitation/depression among the synapses was strongly correlated with heterogeneity in initial P(ves) but not with that of the immediately release-ready vesicle pool. Thus, the main factors deciding short-term synaptic dynamics are heterogeneity in initial P(ves) and in vesicle recruitment rate among the synapses.

  13. The effects of JM-20 on the glutamatergic system in synaptic vesicles, synaptosomes and neural cells cultured from rat brain.

    PubMed

    Nuñez-Figueredo, Yanier; Pardo Andreu, Gilberto L; Oliveira Loureiro, Samanta; Ganzella, Marcelo; Ramírez-Sánchez, Jeney; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Delgado-Hernández, René; Souza, Diogo O

    2015-02-01

    JM-20 (3-ethoxycarbonyl-2-methyl-4-(2-nitrophenyl)-4,11-dihydro-1H-pyrido[2,3-b][1,5]benzodiazepine) is a novel benzodiazepine dihydropyridine hybrid molecule, which has been shown to be a neuroprotective agent in brain disorders involving glutamate receptors. However, the effect of JM-20 on the functionality of the glutamatergic system has not been investigated. In this study, by using different in vitro preparations, we investigated the effects of JM-20 on (i) rat brain synaptic vesicles (L-[(3)H]-glutamate uptake, proton gradient built-up and bafilomycin-sensitive H(+)-ATPase activity), (ii) rat brain synaptosomes (glutamate release) and (iii) primary cultures of rat cortical neurons, astrocytes and astrocyte-neuron co-cultures (L-[(3)H]-glutamate uptake and glutamate release). We observed here that JM-20 impairs H(+)-ATPase activity and consequently reduces vesicular glutamate uptake. This molecule also inhibits glutamate release from brain synaptosomes and markedly increases glutamate uptake in astrocytes alone, and co-cultured neurons and astrocytes. The impairment of vesicular glutamate uptake by inhibition of the H(+)-ATPase caused by JM-20 could decrease the amount of the transmitter stored in synaptic vesicles, increase the cytosolic levels of glutamate, and will thus down-regulate neurotransmitter release. Together, these results contribute to explain the anti-excitotoxic effect of JM-20 and its strong neuroprotective effect observed in different in vitro and in vivo models of brain ischemia. PMID:25617730

  14. Energy substrates to support glutamatergic and GABAergic synaptic function: role of glycogen, glucose and lactate.

    PubMed

    Schousboe, Arne; Bak, Lasse K; Sickmann, Helle M; Sonnewald, Ursula; Waagepetersen, Helle S

    2007-12-01

    Maintenance of glutamatergic and GABAergic activity requires a continuous supply of energy since the exocytotic processes as well as high affinity glutamate and GABA uptake and subsequent metabolism of glutamate to glutamine are energy demanding processes. The main energy substrate for the brain under normal conditions is glucose but at the cellular level, i.e., neurons and astrocytes, lactate may play an important role as well. In addition to this the possibility exists that glycogen, which functions as a glucose storage molecule and which is only present in astrocytes, could play a role not only during aglycemia but also during normoglycemia. These issues are discussed and it is concluded that both glucose and lactate are of importance for the maintenance of normal glutamatergic and GABAergic activity. However, with regard to maintenance of an adequate capacity for glutamate transport, it appears that glucose metabolism via the glycolytic pathway plays a fundamental role. Additionally, evidence is presented to support the notion that glycogen turnover may play an important role in this context. Moreover, it should be noted that the amino acid neurotransmitters can be used as metabolic substrates. This requires pyruvate recycling, a process that is discussed as well.

  15. Repeated social defeat stress enhances glutamatergic synaptic plasticity in the VTA and cocaine place conditioning.

    PubMed

    Stelly, Claire E; Pomrenze, Matthew B; Cook, Jason B; Morikawa, Hitoshi

    2016-01-01

    Enduring memories of sensory cues associated with drug intake drive addiction. It is well known that stressful experiences increase addiction vulnerability. However, it is not clear how repeated stress promotes learning of cue-drug associations, as repeated stress generally impairs learning and memory processes unrelated to stressful experiences. Here, we show that repeated social defeat stress in rats causes persistent enhancement of long-term potentiation (LTP) of NMDA receptor-mediated glutamatergic transmission in the ventral tegmental area (VTA). Protein kinase A-dependent increase in the potency of inositol 1,4,5-triphosphate-induced Ca(2+) signaling underlies LTP facilitation. Notably, defeated rats display enhanced learning of contextual cues paired with cocaine experience assessed using a conditioned place preference (CPP) paradigm. Enhancement of LTP in the VTA and cocaine CPP in behaving rats both require glucocorticoid receptor activation during defeat episodes. These findings suggest that enhanced glutamatergic plasticity in the VTA may contribute, at least partially, to increased addiction vulnerability following repeated stressful experiences. PMID:27374604

  16. Repeated social defeat stress enhances glutamatergic synaptic plasticity in the VTA and cocaine place conditioning

    PubMed Central

    Stelly, Claire E; Pomrenze, Matthew B; Cook, Jason B; Morikawa, Hitoshi

    2016-01-01

    Enduring memories of sensory cues associated with drug intake drive addiction. It is well known that stressful experiences increase addiction vulnerability. However, it is not clear how repeated stress promotes learning of cue-drug associations, as repeated stress generally impairs learning and memory processes unrelated to stressful experiences. Here, we show that repeated social defeat stress in rats causes persistent enhancement of long-term potentiation (LTP) of NMDA receptor-mediated glutamatergic transmission in the ventral tegmental area (VTA). Protein kinase A-dependent increase in the potency of inositol 1,4,5-triphosphate-induced Ca2+ signaling underlies LTP facilitation. Notably, defeated rats display enhanced learning of contextual cues paired with cocaine experience assessed using a conditioned place preference (CPP) paradigm. Enhancement of LTP in the VTA and cocaine CPP in behaving rats both require glucocorticoid receptor activation during defeat episodes. These findings suggest that enhanced glutamatergic plasticity in the VTA may contribute, at least partially, to increased addiction vulnerability following repeated stressful experiences. DOI: http://dx.doi.org/10.7554/eLife.15448.001 PMID:27374604

  17. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats.

    PubMed

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) and CNPase(+) and OLIG2(+) oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho(+) oligodendrocytes were detected in the corpus callosum at ≥0.1%. In the dentate gyrus, CPZ at ≥0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1(+) and GRIN2A(+) hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2(+) granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. PMID:26577399

  18. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects.

    PubMed

    Pistillo, Francesco; Clementi, Francesco; Zoli, Michele; Gotti, Cecilia

    2015-01-01

    Cigarette smoking is currently the leading cause of preventable deaths and disability throughout the world, being responsible for about five million premature deaths/year. Unfortunately, fewer than 10% of tobacco users who try to stop smoking actually manage to do so. The main addictive agent delivered by cigarette smoke is nicotine, which induces psychostimulation and reward, and reduces stress and anxiety. The use of new technologies (including optogenetics) and the development of mouse models characterised by cell-specific deletions of receptor subtype genes or the expression of gain-of-function nAChR subunits has greatly increased our understanding of the molecular mechanisms and neural substrates of nicotine addiction first revealed by classic electrophysiological, neurochemical and behavioural approaches. It is now becoming clear that various aspects of nicotine dependence are mediated by close interactions of the glutamatergic, dopaminergic and γ-aminobutyric acidergic systems in the mesocorticolimbic system. This review is divided into two parts. The first provides an updated overview of the circuitry of the ventral tegmental area, ventral striatum and prefrontal cortex, the neurotransmitter receptor subtypes expressed in these areas, and their physiological role in the mesocorticolimbic system. The second will focus on the molecular, functional and behavioural mechanisms involved in the acute and chronic effects of nicotine on the mesocorticolimbic system.

  19. Glutamatergic axon-derived BDNF controls GABAergic synaptic differentiation in the cerebellum.

    PubMed

    Chen, Albert I; Zang, Keling; Masliah, Eliezer; Reichardt, Louis F

    2016-01-01

    To study mechanisms that regulate the construction of inhibitory circuits, we examined the role of brain-derived neurotrophic factor (BDNF) in the assembly of GABAergic inhibitory synapses in the mouse cerebellar cortex. We show that within the cerebellum, BDNF-expressing cells are restricted to the internal granular layer (IGL), but that the BDNF protein is present within mossy fibers which originate from cells located outside of the cerebellum. In contrast to deletion of TrkB, the cognate receptor for BDNF, deletion of Bdnf from cerebellar cell bodies alone did not perturb the localization of pre- or postsynaptic constituents at the GABAergic synapses formed by Golgi cell axons on granule cell dendrites within the IGL. Instead, we found that BDNF derived from excitatory mossy fiber endings controls their differentiation. Our findings thus indicate that cerebellar BDNF is derived primarily from excitatory neurons--precerebellar nuclei/spinal cord neurons that give rise to mossy fibers--and promotes GABAergic synapse formation as a result of release from axons. Thus, within the cerebellum the preferential localization of BDNF to axons enhances the specificity through which BDNF promotes GABAergic synaptic differentiation. PMID:26830657

  20. Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type

    SciTech Connect

    Chalmers, D.T.; Dewar, D.; Graham, D.I.; Brooks, D.N.; McCulloch, J. )

    1990-02-01

    Involvement of cortical glutamatergic mechanisms in senile dementia of the Alzheimer type (SDAT) has been investigated with quantitative ligand-binding autoradiography. The distribution and density of Na(+)-dependent glutamate uptake sites and glutamate receptor subtypes--kainate, quisqualate, and N-methyl-D-aspartate--were measured in adjacent sections of frontal cortex obtained postmortem from six patients with SDAT and six age-matched controls. The number of senile plaques was determined in the same brain region. Binding of D-(3H)aspartate to Na(+)-dependent uptake sites was reduced by approximately 40% throughout SDAT frontal cortex relative to controls, indicating a general loss of glutamatergic presynaptic terminals. (3H)Kainate receptor binding was significantly increased by approximately 70% in deep layers of SDAT frontal cortex compared with controls, whereas this binding was unaltered in superficial laminae. There was a positive correlation (r = 0.914) between kainate binding and senile plaque number in deep cortical layers. Quisqualate receptors, as assessed by 2-amino-3-hydroxy-5-(3H)methylisoxazole-4-propionic acid binding, were unaltered in SDAT frontal cortex compared with controls. There was a small reduction (25%) in N-methyl-D-aspartate-sensitive (3H)glutamate binding only in superficial cortical layers of SDAT brains relative to control subjects. (3H)Glutamate binding in SDAT subjects was unrelated to senile plaque number in superficial cortical layers (r = 0.104). These results indicate that in the presence of cortical glutamatergic terminal loss in SDAT plastic alterations occur in some glutamate receptor subtypes but not in others.

  1. Synaptic Underpinnings of Altered Hippocampal Function in Glutaminase Deficient Mice During Maturation

    PubMed Central

    Gaisler-Salomon, Inna; Wang, Yvonne; Chuhma, Nao; Zhang, Hong; Golumbic, Yaela N.; Mihali, Andra; Arancio, Ottavio; Sibille, Etienne; Rayport, Stephen

    2012-01-01

    Glutaminase-deficient mice (GLS1 hets), with reduced glutamate recycling, have a focal reduction in hippocampal activity, mainly in CA1, and manifest behavioral and neurochemical phenotypes suggestive of schizophrenia resilience. To address the basis for the hippocampal hypoactivity, we examined synaptic plastic mechanisms and glutamate receptor expression. While baseline synaptic strength was unaffected in Schaffer collateral inputs to CA1, we found that long-term potentiation was attenuated. In wild-type mice, GLS1 gene expression was highest in the hippocampus and cortex, where it was reduced by about 50% in GLS1 hets. In other brain regions with lower wild-type GLS1 gene expression there were no genotypic reductions. In adult GLS1 hets, NMDA receptor NR1 subunit gene expression was reduced, but not AMPA receptor GluR1 subunit gene expression. In contrast, juvenile GLS1 hets showed no reductions in NR1 gene expression. In concert with this, adult GLS1 hets showed a deficit in hippocampal-dependent contextual fear conditioning while juvenile GLS1 hets did not. These alterations in glutamatergic synaptic function may partly explain the hippocampal hypoactivity seen in the GLS1 hets. The maturity-onset reduction in NR1 gene expression and in contextual learning supports the premise that glutaminase inhibition in adulthood should prove therapeutic in schizophrenia. PMID:22431402

  2. Enhanced Glutamatergic Synaptic Plasticity in the Hippocampal CA1 Field of Food-Restricted Rats: Involvement of CB1 Receptors.

    PubMed

    Talani, Giuseppe; Licheri, Valentina; Biggio, Francesca; Locci, Valentina; Mostallino, Maria Cristina; Secci, Pietro Paolo; Melis, Valentina; Dazzi, Laura; Carta, Gianfranca; Banni, Sebastiano; Biggio, Giovanni; Sanna, Enrico

    2016-04-01

    The endogenous endocannabinoid system has a crucial role in regulating appetite and feeding behavior in mammals, as well as working memory and reward mechanisms. In order to elucidate the possible role of cannabinoid type-1 receptors (CB1Rs) in the regulation of hippocampal plasticity in animals exposed to food restriction (FR), we limited the availability of food to a 2-h daily period for 3 weeks in Sprague-Dawley rats. FR rats showed a higher long-term potentiation at hippocampal CA1 excitatory synapses with a parallel increase in glutamate release when compared with animals fed ad libitum. FR rats showed a significant increase in the long-term spatial memory determined by Barnes maze. FR was also associated with a decreased inhibitory effect of the CB1R agonist win55,212-2 on glutamatergic field excitatory postsynaptic potentials, together with a decrease in hippocampal CB1R protein expression. In addition, hippocampal brain-derived neurotrophic factor protein levels and mushroom dendritic spine density were significantly enhanced in FR rats. Altogether, our data suggest that alterations of hippocampal CB1R expression and function in FR rats are associated with dendritic spine remodeling and functional potentiation of CA1 excitatory synapses, and these findings are consistent with increasing evidence supporting the idea that FR may improve cognitive functions.

  3. Mutation of the Dyslexia-Associated Gene Dcdc2 Enhances Glutamatergic Synaptic Transmission Between Layer 4 Neurons in Mouse Neocortex.

    PubMed

    Che, Alicia; Truong, Dongnhu T; Fitch, R Holly; LoTurco, Joseph J

    2016-09-01

    Variants in DCDC2 have been associated with reading disability in humans, and targeted mutation of Dcdc2 in mice causes impairments in both learning and sensory processing. In this study, we sought to determine whether Dcdc2 mutation affects functional synaptic circuitry in neocortex. We found mutation in Dcdc2 resulted in elevated spontaneous and evoked glutamate release from neurons in somatosensory cortex. The probability of release was decreased to wild-type level by acute application of N-methyl-d-aspartate receptor (NMDAR) antagonists when postsynaptic NMDARs were blocked by intracellular MK-801, and could not be explained by elevated ambient glutamate, suggesting altered, nonpostsynaptic NMDAR activation in the mutants. In addition, we determined that the increased excitatory transmission was present at layer 4-layer 4 but not thalamocortical connections in Dcdc2 mutants, and larger evoked synaptic release appeared to enhance the NMDAR-mediated effect. These results demonstrate an NMDAR activation-gated, increased functional excitatory connectivity between layer 4 lateral connections in somatosensory neocortex of the mutants, providing support for potential changes in cortical connectivity and activation resulting from mutation of dyslexia candidate gene Dcdc2. PMID:26250775

  4. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder.

    PubMed

    Kim, Ki Chan; Kim, Pitna; Go, Hyo Sang; Choi, Chang Soon; Park, Jin Hee; Kim, Hee Jin; Jeon, Se Jin; Dela Pena, Ike Campomayor; Han, Seol-Heui; Cheong, Jae Hoon; Ryu, Jong Hoon; Shin, Chan Young

    2013-03-01

    Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by three main behavioral symptoms including social deficits, impaired communication, and stereotyped and repetitive behaviors. ASD prevalence shows gender bias to male. Prenatal exposure to valproic acid (VPA), a drug used in epilepsy and bipolar disorder, induces autistic symptoms in both human and rodents. As we reported previously, prenatally VPA-exposed animals at E12 showed impairment in social behavior without any overt reproductive toxicity. Social interactions were not significantly different between male and female rats in control condition. However, VPA-exposed male offspring showed significantly impaired social interaction while female offspring showed only marginal deficits in social interaction. Similar male inclination was observed in hyperactivity behavior induced by VPA. In addition to the ASD-like behavioral phenotype, prenatally VPA-exposed rat offspring shows crooked tail phenotype, which was not different between male and female groups. Both male and female rat showed reduced GABAergic neuronal marker GAD and increased glutamatergic neuronal marker vGluT1 expression. Interestingly, despite of the similar increased expression of vGluT1, post-synaptic marker proteins such as PSD-95 and α-CAMKII expression was significantly elevated only in male offspring. Electron microscopy showed increased number of post-synapse in male but not in female at 4 weeks of age. These results might suggest that the altered glutamatergic neuronal differentiation leads to deranged post-synaptic maturation only in male offspring prenatally exposed to VPA. Consistent with the increased post-synaptic compartment, VPA-exposed male rats showed higher sensitivity to electric shock than VPA-exposed female rats. These results suggest that prenatally VPA-exposed rats show the male preponderance of ASD-like behaviors including defective social interaction similar to human autistic patients, which

  5. TRH modulates glutamatergic synaptic inputs on CA1 neurons of the mouse hippocampus in a biphasic manner.

    PubMed

    Zarif, Hadi; Petit-Paitel, Agnès; Heurteaux, Catherine; Chabry, Joëlle; Guyon, Alice

    2016-11-01

    Thyrotropin Releasing Hormone (TRH) is a tripeptide that induces the release of Thyroid Stimulating Hormone (TSH) in the blood. Besides its role in the thyroid system, TRH has been shown to regulate several neuronal systems in the brain however its role in hippocampus remains controversial. Using electrophysiological recordings in acute mouse brain slices, we show that TRH depresses glutamate responses at the CA3-CA1 synapse through an action on NMDA receptors, which, as a consequence, decreases the ability of the synapse to establish a long term potentiation (LTP). TRH also induces a late increase in AMPA/kainate responses. Together, these results suggest that TRH plays an important role in the modulation of hippocampal neuronal activities, and they contribute to a better understanding of the mechanisms by which TRH impacts synaptic function underlying emotional states, learning and memory processes.

  6. Loss of D2 dopamine receptor function modulates cocaine-induced glutamatergic synaptic potentiation in the ventral tegmental area.

    PubMed

    Madhavan, Anuradha; Argilli, Emanuela; Bonci, Antonello; Whistler, Jennifer L

    2013-07-24

    Potentiation of glutamate responses is a critical synaptic response to cocaine exposure in ventral tegmental area (VTA) neurons. However, the mechanism by which cocaine exposure promotes potentiation of NMDA receptors (NMDARs) and subsequently AMPA receptors (AMPARs) is not fully understood. In this study we demonstrate that repeated cocaine treatment causes loss of D2 dopamine receptor functional responses via interaction with lysosome-targeting G-protein-associated sorting protein1 (GASP1). We also show that the absence of D2 downregulation in GASP1-KO mice prevents cocaine-induced potentiation of NMDAR currents, elevation of the AMPA/NMDA ratio, and redistribution of NMDAR and AMPAR subunits to the membrane. As a pharmacological parallel, coadministration of the high-affinity D2 agonist, aripiprazole, reduces not only functional downregulation of D2s in response to cocaine but also potentiation of NMDAR and AMPAR responses in wild-type mice. Together these data suggest that functional loss of D2 receptors is a critical mechanism mediating cocaine-induced glutamate plasticity in VTA neurons.

  7. Loss of D2 Dopamine Receptor Function Modulates Cocaine-Induced Glutamatergic Synaptic Potentiation in the Ventral Tegmental Area

    PubMed Central

    Madhavan, Anuradha; Argilli, Emanuela; Bonci, Antonello

    2013-01-01

    Potentiation of glutamate responses is a critical synaptic response to cocaine exposure in ventral tegmental area (VTA) neurons. However, the mechanism by which cocaine exposure promotes potentiation of NMDA receptors (NMDARs) and subsequently AMPA receptors (AMPARs) is not fully understood. In this study we demonstrate that repeated cocaine treatment causes loss of D2 dopamine receptor functional responses via interaction with lysosome-targeting G-protein-associated sorting protein1 (GASP1). We also show that the absence of D2 downregulation in GASP1-KO mice prevents cocaine-induced potentiation of NMDAR currents, elevation of the AMPA/NMDA ratio, and redistribution of NMDAR and AMPAR subunits to the membrane. As a pharmacological parallel, coadministration of the high-affinity D2 agonist, aripiprazole, reduces not only functional downregulation of D2s in response to cocaine but also potentiation of NMDAR and AMPAR responses in wild-type mice. Together these data suggest that functional loss of D2 receptors is a critical mechanism mediating cocaine-induced glutamate plasticity in VTA neurons. PMID:23884939

  8. Loss of D2 dopamine receptor function modulates cocaine-induced glutamatergic synaptic potentiation in the ventral tegmental area.

    PubMed

    Madhavan, Anuradha; Argilli, Emanuela; Bonci, Antonello; Whistler, Jennifer L

    2013-07-24

    Potentiation of glutamate responses is a critical synaptic response to cocaine exposure in ventral tegmental area (VTA) neurons. However, the mechanism by which cocaine exposure promotes potentiation of NMDA receptors (NMDARs) and subsequently AMPA receptors (AMPARs) is not fully understood. In this study we demonstrate that repeated cocaine treatment causes loss of D2 dopamine receptor functional responses via interaction with lysosome-targeting G-protein-associated sorting protein1 (GASP1). We also show that the absence of D2 downregulation in GASP1-KO mice prevents cocaine-induced potentiation of NMDAR currents, elevation of the AMPA/NMDA ratio, and redistribution of NMDAR and AMPAR subunits to the membrane. As a pharmacological parallel, coadministration of the high-affinity D2 agonist, aripiprazole, reduces not only functional downregulation of D2s in response to cocaine but also potentiation of NMDAR and AMPAR responses in wild-type mice. Together these data suggest that functional loss of D2 receptors is a critical mechanism mediating cocaine-induced glutamate plasticity in VTA neurons. PMID:23884939

  9. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location

    PubMed Central

    Lai, Meizan; Hughes, Ethan G.; Peng, Xiaoyu; Zhou, Lei; Gleichman, Amy J.; Shu, Huidy; Matà, Sabrina; Kremens, Daniel; Vitaliani, Roberta; Geschwind, Michael D.; Bataller, Luis; Kalb, Robert G.; Davis, Rebecca; Graus, Francesc; Lynch, David R.; Balice-Gordon, Rita; Dalmau, Josep

    2009-01-01

    Background Limbic encephalitis (LE) frequently associates with antibodies to cell surface antigens. Characterization of these antigens is important because it facilitates the diagnosis of those disorders that are treatment-responsive. We report a novel antigen of LE and the effect of patients' antibodies on neuronal cultures. Methods Clinical analysis of 10 patients with LE. Immunoprecipitation and mass spectrometry were used to identify the antigens. HEK293 cells expressing the antigens were used in immunocytochemistry and ELISA. The effect of patients' antibodies on cultures of live rat hippocampal neurons was determined with confocal microscopy. Results Median age was 60 years (38-87); 9 were women. Seven had tumors of the lung, breast or thymus. Nine patients responded to immunotherapy or oncological therapy but neurologic relapses, without tumor recurrence, were frequent and influenced the long-term outcome. One untreated patient died of LE. All patients had antibodies against neuronal cell surface antigens that by immunoprecipitation were found to be the GluR1 and GluR2 subunits of the AMPA receptor (AMPAR). HEK293 cells expressing GluR1/2 reacted with all patients' sera or CSF, providing a diagnostic test for the disorder. Application of antibodies to cultures of neurons significantly decreased the number of GluR2-containing AMPAR clusters at synapses with a smaller decrease in overall AMPAR cluster density; these effects were reversed after antibody removal. Conclusions Antibodies to GluR1/2 associate with LE that is often paraneoplastic, treatment-responsive, and has a tendency to relapse. Our findings support an antibody-mediated pathogenesis in which patients' antibodies alter the synaptic localization and number of AMPAR. PMID:19338055

  10. Aβ-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1

    PubMed Central

    Rodrigues, Elizabeth M.; Scudder, Samantha L.; Goo, Marisa S.

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease in which patients experience progressive cognitive decline. A wealth of evidence suggests that this cognitive impairment results from synaptic dysfunction in affected brain regions caused by cleavage of amyloid precursor protein into the pathogenic peptide amyloid-β (Aβ). Specifically, it has been shown that Aβ decreases surface AMPARs, dendritic spine density, and synaptic strength, and also alters synaptic plasticity. The precise molecular mechanisms by which this occurs remain unclear. Here we demonstrate a role for ubiquitination in Aβ-induced synaptic dysfunction in cultured rat neurons. We find that Aβ promotes the ubiquitination of AMPARs, as well as the redistribution and recruitment of Nedd4-1, a HECT E3 ubiquitin ligase we previously demonstrated to target AMPARs for ubiquitination and degradation. Strikingly, we show that Nedd4-1 is required for Aβ-induced reductions in surface AMPARs, synaptic strength, and dendritic spine density. Our findings, therefore, indicate an important role for Nedd4-1 and ubiquitin in the synaptic alterations induced by Aβ. SIGNIFICANCE STATEMENT Synaptic changes in Alzheimer's disease (AD) include surface AMPAR loss, which can weaken synapses. In a cell culture model of AD, we found that AMPAR loss correlates with increased AMPAR ubiquitination. In addition, the ubiquitin ligase Nedd4-1, known to ubiquitinate AMPARs, is recruited to synapses in response to Aβ. Strikingly, reducing Nedd4-1 levels in this model prevented surface AMPAR loss and synaptic weakening. These findings suggest that, in AD, Nedd4-1 may ubiquitinate AMPARs to promote their internalization and weaken synaptic strength, similar to what occurs in Nedd4-1's established role in homeostatic synaptic scaling. This is the first demonstration of Aβ-mediated control of a ubiquitin ligase to regulate surface AMPAR expression. PMID:26843640

  11. Morphological changes of glutamatergic synapses in animal models of Parkinson’s disease

    PubMed Central

    Villalba, Rosa M.; Mathai, Abraham; Smith, Yoland

    2015-01-01

    The striatum and the subthalamic nucleus (STN) are the main entry doors for extrinsic inputs to reach the basal ganglia (BG) circuitry. The cerebral cortex, thalamus and brainstem are the key sources of glutamatergic inputs to these nuclei. There is anatomical, functional and neurochemical evidence that glutamatergic neurotransmission is altered in the striatum and STN of animal models of Parkinson’s disease (PD) and that these changes may contribute to aberrant network neuronal activity in the BG-thalamocortical circuitry. Postmortem studies of animal models and PD patients have revealed significant pathology of glutamatergic synapses, dendritic spines and microcircuits in the striatum of parkinsonians. More recent findings have also demonstrated a significant breakdown of the glutamatergic corticosubthalamic system in parkinsonian monkeys. In this review, we will discuss evidence for synaptic glutamatergic dysfunction and pathology of cortical and thalamic inputs to the striatum and STN in models of PD. The potential functional implication of these alterations on synaptic integration, processing and transmission of extrinsic information through the BG circuits will be considered. Finally, the significance of these pathological changes in the pathophysiology of motor and non-motor symptoms in PD will be examined. PMID:26441550

  12. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering

    PubMed Central

    Pereira, Ana C.; Lambert, Hilary K.; Grossman, Yael S.; Dumitriu, Dani; Waldman, Rachel; Jannetty, Sophia K.; Calakos, Katina; Janssen, William G.; McEwen, Bruce S.; Morrison, John H.

    2014-01-01

    The dementia of Alzheimer’s disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat age-related cognitive decline. PMID:25512503

  13. Glutamatergic transmission in the central nucleus of the amygdala is selectively altered in Marchigian Sardinian alcohol-preferring rats: Alcohol and CRF effects.

    PubMed

    Herman, Melissa A; Varodayan, Florence P; Oleata, Christopher S; Luu, George; Kirson, Dean; Heilig, Markus; Ciccocioppo, Roberto; Roberto, Marisa

    2016-03-01

    The CRF system of the central nucleus of the amygdala (CeA) is important for the processing of anxiety, stress, and effects of acute and chronic ethanol. We previously reported that ethanol decreases evoked glutamate transmission in the CeA of Sprague Dawley rats and that ethanol dependence alters glutamate release in the CeA. Here, we examined the effects of ethanol, CRF and a CRF1 receptor antagonist on spontaneous and evoked glutamatergic transmission in CeA neurons from Wistar and Marchigian Sardinian Preferring (msP) rats, a rodent line genetically selected for excessive alcohol drinking and characterized by heightened activity of the CRF1 system. Basal spontaneous and evoked glutamate transmission in CeA neurons from msP rats was increased compared to Wistar rats. Ethanol had divergent effects, either increasing or decreasing spontaneous glutamate release in the CeA of Wistar rats. This bidirectional effect was retained in msP rats, but the magnitude of the ethanol-induced increase in glutamate release was significantly smaller. The inhibitory effect of ethanol on evoked glutamatergic transmission was similar in both strains. CRF also either increased or decreased spontaneous glutamate release in CeA neurons of Wistar rats, however, in msP rats CRF only increased glutamate release. The inhibitory effect of CRF on evoked glutamatergic transmission was also lost in neurons from msP rats. A CRF1 antagonist produced only minor effects on spontaneous glutamate transmission, which were consistent across strains, and no effects on evoked glutamate transmission. These results demonstrate that the genetically altered CRF system of msP rats results in alterations in spontaneous and stimulated glutamate signaling in the CeA that may contribute to both the anxiety and drinking behavioral phenotypes.

  14. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia

    PubMed Central

    Crabtree, Gregg W.; Gogos, Joseph A.

    2014-01-01

    Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations. PMID:25505409

  15. Optogenetic Stimulation of Prefrontal Glutamatergic Neurons Enhances Recognition Memory

    PubMed Central

    Barker, Gareth R. I.; Stuart, Sarah A.; Roloff, Eva v. L.; Teschemacher, Anja G.; Warburton, E. Clea

    2016-01-01

    Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the potential to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specifically. Selective stimulation of glutamatergic neurons during the online maintenance of information enhanced associative recognition memory in normal animals. This cognitive enhancing effect was replicated by local infusions of the AMPAkine CX516, but not CX546, which differ in their effects on EPSPs. This suggests that enhancing the amplitude, but not the duration, of excitatory synaptic currents improves memory performance. Increasing glutamate release through infusions of the mGluR7 presynaptic receptor antagonist MMPIP had no effect on performance. SIGNIFICANCE STATEMENT These results provide new mechanistic information that could guide the targeting of future cognitive enhancers. Our work suggests that improved associative-recognition memory can be achieved by enhancing endogenous glutamatergic neuronal activity selectively using an optogenetic approach. We build on these observations to recapitulate this effect using drug treatments that enhance the amplitude of EPSPs; however, drugs that alter the duration of the EPSP or increase glutamate release lack efficacy. This suggests that both neural and temporal specificity are needed to achieve cognitive enhancement. PMID:27147648

  16. Drebrin depletion alters neurotransmitter receptor levels in protein complexes, dendritic spine morphogenesis and memory-related synaptic plasticity in the mouse hippocampus.

    PubMed

    Jung, Gangsoo; Kim, Eun-Jung; Cicvaric, Ana; Sase, Sunetra; Gröger, Marion; Höger, Harald; Sialana, Fernando Jayson; Berger, Johannes; Monje, Francisco J; Lubec, Gert

    2015-07-01

    Drebrin an actin-bundling key regulator of dendritic spine genesis and morphology, has been recently proposed as a regulator of hippocampal glutamatergic activity which is critical for memory formation and maintenance. Here, we examined the effects of genetic deletion of drebrin on dendritic spine and on the level of complexes containing major brain receptors. To this end, homozygous and heterozygous drebrin knockout mice generated in our laboratory and related wild-type control animals were studied. Level of protein complexes containing dopamine receptor D1/dopamine receptor D2, 5-hydroxytryptamine receptor 1A (5-HT1(A)R), and 5-hydroxytryptamine receptor 7 (5-HT7R) were significantly reduced in hippocampus of drebrin knockout mice whereas no significant changes were detected for GluR1, 2, and 3 and NR1 as examined by native gel-based immunoblotting. Drebrin depletion also altered dendritic spine formation, morphology, and reduced levels of dopamine receptor D1 in dendritic spines as evaluated using immunohistochemistry/confocal microscopy. Electrophysiological studies further showed significant reduction in memory-related hippocampal synaptic plasticity upon drebrin depletion. These findings provide unprecedented experimental support for a role of drebrin in the regulation of memory-related synaptic plasticity and neurotransmitter receptor signaling, offer relevant information regarding the interpretation of previous studies and help in the design of future studies on dendritic spines.

  17. Developmentally regulated switch in alternatively spliced SNAP-25 isoforms alters facilitation of synaptic transmission.

    PubMed

    Bark, Christina; Bellinger, Frederick P; Kaushal, Ashutosh; Mathews, James R; Partridge, L Donald; Wilson, Michael C

    2004-10-01

    Although the basic molecular components that promote regulated neurotransmitter release are well established, the contribution of these proteins as regulators of the plasticity of neurotransmission and refinement of synaptic connectivity during development is elaborated less fully. For example, during the period of synaptic growth and maturation in brain, the expression of synaptosomal protein 25 kDa (SNAP-25), a neuronal t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) essential for action potential-dependent neuroexocytosis, is altered through alternative splicing of pre-mRNA transcripts. We addressed the role of the two splice-variant isoforms of SNAP-25 with a targeted mouse mutation that impairs the shift from SNAP-25a to SNAP-25b. Most of these mutant mice die between 3 and 5 weeks of age, which coincides with the time when SNAP-25b expression normally reaches mature levels in brain and synapse formation is essentially completed. The altered expression of these SNAP-25 isoforms influences short-term synaptic function by affecting facilitation but not the initial probability of release. This suggests that mechanisms controlling alternative splicing between SNAP-25 isoforms contribute to a molecular switch important for survival that helps to guide the transition from immature to mature synaptic connections, as well as synapse regrowth and remodeling after neural injury.

  18. Cholinergic dysfunction alters synaptic integration between thalamostriatal and corticostriatal inputs in DYT1 dystonia

    PubMed Central

    Sciamanna, G.; Tassone, A.; Mandolesi, G.; Puglisi, F.; Ponterio, G.; Martella, G.; Madeo, G.; Bernardi, G.; Standaert, D.G.; Bonsi, P.; Pisani, A.

    2012-01-01

    Projections from thalamic intralaminar nuclei convey sensory signals to striatal cholinergic interneurons. These neurons respond with a pause in their pacemaking activity, enabling synaptic integration with cortical inputs to medium spiny neurons (MSNs), thus playing a crucial role in motor function. In mice with the DYT1 dystonia mutation, stimulation of thalamostriatal axons, mimicking a response to salient events, evoked a shortened pause and triggered an abnormal spiking activity in interneurons. This altered pattern caused a significant rearrangement of the temporal sequence of synaptic activity mediated by M1 and M2 muscarinic receptors in MSNs, consisting of an increase in postsynaptic currents and a decrease of presynaptic inhibition, respectively. Consistent with a major role of acetylcholine, either lowering cholinergic tone or antagonizing postsynaptic M1 muscarinic receptors normalized synaptic activity. Our data demonstrate an abnormal time-window for synaptic integration between thalamostriatal and corticostriatal inputs which might alter the action selection process, thereby predisposing DYT1 gene mutation carriers to develop dystonic movements. PMID:22933784

  19. Dynamic Changes in Cytosolic ATP Levels in Cultured Glutamatergic Neurons During NMDA-Induced Synaptic Activity Supported by Glucose or Lactate.

    PubMed

    Lange, Sofie C; Winkler, Ulrike; Andresen, Lars; Byhrø, Mathilde; Waagepetersen, Helle S; Hirrlinger, Johannes; Bak, Lasse K

    2015-12-01

    We have previously shown that synaptic transmission fails in cultured neurons in the presence of lactate as the sole substrate. Thus, to test the hypothesis that the failure of synaptic transmission is a consequence of insufficient energy supply, ATP levels were monitored employing the ATP biosensor Ateam1.03YEMK. While inducing synaptic activity by subjecting cultured neurons to two 30 s pulses of NMDA (30 µM) with a 4 min interval, changes in relative ATP levels were measured in the presence of lactate (1 mM), glucose (2.5 mM) or the combination of the two. ATP levels reversibly declined following NMDA-induced neurotransmission activity, as indicated by a reversible 10-20 % decrease in the response of the biosensor. The responses were absent when the NMDA receptor antagonist memantine was present. In the presence of lactate alone, the ATP response dropped significantly more than in the presence of glucose following the 2nd pulse of NMDA (approx. 10 vs. 20 %). Further, cytosolic Ca(2+) homeostasis during NMDA-induced synaptic transmission is partially inhibited by verapamil indicating that voltage-gated Ca(2+) channels are activated. Lastly, we showed that cytosolic Ca(2+) homeostasis is supported equally well by both glucose and lactate, and that a pulse of NMDA causes accumulation of Ca(2+) in the mitochondrial matrix. In summary, we have shown that ATP homeostasis during neurotransmission activity in cultured neurons is supported by both glucose and lactate. However, ATP homeostasis seems to be negatively affected by the presence of lactate alone, suggesting that glucose is needed to support neuronal energy metabolism during activation.

  20. Interactions between behaviorally relevant rhythms and synaptic plasticity alter coding in the piriform cortex.

    PubMed

    Oswald, Anne-Marie M; Urban, Nathaniel N

    2012-05-01

    Understanding how neural and behavioral timescales interact to influence cortical activity and stimulus coding is an important issue in sensory neuroscience. In air-breathing animals, voluntary changes in respiratory frequency alter the temporal patterning olfactory input. In the olfactory bulb, these behavioral timescales are reflected in the temporal properties of mitral/tufted (M/T) cell spike trains. As the odor information contained in these spike trains is relayed from the bulb to the cortex, interactions between presynaptic spike timing and short-term synaptic plasticity dictate how stimulus features are represented in cortical spike trains. Here, we demonstrate how the timescales associated with respiratory frequency, spike timing, and short-term synaptic plasticity interact to shape cortical responses. Specifically, we quantified the timescales of short-term synaptic facilitation and depression at excitatory synapses between bulbar M/T cells and cortical neurons in slices of mouse olfactory cortex. We then used these results to generate simulated M/T population synaptic currents that were injected into real cortical neurons. M/T population inputs were modulated at frequencies consistent with passive respiration or active sniffing. We show how the differential recruitment of short-term plasticity at breathing versus sniffing frequencies alters cortical spike responses. For inputs at sniffing frequencies, cortical neurons linearly encoded increases in presynaptic firing rates with increased phase-locked, firing rates. In contrast, at passive breathing frequencies, cortical responses saturated with changes in presynaptic rate. Our results suggest that changes in respiratory behavior can gate the transfer of stimulus information between the olfactory bulb and cortex.

  1. Dopamine and corticotropin-releasing factor synergistically alter basolateral amygdala-to-medial prefrontal cortex synaptic transmission: functional switch after chronic cocaine administration.

    PubMed

    Orozco-Cabal, Luis; Liu, Jie; Pollandt, Sebastian; Schmidt, Kady; Shinnick-Gallagher, Patricia; Gallagher, Joel P

    2008-01-01

    Basolateral amygdala (BLA) neurons provide a major excitatory input to medial prefrontal cortex (mPFC)-layer V pyramidal neurons. Under stressful conditions, commonly associated with chronic cocaine abuse, altered BLA-to-mPFC synaptic transmission could lead to defective emotional information processing and decision making within the mPFC and result in misguided and inappropriate behaviors. We examined the effects of cocaine administered chronically in vivo on EPSCs recorded from a putative BLA-mPFC pathway in vitro and their modulation by dopamine (DA), corticotropin-releasing factor (CRF), and their combination (DA plus CRF). In saline-treated animals, activation of D(1/5) receptors depressed BLA-mPFC EPSCs, whereas CRF1 receptor activation alone had no effect on EPSCs. Activating D(1/5) and CRF1 receptors in combination, however, worked synergistically through presynaptic and postsynaptic mechanisms to depress EPSCs to levels greater than D(1/5) receptor activation alone. After chronic cocaine administration, the function of DA(1/5) and CRF receptors switched from inhibitory to excitatory. In slices from cocaine-treated animals, putative BLA-mPFC EPSCs were depressed through a presynaptic mechanism. Now, activation of either D(1/5) or CRF2 receptors increased the cocaine-induced, depressed EPSCs. Additionally, simultaneous activation of presynaptic D(1/5) and CRF2 receptors led to further enhancement of EPSCs. These data indicate that CRF acting synergistically with DA normally potentiates D(1/5)-induced synaptic depression. However, after chronic cocaine, the combined synergistic actions of DA and CRF switched polarity to enhance facilitation of BLA-mPFC glutamatergic transmission. Also unmasked after acute withdrawal from chronic cocaine are endogenous, tonic-inhibitory D2-like and tonic-facilitatory CRF2 receptor actions. These multiple functional and receptor changes may underlie the altered, possibly aberrant, decision-making process after chronic cocaine.

  2. Differential splicing and glycosylation of Apoer2 alters synaptic plasticity and fear learning

    PubMed Central

    Wasser, Catherine R.; Masiulis, Irene; Durakoglugil, Murat S.; Lane-Donovan, Courtney; Xian, Xunde; Beffert, Uwe; Agarwala, Anandita; Hammer, Robert E.; Herz, Joachim

    2015-01-01

    Apoer2 is an essential receptor in the central nervous system that binds to the apolipoprotein ApoE. Various splice variants of Apoer2 are produced. We showed that Apoer2 lacking exon 16, which encodes the O-linked sugar (OLS) domain, altered the proteolytic processing and abundance of Apoer2 in cells and synapse number and function in mice. In cultured cells expressing this splice variant, extracellular cleavage of OLS-deficient Apoer2 was reduced, consequently preventing γ-secretase-dependent release of the intracellular domain of Apoer2. Mice expressing Apoer2 lacking the OLS domain had increased Apoer2 abundance in the brain, hippocampal spine density, and glutamate receptor abundance, but decreased synaptic efficacy. Mice expressing a form of Apoer2 lacking the OLS domain and containing an alternatively spliced cytoplasmic tail region that promotes glutamate receptor signaling showed enhanced hippocampal long-term potentiation (LTP), a phenomenon associated with learning and memory. However, these mice did not display enhanced spatial learning in the Morris water maze, and cued fear conditioning was reduced. Reducing the expression of the mutant Apoer2 allele so that the abundance of the protein was similar to that of Apoer2 in wild-type mice normalized spine density, hippocampal LTP, and cued fear learning. These findings demonstrated a role for ApoE receptors as regulators of synaptic glutamate receptor activity and established differential receptor glycosylation as a potential regulator of synaptic function and memory. PMID:25429077

  3. Altered synaptic plasticity in the mossy fibre pathway of transgenic mice expressing mutant amyloid precursor protein

    PubMed Central

    2010-01-01

    Aβ peptides derived from the cleavage of amyloid precursor protein are widely believed to play an important role in the pathophysiology of Alzheimer's disease. A common way to study the impact of these molecules on CNS function is to compare the physiology of transgenic mice that overproduce Aβ with non-transgenic animals. In the hippocampus, this approach has been frequently applied to the investigation of synaptic transmission and plasticity in the perforant and Schaffer collateral commissural pathways, the first and third components of the classical hippocampal trisynaptic circuit, respectively. Similar studies however have not been carried out on the remaining component of the trisynaptic circuit, the mossy fibre pathway. Using transverse hippocampal slices prepared from ~2 year old animals we have compared mossy fibre synaptic function in wild-type mice and their Tg2576 littermates which age-dependently overproduce Aβ. Input-output curves were not altered in slices from Tg2576 mice, but these animals exhibited a significant loss of the prominent frequency-facilitation expressed by the mossy fibre pathway. In addition to this change in short term synaptic plasticity, high frequency stimulation-induced, NMDA-receptor-independent LTP was absent in slices from the transgenic mice. These data represent the first description of functional deficits in the mossy fibre pathway of Aβ-overproducing transgenic mice. PMID:21040543

  4. Altered expression of glial and synaptic markers in the anterior hippocampus of behaviorally depressed female monkeys.

    PubMed

    Willard, Stephanie L; Hemby, Scott E; Register, Thomas C; McIntosh, Scot; Shively, Carol A

    2014-03-20

    The anterior hippocampus is associated with emotional functioning and hippocampal volume is reduced in depression. We reported reduced neuropil volume and number of glia in the dentate gyrus (DG) and cornu ammonis (CA)1 of the anterior hippocampus in behaviorally depressed adult female cynomolgus macaques. To determine the biochemical correlates of morphometric and behavioral differences between behaviorally depressed and nondepressed adult female monkeys, glial and synaptic transcripts and protein levels were assessed in the DG, CA3 and CA1 of the anterior hippocampus. Glial fibrillary acidic protein (GFAP) was increased whereas spinophilin and postsynaptic density (PSD)-95 protein were decreased in the CA1 of depressed monkeys. GFAP was reciprocally related to spinophilin and PSD-95 protein in the CA1. Gene expression of GFAP paralleled the protein changes observed in the CA1 and was inversely related to serum estradiol levels in depressed monkeys. These results suggest that behavioral depression in female primates is accompanied by astrocytic and synaptic protein alterations in the CA1. Moreover, these findings indicate a potential role for estrogen in modulating astrocyte-mediated impairments in synaptic plasticity.

  5. Altered Expression of Glial and Synaptic Markers in the Anterior Hippocampus of Behaviorally Depressed Female Monkeys

    PubMed Central

    Willard, Stephanie L.; Hemby, Scott E.; Register, Thomas C.; McIntosh, Scot; Shively, Carol A.

    2014-01-01

    The anterior hippocampus is associated with emotional functioning and hippocampal volume is reduced in depression. We reported reduced neuropil volume and number of glia in the dentate gyrus (DG) and cornu ammonis (CA)1 of the anterior hippocampus in behaviorally depressed adult female cynomolgus macaques. To determine the biochemical correlates of morphometric and behavioral differences between behaviorally depressed and nondepressed adult female monkeys, glial and synaptic transcripts and protein levels were assessed in the DG, CA3 and CA1 of the anterior hippocampus. Glial fibrillary acidic protein (GFAP) was increased whereas spinophilin and postsynaptic density (PSD)-95 protein were decreased in the CA1 of depressed monkeys. GFAP was reciprocally related to spinophilin and PSD-95 protein in the CA1. Gene expression of GFAP paralleled the protein changes observed in the CA1 and was inversely related to serum estradiol levels in depressed monkeys. These results suggest that behavioral depression in female primates is accompanied by astrocytic and synaptic protein alterations in the CA1. Moreover, these findings indicate a potential role for estrogen in modulating astrocyte-mediated impairments in synaptic plasticity. PMID:24440617

  6. Time-course of alterations in pre- and post-synaptic chemoreceptor function during developmental hyperoxia

    PubMed Central

    Donnelly, David F.; Bavis, Ryan W.; Kim, Insook; Dbouk, Hassan A; Carroll, John L.

    2009-01-01

    Postnatal hyperoxia exposure reduces the carotid body response to acute hypoxia and produces a long-lasting impairment of the ventilatory response to hypoxia. The present work investigated the time-course of pre- and post-synaptic alterations following exposure to hyperoxia (Fio2=0.6) for 1, 3, 5, 8 and 14 days (d) starting at postnatal day 7 (P7) as compared to age-matched controls. Hyperoxia exposure for 1d enhanced the nerve response and glomus cell calcium response to acute hypoxia, but exposure for 3-5d caused a significant reduction in both. Hypoxia-induced catecholamine release and nerve conduction velocity were significantly decreased by 5d hyperoxia. We conclude that hyperoxia exerts pre-synaptic (glomus cell calcium and secretory responses) and post-synaptic (afferent nerve excitability) actions to initially enhance and then reduce the chemoreceptor response to acute hypoxia. The parallel changes in glomus cell calcium response and nerve response suggest causality between the two and that environmental hyperoxia can affect the coupling between acute hypoxia and glomus cell calcium regulation. PMID:19465165

  7. Deletion of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins

    PubMed Central

    Lugo, Joaquin N.; Smith, Gregory D.; Arbuckle, Erin P.; White, Jessika; Holley, Andrew J.; Floruta, Crina M.; Ahmed, Nowrin; Gomez, Maribel C.; Okonkwo, Obi

    2014-01-01

    Many genes have been implicated in the underlying cause of autism but each gene accounts for only a small fraction of those diagnosed with autism. There is increasing evidence that activity-dependent changes in neuronal signaling could act as a convergent mechanism for many of the changes in synaptic proteins. One candidate signaling pathway that may have a critical role in autism is the PI3K/AKT/mTOR pathway. A major regulator of this pathway is the negative repressor phosphatase and tensin homolog (PTEN). In the current study we examined the behavioral and molecular consequences in mice with neuron subset-specific deletion of PTEN. The knockout (KO) mice showed deficits in social chamber and social partition test. KO mice demonstrated alterations in repetitive behavior, as measured in the marble burying test and hole-board test. They showed no changes in ultrasonic vocalizations emitted on postnatal day 10 or 12 compared to wildtype (WT) mice. They exhibited less anxiety in the elevated-plus maze test and were more active in the open field test compared to WT mice. In addition to the behavioral alterations, KO mice had elevation of phosphorylated AKT, phosphorylated S6, and an increase in S6K. KO mice had a decrease in mGluR but an increase in total and phosphorylated fragile X mental retardation protein. The disruptions in intracellular signaling may be why the KO mice had a decrease in the dendritic potassium channel Kv4.2 and a decrease in the synaptic scaffolding proteins PSD-95 and SAP102. These findings demonstrate that deletion of PTEN results in long-term alterations in social behavior, repetitive behavior, activity, and anxiety. In addition, deletion of PTEN significantly alters mGluR signaling and many synaptic proteins in the hippocampus. Our data demonstrates that deletion of PTEN can result in many of the behavioral features of autism and may provide insights into the regulation of intracellular signaling on synaptic proteins. PMID:24795561

  8. Deletion of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins.

    PubMed

    Lugo, Joaquin N; Smith, Gregory D; Arbuckle, Erin P; White, Jessika; Holley, Andrew J; Floruta, Crina M; Ahmed, Nowrin; Gomez, Maribel C; Okonkwo, Obi

    2014-01-01

    Many genes have been implicated in the underlying cause of autism but each gene accounts for only a small fraction of those diagnosed with autism. There is increasing evidence that activity-dependent changes in neuronal signaling could act as a convergent mechanism for many of the changes in synaptic proteins. One candidate signaling pathway that may have a critical role in autism is the PI3K/AKT/mTOR pathway. A major regulator of this pathway is the negative repressor phosphatase and tensin homolog (PTEN). In the current study we examined the behavioral and molecular consequences in mice with neuron subset-specific deletion of PTEN. The knockout (KO) mice showed deficits in social chamber and social partition test. KO mice demonstrated alterations in repetitive behavior, as measured in the marble burying test and hole-board test. They showed no changes in ultrasonic vocalizations emitted on postnatal day 10 or 12 compared to wildtype (WT) mice. They exhibited less anxiety in the elevated-plus maze test and were more active in the open field test compared to WT mice. In addition to the behavioral alterations, KO mice had elevation of phosphorylated AKT, phosphorylated S6, and an increase in S6K. KO mice had a decrease in mGluR but an increase in total and phosphorylated fragile X mental retardation protein. The disruptions in intracellular signaling may be why the KO mice had a decrease in the dendritic potassium channel Kv4.2 and a decrease in the synaptic scaffolding proteins PSD-95 and SAP102. These findings demonstrate that deletion of PTEN results in long-term alterations in social behavior, repetitive behavior, activity, and anxiety. In addition, deletion of PTEN significantly alters mGluR signaling and many synaptic proteins in the hippocampus. Our data demonstrates that deletion of PTEN can result in many of the behavioral features of autism and may provide insights into the regulation of intracellular signaling on synaptic proteins.

  9. Habenula lesions alter synaptic plasticity within the fimbria-accumbens pathway in the rat.

    PubMed

    Lecourtier, L; Deschaux, O; Arnaud, C; Chessel, A; Kelly, P H; Garcia, R

    2006-08-25

    Both the habenula and the nucleus accumbens, and especially the glutamatergic innervation of the latter from the hippocampus, have been hypothesized to be involved, in different ways, in the pathophysiology of cognitive disturbances in schizophrenia. Lesions of the habenula produce disturbances of memory and attention in experimental animals. As the habenular nuclei have been shown to influence the release of many neurotransmitters, both in the hippocampus and the nucleus accumbens, we examined in this study the effects of bilateral habenula lesions on the plasticity of the fimbria-nucleus accumbens pathway, by means of the long-term depression phenomenon in freely moving rats. Long-term depression, induced within the shell region of the nucleus accumbens by low-frequency stimulation of the fimbria, was exaggerated and showed greater persistence in habenula-lesioned rats compared with sham-operated animals. These results indicate that plasticity in the fimbria-nucleus accumbens pathway is altered by habenula lesions in a way similar to previously-reported effects of stress and the psychosis-provoking agent ketamine. Moreover, they strengthen the views that the habenula belongs to systems, mediating higher cognitive functions, which involve the hippocampus and the nucleus accumbens. Finally, this study suggests that dysfunction of the habenula could contribute to cognitive alterations in diseases such as schizophrenia, where the habenula is reported to exhibit exaggerated calcification.

  10. Treatment with a clinically-relevant dose of methylphenidate alters NMDA receptor composition and synaptic plasticity in the juvenile rat prefrontal cortex.

    PubMed

    Urban, Kimberly R; Li, Yan-Chun; Gao, Wen-Jun

    2013-03-01

    Methylphenidate (Ritalin, MPH) is the most commonly prescribed psychoactive drug for children. Used to treat attention-deficit/hyperactivity disorder (ADHD) and for cognitive enhancement in healthy individuals, its cellular mechanisms of action and potential long-term effects are poorly understood. We recently reported that a clinically relevant (1 mg/kg i.p., single injection) dose of MPH significantly decreased neuronal excitability in the juvenile rat prefrontal cortical neurons. Here we further explore the actions of acute treatment with MPH on the level of NMDA receptor subunits and NMDA receptor-mediated short- and long-term synaptic plasticity in the juvenile rat prefrontal cortical neurons. We found that a single dose of MPH treatment (1 mg/kg, intraperitoneal) significantly decreased the surface and total protein levels of NMDA receptor subunits NR1 and NR2B, but not NR2A, in the juvenile prefrontal cortex. In addition, the amplitude, decay time and charge transfer of NMDA receptor-mediated EPSCs were significantly decreased whereas the amplitude and short-term depression of AMPA receptor-mediated EPSCs were significantly increased in the prefrontal neurons. Furthermore, MPH treatment also significantly increased the probability and magnitude of LTP induction, but had only a small effect on LTD induction in juvenile rat prefrontal cortical neurons. Our data thus present a novel mechanism of action of MPH, i.e., changes in glutamatergic receptor-mediated synaptic plasticity following early-life treatment. Furthermore, since a single dosage resulted in significant changes in NMDA receptors, off-label usage by healthy individuals, especially children and adolescents, may result in altered potential for plastic learning.

  11. Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling.

    PubMed

    Bridges, Richard; Lutgen, Victoria; Lobner, Doug; Baker, David A

    2012-07-01

    System x(c)(-) represents an intriguing target in attempts to understand the pathological states of the central nervous system. Also called a cystine-glutamate antiporter, system x(c)(-) typically functions by exchanging one molecule of extracellular cystine for one molecule of intracellular glutamate. Nonvesicular glutamate released during cystine-glutamate exchange activates extrasynaptic glutamate receptors in a manner that shapes synaptic activity and plasticity. These findings contribute to the intriguing possibility that extracellular glutamate is regulated by a complex network of release and reuptake mechanisms, many of which are unique to glutamate and rarely depicted in models of excitatory signaling. Because system x(c)(-) is often expressed on non-neuronal cells, the study of cystine-glutamate exchange may advance the emerging viewpoint that glia are active contributors to information processing in the brain. It is noteworthy that system x(c)(-) is at the interface between excitatory signaling and oxidative stress, because the uptake of cystine that results from cystine-glutamate exchange is critical in maintaining the levels of glutathione, a critical antioxidant. As a result of these dual functions, system x(c)(-) has been implicated in a wide array of central nervous system diseases ranging from addiction to neurodegenerative disorders to schizophrenia. In the current review, we briefly discuss the major cellular components that regulate glutamate homeostasis, including glutamate release by system x(c)(-). This is followed by an in-depth discussion of system x(c)(-) as it relates to glutamate release, cystine transport, and glutathione synthesis. Finally, the role of system x(c)(-) is surveyed across a number of psychiatric and neurodegenerative disorders.

  12. Alzheimer's disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers.

    PubMed

    Carvalho, Cristina; Santos, Maria S; Oliveira, Catarina R; Moreira, Paula I

    2015-08-01

    We aimed to investigate mitochondrial function, biogenesis and autophagy in the brain of type 2 diabetes (T2D) and Alzheimer's disease (AD) mice. Isolated brain mitochondria and homogenates from cerebral cortex and hippocampus of wild-type (WT), triple transgenic AD (3xTg-AD) and T2D mice were used to evaluate mitochondrial functional parameters and protein levels of mitochondrial biogenesis, autophagy and synaptic integrity markers, respectively. A significant decrease in mitochondrial respiration, membrane potential and energy levels was observed in T2D and 3xTg-AD mice. Also, a significant decrease in the levels of autophagy-related protein 7 (ATG7) and glycosylated lysosomal membrane protein 1 (LAMP1) was observed in cerebral cortex and hippocampus of T2D and 3xTg-AD mice. Moreover, both brain regions of 3xTg-AD mice present lower levels of nuclear respiratory factor (NRF) 1 while the levels of NRF2 are lower in both brain regions of T2D and 3xTg-AD mice. A decrease in mitochondrial encoded, nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) was also observed in T2D and 3xTg-AD mice although only statistically significant in T2D cortex. Furthermore, a decrease in the levels of postsynaptic density protein 95 (PSD95) in the cerebral cortex of 3xTg-AD mice and in hippocampus of T2D and 3xTg-AD mice and a decrease in the levels of synaptosomal-associated protein 25 (SNAP 25) in the hippocampus of T2D and 3xTg-AD mice were observed suggesting synaptic integrity loss. These results support the idea that alterations in mitochondrial function, biogenesis and autophagy cause synaptic damage in AD and T2D.

  13. Synaptic development and neuronal myelination are altered with growth restriction in fetal guinea pigs.

    PubMed

    Piorkowska, Karolina; Thompson, Jennifer; Nygard, Karen; Matushewski, Brad; Hammond, Robert; Richardson, Bryan

    2014-01-01

    This study examines aberrant synaptogenesis and myelination of neuronal connections as possible links to neurological sequelae in growth-restricted fetuses. Pregnant guinea pig sows were subjected to uterine blood flow restriction or sham surgeries at midgestation. The animals underwent necropsy at term with fetuses grouped according to body weight and brain-to-liver weight ratios as follows: appropriate for gestational age (n = 12); asymmetrically fetal growth restricted (aFGR; n = 8); symmetrically fetal growth restricted (sFGR; n = 8), and large for gestational age (n = 8). Fetal brains were perfusion fixed and paraffin embedded to determine immunoreactivity for synaptophysin and synaptopodin as markers of synaptic development and maturation, respectively, and for myelin basic protein as a marker for myelination, which was further assessed using Luxol fast blue staining. The most pertinent findings were that growth-restricted guinea pig fetuses exhibited reduced synaptogenesis and synaptic maturation as well as reduced myelination, which were primarily seen in subareas of the hippocampus and associated efferent tracts. These neurodevelopmental changes were more pronounced in the sFGR compared to the aFGR animals. Accordingly, altered hippocampal development involving synaptogenesis and myelination may represent a mechanism by which cognitive deficits manifest in human growth-restricted offspring in later life.

  14. Internalized antibodies to the Abeta domain of APP reduce neuronal Abeta and protect against synaptic alterations.

    PubMed

    Tampellini, Davide; Magrané, Jordi; Takahashi, Reisuke H; Li, Feng; Lin, Michael T; Almeida, Cláudia G; Gouras, Gunnar K

    2007-06-29

    Immunotherapy against beta-amyloid peptide (Abeta) is a leading therapeutic direction for Alzheimer disease (AD). Experimental studies in transgenic mouse models of AD have demonstrated that Abeta immunization reduces Abeta plaque pathology and improves cognitive function. However, the biological mechanisms by which Abeta antibodies reduce amyloid accumulation in the brain remain unclear. We provide evidence that treatment of AD mutant neuroblastoma cells or primary neurons with Abeta antibodies decreases levels of intracellular Abeta. Antibody-mediated reduction in cellular Abeta appears to require that the antibody binds to the extracellular Abeta domain of the amyloid precursor protein (APP) and be internalized. In addition, treatment with Abeta antibodies protects against synaptic alterations that occur in APP mutant neurons.

  15. Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala.

    PubMed

    Monsey, Melissa S; Ota, Kristie T; Akingbade, Irene F; Hong, Ellie S; Schafe, Glenn E

    2011-01-01

    Epigenetic mechanisms, including histone acetylation and DNA methylation, have been widely implicated in hippocampal-dependent learning paradigms. Here, we have examined the role of epigenetic alterations in amygdala-dependent auditory Pavlovian fear conditioning and associated synaptic plasticity in the lateral nucleus of the amygdala (LA) in the rat. Using Western blotting, we first show that auditory fear conditioning is associated with an increase in histone H3 acetylation and DNMT3A expression in the LA, and that training-related alterations in histone acetylation and DNMT3A expression in the LA are downstream of ERK/MAPK signaling. Next, we show that intra-LA infusion of the histone deacetylase (HDAC) inhibitor TSA increases H3 acetylation and enhances fear memory consolidation; that is, long-term memory (LTM) is enhanced, while short-term memory (STM) is unaffected. Conversely, intra-LA infusion of the DNA methyltransferase (DNMT) inhibitor 5-AZA impairs fear memory consolidation. Further, intra-LA infusion of 5-AZA was observed to impair training-related increases in H3 acetylation, and pre-treatment with TSA was observed to rescue the memory consolidation deficit induced by 5-AZA. In our final series of experiments, we show that bath application of either 5-AZA or TSA to amygdala slices results in significant impairment or enhancement, respectively, of long-term potentiation (LTP) at both thalamic and cortical inputs to the LA. Further, the deficit in LTP following treatment with 5-AZA was observed to be rescued at both inputs by co-application of TSA. Collectively, these findings provide strong support that histone acetylation and DNA methylation work in concert to regulate memory consolidation of auditory fear conditioning and associated synaptic plasticity in the LA.

  16. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells.

    PubMed

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current-voltage (I-V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I-V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I-V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I-V relationship of EPSCs at GluA2-lacking AMPAR synapses. PMID:27280156

  17. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells123

    PubMed Central

    2016-01-01

    Abstract The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current–voltage (I–V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I–V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I–V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I–V relationship of EPSCs at GluA2-lacking AMPAR synapses. PMID:27280156

  18. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells.

    PubMed

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current-voltage (I-V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I-V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I-V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I-V relationship of EPSCs at GluA2-lacking AMPAR synapses.

  19. Third Trimester Equivalent Alcohol Exposure Reduces Modulation of Glutamatergic Synaptic Transmission by 5-HT1A Receptors in the Rat Hippocampal CA3 Region.

    PubMed

    Morton, Russell A; Valenzuela, C Fernando

    2016-01-01

    Fetal alcohol exposure has been associated with many neuropsychiatric disorders that have been linked to altered serotonin (5-hydroxytryptamine; 5-HT) signaling, including depression and anxiety. During the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy) 5-HT neurons undergo significant functional maturation and their axons reach target regions in the forebrain (e.g., cortex and hippocampus). The objective of this study was to identify the effects of third trimester ethanol (EtOH) exposure on hippocampal 5-HT signaling. Using EtOH vapor inhalation chambers, we exposed rat pups to EtOH for 4 h/day from postnatal day (P) 2 to P12. The average serum EtOH concentration in the pups was 0.13 ± 0.04 g/dl (legal intoxication limit in humans = 0.08 g/dl). We used brain slices to assess the modulatory actions of 5-HT on field excitatory postsynaptic potentials in the hippocampal CA3 region at P13-P15. Application of the GABAA/glycine receptor antagonist, picrotoxin, caused broadening of field excitatory postsynaptic potentials (fEPSPs), an effect that was reversed by application of 5-HT in slices from air exposed rats. However, this effect of 5-HT was absent in EtOH exposed animals. In slices from naïve animals, application of a 5-HT1A receptor antagonist blocked the effect of 5-HT on the fEPSPs recorded in presence of picrotoxin, suggesting that third trimester ethanol exposure acts by inhibiting the function of these receptors. Studies indicate that 5-HT1A receptors play a critical role in the development of hippocampal circuits. Therefore, inhibition of these receptors by third trimester ethanol exposure could contribute to the pathophysiology of fetal alcohol spectrum disorders. PMID:27375424

  20. Third Trimester Equivalent Alcohol Exposure Reduces Modulation of Glutamatergic Synaptic Transmission by 5-HT1A Receptors in the Rat Hippocampal CA3 Region

    PubMed Central

    Morton, Russell A.; Valenzuela, C. Fernando

    2016-01-01

    Fetal alcohol exposure has been associated with many neuropsychiatric disorders that have been linked to altered serotonin (5-hydroxytryptamine; 5-HT) signaling, including depression and anxiety. During the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy) 5-HT neurons undergo significant functional maturation and their axons reach target regions in the forebrain (e.g., cortex and hippocampus). The objective of this study was to identify the effects of third trimester ethanol (EtOH) exposure on hippocampal 5-HT signaling. Using EtOH vapor inhalation chambers, we exposed rat pups to EtOH for 4 h/day from postnatal day (P) 2 to P12. The average serum EtOH concentration in the pups was 0.13 ± 0.04 g/dl (legal intoxication limit in humans = 0.08 g/dl). We used brain slices to assess the modulatory actions of 5-HT on field excitatory postsynaptic potentials in the hippocampal CA3 region at P13-P15. Application of the GABAA/glycine receptor antagonist, picrotoxin, caused broadening of field excitatory postsynaptic potentials (fEPSPs), an effect that was reversed by application of 5-HT in slices from air exposed rats. However, this effect of 5-HT was absent in EtOH exposed animals. In slices from naïve animals, application of a 5-HT1A receptor antagonist blocked the effect of 5-HT on the fEPSPs recorded in presence of picrotoxin, suggesting that third trimester ethanol exposure acts by inhibiting the function of these receptors. Studies indicate that 5-HT1A receptors play a critical role in the development of hippocampal circuits. Therefore, inhibition of these receptors by third trimester ethanol exposure could contribute to the pathophysiology of fetal alcohol spectrum disorders. PMID:27375424

  1. Fmr1 deficiency promotes age-dependent alterations in the cortical synaptic proteome.

    PubMed

    Tang, Bin; Wang, Tingting; Wan, Huida; Han, Li; Qin, Xiaoyan; Zhang, Yaoyang; Wang, Jian; Yu, Chunlei; Berton, Fulvia; Francesconi, Walter; Yates, John R; Vanderklish, Peter W; Liao, Lujian

    2015-08-25

    Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder characterized by severe intellectual disability and other symptoms including autism. Although caused by the silencing of a single gene, Fmr1 (fragile X mental retardation 1), the complexity of FXS pathogenesis is amplified because the encoded protein, FMRP, regulates the activity-dependent translation of numerous mRNAs. Although the mRNAs that associate with FMRP have been extensively studied, little is known regarding the proteins whose expression levels are altered, directly or indirectly, by loss of FMRP during brain development. Here we systematically measured protein expression in neocortical synaptic fractions from Fmr1 knockout (KO) and wild-type (WT) mice at both adolescent and adult stages. Although hundreds of proteins are up-regulated in the absence of FMRP in young mice, this up-regulation is largely diminished in adulthood. Up-regulated proteins included previously unidentified as well as known targets involved in synapse formation and function and brain development and others linked to intellectual disability and autism. Comparison with putative FMRP target mRNAs and autism susceptibility genes revealed substantial overlap, consistent with the idea that the autism endophenotype of FXS is due to a "multiple hit" effect of FMRP loss, particularly within the PSD95 interactome. Through studies of de novo protein synthesis in primary cortical neurons from KO and WT mice, we found that neurons lacking FMRP produce nascent proteins at higher rates, many of which are synaptic proteins and encoded by FMRP target mRNAs. Our results provide a greatly expanded view of protein changes in FXS and identify age-dependent effects of FMRP in shaping the neuronal proteome.

  2. Fmr1 deficiency promotes age-dependent alterations in the cortical synaptic proteome

    PubMed Central

    Tang, Bin; Wang, Tingting; Wan, Huida; Han, Li; Qin, Xiaoyan; Zhang, Yaoyang; Wang, Jian; Yu, Chunlei; Berton, Fulvia; Francesconi, Walter; Yates, John R.; Vanderklish, Peter W.; Liao, Lujian

    2015-01-01

    Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder characterized by severe intellectual disability and other symptoms including autism. Although caused by the silencing of a single gene, Fmr1 (fragile X mental retardation 1), the complexity of FXS pathogenesis is amplified because the encoded protein, FMRP, regulates the activity-dependent translation of numerous mRNAs. Although the mRNAs that associate with FMRP have been extensively studied, little is known regarding the proteins whose expression levels are altered, directly or indirectly, by loss of FMRP during brain development. Here we systematically measured protein expression in neocortical synaptic fractions from Fmr1 knockout (KO) and wild-type (WT) mice at both adolescent and adult stages. Although hundreds of proteins are up-regulated in the absence of FMRP in young mice, this up-regulation is largely diminished in adulthood. Up-regulated proteins included previously unidentified as well as known targets involved in synapse formation and function and brain development and others linked to intellectual disability and autism. Comparison with putative FMRP target mRNAs and autism susceptibility genes revealed substantial overlap, consistent with the idea that the autism endophenotype of FXS is due to a “multiple hit” effect of FMRP loss, particularly within the PSD95 interactome. Through studies of de novo protein synthesis in primary cortical neurons from KO and WT mice, we found that neurons lacking FMRP produce nascent proteins at higher rates, many of which are synaptic proteins and encoded by FMRP target mRNAs. Our results provide a greatly expanded view of protein changes in FXS and identify age-dependent effects of FMRP in shaping the neuronal proteome. PMID:26307763

  3. Glutamatergic Transmission: A Matter of Three

    PubMed Central

    Martínez-Lozada, Zila; Ortega, Arturo

    2015-01-01

    Glutamatergic transmission in the vertebrate brain requires the involvement of glia cells, in a continuous molecular dialogue. Glial glutamate receptors and transporters are key molecules that sense synaptic activity and by these means modify their physiology in the short and long term. Posttranslational modifications that regulate protein-protein interactions and modulate transmitter removal are triggered in glial cells by neuronal released glutamate. Moreover, glutamate signaling cascades in these cells are linked to transcriptional and translational control and are critically involved in the control of the so-called glutamate/glutamine shuttle and by these means in glutamatergic neurotransmission. In this contribution, we summarize our current understanding of the biochemical consequences of glutamate synaptic activity in their surrounding partners and dissect the molecular mechanisms that allow neurons to take control of glia physiology to ensure proper glutamate-mediated neuronal communication. PMID:26345375

  4. Radiation-induced alterations in synaptic neurotransmission of dentate granule cells depend on the dose and species of charged particles.

    PubMed

    Marty, V N; Vlkolinsky, R; Minassian, N; Cohen, T; Nelson, G A; Spigelman, I

    2014-12-01

    The evaluation of potential health risks associated with neuronal exposure to space radiation is critical for future long duration space travel. The purpose of this study was to evaluate and compare the effects of low-dose proton and high-energy charged particle (HZE) radiation on electrophysiological parameters of the granule cells in the dentate gyrus (DG) of the hippocampus and its associated functional consequences. We examined excitatory and inhibitory neurotransmission in DG granule cells (DGCs) in dorsal hippocampal slices from male C57BL/6 mice at 3 months after whole body irradiation with accelerated proton, silicon or iron particles. Multielectrode arrays were used to investigate evoked field synaptic potentials, an extracellular measurement of synaptic excitability in the perforant path to DG synaptic pathway. Whole-cell patch clamp recordings were used to measure miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) in DGCs. Exposure to proton radiation increased synaptic excitability and produced dose-dependent decreases in amplitude and charge transfer of mIPSCs, without affecting the expression of γ-aminobutyric acid type A receptor α2, β3 and γ2 subunits determined by Western blotting. Exposure to silicon radiation had no significant effects on synaptic excitability, mEPSCs or mIPSCs of DGCs. Exposure to iron radiation had no effect on synaptic excitability and mIPSCs, but significantly increased mEPSC frequency at 1 Gy, without changes in mEPSC kinetics, suggesting a presynaptic mechanism. Overall, the data suggest that proton and HZE exposure results in radiation dose- and species-dependent long-lasting alterations in synaptic neurotransmission, which could cause radiation-induced impairment of hippocampal-dependent cognitive functions.

  5. Cholinergic Synaptic Transmissions Were Altered after Single Sevoflurane Exposure in Drosophila Pupa

    PubMed Central

    Chen, Rongfa; Zhang, Tao; Kuang, Liting; Chen, Zhen; Ran, Dongzhi; Niu, Yang; Gu, Huaiyu

    2015-01-01

    Purpose. Sevoflurane, one of the most used general anesthetics, is widely used in clinical practice all over the world. Previous studies indicated that sevoflurane could induce neuron apoptosis and neural deficit causing query in the safety of anesthesia using sevoflurane. The present study was designed to investigate the effects of sevoflurane on electrophysiology in Drosophila pupa whose excitatory neurotransmitter is acetylcholine early after sevoflurane exposure using whole brain recording technique. Methods. Wide types of Drosophila (canton-s flies) were allocated to control and sevoflurane groups randomly. Sevoflurane groups (1% sevoflurane; 2% sevoflurane; 3% sevoflurane) were exposed to sevoflurane and the exposure lasted 5 hours, respectively. All flies were subjected to electrophysiology experiment using patch clamp 24 hours after exposure. Results. The results showed that, 24 hours after sevoflurane exposure, frequency but not the amplitude of miniature excitatory postsynaptic currents (mEPSCs) was significantly reduced (P < 0.05). Furthermore, we explored the underlying mechanism and found that calcium currents density, which partially regulated the frequency of mEPSCs, was significantly reduced after sevoflurane exposure (P < 0.05). Conclusions. All these suggested that sevoflurane could alter the mEPSCs that are related to synaptic plasticity partially through modulating calcium channel early after sevoflurane exposure. PMID:25705662

  6. Xyloside primed glycosaminoglycans alter hair bundle micromechanical coupling and synaptic transmission: Pharmacokinetics

    SciTech Connect

    Holman, Holly A.; Nguyen, Lynn Y.; Tran, Vy M.; Arungundram, Sailaja; Kalita, Mausam; Kuberan, Balagurunathan; Rabbitt, Richard D.

    2015-12-31

    Glycosaminoglycans (GAGs) are ubiquitous in the inner ear, and disorders altering their structure or production often result in debilitating hearing and balance deficits. The specific mechanisms responsible for loss of hair-cell function are not well understood. We recently reported that introduction of a novel BODIPY conjugated xyloside (BX) into the endolymph primes fluorescent GAGs in vivo [6, 15]. Confocal and two-photon fluorescence imaging revealed rapid turnover and assembly of a glycocalyx enveloping the kinocilia and extending into the cupula, a structure that presumably serves as a mechanical link between the hair bundle and the cupula. Extracellular fluorescence was also observed around the basolateral surface of hair cells and surrounding afferent nerve projections into the crista. Single unit afferent recordings during mechanical hair bundle stimulation revealed temporary interruption of synaptic transmission following BX administration followed by recovery, demonstrating an essential role for GAGs in function of the hair cell synapse. In the present work we present a pharmacokinetic model to quantify the time course of BX primed GAG production and turnover in the ear.

  7. Xyloside primed glycosaminoglycans alter hair bundle micromechanical coupling and synaptic transmission: Pharmacokinetics

    NASA Astrophysics Data System (ADS)

    Holman, Holly A.; Tran, Vy M.; Nguyen, Lynn Y.; Arungundram, Sailaja; Kalita, Mausam; Kuberan, Balagurunathan; Rabbitt, Richard D.

    2015-12-01

    Glycosaminoglycans (GAGs) are ubiquitous in the inner ear, and disorders altering their structure or production often result in debilitating hearing and balance deficits. The specific mechanisms responsible for loss of hair-cell function are not well understood. We recently reported that introduction of a novel BODIPY conjugated xyloside (BX) into the endolymph primes fluorescent GAGs in vivo [6, 15]. Confocal and two-photon fluorescence imaging revealed rapid turnover and assembly of a glycocalyx enveloping the kinocilia and extending into the cupula, a structure that presumably serves as a mechanical link between the hair bundle and the cupula. Extracellular fluorescence was also observed around the basolateral surface of hair cells and surrounding afferent nerve projections into the crista. Single unit afferent recordings during mechanical hair bundle stimulation revealed temporary interruption of synaptic transmission following BX administration followed by recovery, demonstrating an essential role for GAGs in function of the hair cell synapse. In the present work we present a pharmacokinetic model to quantify the time course of BX primed GAG production and turnover in the ear.

  8. Purkinje cell dysfunction and alteration of long-term synaptic plasticity in fetal alcohol syndrome.

    PubMed

    Servais, Laurent; Hourez, Raphaël; Bearzatto, Bertrand; Gall, David; Schiffmann, Serge N; Cheron, Guy

    2007-06-01

    In cerebellum and other brain regions, neuronal cell death because of ethanol consumption by the mother is thought to be the leading cause of neurological deficits in the offspring. However, little is known about how surviving cells function. We studied cerebellar Purkinje cells in vivo and in vitro to determine whether function of these cells was altered after prenatal ethanol exposure. We observed that Purkinje cells that were prenatally exposed to ethanol presented decreased voltage-gated calcium currents because of a decreased expression of the gamma-isoform of protein kinase C. Long-term depression at the parallel fiber-Purkinje cell synapse in the cerebellum was converted into long-term potentiation. This likely explains the dramatic increase in Purkinje cell firing and the rapid oscillations of local field potential observed in alert fetal alcohol syndrome mice. Our data strongly suggest that reversal of long-term synaptic plasticity and increased firing rates of Purkinje cells in vivo are major contributors to the ataxia and motor learning deficits observed in fetal alcohol syndrome. Our results show that calcium-related neuronal dysfunction is central to the pathogenesis of the neurological manifestations of fetal alcohol syndrome and suggest new methods for treatment of this disorder.

  9. Activation of Matrix Metalloproteinase-3 is altered at the frog neuromuscular junction following changes in synaptic activity.

    PubMed

    VanSaun, M; Humburg, B C; Arnett, M G; Pence, M; Werle, M J

    2007-09-15

    The extracellular matrix surrounding the neuromuscular junction is a highly specialized and dynamic structure. Matrix Metalloproteinases are enzymes that sculpt the extracellular matrix. Since synaptic activity is critical to the structure and function of this synapse, we investigated whether changes in synaptic activity levels could alter the activity of Matrix Metalloproteinases at the neuromuscular junction. In particular, we focused on Matrix Metalloproteinase 3 (MMP3), since antibodies to MMP3 recognize molecules at the frog neuromuscular junction, and MMP3 cleaves a number of synaptic basal lamina molecules, including agrin. Here we show that the fluorogenic compound (M2300) can be used to perform in vivo proteolytic imaging of the frog neuromuscular junction to directly measure the activity state of MMP3. Application of this compound reveals that active MMP3 is concentrated at the normal frog neuromuscular junction, and is tightly associated with the terminal Schwann cell. Blocking presynaptic activity via denervation, or TTX nerve blockade, results in a decreased level of active MMP3 at the neuromuscular junction. The loss of active MMP3 at the neuromuscular junction in denervated muscles can result from decreased activation of pro-MMP3, or it could result from increased inhibition of MMP3. These results support the hypothesis that changes in synaptic activity can alter the level of active MMP3 at the neuromuscular junction. PMID:17525979

  10. Acute and chronic ethanol exposure differentially regulate CB1 receptor function at glutamatergic synapses in the rat basolateral amygdala.

    PubMed

    Robinson, Stacey L; Alexander, Nancy J; Bluett, Rebecca J; Patel, Sachin; McCool, Brian A

    2016-09-01

    The endogenous cannabinoid (eCB) system has been suggested to play a key role in ethanol preference and intake, the acute effects of ethanol, and in the development of withdrawal symptoms following ethanol dependence. Ethanol-dependent alterations in glutamatergic signaling within the lateral/basolateral nucleus of the amygdala (BLA) are critical for the development and expression of withdrawal-induced anxiety. Notably, the eCB system significantly regulates both glutamatergic and GABAergic synaptic activity within the BLA. Chronic ethanol exposure significantly alters eCB system expression within regions critical to the expression of emotionality and anxiety-related behavior, including the BLA. Here, we investigated specific interactions between the BLA eCB system and its functional regulation of synaptic activity during acute and chronic ethanol exposure. In tissue from ethanol naïve-rats, a prolonged acute ethanol exposure caused a dose dependent inhibition of glutamatergic synaptic activity via a presynaptic mechanism that was occluded by CB1 antagonist/inverse agonists SR141716a and AM251. Importantly, this acute ethanol inhibition was attenuated following 10 day chronic intermittent ethanol vapor exposure (CIE). CIE exposure also significantly down-regulated CB1-mediated presynaptic inhibition at glutamatergic afferent terminals but spared CB1-inhibition of GABAergic synapses arising from local inhibitory-interneurons. CIE also significantly elevated BLA N-arachidonoylethanolamine (AEA or anandamide) levels and decreased CB1 receptor protein levels. Collectively, these data suggest a dynamic regulation of the BLA eCB system by acute and chronic ethanol.

  11. The role of the tripartite glutamatergic synapse in the pathophysiology of Alzheimer's disease.

    PubMed

    Rudy, Carolyn C; Hunsberger, Holly C; Weitzner, Daniel S; Reed, Miranda N

    2015-03-01

    Alzheimer's disease (AD) is the most common form of dementia in individuals over 65 years of age and is characterized by accumulation of beta-amyloid (Aβ) and tau. Both Aβ and tau alter synaptic plasticity, leading to synapse loss, neural network dysfunction, and eventually neuron loss. However, the exact mechanism by which these proteins cause neurodegeneration is still not clear. A growing body of evidence suggests perturbations in the glutamatergic tripartite synapse, comprised of a presynaptic terminal, a postsynaptic spine, and an astrocytic process, may underlie the pathogenic mechanisms of AD. Glutamate is the primary excitatory neurotransmitter in the brain and plays an important role in learning and memory, but alterations in glutamatergic signaling can lead to excitotoxicity. This review discusses the ways in which both beta-amyloid (Aβ) and tau act alone and in concert to perturb synaptic functioning of the tripartite synapse, including alterations in glutamate release, astrocytic uptake, and receptor signaling. Particular emphasis is given to the role of N-methyl-D-aspartate (NMDA) as a possible convergence point for Aβ and tau toxicity. PMID:25821641

  12. Engrailed Alters the Specificity of Synaptic Connections of Drosophila Auditory Neurons with the Giant Fiber

    PubMed Central

    Pézier, Adeline; Jezzini, Sami H.; Marie, Bruno

    2014-01-01

    We show that a subset of sound-detecting Johnston's Organ neurons (JONs) in Drosophila melanogaster, which express the transcription factors Engrailed (En) and Invected (Inv), form mixed electrical and chemical synaptic inputs onto the giant fiber (GF) dendrite. These synaptic connections are detected by trans-synaptic Neurobiotin (NB) transfer and by colocalization of Bruchpilot-short puncta. We then show that misexpressing En postmitotically in a second subset of sound-responsive JONs causes them to form ectopic electrical and chemical synapses with the GF, in turn causing that postsynaptic neuron to redistribute its dendritic branches into the vicinity of these afferents. We also introduce a simple electrophysiological recording paradigm for quantifying the presynaptic and postsynaptic electrical activity at this synapse, by measuring the extracellular sound-evoked potentials (SEPs) from the antennal nerve while monitoring the likelihood of the GF firing an action potential in response to simultaneous subthreshold sound and voltage stimuli. Ectopic presynaptic expression of En strengthens the synaptic connection, consistent with there being more synaptic contacts formed. Finally, RNAi-mediated knockdown of En and Inv in postmitotic neurons reduces SEP amplitude but also reduces synaptic strength at the JON–GF synapse. Overall, these results suggest that En and Inv in JONs regulate both neuronal excitability and synaptic connectivity. PMID:25164665

  13. Archaerhodopsin Selectively and Reversibly Silences Synaptic Transmission through Altered pH.

    PubMed

    El-Gaby, Mohamady; Zhang, Yu; Wolf, Konstantin; Schwiening, Christof J; Paulsen, Ole; Shipton, Olivia A

    2016-08-23

    Tools that allow acute and selective silencing of synaptic transmission in vivo would be invaluable for understanding the synaptic basis of specific behaviors. Here, we show that presynaptic expression of the proton pump archaerhodopsin enables robust, selective, and reversible optogenetic synaptic silencing with rapid onset and offset. Two-photon fluorescence imaging revealed that this effect is accompanied by a transient increase in pH restricted to archaerhodopsin-expressing boutons. Crucially, clamping intracellular pH abolished synaptic silencing without affecting the archaerhodopsin-mediated hyperpolarizing current, indicating that changes in pH mediate the synaptic silencing effect. To verify the utility of this technique, we used trial-limited, archaerhodopsin-mediated silencing to uncover a requirement for CA3-CA1 synapses whose afferents originate from the left CA3, but not those from the right CA3, for performance on a long-term memory task. These results highlight optogenetic, pH-mediated silencing of synaptic transmission as a spatiotemporally selective approach to dissecting synaptic function in behaving animals. PMID:27524609

  14. Prenatal stress alters dendritic morphology and synaptic connectivity in the prefrontal cortex and hippocampus of developing offspring.

    PubMed

    Mychasiuk, Richelle; Gibb, Robbin; Kolb, Bryan

    2012-04-01

    The current study used stereological techniques in combination with Golg-Cox methods to examine the neuroanatomical alterations in the prefrontal cortex and hippocampus of developing offspring exposed to gestational stress. Morphological changes in dendritic branching, length, and spine density, were examined at weaning along with changes in actual numbers of neurons. Using this information we generated a gross estimation of synaptic connectivity. The results showed region-specific and sex-dependent alterations to neuroanatomy in response to prenatal stress. The two regions of the prefrontal cortex, medial prefrontal, and orbital prefrontal cortices, exhibited sexually dimorphic, opposite changes, in synaptic connectivity in response to the same experience. Both male and female offspring demonstrated a loss of neuron number and estimated synapse number in the hippocampus despite exhibiting increased spine density. The results from this study suggest that prenatal stress alters normal development and the organization of neuronal circuits in both neocortex and hippocampus early in development and thus likely influences the course of later experience-dependent synaptic changes.

  15. Allosteric Modulators for the Treatment of Schizophrenia: Targeting Glutamatergic Networks

    PubMed Central

    Menniti, Frank S.; Lindsley, Craig W.; Conn, P. Jeffrey; Pandit, Jayvardhan; Zagouras, Panayiotis; Volkmann, Robert A.

    2013-01-01

    Schizophrenia is a highly debilitating mental disorder which afflicts approximately 1% of the global population. Cognitive and negative deficits account for the lifelong disability associated with schizophrenia, whose symptoms are not effectively addressed by current treatments. New medicines are needed to treat these aspects of the disease. Neurodevelopmental, neuropathological, genetic, and behavioral pharmacological data indicate that schizophrenia stems from a dysfunction of glutamate synaptic transmission, particularly in frontal cortical networks. A number of novel pre- and postsynaptic mechanisms affecting glutamatergic synaptic transmission have emerged as viable targets for schizophrenia. While developing orthosteric glutamatergic agents for these targets has proven extremely difficult, targeting allosteric sites of these targets has emerged as a promising alternative. From a medicinal chemistry perspective, allosteric sites provide an opportunity of finding agents with better drug-like properties and greater target specificity. Furthermore, allosteric modulators are better suited to maintaining the highly precise temporal and spatial aspects of glutamatergic synaptic transmission. Herein, we review neuropathological and genomic/genetic evidence underscoring the importance of glutamate synaptic dysfunction in the etiology of schizophrenia and make a case for allosteric targets for therapeutic intervention. We review progress in identifying allosteric modulators of AMPA receptors, NMDA receptors, and metabotropic glutamate receptors, all with the aim of restoring physiological glutamatergic synaptic transmission. Challenges remain given the complexity of schizophrenia and the difficulty in studying cognition in animals and humans. Nonetheless, important compounds have emerged from these efforts and promising preclinical and variable clinical validation has been achieved. PMID:23409764

  16. Allosteric modulators for the treatment of schizophrenia: targeting glutamatergic networks.

    PubMed

    Menniti, Frank S; Lindsley, Craig W; Conn, P Jeffrey; Pandit, Jayvardhan; Zagouras, Panayiotis; Volkmann, Robert A

    2013-01-01

    Schizophrenia is a highly debilitating mental disorder which afflicts approximately 1% of the global population. Cognitive and negative deficits account for the lifelong disability associated with schizophrenia, whose symptoms are not effectively addressed by current treatments. New medicines are needed to treat these aspects of the disease. Neurodevelopmental, neuropathological, genetic, and behavioral pharmacological data indicate that schizophrenia stems from a dysfunction of glutamate synaptic transmission, particularly in frontal cortical networks. A number of novel pre- and postsynaptic mechanisms affecting glutamatergic synaptic transmission have emerged as viable targets for schizophrenia. While developing orthosteric glutamatergic agents for these targets has proven extremely difficult, targeting allosteric sites of these targets has emerged as a promising alternative. From a medicinal chemistry perspective, allosteric sites provide an opportunity of finding agents with better drug-like properties and greater target specificity. Furthermore, allosteric modulators are better suited to maintaining the highly precise temporal and spatial aspects of glutamatergic synaptic transmission. Herein, we review neuropathological and genomic/genetic evidence underscoring the importance of glutamate synaptic dysfunction in the etiology of schizophrenia and make a case for allosteric targets for therapeutic intervention. We review progress in identifying allosteric modulators of AMPA receptors, NMDA receptors, and metabotropic glutamate receptors, all with the aim of restoring physiological glutamatergic synaptic transmission. Challenges remain given the complexity of schizophrenia and the difficulty in studying cognition in animals and humans. Nonetheless, important compounds have emerged from these efforts and promising preclinical and variable clinical validation has been achieved.

  17. Dose-dependent changes in the synaptic strength on dopamine neurons and locomotor activity after cocaine exposure

    PubMed Central

    Wanat, M.J.; Bonci, A.

    2016-01-01

    Changes in synaptic strength on ventral tegmental area (VTA) dopamine neurons are thought to play a critical role in the development of addiction-related behaviors. However, it is unknown how a single injection of cocaine at different doses affects locomotor activity, behavioral sensitization, and glutamatergic synaptic strength on VTA dopamine neurons in mice. We observed that behavioral sensitization to a challenge cocaine injection scaled with the dose of cocaine received one day prior. Interestingly, the locomotor activity after the initial exposure to different doses of cocaine corresponded to the changes in glutamatergic strength on VTA dopamine neurons. These results in mice suggest that a single exposure to cocaine dose-dependently affects excitatory synapses on VTA dopamine neurons, and that this acute synaptic alteration is directly associated with the locomotor responses to cocaine and not to behavioral sensitization. PMID:18655120

  18. Expression of Glutamatergic Genes in Healthy Humans across 16 Brain Regions; Altered Expression in the Hippocampus after Chronic Exposure to Alcohol or Cocaine

    PubMed Central

    Enoch, Mary-Anne; Rosser, Alexandra A.; Zhou, Zhifeng; Mash, Deborah C.; Yuan, Qiaoping; Goldman, David

    2014-01-01

    We analyzed global patterns of expression in genes related to glutamatergic neurotransmission (glutamatergic genes) in healthy human adult brain before determining the effects of chronic alcohol and cocaine exposure on gene expression in the hippocampus. RNA-Seq data from ‘BrainSpan’ was obtained across 16 brain regions from nine control adults. We also generated RNA-Seq data from postmortem hippocampus from eight alcoholics, eight cocaine addicts and eight controls. Expression analyses were undertaken of 28 genes encoding glutamate ionotropic (AMPA, kainate, NMDA) and metabotropic receptor subunits, together with glutamate transporters. The expression of each gene was fairly consistent across the brain with the exception of the cerebellum, the thalamic mediodorsal nucleus and the striatum. GRIN1, encoding the essential NMDA subunit, had the highest expression across all brain regions. Six factors accounted for 84% of the variance in global gene expression. GRIN2B (encoding GluN2B), was up-regulated in both alcoholics and cocaine addicts (FDR corrected p = 0.008). Alcoholics showed up-regulation of three genes relative to controls and cocaine addicts: GRIA4 (encoding GluA4), GRIK3 (GluR7) and GRM4 (mGluR4). Expression of both GRM3 (mGluR3) and GRIN2D (GluN2D) was up-regulated in alcoholics and down-regulated in cocaine addicts relative to controls. Glutamatergic genes are moderately to highly expressed throughout the brain. Six factors explain nearly all the variance in global gene expression. At least in the hippocampus, chronic alcohol use largely up-regulates glutamatergic genes. The NMDA GluN2B receptor subunit might be implicated in a common pathway to addiction, possibly in conjunction with the GABAB1 receptor subunit. PMID:25262781

  19. Expression of glutamatergic genes in healthy humans across 16 brain regions; altered expression in the hippocampus after chronic exposure to alcohol or cocaine.

    PubMed

    Enoch, M-A; Rosser, A A; Zhou, Z; Mash, D C; Yuan, Q; Goldman, D

    2014-11-01

    We analyzed global patterns of expression in genes related to glutamatergic neurotransmission (glutamatergic genes) in healthy human adult brain before determining the effects of chronic alcohol and cocaine exposure on gene expression in the hippocampus. RNA-Seq data from 'BrainSpan' was obtained across 16 brain regions from nine control adults. We also generated RNA-Seq data from postmortem hippocampus from eight alcoholics, eight cocaine addicts and eight controls. Expression analyses were undertaken of 28 genes encoding glutamate ionotropic (AMPA, kainate, NMDA) and metabotropic receptor subunits, together with glutamate transporters. The expression of each gene was fairly consistent across the brain with the exception of the cerebellum, the thalamic mediodorsal nucleus and the striatum. GRIN1, encoding the essential NMDA subunit, had the highest expression across all brain regions. Six factors accounted for 84% of the variance in global gene expression. GRIN2B (encoding GluN2B), was up-regulated in both alcoholics and cocaine addicts (FDR corrected P = 0.008). Alcoholics showed up-regulation of three genes relative to controls and cocaine addicts: GRIA4 (encoding GluA4), GRIK3 (GluR7) and GRM4 (mGluR4). Expression of both GRM3 (mGluR3) and GRIN2D (GluN2D) was up-regulated in alcoholics and down-regulated in cocaine addicts relative to controls. Glutamatergic genes are moderately to highly expressed throughout the brain. Six factors explain nearly all the variance in global gene expression. At least in the hippocampus, chronic alcohol use largely up-regulates glutamatergic genes. The NMDA GluN2B receptor subunit might be implicated in a common pathway to addiction, possibly in conjunction with the GABAB1 receptor subunit. PMID:25262781

  20. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat.

    PubMed

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring's reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13-20. Confocal imaging was used to examine the spine density of EGFP-GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP-GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood. PMID:27630615

  1. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2.

    PubMed

    Chugh, Deepti; Ali, Idrish; Bakochi, Anahita; Bahonjic, Elma; Etholm, Lars; Ekdahl, Christine T

    2015-01-01

    Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age) and tonic-clonic (3.5-4 months) phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread. PMID:26177381

  2. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    PubMed Central

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S.

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13–20. Confocal imaging was used to examine the spine density of EGFP–GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP–GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood.

  3. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    PubMed Central

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S.

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13–20. Confocal imaging was used to examine the spine density of EGFP–GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP–GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood. PMID:27630615

  4. Thalamic Glutamatergic Afferents into the Rat Basolateral Amygdala Exhibit Increased Presynaptic Glutamate Function Following Withdrawal from Chronic Intermittent Ethanol

    PubMed Central

    Christian, Daniel T; Alexander, Nancy J; Diaz, Marvin R; McCool, Brian A

    2012-01-01

    Amygdala glutamatergic neurotransmission regulates withdrawal induced anxiety-like behaviors following chronic ethanol exposure. The lateral/basolateral amygdala receives multiple glutamatergic projections that contribute to overall amygdala function. Our lab has previously shown that rat cortical (external capsule) afferents express postsynaptic alterations during chronic intermittent ethanol exposure and withdrawal. However, thalamic (internal capsule) afferents also provide crucial glutamatergic input during behavioral conditioning, and they have not been studied in the context of chronic drug exposure. We report here that these thalamic inputs express altered presynaptic function during withdrawal from chronic ethanol exposure. This is characterized by enhanced release probability, as exemplified by altered paired-pulse ratios and decreased failure rates of unitary events, and increased concentrations of synaptic glutamate. Quantal analysis further implicates a withdrawal-dependent enhancement of the readily-releasable pool of vesicles as a probable mechanism. These functional alterations are accompanied by increased expression of vesicle associated protein markers. These data demonstrate that chronic ethanol modulation of glutamate neurotransmission in the rat lateral/basolateral amygdala is afferent-specific. Further, presynaptic regulation of lateral/basolateral amygdala thalamic inputs by chronic ethanol may be a novel neurobiological mechanism contributing to the increased anxiety-like behaviors that characterize withdrawal. PMID:22982568

  5. Sleep loss alters synaptic and intrinsic neuronal properties in mouse prefrontal cortex

    PubMed Central

    Winters, Bradley D.; Huang, Yanhua H.; Dong, Yan; Krueger, James M.

    2011-01-01

    Despite sleep-loss-induced cognitive deficits, little is known about the cellular adaptations that occur with sleep loss. We used brain slices obtained from mice that were sleep deprived for 8 h to examine the electrophysiological effects of sleep deprivation (SD). We employed a modified pedestal (flowerpot) over water method for SD that eliminated rapid eye movement sleep and greatly reduced non-rapid eye movement sleep. In layer V/VI pyramidal cells of the medial prefrontal cortex, miniature excitatory post synaptic current amplitude was slightly reduced, miniature inhibitory post synaptic currents were unaffected, and intrinsic membrane excitability was increased after SD. PMID:21962531

  6. Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation.

    PubMed

    Szutorisz, Henrietta; DiNieri, Jennifer A; Sweet, Eric; Egervari, Gabor; Michaelides, Michael; Carter, Jenna M; Ren, Yanhua; Miller, Michael L; Blitzer, Robert D; Hurd, Yasmin L

    2014-05-01

    Recent attention has been focused on the long-term impact of cannabis exposure, for which experimental animal studies have validated causal relationships between neurobiological and behavioral alterations during the individual's lifetime. Here, we show that adolescent exposure to Δ(9)-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, results in behavioral and neurobiological abnormalities in the subsequent generation of rats as a consequence of parental germline exposure to the drug. Adult F1 offspring that were themselves unexposed to THC displayed increased work effort to self-administer heroin, with enhanced stereotyped behaviors during the period of acute heroin withdrawal. On the molecular level, parental THC exposure was associated with changes in the mRNA expression of cannabinoid, dopamine, and glutamatergic receptor genes in the striatum, a key component of the neuronal circuitry mediating compulsive behaviors and reward sensitivity. Specifically, decreased mRNA and protein levels, as well as NMDA receptor binding were observed in the dorsal striatum of adult offspring as a consequence of germline THC exposure. Electrophysiologically, plasticity was altered at excitatory synapses of the striatal circuitry that is known to mediate compulsive and goal-directed behaviors. These findings demonstrate that parental history of germline THC exposure affects the molecular characteristics of the striatum, can impact offspring phenotype, and could possibly confer enhanced risk for psychiatric disorders in the subsequent generation.

  7. Alterations in synaptic plasticity coincide with deficits in spatial working memory in presymptomatic 3xTg-AD mice.

    PubMed

    Clark, Jason K; Furgerson, Matthew; Crystal, Jonathon D; Fechheimer, Marcus; Furukawa, Ruth; Wagner, John J

    2015-11-01

    Alzheimer's disease is a neurodegenerative condition believed to be initiated by production of amyloid-beta peptide, which leads to synaptic dysfunction and progressive memory loss. Using a mouse model of Alzheimer's disease (3xTg-AD), an 8-arm radial maze was employed to assess spatial working memory. Unexpectedly, the younger (3month old) 3xTg-AD mice were as impaired in the spatial working memory task as the older (8month old) 3xTg-AD mice when compared with age-matched NonTg control animals. Field potential recordings from the CA1 region of slices prepared from the ventral hippocampus were obtained to assess synaptic transmission and capability for synaptic plasticity. At 3months of age, the NMDA receptor-dependent component of LTP was reduced in 3xTg-AD mice. However, the magnitude of the non-NMDA receptor-dependent component of LTP was concomitantly increased, resulting in a similar amount of total LTP in 3xTg-AD and NonTg mice. At 8months of age, the NMDA receptor-dependent LTP was again reduced in 3xTg-AD mice, but now the non-NMDA receptor-dependent component was decreased as well, resulting in a significantly reduced total amount of LTP in 3xTg-AD compared with NonTg mice. Both 3 and 8month old 3xTg-AD mice exhibited reductions in paired-pulse facilitation and NMDA receptor-dependent LTP that coincided with the deficit in spatial working memory. The early presence of this cognitive impairment and the associated alterations in synaptic plasticity demonstrate that the onset of some behavioral and neurophysiological consequences can occur before the detectable presence of plaques and tangles in the 3xTg-AD mouse model of Alzheimer's disease.

  8. Propofol, but not etomidate, increases corticosterone levels and induces long-term alteration in hippocampal synaptic activity in neonatal rats.

    PubMed

    Xu, Changqing; Seubert, Christoph N; Gravenstein, Nikolaus; Martynyuk, Anatoly E

    2016-04-01

    Animal studies provide strong evidence that general anesthetics (GAs), administered during the early postnatal period, induce long-term cognitive and neurological abnormalities. Because the brain growth spurt in rodents is delayed compared to that in humans, a fundamental question is whether the postnatal human brain is similarly vulnerable. Sevoflurane and propofol, GAs that share positive modulation of the gamma-aminobutyric acid type A receptor (GABAAR) function cause marked increase in corticosterone levels and induce long-term developmental alterations in synaptic activity in rodents. If synaptogenesis is affected, investigation of mechanisms of the synaptic effects of GAs is of high interest because synaptogenesis in humans continues for several years after birth. Here, we compared long-term synaptic effects of etomidate with those of propofol. Etomidate and propofol both positively modulate GABAAR activity, but in contrast to propofol, etomidate inhibits the adrenal synthesis of corticosterone. Postnatal day (P) 4, 5, or 6 rats received five injections of etomidate, propofol, or vehicle control during 5h of maternal separation. Endocrine effects of the anesthetics were evaluated by measuring serum levels of corticosterone immediately after anesthesia or maternal separation. The frequency and amplitude of miniature inhibitory postsynaptic currents (mIPSCs) in hippocampal CA1 pyramidal neurons were measured at P24-40 and P≥80. Only propofol caused a significant increase in serum corticosterone levels (F(4.26)=17.739, P<0.001). In contrast to increased frequency of mIPSCs in the propofol group (F(4.23)=8.731, p<0.001), mIPSC activity in the etomidate group was not different from that in the vehicle groups. The results of this study together with previously published data suggest that anesthetic-caused increase in corticosterone levels is required for GABAergic GAs to induce synaptic effects in the form of a long-term increase in the frequency of hippocampal mIPSCs.

  9. Investigation of synapse formation and function in a glutamatergic-GABAergic two-neuron microcircuit.

    PubMed

    Chang, Chia-Ling; Trimbuch, Thorsten; Chao, Hsiao-Tuan; Jordan, Julia-Christine; Herman, Melissa A; Rosenmund, Christian

    2014-01-15

    Neural circuits are composed of mainly glutamatergic and GABAergic neurons, which communicate through synaptic connections. Many factors instruct the formation and function of these synapses; however, it is difficult to dissect the contribution of intrinsic cell programs from that of extrinsic environmental effects in an intact network. Here, we perform paired recordings from two-neuron microculture preparations of mouse hippocampal glutamatergic and GABAergic neurons to investigate how synaptic input and output of these two principal cells develop. In our reduced preparation, we found that glutamatergic neurons showed no change in synaptic output or input regardless of partner neuron cell type or neuronal activity level. In contrast, we found that glutamatergic input caused the GABAergic neuron to modify its output by way of an increase in synapse formation and a decrease in synaptic release efficiency. These findings are consistent with aspects of GABAergic synapse maturation observed in many brain regions. In addition, changes in GABAergic output are cell wide and not target-cell specific. We also found that glutamatergic neuronal activity determined the AMPA receptor properties of synapses on the partner GABAergic neuron. All modifications of GABAergic input and output required activity of the glutamatergic neuron. Because our system has reduced extrinsic factors, the changes we saw in the GABAergic neuron due to glutamatergic input may reflect initiation of maturation programs that underlie the formation and function of in vivo neural circuits. PMID:24431444

  10. Investigation of synapse formation and function in a glutamatergic-GABAergic two-neuron microcircuit.

    PubMed

    Chang, Chia-Ling; Trimbuch, Thorsten; Chao, Hsiao-Tuan; Jordan, Julia-Christine; Herman, Melissa A; Rosenmund, Christian

    2014-01-15

    Neural circuits are composed of mainly glutamatergic and GABAergic neurons, which communicate through synaptic connections. Many factors instruct the formation and function of these synapses; however, it is difficult to dissect the contribution of intrinsic cell programs from that of extrinsic environmental effects in an intact network. Here, we perform paired recordings from two-neuron microculture preparations of mouse hippocampal glutamatergic and GABAergic neurons to investigate how synaptic input and output of these two principal cells develop. In our reduced preparation, we found that glutamatergic neurons showed no change in synaptic output or input regardless of partner neuron cell type or neuronal activity level. In contrast, we found that glutamatergic input caused the GABAergic neuron to modify its output by way of an increase in synapse formation and a decrease in synaptic release efficiency. These findings are consistent with aspects of GABAergic synapse maturation observed in many brain regions. In addition, changes in GABAergic output are cell wide and not target-cell specific. We also found that glutamatergic neuronal activity determined the AMPA receptor properties of synapses on the partner GABAergic neuron. All modifications of GABAergic input and output required activity of the glutamatergic neuron. Because our system has reduced extrinsic factors, the changes we saw in the GABAergic neuron due to glutamatergic input may reflect initiation of maturation programs that underlie the formation and function of in vivo neural circuits.

  11. Executive function deficits and glutamatergic protein alterations in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease.

    PubMed

    Pflibsen, Lacey; Stang, Katherine A; Sconce, Michelle D; Wilson, Vanessa B; Hood, Rebecca L; Meshul, Charles K; Mitchell, Suzanne H

    2015-12-01

    Changes in executive function are at the root of most cognitive problems associated with Parkinson's disease. Because dopaminergic treatment does not necessarily alleviate deficits in executive function, it has been hypothesized that dysfunction of neurotransmitters/systems other than dopamine (DA) may be associated with this decrease in cognitive function. We have reported decreases in motor function and dopaminergic/glutamatergic biomarkers in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Parkinson's mouse model. Assessment of executive function and dopaminergic/glutamatergic biomarkers within the limbic circuit has not previously been explored in our model. Our results show progressive behavioral decline in a cued response task (a rodent model for frontal cortex cognitive function) with increasing weekly doses of MPTP. Although within the dorsolateral (DL) striatum mice that had been given MPTP showed a 63% and 83% loss of tyrosine hydroxylase and dopamine transporter expression, respectively, there were no changes in the nucleus accumbens or medial prefrontal cortex (mPFC). Furthermore, dopamine-1 receptor and vesicular glutamate transporter (VGLUT)-1 expression increased in the mPFC following DA loss. There were significant MPTP-induced decreases and increases in VGLUT-1 and VGLUT-2 expression, respectively, within the DL striatum. We propose that the behavioral decline following MPTP treatment may be associated with a change not only in cortical-cortical (VGLUT-1) glutamate function but also in striatal DA and glutamate (VGLUT-1/VGLUT-2) input.

  12. Glial abnormalities in substance use disorders and depression: Does shared glutamatergic dysfunction contribute to comorbidity?

    PubMed Central

    Niciu, Mark J.; Henter, Ioline D.; Sanacora, Gerard; Zarate, Carlos A.

    2014-01-01

    Objectives Preclinical and clinical research in neuropsychiatric disorders, particularly mood and substance use disorders, have historically focused on neurons; however, glial cells – astrocytes, microglia, and oligodendrocytes – also play key roles in these disorders. Methods Peer-reviewed PubMed/Medline articles published through December 2012 were identified using the following keyword combinations: glia, astrocytes, oligodendrocytes/glia, microglia, substance use, substance abuse, substance dependence, alcohol, opiate, opioid, cocaine, psychostimulants, stimulants, and glutamate. Results Depressive and substance use disorders are highly comorbid, suggesting a common or overlapping aetiology and pathophysiology. Reduced astrocyte cell number occurs in both disorders. Altered glutamate neurotransmission and metabolism – specifically changes in the levels/activity of transporters, receptors, and synaptic proteins potentially related to synaptic physiology – appear to be salient features of both disorders. Glial cell pathology may also underlie the pathophysiology of both disorders via impaired astrocytic production of neurotrophic factors. Microglial/neuroinflammatory pathology is also evident in both depressive and substance use disorders. Finally, oligodendrocyte impairment decreases myelination and impairs expression of myelin-related genes in both substance use and depressive disorders. Conclusions Glial-mediated glutamatergic dysfunction is a common neuropathological pathway in both substance use and depression. Therefore, glutamatergic neuromodulation is a rational drug target in this comorbidity. PMID:24024876

  13. Memantine alters striatal plasticity inducing a shift of synaptic responses toward long-term depression.

    PubMed

    Mancini, Maria; Ghiglieri, Veronica; Bagetta, Vincenza; Pendolino, Valentina; Vannelli, Anna; Cacace, Fabrizio; Mineo, Desireé; Calabresi, Paolo; Picconi, Barbara

    2016-02-01

    Memantine is an open channel blocker that antagonizes NMDA receptors reducing the inappropriate calcium (Ca(2+)) influx occurring in presence of moderately increased glutamate levels. At the same time, memantine has the ability to preserve the transient physiological activation of NMDA receptor, essential for learning and memory formation at synaptic level. In the present study we investigated the effects exerted by memantine on striatal synaptic plasticity in rat striatal spiny projection neurons (SPNs). In vitro application of memantine in striatal slices elicited a disruption of long-term potentiation (LTP) induction and maintenance, and revealed, in the majority of the recorded neurons, a long-term depression (LTD), whose amplitude was concentration-dependent (0.3-10 μM). Interestingly, preincubation with the dopamine (DA) D2 receptor antagonist sulpiride (10 μM) prevented memantine-induced LTD and restored LTP. Moreover, the DA D2 agonist quinpirole (10 μM), similarly to memantine, induced LTD in a subgroup of SPNs. In addition, memantine-induced LTD was also prevented by the CB1 endocannabinoid receptor antagonist AM 251 (1 μM). These results suggest that the actions exerted by memantine on striatal synaptic plasticity, and in particular the induction of LTD observed in SPNs, could be attributed to its ability to activate DA D2 receptors. By contrast, blockade of NMDA receptor is not involved in memantine-induced LTD since APV (30 μM) and MK801 (10 μM), two NMDA receptor antagonists, failed to induce this form of synaptic plasticity. Our data indicate that memantine could be used as treatment of neurological disorders in which DA D2 receptor represents a possible therapeutic target.

  14. Developmental Exposure to Perchlorate Alters Synaptic Transmission in Hippocampus of the Adult Rat

    PubMed Central

    Gilbert, Mary E.; Sui, Li

    2008-01-01

    Background Perchlorate is an environmental contaminant that blocks iodine uptake into the thyroid gland and reduces thyroid hormones. This action of perchlorate raises significant concern over its effects on brain development. Objectives The purpose of this study was to evaluate neurologic function in rats after developmental exposure to perchlorate. Methods Pregnant rats were exposed to 0, 30, 300, or 1,000 ppm perchlorate in drinking water from gestational day 6 until weaning. Adult male offspring were evaluated on a series of behavioral tasks and neurophysiologic measures of synaptic function in the hippocampus. Results At the highest perchlorate dose, triiodothyronine (T3) and thyroxine (T4) were reduced in pups on postnatal day 21. T4 in dams was reduced relative to controls by 16%, 28%, and 60% in the 30-, 300-, and 1,000-ppm dose groups, respectively. Reductions in T4 were associated with increases in thyroid-stimulating hormone in the high-dose group. No changes were seen in serum T3. Perchlorate did not impair motor activity, spatial learning, or fear conditioning. However, significant reductions in baseline synaptic transmission were observed in hippocampal field potentials at all dose levels. Reductions in inhibitory function were evident at 300 and 1,000 ppm, and augmentations in long-term potentiation were observed in the population spike measure at the highest dose. Conclusions Dose-dependent deficits in hippocampal synaptic function were detectable with relatively minor perturbations of the thyroid axis, indicative of an irreversible impairment in synaptic transmission in response to developmental exposure to perchlorate. PMID:18560531

  15. Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons

    PubMed Central

    Beck, Katherina; Ehmann, Nadine; Andlauer, Till F. M.; Ljaschenko, Dmitrij; Strecker, Katrin; Fischer, Matthias; Kittel, Robert J.; Raabe, Thomas

    2015-01-01

    ABSTRACT Plastic changes in synaptic properties are considered as fundamental for adaptive behaviors. Extracellular-signal-regulated kinase (ERK)-mediated signaling has been implicated in regulation of synaptic plasticity. Ribosomal S6 kinase 2 (RSK2) acts as a regulator and downstream effector of ERK. In the brain, RSK2 is predominantly expressed in regions required for learning and memory. Loss-of-function mutations in human RSK2 cause Coffin-Lowry syndrome, which is characterized by severe mental retardation and low IQ scores in affected males. Knockout of RSK2 in mice or the RSK ortholog in Drosophila results in a variety of learning and memory defects. However, overall brain structure in these animals is not affected, leaving open the question of the pathophysiological consequences. Using the fly neuromuscular system as a model for excitatory glutamatergic synapses, we show that removal of RSK function causes distinct defects in motoneurons and at the neuromuscular junction. Based on histochemical and electrophysiological analyses, we conclude that RSK is required for normal synaptic morphology and function. Furthermore, loss of RSK function interferes with ERK signaling at different levels. Elevated ERK activity was evident in the somata of motoneurons, whereas decreased ERK activity was observed in axons and the presynapse. In addition, we uncovered a novel function of RSK in anterograde axonal transport. Our results emphasize the importance of fine-tuning ERK activity in neuronal processes underlying higher brain functions. In this context, RSK acts as a modulator of ERK signaling. PMID:26398944

  16. Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons.

    PubMed

    Beck, Katherina; Ehmann, Nadine; Andlauer, Till F M; Ljaschenko, Dmitrij; Strecker, Katrin; Fischer, Matthias; Kittel, Robert J; Raabe, Thomas

    2015-11-01

    Plastic changes in synaptic properties are considered as fundamental for adaptive behaviors. Extracellular-signal-regulated kinase (ERK)-mediated signaling has been implicated in regulation of synaptic plasticity. Ribosomal S6 kinase 2 (RSK2) acts as a regulator and downstream effector of ERK. In the brain, RSK2 is predominantly expressed in regions required for learning and memory. Loss-of-function mutations in human RSK2 cause Coffin-Lowry syndrome, which is characterized by severe mental retardation and low IQ scores in affected males. Knockout of RSK2 in mice or the RSK ortholog in Drosophila results in a variety of learning and memory defects. However, overall brain structure in these animals is not affected, leaving open the question of the pathophysiological consequences. Using the fly neuromuscular system as a model for excitatory glutamatergic synapses, we show that removal of RSK function causes distinct defects in motoneurons and at the neuromuscular junction. Based on histochemical and electrophysiological analyses, we conclude that RSK is required for normal synaptic morphology and function. Furthermore, loss of RSK function interferes with ERK signaling at different levels. Elevated ERK activity was evident in the somata of motoneurons, whereas decreased ERK activity was observed in axons and the presynapse. In addition, we uncovered a novel function of RSK in anterograde axonal transport. Our results emphasize the importance of fine-tuning ERK activity in neuronal processes underlying higher brain functions. In this context, RSK acts as a modulator of ERK signaling.

  17. D-Serine and Serine Racemase Are Associated with PSD-95 and Glutamatergic Synapse Stability

    PubMed Central

    Lin, Hong; Jacobi, Ariel A.; Anderson, Stewart A.; Lynch, David R.

    2016-01-01

    D-serine is an endogenous coagonist at the glycine site of synaptic NMDA receptors (NMDARs), synthesized by serine racemase (SR) through conversion of L-serine. It is crucial for synaptic plasticity and is implicated in schizophrenia. Our previous studies demonstrated specific loss of SR, D-serine-responsive synaptic NMDARs, and glutamatergic synapses in cortical neurons lacking α7 nicotinic acetylcholine receptors, which promotes glutamatergic synapse formation and maturation during development. We thus hypothesize that D-serine and SR (D-serine/SR) are associated with glutamatergic synaptic development. Using morphological and molecular studies in cortical neuronal cultures, we demonstrate that D-serine/SR are associated with PSD-95 and NMDARs in postsynaptic neurons and with glutamatergic synapse stability during synaptic development. Endogenous D-serine and SR colocalize with PSD-95, but not presynaptic vesicular glutamate transporter 1 (VGLUT1), in glutamatergic synapses of cultured cortical neurons. Low-density astrocytes in cortical neuronal cultures lack SR expression but contain enriched D-serine in large vesicle-like structures, suggesting possible synthesis of D-serine in postsynaptic neurons and storage in astrocytes. More interestingly, endogenous D-serine and SR colocalize with PSD-95 in the postsynaptic terminals of glutamatergic synapses during early and late synaptic development, implicating involvement of D-serine/SR in glutamatergic synaptic development. Exogenous application of D-serine enhances the interactions of SR with PSD-95 and NR1, and increases the number of VGLUT1- and PSD-95-positive glutamatergic synapses, suggesting that exogenous D-serine enhances postsynaptic SR/PSD-95 signaling and stabilizes glutamatergic synapses during cortical synaptic development. This is blocked by NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5) and 7-chlorokynurenic acid (7-CK), a specific antagonist at the glycine site of NMDARs, demonstrating

  18. Flotillin-1 promotes formation of glutamatergic synapses in hippocampal neurons.

    PubMed

    Swanwick, Catherine Croft; Shapiro, Marietta E; Vicini, Stefano; Wenthold, Robert J

    2010-11-01

    Synapse malformation underlies numerous neurodevelopmental illnesses, including autism spectrum disorders. Here we identify the lipid raft protein flotillin-1 as a promoter of glutamatergic synapse formation. We cultured neurons from the hippocampus, a brain region important for learning and memory, and examined them at two weeks in vitro, a time period rich with synapse formation. Double-label immunocytochemistry of native flot-1 with glutamatergic and GABAergic synapse markers showed that flot-1 was preferentially colocalized with the glutamatergic presynaptic marker vesicular glutamate transporter 1 (VGLUT1), compared to the GABAergic presynaptic marker glutamic acid decarboxylase-65 (GAD-65). Triple-label immunocytochemistry of native flot-1, VGLUT1, and NR1, the obligatory subunit of NMDA receptors, indicates that Flot-1 was preferentially localized to synaptic rather than extrasynaptic NR1. Furthermore, electrophysiological results using whole-cell patch clamp showed that Flot-1 increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) but not miniature inhibitory postsynaptic currents (mIPSCs), whereas amplitude and decay kinetics of either type of synaptic current was not affected. Corresponding immunocytochemical data confirmed that the number of glutamatergic synapses increased with flot-1 overexpression. Overall, our anatomical and physiological results show that flot-1 enhances the formation of glutamatergic synapses but not GABAergic synapses, suggesting that the role of flot-1 in neurodevelopmental disorders should be explored. PMID:20669324

  19. Post ischemia intermittent hypoxia induces hippocampal neurogenesis and synaptic alterations and alleviates long-term memory impairment.

    PubMed

    Tsai, Yi-Wei; Yang, Yea-Ru; Sun, Synthia H; Liang, Keng-Chen; Wang, Ray-Yau

    2013-05-01

    Adult hippocampal neurogenesis is important for learning and memory, especially after a brain injury such as ischemia. Newborn hippocampal neurons contribute to memory performance by establishing functional synapses with target cells. This study demonstrated that the maturation of hippocampal neurons is enhanced by postischemia intermittent hypoxia (IH) intervention. The effects of IH intervention in cultured neurons were mediated by increased synaptogenesis, which was primarily regulated by brain-derived neurotrophic factor (BDNF)/PI3K/AKT. Hippocampal neo-neurons expressed BDNF and exhibited enhanced presynaptic function as indicated by increases in the pSynapsin expression, synaptophysin intensity, and postsynapse density following IH intervention after ischemia. Postischemia IH-induced hippocampal neo-neurons were affected by presynaptic activity, which reflected the dynamic plasticity of the glutamatergic receptors. These alterations were also associated with the alleviation of ischemia-induced long-term memory impairment. Our results suggest that postischemia IH intervention rescued ischemia-induced spatial learning and memory impairment by inducing hippocampal neurogenesis and functional synaptogenesis via BDNF expression.

  20. Knockout of Cyclophilin-D Provides Partial Amelioration of Intrinsic and Synaptic Properties Altered by Mild Traumatic Brain Injury.

    PubMed

    Sun, Jianli; Jacobs, Kimberle M

    2016-01-01

    Mitochondria are central to cell survival and Ca(2+) homeostasis due to their intracellular buffering capabilities. Mitochondrial dysfunction resulting in mitochondrial permeability transition pore (mPTP) opening has been reported after mild traumatic brain injury (mTBI). Cyclosporine A provides protection against the mPTP opening through its interaction with cyclophilin-D (CypD). A recent study has found that the extent of axonal injury after mTBI was diminished in neocortex in cyclophilin-D knockout (CypDKO) mice. Here we tested whether this CypDKO could also provide protection from the increased intrinsic and synaptic neuronal excitability previously described after mTBI in a mild central fluid percussion injury mice model. CypDKO mice were crossed with mice expressing yellow fluorescent protein (YFP) in layer V pyramidal neurons in neocortex to create CypDKO/YFP-H mice. Whole cell patch clamp recordings from axotomized (AX) and intact (IN) YFP+ layer V pyramidal neurons were made 1 and 2 days after sham or mTBI in slices from CypDKO/YFP-H mice. Both excitatory post synaptic currents (EPSCs) recorded in voltage clamp and intrinsic cellular properties, including action potential (AP), afterhyperpolarization (AHP), and depolarizing after potential (DAP) characteristics recorded in current clamp were evaluated. There was no significant difference between sham and mTBI for either spontaneous or miniature EPSC frequency, suggesting that CypDKO ameliorates excitatory synaptic abnormalities. There was a partial amelioration of intrinsic properties altered by mTBI. Alleviated were the increased slope of the AP frequency vs. injected current plot, the increased AP, AHP and DAP amplitudes. Other properties that saw a reversal that became significant in the opposite direction include the current rheobase and AP overshoot. The AP threshold remained depolarized and the input resistance remained increased in mTBI compared to sham. Additional altered properties suggest that

  1. Knockout of Cyclophilin-D Provides Partial Amelioration of Intrinsic and Synaptic Properties Altered by Mild Traumatic Brain Injury

    PubMed Central

    Sun, Jianli; Jacobs, Kimberle M.

    2016-01-01

    Mitochondria are central to cell survival and Ca2+ homeostasis due to their intracellular buffering capabilities. Mitochondrial dysfunction resulting in mitochondrial permeability transition pore (mPTP) opening has been reported after mild traumatic brain injury (mTBI). Cyclosporine A provides protection against the mPTP opening through its interaction with cyclophilin-D (CypD). A recent study has found that the extent of axonal injury after mTBI was diminished in neocortex in cyclophilin-D knockout (CypDKO) mice. Here we tested whether this CypDKO could also provide protection from the increased intrinsic and synaptic neuronal excitability previously described after mTBI in a mild central fluid percussion injury mice model. CypDKO mice were crossed with mice expressing yellow fluorescent protein (YFP) in layer V pyramidal neurons in neocortex to create CypDKO/YFP-H mice. Whole cell patch clamp recordings from axotomized (AX) and intact (IN) YFP+ layer V pyramidal neurons were made 1 and 2 days after sham or mTBI in slices from CypDKO/YFP-H mice. Both excitatory post synaptic currents (EPSCs) recorded in voltage clamp and intrinsic cellular properties, including action potential (AP), afterhyperpolarization (AHP), and depolarizing after potential (DAP) characteristics recorded in current clamp were evaluated. There was no significant difference between sham and mTBI for either spontaneous or miniature EPSC frequency, suggesting that CypDKO ameliorates excitatory synaptic abnormalities. There was a partial amelioration of intrinsic properties altered by mTBI. Alleviated were the increased slope of the AP frequency vs. injected current plot, the increased AP, AHP and DAP amplitudes. Other properties that saw a reversal that became significant in the opposite direction include the current rheobase and AP overshoot. The AP threshold remained depolarized and the input resistance remained increased in mTBI compared to sham. Additional altered properties suggest that the

  2. Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors.

    PubMed

    Martín-García, Elena; Bourgoin, Lucie; Cathala, Adeline; Kasanetz, Fernando; Mondesir, Miguel; Gutiérrez-Rodriguez, Ana; Reguero, Leire; Fiancette, Jean-François; Grandes, Pedro; Spampinato, Umberto; Maldonado, Rafael; Piazza, Pier Vincenzo; Marsicano, Giovanni; Deroche-Gamonet, Véronique

    2016-08-01

    The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology.

  3. Evolution of Network Synchronization during Early Epileptogenesis Parallels Synaptic Circuit Alterations

    PubMed Central

    Lillis, Kyle P.; Wang, Zemin; Mail, Michelle; Zhao, Grace Q.; Berdichevsky, Yevgeny; Bacskai, Brian

    2015-01-01

    In secondary epilepsy, a seizure-prone neural network evolves during the latent period between brain injury and the onset of spontaneous seizures. The nature of the evolution is largely unknown, and even its completeness at the onset of seizures has recently been challenged by measures of gradually decreasing intervals between subsequent seizures. Sequential calcium imaging of neuronal activity, in the pyramidal cell layer of mouse hippocampal in vitro preparations, during early post-traumatic epileptogenesis demonstrated rapid increases in the fraction of neurons that participate in interictal activity. This was followed by more gradual increases in the rate at which individual neurons join each developing seizure, the pairwise correlation of neuronal activities as a function of the distance separating the pair, and network-wide measures of functional connectivity. These data support the continued evolution of synaptic connectivity in epileptic networks beyond the latent period: early seizures occur when recurrent excitatory pathways are largely polysynaptic, while ongoing synaptic remodeling after the onset of epilepsy enhances intranetwork connectivity as well as the onset and spread of seizure activity. PMID:26156993

  4. Evolution of Network Synchronization during Early Epileptogenesis Parallels Synaptic Circuit Alterations.

    PubMed

    Lillis, Kyle P; Wang, Zemin; Mail, Michelle; Zhao, Grace Q; Berdichevsky, Yevgeny; Bacskai, Brian; Staley, Kevin J

    2015-07-01

    In secondary epilepsy, a seizure-prone neural network evolves during the latent period between brain injury and the onset of spontaneous seizures. The nature of the evolution is largely unknown, and even its completeness at the onset of seizures has recently been challenged by measures of gradually decreasing intervals between subsequent seizures. Sequential calcium imaging of neuronal activity, in the pyramidal cell layer of mouse hippocampal in vitro preparations, during early post-traumatic epileptogenesis demonstrated rapid increases in the fraction of neurons that participate in interictal activity. This was followed by more gradual increases in the rate at which individual neurons join each developing seizure, the pairwise correlation of neuronal activities as a function of the distance separating the pair, and network-wide measures of functional connectivity. These data support the continued evolution of synaptic connectivity in epileptic networks beyond the latent period: early seizures occur when recurrent excitatory pathways are largely polysynaptic, while ongoing synaptic remodeling after the onset of epilepsy enhances intranetwork connectivity as well as the onset and spread of seizure activity. PMID:26156993

  5. A role for the protein phosphatase 2B in altered hippocampal synaptic plasticity in the aged rat.

    PubMed

    Jouvenceau, Anne; Dutar, Patrick

    2006-01-01

    Synaptic plasticity following NMDA application on hippocampal slices from young (3-5 months) and aged (24-27 months) rats was compared. In young rats, NMDA (20 microM) induced opposite effects depending on the duration of the application. A short (1 min) or long (5 min) application induced a long-term depression of synaptic activity while a 3 min application induced a potentiation. In aged rats, however, NMDA application always induced depression, regardless of the duration. To identify mechanisms which could explain the difference observed between young and aged rats, we explored changes in NMDA receptor activation and changes in kinase/phosphatase balance. We first demonstrate that the potentiation present in slices from young rats was not restored in aged rats by exogenous application of the co-agonist of NMDA receptor d-serine (which compensates for the changes in NMDAR activation seen in aged rats). This suggested that alterations in synaptic plasticity activation mainly involve intracellular mechanisms. We next showed that the participation of the kinases PKA and CaMKII in the NMDA-induced potentiation in young rats is negligible. Finally, we determined the consequences of phosphatase inhibition in aged rats. Incubation of slices in okadaic acid (a PP1/PP2B antagonist) did not affect the depression induced by a 3min NMDA application in aged rats. The PP2B antagonist FK506 restored potentiation in aged rats (3 min NMDA application). In hippocampal neurons from aged rats, a depression is always observed, suggesting a preferential activation of PP2B by NMDA in these neurons.

  6. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function.

    PubMed

    Bocarsly, Miriam E; Fasolino, Maria; Kane, Gary A; LaMarca, Elizabeth A; Kirschen, Gregory W; Karatsoreos, Ilia N; McEwen, Bruce S; Gould, Elizabeth

    2015-12-22

    Obesity is a major public health problem affecting overall physical and emotional well-being. Despite compelling data suggesting an association between obesity and cognitive dysfunction, this phenomenon has received relatively little attention. Neuroimaging studies in obese humans report reduced size of brain regions involved in cognition, but few studies have investigated the cellular processes underlying cognitive decline in obesity or the influence of obesity on cognition in the absence of obesity-related illnesses. Here, a rat model of diet-induced obesity was used to explore changes in brain regions important for cognition. Obese rats showed deficits on cognitive tasks requiring the prefrontal and perirhinal cortex. Cognitive deficits were accompanied by decreased dendritic spine density and synaptic marker expression in both brain regions. Microglial morphology was also changed in the prefrontal cortex. Detrimental changes in the prefrontal cortex and perirhinal cortex occurred before metabolic syndrome or diabetes, suggesting that these brain regions may be particularly vulnerable to early stage obesity.

  7. Glutamatergic Retinal Waves

    PubMed Central

    Kerschensteiner, Daniel

    2016-01-01

    Spontaneous activity patterns propagate through many parts of the developing nervous system and shape the wiring of emerging circuits. Prior to vision, waves of activity originating in the retina propagate through the lateral geniculate nucleus (LGN) of the thalamus to primary visual cortex (V1). Retinal waves have been shown to instruct the wiring of ganglion cell axons in LGN and of thalamocortical axons in V1 via correlation-based plasticity rules. Across species, retinal waves mature in three stereotypic stages (I–III), in which distinct circuit mechanisms give rise to unique activity patterns that serve specific functions in visual system refinement. Here, I review insights into the patterns, mechanisms, and functions of stage III retinal waves, which rely on glutamatergic signaling. As glutamatergic waves spread across the retina, neighboring ganglion cells with opposite light responses (ON vs. OFF) are activated sequentially. Recent studies identified lateral excitatory networks in the inner retina that generate and propagate glutamatergic waves, and vertical inhibitory networks that desynchronize the activity of ON and OFF cells in the wavefront. Stage III wave activity patterns may help segregate axons of ON and OFF ganglion cells in the LGN, and could contribute to the emergence of orientation selectivity in V1. PMID:27242446

  8. A Rat Model of Alzheimer’s Disease Based on Abeta42 and Pro-oxidative Substances Exhibits Cognitive Deficit and Alterations in Glutamatergic and Cholinergic Neurotransmitter Systems

    PubMed Central

    Petrasek, Tomas; Skurlova, Martina; Maleninska, Kristyna; Vojtechova, Iveta; Kristofikova, Zdena; Matuskova, Hana; Sirova, Jana; Vales, Karel; Ripova, Daniela; Stuchlik, Ales

    2016-01-01

    Alzheimer’s disease (AD) is one of the most serious human, medical, and socioeconomic burdens. Here we tested the hypothesis that a rat model of AD (Samaritan; Taconic Pharmaceuticals, USA) based on the application of amyloid beta42 (Abeta42) and the pro-oxidative substances ferrous sulfate heptahydrate and L-buthionine-(S, R)-sulfoximine, will exhibit cognitive deficits and disruption of the glutamatergic and cholinergic systems in the brain. Behavioral methods included the Morris water maze (MWM; long-term memory version) and the active allothetic place avoidance (AAPA) task (acquisition and reversal), testing spatial memory and different aspects of hippocampal function. Neurochemical methods included testing of the NR1/NR2A/NR2B subunits of NMDA receptors in the frontal cortex and CHT1 transporters in the hippocampus, in both cases in the right and left hemisphere separately. Our results show that Samaritan rats™ exhibit marked impairment in both the MWM and active place avoidance tasks, suggesting a deficit of spatial learning and memory. Moreover, Samaritan rats exhibited significant changes in NR2A expression and CHT1 activity compared to controls rats, mimicking the situation in patients with early stage AD. Taken together, our results corroborate the hypothesis that Samaritan rats are a promising model of AD in its early stages. PMID:27148049

  9. DEVELOPMENTAL HYPOTHYROIDISM ALTERS SYNAPTIC TRANSMISSION IN DENTATE GYRUS AND AREA CA1 OF HIPPOCAMPUS.

    EPA Science Inventory

    Hypothyroidism during critical periods of brain developmental leads to learning deficits and alterations in hippocampal structure. Neurophysiological properties of the hippocampus, however, have not been well characterized. The present study examined field potentials evoked in...

  10. Sulforaphane rescues memory dysfunction and synaptic and mitochondrial alterations induced by brain iron accumulation.

    PubMed

    Lavich, I C; de Freitas, B S; Kist, L W; Falavigna, L; Dargél, V A; Köbe, L M; Aguzzoli, C; Piffero, B; Florian, P Z; Bogo, M R; de Lima, M N M; Schröder, N

    2015-08-20

    Iron overload contributes to the development of neurodegeneration and the exacerbation of normal apoptosis rates, largely due to its participation in the Fenton reaction and production of reactive oxygen species (ROS). Mitochondria constitute the major intracellular source of ROS and the main target of attack by free radicals. They are dynamic organelles that bind (fusion) and divide (fission) in response to environmental stimuli, developmental status, and energy needs of the cells. Sulforaphane (SFN) is a natural compound that displays antioxidant and anti-inflammatory activities. This study aims to investigate the effects of SFN on memory deficits and changes in markers of mitochondrial function, DNM1L and OPA1, and the synaptic marker, synaptophysin, induced by neonatal iron treatment. Male rats received vehicle or carbonyl iron (30mg/kg) from the 12th to the 14th postnatal day. In adulthood, they were treated with saline or SFN (0.5 or 5mg/kg) for 14days every other day. Memory deficits were assessed using the object recognition task. DNM1L, OPA1, and synaptophysin levels in the hippocampus were quantified by Western blotting. Results showed that SFN was able to reverse iron-induced decreases in mitochondrial fission protein, DNM1L, as well as synaptophysin levels in the hippocampus, leading to a recovery of recognition memory impairment induced by iron. These findings suggest that SFN may be further investigated as potential agent for the treatment of cognitive deficits associated with neurodegenerative disorders.

  11. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function

    PubMed Central

    Bocarsly, Miriam E.; Fasolino, Maria; Kane, Gary A.; LaMarca, Elizabeth A.; Kirschen, Gregory W.; Karatsoreos, Ilia N.; McEwen, Bruce S.; Gould, Elizabeth

    2015-01-01

    Obesity is a major public health problem affecting overall physical and emotional well-being. Despite compelling data suggesting an association between obesity and cognitive dysfunction, this phenomenon has received relatively little attention. Neuroimaging studies in obese humans report reduced size of brain regions involved in cognition, but few studies have investigated the cellular processes underlying cognitive decline in obesity or the influence of obesity on cognition in the absence of obesity-related illnesses. Here, a rat model of diet-induced obesity was used to explore changes in brain regions important for cognition. Obese rats showed deficits on cognitive tasks requiring the prefrontal and perirhinal cortex. Cognitive deficits were accompanied by decreased dendritic spine density and synaptic marker expression in both brain regions. Microglial morphology was also changed in the prefrontal cortex. Detrimental changes in the prefrontal cortex and perirhinal cortex occurred before metabolic syndrome or diabetes, suggesting that these brain regions may be particularly vulnerable to early stage obesity. PMID:26644559

  12. APOE genotype alters glial activation and loss of synaptic markers in mice.

    PubMed

    Zhu, Yuangui; Nwabuisi-Heath, Evelyn; Dumanis, Sonya B; Tai, Leon M; Yu, Chunjiang; Rebeck, G William; LaDu, Mary Jo

    2012-04-01

    The ε4 allele of the Apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), and affects clinical outcomes of chronic and acute brain damages. The mechanisms by which apoE affect diverse diseases and disorders may involve modulation of the glial response to various types of brain damage. We examined glial activation in a mouse model where each of the human APOE alleles are expressed under the endogenous mouse APOE promoter, as well as in APOE knock-out mice. APOE4 mice displayed increased glial activation in response to intracerebroventricular lipopolysaccharide (LPS) compared to APOE2 and APOE3 mice by several measures. There were higher levels of microglia/macrophage, astrocytes, and invading T-cells after LPS injection in APOE4 mice. APOE4 mice also displayed greater and more prolonged increases of cytokines (IL-1β, IL-6, TNF-α) than APOE2 and APOE3 mice. We found that APOE4 mice had greater synaptic protein loss after LPS injection, as measured by three markers: PSD-95, drebin, and synaptophysin. In all assays, APOE knock-out mice responded similar to APOE4 mice, suggesting that the apoE4 protein may lack anti-inflammatory characteristics of apoE2 and apoE3. Together, these findings demonstrate that APOE4 predisposes to inflammation, which could contribute to its association with Alzheimer's disease and other disorders.

  13. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function.

    PubMed

    Bocarsly, Miriam E; Fasolino, Maria; Kane, Gary A; LaMarca, Elizabeth A; Kirschen, Gregory W; Karatsoreos, Ilia N; McEwen, Bruce S; Gould, Elizabeth

    2015-12-22

    Obesity is a major public health problem affecting overall physical and emotional well-being. Despite compelling data suggesting an association between obesity and cognitive dysfunction, this phenomenon has received relatively little attention. Neuroimaging studies in obese humans report reduced size of brain regions involved in cognition, but few studies have investigated the cellular processes underlying cognitive decline in obesity or the influence of obesity on cognition in the absence of obesity-related illnesses. Here, a rat model of diet-induced obesity was used to explore changes in brain regions important for cognition. Obese rats showed deficits on cognitive tasks requiring the prefrontal and perirhinal cortex. Cognitive deficits were accompanied by decreased dendritic spine density and synaptic marker expression in both brain regions. Microglial morphology was also changed in the prefrontal cortex. Detrimental changes in the prefrontal cortex and perirhinal cortex occurred before metabolic syndrome or diabetes, suggesting that these brain regions may be particularly vulnerable to early stage obesity. PMID:26644559

  14. Altered Cortical Dynamics and Cognitive Function upon Haploinsufficiency of the Autism-Linked Excitatory Synaptic Suppressor MDGA2.

    PubMed

    Connor, Steven A; Ammendrup-Johnsen, Ina; Chan, Allen W; Kishimoto, Yasushi; Murayama, Chiaki; Kurihara, Naokazu; Tada, Atsushi; Ge, Yuan; Lu, Hong; Yan, Ryan; LeDue, Jeffrey M; Matsumoto, Hirotaka; Kiyonari, Hiroshi; Kirino, Yutaka; Matsuzaki, Fumio; Suzuki, Toshiharu; Murphy, Timothy H; Wang, Yu Tian; Yamamoto, Tohru; Craig, Ann Marie

    2016-09-01

    Mutations in a synaptic organizing pathway contribute to autism. Autism-associated mutations in MDGA2 (MAM domain containing glycosylphosphatidylinositol anchor 2) are thought to reduce excitatory/inhibitory transmission. However, we show that mutation of Mdga2 elevates excitatory transmission, and that MDGA2 blocks neuroligin-1 interaction with neurexins and suppresses excitatory synapse development. Mdga2(+/-) mice, modeling autism mutations, demonstrated increased asymmetric synapse density, mEPSC frequency and amplitude, and altered LTP, with no change in measures of inhibitory synapses. Behavioral assays revealed an autism-like phenotype including stereotypy, aberrant social interactions, and impaired memory. In vivo voltage-sensitive dye imaging, facilitating comparison with fMRI studies in autism, revealed widespread increases in cortical spontaneous activity and intracortical functional connectivity. These results suggest that mutations in MDGA2 contribute to altered cortical processing through the dual disadvantages of elevated excitation and hyperconnectivity, and indicate that perturbations of the NRXN-NLGN pathway in either direction from the norm increase risk for autism. PMID:27608760

  15. Altered Striatal Synaptic Function and Abnormal Behaviour in Shank3 Exon4-9 Deletion Mouse Model of Autism.

    PubMed

    Jaramillo, Thomas C; Speed, Haley E; Xuan, Zhong; Reimers, Jeremy M; Liu, Shunan; Powell, Craig M

    2016-03-01

    Shank3 is a multi-domain, synaptic scaffolding protein that organizes proteins in the postsynaptic density of excitatory synapses. Clinical studies suggest that ∼ 0.5% of autism spectrum disorder (ASD) cases may involve SHANK3 mutation/deletion. Patients with SHANK3 mutations exhibit deficits in cognition along with delayed/impaired speech/language and repetitive and obsessive/compulsive-like (OCD-like) behaviors. To examine how mutation/deletion of SHANK3 might alter brain function leading to ASD, we have independently created mice with deletion of Shank3 exons 4-9, a region implicated in ASD patients. We find that homozygous deletion of exons 4-9 (Shank3(e4-9) KO) results in loss of the two highest molecular weight isoforms of Shank3 and a significant reduction in other isoforms. Behaviorally, both Shank3(e4-9) heterozygous (HET) and Shank3(e4-9) KO mice display increased repetitive grooming, deficits in novel and spatial object recognition learning and memory, and abnormal ultrasonic vocalizations. Shank3(e4-9) KO mice also display abnormal social interaction when paired with one another. Analysis of synaptosome fractions from striata of Shank3(e4-9) KO mice reveals decreased Homer1b/c, GluA2, and GluA3 expression. Both Shank3(e4-9) HET and KO demonstrated a significant reduction in NMDA/AMPA ratio at excitatory synapses onto striatal medium spiny neurons. Furthermore, Shank3(e4-9) KO mice displayed reduced hippocampal LTP despite normal baseline synaptic transmission. Collectively these behavioral, biochemical and physiological changes suggest Shank3 isoforms have region-specific roles in regulation of AMPAR subunit localization and NMDAR function in the Shank3(e4-9) mutant mouse model of autism. PMID:26559786

  16. Synaptic rearrangements and alterations in motor unit properties in neonatal rat extensor digitorum longus muscle.

    PubMed Central

    Balice-Gordon, R J; Thompson, W J

    1988-01-01

    1. We have used in vitro intracellular recordings and measurements of the contractile properties of single motor units to examine the changes in muscle innervation occurring during the post-natal development of a fast-twitch muscle in the hindlimb of the rat, the extensor digitorum longus (EDL). 2. Intracellular recordings of end-plate potentials evoked in response to graded stimulation of the nerve supply to the muscle indicate that during the first day after birth, each muscle fibre receives synaptic input from at least two motoneurones and that some muscle fibres receive as many as six such inputs. With subsequent development, most of this polyneuronal innervation is eliminated: the first singly innervated fibres are encountered on day 3; by day 18 fewer than 5% of the fibres remain polyneuronally innervated. These results show that there are quantitative differences in post-natal synapse elimination in EDL compared to its well-studied counterpart, the soleus. Although the great majority of fibres in both muscles become singly innervated at about 18 days, the first singly innervated fibres appear at least a week earlier in the EDL. None the less, synapses are lost from EDL at about half the rate they are lost from soleus. 3. The number of motor units, determined by counting the number of twitch increments produced by graded stimulation of ventral root filaments teased to contain only a few EDL motor axons, remains unchanged from an average of forty-one from post-natal day 1 to day 17. In addition, the number of muscle fibres counted in muscle cross-sections stained with an anti-myosin antibody increases less than 10% from birth to adulthood. Therefore, synapse elimination in EDL occurs with a largely constant population of muscle fibres as well as motoneurones. 4. Measurements of tensions generated by single motor units indicate that the average size of a motor unit declines from 6.8% of the muscle fibres at day 1 to 2.3% at 17 days. This result indicates that

  17. Altered short-term synaptic plasticity and reduced muscle strength in mice with impaired regulation of presynaptic CaV2.1 Ca2+ channels.

    PubMed

    Nanou, Evanthia; Yan, Jin; Whitehead, Nicholas P; Kim, Min Jeong; Froehner, Stanley C; Scheuer, Todd; Catterall, William A

    2016-01-26

    Facilitation and inactivation of P/Q-type calcium (Ca(2+)) currents through the regulation of voltage-gated Ca(2+) (CaV) 2.1 channels by Ca(2+) sensor (CaS) proteins contributes to the facilitation and rapid depression of synaptic transmission in cultured neurons that transiently express CaV2.1 channels. To examine the modulation of endogenous CaV2.1 channels by CaS proteins in native synapses, we introduced a mutation (IM-AA) into the CaS protein-binding site in the C-terminal domain of CaV2.1 channels in mice, and tested synaptic facilitation and depression in neuromuscular junction synapses that use exclusively CaV2.1 channels for Ca(2+) entry that triggers synaptic transmission. Even though basal synaptic transmission was unaltered in the neuromuscular synapses in IM-AA mice, we found reduced short-term facilitation in response to paired stimuli at short interstimulus intervals in IM-AA synapses. In response to trains of action potentials, we found increased facilitation at lower frequencies (10-30 Hz) in IM-AA synapses accompanied by slowed synaptic depression, whereas synaptic facilitation was reduced at high stimulus frequencies (50-100 Hz) that would induce strong muscle contraction. As a consequence of altered regulation of CaV2.1 channels, the hindlimb tibialis anterior muscle in IM-AA mice exhibited reduced peak force in response to 50 Hz stimulation and increased muscle fatigue. The IM-AA mice also had impaired motor control, exercise capacity, and grip strength. Taken together, our results indicate that regulation of CaV2.1 channels by CaS proteins is essential for normal synaptic plasticity at the neuromuscular junction and for muscle strength, endurance, and motor coordination in mice in vivo.

  18. NMDA-receptor inhibition restores Protease-Activated Receptor 1 (PAR1) mediated alterations in homeostatic synaptic plasticity of denervated mouse dentate granule cells.

    PubMed

    Becker, Denise; Ikenberg, Benno; Schiener, Sabine; Maggio, Nicola; Vlachos, Andreas

    2014-11-01

    A common feature of neurological diseases is the loss of central neurons, which leads to deafferentation of connected brain regions. In turn, the remodeling of denervated neuronal networks is considered to play an important role for the postlesional recovery, but has also been linked to maladaptive plasticity resulting in disease-related complications such as memory dysfunction or epilepsy. Recent work has indicated that Protease-Activated Receptor 1 (PAR1), which can be activated by thrombin that enters the brain under pathological conditions, alters synaptic plasticity and neuronal excitability. However, the role of PAR1 in lesion-induced synaptic plasticity remains incompletely understood. Here, we used entorhinal denervation of organotypic hippocampal slice cultures to study the effects of PAR1 on denervation-induced homeostatic synaptic plasticity. Our results disclose that PAR1 activation counters the ability of denervated dentate granule cells to increase their excitatory synaptic strength in a compensatory, i.e., homeostatic manner. Furthermore, we demonstrate that this PAR1 effect is rescued by pharmacological inhibition of N-methyl-d-aspartate receptors (NMDA-R). Thus, NMDA-R inhibitors may restore the ability of denervated neurons to express homeostatic synaptic plasticity under conditions of increased PAR1-activity, which may contribute to their beneficial effects seen in the context of neurological diseases. PMID:25086265

  19. Glycoprotein M6a is present in glutamatergic axons in adult rat forebrain and cerebellum.

    PubMed

    Cooper, Ben; Werner, Hauke B; Flügge, Gabriele

    2008-03-01

    Glycoprotein M6a is a neuronally expressed member of the proteolipid protein (PLP) family of tetraspans. In vitro studies suggested a potential role in neurite outgrowth and spine formation and previous investigations have identified M6a as a stress-regulated gene. To investigate whether the distribution of M6a correlates with neuronal structures susceptible to alterations in response to stress, we localized M6a expression in neurons of hippocampal formation, prefrontal cortex and cerebellum using in situ hybridization and confocal immunofluorescence microscopy. In situ hybridization confirmed that M6a is expressed in dentate gyrus and cerebellar granule neurons and in hippocampal and cortical pyramidal neurons. Confocal microscopy localized M6a immunoreactivity to distinct sites within axonal membranes, but not in dendrites or neuronal somata. Moreover, M6a colocalized with synaptic markers of glutamatergic, but not GABAergic nerve terminals. M6a expression in the adult brain is particularly strong in unmyelinated axonal fibers, i.e. cerebellar parallel and hippocampal mossy fibers. In contrast, myelinated axons exhibit only minimal M6a immunoreactivity localized exclusively to terminal regions. The present neuroanatomical data demonstrate that M6a is an axonal component of glutamatergic neurons and that it is localized to distinct sites of the axonal plasma membrane of pyramidal and granule cells. PMID:18241840

  20. Artemisia santolinifolia enhances glutamatergic neurotransmission in the nucleus of the solitary tract.

    PubMed

    Vance, Katie M; Ribnicky, David M; Rogers, Richard C; Hermann, Gerlinda E

    2014-10-17

    Artemisia extracts have been used as remedies for a variety of maladies related to metabolic and gastrointestinal control. Because the vagal afferent-nucleus of the solitary tract (NST) synapse regulates the same homeostatic functions affected by Artemisia, it is possible that these extracts may have activity at the synaptic level in the NST. Therefore, we evaluated how extracts of three common medicinal Artemisia species, Artemisia santolinifolia (SANT), Artemisia scoparia (SCO), and Artemisia dracunculus L (PMI-5011), modulate the excitability of the glutamatergic vagal afferent-NST synapse. Our in vitro live cell calcium imaging data from prelabeled vagal afferent terminals show that SANT extract is a positive modulator of vagal afferent calcium levels, as the extract significantly increased the calcium signal relative to the time control. Neither SCO nor PMI-5011 extract altered the vagal calcium signals compared to the time control. Furthermore, whole cell voltage-clamp recordings from NST neurons corroborated the vagal terminal calcium data in that SANT extract also significantly increased miniature excitatory postsynaptic current (mEPSC) frequency in NST neurons. These data suggest that SANT extract could be a pharmacologically significant mediator of glutamatergic neurotransmission within the CNS.

  1. Artemisia santolinifolia enhances glutamatergic neurotransmission in the nucleus of the solitary tract.

    PubMed

    Vance, Katie M; Ribnicky, David M; Rogers, Richard C; Hermann, Gerlinda E

    2014-10-17

    Artemisia extracts have been used as remedies for a variety of maladies related to metabolic and gastrointestinal control. Because the vagal afferent-nucleus of the solitary tract (NST) synapse regulates the same homeostatic functions affected by Artemisia, it is possible that these extracts may have activity at the synaptic level in the NST. Therefore, we evaluated how extracts of three common medicinal Artemisia species, Artemisia santolinifolia (SANT), Artemisia scoparia (SCO), and Artemisia dracunculus L (PMI-5011), modulate the excitability of the glutamatergic vagal afferent-NST synapse. Our in vitro live cell calcium imaging data from prelabeled vagal afferent terminals show that SANT extract is a positive modulator of vagal afferent calcium levels, as the extract significantly increased the calcium signal relative to the time control. Neither SCO nor PMI-5011 extract altered the vagal calcium signals compared to the time control. Furthermore, whole cell voltage-clamp recordings from NST neurons corroborated the vagal terminal calcium data in that SANT extract also significantly increased miniature excitatory postsynaptic current (mEPSC) frequency in NST neurons. These data suggest that SANT extract could be a pharmacologically significant mediator of glutamatergic neurotransmission within the CNS. PMID:25220699

  2. Altered neuronal intrinsic properties and reduced synaptic transmission of the rat's medial geniculate body in salicylate-induced tinnitus.

    PubMed

    Su, Yan-Yan; Luo, Bin; Jin, Yan; Wu, Shu-Hui; Lobarinas, Edward; Salvi, Richard J; Chen, Lin

    2012-01-01

    Sodium salicylate (NaSal), an aspirin metabolite, can cause tinnitus in animals and human subjects. To explore neural mechanisms underlying salicylate-induced tinnitus, we examined effects of NaSal on neural activities of the medial geniculate body (MGB), an auditory thalamic nucleus that provides the primary and immediate inputs to the auditory cortex, by using the whole-cell patch-clamp recording technique in MGB slices. Rats treated with NaSal (350 mg/kg) showed tinnitus-like behavior as revealed by the gap prepulse inhibition of acoustic startle (GPIAS) paradigm. NaSal (1.4 mM) decreased the membrane input resistance, hyperpolarized the resting membrane potential, suppressed current-evoked firing, changed the action potential, and depressed rebound depolarization in MGB neurons. NaSal also reduced the excitatory and inhibitory postsynaptic response in the MGB evoked by stimulating the brachium of the inferior colliculus. Our results demonstrate that NaSal alters neuronal intrinsic properties and reduces the synaptic transmission of the MGB, which may cause abnormal thalamic outputs to the auditory cortex and contribute to NaSal-induced tinnitus. PMID:23071681

  3. Prenatal exposure to the CB1 and CB2 cannabinoid receptor agonist WIN 55,212-2 alters migration of early-born glutamatergic neurons and GABAergic interneurons in the rat cerebral cortex.

    PubMed

    Saez, Trinidad M M; Aronne, María P; Caltana, Laura; Brusco, Alicia H

    2014-05-01

    The endocannabinoid system, composed of cannabinoid receptors, endocannabinoids, and synthesis and degradation enzymes, is present since early stages of brain development. During this period, the endocannabinoid system is involved in the regulation of neural progenitor proliferation and specification as well as the migration and differentiation of pyramidal neurons and interneurons. Marijuana consumption during pregnancy represents a serious risk in relation to the fetal brain development since Δ(9) -tetrahidrocannabinol, the main active compound of cannabis, can reach the fetus through placenta and hemato-encephalic barrier. Cohort studies performed on children and adolescents of mothers who consumed marijuana during pregnancy reported cognitive and comportamental abnormalities. In the present study, we examined the expression of the cannabinoid receptor CB1 R during corticogenesis in radially and tangentially migrating post-mitotic neurons. We found that prenatal exposure to WIN impaired tangential and radial migration of post-mitotic neurons in the dorsal pallium. In addition, we described alterations of two transcription factors associated with proliferating and newly post-mitotic glutamatergic cells in the dorsal pallium, Tbr1 and Tbr2, and disruption in the number of Cajal-Retzius cells. The present results contribute to the knowledge of neurobiological substrates that determine neuro-comportamental changes that will persist through post-natal life.

  4. Altered hippocampal long-term synaptic plasticity in mice deficient in the PGE2 EP2 receptor

    PubMed Central

    Yang, Hongwei; Zhang, Jian; Breyer, Richard M.; Chen, Chu

    2008-01-01

    Our laboratory demonstrated previously that PGE2-induced modulation of hippocampal synaptic transmission is via a presynaptic PGE2 EP2 receptor. However, little is known about whether the EP2 receptor is involved in hippocampal long-term synaptic plasticity and cognitive function. Here we show that long-term potentiation (LTP) at the hippocampal perforant path synapses was impaired in mice deficient in the EP2 (KO), while membrane excitability and passive properties in granule neurons were normal. Importantly, escape latency in the water maze in EP2 KO was longer than that in age-matched EP2 wild-type littermates (WT). We also observed that LTP was potentiated in EP2 WT animals that received lipopolysaccharide (LPS, i.p.), but not in EP2 KO. Bath application of PGE2 or butaprost, an EP2 receptor agonist, increased synaptic transmission and decreased paired-pulses ratio (PPR) in EP2 WT mice, but failed to induce the changes in EP2 KO mice. Meanwhile, synaptic transmission was elevated by application of forskolin, an adenylyl cyclase activator, both in EP2 KO and WT animals. In addition, the PGE2-enhanced synaptic transmission was significantly attenuated by application of PKA, IP3 or MAPK inhibitors in EP2 WT animals. Our results show that hippocampal long-term synaptic plasticity is impaired in mice deficient in the EP2, suggesting that PGE2-EP2 signaling is important for hippocampal long-term synaptic plasticity and cognitive function. PMID:19012750

  5. New medications for drug addiction hiding in glutamatergic neuroplasticity.

    PubMed

    Kalivas, P W; Volkow, N D

    2011-10-01

    The repeated use of drugs that directly or indirectly stimulate dopamine transmission carry addiction liability and produce enduring pathological changes in the brain circuitry that normally regulates adaptive behavioral responding to a changing environment. This circuitry is rich in glutamatergic projections, and addiction-related behaviors in animal models have been linked to impairments in excitatory synaptic plasticity. Among the best-characterized glutamatergic projection in this circuit is the prefrontal efferent to the nucleus accumbens. A variety of molecular adaptations have been identified in the prefrontal glutamate synapses in the accumbens, many of which are induced by different classes of addictive drugs. Based largely on work with cocaine, we hypothesize that the drug-induced adaptations impair synaptic plasticity in the cortico-accumbens projection, and thereby dysregulate the ability of addicts to control their drug-taking habits. Accordingly, we go on to describe the literature implicating the drug-induced changes in protein content or function that impinge upon synaptic plasticity and have been targeted in preclinical models of relapse and, in some cases, in pilot clinical trials. Based upon modeling drug-induced impairments in neuroplasticity in the cortico-accumbens pathway, we argue for a concerted effort to clinically evaluate the hypothesis that targeting glial and neuronal proteins regulating excitatory synaptic plasticity may prove beneficial in treating addiction. PMID:21519339

  6. Chlorpyrifos exposure during neurulation: cholinergic synaptic dysfunction and cellular alterations in brain regions at adolescence and adulthood.

    PubMed

    Qiao, Dan; Seidler, Frederic J; Abreu-Villaça, Yael; Tate, Charlotte A; Cousins, Mandy M; Slotkin, Theodore A

    2004-01-31

    The developmental neurotoxicity of chlorpyrifos (CPF) involves multiple mechanisms, thus rendering the immature brain susceptible to adverse effects over a wide window of vulnerability. Earlier work indicated that CPF exposure at the neural tube stage elicits apoptosis and disrupts mitotic patterns in the brain primordium but that rapid recovery ensues before birth. In the current study, we assessed whether defects in cholinergic synaptic activity emerge later in development. CPF was given to pregnant rats on gestational days 9-12, using regimens devoid of overt maternal or fetal toxicity. We then examined subsequent development of acetylcholine systems and compared the effects to those on general biomarkers of cell development. Choline acetyltransferase (ChAT), a constitutive marker for cholinergic nerve terminals, was increased in the hippocampus and striatum in adolescence and adulthood. In contrast, hemicholinium-3 (HC-3) binding to the presynaptic choline transporter, an index of nerve impulse activity, was markedly subnormal. Furthermore, m2-muscarinic cholinergic receptor binding was significantly reduced, instead of showing the expected compensatory upregulation for reduced neural input. CPF also elicited delayed-onset alterations in biomarkers of cell packing density, cell number, cell size and neuritic projections, involving brain regions both with and without reductions in indices of cholinergic activity. In combination with earlier results, the current findings indicate that the developing brain, and especially the hippocampus, is adversely affected by CPF regardless of whether exposure occurs early or late in brain development, and that defects emerge in adolescence or adulthood even in situations where normative values are initially restored in the immediate post-exposure period.

  7. A model of cooperative effect of AMPA and NMDA receptors in glutamatergic synapses.

    PubMed

    Di Maio, Vito; Ventriglia, Francesco; Santillo, Silvia

    2016-08-01

    Glutamatergic synapses play a pivotal role in brain excitation. The synaptic response is mediated by the activity of two receptor types (AMPA and NMDA). In the present paper we propose a model of glutamatergic synaptic activity where the fast current generated by the AMPA conductance produces a local depolarization which activates the voltage- and [Mg(2+)]-dependent NMDA conductance. This cooperative effect is dependent on the biophysical properties of the synaptic spine which can be considered a high input resistance specialized compartment. Herein we present results of simulations where different values of the spine resistance and of the Mg(2+) concentrations determine different levels of cooperativeness between AMPA and NMDA receptors in shaping the post-synaptic response.

  8. A model of cooperative effect of AMPA and NMDA receptors in glutamatergic synapses.

    PubMed

    Di Maio, Vito; Ventriglia, Francesco; Santillo, Silvia

    2016-08-01

    Glutamatergic synapses play a pivotal role in brain excitation. The synaptic response is mediated by the activity of two receptor types (AMPA and NMDA). In the present paper we propose a model of glutamatergic synaptic activity where the fast current generated by the AMPA conductance produces a local depolarization which activates the voltage- and [Mg(2+)]-dependent NMDA conductance. This cooperative effect is dependent on the biophysical properties of the synaptic spine which can be considered a high input resistance specialized compartment. Herein we present results of simulations where different values of the spine resistance and of the Mg(2+) concentrations determine different levels of cooperativeness between AMPA and NMDA receptors in shaping the post-synaptic response. PMID:27468319

  9. Serotonin modulates glutamatergic transmission to neurons in the lateral habenula

    PubMed Central

    Xie, Guiqin; Zuo, Wanhong; Wu, Liangzhi; Li, Wenting; Wu, Wei; Bekker, Alex; Ye, Jiang-Hong

    2016-01-01

    The lateral habenula (LHb) is bilaterally connected with serotoninergic raphe nuclei, and expresses high density of serotonin receptors. However, actions of serotonin on the excitatory synaptic transmission to LHb neurons have not been thoroughly investigated. The LHb contains two anatomically and functionally distinct regions: lateral (LHbl) and medial (LHbm) divisions. We compared serotonin’s effects on glutamatergic transmission across the LHb in rat brains. Serotonin bi-directionally and differentially modulated glutamatergic transmission. Serotonin inhibited glutamatergic transmission in higher percentage of LHbl neurons but potentiated in higher percentage of LHbm neurons. Magnitude of potentiation was greater in LHbm than in LHbl. Type 2 and 3 serotonin receptor antagonists attenuated serotonin’s potentiation. The serotonin reuptake blocker, and the type 2 and 3 receptor agonists facilitated glutamatergic transmission in both LHbl and LHbm neurons. Thus, serotonin via activating its type 2, 3 receptors, increased glutamate release at nerve terminals in some LHb neurons. Our data demonstrated that serotonin affects both LHbm and LHbl. Serotonin might play an important role in processing information between the LHb and its downstream-targeted structures during decision-making. It may also contribute to a homeostatic balance underlying the neural circuitry between the LHb and raphe nuclei. PMID:27033153

  10. Prenatal immune challenge in rats: altered responses to dopaminergic and glutamatergic agents, prepulse inhibition of acoustic startle, and reduced route-based learning as a function of maternal body weight gain after prenatal exposure to poly IC.

    PubMed

    Vorhees, Charles V; Graham, Devon L; Braun, Amanda A; Schaefer, Tori L; Skelton, Matthew R; Richtand, Neil M; Williams, Michael T

    2012-08-01

    Prenatal maternal immune activation has been used to test the neurodevelopmental hypothesis of schizophrenia. Most of the data are in mouse models; far less is available for rats. We previously showed that maternal weight change in response to the immune activator polyinosinic-polycytidylic acid (Poly IC) in rats differentially affects offspring. Therefore, we treated gravid Harlan Sprague-Dawley rats i.p. on embryonic day 14 with 8 mg/kg of Poly IC or Saline. The Poly IC group was divided into those that lost or gained the least weight, Poly IC (L), versus those that gained the most weight, Poly IC (H), following treatment. The study design controlled for litter size, litter sampling, sex distribution, and test experience. We found no effects of Poly IC on elevated zero maze, open-field activity, object burying, light-dark test, straight channel swimming, Morris water maze spatial acquisition, reversal, or shift navigation or spatial working or reference memory, or conditioned contextual or cued fear or latent inhibition. The Poly IC (H) group showed a significant decrease in the rate of route-based learning when visible cues were unavailable in the Cincinnati water maze and reduced prepulse inhibition of acoustic startle in females, but not males. The Poly IC (L) group exhibited altered responses to acute pharmacological challenges: exaggerated hyperactivity in response to (+)-amphetamine and an attenuated hyperactivity in response to MK-801. This model did not exhibit the cognitive, or latent inhibition deficits reported in Poly IC-treated rats but showed changes in response to drugs acting on neurotransmitter systems implicated in the pathophysiology of schizophrenia (dopaminergic hyperfunction and glutamatergic hypofunction).

  11. TLR4 elimination prevents synaptic and myelin alterations and long-term cognitive dysfunctions in adolescent mice with intermittent ethanol treatment.

    PubMed

    Montesinos, Jorge; Pascual, María; Pla, Antoni; Maldonado, Concepción; Rodríguez-Arias, Marta; Miñarro, Jose; Guerri, Consuelo

    2015-03-01

    The adolescent brain undergoes important dynamic and plastic cell changes, including overproduction of axons and synapses, followed by rapid pruning along with ongoing axon myelination. These developmental changes make the adolescent brain particularly vulnerable to neurotoxic and behavioral effects of alcohol. Although the mechanisms of these effects are largely unknown, we demonstrated that ethanol by activating innate immune receptors toll-like receptor 4 (TLR4), induces neuroinflammation and brain damage in adult mice. The present study aims to evaluate whether intermittent ethanol treatment in adolescence promotes TLR4-dependent pro-inflammatory processes, leading to myelin and synaptic dysfunctions, and long-term cognitive impairments. Using wild-type (WT) and TLR4-deficient (TLR4-KO) adolescent mice treated intermittently with ethanol (3.0g/kg) for 2weeks, we show that binge-like ethanol treatment activates TLR4 signaling pathways (MAPK, NFκB) leading to the up-regulation of cytokines and pro-inflammatory mediators (COX-2, iNOS, HMGB1), impairing synaptic and myelin protein levels and causing ultrastructural alterations. These changes were associated with long-lasting cognitive dysfunctions in young adult mice, as demonstrated with the object recognition, passive avoidance and olfactory behavior tests. Notably, elimination of TLR4 receptors prevented neuroinflammation along with synaptic and myelin derangements, as well as long-term cognitive alterations. These results support the role of the neuroimmune response and TLR4 signaling in the neurotoxic and behavioral effects of ethanol in adolescence.

  12. Altered GluN2B NMDA receptor function and synaptic plasticity during early pathology in the PS2APP mouse model of Alzheimer’s disease

    PubMed Central

    Hanson, Jesse E.; Pare, Jean-Francois; Deng, Lunbin; Smith, Yoland; Zhou, Qiang

    2015-01-01

    GluN2B subunit containing NMDARs (GluN2B-NMDARs) mediate pathophysiological effects of acutely applied amyloid beta (Aβ), including impaired long-term potentiation (LTP). However, in transgenic Alzheimer’s disease (AD) mouse models which feature gradual Aβ accumulation, the function of GluN2B-NMDARs and their contribution to synaptic plasticity are unknown. Therefore, we examined the role of GluN2B-NMDARs in synaptic function and plasticity in the hippocampus of PS2APP transgenic mice. Although LTP induced by theta burst stimulation (TBS) was normal in PS2APP mice, it was significantly reduced by the selective GluN2B-NMDAR antagonist Ro25-6981 (Ro25) in PS2APP mice, but not wild type (wt) mice. While NMDARs activated by single synaptic stimuli were not blocked by Ro25, NMDARs recruited during burst stimulation showed larger blockade by Ro25 in PS2APP mice. Thus, the unusual dependence of LTP on GluN2B-NMDARs in PS2APP mice suggests that non-synaptic GluN2B-NMDARs are activated by glutamate that spills out of synaptic cleft during the burst stimulation used to induce LTP. While long-term depression (LTD) was normal in PS2APP mice, and Ro25 had no impact on LTD in wt mice, Ro25 impaired LTD in PS2APP mice, again demonstrating aberrant GluN2B-NMDAR function during plasticity. Together these results demonstrate altered GluN2B-NMDAR function in a model of early AD pathology that has implications for the therapeutic targeting of NMDARs in AD. PMID:25484285

  13. The neurotoxin 1-methyl-4-phenylpyridinium (MPP+) alters hippocampal excitatory synaptic transmission by modulation of the GABAergic system

    PubMed Central

    Huang, YuYing; Chen, JunFang; Chen, Ying; Zhuang, YingHan; Sun, Mu; Behnisch, Thomas

    2015-01-01

    The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces Parkinson’s disease-like symptoms following administration to mice, monkeys, and humans. A common view is that MPTP is metabolized to 1-methyl-4-phenylpyridinium ion (MPP+) to induce its neurodegenerative effects on dopaminergic neurons in the substantia nigra (SN). Moreover, the hippocampus contains dopaminergic fibers, which are projecting from the ventral tegmental area, SN and pars compacta and contain the whole machinery required for dopamine synthesis making them sensitive to MPTP and MPP+. Here, we present data showing that acute bath-application of MPP+ elicited a dose-dependent facilitation followed by a depression of synaptic transmission of hippocampal Schaffer collaterals-CA1 synapses in mice. The effects of MPP+ were not mediated by D1/D5- and D2-like receptor activation. Inhibition of the dopamine transporters did not prevent but increased the depression of excitatory post-synaptic field potentials. In the search for a possible mechanism, we observed that MPP+ reduced the appearance of polyspikes in population spikes recorded in str. pyramidale and increased the frequency of miniature inhibitory post-synaptic currents. The acute effect of MPP+ on synaptic transmission was attenuated by co-application of a GABAA receptor antagonist. Taking these data together, we suggest that MPP+ affects hippocampal synaptic transmission by enhancing some aspects of the hippocampal GABAergic system. PMID:26300734

  14. The neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) alters hippocampal excitatory synaptic transmission by modulation of the GABAergic system.

    PubMed

    Huang, YuYing; Chen, JunFang; Chen, Ying; Zhuang, YingHan; Sun, Mu; Behnisch, Thomas

    2015-01-01

    The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces Parkinson's disease-like symptoms following administration to mice, monkeys, and humans. A common view is that MPTP is metabolized to 1-methyl-4-phenylpyridinium ion (MPP(+)) to induce its neurodegenerative effects on dopaminergic neurons in the substantia nigra (SN). Moreover, the hippocampus contains dopaminergic fibers, which are projecting from the ventral tegmental area, SN and pars compacta and contain the whole machinery required for dopamine synthesis making them sensitive to MPTP and MPP(+). Here, we present data showing that acute bath-application of MPP(+) elicited a dose-dependent facilitation followed by a depression of synaptic transmission of hippocampal Schaffer collaterals-CA1 synapses in mice. The effects of MPP(+) were not mediated by D1/D5- and D2-like receptor activation. Inhibition of the dopamine transporters did not prevent but increased the depression of excitatory post-synaptic field potentials. In the search for a possible mechanism, we observed that MPP(+) reduced the appearance of polyspikes in population spikes recorded in str. pyramidale and increased the frequency of miniature inhibitory post-synaptic currents. The acute effect of MPP(+) on synaptic transmission was attenuated by co-application of a GABAA receptor antagonist. Taking these data together, we suggest that MPP(+) affects hippocampal synaptic transmission by enhancing some aspects of the hippocampal GABAergic system. PMID:26300734

  15. Reduced Anterior Cingulate Cortex Glutamatergic Concentrations in Childhood Major Depression

    ERIC Educational Resources Information Center

    Mirza, Yousha; Tang, Jennifer; Russell, Aileen; Banerjee, S. Preeya; Bhandari, Rashmi; Ivey, Jennifer; Rose, Michelle; Moore, Gregory J.; Rosenberg, David R.

    2004-01-01

    Objective: To examine in vivo glutamatergic neurochemical alterations in the anterior cingulate cortex of children with major depressive disorder (MDD). Method: Single-voxel proton magnetic resonance spectroscopic ([.sup.1]H-MRS) examinations of the anterior cingulate cortex were conducted in 13 psychotropic-naive children and adolescents with MDD…

  16. Contrasting alterations to synaptic and intrinsic properties in upper-cervical superficial dorsal horn neurons following acute neck muscle inflammation

    PubMed Central

    2014-01-01

    Background Acute and chronic pain in axial structures, like the back and neck, are difficult to treat, and have incidence as high as 15%. Surprisingly, most preclinical work on pain mechanisms focuses on cutaneous structures in the limbs and animal models of axial pain are not widely available. Accordingly, we developed a mouse model of acute cervical muscle inflammation and assessed the functional properties of superficial dorsal horn (SDH) neurons. Results Male C57/Bl6 mice (P24-P40) were deeply anaesthetised (urethane 2.2 g/kg i.p) and the rectus capitis major muscle (RCM) injected with 40 μl of 2% carrageenan. Sham animals received vehicle injection and controls remained anaesthetised for 2 hrs. Mice in each group were sacrificed at 2 hrs for analysis. c-Fos staining was used to determine the location of activated neurons. c-Fos labelling in carrageenan-injected mice was concentrated within ipsilateral (87% and 63% of labelled neurons in C1 and C2 segments, respectively) and contralateral laminae I - II with some expression in lateral lamina V. c-Fos expression remained below detectable levels in control and sham animals. In additional experiments, whole cell recordings were obtained from visualised SDH neurons in transverse slices in the ipsilateral C1 and C2 spinal segments. Resting membrane potential and input resistance were not altered. Mean spontaneous EPSC amplitude was reduced by ~20% in neurons from carrageenan-injected mice versus control and sham animals (20.63 ± 1.05 vs. 24.64 ± 0.91 and 25.87 ± 1.32 pA, respectively). The amplitude (238 ± 33 vs. 494 ± 96 and 593 ± 167 pA) and inactivation time constant (12.9 ± 1.5 vs. 22.1 ± 3.6 and 15.3 ± 1.4 ms) of the rapid A type potassium current (IAr), the dominant subthreshold current in SDH neurons, were reduced in carrageenan-injected mice. Conclusions Excitatory synaptic drive onto, and important intrinsic properties (i.e., IAr) within SDH neurons are

  17. Glia plasma membrane transporters: Key players in glutamatergic neurotransmission.

    PubMed

    Flores-Méndez, Marco; Mendez-Flores, Orquidia G; Ortega, Arturo

    2016-09-01

    Glutamate, the main excitatory amino acid in the central nervous system, elicits its functions through the activation of specific membrane receptors that are expressed in neurons and glial cells. The re-cycling of this amino acid is carried out mostly through a continuous interplay between neurons and glia cells, given the fact that the removal of glutamate from the synaptic cleft depends mainly on glial glutamate transporters. Therefore, a functional and physical interaction between membrane transporters links glutamate uptake, transformation to glutamine and its release to the extra-synaptic space and its uptake to the pre-synaptic terminal. This sequence of events, best known as the glutamate/glutamine shuttle is central to glutamatergic transmission. In this sense, the uptake process triggers a complex series of biochemical cascades that modify the physiology of glial cells in the immediate, short and long term so as to be capable to take up, transform and release these amino acids in a regulated amount and in an appropriate time frame to sustain glutamatergic neurotransmission. Among the signaling cascades activated in glial cells by glutamate transporters, a sustained Na(+) and Ca(2+) influx, protein posttranslational modifications and gene expression regulation at the transcriptional and translational levels are present. Therefore, it is clear that the pivotal role of glial cells in the context of excitatory transmission has been constantly underestimated. PMID:27083407

  18. Rewarding Effects of Optical Stimulation of Ventral Tegmental Area Glutamatergic Neurons

    PubMed Central

    Wang, Hui-Ling; Qi, Jia; Zhang, Shiliang; Wang, Huikun

    2015-01-01

    Ventral tegmental area (VTA) neurons play roles in reward and aversion. The VTA has three major neuronal phenotypes: dopaminergic, GABAergic, and glutamatergic. VTA glutamatergic neurons—expressing vesicular glutamate transporter-2 (VGluT2)—project to limbic and cortical regions, but also excite neighboring dopaminergic neurons. Here, we test whether local photoactivation of VTA VGluT2 neurons expressing Channelrhodopsin-2 (ChR2) under the VGluT2 promoter causes place preference and supports operant responding for the stimulation. By using a Cre-dependent viral vector, ChR2 (tethered to mCherry) was expressed in VTA glutamatergic neurons of VGluT2::Cre mice. The mCherry distribution was evaluated by immunolabeling. By confocal microscopy, we detected expression of mCherry in VTA cell bodies and local processes. In contrast, VGluT2 expression was restricted to varicosities, some of them coexpressing mCherry. By electron microscopy, we determined that mCherry-VGluT2 varicosities correspond to axon terminals, forming asymmetric synapses on neighboring dopaminergic neurons. These findings indicate that ChR2 was present in terminals containing glutamatergic synaptic vesicles and involved in local synaptic connections. Photoactivation of VTA slices from ChR2-expressing mice induced AMPA/NMDA receptor-dependent firing of dopaminergic neurons projecting to the nucleus accumbens. VTA photoactivation of ChR2-expressing mice reinforced instrumental behavior and established place preferences. VTA injections of AMPA or NMDA receptor antagonists blocked optical self-stimulation and place preference. These findings suggest a role in reward function for VTA glutamatergic neurons through local excitatory synapses on mesoaccumbens dopaminergic neurons. SIGNIFICANCE STATEMENT We show that previously discovered glutamatergic neurons within the ventral tegmental area (VTA), through their local connections, play a role in reward. The participation of VTA glutamatergic neurons in

  19. Prenatal alcohol exposure alters synaptic activity of adult hippocampal dentate granule cells under conditions of enriched environment.

    PubMed

    Kajimoto, Kenta; Valenzuela, C Fernando; Allan, Andrea M; Ge, Shaoyu; Gu, Yan; Cunningham, Lee Anna

    2016-08-01

    Prenatal alcohol exposure (PAE) results in fetal alcohol spectrum disorder (FASD), which is characterized by a wide range of cognitive and behavioral deficits that may be linked to impaired hippocampal function and adult neurogenesis. Preclinical studies in mouse models of FASD indicate that PAE markedly attenuates enrichment-mediated increases in the number of adult-generated hippocampal dentate granule cells (aDGCs), but whether synaptic activity is also affected has not been studied. Here, we utilized retroviral birth-dating coupled with whole cell patch electrophysiological recordings to assess the effects of PAE on enrichment-mediated changes in excitatory and inhibitory synaptic activity as a function of DGC age. We found that exposure to an enriched environment (EE) had no effect on baseline synaptic activity of 4- or 8-week-old aDGCs from control mice, but significantly enhanced the excitatory/inhibitory ratio of synaptic activity in 8-week-old aDGCs from PAE mice. In contrast, exposure to EE significantly enhanced the excitatory/inhibitory ratio of synaptic activity in older pre-existing DGCs situated in the outer dentate granule cell layer (i.e., those generated during embryonic development; dDGCs) in control mice, an effect that was blunted in PAE mice. These findings indicate distinct electrophysiological responses of hippocampal DGCs to behavioral challenge based on cellular ontogenetic age, and suggest that PAE disrupts EE-mediated changes in overall hippocampal network activity. These findings may have implications for future therapeutic targeting of hippocampal dentate circuitry in clinical FASD. © 2016 Wiley Periodicals, Inc. PMID:27009742

  20. Differential regulation of neurexin at glutamatergic and GABAergic synapses.

    PubMed

    Pregno, Giulia; Frola, Elena; Graziano, Stefania; Patrizi, Annarita; Bussolino, Federico; Arese, Marco; Sassoè-Pognetto, Marco

    2013-01-01

    Neurexins (Nrxs) have emerged as potential determinants of synaptic specificity, but little is known about their localization at central synapses. Here we show that Nrxs have a remarkably selective localization at distinct types of glutamatergic synapses and we reveal an unexpected ontogenetic regulation of Nrx expression at GABAergic synapses. Our data indicate that synapses are specified by molecular interactions that involve both Nrx-dependent and Nrx-independent mechanisms. We propose that differences in the spatio-temporal profile of Nrx expression may contribute to specify the molecular identity of synapses.

  1. Alterations in synaptic structure in the paleostriatal complex of the domestic chick, Gallus domesticus, following passive avoidance training.

    PubMed

    Stewart, M G; Csillag, A; Rose, S P

    1987-11-17

    A morphometric study was made of synapses in both left and right hemispheres of two regions of the chick paleostriatal complex, the paleostriatum augmentatum (PA) and the lobus parolfactorius (LPO), 24 h after passive avoidance training (methyl anthranilate, M-chicks), and in water-trained controls (W-chicks). The synaptic features examined were D, the mean length of the postsynaptic thickening; Nv.syn, the numerical density of synapses; Vv.syn, the volume density of the presynaptic bouton; V, the mean volume of the presynaptic bouton; Nv.ves, the numerical density of synaptic vesicles per bouton volume; ves.syn, the number of synaptic vesicles per presynaptic bouton; and K, the curvature of the synaptic contact zone. In the LPO there is a significant increase in the numerical density of synapses (Nv.syn) in both left and right hemispheres of M-compared with W-chicks (up to 59%, depending on the method of calculation used). A hemispheric asymmetry of postsynaptic thickening length (D) which is present in W-chicks (R greater than L by 10%) is reversed in M-chicks. There is no difference in the volume density of the presynaptic bouton (Vv.syn) or the mean bouton volume (V) either between W- and M-chicks, or between left and right hemispheres. Significant changes are found after avoidance training in both of the synaptic vesicle parameters measured. There is an increase of approximately 50%, both in the numerical density of synaptic vesicles (Nv.ves) and the number of vesicles per synaptic bouton (ves.syn), in the left hemisphere of M-chicks. No changes in the mean synaptic contact curvature (K) were observed after training, either of presynaptically concave, or presynaptically convex synapses, in either left or right hemispheres, nor did the percentage distribution of these different curvature classes vary greatly. In the PA there were no significant changes in D, Nv.syn or Vv.syn, either between M- and W-chicks, or between left and right hemispheres, 24 h after

  2. Cannabinoid agonists rearrange synaptic vesicles at excitatory synapses and depress motoneuron activity in vivo.

    PubMed

    García-Morales, Victoria; Montero, Fernando; Moreno-López, Bernardo

    2015-05-01

    Impairment of motor skills is one of the most common acute adverse effects of cannabis. Related studies have focused mainly on psychomotor alterations, and little is known about the direct impact of cannabinoids (CBs) on motoneuron physiology. As key modulators of synaptic function, CBs regulate multiple neuronal functions and behaviors. Presynaptic CB1 mediates synaptic strength depression by inhibiting neurotransmitter release, via a poorly understood mechanism. The present study examined the effect of CB agonists on excitatory synaptic inputs incoming to hypoglossal motoneurons (HMNs) in vitro and in vivo. The endocannabinoid anandamide (AEA) and the synthetic CB agonist WIN 55,212-2 rapidly and reversibly induced short-term depression (STD) of glutamatergic synapses on motoneurons by a presynaptic mechanism. Presynaptic effects were fully reversed by the CB1-selective antagonist AM281. Electrophysiological and electron microscopy analysis showed that WIN 55,212-2 reduced the number of synaptic vesicles (SVs) docked to active zones in excitatory boutons. Given that AM281 fully abolished depolarization-induced depression of excitation, motoneurons can be feasible sources of CBs, which in turn act as retrograde messengers regulating synaptic function. Finally, microiontophoretic application of the CB agonist O-2545 reversibly depressed, presumably via CB1, glutamatergic inspiratory-related activity of HMNs in vivo. Therefore, evidence support that CBs, via presynaptic CB1, induce excitatory STD by reducing the readily releasable pool of SVs at excitatory synapses, then attenuating motoneuron activity. These outcomes contribute a possible mechanistic basis for cannabis-associated motor performance disturbances such as ataxia, dysarthria and dyscoordination.

  3. Cannabinoid agonists rearrange synaptic vesicles at excitatory synapses and depress motoneuron activity in vivo.

    PubMed

    García-Morales, Victoria; Montero, Fernando; Moreno-López, Bernardo

    2015-05-01

    Impairment of motor skills is one of the most common acute adverse effects of cannabis. Related studies have focused mainly on psychomotor alterations, and little is known about the direct impact of cannabinoids (CBs) on motoneuron physiology. As key modulators of synaptic function, CBs regulate multiple neuronal functions and behaviors. Presynaptic CB1 mediates synaptic strength depression by inhibiting neurotransmitter release, via a poorly understood mechanism. The present study examined the effect of CB agonists on excitatory synaptic inputs incoming to hypoglossal motoneurons (HMNs) in vitro and in vivo. The endocannabinoid anandamide (AEA) and the synthetic CB agonist WIN 55,212-2 rapidly and reversibly induced short-term depression (STD) of glutamatergic synapses on motoneurons by a presynaptic mechanism. Presynaptic effects were fully reversed by the CB1-selective antagonist AM281. Electrophysiological and electron microscopy analysis showed that WIN 55,212-2 reduced the number of synaptic vesicles (SVs) docked to active zones in excitatory boutons. Given that AM281 fully abolished depolarization-induced depression of excitation, motoneurons can be feasible sources of CBs, which in turn act as retrograde messengers regulating synaptic function. Finally, microiontophoretic application of the CB agonist O-2545 reversibly depressed, presumably via CB1, glutamatergic inspiratory-related activity of HMNs in vivo. Therefore, evidence support that CBs, via presynaptic CB1, induce excitatory STD by reducing the readily releasable pool of SVs at excitatory synapses, then attenuating motoneuron activity. These outcomes contribute a possible mechanistic basis for cannabis-associated motor performance disturbances such as ataxia, dysarthria and dyscoordination. PMID:25595101

  4. Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission

    NASA Astrophysics Data System (ADS)

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-01

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  5. Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting

    PubMed Central

    Biesemann, Christoph; Grønborg, Mads; Luquet, Elisa; Wichert, Sven P; Bernard, Véronique; Bungers, Simon R; Cooper, Ben; Varoqueaux, Frédérique; Li, Liyi; Byrne, Jennifer A; Urlaub, Henning; Jahn, Olaf; Brose, Nils; Herzog, Etienne

    2014-01-01

    For decades, neuroscientists have used enriched preparations of synaptic particles called synaptosomes to study synapse function. However, the interpretation of corresponding data is problematic as synaptosome preparations contain multiple types of synapses and non-synaptic neuronal and glial contaminants. We established a novel Fluorescence Activated Synaptosome Sorting (FASS) method that substantially improves conventional synaptosome enrichment protocols and enables high-resolution biochemical analyses of specific synapse subpopulations. Employing knock-in mice with fluorescent glutamatergic synapses, we show that FASS isolates intact ultrapure synaptosomes composed of a resealed presynaptic terminal and a postsynaptic density as assessed by light and electron microscopy. FASS synaptosomes contain bona fide glutamatergic synapse proteins but are almost devoid of other synapse types and extrasynaptic or glial contaminants. We identified 163 enriched proteins in FASS samples, of which FXYD6 and Tpd52 were validated as new synaptic proteins. FASS purification thus enables high-resolution biochemical analyses of specific synapse subpopulations in health and disease. PMID:24413018

  6. Role of nucleus accumbens glutamatergic plasticity in drug addiction

    PubMed Central

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance’s effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca2+-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  7. Role of nucleus accumbens glutamatergic plasticity in drug addiction

    PubMed Central

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance’s effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca2+-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  8. SYN2 is an autism predisposing gene: loss-of-function mutations alter synaptic vesicle cycling and axon outgrowth.

    PubMed

    Corradi, Anna; Fadda, Manuela; Piton, Amélie; Patry, Lysanne; Marte, Antonella; Rossi, Pia; Cadieux-Dion, Maxime; Gauthier, Julie; Lapointe, Line; Mottron, Laurent; Valtorta, Flavia; Rouleau, Guy A; Fassio, Anna; Benfenati, Fabio; Cossette, Patrick

    2014-01-01

    An increasing number of genes predisposing to autism spectrum disorders (ASDs) has been identified, many of which are implicated in synaptic function. This 'synaptic autism pathway' notably includes disruption of SYN1 that is associated with epilepsy, autism and abnormal behavior in both human and mice models. Synapsins constitute a multigene family of neuron-specific phosphoproteins (SYN1-3) present in the majority of synapses where they are implicated in the regulation of neurotransmitter release and synaptogenesis. Synapsins I and II, the major Syn isoforms in the adult brain, display partially overlapping functions and defects in both isoforms are associated with epilepsy and autistic-like behavior in mice. In this study, we show that nonsense (A94fs199X) and missense (Y236S and G464R) mutations in SYN2 are associated with ASD in humans. The phenotype is apparent in males. Female carriers of SYN2 mutations are unaffected, suggesting that SYN2 is another example of autosomal sex-limited expression in ASD. When expressed in SYN2  knockout neurons, wild-type human Syn II fully rescues the SYN2 knockout phenotype, whereas the nonsense mutant is not expressed and the missense mutants are virtually unable to modify the SYN2 knockout phenotype. These results identify for the first time SYN2  as a novel predisposing gene for ASD and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies ASD. PMID:23956174

  9. Anaesthetics differentially modulate the trigeminocardiac reflex excitatory synaptic pathway in the brainstem

    PubMed Central

    Wang, Xin; Gorini, Christopher; Sharp, Douglas; Bateman, Ryan; Mendelowitz, David

    2011-01-01

    Abstract The trigeminocardiac reflex (TCR) occurs upon excitation of the trigeminal nerve with a resulting bradycardia and hypotension. While several anaesthetics and analgesics have been reported to alter the incidence and strength of the TCR the mechanisms for this modulation are unclear. This study examines the mechanisms of action of ketamine, isoflurane and fentanyl on the synaptic TCR responses in both neurones in the spinal trigeminal interpolaris (Sp5I) nucleus and cardiac vagal neurones (CVNs) in the Nucleus Ambiguus (NA). Stimulation of trigeminal afferent fibres evoked an excitatory postsynaptic current (EPSC) in trigeminal neurones with a latency of 1.8 ± 0.1 ms, jitter of 625 μs, and peak amplitude of 239 ± 45 pA. Synaptic responses further downstream in the reflex pathway in the CVNs occurred with a latency of 12.1 ± 1.1 ms, jitter of 0.8–2 ms and amplitude of 57.8 ± 7.5 pA. The average conduction velocity to the Sp5I neurones was 0.94 ± 0.18 mm ms−1 indicating a mixture of A-δ and C fibres. Stimulation-evoked EPSCs in both Sp5I and CVNs were completely blocked by AMPA/kainate and NMDA glutamatergic receptor antagonists. Ketamine (10 μm) inhibited the peak amplitude and duration in Sp5I as well as more distal synapses in the CVNs. Isoflurane (300 μm) significantly inhibited, while fentanyl (1 μm) significantly enhanced, EPSC amplitude and area in CVNs but had no effect on the responses in Sp5l neurones. These findings indicate glutamatergic excitatory synaptic pathways are critical in the TCR, and ketamine, isoflurane and fentanyl differentially alter the synaptic pathways via modulation of both AMPA/kainate and NMDA receptors at different synapses in the TCR. PMID:21930602

  10. Influenza A virus infection causes alterations in expression of synaptic regulatory genes combined with changes in cognitive and emotional behaviors in mice.

    PubMed

    Beraki, S; Aronsson, F; Karlsson, H; Ogren, S O; Kristensson, K

    2005-03-01

    Epidemiological studies have indicated a link between certain neuropsychiatric diseases and exposure to viral infections. In order to examine long-term effects on behavior and gene expression in the brain of one candidate virus, we have used a model involving olfactory bulb injection of the neuro-adapted influenza A virus strain, WSN/33, in C57Bl/6 mice. Following this olfactory route of invasion, the virus targets neurons in the medial habenular, midline thalamic and hypothalamic nuclei as well as monoaminergic neurons in the brainstem. The mice survive and the viral infection is cleared from the brain within 12 days. When tested 14-20 weeks after infection, the mice displayed decreased anxiety in the elevated plus-maze and impaired spatial learning in the Morris water maze test. Elevated transcriptional activity of two genes encoding synaptic regulatory proteins, regulator of G-protein signaling 4 and calcium/calmodulin-dependent protein kinase IIalpha, was found in the amygdala, hypothalamus and cerebellum. It is of particular interest that the gene encoding RGS4, which has been related to schizophrenia, showed the most pronounced alteration. This study indicates that a transient influenza virus infection can cause persistent changes in emotional and cognitive functions as well as alterations in the expression of genes involved in the regulation of synaptic activities.

  11. Peripherally restricted viral challenge elevates extracellular glutamate and enhances synaptic transmission in the hippocampus.

    PubMed

    Hunsberger, Holly C; Wang, Desheng; Petrisko, Tiffany J; Alhowail, Ahmad; Setti, Sharay E; Suppiramaniam, Vishnu; Konat, Gregory W; Reed, Miranda N

    2016-07-01

    Peripheral infections increase the propensity and severity of seizures in susceptible populations. We have previously shown that intraperitoneal injection of a viral mimic, polyinosinic-polycytidylic acid (PIC), elicits hypersusceptibility of mice to kainic acid (KA)-induced seizures. This study was undertaken to determine whether this seizure hypersusceptibility entails alterations in glutamate signaling. Female C57BL/6 mice were intraperitoneally injected with PIC, and after 24 h, glutamate homeostasis in the hippocampus was monitored using the enzyme-based microelectrode arrays. PIC challenge robustly increased the level of resting extracellular glutamate. While pre-synaptic potassium-evoked glutamate release was not affected, glutamate uptake was profoundly impaired and non-vesicular glutamate release was augmented, indicating functional alterations of astrocytes. Electrophysiological examination of hippocampal slices from PIC-challenged mice revealed a several fold increase in the basal synaptic transmission as compared to control slices. PIC challenge also increased the probability of pre-synaptic glutamate release as seen from a reduction of paired-pulse facilitation and synaptic plasticity as seen from an enhancement of long-term potentiation. Altogether, our results implicate a dysregulation of astrocytic glutamate metabolism and an alteration of excitatory synaptic transmission as the underlying mechanism for the development of hippocampal hyperexcitability, and consequently seizure hypersusceptibility following peripheral PIC challenge. Peripheral infections/inflammations enhance seizure susceptibility. Here, we explored the effect of peritoneal inflammation induced by a viral mimic on glutamate homeostasis and glutamatergic neurotransmission in the mouse hippocampus. We found that peritoneal inflammation elevated extracellular glutamate concentration and enhanced the probability of pre-synaptic glutamate release resulting in hyperexcitability of

  12. Running Opposes the Effects of Social Isolation on Synaptic Plasticity and Transmission in a Rat Model of Depression

    PubMed Central

    Gómez-Galán, Marta; Femenía, Teresa; Åberg, Elin; Graae, Lisette; Van Eeckhaut, Ann; Smolders, Ilse; Brené, Stefan; Lindskog, Maria

    2016-01-01

    Stress, such as social isolation, is a well-known risk factor for depression, most probably in combination with predisposing genetic factors. Physical exercise on the other hand, is depicted as a wonder-treatment that makes you healthier, happier and live longer. However, the published results on the effects of exercise are ambiguous, especially when it comes to neuropsychiatric disorders. Here we combine a paradigm of social isolation with a genetic rat model of depression, the Flinders Sensitive Line (FSL), already known to have glutamatergic synaptic alterations. Compared to group-housed FSL rats, we found that social isolation further affects synaptic plasticity and increases basal synaptic transmission in hippocampal CA1 pyramidal neurons. These functional synaptic alterations co-exist with changes in hippocampal protein expression levels: social isolation in FSL rats reduce expression of the glial glutamate transporter GLT-1, and increase expression of the GluA2 AMPA-receptor subunit. We further show that physical exercise in form of voluntary running prevents the stress-induced synaptic effects but do not restore the endogenous mechanisms of depression already present in the FSL rat. PMID:27764188

  13. Modulation of the glutamatergic transmission by Dopamine: a focus on Parkinson, Huntington and Addiction diseases

    PubMed Central

    Gardoni, Fabrizio; Bellone, Camilla

    2015-01-01

    Dopamine (DA) plays a major role in motor and cognitive functions as well as in reward processing by regulating glutamatergic inputs. In particular in the striatum the release of DA rapidly influences synaptic transmission modulating both AMPA and NMDA receptors. Several neurodegenerative and neuropsychiatric disorders, including Parkinson, Huntington and addiction-related diseases, manifest a dysregulation of glutamate and DA signaling. Here, we will focus our attention on the mechanisms underlying the modulation of the glutamatergic transmission by DA in striatal circuits. PMID:25784855

  14. Optogenetics and synaptic plasticity.

    PubMed

    Xie, Yu-feng; Jackson, Michael F; Macdonald, John F

    2013-11-01

    The intricate and complex interaction between different populations of neurons in the brain has imposed limits on our ability to gain detailed understanding of synaptic transmission and its integration when employing classical electrophysiological approaches. Indeed, electrical field stimulation delivered via traditional microelectrodes does not permit the targeted, precise and selective control of neuronal activity amongst a varied population of neurons and their inputs (eg, cholinergic, dopaminergic or glutamatergic neurons). Recently established optogenetic techniques overcome these limitations allowing precise control of the target neuron populations, which is essential for the elucidation of the neural substrates underlying complex animal behaviors. Indeed, by introducing light-activated channels (ie, microbial opsin genes) into specific neuronal populations, optogenetics enables non-invasive optical control of specific neurons with milliseconds precision. These approaches can readily be applied to freely behaving live animals. Recently there is increased interests in utilizing optogenetics tools to understand synaptic plasticity and learning/memory. Here, we summarize recent progress in applying optogenetics in in the study of synaptic plasticity.

  15. Disruption of striatal glutamatergic/GABAergic homeostasis following acute methamphetamine in mice.

    PubMed

    Pereira, Frederico C; Cunha-Oliveira, Teresa; Viana, Sofia D; Travassos, Ana S; Nunes, Sara; Silva, Carlos; Prediger, Rui Daniel; Rego, A Cristina; Ali, Syed F; Ribeiro, Carlos Alberto Fontes

    2012-01-01

    Methamphetamine leads to functional changes in basal ganglia that are linked to impairment in motor activity. Previous studies from our group and others have shown that a single high-methamphetamine injection induces striatal dopaminergic changes in rodents. However, striatal glutamatergic, GABAergic and serotoninergic changes remain elusive under this methamphetamine regimen. Moreover, nothing is known about the participation of the receptor for advanced glycation end-products (RAGE), which is overexpressed upon synaptic dysfunction and glial response, on methamphetamine-induced striatal dysfunction. The aim of this work was to provide an integrative characterization of the striatal changes in amino acids, monoamines and astroglia, as well as in the RAGE levels, and the associated motor activity profile of C57BL/6 adult mice, 72 h after a single-high dose of methamphetamine (30 mg/kg, i.p.). Our findings indicate, for the first time, that methamphetamine decreases striatal glutamine, glutamate and GABA levels, as well as glutamine/glutamate and GABA/glutamate ratios, while serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels remain unchanged. This methamphetamine regimen also produced dopaminergic terminal degeneration in the striatum, as evidenced by dopamine and tyrosine hydroxylase depletion. Consistently, methamphetamine decreased the locomotor activity of mice, in the open field test. In addition, increased levels of glutamine synthase and glial fibrillary acidic protein were observed. Nevertheless, methamphetamine failed to change RAGE levels. Our results show that acute methamphetamine intoxication induces pronounced changes in the striatal glutamatergic/GABAergic and dopaminergic homeostasis, along with astrocyte activation. These neurochemical and glial alterations are accompanied by impairment in locomotor activity.

  16. Innervation by a GABAergic neuron depresses spontaneous release in glutamatergic neurons and unveils the clamping phenotype of synaptotagmin-1.

    PubMed

    Wierda, Keimpe D B; Sørensen, Jakob B

    2014-02-01

    The role of spontaneously occurring release events in glutamatergic and GABAergic neurons and their regulation is intensely debated. To study the interdependence of glutamatergic and GABAergic spontaneous release, we compared reciprocally connected "mixed" glutamatergic/GABAergic neuronal pairs from mice cultured on astrocyte islands with "homotypic" glutamatergic or GABAergic pairs and autaptic neurons. We measured mEPSC and mIPSC frequencies simultaneously from both neurons. Neuronal pairs formed both interneuronal synaptic and autaptic connections indiscriminately. We find that whereas mEPSC and mIPSC frequencies did not deviate between autaptic and synaptic connections, the frequency of mEPSCs in mixed pairs was strongly depressed compared with either autaptic neurons or glutamatergic pairs. Simultaneous imaging of synapses, or comparison to evoked release amplitudes, showed that this decrease was not caused by fewer active synapses. The mEPSC frequency was negatively correlated with the mIPSC frequency, indicating interdependence. Moreover, the reduction in mEPSC frequency was abolished when established pairs were exposed to bicuculline for 3 d, but not by long-term incubation with tetrodotoxin, indicating that spontaneous GABA release downregulates mEPSC frequency. Further investigations showed that knockout of synaptotagmin-1 did not affect mEPSC frequencies in either glutamatergic autaptic neurons or in glutamatergic pairs. However, in mixed glutamatergic/GABAergic pairs, mEPSC frequencies were increased by a factor of four in the synaptotagmin-1-null neurons, which is in line with data obtained from mixed cultures. The effect persisted after incubation with BAPTA-AM. We conclude that spontaneous GABA release exerts control over mEPSC release, and GABAergic innervation of glutamatergic neurons unveils the unclamping phenotype of the synaptotagmin-1-null neurons.

  17. Tianeptine modulates amygdalar glutamate neurochemistry and synaptic proteins in rats subjected to repeated stress.

    PubMed

    Piroli, Gerardo G; Reznikov, Leah R; Grillo, Claudia A; Hagar, Janel M; Fadel, Jim R; Reagan, Lawrence P

    2013-03-01

    Stress is a common environmental factor associated with depressive illness and the amygdala is thought to be integral for this association. For example, repeated stress impairs amygdalar neuroplasticity in rodents and these defects parallel amygdalar deficits in depressive illness patients. Because the excitatory neurotransmitter glutamate is important in neuroplasticity, we hypothesized that alterations in amygdalar glutamatergic systems may serve as key players in depressive illness. Moreover, restoration of amygdalar glutamatergic systems may serve as important therapeutic targets in the successful management of multiple stress-related mood disorders. To address these hypotheses, we measured glutamate efflux in the basolateral and central amygdalar complexes via in vivo microdialysis, as well as the expression of synaptic proteins that regulate vesicular glutamate packaging and release, in rats subjected to repeated stress and treated daily with saline or the antidepressant tianeptine. Glutamate efflux was significantly reduced in the central amygdalar complex of animals subjected to repeated stress. In addition, repeated stress nearly eliminated amygdalar vGLUT2 expression, thereby proving a potential mechanism through which repeated stress impairs amygdalar glutamate neurochemistry. These stress-induced changes in glutamate efflux and vGLUT2 expression were inhibited by daily tianeptine administration. Moreover, tianeptine administration increased the vesicular localization of SNAP-25, which could account for the ability of tianeptine to modify glutamatergic tone in non-stressed control rats. Collectively, these results demonstrate that repeated stress differentially affects amygdalar glutamate systems and further supports our previous studies indicating that tianeptine's antidepressant efficacy may involve targeting amygdalar glutatamatergic systems.

  18. Altered synaptic marker abundance in the hippocampal stratum oriens of Ts65Dn mice is associated with exuberant expression of versican

    PubMed Central

    Howell, Matthew D; Gottschall, Paul E

    2012-01-01

    DS (Down syndrome), resulting from trisomy of chromosome 21, is the most common cause of genetic mental retardation; however, the molecular mechanisms underlying the cognitive deficits are poorly understood. Growing data indicate that changes in abundance or type of CSPGs (chondroitin sulfate proteoglycans) in the ECM (extracellular matrix) can influence synaptic structure and plasticity. The purpose of this study was to identify changes in synaptic structure in the hippocampus in a model of DS, the Ts65Dn mouse, and to determine the relationship to proteoglycan abundance and/or cleavage and cognitive disability. We measured synaptic proteins by ELISA and changes in lectican expression and processing in the hippocampus of young and old Ts65Dn mice and LMCs (littermate controls). In young (5 months old) Ts65Dn hippocampal extracts, we found a significant increase in the postsynaptic protein PSD-95 (postsynaptic density 95) compared with LMCs. In aged (20 months old) Ts65Dn hippocampus, this increase was localized to hippocampal stratum oriens extracts compared with LMCs. Aged Ts65Dn mice exhibited impaired hippocampal-dependent spatial learning and memory in the RAWM (radial-arm water maze) and a marked increase in levels of the lectican versican V2 in stratum oriens that correlated with the number of errors made in the final RAWM block. Ts65Dn stratum oriens PNNs (perineuronal nets), an extension of the ECM enveloping mostly inhibitory interneurons, were dispersed over a larger area compared with LMC mice. Taken together, these data suggest a possible association with alterations in the ECM and inhibitory neurotransmission in the Ts65Dn hippocampus which could contribute to cognitive deficits. PMID:22225533

  19. Calcium-induced calcium release contributes to synaptic release from mouse rod photoreceptors

    PubMed Central

    Babai, N.; Morgans, C. W.; Thoreson, WB.

    2009-01-01

    We tested whether calcium-induced calcium release (CICR) contributes to synaptic release from rods in mammalian retina. Electron micrographs and immunofluorescent double labeling for the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) and synaptic ribbon protein, ribeye, showed a close association between ER and synaptic ribbons in mouse rod terminals. Stimulating CICR with 10 μM ryanodine evoked Ca2+ increases in rod terminals from mouse retinal slices visualized using confocal microscopy with the Ca2+-sensitive dye, Fluo-4. Ryanodine also stimulated membrane depolarization of individual mouse rods. Inhibiting CICR with a high concentration of ryanodine (100 μM) reduced the ERG b-wave but not a-wave consistent with inhibition of synaptic transmission from rods. Ryanodine (100 μM) also inhibited light-evoked voltage responses of individual rod bipolar cells (RBCs) and presumptive horizontal cells recorded with perforated patch recording techniques. A presynaptic site of action for ryanodine's effects is further indicated by the finding that ryanodine (100 μM) did not alter currents evoked in voltage-clamped RBCs by puffing the mGluR6 antagonist, (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG), onto bipolar cell dendrites in the presence of the mGluR6 agonist L-(+)-2-amino-4-phosphonobutyric acid (L-AP4). Ryanodine (100 μM) also inhibited glutamatergic outward currents in RBCs evoked by electrical stimulation of rods using electrodes placed in the outer segment layer. Together, these results indicate that, like amphibian retina, CICR contributes to synaptic release from mammalian (mouse) rods. By boosting synaptic release in darkness, CICR may improve the detection of small luminance changes by post-synaptic neurons. PMID:19932743

  20. Overexpression of Isoforms of Nitric Oxide Synthase 1 Adaptor Protein, Encoded by a Risk Gene for Schizophrenia, Alters Actin Dynamics and Synaptic Function.

    PubMed

    Hernandez, Kristina; Swiatkowski, Przemyslaw; Patel, Mihir V; Liang, Chen; Dudzinski, Natasha R; Brzustowicz, Linda M; Firestein, Bonnie L

    2016-01-01

    Proper communication between neurons depends upon appropriate patterning of dendrites and correct distribution and structure of spines. Schizophrenia is a neuropsychiatric disorder characterized by alterations in dendrite branching and spine density. Nitric oxide synthase 1 adaptor protein (NOS1AP), a risk gene for schizophrenia, encodes proteins that are upregulated in the dorsolateral prefrontal cortex (DLPFC) of individuals with schizophrenia. To elucidate the effects of NOS1AP overexpression observed in individuals with schizophrenia, we investigated changes in actin dynamics and spine development when a long (NOS1AP-L) or short (NOS1AP-S) isoform of NOS1AP is overexpressed. Increased NOS1AP-L protein promotes the formation of immature spines when overexpressed in rat cortical neurons from day in vitro (DIV) 14 to DIV 17 and reduces the amplitude of miniature excitatory postsynaptic currents (mEPSCs). In contrast, increased NOS1AP-S protein increases the rate of actin polymerization and the number of immature and mature spines, which may be attributed to a decrease in total Rac1 expression and a reduction in the levels of active cofilin. The increase in the number of mature spines by overexpression of NOS1AP-S is accompanied by an increase in the frequency of mEPSCs. Our findings show that overexpression of NOS1AP-L or NOS1AP-S alters the actin cytoskeleton and synaptic function. However, the mechanisms by which these isoforms induce these changes are distinct. These results are important for understanding how increased expression of NOS1AP isoforms can influence spine development and synaptic function. PMID:26869880

  1. Overexpression of Isoforms of Nitric Oxide Synthase 1 Adaptor Protein, Encoded by a Risk Gene for Schizophrenia, Alters Actin Dynamics and Synaptic Function

    PubMed Central

    Hernandez, Kristina; Swiatkowski, Przemyslaw; Patel, Mihir V.; Liang, Chen; Dudzinski, Natasha R.; Brzustowicz, Linda M.; Firestein, Bonnie L.

    2016-01-01

    Proper communication between neurons depends upon appropriate patterning of dendrites and correct distribution and structure of spines. Schizophrenia is a neuropsychiatric disorder characterized by alterations in dendrite branching and spine density. Nitric oxide synthase 1 adaptor protein (NOS1AP), a risk gene for schizophrenia, encodes proteins that are upregulated in the dorsolateral prefrontal cortex (DLPFC) of individuals with schizophrenia. To elucidate the effects of NOS1AP overexpression observed in individuals with schizophrenia, we investigated changes in actin dynamics and spine development when a long (NOS1AP-L) or short (NOS1AP-S) isoform of NOS1AP is overexpressed. Increased NOS1AP-L protein promotes the formation of immature spines when overexpressed in rat cortical neurons from day in vitro (DIV) 14 to DIV 17 and reduces the amplitude of miniature excitatory postsynaptic currents (mEPSCs). In contrast, increased NOS1AP-S protein increases the rate of actin polymerization and the number of immature and mature spines, which may be attributed to a decrease in total Rac1 expression and a reduction in the levels of active cofilin. The increase in the number of mature spines by overexpression of NOS1AP-S is accompanied by an increase in the frequency of mEPSCs. Our findings show that overexpression of NOS1AP-L or NOS1AP-S alters the actin cytoskeleton and synaptic function. However, the mechanisms by which these isoforms induce these changes are distinct. These results are important for understanding how increased expression of NOS1AP isoforms can influence spine development and synaptic function. PMID:26869880

  2. Loss of COMMD1 and copper overload disrupt zinc homeostasis and influence an autism-associated pathway at glutamatergic synapses.

    PubMed

    Baecker, Tanja; Mangus, Katharina; Pfaender, Stefanie; Chhabra, Resham; Boeckers, Tobias M; Grabrucker, Andreas M

    2014-08-01

    Recent studies suggest that synaptic pathology in autism spectrum disorder (ASD) might be caused by the disruption of a signaling pathway at excitatory glutamatergic synapses, which can be influenced by environmental factors. Some factors, such as prenatal zinc deficiency, dysfunction of metallothioneins as well as deletion of COMMD1, all affect brain metal-ion homeostasis and have been associated with ASD. Given that COMMD1 regulates copper levels and that copper and zinc have antagonistic properties, here, we followed the idea that copper overload might induce a local zinc deficiency affecting key players of a putative ASD pathway such as ProSAP/Shank proteins as reported before. Our results show that increased copper levels indeed interfere with intracellular zinc concentrations and affect synaptic ProSAP/Shank levels, which similarly are altered by manipulation of copper and zinc levels through overexpression and knockdown of COMMD1. In line with this, acute and prenatal copper overload lead to local zinc deficiencies in mice. Pups exposed to prenatal copper overload furthermore show a reduction in ProSAP/Shank protein levels in the brain as well as a decreased NMDAR subunit 1 concentration. Thus, it might be likely that brain metal ion status influences a distinct pathway in excitatory synapses associated with genetic forms of ASD.

  3. Third trimester-equivalent ethanol exposure increases anxiety-like behavior and glutamatergic transmission in the basolateral amygdala.

    PubMed

    Baculis, Brian C; Diaz, Marvin R; Valenzuela, C Fernando

    2015-10-01

    Ethanol consumption during pregnancy produces a wide range of morphological and behavioral alterations known as fetal alcohol spectrum disorder (FASD). Among the behavioral deficits associated with FASD is an increased probability of developing anxiety disorders. Studies with animal models of FASD have demonstrated that ethanol exposure during the equivalent to the 1(st) and 2(nd) trimesters of human pregnancy increases anxiety-like behavior. Here, we examined the impact on this type of behavior of exposure to high doses of ethanol in vapor inhalation chambers during the rat equivalent to the human 3rd trimester of pregnancy (i.e., neonatal period in these animals). We evaluated anxiety-like behavior with the elevated plus maze. Using whole-cell patch-clamp electrophysiological techniques in brain slices, we also characterized glutamatergic and GABAergic synaptic transmission in the basolateral amygdala, a brain region that has been implicated to play a role in emotional behavior. We found that ethanol-exposed adolescent offspring preferred the closed arms over the open arms in the elevated plus maze and displayed lower head dipping activity than controls. Electrophysiological measurements showed an increase in the frequency of spontaneous and miniature excitatory postsynaptic currents in pyramidal neurons from the ethanol group. These findings suggest that high-dose ethanol exposure during the equivalent to the last trimester of human pregnancy can persistently increase excitatory synaptic inputs to principal neurons in the basolateral amygdala, leading to an increase in anxiety-like behaviors.

  4. Stress rapidly dysregulates the glutamatergic synapse in the prefrontal cortex of cocaine-withdrawn adolescent rats.

    PubMed

    Caffino, Lucia; Calabrese, Francesca; Giannotti, Giuseppe; Barbon, Alessandro; Verheij, Michel M M; Racagni, Giorgio; Fumagalli, Fabio

    2015-01-01

    Although several lines of evidence have shown that chronic cocaine use is associated with stress system dysregulation, the underlying neurochemical mechanisms are still elusive. To investigate whether the rapid stress-induced response of the glutamatergic synapse was influenced by a previous history of cocaine, rats were exposed to repeated cocaine injections during adolescence [from postnatal day (PND) 28-42], subjected to a single swim stress (5 minutes) three days later (PND 45) and sacrificed 15 minutes after the end of this stressor. Critical determinants of glutamatergic homeostasis were measured in the medial prefrontal cortex (mPFC) whereas circulating corticosterone levels were measured in the plasma. Exposure to stress in saline-treated animals did not show changes in the crucial determinants of the glutamatergic synapse. Conversely, in cocaine-treated animals, stress dynamically altered the glutamatergic synapse by: (1) enhancing the presynaptic vesicular mediators of glutamate release; (2) reducing the transporters responsible for glutamate clearance; (3) increasing the postsynaptic responsiveness of the N-methyl-D-aspartate subunit GluN1; and (4) causing hyperresponsive spines as evidenced by increased activation of the postsynaptic cdc42-Pak pathway. These findings indicate that exposure to cocaine during adolescence sensitizes mPFC glutamatergic synapses to stress. It is suggested that changes in glutamatergic signaling may contribute to the increased sensitivity to stress observed in cocaine users. Moreover, glutamatergic processes may play an important role in stress-induced reinstatement of cocaine seeking. PMID:24102978

  5. Upward synaptic scaling is dependent on neurotransmission rather than spiking.

    PubMed

    Fong, Ming-fai; Newman, Jonathan P; Potter, Steve M; Wenner, Peter

    2015-01-01

    Homeostatic plasticity encompasses a set of mechanisms that are thought to stabilize firing rates in neural circuits. The most widely studied form of homeostatic plasticity is upward synaptic scaling (upscaling), characterized by a multiplicative increase in the strength of excitatory synaptic inputs to a neuron as a compensatory response to chronic reductions in firing rate. While reduced spiking is thought to trigger upscaling, an alternative possibility is that reduced glutamatergic transmission generates this plasticity directly. However, spiking and neurotransmission are tightly coupled, so it has been difficult to determine their independent roles in the scaling process. Here we combined chronic multielectrode recording, closed-loop optogenetic stimulation, and pharmacology to show that reduced glutamatergic transmission directly triggers cell-wide synaptic upscaling. This work highlights the importance of synaptic activity in initiating signalling cascades that mediate upscaling. Moreover, our findings challenge the prevailing view that upscaling functions to homeostatically stabilize firing rates.

  6. mGluR5 Ablation in Cortical Glutamatergic Neurons Increases Novelty-Induced Locomotion

    PubMed Central

    Zhu, Jie; Huang, Jui-Yen; Yu, Dinghui; Justice, Nicholas J.; Lu, Hui-Chen

    2013-01-01

    The group I metabotropic glutamate receptor 5 (mGluR5) has been implicated in the pathology of various neurological disorders including schizophrenia, ADHD, and autism. mGluR5-dependent synaptic plasticity has been described at a variety of neural connections and its signaling has been implicated in several behaviors. These behaviors include locomotor reactivity to novel environment, sensorimotor gating, anxiety, and cognition. mGluR5 is expressed in glutamatergic neurons, inhibitory neurons, and glia in various brain regions. In this study, we show that deleting mGluR5 expression only in principal cortical neurons leads to defective cannabinoid receptor 1 (CB1R) dependent synaptic plasticity in the prefrontal cortex. These cortical glutamatergic mGluR5 knockout mice exhibit increased novelty-induced locomotion, and their locomotion can be further enhanced by treatment with the psychostimulant methylphenidate. Despite a modest reduction in repetitive behaviors, cortical glutamatergic mGluR5 knockout mice are normal in sensorimotor gating, anxiety, motor balance/learning and fear conditioning behaviors. These results show that mGluR5 signaling in cortical glutamatergic neurons is required for precisely modulating locomotor reactivity to a novel environment but not for sensorimotor gating, anxiety, motor coordination, several forms of learning or social interactions. PMID:23940572

  7. Reduction of the Cholesterol Sensor SCAP in the Brains of Mice Causes Impaired Synaptic Transmission and Altered Cognitive Function

    PubMed Central

    Chee, Melissa J.; Maratos-Flier, Eleftheria; Kahn, C. Ronald

    2013-01-01

    The sterol sensor SCAP is a key regulator of SREBP-2, the major transcription factor controlling cholesterol synthesis. Recently, we showed that there is a global down-regulation of cholesterol synthetic genes, as well as SREBP-2, in the brains of diabetic mice, leading to a reduction of cholesterol synthesis. We now show that in mouse models of type 1 and type 2 diabetes, this is, in part, the result of a decrease of SCAP. Homozygous disruption of the Scap gene in the brains of mice causes perinatal lethality associated with microcephaly and gliosis. Mice with haploinsufficiency of Scap in the brain show a 60% reduction of SCAP protein and ∼30% reduction in brain cholesterol synthesis, similar to what is observed in diabetic mice. This results in impaired synaptic transmission, as measured by decreased paired pulse facilitation and long-term potentiation, and is associated with behavioral and cognitive changes. Thus, reduction of SCAP and the consequent suppression of cholesterol synthesis in the brain may play an important role in the increased rates of cognitive decline and Alzheimer disease observed in diabetic states. PMID:23585733

  8. AMPA receptor inhibition by synaptically released zinc.

    PubMed

    Kalappa, Bopanna I; Anderson, Charles T; Goldberg, Jacob M; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-12-22

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses.

  9. AMPA receptor inhibition by synaptically released zinc

    PubMed Central

    Kalappa, Bopanna I.; Anderson, Charles T.; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses. PMID:26647187

  10. Altered Intrinsic Pyramidal Neuron Properties and Pathway-Specific Synaptic Dysfunction Underlie Aberrant Hippocampal Network Function in a Mouse Model of Tauopathy

    PubMed Central

    Booth, Clair A.; Witton, Jonathan; Nowacki, Jakub; Tsaneva-Atanasova, Krasimira; Jones, Matthew W.; Randall, Andrew D.

    2016-01-01

    The formation and deposition of tau protein aggregates is proposed to contribute to cognitive impairments in dementia by disrupting neuronal function in brain regions, including the hippocampus. We used a battery of in vivo and in vitro electrophysiological recordings in the rTg4510 transgenic mouse model, which overexpresses a mutant form of human tau protein, to investigate the effects of tau pathology on hippocampal neuronal function in area CA1 of 7- to 8-month-old mice, an age point at which rTg4510 animals exhibit advanced tau pathology and progressive neurodegeneration. In vitro recordings revealed shifted theta-frequency resonance properties of CA1 pyramidal neurons, deficits in synaptic transmission at Schaffer collateral synapses, and blunted plasticity and imbalanced inhibition at temporoammonic synapses. These changes were associated with aberrant CA1 network oscillations, pyramidal neuron bursting, and spatial information coding in vivo. Our findings relate tauopathy-associated changes in cellular neurophysiology to altered behavior-dependent network function. SIGNIFICANCE STATEMENT Dementia is characterized by the loss of learning and memory ability. The deposition of tau protein aggregates in the brain is a pathological hallmark of dementia; and the hippocampus, a brain structure known to be critical in processing learning and memory, is one of the first and most heavily affected regions. Our results show that, in area CA1 of hippocampus, a region involved in spatial learning and memory, tau pathology is associated with specific disturbances in synaptic, cellular, and network-level function, culminating in the aberrant encoding of spatial information and spatial memory impairment. These studies identify several novel ways in which hippocampal information processing may be disrupted in dementia, which may provide targets for future therapeutic intervention. PMID:26758828

  11. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  12. Rewarding Effects of Optical Stimulation of Ventral Tegmental Area Glutamatergic Neurons.

    PubMed

    Wang, Hui-Ling; Qi, Jia; Zhang, Shiliang; Wang, Huikun; Morales, Marisela

    2015-12-01

    Ventral tegmental area (VTA) neurons play roles in reward and aversion. The VTA has three major neuronal phenotypes: dopaminergic, GABAergic, and glutamatergic. VTA glutamatergic neurons--expressing vesicular glutamate transporter-2 (VGluT2)--project to limbic and cortical regions, but also excite neighboring dopaminergic neurons. Here, we test whether local photoactivation of VTA VGluT2 neurons expressing Channelrhodopsin-2 (ChR2) under the VGluT2 promoter causes place preference and supports operant responding for the stimulation. By using a Cre-dependent viral vector, ChR2 (tethered to mCherry) was expressed in VTA glutamatergic neurons of VGluT2::Cre mice. The mCherry distribution was evaluated by immunolabeling. By confocal microscopy, we detected expression of mCherry in VTA cell bodies and local processes. In contrast, VGluT2 expression was restricted to varicosities, some of them coexpressing mCherry. By electron microscopy, we determined that mCherry-VGluT2 varicosities correspond to axon terminals, forming asymmetric synapses on neighboring dopaminergic neurons. These findings indicate that ChR2 was present in terminals containing glutamatergic synaptic vesicles and involved in local synaptic connections. Photoactivation of VTA slices from ChR2-expressing mice induced AMPA/NMDA receptor-dependent firing of dopaminergic neurons projecting to the nucleus accumbens. VTA photoactivation of ChR2-expressing mice reinforced instrumental behavior and established place preferences. VTA injections of AMPA or NMDA receptor antagonists blocked optical self-stimulation and place preference. These findings suggest a role in reward function for VTA glutamatergic neurons through local excitatory synapses on mesoaccumbens dopaminergic neurons.

  13. Genomic Convergence Analysis of Schizophrenia: mRNA Sequencing Reveals Altered Synaptic Vesicular Transport in Post-Mortem Cerebellum

    PubMed Central

    Mudge, Joann; Miller, Neil A.; Khrebtukova, Irina; Lindquist, Ingrid E.; May, Gregory D.; Huntley, Jim J.; Luo, Shujun; Zhang, Lu; van Velkinburgh, Jennifer C.; Farmer, Andrew D.; Lewis, Sharon; Beavis, William D.; Schilkey, Faye D.; Virk, Selene M.; Black, C. Forrest; Myers, M. Kathy; Mader, Lar C.; Langley, Ray J.; Utsey, John P.; Kim, Ryan W.; Roberts, Rosalinda C.; Khalsa, Sat Kirpal; Garcia, Meredith; Ambriz-Griffith, Victoria; Harlan, Richard; Czika, Wendy; Martin, Stanton; Wolfinger, Russell D.; Perrone-Bizzozero, Nora I.; Schroth, Gary P.; Kingsmore, Stephen F.

    2008-01-01

    Schizophrenia (SCZ) is a common, disabling mental illness with high heritability but complex, poorly understood genetic etiology. As the first phase of a genomic convergence analysis of SCZ, we generated 16.7 billion nucleotides of short read, shotgun sequences of cDNA from post-mortem cerebellar cortices of 14 patients and six, matched controls. A rigorous analysis pipeline was developed for analysis of digital gene expression studies. Sequences aligned to approximately 33,200 transcripts in each sample, with average coverage of 450 reads per gene. Following adjustments for confounding clinical, sample and experimental sources of variation, 215 genes differed significantly in expression between cases and controls. Golgi apparatus, vesicular transport, membrane association, Zinc binding and regulation of transcription were over-represented among differentially expressed genes. Twenty three genes with altered expression and involvement in presynaptic vesicular transport, Golgi function and GABAergic neurotransmission define a unifying molecular hypothesis for dysfunction in cerebellar cortex in SCZ. PMID:18985160

  14. Molecular composition of the endocannabinoid system at glutamatergic synapses.

    PubMed

    Katona, István; Urbán, Gabriella M; Wallace, Matthew; Ledent, Catherine; Jung, Kwang-Mook; Piomelli, Daniele; Mackie, Ken; Freund, Tamás F

    2006-05-24

    Endocannabinoids play central roles in retrograde signaling at a wide variety of synapses throughout the CNS. Although several molecular components of the endocannabinoid system have been identified recently, their precise location and contribution to retrograde synaptic signaling is essentially unknown. Here we show, by using two independent riboprobes, that principal cell populations of the hippocampus express high levels of diacylglycerol lipase alpha (DGL-alpha), the enzyme involved in generation of the endocannabinoid 2-arachidonoyl-glycerol (2-AG). Immunostaining with two independent antibodies against DGL-alpha revealed that this lipase was concentrated in heads of dendritic spines throughout the hippocampal formation. Furthermore, quantification of high-resolution immunoelectron microscopic data showed that this enzyme was highly compartmentalized into a wide perisynaptic annulus around the postsynaptic density of axospinous contacts but did not occur intrasynaptically. On the opposite side of the synapse, the axon terminals forming these excitatory contacts were found to be equipped with presynaptic CB1 cannabinoid receptors. This precise anatomical positioning suggests that 2-AG produced by DGL-alpha on spine heads may be involved in retrograde synaptic signaling at glutamatergic synapses, whereas CB1 receptors located on the afferent terminals are in an ideal position to bind 2-AG and thereby adjust presynaptic glutamate release as a function of postsynaptic activity. We propose that this molecular composition of the endocannabinoid system may be a general feature of most glutamatergic synapses throughout the brain and may contribute to homosynaptic plasticity of excitatory synapses and to heterosynaptic plasticity between excitatory and inhibitory contacts.

  15. A truncating mutation in Alzheimer's disease inactivates neuroligin-1 synaptic function.

    PubMed

    Tristán-Clavijo, Enriqueta; Camacho-Garcia, Rafael J; Robles-Lanuza, Estefanía; Ruiz, Agustín; van der Zee, Julie; Van Broeckhoven, Christine; Hernandez, Isabel; Martinez-Mir, Amalia; Scholl, Francisco G

    2015-12-01

    Neuroligins (NLs) are cell-adhesion proteins that regulate synapse formation and function. Neuroligin 1 (NL1) promotes the formation of glutamatergic synapses and mediates long-term potentiation in mouse models. Thus, altered NL1 function could mediate the synaptic and memory deficits associated with Alzheimer's disease (AD). Here, we describe a frameshift mutation, c.875_876insTT, in the neuroligin 1 gene (NLGN1) in a patient with AD and familial history of AD. The insertion generates a premature stop codon in the extracellular domain of NL1 (p.Thr271fs). Expression of mutant NL1 shows accumulation of truncated NL1 proteins in the endoplasmic reticulum. In hippocampal neurons, the p.Thr271fs mutation abolishes the ability of NL1 to promote the formation of glutamatergic synapses. Our data support a role for inactivating mutations in NLGN1 in AD. Previous studies have reported rare mutations in X-linked NLGNL3 and NLGNL4 genes in patients with autism, which result in the inactivation of the mutant alleles. Therefore, together with a role in neurodevelopmental disorders, altered NL function could underlie the molecular mechanisms associated with brain diseases in the elderly.

  16. Excitatory synapses are stronger in the hippocampus of Rett syndrome mice due to altered synaptic trafficking of AMPA-type glutamate receptors

    PubMed Central

    Li, Wei; Xu, Xin

    2016-01-01

    Deficits in long-term potentiation (LTP) at central excitatory synapses are thought to contribute to cognitive impairments in neurodevelopmental disorders associated with intellectual disability and autism. Using the methyl-CpG-binding protein 2 (Mecp2) knockout (KO) mouse model of Rett syndrome, we show that naïve excitatory synapses onto hippocampal pyramidal neurons of symptomatic mice have all of the hallmarks of potentiated synapses. Stronger Mecp2 KO synapses failed to undergo LTP after either theta-burst afferent stimulation or pairing afferent stimulation with postsynaptic depolarization. On the other hand, basal synaptic strength and LTP were not affected in slices from younger presymptomatic Mecp2 KO mice. Furthermore, spine synapses in pyramidal neurons from symptomatic Mecp2 KO are larger and do not grow in size or incorporate GluA1 subunits after electrical or chemical LTP. Our data suggest that LTP is occluded in Mecp2 KO mice by already potentiated synapses. The higher surface levels of GluA1-containing receptors are consistent with altered expression levels of proteins involved in AMPA receptor trafficking, suggesting previously unidentified targets for therapeutic intervention for Rett syndrome and other MECP2-related disorders. PMID:26929363

  17. Excitatory synapses are stronger in the hippocampus of Rett syndrome mice due to altered synaptic trafficking of AMPA-type glutamate receptors.

    PubMed

    Li, Wei; Xu, Xin; Pozzo-Miller, Lucas

    2016-03-15

    Deficits in long-term potentiation (LTP) at central excitatory synapses are thought to contribute to cognitive impairments in neurodevelopmental disorders associated with intellectual disability and autism. Using the methyl-CpG-binding protein 2 (Mecp2) knockout (KO) mouse model of Rett syndrome, we show that naïve excitatory synapses onto hippocampal pyramidal neurons of symptomatic mice have all of the hallmarks of potentiated synapses. Stronger Mecp2 KO synapses failed to undergo LTP after either theta-burst afferent stimulation or pairing afferent stimulation with postsynaptic depolarization. On the other hand, basal synaptic strength and LTP were not affected in slices from younger presymptomatic Mecp2 KO mice. Furthermore, spine synapses in pyramidal neurons from symptomatic Mecp2 KO are larger and do not grow in size or incorporate GluA1 subunits after electrical or chemical LTP. Our data suggest that LTP is occluded in Mecp2 KO mice by already potentiated synapses. The higher surface levels of GluA1-containing receptors are consistent with altered expression levels of proteins involved in AMPA receptor trafficking, suggesting previously unidentified targets for therapeutic intervention for Rett syndrome and other MECP2-related disorders.

  18. NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients

    PubMed Central

    Mellone, Manuela; Stanic, Jennifer; Hernandez, Ledia F.; Iglesias, Elena; Zianni, Elisa; Longhi, Annalisa; Prigent, Annick; Picconi, Barbara; Calabresi, Paolo; Hirsch, Etienne C.; Obeso, Jose A.; Di Luca, Monica; Gardoni, Fabrizio

    2015-01-01

    Levodopa-induced dyskinesias (LIDs) are major complications in the pharmacological management of Parkinson’s disease (PD). Abnormal glutamatergic transmission in the striatum is considered a key factor in the development of LIDs. This work aims at: (i) characterizing N-methyl-D-aspartate (NMDA) receptor GluN2A/GluN2B subunit ratio as a common synaptic trait in rat and primate models of LIDs as well as in dyskinetic PD patients; and (ii) validating the potential therapeutic effect of a cell-permeable peptide (CPP) interfering with GluN2A synaptic localization on the dyskinetic behavior of these experimental models of LIDs. Here we demonstrate an altered ratio of synaptic GluN2A/GluN2B-containing NMDA receptors in the striatum of levodopa-treated dyskinetic rats and monkeys as well as in post-mortem tissue from dyskinetic PD patients. The modulation of synaptic NMDA receptor composition by a cell-permeable peptide interfering with GluN2A subunit interaction with the scaffolding protein postsynaptic density protein 95 (PSD-95) leads to a reduction in the dyskinetic motor behavior in the two animal models of LIDs. Our results indicate that targeting synaptic NMDA receptor subunit composition may represent an intriguing therapeutic approach aimed at ameliorating levodopa motor side effects. PMID:26217176

  19. Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to short-term synaptic plasticity in hippocampal neurons.

    PubMed

    Nanou, Evanthia; Sullivan, Jane M; Scheuer, Todd; Catterall, William A

    2016-01-26

    Short-term synaptic plasticity is induced by calcium (Ca(2+)) accumulating in presynaptic nerve terminals during repetitive action potentials. Regulation of voltage-gated CaV2.1 Ca(2+) channels by Ca(2+) sensor proteins induces facilitation of Ca(2+) currents and synaptic facilitation in cultured neurons expressing exogenous CaV2.1 channels. However, it is unknown whether this mechanism contributes to facilitation in native synapses. We introduced the IM-AA mutation into the IQ-like motif (IM) of the Ca(2+) sensor binding site. This mutation does not alter voltage dependence or kinetics of CaV2.1 currents, or frequency or amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs); however, synaptic facilitation is completely blocked in excitatory glutamatergic synapses in hippocampal autaptic cultures. In acutely prepared hippocampal slices, frequency and amplitude of mEPSCs and amplitudes of evoked EPSCs are unaltered. In contrast, short-term synaptic facilitation in response to paired stimuli is reduced by ∼ 50%. In the presence of EGTA-AM to prevent global increases in free Ca(2+), the IM-AA mutation completely blocks short-term synaptic facilitation, indicating that synaptic facilitation by brief, local increases in Ca(2+) is dependent upon regulation of CaV2.1 channels by Ca(2+) sensor proteins. In response to trains of action potentials, synaptic facilitation is reduced in IM-AA synapses in initial stimuli, consistent with results of paired-pulse experiments; however, synaptic depression is also delayed, resulting in sustained increases in amplitudes of later EPSCs during trains of 10 stimuli at 10-20 Hz. Evidently, regulation of CaV2.1 channels by CaS proteins is required for normal short-term plasticity and normal encoding of information in native hippocampal synapses.

  20. Glutamatergic targets for new alcohol medications

    PubMed Central

    Spanagel, Rainer; Krystal, John H.

    2013-01-01

    Rationale An increasingly compelling literature points to a major role for the glutamate system in mediating the effects of alcohol on behavior and the pathophysiology of alcoholism. Preclinical studies indicate that glutamate signaling mediates certain aspects of ethanol’s intoxicating and rewarding effects, and undergoes adaptations following chronic alcohol exposure that may contribute to the withdrawal, craving and compulsive drug-seeking that drive alcohol abuse and alcoholism. Objectives We discuss the potential for targeting the glutamate system as a novel pharmacotherapeutic approach to treating alcohol use disorders, focusing on five major components of the glutamate system: the N-methyl-D-aspartate (NMDA) receptor and specific NMDA subunits, the glycineB site on the NMDA receptors (NMDAR), L-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid ionotropic (AMPA) and kainate (KAR) receptors, metabotropic receptors (mGluR), and glutamate transporters. Results Chronic alcohol abuse produces a hyperglutamatergic state, characterized by elevated extracellular glutamate and altered glutamate receptors and transporters. Pharmacologically manipulating glutamatergic neurotransmission alters alcohol-related behaviors including intoxication, withdrawal, and alcohol-seeking, in rodents and human subjects. Blocking NMDA and AMPA receptors reduces alcohol consumption in rodents, but side-effects may limit this as a therapeutic approach. Selectively targeting NMDA and AMPA receptor subunits (e.g., GluN2B, GluA3), or the NMDAR glycineB site offers an alternative approach. Blocking mGluR5 potently affects various alcohol-related behaviors in rodents, and mGluR2/3 agonism also suppresses alcohol consumption. Finally, glutamate transporter upregulation may mitigate behavioral and neurotoxic sequelae of excess glutamate caused by alcohol. Conclusions Despite the many challenges that remain, targeting the glutamate system offers genuine promise for developing new

  1. Cannabinoids: Glutamatergic Transmission and Kynurenines.

    PubMed

    Colín-González, Ana Laura; Aguilera, Gabriela; Santamaría, Abel

    2016-01-01

    The endocannabinoid system (ECS) comprises a complex of receptors, enzymes, and endogenous agonists that are widely distributed in the central nervous system of mammals and participates in a considerable number of neuromodulatory functions, including neurotransmission, immunological control, and cell signaling. In turn, the kynurenine pathway (KP) is the most relevant metabolic route for tryptophan degradation to form the metabolic precursor NAD(+). Recent studies demonstrate that the control exerted by the pharmacological manipulation of the ECS on the glutamatergic system in the brain may offer key information not only on the development of psychiatric disorders like psychosis and schizophrenia-like symptoms, but it also may constitute a solid basis for the development of therapeutic strategies to combat excitotoxic events occurring in neurological disorders like Huntington's disease (HD). Part of the evidence pointing to the last approach is based on experimental protocols demonstrating the efficacy of cannabinoids to prevent the deleterious actions of the endogenous neurotoxin and KP metabolite quinolinic acid (QUIN). These findings intuitively raise the question about what is the precise role of the ECS in tryptophan metabolism through KP and vice versa. In this chapter, we will review basic concepts on the physiology of both the ECS and the KP to finally describe those recent findings combining the components of these two systems and hypothesize the future course that the research in this emerging field will take in the next years. PMID:27651254

  2. Cannabinoids: Glutamatergic Transmission and Kynurenines.

    PubMed

    Colín-González, Ana Laura; Aguilera, Gabriela; Santamaría, Abel

    2016-01-01

    The endocannabinoid system (ECS) comprises a complex of receptors, enzymes, and endogenous agonists that are widely distributed in the central nervous system of mammals and participates in a considerable number of neuromodulatory functions, including neurotransmission, immunological control, and cell signaling. In turn, the kynurenine pathway (KP) is the most relevant metabolic route for tryptophan degradation to form the metabolic precursor NAD(+). Recent studies demonstrate that the control exerted by the pharmacological manipulation of the ECS on the glutamatergic system in the brain may offer key information not only on the development of psychiatric disorders like psychosis and schizophrenia-like symptoms, but it also may constitute a solid basis for the development of therapeutic strategies to combat excitotoxic events occurring in neurological disorders like Huntington's disease (HD). Part of the evidence pointing to the last approach is based on experimental protocols demonstrating the efficacy of cannabinoids to prevent the deleterious actions of the endogenous neurotoxin and KP metabolite quinolinic acid (QUIN). These findings intuitively raise the question about what is the precise role of the ECS in tryptophan metabolism through KP and vice versa. In this chapter, we will review basic concepts on the physiology of both the ECS and the KP to finally describe those recent findings combining the components of these two systems and hypothesize the future course that the research in this emerging field will take in the next years.

  3. Dopamine facilitates long-term depression of glutamatergic transmission in rat prefrontal cortex.

    PubMed

    Otani, S; Blond, O; Desce, J M; Crépel, F

    1998-08-01

    Using sharp-electrode intracellular recordings, we studied the dopaminergic facilitation of synaptic plasticity in layer I-II afferents--layer V neuron glutamatergic synapses in rat prefrontal cortex in vitro. Tetanic stimulation (100 pulses at 50 Hz, four times at 0.1 Hz) to layer I-II afferents induced N-methyl-D-aspartate receptor-independent long-term depression (>40 min) of the glutamatergic synapses when the stimulation was coupled with a bath-application of dopamine. Tetanic stimulation alone did not induce lasting synaptic changes. Dopamine application alone transiently depressed synaptic responses, which fully recovered within 30 min. Pharmacological analyses with antagonists suggested that dopamine action on either D1-like or D2-like receptors can facilitate the induction of long-term depression. However, results with agonists were not fully consistent with the antagonist results: while a D2 agonist mimicked the facilitatory dopamine effect, D1 agonists failed to mimic the effect. We also analysed the synaptic responses during tetanus and found that dopamine prolongs membrane depolarization during high-frequency inputs. Postsynaptic membrane depolarization is indeed critical for long-term depression induction in the presence of dopamine, since postsynaptic hyperpolarization during tetanus blocked the dopaminergic facilitation of long-term depression induction. Postsynaptic injection of the Ca2+ chelator bis-(o-aminophenoxy)-N,N,N',N'-tetra-acetic acid (100 mM in the electrode) also blocked long-term depression induction. Our results show that dopamine lowers the threshold for long-term depression induction in rat prefrontal glutamatergic transmission. A possible underlying mechanism of this dopaminergic facilitation is the enhancement of postsynaptic depolarization during tetanus by dopamine, which may increase the amount of Ca2+ entry from voltage-gated channels to the level sufficient for plasticity induction.

  4. Corticotropin releasing factor and catecholamines enhance glutamatergic neurotransmission in the lateral subdivision of the central amygdala.

    PubMed

    Silberman, Yuval; Winder, Danny G

    2013-07-01

    Glutamatergic neurotransmission in the central nucleus of the amygdala (CeA) plays an important role in many behaviors including anxiety, memory consolidation and cardiovascular responses. While these behaviors can be modulated by corticotropin releasing factor (CRF) and catecholamine signaling, the mechanism(s) by which these signals modify CeA glutamatergic neurotransmission remains unclear. Utilizing whole-cell patch-clamp electrophysiology recordings from neurons in the lateral subdivision of the CeA (CeAL), we show that CRF, dopamine (DA) and the β-adrenergic receptor agonist isoproterenol (ISO) all enhance the frequency of spontaneous excitatory postsynaptic currents (sEPSC) without altering sEPSC kinetics, suggesting they increase presynaptic glutamate release. The effect of CRF on sEPSCs was mediated by a combination of CRFR1 and CRFR2 receptors. While previous work from our lab suggests that CRFRs mediate the effect of catecholamines on excitatory transmission in other subregions of the extended amygdala, blockade of CRFRs in the CeAL failed to significantly alter effects of DA and ISO on glutamatergic transmission. These findings suggest that catecholamine and CRF enhancement of glutamatergic transmission onto CeAL neurons occurs via distinct mechanisms. While CRF increased spontaneous glutamate release in the CeAL, CRF caused no significant changes to optogenetically evoked glutamate release in this region. The dissociable effects of CRF on different types of glutamatergic neurotransmission suggest that CRF may specifically regulate spontaneous excitatory transmission.

  5. Altered neurotransmission in the mesolimbic reward system of Girk mice.

    PubMed

    Arora, Devinder; Haluk, Desirae M; Kourrich, Saïd; Pravetoni, Marco; Fernández-Alacid, Laura; Nicolau, Joel C; Luján, Rafael; Wickman, Kevin

    2010-09-01

    Mice lacking the Girk2 subunit of G protein-gated inwardly rectifying K+ (Girk) channels exhibit dopamine-dependent hyperactivity and elevated responses to drugs that stimulate dopamine neurotransmission. The dopamine-dependent phenotypes seen in Girk2(-/-) mice could reflect increased intrinsic excitability of or diminished inhibitory feedback to midbrain dopamine neurons, or secondary adaptations triggered by Girk2 ablation. We addressed these possibilities by evaluating Girk(-/-) mice in behavioral, electrophysiological, and cell biological assays centered on the mesolimbic dopamine system. Despite differences in the contribution of Girk1 and Girk2 subunits to Girk signaling in midbrain dopamine neurons, Girk1(-/-) and Girk2(-/-) mice exhibited comparable baseline hyperactivities and enhanced responses to cocaine. Girk ablation also correlated with altered afferent input to dopamine neurons in the ventral tegmental area. Dopamine neurons from Girk1(-/-) and Girk2(-/-) mice exhibited elevated glutamatergic neurotransmission, paralleled by increased synaptic levels of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate glutamate receptors. In addition, synapse density, alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor levels, and glutamatergic neurotransmission were elevated in medium spiny neurons of the nucleus accumbens from Girk1(-/-) and Girk2(-/-) mice. We conclude that dopamine-dependent phenotypes in Girk2(-/-) mice are not solely attributable to a loss of Girk signaling in dopamine neurons, and likely involve secondary adaptations facilitating glutamatergic signaling in the mesolimbic reward system. PMID:20557431

  6. Low level postnatal methylmercury exposure in vivo alters developmental forms of short-term synaptic plasticity in the visual cortex of rat

    SciTech Connect

    Dasari, Sameera; Yuan, Yukun

    2009-11-01

    Methylmercury (MeHg) has been previously shown to affect neurotransmitter release. Short-term synaptic plasticity (STP) is primarily related to changes in the probability of neurotransmitter release. To determine if MeHg affects STP development, we examined STP forms in the visual cortex of rat following in vivo MeHg exposure. Neonatal rats received 0 (0.9% NaCl), 0.75 or 1.5 mg/kg/day MeHg subcutaneously for 15 or 30 days beginning on postnatal day 5, after which visual cortical slices were prepared for field potential recordings. In slices prepared from rats treated with vehicle, field excitatory postsynaptic potentials (fEPSPs) evoked by paired-pulse stimulation at 20-200 ms inter-stimulus intervals showed a depression (PPD) of the second fEPSP (fEPSP2). PPD was also seen in slices prepared from rats after 15 day treatment with 0.75 or 1.5 mg/kg/day MeHg. However, longer duration treatment (30 days) with either dose of MeHg resulted in paired-pulse facilitation (PPF) of fEPSP2 in the majority of slices examined. PPF remained observable in slices prepared from animals in which MeHg exposure had been terminated for 30 days after completion of the initial 30 day MeHg treatment, whereas slices from control animals still showed PPD. MeHg did not cause any frequency- or region-preferential effect on STP. Manipulations of [Ca{sup 2+}]{sub e} or application of the GABA{sub A} receptor antagonist bicuculline could alter the strength and polarity of MeHg-induced changes in STP. Thus, these data suggest that low level postnatal MeHg exposure interferes with the developmental transformation of STP in the visual cortex, which is a long-lasting effect.

  7. Glutamatergic autoencephalitides: an emerging field.

    PubMed

    Panzer, Jessica A; Gleichman, Amy J; Lynch, David R

    2014-08-01

    Autoimmune responses targeting synaptic proteins are associated with a wide range of neurologic symptoms. Among these disorders are those associated with antibodies to ionotropic glutamate receptors, including the NMDAR (N-methyl-D-aspartate receptor) and AMPAR (α-amino-3-hydrozy-5-methyl-4-isoxazolepropionic acid receptor). Patients with anti-NMDAR encephalitis present with psychiatric symptoms, seizures, movement disorders, impaired consciousness, and autonomic derangements; half of patients have an associated ovarian teratoma, and most patients respond to immunosuppressive therapies. Patients' antibodies bind to the amino terminal domain of the NMDAR, and result in loss of NMDARs from synapses with subsequent NMDAR hypofunction. Anti-NMDAR antibodies have now been reported in other neuropsychiatric conditions, including psychosis, dementia, and HSV encephalitis. The pathophysiologic relevance of anti-NMDAR antibodies in these disorders is not yet clear, but their presence may indicate a role for immunotherapy in some patients. Although considerable work remains to be done, our understanding of disorders associated with anti-glutamate receptor antibodies has grown exponentially since they were first described just over 7 years ago, revolutionizing neurology. These antibodies, by interfering with synaptic function, readily link basic science and clinical medicine, and have revealed the impact of sudden but sustained loss of specific neurotransmitter receptors in humans. Improved understanding of their pathophysiology will lead to better treatments for these diseases while providing novel insights regarding the roles of glutamate receptors in learning, memory, and neuropsychiatric disease. PMID:24402576

  8. Reorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of Purkinje Cell Degeneration Mutant Mice.

    PubMed

    Blosa, M; Bursch, C; Weigel, S; Holzer, M; Jäger, C; Janke, C; Matthews, R T; Arendt, T; Morawski, M

    2016-01-01

    The perineuronal net (PN) is a subtype of extracellular matrix appearing as a net-like structure around distinct neurons throughout the whole CNS. PNs surround the soma, proximal dendrites, and the axonal initial segment embedding synaptic terminals on the neuronal surface. Different functions of the PNs are suggested which include support of synaptic stabilization, inhibition of axonal sprouting, and control of neuronal plasticity. A number of studies provide evidence that removing PNs or PN-components results in renewed neurite growth and synaptogenesis. In a mouse model for Purkinje cell degeneration, we examined the effect of deafferentation on synaptic remodeling and modulation of PNs in the deep cerebellar nuclei. We found reduced GABAergic, enhanced glutamatergic innervations at PN-associated neurons, and altered expression of the PN-components brevican and hapln4. These data refer to a direct interaction between ECM and synapses. The altered brevican expression induced by activated astrocytes could be required for an adequate regeneration by promoting neurite growth and synaptogenesis.

  9. Reorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of Purkinje Cell Degeneration Mutant Mice

    PubMed Central

    Blosa, M.; Bursch, C.; Weigel, S.; Holzer, M.; Jäger, C.; Janke, C.; Matthews, R. T.; Arendt, T.; Morawski, M.

    2016-01-01

    The perineuronal net (PN) is a subtype of extracellular matrix appearing as a net-like structure around distinct neurons throughout the whole CNS. PNs surround the soma, proximal dendrites, and the axonal initial segment embedding synaptic terminals on the neuronal surface. Different functions of the PNs are suggested which include support of synaptic stabilization, inhibition of axonal sprouting, and control of neuronal plasticity. A number of studies provide evidence that removing PNs or PN-components results in renewed neurite growth and synaptogenesis. In a mouse model for Purkinje cell degeneration, we examined the effect of deafferentation on synaptic remodeling and modulation of PNs in the deep cerebellar nuclei. We found reduced GABAergic, enhanced glutamatergic innervations at PN-associated neurons, and altered expression of the PN-components brevican and hapln4. These data refer to a direct interaction between ECM and synapses. The altered brevican expression induced by activated astrocytes could be required for an adequate regeneration by promoting neurite growth and synaptogenesis. PMID:26819763

  10. Reorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of Purkinje Cell Degeneration Mutant Mice.

    PubMed

    Blosa, M; Bursch, C; Weigel, S; Holzer, M; Jäger, C; Janke, C; Matthews, R T; Arendt, T; Morawski, M

    2016-01-01

    The perineuronal net (PN) is a subtype of extracellular matrix appearing as a net-like structure around distinct neurons throughout the whole CNS. PNs surround the soma, proximal dendrites, and the axonal initial segment embedding synaptic terminals on the neuronal surface. Different functions of the PNs are suggested which include support of synaptic stabilization, inhibition of axonal sprouting, and control of neuronal plasticity. A number of studies provide evidence that removing PNs or PN-components results in renewed neurite growth and synaptogenesis. In a mouse model for Purkinje cell degeneration, we examined the effect of deafferentation on synaptic remodeling and modulation of PNs in the deep cerebellar nuclei. We found reduced GABAergic, enhanced glutamatergic innervations at PN-associated neurons, and altered expression of the PN-components brevican and hapln4. These data refer to a direct interaction between ECM and synapses. The altered brevican expression induced by activated astrocytes could be required for an adequate regeneration by promoting neurite growth and synaptogenesis. PMID:26819763

  11. Corticosterone mediates the synaptic and behavioral effects of chronic stress at rat hippocampal temporoammonic synapses.

    PubMed

    Kvarta, Mark D; Bradbrook, Keighly E; Dantrassy, Hannah M; Bailey, Aileen M; Thompson, Scott M

    2015-09-01

    Chronic stress is thought to impart risk for depression via alterations in brain structure and function, but contributions of specific mediators in generating these changes remain unclear. We test the hypothesis that stress-induced increases in corticosterone (CORT), the primary rodent glucocorticoid, are the key mediator of stress-induced depressive-like behavioral changes and synaptic dysfunction in the rat hippocampus. In rats, we correlated changes in cognitive and affective behavioral tasks (spatial memory consolidation, anhedonia, and neohypophagia) with impaired excitatory strength at temporoammonic-CA1 (TA-CA1) synapses, an archetypical stress-sensitive excitatory synapse. We tested whether elevated CORT was sufficient and necessary to generate a depressive-like behavioral phenotype and decreased excitatory signaling observed at TA-CA1 after chronic unpredictable stress (CUS). Chronic CORT administration induced an anhedonia-like behavioral state and neohypophagic behavior. Like CUS, chronic, but not acute, CORT generated an impaired synaptic phenotype characterized by reduced α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-preferring glutamate receptor-mediated excitation at TA-CA1 synapses, decreased AMPA-type glutamate receptor subunit 1 protein expression, and altered serotonin-1B receptor-mediated potentiation. Repeatedly blunting stress-induced increases of CORT during CUS with the CORT synthesis inhibitor metyrapone (MET) prevented these stress-induced neurobehavioral changes. MET also prevented the CUS-induced impairment of spatial memory consolidation. We conclude that corticosterone is sufficient and necessary to mediate glutamatergic dysfunction underlying stress-induced synaptic and behavioral phenotypes. Our results indicate that chronic excessive glucocorticoids cause specific synaptic deficits in the hippocampus, a major center for cognitive and emotional processing, that accompany stress-induced behavioral dysfunction

  12. Corticosterone mediates the synaptic and behavioral effects of chronic stress at rat hippocampal temporoammonic synapses

    PubMed Central

    Kvarta, Mark D.; Bradbrook, Keighly E.; Dantrassy, Hannah M.; Bailey, Aileen M.

    2015-01-01

    Chronic stress is thought to impart risk for depression via alterations in brain structure and function, but contributions of specific mediators in generating these changes remain unclear. We test the hypothesis that stress-induced increases in corticosterone (CORT), the primary rodent glucocorticoid, are the key mediator of stress-induced depressive-like behavioral changes and synaptic dysfunction in the rat hippocampus. In rats, we correlated changes in cognitive and affective behavioral tasks (spatial memory consolidation, anhedonia, and neohypophagia) with impaired excitatory strength at temporoammonic-CA1 (TA-CA1) synapses, an archetypical stress-sensitive excitatory synapse. We tested whether elevated CORT was sufficient and necessary to generate a depressive-like behavioral phenotype and decreased excitatory signaling observed at TA-CA1 after chronic unpredictable stress (CUS). Chronic CORT administration induced an anhedonia-like behavioral state and neohypophagic behavior. Like CUS, chronic, but not acute, CORT generated an impaired synaptic phenotype characterized by reduced α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-preferring glutamate receptor-mediated excitation at TA-CA1 synapses, decreased AMPA-type glutamate receptor subunit 1 protein expression, and altered serotonin-1B receptor-mediated potentiation. Repeatedly blunting stress-induced increases of CORT during CUS with the CORT synthesis inhibitor metyrapone (MET) prevented these stress-induced neurobehavioral changes. MET also prevented the CUS-induced impairment of spatial memory consolidation. We conclude that corticosterone is sufficient and necessary to mediate glutamatergic dysfunction underlying stress-induced synaptic and behavioral phenotypes. Our results indicate that chronic excessive glucocorticoids cause specific synaptic deficits in the hippocampus, a major center for cognitive and emotional processing, that accompany stress-induced behavioral dysfunction

  13. Reduced Anterior Cingulate Glutamatergic Concentrations in Childhood Ocd and Major Depression Versus Healthy Controls

    ERIC Educational Resources Information Center

    Rosenberg, David R.; Mirza, Yousha; Russell, Aileen; Tang, Jennifer; Smith, Janet M.; Banerjee, Preeya S.; Bhandari, Rashmi; Rose, Michelle; Ivey, Jennifer; Boyd, Courtney; Moore, Gregory J.

    2004-01-01

    Objective: To examine in vivo glutamatergic neurochemical alterations in the anterior cingulate cortex of pediatric patients with obsessive-compulsive disorder (OCD) without major depressive disorder (MDD) versus pediatric patients with MDD without OCD and healthy controls. Method: Single-voxel proton magnetic resonance spectroscopic examinations…

  14. Developmental changes in synaptic distribution in arcuate nucleus neurons.

    PubMed

    Baquero, Arian F; Kirigiti, Melissa A; Baquero, Karalee C; Lee, Shin J; Smith, M Susan; Grove, Kevin L

    2015-06-01

    Neurons coexpressing neuropeptide Y, agouti-related peptide, and GABA (NAG) play an important role in ingestive behavior and are located in the arcuate nucleus of the hypothalamus. NAG neurons receive both GABAergic and glutamatergic synaptic inputs, however, the developmental time course of synaptic input organization of NAG neurons in mice is unknown. In this study, we show that these neurons have low numbers of GABAergic synapses and that GABA is inhibitory to NAG neurons during early postnatal period. In contrast, glutamatergic inputs onto NAG neurons are relatively abundant by P13 and are comparatively similar to the levels observed in the adult. As mice reach adulthood (9-10 weeks), GABAergic tone onto NAG neurons increases. At this age, NAG neurons received similar numbers of inhibitory and EPSCs. To further differentiate age-associated changes in synaptic distribution, 17- to 18-week-old lean and diet-induced obesity (DIO) mice were studied. Surprisingly, NAG neurons from lean adult mice exhibit a reduction in the GABAergic synapses compared with younger adults. Conversely, DIO mice display reductions in the number of GABAergic and glutamatergic inputs onto NAG neurons. Based on these experiments, we propose that synaptic distribution in NAG neurons is continuously restructuring throughout development to accommodate the animals' energy requirements.

  15. Tianeptine modulates amygdalar glutamate neurochemistry and synaptic proteins in rats subjected to repeated stress.

    PubMed

    Piroli, Gerardo G; Reznikov, Leah R; Grillo, Claudia A; Hagar, Janel M; Fadel, Jim R; Reagan, Lawrence P

    2013-03-01

    Stress is a common environmental factor associated with depressive illness and the amygdala is thought to be integral for this association. For example, repeated stress impairs amygdalar neuroplasticity in rodents and these defects parallel amygdalar deficits in depressive illness patients. Because the excitatory neurotransmitter glutamate is important in neuroplasticity, we hypothesized that alterations in amygdalar glutamatergic systems may serve as key players in depressive illness. Moreover, restoration of amygdalar glutamatergic systems may serve as important therapeutic targets in the successful management of multiple stress-related mood disorders. To address these hypotheses, we measured glutamate efflux in the basolateral and central amygdalar complexes via in vivo microdialysis, as well as the expression of synaptic proteins that regulate vesicular glutamate packaging and release, in rats subjected to repeated stress and treated daily with saline or the antidepressant tianeptine. Glutamate efflux was significantly reduced in the central amygdalar complex of animals subjected to repeated stress. In addition, repeated stress nearly eliminated amygdalar vGLUT2 expression, thereby proving a potential mechanism through which repeated stress impairs amygdalar glutamate neurochemistry. These stress-induced changes in glutamate efflux and vGLUT2 expression were inhibited by daily tianeptine administration. Moreover, tianeptine administration increased the vesicular localization of SNAP-25, which could account for the ability of tianeptine to modify glutamatergic tone in non-stressed control rats. Collectively, these results demonstrate that repeated stress differentially affects amygdalar glutamate systems and further supports our previous studies indicating that tianeptine's antidepressant efficacy may involve targeting amygdalar glutatamatergic systems. PMID:23262120

  16. Reelin secretion from glutamatergic neurons in culture is independent from neurotransmitter regulation.

    PubMed

    Lacor, P N; Grayson, D R; Auta, J; Sugaya, I; Costa, E; Guidotti, A

    2000-03-28

    Reelin (Reln) is a glycoprotein that in postnatal and adult mammalian brain is believed to be secreted from telencephalic GABAergic interneurons and cerebellar glutamatergic granule neurons into the extracellular matrix. To address the question of whether Reln neurosecretion occurs via a regulated or a constitutive process, we exposed postnatal rat cerebellar granule neurons (CGNs) maintained in culture for 7-9 days to: (i) 100 microM N-methyl-D-aspartate (NMDA) in a Mg(+2)-free medium to stimulate NMDA-selective glutamate receptors and Ca(2+)-dependent neurotransmitter release, (ii) 50 mM KCl to depolarize the cells and elicit Ca(2+)-dependent exocytosis, (iii) 10-100 microM nicotine to activate excocytosis by nicotinic receptors present in these cells, (iv) 10 microM 1,2,3,4-tetrahydro-6-nitro-2, 3-dioxo-benzo[f]quinoxaline-7-sulfonamide in combination with 10 microM dizocilpine to block alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid- and NMDA-preferring glutamate receptors activated by endogenously released glutamate, or (v) EGTA (5 mM) to virtually eliminate extracellular Ca(2+) and block Ca(2+)-dependent exocytosis. Although, CGNs express and secrete Reln (measured by quantitative immunoblotting), none of the above-mentioned conditions that control regulated exocytosis alters the stores or the rate of Reln release. In contrast, application of either: (i) a Reln antisense oligonucleotide (5'-GCAATGTGCAGGGAAATG-3') (10 microM) that reduces Reln biosynthesis or (ii) brefeldin A (5 x 10(-5) M), an inhibitor of the traffic of proteins between the endoplasmic reticulum and the Golgi network, sharply curtail the rate of Reln secretion. Because, in subcellular fractionation studies, we have shown that Reln is not contained in synaptic vesicles, these data suggest that Reln secretion from CGNs does not require Ca(2+)-dependent exocytosis, but probably is related to a Reln pool stored in Golgi secretory vesicles mediating a constitutive secretory pathway.

  17. Noradrenergic refinement of glutamatergic neuronal circuits in the lateral superior olivary nucleus before hearing onset

    PubMed Central

    Hirao, Kenzo; Eto, Kei; Nakahata, Yoshihisa; Ishibashi, Hitoshi; Nagai, Taku

    2015-01-01

    Neuronal circuit plasticity during development is fundamental for precise network formation. Pioneering studies of the developmental visual cortex indicated that noradrenaline (NA) is crucial for ocular dominance plasticity during the critical period in the visual cortex. Recent research demonstrated tonotopic map formation by NA during the critical period in the auditory system, indicating that NA also contributes to synaptic plasticity in this system. The lateral superior olive (LSO) in the auditory system receives glutamatergic input from the ventral cochlear nucleus (VCN) and undergoes circuit remodeling during postnatal development. LSO is innervated by noradrenergic afferents and is therefore a suitable model to study the function of NA in refinement of neuronal circuits. Chemical lesions of the noradrenergic system and chronic inhibition of α2-adrenoceptors in vivo during postnatal development in mice disrupted functional elimination and strengthening of VCN-LSO afferents. This was potentially mediated by activation of presynaptic α2-adrenoceptors and inhibition of glutamate release because NA presynaptically suppressed excitatory postsynaptic current (EPSC) through α2-adrenoceptors during the first two postnatal weeks in an in vitro study. Furthermore, NA and α2-adrenoceptor agonist induced long-term suppression of EPSCs and decreased glutamate release. These results suggest that NA has a critical role in synaptic refinement of the VCN-LSO glutamatergic pathway through failure of synaptic transmission. Because of the ubiquitous distribution of NA afferents and the extensive expression of α2-adrenoceptors throughout the immature brain, this phenomenon might be widespread in the developing central nervous system. PMID:26203112

  18. Noradrenergic refinement of glutamatergic neuronal circuits in the lateral superior olivary nucleus before hearing onset.

    PubMed

    Hirao, Kenzo; Eto, Kei; Nakahata, Yoshihisa; Ishibashi, Hitoshi; Nagai, Taku; Nabekura, Junichi

    2015-09-01

    Neuronal circuit plasticity during development is fundamental for precise network formation. Pioneering studies of the developmental visual cortex indicated that noradrenaline (NA) is crucial for ocular dominance plasticity during the critical period in the visual cortex. Recent research demonstrated tonotopic map formation by NA during the critical period in the auditory system, indicating that NA also contributes to synaptic plasticity in this system. The lateral superior olive (LSO) in the auditory system receives glutamatergic input from the ventral cochlear nucleus (VCN) and undergoes circuit remodeling during postnatal development. LSO is innervated by noradrenergic afferents and is therefore a suitable model to study the function of NA in refinement of neuronal circuits. Chemical lesions of the noradrenergic system and chronic inhibition of α2-adrenoceptors in vivo during postnatal development in mice disrupted functional elimination and strengthening of VCN-LSO afferents. This was potentially mediated by activation of presynaptic α2-adrenoceptors and inhibition of glutamate release because NA presynaptically suppressed excitatory postsynaptic current (EPSC) through α2-adrenoceptors during the first two postnatal weeks in an in vitro study. Furthermore, NA and α2-adrenoceptor agonist induced long-term suppression of EPSCs and decreased glutamate release. These results suggest that NA has a critical role in synaptic refinement of the VCN-LSO glutamatergic pathway through failure of synaptic transmission. Because of the ubiquitous distribution of NA afferents and the extensive expression of α2-adrenoceptors throughout the immature brain, this phenomenon might be widespread in the developing central nervous system.

  19. Glutamatergic Model Psychoses: Prediction Error, Learning, and Inference

    PubMed Central

    Corlett, Philip R; Honey, Garry D; Krystal, John H; Fletcher, Paul C

    2011-01-01

    Modulating glutamatergic neurotransmission induces alterations in conscious experience that mimic the symptoms of early psychotic illness. We review studies that use intravenous administration of ketamine, focusing on interindividual variability in the profundity of the ketamine experience. We will consider this individual variability within a hypothetical model of brain and cognitive function centered upon learning and inference. Within this model, the brains, neural systems, and even single neurons specify expectations about their inputs and responding to violations of those expectations with new learning that renders future inputs more predictable. We argue that ketamine temporarily deranges this ability by perturbing both the ways in which prior expectations are specified and the ways in which expectancy violations are signaled. We suggest that the former effect is predominantly mediated by NMDA blockade and the latter by augmented and inappropriate feedforward glutamatergic signaling. We suggest that the observed interindividual variability emerges from individual differences in neural circuits that normally underpin the learning and inference processes described. The exact source for that variability is uncertain, although it is likely to arise not only from genetic variation but also from subjects' previous experiences and prior learning. Furthermore, we argue that chronic, unlike acute, NMDA blockade alters the specification of expectancies more profoundly and permanently. Scrutinizing individual differences in the effects of acute and chronic ketamine administration in the context of the Bayesian brain model may generate new insights about the symptoms of psychosis; their underlying cognitive processes and neurocircuitry. PMID:20861831

  20. PRG-1 Regulates Synaptic Plasticity via Intracellular PP2A/β1-Integrin Signaling.

    PubMed

    Liu, Xingfeng; Huai, Jisen; Endle, Heiko; Schlüter, Leslie; Fan, Wei; Li, Yunbo; Richers, Sebastian; Yurugi, Hajime; Rajalingam, Krishnaraj; Ji, Haichao; Cheng, Hong; Rister, Benjamin; Horta, Guilherme; Baumgart, Jan; Berger, Hendrik; Laube, Gregor; Schmitt, Ulrich; Schmeisser, Michael J; Boeckers, Tobias M; Tenzer, Stefan; Vlachos, Andreas; Deller, Thomas; Nitsch, Robert; Vogt, Johannes

    2016-08-01

    Alterations in dendritic spine numbers are linked to deficits in learning and memory. While we previously revealed that postsynaptic plasticity-related gene 1 (PRG-1) controls lysophosphatidic acid (LPA) signaling at glutamatergic synapses via presynaptic LPA receptors, we now show that PRG-1 also affects spine density and synaptic plasticity in a cell-autonomous fashion via protein phosphatase 2A (PP2A)/β1-integrin activation. PRG-1 deficiency reduces spine numbers and β1-integrin activation, alters long-term potentiation (LTP), and impairs spatial memory. The intracellular PRG-1 C terminus interacts in an LPA-dependent fashion with PP2A, thus modulating its phosphatase activity at the postsynaptic density. This results in recruitment of adhesome components src, paxillin, and talin to lipid rafts and ultimately in activation of β1-integrins. Consistent with these findings, activation of PP2A with FTY720 rescues defects in spine density and LTP of PRG-1-deficient animals. These results disclose a mechanism by which bioactive lipid signaling via PRG-1 could affect synaptic plasticity and memory formation. PMID:27453502

  1. Osmolality-induced changes in extracellular volume alter epileptiform bursts independent of chemical synapses in the rat: importance of non-synaptic mechanisms in hippocampal epileptogenesis.

    PubMed

    Dudek, F E; Obenaus, A; Tasker, J G

    1990-12-11

    The contribution of non-synaptic mechanisms to the seizure susceptibility of rat CA1 hippocampal pyramidal cells was examined in vitro by testing the effects of osmolality on synchronous neuronal activity, using solutions which blocked chemical synaptic transmission both pre- and post-synaptically. Decreases in osmolality, which shrink the extracellular volume, caused or enhanced epileptiform bursting. Increases in osmolality with membrane-impermeant solutes, which expand the extracellular volume, blocked or greatly reduced epileptiform discharges. Reductions in the extracellular volume, therefore, can enhance synchronization among CA1 hippocampal neurons through non-synaptic mechanisms. Since similar osmotic treatments are known to modify epileptiform discharges in several models of epilepsy, non-synaptic mechanisms are probably more important in hippocampal epileptogenesis than previously realized and may contribute to the high susceptibility of this brain region to epileptic seizures in animals and humans. These data also provide a possible explanation for the observation in humans that decreased plasma osmolality, which can be associated with a wide range of clinical syndromes, leads to seizures. PMID:2293114

  2. VAMP-2, SNAP-25A/B and syntaxin-1 in glutamatergic and GABAergic synapses of the rat cerebellar cortex

    PubMed Central

    2011-01-01

    Background The aim of this study was to assess the distribution of key SNARE proteins in glutamatergic and GABAergic synapses of the adult rat cerebellar cortex using light microscopy immunohistochemical techniques. Analysis was made of co-localizations of vGluT-1 and vGluT-2, vesicular transporters of glutamate and markers of glutamatergic synapses, or GAD, the GABA synthetic enzyme and marker of GABAergic synapses, with VAMP-2, SNAP-25A/B and syntaxin-1. Results The examined SNARE proteins were found to be diffusely expressed in glutamatergic synapses, whereas they were rarely observed in GABAergic synapses. However, among glutamatergic synapses, subpopulations which did not contain VAMP-2, SNAP-25A/B and syntaxin-1 were detected. They included virtually all the synapses established by terminals of climbing fibres (immunoreactive for vGluT-2) and some synapses established by terminals of parallel and mossy fibres (immunoreactive for vGluT-1, and for vGluT-1 and 2, respectively). The only GABA synapses expressing the SNARE proteins studied were the synapses established by axon terminals of basket neurons. Conclusion The present study supplies a detailed morphological description of VAMP-2, SNAP-25A/B and syntaxin-1 in the different types of glutamatergic and GABAergic synapses of the rat cerebellar cortex. The examined SNARE proteins characterize most of glutamatergic synapses and only one type of GABAergic synapses. In the subpopulations of glutamatergic and GABAergic synapses lacking the SNARE protein isoforms examined, alternative mechanisms for regulating trafficking of synaptic vesicles may be hypothesized, possibly mediated by different isoforms or homologous proteins. PMID:22094010

  3. Facilitation of cortico-amygdala synapses by nicotine: activity-dependent modulation of glutamatergic transmission.

    PubMed

    Jiang, Li; Role, Lorna W

    2008-04-01

    The basolateral nucleus of the amygdala (BLA) receives cholinergic innervation from the basal forebrain and nicotine, via activation of neuronal nicotinic acetylcholine receptors (nAChRs), can improve performance in amygdala-based learning tasks. We tested the hypothesis that acute and prenatal nicotine exposure modulates cortico-amygdala synaptic transmission. We found that low-dose, single-trial exposures to nicotine can elicit lasting facilitation, the extent of which is dependent on the level of stimulation of the cortical inputs to the BLA. In addition, sustained facilitation is ablated by prenatal exposure to nicotine. This study examined synaptic transmission in 238 patch-clamp recordings from BLA neurons in acute slice from mouse brain. Pharmacological studies in wild-type and nAChR subunit knock-out mice reveal that activation of presynaptic alpha 7, containing (alpha 7*) and non-alpha 7* nAChRs, facilitates glutamatergic transmission in an activity-dependent manner. Without prior stimulation, application of nicotine elicits modest and transient facilitation of glutamatergic postsynaptic currents (PSCs) in about 40% of BLA neurons. With low-frequency stimulation of cortical inputs nicotine elicits robust facilitation of transmission at about 60% of cortico-BLA synapses and synaptic strength remains elevated at about 40% of these connections for >15 min after nicotine washout. Following paired-pulse stimulation nicotine elicits long-lasting facilitation of glutamatergic transmission at about 70% of cortico-BLA connections. Nicotine reduces the threshold for activation of long-term potentiation of cortico-BLA synapses evoked by patterned stimulation. Prenatal exposure to nicotine reduced subsequent modulatory responses to acute nicotine application.

  4. Removal of S6K1 and S6K2 Leads to Divergent Alterations in Learning, Memory, and Synaptic Plasticity

    ERIC Educational Resources Information Center

    Antion, Marcia D.; Merhav, Maayan; Hoeffer, Charles A.; Reis, Gerald; Kozma, Sara C.; Thomas, George; Schuman Erin M.; Rosenblum, Kobi; Klann, Eric

    2008-01-01

    Protein synthesis is required for the expression of enduring memories and long-lasting synaptic plasticity. During cellular proliferation and growth, S6 kinases (S6Ks) are activated and coordinate the synthesis of de novo proteins. We hypothesized that protein synthesis mediated by S6Ks is critical for the manifestation of learning, memory, and…

  5. Area-Specific Alterations of Synaptic Plasticity in the 5XFAD Mouse Model of Alzheimer’s Disease: Dissociation between Somatosensory Cortex and Hippocampus

    PubMed Central

    Crouzin, Nadine; Baranger, Kevin; Cavalier, Mélanie; Marchalant, Yannick; Cohen-Solal, Catherine; Roman, François S.; Khrestchatisky, Michel; Rivera, Santiago; Féron, François; Vignes, Michel

    2013-01-01

    Transgenic mouse models of Alzheimer’s disease (AD) that overproduce the amyloid beta peptide (Aβ) have highlighted impairments of hippocampal long-term synaptic plasticity associated with the progression of the disease. Here we examined whether the characteristics of one of the hallmarks of AD, i.e. Aβ deposition, in both the somatosensory cortex and the hippocampus, correlated with specific losses of synaptic plasticity in these areas. For this, we evaluated the occurrence of long-term potentiation (LTP) in the cortex and the hippocampus of 6-month old 5xFAD transgenic mice that exhibited massive Aβ deposition in both regions but with different features: in cortical areas a majority of Aβ deposits comprised a dense core surrounded by a diffuse corona while such kind of Aβ deposition was less frequently observed in the hippocampus. In order to simultaneously monitor synaptic changes in both areas, we developed a method based on the use of Multi-Electrode Arrays (MEA). When compared with wild-type (WT) mice, basal transmission was significantly reduced in both areas in 5xFAD mice, while short-term synaptic plasticity was unaffected. The induction of long-term changes of synaptic transmission by different protocols revealed that in 5xFAD mice, LTP in the layer 5 of the somatosensory cortex was more severely impaired than LTP triggered in the CA1 area of the hippocampus. We conclude that cortical plasticity is deficient in the 5xFAD model and that this deficit could be correlated with the proportion of diffuse plaques in 5xFAD mice. PMID:24069328

  6. Pregnenolone sulfate as a modulator of synaptic plasticity

    PubMed Central

    Smith, Conor C.; Gibbs, Terrell T.

    2015-01-01

    Rationale The neurosteroid pregnenolone sulfate (PregS) acts as a cognitive enhancer and modulator of neurotransmission, yet aligning its pharmacological and physiological effects with reliable measurements of endogenous local concentrations and pharmacological and therapeutic targets has remained elusive for over 20 years. Objectives New basic and clinical research concerning neurosteroid modulation of the central nervous system (CNS) function has emerged over the past 5 years, including important data involving pregnenolone and various neurosteroid precursors of PregS that point to a need for a critical status update. Results Highly specific actions of PregS affecting excitatory N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic transmission and the pharmacological effects of PregS on various receptors and ion channels are discussed. The discovery of a high potency (nanomolar) signal transduction pathway for PregS-induced NMDAR trafficking to the cell surface via a Ca2+- and G protein-coupled receptor (GPCR)-dependent mechanism and a potent (EC50 ~2 pM) direct enhancement of intracellular Ca2+ levels is discussed in terms of its agonist effects on long-term potentiation (LTP) and memory. Lastly, preclinical and clinical studies assessing the promnestic effects of PregS and pregnenolone toward cognitive dysfunction in schizophrenia, and altered serum levels in epilepsy and alcohol dependence, are reviewed. Conclusions PregS is present in human and rodent brain at physiologically relevant concentrations and meets most of the criteria for an endogenous neurotransmitter/neuromodulator. PregS likely plays a significant role in modulation of glutamatergic excitatory synaptic transmission underlying learning and memory, yet the molecular target(s) for its action awaits identification. PMID:24997854

  7. Miniature Neurotransmission Regulates Drosophila Synaptic Structural Maturation

    PubMed Central

    Choi, Ben Jiwon; Imlach, Wendy L.; Jiao, Wei; Wolfram, Verena; Wu, Ying; Grbic, Mark; Cela, Carolina; Baines, Richard A.; Nitabach, Michael N.; McCabe, Brian D.

    2014-01-01

    Summary Miniature neurotransmission is the transsynaptic process where single synaptic vesicles spontaneously released from presynaptic neurons induce miniature postsynaptic potentials. Since their discovery over 60 years ago, miniature events have been found at every chemical synapse studied. However, the in vivo necessity for these small-amplitude events has remained enigmatic. Here, we show that miniature neurotransmission is required for the normal structural maturation of Drosophila glutamatergic synapses in a developmental role that is not shared by evoked neurotransmission. Conversely, we find that increasing miniature events is sufficient to induce synaptic terminal growth. We show that miniature neurotransmission acts locally at terminals to regulate synapse maturation via a Trio guanine nucleotide exchange factor (GEF) and Rac1 GTPase molecular signaling pathway. Our results establish that miniature neurotransmission, a universal but often-overlooked feature of synapses, has unique and essential functions in vivo. PMID:24811381

  8. EDITORIAL: Synaptic electronics Synaptic electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the

  9. Plasticity-Related Gene 1 Affects Mouse Barrel Cortex Function via Strengthening of Glutamatergic Thalamocortical Transmission.

    PubMed

    Unichenko, Petr; Kirischuk, Sergei; Yang, Jenq-Wei; Baumgart, Jan; Roskoden, Thomas; Schneider, Patrick; Sommer, Angela; Horta, Guilherme; Radyushkin, Konstantin; Nitsch, Robert; Vogt, Johannes; Luhmann, Heiko J

    2016-07-01

    Plasticity-related gene-1 (PRG-1) is a brain-specific protein that modulates glutamatergic synaptic transmission. Here we investigated the functional role of PRG-1 in adolescent and adult mouse barrel cortex both in vitro and in vivo. Compared with wild-type (WT) animals, PRG-1-deficient (KO) mice showed specific behavioral deficits in tests assessing sensorimotor integration and whisker-based sensory discrimination as shown in the beam balance/walking test and sandpaper tactile discrimination test, respectively. At P25-31, spontaneous network activity in the barrel cortex in vivo was higher in KO mice compared with WT littermates, but not at P16-19. At P16-19, sensory evoked cortical responses in vivo elicited by single whisker stimulation were comparable in KO and WT mice. In contrast, at P25-31 evoked responses were smaller in amplitude and longer in duration in WT animals, whereas KO mice revealed no such developmental changes. In thalamocortical slices from KO mice, spontaneous activity was increased already at P16-19, and glutamatergic thalamocortical inputs to Layer 4 spiny stellate neurons were potentiated. We conclude that genetic ablation of PRG-1 modulates already at P16-19 spontaneous and evoked excitability of the barrel cortex, including enhancement of thalamocortical glutamatergic inputs to Layer 4, which distorts sensory processing in adulthood.

  10. Plasticity-Related Gene 1 Affects Mouse Barrel Cortex Function via Strengthening of Glutamatergic Thalamocortical Transmission

    PubMed Central

    Unichenko, Petr; Kirischuk, Sergei; Yang, Jenq-Wei; Baumgart, Jan; Roskoden, Thomas; Schneider, Patrick; Sommer, Angela; Horta, Guilherme; Radyushkin, Konstantin; Nitsch, Robert; Vogt, Johannes; Luhmann, Heiko J.

    2016-01-01

    Plasticity-related gene-1 (PRG-1) is a brain-specific protein that modulates glutamatergic synaptic transmission. Here we investigated the functional role of PRG-1 in adolescent and adult mouse barrel cortex both in vitro and in vivo. Compared with wild-type (WT) animals, PRG-1-deficient (KO) mice showed specific behavioral deficits in tests assessing sensorimotor integration and whisker-based sensory discrimination as shown in the beam balance/walking test and sandpaper tactile discrimination test, respectively. At P25-31, spontaneous network activity in the barrel cortex in vivo was higher in KO mice compared with WT littermates, but not at P16-19. At P16-19, sensory evoked cortical responses in vivo elicited by single whisker stimulation were comparable in KO and WT mice. In contrast, at P25-31 evoked responses were smaller in amplitude and longer in duration in WT animals, whereas KO mice revealed no such developmental changes. In thalamocortical slices from KO mice, spontaneous activity was increased already at P16-19, and glutamatergic thalamocortical inputs to Layer 4 spiny stellate neurons were potentiated. We conclude that genetic ablation of PRG-1 modulates already at P16-19 spontaneous and evoked excitability of the barrel cortex, including enhancement of thalamocortical glutamatergic inputs to Layer 4, which distorts sensory processing in adulthood. PMID:26980613

  11. Coexistence of glutamatergic spine synapses and shaft synapses in substantia nigra dopamine neurons

    PubMed Central

    Jang, Miae; Bum Um, Ki; Jang, Jinyoung; Jin Kim, Hyun; Cho, Hana; Chung, Sungkwon; Kyu Park, Myoung

    2015-01-01

    Dopamine neurons of the substantia nigra have long been believed to have multiple aspiny dendrites which receive many glutamatergic synaptic inputs from several regions of the brain. But, here, using high-resolution two-photon confocal microscopy in the mouse brain slices, we found a substantial number of common dendritic spines in the nigral dopamine neurons including thin, mushroom, and stubby types of spines. However, the number of dendritic spines of the dopamine neurons was approximately five times lower than that of CA1 pyramidal neurons. Immunostaining and morphological analysis revealed that glutamatergic shaft synapses were present two times more than spine synapses. Using local two-photon glutamate uncaging techniques, we confirmed that shaft synapses and spine synapses had both AMPA and NMDA receptors, but the AMPA/NMDA current ratios differed. The evoked postsynaptic potentials of spine synapses showed lower amplitudes but longer half-widths than those of shaft synapses. Therefore, we provide the first evidence that the midbrain dopamine neurons have two morphologically and functionally distinct types of glutamatergic synapses, spine synapses and shaft synapses, on the same dendrite. This peculiar organization could be a new basis for unraveling many physiological and pathological functions of the midbrain dopamine neurons. PMID:26435058

  12. Plasticity-Related Gene 1 Affects Mouse Barrel Cortex Function via Strengthening of Glutamatergic Thalamocortical Transmission.

    PubMed

    Unichenko, Petr; Kirischuk, Sergei; Yang, Jenq-Wei; Baumgart, Jan; Roskoden, Thomas; Schneider, Patrick; Sommer, Angela; Horta, Guilherme; Radyushkin, Konstantin; Nitsch, Robert; Vogt, Johannes; Luhmann, Heiko J

    2016-07-01

    Plasticity-related gene-1 (PRG-1) is a brain-specific protein that modulates glutamatergic synaptic transmission. Here we investigated the functional role of PRG-1 in adolescent and adult mouse barrel cortex both in vitro and in vivo. Compared with wild-type (WT) animals, PRG-1-deficient (KO) mice showed specific behavioral deficits in tests assessing sensorimotor integration and whisker-based sensory discrimination as shown in the beam balance/walking test and sandpaper tactile discrimination test, respectively. At P25-31, spontaneous network activity in the barrel cortex in vivo was higher in KO mice compared with WT littermates, but not at P16-19. At P16-19, sensory evoked cortical responses in vivo elicited by single whisker stimulation were comparable in KO and WT mice. In contrast, at P25-31 evoked responses were smaller in amplitude and longer in duration in WT animals, whereas KO mice revealed no such developmental changes. In thalamocortical slices from KO mice, spontaneous activity was increased already at P16-19, and glutamatergic thalamocortical inputs to Layer 4 spiny stellate neurons were potentiated. We conclude that genetic ablation of PRG-1 modulates already at P16-19 spontaneous and evoked excitability of the barrel cortex, including enhancement of thalamocortical glutamatergic inputs to Layer 4, which distorts sensory processing in adulthood. PMID:26980613

  13. EDITORIAL: Synaptic electronics Synaptic electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the

  14. BMP signaling and microtubule organization regulate synaptic strength

    PubMed Central

    Ball, Robin W.; Peled, Einat; Guerrero, Giovanna; Isacoff, Ehud Y.

    2015-01-01

    The strength of synaptic transmission between a neuron and multiple postsynaptic partners can vary considerably. We have studied synaptic heterogeneity using the glutamatergic Drosophila neuromuscular junction (NMJ), which contains multiple synaptic connections of varying strength between a motor axon and muscle fiber. In larval NMJs, there is a gradient of synaptic transmission from weak proximal to strong distal boutons. We imaged synaptic transmission with the postsynaptically targeted fluorescent calcium sensor SynapCam, to investigate the molecular pathways that determine synaptic strength and set up this gradient. We discovered that mutations in the Bone Morphogenetic Protein (BMP) signaling pathway disrupt production of strong distal boutons. We find that strong connections contain unbundled microtubules in the boutons, suggesting a role for microtubule organization in transmission strength. The spastin mutation, which disorganizes microtubules, disrupted the transmission gradient, supporting this interpretation. We propose that the BMP pathway, shown previously to function in the homeostatic regulation of synaptic growth, also boosts synaptic transmission in a spatially selective manner that depends on the microtubule system. PMID:25681521

  15. Inhibitory synapses in the developing auditory system are glutamatergic.

    PubMed

    Gillespie, Deda C; Kim, Gunsoo; Kandler, Karl

    2005-03-01

    Activity-dependent synapse refinement is crucial for the formation of precise excitatory and inhibitory neuronal circuits. Whereas the mechanisms that guide refinement of excitatory circuits are becoming increasingly clear, the mechanisms guiding inhibitory circuits have remained obscure. In the lateral superior olive (LSO), a nucleus in the mammalian sound localization system that receives inhibitory input from the medial nucleus of the trapezoid body (MNTB), specific elimination and strengthening of synapses that are both GABAergic and glycinergic (GABA/glycinergic synapses) is essential for the formation of a precise tonotopic map. We provide evidence that immature GABA/glycinergic synapses in the rat LSO also release the excitatory neurotransmitter glutamate, which activates postsynaptic NMDA receptors (NMDARs). Immunohistochemical studies demonstrate synaptic colocalization of the vesicular glutamate transporter 3 with the vesicular GABA transporter, indicating that GABA, glycine and glutamate are released from single MNTB terminals. Glutamatergic transmission at MNTB-LSO synapses is most prominent during the period of synapse elimination. Synapse-specific activation of NMDARs by glutamate release at GABAergic and glycinergic synapses could be important in activity-dependent refinement of inhibitory circuits.

  16. Modulation of glutamatergic transmission by metabotropic glutamate receptor activation in second-order neurons of the guinea pig nucleus tractus solitarius.

    PubMed

    Ohi, Yoshiaki; Kimura, Satoko; Haji, Akira

    2014-09-18

    Activity of second-order relay neurons in the nucleus tractus solitarius (NTS) is regulated by peripheral and intrinsic synaptic inputs, and modulation of those inputs by metabotropic glutamate receptors (mGluRs) has been proposed. This study investigated effects of mGluR activation on glutamatergic transmission in the NTS second-order neurons of guinea pigs. Whole-cell patch-clamp recordings from the brainstem slices revealed that activation of mGluRs exerted its effects on the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) but not on the amplitude. The sEPSC frequency was increased by an agonist of group I mGluRs, and it was decreased by an mGluR1 antagonist but not by an mGluR5 antagonist. The agonists of group II and III mGluRs decreased the sEPSC frequency, while their antagonists alone had no effect. Perfusion of cystine or TBOA, either of which elevates extracellular glutamate concentration, resulted in an increase in the sEPSC frequency, leaving the amplitude unchanged. The increased frequency of sEPSCs was returned to control by an mGluR1 antagonist. The tractus solitarius-evoked EPSCs were not altered by an agonist of group I mGluRs, whereas they were decreased along with an increase in paired-pulse ratio by agonists of group II and III mGluRs. These results suggest that mGluRs are present at the presynaptic sites in the NTS second-order neurons in guinea pigs. The mGluR1s function to facilitate the release of glutamate from axon terminals of intrinsic interneurons and the group II and III mGluRs play an inhibitory role in glutamatergic transmission.

  17. Loss of estrogen-related receptor alpha disrupts ventral-striatal synaptic function in female mice.

    PubMed

    De Jesús-Cortés, Héctor; Lu, Yuan; Anderson, Rachel M; Khan, Michael Z; Nath, Varun; McDaniel, Latisha; Lutter, Michael; Radley, Jason J; Pieper, Andrew A; Cui, Huxing

    2016-08-01

    Eating disorders (EDs), including anorexia nervosa, bulimia nervosa and binge-ED, are mental illnesses characterized by high morbidity and mortality. While several studies have identified neural deficits in patients with EDs, the cellular and molecular basis of the underlying dysfunction has remained poorly understood. We previously identified a rare missense mutation in the transcription factor estrogen-related receptor alpha (ESRRA) associated with development of EDs. Because ventral-striatal signaling is related to the reward and motivation circuitry thought to underlie EDs, we performed functional and structural analysis of ventral-striatal synapses in Esrra-null mice. Esrra-null female, but not male, mice exhibit altered miniature excitatory postsynaptic currents on medium spiny neurons (MSNs) in the ventral striatum, including increased frequency, increased amplitude, and decreased paired pulse ratio. These electrophysiological measures are associated with structural and molecular changes in synapses of MSNs in the ventral striatum, including fewer pre-synaptic glutamatergic vesicles and enhanced GluR1 function. Neuronal Esrra is thus required for maintaining normal synaptic function in the ventral striatum, which may offer mechanistic insights into the behavioral deficits observed in Esrra-null mice.

  18. Loss of estrogen-related receptor alpha disrupts ventral-striatal synaptic function in female mice.

    PubMed

    De Jesús-Cortés, Héctor; Lu, Yuan; Anderson, Rachel M; Khan, Michael Z; Nath, Varun; McDaniel, Latisha; Lutter, Michael; Radley, Jason J; Pieper, Andrew A; Cui, Huxing

    2016-08-01

    Eating disorders (EDs), including anorexia nervosa, bulimia nervosa and binge-ED, are mental illnesses characterized by high morbidity and mortality. While several studies have identified neural deficits in patients with EDs, the cellular and molecular basis of the underlying dysfunction has remained poorly understood. We previously identified a rare missense mutation in the transcription factor estrogen-related receptor alpha (ESRRA) associated with development of EDs. Because ventral-striatal signaling is related to the reward and motivation circuitry thought to underlie EDs, we performed functional and structural analysis of ventral-striatal synapses in Esrra-null mice. Esrra-null female, but not male, mice exhibit altered miniature excitatory postsynaptic currents on medium spiny neurons (MSNs) in the ventral striatum, including increased frequency, increased amplitude, and decreased paired pulse ratio. These electrophysiological measures are associated with structural and molecular changes in synapses of MSNs in the ventral striatum, including fewer pre-synaptic glutamatergic vesicles and enhanced GluR1 function. Neuronal Esrra is thus required for maintaining normal synaptic function in the ventral striatum, which may offer mechanistic insights into the behavioral deficits observed in Esrra-null mice. PMID:27155145

  19. Regulation of AMPA receptor surface trafficking and synaptic plasticity by a cognitive enhancer and antidepressant molecule.

    PubMed

    Zhang, H; Etherington, L-A; Hafner, A-S; Belelli, D; Coussen, F; Delagrange, P; Chaouloff, F; Spedding, M; Lambert, J J; Choquet, D; Groc, L

    2013-04-01

    The plasticity of excitatory synapses is an essential brain process involved in cognitive functions, and dysfunctions of such adaptations have been linked to psychiatric disorders such as depression. Although the intracellular cascades that are altered in models of depression and stress-related disorders have been under considerable scrutiny, the molecular interplay between antidepressants and glutamatergic signaling remains elusive. Using a combination of electrophysiological and single nanoparticle tracking approaches, we here report that the cognitive enhancer and antidepressant tianeptine (S 1574, [3-chloro-6-methyl-5,5-dioxo-6,11-dihydro-(c,f)-dibenzo-(1,2-thiazepine)-11-yl) amino]-7 heptanoic acid, sodium salt) favors synaptic plasticity in hippocampal neurons both under basal conditions and after acute stress. Strikingly, tianeptine rapidly reduces the surface diffusion of AMPA receptor (AMPAR) through a Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-dependent mechanism that enhances the binding of AMPAR auxiliary subunit stargazin with PSD-95. This prevents corticosterone-induced AMPAR surface dispersal and restores long-term potentiation of acutely stressed mice. Collectively, these data provide the first evidence that a therapeutically used drug targets the surface diffusion of AMPAR through a CaMKII-stargazin-PSD-95 pathway, to promote long-term synaptic plasticity. PMID:22733125

  20. Plasticity in glutamatergic NTS neurotransmission.

    PubMed

    Kline, David D

    2008-12-10

    Changes in the physiological state of an animal or human can result in alterations in the cardiovascular and respiratory system in order to maintain homeostasis. Accordingly, the cardiovascular and respiratory systems are not static but readily adapt under a variety of circumstances. The same can be said for the brainstem circuits that control these systems. The nucleus tractus solitarius (NTS) is the central integration site of baroreceptor and chemoreceptor sensory afferent fibers. This central nucleus, and in particular the synapse between the sensory afferent and second-order NTS cell, possesses a remarkable degree of plasticity in response to a variety of stimuli, both acute and chronic. This brief review is intended to describe the plasticity observed in the NTS as well as the locus and mechanisms as they are currently understood. The functional consequence of NTS plasticity is also discussed.

  1. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons.

    PubMed

    Beckley, Jacob T; Laguesse, Sophie; Phamluong, Khanhky; Morisot, Nadege; Wegner, Scott A; Ron, Dorit

    2016-01-20

    Early binge-like alcohol drinking may promote the development of hazardous intake. However, the enduring cellular alterations following the first experience with alcohol consumption are not fully understood. We found that the first binge-drinking alcohol session produced enduring enhancement of excitatory synaptic transmission onto dopamine D1 receptor-expressing neurons (D1+ neurons) in the nucleus accumbens (NAc) shell but not the core in mice, which required D1 receptors (D1Rs) and mechanistic target of rapamycin complex 1 (mTORC1). Furthermore, inhibition of mTORC1 activity during the first alcohol drinking session reduced alcohol consumption and preference of a subsequent drinking session. mTORC1 is critically involved in RNA-to-protein translation, and we found that the first alcohol session rapidly activated mTORC1 in NAc shell D1+ neurons and increased synaptic expression of the AMPAR subunit GluA1 and the scaffolding protein Homer. Finally, D1R stimulation alone was sufficient to activate mTORC1 in the NAc to promote mTORC1-dependent translation of the synaptic proteins GluA1 and Homer. Together, our results indicate that the first alcohol drinking session induces synaptic plasticity in NAc D1+ neurons via enhanced mTORC1-dependent translation of proteins involved in excitatory synaptic transmission that in turn drives the reinforcement learning associated with the first alcohol experience. Thus, the alcohol-dependent D1R/mTORC1-mediated increase in synaptic function in the NAc may reflect a neural imprint of alcohol's reinforcing properties, which could promote subsequent alcohol intake. Significance statement: Consuming alcohol for the first time is a learning event that drives further drinking. Here, we identified a mechanism that may underlie the reinforcing learning associated with the initial alcohol experience. We show that the first alcohol experience induces a persistent enhancement of excitatory synaptic transmission on NAc shell D1+ neurons

  2. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons.

    PubMed

    Beckley, Jacob T; Laguesse, Sophie; Phamluong, Khanhky; Morisot, Nadege; Wegner, Scott A; Ron, Dorit

    2016-01-20

    Early binge-like alcohol drinking may promote the development of hazardous intake. However, the enduring cellular alterations following the first experience with alcohol consumption are not fully understood. We found that the first binge-drinking alcohol session produced enduring enhancement of excitatory synaptic transmission onto dopamine D1 receptor-expressing neurons (D1+ neurons) in the nucleus accumbens (NAc) shell but not the core in mice, which required D1 receptors (D1Rs) and mechanistic target of rapamycin complex 1 (mTORC1). Furthermore, inhibition of mTORC1 activity during the first alcohol drinking session reduced alcohol consumption and preference of a subsequent drinking session. mTORC1 is critically involved in RNA-to-protein translation, and we found that the first alcohol session rapidly activated mTORC1 in NAc shell D1+ neurons and increased synaptic expression of the AMPAR subunit GluA1 and the scaffolding protein Homer. Finally, D1R stimulation alone was sufficient to activate mTORC1 in the NAc to promote mTORC1-dependent translation of the synaptic proteins GluA1 and Homer. Together, our results indicate that the first alcohol drinking session induces synaptic plasticity in NAc D1+ neurons via enhanced mTORC1-dependent translation of proteins involved in excitatory synaptic transmission that in turn drives the reinforcement learning associated with the first alcohol experience. Thus, the alcohol-dependent D1R/mTORC1-mediated increase in synaptic function in the NAc may reflect a neural imprint of alcohol's reinforcing properties, which could promote subsequent alcohol intake. Significance statement: Consuming alcohol for the first time is a learning event that drives further drinking. Here, we identified a mechanism that may underlie the reinforcing learning associated with the initial alcohol experience. We show that the first alcohol experience induces a persistent enhancement of excitatory synaptic transmission on NAc shell D1+ neurons

  3. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons

    PubMed Central

    Beckley, Jacob T.; Laguesse, Sophie; Phamluong, Khanhky; Morisot, Nadege; Wegner, Scott A.

    2016-01-01

    Early binge-like alcohol drinking may promote the development of hazardous intake. However, the enduring cellular alterations following the first experience with alcohol consumption are not fully understood. We found that the first binge-drinking alcohol session produced enduring enhancement of excitatory synaptic transmission onto dopamine D1 receptor-expressing neurons (D1+ neurons) in the nucleus accumbens (NAc) shell but not the core in mice, which required D1 receptors (D1Rs) and mechanistic target of rapamycin complex 1 (mTORC1). Furthermore, inhibition of mTORC1 activity during the first alcohol drinking session reduced alcohol consumption and preference of a subsequent drinking session. mTORC1 is critically involved in RNA-to-protein translation, and we found that the first alcohol session rapidly activated mTORC1 in NAc shell D1+ neurons and increased synaptic expression of the AMPAR subunit GluA1 and the scaffolding protein Homer. Finally, D1R stimulation alone was sufficient to activate mTORC1 in the NAc to promote mTORC1-dependent translation of the synaptic proteins GluA1 and Homer. Together, our results indicate that the first alcohol drinking session induces synaptic plasticity in NAc D1+ neurons via enhanced mTORC1-dependent translation of proteins involved in excitatory synaptic transmission that in turn drives the reinforcement learning associated with the first alcohol experience. Thus, the alcohol-dependent D1R/mTORC1-mediated increase in synaptic function in the NAc may reflect a neural imprint of alcohol's reinforcing properties, which could promote subsequent alcohol intake. SIGNIFICANCE STATEMENT Consuming alcohol for the first time is a learning event that drives further drinking. Here, we identified a mechanism that may underlie the reinforcing learning associated with the initial alcohol experience. We show that the first alcohol experience induces a persistent enhancement of excitatory synaptic transmission on NAc shell D1+ neurons

  4. Overview of Glutamatergic Dysregulation in Central Pathologies

    PubMed Central

    Miladinovic, Tanya; Nashed, Mina G.; Singh, Gurmit

    2015-01-01

    As the major excitatory neurotransmitter in the mammalian central nervous system, glutamate plays a key role in many central pathologies, including gliomas, psychiatric, neurodevelopmental, and neurodegenerative disorders. Post-mortem and serological studies have implicated glutamatergic dysregulation in these pathologies, and pharmacological modulation of glutamate receptors and transporters has provided further validation for the involvement of glutamate. Furthermore, efforts from genetic, in vitro, and animal studies are actively elucidating the specific glutamatergic mechanisms that contribute to the aetiology of central pathologies. However, details regarding specific mechanisms remain sparse and progress in effectively modulating glutamate to alleviate symptoms or inhibit disease states has been relatively slow. In this report, we review what is currently known about glutamate signalling in central pathologies. We also discuss glutamate’s mediating role in comorbidities, specifically cancer-induced bone pain and depression. PMID:26569330

  5. Microtubule-associated protein 1B (MAP1B)-deficient neurons show structural presynaptic deficiencies in vitro and altered presynaptic physiology.

    PubMed

    Bodaleo, Felipe J; Montenegro-Venegas, Carolina; Henríquez, Daniel R; Court, Felipe A; Gonzalez-Billault, Christian

    2016-01-01

    Microtubule-associated protein 1B (MAP1B) is expressed predominantly during the early stages of development of the nervous system, where it regulates processes such as axonal guidance and elongation. Nevertheless, MAP1B expression in the brain persists in adult stages, where it participates in the regulation of the structure and physiology of dendritic spines in glutamatergic synapses. Moreover, MAP1B expression is also found in presynaptic synaptosomal preparations. In this work, we describe a presynaptic phenotype in mature neurons derived from MAP1B knockout (MAP1B KO) mice. Mature neurons express MAP1B, and its deficiency does not alter the expression levels of a subgroup of other synaptic proteins. MAP1B KO neurons display a decrease in the density of presynaptic and postsynaptic terminals, which involves a reduction in the density of synaptic contacts, and an increased proportion of orphan presynaptic terminals. Accordingly, MAP1B KO neurons present altered synaptic vesicle fusion events, as shown by FM4-64 release assay, and a decrease in the density of both synaptic vesicles and dense core vesicles at presynaptic terminals. Finally, an increased proportion of excitatory immature symmetrical synaptic contacts in MAP1B KO neurons was detected. Altogether these results suggest a novel role for MAP1B in presynaptic structure and physiology regulation in vitro. PMID:27425640

  6. Microtubule-associated protein 1B (MAP1B)-deficient neurons show structural presynaptic deficiencies in vitro and altered presynaptic physiology

    PubMed Central

    Bodaleo, Felipe J.; Montenegro-Venegas, Carolina; Henríquez, Daniel R.; Court, Felipe A.; Gonzalez-Billault, Christian

    2016-01-01

    Microtubule-associated protein 1B (MAP1B) is expressed predominantly during the early stages of development of the nervous system, where it regulates processes such as axonal guidance and elongation. Nevertheless, MAP1B expression in the brain persists in adult stages, where it participates in the regulation of the structure and physiology of dendritic spines in glutamatergic synapses. Moreover, MAP1B expression is also found in presynaptic synaptosomal preparations. In this work, we describe a presynaptic phenotype in mature neurons derived from MAP1B knockout (MAP1B KO) mice. Mature neurons express MAP1B, and its deficiency does not alter the expression levels of a subgroup of other synaptic proteins. MAP1B KO neurons display a decrease in the density of presynaptic and postsynaptic terminals, which involves a reduction in the density of synaptic contacts, and an increased proportion of orphan presynaptic terminals. Accordingly, MAP1B KO neurons present altered synaptic vesicle fusion events, as shown by FM4-64 release assay, and a decrease in the density of both synaptic vesicles and dense core vesicles at presynaptic terminals. Finally, an increased proportion of excitatory immature symmetrical synaptic contacts in MAP1B KO neurons was detected. Altogether these results suggest a novel role for MAP1B in presynaptic structure and physiology regulation in vitro. PMID:27425640

  7. Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus.

    PubMed

    Hennebelle, Marie; Champeil-Potokar, Gaëlle; Lavialle, Monique; Vancassel, Sylvie; Denis, Isabelle

    2014-02-01

    Chronic stress causes the release of glucocorticoids, which greatly influence cerebral function, especially glutamatergic transmission. These stress-induced changes in neurotransmission could be counteracted by increasing the dietary intake of omega-3 polyunsaturated fatty acids (n-3 PUFAs). Numerous studies have described the capacity of n-3 PUFAs to help protect glutamatergic neurotransmission from damage induced by stress and glucocorticoids, possibly preventing the development of stress-related disorders such as depression or anxiety. The hippocampus contains glucocorticoid receptors and is involved in learning and memory. This makes it particularly sensitive to stress, which alters certain aspects of hippocampal function. In this review, the various ways in which n-3 PUFAs may prevent the harmful effects of chronic stress, particularly the alteration of glutamatergic synapses in the hippocampus, are summarized.

  8. In Vivo Measurement of Cell-Type-Specific Synaptic Connectivity and Synaptic Transmission in Layer 2/3 Mouse Barrel Cortex

    PubMed Central

    Pala, Aurélie; Petersen, Carl C.H.

    2015-01-01

    Summary Intracellular recordings of membrane potential in vitro have defined fundamental properties of synaptic communication. Much less is known about the properties of synaptic connectivity and synaptic transmission in vivo. Here, we combined single-cell optogenetics with whole-cell recordings to investigate glutamatergic synaptic transmission in vivo from single identified excitatory neurons onto two genetically defined subtypes of inhibitory GABAergic neurons in layer 2/3 mouse barrel cortex. We found that parvalbumin-expressing (PV) GABAergic neurons received unitary glutamatergic synaptic input with higher probability than somatostatin-expressing (Sst) GABAergic neurons. Unitary excitatory postsynaptic potentials onto PV neurons were also faster and more reliable than inputs onto Sst neurons. Excitatory synapses targeting Sst neurons displayed strong short-term facilitation, while those targeting PV neurons showed little short-term dynamics. Our results largely agree with in vitro measurements. We therefore demonstrate the technical feasibility of assessing functional cell-type-specific synaptic connectivity in vivo, allowing future investigations into context-dependent modulation of synaptic transmission. PMID:25543458

  9. Transgenic Expression of Glud1 (Glutamate Dehydrogenase 1) in Neurons: In Vivo Model of Enhanced Glutamate Release, Altered Synaptic Plasticity, and Selective Neuronal Vulnerability

    PubMed Central

    Bao, Xiaodong; Pal, Ranu; Hascup, Kevin N.; Wang, Yongfu; Wang, Wen-Tung; Xu, Wenhao; Hui, Dongwei; Agbas, Abdulbaki; Wang, Xinkun; Michaelis, Mary L.; Choi, In-Young; Belousov, Andrei B.; Gerhardt, Greg A.; Michaelis, Elias K.

    2010-01-01

    The effects of lifelong, moderate excess release of glutamate (Glu) in the CNS have not been previously characterized. We created a transgenic (Tg) mouse model of lifelong excess synaptic Glu release in the CNS by introducing the gene for glutamate dehydrogenase 1 (Glud1) under the control of the neuron-specific enolase promoter. Glud1 is, potentially, an important enzyme in the pathway of Glu synthesis in nerve terminals. Increased levels of GLUD protein and activity in CNS neurons of hemizygous Tg mice were associated with increases in the in vivo release of Glu after neuronal depolarization in striatum and in the frequency and amplitude of miniature EPSCs in the CA1 region of the hippocampus. Despite overexpression of Glud1 in all neurons of the CNS, the Tg mice suffered neuronal losses in select brain regions (e.g., the CA1 but not the CA3 region). In vulnerable regions, Tg mice had decreases in MAP2A labeling of dendrites and in synaptophysin labeling of presynaptic terminals; the decreases in neuronal numbers and dendrite and presynaptic terminal labeling increased with advancing age. In addition, the Tg mice exhibited decreases in long-term potentiation of synaptic activity and in spine density in dendrites of CA1 neurons. Behaviorally, the Tg mice were significantly more resistant than wild-type mice to induction and duration of anesthesia produced by anesthetics that suppress Glu neurotransmission. The Glud1 mouse might be a useful model for the effects of lifelong excess synaptic Glu release on CNS neurons and for age-associated neurodegenerative processes. PMID:19890003

  10. Optogenetic stimulation reveals distinct modulatory properties of thalamostriatal vs corticostriatal glutamatergic inputs to fast-spiking interneurons

    PubMed Central

    Sciamanna, Giuseppe; Ponterio, Giulia; Mandolesi, Georgia; Bonsi, Paola; Pisani, Antonio

    2015-01-01

    Parvalbumin-containing fast-spiking interneurons (FSIs) exert a powerful feed-forward GABAergic inhibition on striatal medium spiny neurons (MSNs), playing a critical role in timing striatal output. However, how glutamatergic inputs modulate their firing activity is still unexplored. Here, by means of a combined optogenetic and electrophysiological approach, we provide evidence for a differential modulation of cortico- vs thalamo-striatal synaptic inputs to FSIs in transgenic mice carrying light-gated ion channels channelrhodopsin-2 (ChR2) in glutamatergic fibers. Corticostriatal synapses show a postsynaptic facilitation, whereas thalamostriatal synapses present a postsynaptic depression. Moreover, thalamostriatal synapses exhibit more prominent AMPA-mediated currents than corticostriatal synapses, and an increased release probability. Furthermore, during current-evoked firing activity, simultaneous corticostriatal stimulation increases bursting activity. Conversely, thalamostriatal fiber activation shifts the canonical burst-pause activity to a more prolonged, regular firing pattern. However, this change in firing pattern was accompanied by a significant rise in the frequency of membrane potential oscillations. Notably, the responses to thalamic stimulation were fully abolished by blocking metabotropic glutamate 1 (mGlu1) receptor subtype, whereas both acetylcholine and dopamine receptor antagonists were ineffective. Our findings demonstrate that cortical and thalamic glutamatergic input differently modulate FSIs firing activity through specific intrinsic and synaptic properties, exerting a powerful influence on striatal outputs. PMID:26572101

  11. Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine

    PubMed Central

    Martella, Giuseppina; Tassone, Annalisa; Sciamanna, Giuseppe; Platania, Paola; Cuomo, Dario; Viscomi, Maria Teresa; Bonsi, Paola; Cacci, Emanuele; Biagioni, Stefano; Usiello, Alessandro; Bernardi, Giorgio; Sharma, Nutan

    2009-01-01

    DYT1 dystonia is a severe form of inherited dystonia, characterized by involuntary twisting movements and abnormal postures. It is linked to a deletion in the dyt1 gene, resulting in a mutated form of the protein torsinA. The penetrance for dystonia is incomplete, but both clinically affected and non-manifesting carriers of the DYT1 mutation exhibit impaired motor learning and evidence of altered motor plasticity. Here, we characterized striatal glutamatergic synaptic plasticity in transgenic mice expressing either the normal human torsinA or its mutant form, in comparison to non-transgenic (NT) control mice. Medium spiny neurons recorded from both NT and normal human torsinA mice exhibited normal long-term depression (LTD), whereas in mutant human torsinA littermates LTD could not be elicited. In addition, although long-term potentiation (LTP) could be induced in all the mice, it was greater in magnitude in mutant human torsinA mice. Low-frequency stimulation (LFS) can revert potentiated synapses to resting levels, a phenomenon termed synaptic depotentiation. LFS induced synaptic depotentiation (SD) both in NT and normal human torsinA mice, but not in mutant human torsinA mice. Since anti-cholinergic drugs are an effective medical therapeutic option for the treatment of human dystonia, we reasoned that an excess in endogenous acetylcholine could underlie the synaptic plasticity impairment. Indeed, both LTD and SD were rescued in mutant human torsinA mice either by lowering endogenous acetylcholine levels or by antagonizing muscarinic M1 receptors. The presence of an enhanced acetylcholine tone was confirmed by the observation that acetylcholinesterase activity was significantly increased in the striatum of mutant human torsinA mice, as compared with both normal human torsinA and NT littermates. Moreover, we found similar alterations of synaptic plasticity in muscarinic M2/M4 receptor knockout mice, in which an increased striatal acetylcholine level has been

  12. Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine.

    PubMed

    Martella, Giuseppina; Tassone, Annalisa; Sciamanna, Giuseppe; Platania, Paola; Cuomo, Dario; Viscomi, Maria Teresa; Bonsi, Paola; Cacci, Emanuele; Biagioni, Stefano; Usiello, Alessandro; Bernardi, Giorgio; Sharma, Nutan; Standaert, David G; Pisani, Antonio

    2009-09-01

    DYT1 dystonia is a severe form of inherited dystonia, characterized by involuntary twisting movements and abnormal postures. It is linked to a deletion in the dyt1 gene, resulting in a mutated form of the protein torsinA. The penetrance for dystonia is incomplete, but both clinically affected and non-manifesting carriers of the DYT1 mutation exhibit impaired motor learning and evidence of altered motor plasticity. Here, we characterized striatal glutamatergic synaptic plasticity in transgenic mice expressing either the normal human torsinA or its mutant form, in comparison to non-transgenic (NT) control mice. Medium spiny neurons recorded from both NT and normal human torsinA mice exhibited normal long-term depression (LTD), whereas in mutant human torsinA littermates LTD could not be elicited. In addition, although long-term potentiation (LTP) could be induced in all the mice, it was greater in magnitude in mutant human torsinA mice. Low-frequency stimulation (LFS) can revert potentiated synapses to resting levels, a phenomenon termed synaptic depotentiation. LFS induced synaptic depotentiation (SD) both in NT and normal human torsinA mice, but not in mutant human torsinA mice. Since anti-cholinergic drugs are an effective medical therapeutic option for the treatment of human dystonia, we reasoned that an excess in endogenous acetylcholine could underlie the synaptic plasticity impairment. Indeed, both LTD and SD were rescued in mutant human torsinA mice either by lowering endogenous acetylcholine levels or by antagonizing muscarinic M1 receptors. The presence of an enhanced acetylcholine tone was confirmed by the observation that acetylcholinesterase activity was significantly increased in the striatum of mutant human torsinA mice, as compared with both normal human torsinA and NT littermates. Moreover, we found similar alterations of synaptic plasticity in muscarinic M2/M4 receptor knockout mice, in which an increased striatal acetylcholine level has been

  13. Development of glutamatergic synapses in the rat retina: the postnatal expression of ionotropic glutamate receptor subunits.

    PubMed

    Hack, Iris; Koulen, Peter; Peichl, Leo; Brandstätter, Johann Helmut

    2002-01-01

    We examined the distribution of the AMPA glutamate receptor subunits GluR1 to GluR4, of the kainate receptor subunits GluR6/7 and KA2, and of the glutamate receptor subunits delta1/2, during postnatal development of the rat retina by immunocytochemistry and light microscopy using receptor subunit specific antisera. The various ionotropic glutamate receptor subunits were expressed early in postnatal rat retina, and most of the subunits, with the exception of delta1/2. were found in both synaptic layers of rat retina. The glutamate receptor subunits studied showed differences in their time of appearance, their spatial distribution patterns, and in their expression levels in the developing rat retina. Interestingly, most of the AMPA receptor subunits were expressed earlier than the kainate receptor subunits in the two synaptic layers of the retina, indicating that AMPA glutamate receptors play an important role in early postnatal glutamatergic synaptic transmission. We also studied the ultrastructural localization of the AMPA glutamate receptor subunits GluR1 to GluR4 by immunocytochemistry and electron microscopy in the inner plexiform layer of the mature rat retina. Most of the subunits were found postsynaptic to the ribbon synapses of OFF-cone, ON-cone, and rod bipolar cells. The results of this study suggest an involvement of ionotropic glutamate receptors in processes of synaptic maturation and the formation of synaptic circuitries in the developing plexiform layers of the retina. Furthermore, AMPA and kainate receptors play a role in synaptic processing and in the development of both the scotopic and photopic pathways in the rat retina.

  14. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, impaired adult social behavior and activity patterns

    PubMed Central

    Wise, Alexandra; Tenezaca, Luis; Fernandez, Robert W.; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F.; Venkatesh, Tadmiri

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions and hyperactivity. ASD exhibits a strong genetic component with underlying multi-gene interactions. Candidate gene studies have shown that the neurobeachin gene is disrupted in human patients with idiopathic autism (Castermans et al., 2003). The gene for neurobeachin (NBEA) spans the common fragile site FRA 13A and encodes a signal scaffold protein (Savelyeva et al., 2006). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. (Medrihan et al., 2009; Savelyeva, Sagulenko, Schmitt, & Schwab, 2006). rugose (rg) is the Drosophila homologue of the mammalian and human neurobeachin. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the EGFR and Notch mediated signaling pathways, facilitating cross-talk between these and other pathways (Shamloula et al., 2002). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion and hyperactivity. These results demonstrate that Drosophila neurobeachin (rugose) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying autism spectrum disorders. PMID:26100104

  15. Novel glutamatergic agents for major depressive disorder and bipolar disorder

    PubMed Central

    Machado-Vieira, Rodrigo; Ibrahim, Lobna; Henter, Ioline D.; Zarate, Carlos A.

    2011-01-01

    Mood disorders such as major depressive disorder (MDD) and bipolar disorder (BPD) are common, chronic, recurrent mental illnesses that affect the lives and functioning of millions of individuals worldwide. Growing evidence suggests that the glutamatergic system is central to the neurobiology and treatment of these disorders. Here, we review data supporting the involvement of the glutamatergic system in the pathophysiology of mood disorders as well as the efficacy of glutamatergic agents as novel therapeutics. PMID:21971560

  16. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain

    PubMed Central

    Bonansco, Christian; Fuenzalida, Marco

    2016-01-01

    Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I) balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks. PMID:27006834

  17. Synaptic Efficacy as a Function of Ionotropic Receptor Distribution: A Computational Study

    PubMed Central

    Allam, Sushmita L.; Bouteiller, Jean-Marie C.; Hu, Eric Y.; Ambert, Nicolas; Greget, Renaud; Bischoff, Serge; Baudry, Michel; Berger, Theodore W.

    2015-01-01

    Glutamatergic synapses are the most prevalent functional elements of information processing in the brain. Changes in pre-synaptic activity and in the function of various post-synaptic elements contribute to generate a large variety of synaptic responses. Previous studies have explored postsynaptic factors responsible for regulating synaptic strength variations, but have given far less importance to synaptic geometry, and more specifically to the subcellular distribution of ionotropic receptors. We analyzed the functional effects resulting from changing the subsynaptic localization of ionotropic receptors by using a hippocampal synaptic computational framework. The present study was performed using the EONS (Elementary Objects of the Nervous System) synaptic modeling platform, which was specifically developed to explore the roles of subsynaptic elements as well as their interactions, and that of synaptic geometry. More specifically, we determined the effects of changing the localization of ionotropic receptors relative to the presynaptic glutamate release site, on synaptic efficacy and its variations following single pulse and paired-pulse stimulation protocols. The results indicate that changes in synaptic geometry do have consequences on synaptic efficacy and its dynamics. PMID:26480028

  18. Synaptic Efficacy as a Function of Ionotropic Receptor Distribution: A Computational Study.

    PubMed

    Allam, Sushmita L; Bouteiller, Jean-Marie C; Hu, Eric Y; Ambert, Nicolas; Greget, Renaud; Bischoff, Serge; Baudry, Michel; Berger, Theodore W

    2015-01-01

    Glutamatergic synapses are the most prevalent functional elements of information processing in the brain. Changes in pre-synaptic activity and in the function of various post-synaptic elements contribute to generate a large variety of synaptic responses. Previous studies have explored postsynaptic factors responsible for regulating synaptic strength variations, but have given far less importance to synaptic geometry, and more specifically to the subcellular distribution of ionotropic receptors. We analyzed the functional effects resulting from changing the subsynaptic localization of ionotropic receptors by using a hippocampal synaptic computational framework. The present study was performed using the EONS (Elementary Objects of the Nervous System) synaptic modeling platform, which was specifically developed to explore the roles of subsynaptic elements as well as their interactions, and that of synaptic geometry. More specifically, we determined the effects of changing the localization of ionotropic receptors relative to the presynaptic glutamate release site, on synaptic efficacy and its variations following single pulse and paired-pulse stimulation protocols. The results indicate that changes in synaptic geometry do have consequences on synaptic efficacy and its dynamics.

  19. Inflammatory and Glutamatergic Homeostasis Are Involved in Successful Aging.

    PubMed

    Hascup, Erin R; Wang, Feiya; Kopchick, John J; Bartke, Andrzej

    2016-03-01

    Whole body studies using long-lived growth hormone receptor gene disrupted or knock out (GHR-KO) mice report global GH resistance, increased insulin sensitivity, reduced insulin-like growth factor 1 (IGF-1), and cognitive retention in old-age, however, little is known about the neurobiological status of these mice. The aim of this study was to determine if glutamatergic and inflammatory markers that are altered in aging and/or age-related diseases and disorders, are preserved in mice that experience increased healthspan. We examined messenger ribonucleic acid (mRNA) expression levels in the brain of 4- to 6-, 8- to 10-, and 20- to 22-month GHR-KO and normal aging control mice. In the hippocampus, glutamate transporter 1 (GLT-1) and anti-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)-p50 were elevated in 8- to 10-month GHR-KO mice compared with age-matched controls. In the hypothalamus, NFκB-p50, NFκB-p65, IGF-1 receptor (IGF-1R), glutamate/aspartate transporter (GLAST), and 2-amino-3-(5-methyl-3-oxo 2,3-dihydro-1,2 oxazol-4-yl) propanoic acid receptor subunit 1 (GluA1) were elevated in 8- to 10- and/or 20- to 22-month GHR-KO mice when comparing genotypes. Finally, interleukin 1-beta (IL-1β) mRNA was reduced in 4- to 6- and/or 8- to 10-month GHR-KO mice compared with normal littermates in all brain areas examined. These data support the importance of decreased brain inflammation in early adulthood and maintained homeostasis of the glutamatergic and inflammatory systems in extended longevity. PMID:25711529

  20. Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson's disease.

    PubMed

    Miguelez, Cristina; Morin, Stéphanie; Martinez, Audrey; Goillandeau, Michel; Bezard, Erwan; Bioulac, Bernard; Baufreton, Jérôme

    2012-11-15

    The pattern of activity of globus pallidus (GP) neurons is tightly regulated by GABAergic inhibition. In addition to extrinsic inputs from the striatum (STR-GP) the other source of GABA to GP neurons arises from intrinsic intranuclear axon collaterals (GP-GP). While the contribution of striatal inputs has been studied, notably its hyperactivity in Parkinson's disease (PD), the properties and function of intranuclear inhibition remain poorly understood. Our objective was therefore to test the impact of chronic dopamine depletion on pallido-pallidal transmission. Using patch-clamp whole-cell recordings in rat brain slices, we combined electrical and optogenetic stimulations with pharmacology to differentiate basic synaptic properties of STR-GP and GP-GP GABAergic synapses. GP-GP synapses were characterized by activity-dependent depression and insensitivity to the D(2) receptor specific agonist quinpirole and STR-GP synapses by frequency-dependent facilitation and quinpirole modulation. Chronic dopamine deprivation obtained in 6-OHDA lesioned animals boosted the amplitude of GP-GP IPSCs but did not modify STR-GP transmission and increased the amplitude of miniature IPSCs. Replacement of calcium by strontium confirmed that the quantal amplitude was increased at GP-GP synapses. Finally, we demonstrated that boosted GP-GP transmission promotes resetting of autonomous activity and rebound-burst firing after dopamine depletion. These results suggest that GP-GP synaptic transmission (but not STR-GP) is augmented by chronic dopamine depletion which could contribute to the aberrant GP neuronal activity observed in PD.

  1. Effects of Anti-NMDA Antibodies on Functional Recovery and Synaptic Rearrangement Following Hemicerebellectomy.

    PubMed

    Laricchiuta, Daniela; Cavallucci, Virve; Cutuli, Debora; De Bartolo, Paola; Caporali, Paola; Foti, Francesca; Finke, Carsten; D'Amelio, Marcello; Manto, Mario; Petrosini, Laura

    2016-06-01

    The compensation that follows cerebellar lesions is based on synaptic modifications in many cortical and subcortical regions, although its cellular mechanisms are still unclear. Changes in glutamatergic receptor expression may represent the synaptic basis of the compensated state. We analyzed in rats the involvement of glutamatergic system of the cerebello-frontal network in the compensation following a right hemicerebellectomy. We evaluated motor performances, spatial competencies and molecular correlates in compensated hemicerebellectomized rats which in the frontal cortex contralateral to the hemicerebellectomy side received injections of anti-NMDA antibodies from patients affected by anti-NMDA encephalitis. In the compensated hemicerebellectomized rats, the frontal injections of anti-NMDA antibodies elicited a marked decompensation state characterized by slight worsening of the motor symptoms as well as severe impairment of spatial mnesic and procedural performances. Conversely, in the sham-operated group the frontal injections of anti-NMDA antibodies elicited slight motor and spatial impairment. The molecular analyses indicated that cerebellar compensatory processes were related to a relevant rearrangement of glutamatergic synapses (NMDA and AMPA receptors and other glutamatergic components) along the entire cortico-cerebellar network. The long-term maintenance of the rearranged glutamatergic activity plays a crucial role in the maintenance of recovered function. PMID:27027521

  2. Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex.

    PubMed

    Chih, Ben; Gollan, Leora; Scheiffele, Peter

    2006-07-20

    Formation of synapses requires specific cellular interactions that organize pre- and postsynaptic compartments. The neuroligin-neurexin complex mediates heterophilic adhesion and can trigger assembly of glutamatergic and GABAergic synapses in cultured hippocampal neurons. Both neuroligins and neurexins are encoded by multiple genes. Alternative splicing generates large numbers of isoforms, which may engage in selective axo-dendritic interactions. We explored whether alternative splicing of the postsynaptic neuroligins modifies their activity toward glutamatergic and GABAergic axons. We find that small extracellular splice insertions restrict the function of neuroligin-1 and -2 to glutamatergic and GABAergic contacts and alter interaction with presynaptic neurexins. The neuroligin isoforms associated with GABAergic contacts bind to neurexin-1alpha and a subset of neurexin-1betas. In turn, these neurexin isoforms induce GABAergic but not glutamatergic postsynaptic differentiation. Our findings suggest that alternative splicing plays a central role in regulating selective extracellular interactions through the neuroligin-neurexin complex at glutamatergic and GABAergic synapses.

  3. Reelin secretion from glutamatergic neurons in culture is independent from neurotransmitter regulation

    PubMed Central

    Lacor, Pascale N.; Grayson, Dennis R.; Auta, James; Sugaya, Ikuko; Costa, Erminio; Guidotti, Alessandro

    2000-01-01

    Reelin (Reln) is a glycoprotein that in postnatal and adult mammalian brain is believed to be secreted from telencephalic GABAergic interneurons and cerebellar glutamatergic granule neurons into the extracellular matrix. To address the question of whether Reln neurosecretion occurs via a regulated or a constitutive process, we exposed postnatal rat cerebellar granule neurons (CGNs) maintained in culture for 7–9 days to: (i) 100 μM N-methyl-d-aspartate (NMDA) in a Mg+2-free medium to stimulate NMDA-selective glutamate receptors and Ca2+-dependent neurotransmitter release, (ii) 50 mM KCl to depolarize the cells and elicit Ca2+-dependent exocytosis, (iii) 10–100 μM nicotine to activate excocytosis by nicotinic receptors present in these cells, (iv) 10 μM 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide in combination with 10 μM dizocilpine to block α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid- and NMDA-preferring glutamate receptors activated by endogenously released glutamate, or (v) EGTA (5 mM) to virtually eliminate extracellular Ca2+ and block Ca2+-dependent exocytosis. Although, CGNs express and secrete Reln (measured by quantitative immunoblotting), none of the above-mentioned conditions that control regulated exocytosis alters the stores or the rate of Reln release. In contrast, application of either: (i) a Reln antisense oligonucleotide (5′-GCAATGTGCAGGGAAATG-3′) (10 μM) that reduces Reln biosynthesis or (ii) brefeldin A (5 × 10−5 M), an inhibitor of the traffic of proteins between the endoplasmic reticulum and the Golgi network, sharply curtail the rate of Reln secretion. Because, in subcellular fractionation studies, we have shown that Reln is not contained in synaptic vesicles, these data suggest that Reln secretion from CGNs does not require Ca2+-dependent exocytosis, but probably is related to a Reln pool stored in Golgi secretory vesicles mediating a constitutive secretory pathway. PMID:10725375

  4. Endocannabinoids in Synaptic Plasticity and Neuroprotection

    PubMed Central

    Xu, Jian-Yi; Chen, Chu

    2014-01-01

    Endocannabinoids (eCBs) are endogenous lipid mediators involved in a variety of physiological, pharmacological, and pathological processes. While activation of the eCB system primarily induces inhibitory effects on both GABAergic and glutamatergic synaptic transmission and plasticity through acting on presynaptically-expressed CB1 receptors in the brain, accumulated information suggests that eCB signaling is also capable of facilitating or potentiating excitatory synaptic transmission in the hippocampus. Recent studies show that a long-lasting potentiation of excitatory synaptic transmission at Schaffer collateral (SC)-CA1 synapses is induced by spatiotemporally primed inputs, accompanying with a long-term depression of inhibitory synaptic transmission (I-LTD) in hippocampal CA1 pyramidal neurons. This input-timing-dependent long-lasting synaptic potentiation at SC-CA1 synapses is mediated by 2-arachidonoylglycerol (2-AG) signaling triggered by activation of postsynaptic NMDA receptors, group I metabotropic glutamate receptors (mGluRs), and a concurrent rise in intracellular Ca2+. Emerging evidence now also indicates that 2-AG is an important signaling mediator keeping brain homeostasis by exerting its anti-inflammatory and neuroprotective effects in response to harmful insults through CB1/2 receptor-dependent and/or independent mechanisms. Activation of the nuclear receptor protein peroxisome proliferator-activated receptor-γ (PPARγ) apparently is one of the important mechanisms in resolving neuroinflammation and protecting neurons produced by 2-AG signaling. Thus, the information summarized in this review suggests that the role of eCB signaling in maintaining integrity of brain function is greater than what we thought previously. PMID:24571856

  5. Genetic analysis of glutamatergic function in Drosophila

    SciTech Connect

    Chase, B.A.; Kankel, D.R.

    1987-01-01

    Neurotransmitters are essential for communication between neurons and hence are vital in the overall integrative functioning of the nervous system. Previous work on acetylcholine metabolism in the fruit fly, Drosophila melanogaster, has also raised the possibility that transmitter metabolism may play a prominent role in either the achievement or maintenance of the normal structure of the central nervous system in this species. Unfortunately, acetylcholine is rather poorly characterized as a neurotransmitter in Drosophila; consequently, we have begun an analysis of the role of glutamate (probably the best characterized transmitter in this organism) in the formation and/or maintenance of nervous system structure. We present here the results of a series of preliminary analyses. To suggest where glutamatergic function may be localized, an examination of the spatial distribution of high affinity (/sup 3/H)-glutamate binding sites are presented. We present the results of an analysis of the spatial and temporal distribution of enzymatic activities thought to be important in the regulation of transmitter-glutamate pools (i.e., glutamate oxaloacetic transaminase, glutaminase, and glutamate dehydrogenase). To begin to examine whether mutations in any of these functions are capable of affecting glutamatergic activity, we present the results of an initial genetic analysis of one enzymatic function, glutamate oxaloacetic transaminase (GOT), chosen because of its differential distribution within the adult central nervous system and musculature.

  6. Optogenetic Activation of Septal Glutamatergic Neurons Drive Hippocampal Theta Rhythms.

    PubMed

    Robinson, Jennifer; Manseau, Frédéric; Ducharme, Guillaume; Amilhon, Bénédicte; Vigneault, Erika; El Mestikawy, Salah; Williams, Sylvain

    2016-03-01

    The medial septum and diagonal band of Broca (MS-DBB) has an essential role for theta rhythm generation in the hippocampus and is critical for learning and memory. The MS-DBB contains cholinergic, GABAergic, and recently described glutamatergic neurons, but their specific contribution to theta generation is poorly understood. Here, we examined the role of MS-DBB glutamatergic neurons in theta rhythm using optogenetic activation and electrophysiological recordings performed in in vitro preparations and in freely behaving mice. The experiments in slices suggest that MS-DBB glutamatergic neurons provide prominent excitatory inputs to a majority of local GABAergic and a minority of septal cholinergic neurons. In contrast, activation of MS-DBB glutamatergic fiber terminals in hippocampal slices elicited weak postsynaptic responses in hippocampal neurons. In the in vitro septo-hippocampal preparation, activation of MS-DBB glutamatergic neurons did increase the rhythmicity of hippocampal theta oscillations, whereas stimulation of septo-hippocampal glutamatergic fibers in the fornix did not have an effect. In freely behaving mice, activation of these neurons in the MS-DBB strongly synchronized hippocampal theta rhythms over a wide range of frequencies, whereas activation of their projections to the hippocampus through fornix stimulations had no effect on theta rhythms, suggesting that MS-DBB glutamatergic neurons played a role in theta generation through local modulation of septal neurons. Together, these results provide the first evidence that MS-DBB glutamatergic neurons modulate local septal circuits, which in turn contribute to theta rhythms in the hippocampus.

  7. Control of glutamatergic neurotransmission in the rat spinal dorsal horn by the nucleoside transporter ENT1.

    PubMed

    Ackley, Michael A; Governo, Ricardo J M; Cass, Carol E; Young, James D; Baldwin, Stephen A; King, Anne E

    2003-04-15

    Adenosine modulates nociceptive processing in the superficial dorsal horn of the spinal cord. In other tissues, membrane transporters influence profoundly the extracellular levels of adenosine. To investigate the putative role of nucleoside transporters in the regulation of excitatory synaptic transmission in the dorsal horn, we employed immunohistochemistry and whole-cell patch-clamp recording of substantia gelatinosa neurons in slices of rat spinal cord in vitro. The rat equilibrative nucleoside transporter (rENT1) was revealed by antibody staining to be abundant in neonatal and mature dorsal horn, especially within laminae I-III. This was confirmed by immunoblots of dorsal horn homogenate. Nitrobenzylthioinosine (NBMPR), a potent non-transportable inhibitor of rENT1, attenuated synaptically evoked EPSCs onto lamina II neurons in a concentration-dependent manner. Application of an adenosine A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine produced a parallel rightward shift in the NBMPR concentration-effect curve. The effects of NBMPR were partially reversed by adenosine deaminase, which facilitates the metabolic degradation of adenosine. The modulation by NBMPR of evoked EPSCs was mimicked by exogenous adenosine or the selective A1 receptor agonist, 2-chloro-N6-cyclopentyl adenosine. NBMPR reduced the frequency but not the amplitude of spontaneous miniature EPSCs and increased the paired-pulse ratio of evoked currents, an effect that is consistent with presynaptic modulation. These data provide the first direct evidence that nucleoside transporters are able to critically modulate glutamatergic synaptic transmission. PMID:12611914

  8. The neurobiological properties of tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation.

    PubMed

    McEwen, B S; Chattarji, S; Diamond, D M; Jay, T M; Reagan, L P; Svenningsson, P; Fuchs, E

    2010-03-01

    Tianeptine is a clinically used antidepressant that has drawn much attention, because this compound challenges traditional monoaminergic hypotheses of depression. It is now acknowledged that the antidepressant actions of tianeptine, together with its remarkable clinical tolerance, can be attributed to its particular neurobiological properties. The involvement of glutamate in the mechanism of action of the antidepressant tianeptine is consistent with a well-developed preclinical literature demonstrating the key function of glutamate in the mechanism of altered neuroplasticity that underlies the symptoms of depression. This article reviews the latest evidence on tianeptine's mechanism of action with a focus on the glutamatergic system, which could provide a key pathway for its antidepressant action. Converging lines of evidences demonstrate actions of tianeptine on the glutamatergic system, and therefore offer new insights into how tianeptine may be useful in the treatment of depressive disorders.

  9. Cholinergic modulation of multivesicular release regulates striatal synaptic potency and integration.

    PubMed

    Higley, Michael J; Soler-Llavina, Gilberto J; Sabatini, Bernardo L

    2009-09-01

    The pleiotropic actions of neuromodulators on pre- and postsynaptic targets make disentangling the mechanisms underlying regulation of synaptic transmission challenging. In the striatum, acetylcholine modulates glutamate release via activation of muscarinic receptors (mAchRs), although the consequences for postsynaptic signaling are unclear. Using two-photon microscopy and glutamate uncaging to examine individual synapses in the rat striatum, we found that glutamatergic afferents have a high degree of multivesicular release (MVR) in the absence of postsynaptic receptor saturation. We found that mAchR activation decreased both the probability of release and the concentration of glutamate in the synaptic cleft. The corresponding decrease in synaptic potency reduced the duration of synaptic potentials and limited temporal summation of afferent inputs. These findings reveal a mechanism by which a combination of basal MVR and low receptor saturation allow the presynaptic actions of a neuromodulator to control the engagement of postsynaptic nonlinearities and regulate synaptic integration.

  10. Functional recovery after cervical spinal cord injury: Role of neurotrophin and glutamatergic signaling in phrenic motoneurons.

    PubMed

    Gill, Luther C; Gransee, Heather M; Sieck, Gary C; Mantilla, Carlos B

    2016-06-01

    Cervical spinal cord injury (SCI) interrupts descending neural drive to phrenic motoneurons causing diaphragm muscle (DIAm) paralysis. Recent studies using a well-established model of SCI, unilateral spinal hemisection of the C2 segment of the cervical spinal cord (SH), provide novel information regarding the molecular and cellular mechanisms of functional recovery after SCI. Over time post-SH, gradual recovery of rhythmic ipsilateral DIAm activity occurs. Recovery of ipsilateral DIAm electromyogram (EMG) activity following SH is enhanced by increasing brain-derived neurotrophic factor (BDNF) in the region of the phrenic motoneuron pool. Delivery of exogenous BDNF either via intrathecal infusion or via mesenchymal stem cells engineered to release BDNF similarly enhance recovery. Conversely, recovery after SH is blunted by quenching endogenous BDNF with the fusion-protein TrkB-Fc in the region of the phrenic motoneuron pool or by selective inhibition of TrkB kinase activity using a chemical-genetic approach in TrkB(F616A) mice. Furthermore, the importance of BDNF signaling via TrkB receptors at phrenic motoneurons is highlighted by the blunting of recovery by siRNA-mediated downregulation of TrkB receptor expression in phrenic motoneurons and by the enhancement of recovery evident following virally-induced increases in TrkB expression specifically in phrenic motoneurons. BDNF/TrkB signaling regulates synaptic plasticity in various neuronal systems, including glutamatergic pathways. Glutamatergic neurotransmission constitutes the main inspiratory-related, excitatory drive to motoneurons, and following SH, spontaneous neuroplasticity is associated with increased expression of ionotropic N-methyl-d-aspartate (NMDA) receptors in phrenic motoneurons. Evidence for the role of BDNF/TrkB and glutamatergic signaling in recovery of DIAm activity following cervical SCI is reviewed.

  11. Synaptic and non-synaptic localization of protocadherin-γC5 in the rat brain

    PubMed Central

    Li, Yanfang; Serwanski, David R.; Miralles, Celia P.; Fiondella, Christopher G.; LoTurco, Joseph J.; Rubio, Maria E.; De Blas, Angel L.

    2011-01-01

    It has been proposed that γ-protocadherins (Pcdh-γs) are involved in the establishment of specific patterns of neuronal connectivity. Contrary to the other Pcdh-γs, which are expressed in the embryo, Pcdh-γC5 is expressed postnatally in the brain, coinciding with the peak of synaptogenesis. We have developed an antibody specific for Pcdh-γC5 to study the expression and localization of Pcdh-γC5 in brain. Pcdh-γC5 is highly expressed in the olfactory bulb, corpus striatum, dentate gyrus, CA1 region of the hippocampus, layers I and II of the cerebral cortex, the molecular layer of the cerebellum. Pcdh-γC5 is expressed in both neurons and astrocytes. In hippocampal neuronal cultures, and in the absence of astrocytes, a significant percentage of synapses, more GABAergic than glutamatergic, have associated Pcdh-γC5 clusters. Some GABAergic axons show Pcdh-γC5 in the majority of their synapses. Nevertheless, many Pcdh-γC5 clusters are not associated with synapses. In the brain, a significant number of Pcdh-γC5 clusters are located at contact points between neurons and astrocytes. Electron microscope immunocytochemistry of the rat brain shows that i) Pcdh-γC5 is present in some GABAergic and glutamatergic synapses both pre- and postsynaptically; ii) Pcdh-γC5 is also extrasynaptically localized in membranes and in cytoplasmic organelles of neurons and astrocytes; and iii) that Pcdh-γC5 is also localized in perisynaptic astrocyte processes. The results support the notion that i) Pcdh-γC5 plays a role in synaptic specificity and/or synaptic maturation, and ii) that Pcdh-γC5 is involved in neuron-neuron synaptic interactions and in neuron-astrocyte interactions, including perisynaptic neuron-astrocyte interactions. PMID:20589908

  12. Mixed cholinergic/glutamatergic neuromuscular innervation of Onychophora: a combined histochemical/electrophysiological study.

    PubMed

    Stern, Michael; Bicker, Gerd

    2008-08-01

    Morphological and molecular phylogenetic data show that the Onychophora are close relatives of the Arthropoda. However, onychophoran neuromuscular junctions have been reported to employ acetylcholine, as in annelids, nematodes, and other bilaterians, rather than glutamate, as in arthropods. Here, we show that the large longitudinal muscles of Peripatoides respond indeed only to acetylcholine, whereas the oblique and ring muscles of the body wall are sensitive both to acetylcholine and to L-glutamate. Moreover, cytochemical staining reveals both acetylcholinesterase- and glutamate-positive synaptic boutons on oblique and ring muscles. These novel findings agree with a phylogenetic position of onychophorans basal to that of the arthropods. Although the glutamatergic phenotype of excitatory neuromuscular transmission may be a characteristic feature of arthropods and present even in a subset of onychophoran motor neurons, the motor neurons of the longitudinal muscles still retain the cholinergic phenotype typical for annelids and other taxa. PMID:18563449

  13. Mixed cholinergic/glutamatergic neuromuscular innervation of Onychophora: a combined histochemical/electrophysiological study.

    PubMed

    Stern, Michael; Bicker, Gerd

    2008-08-01

    Morphological and molecular phylogenetic data show that the Onychophora are close relatives of the Arthropoda. However, onychophoran neuromuscular junctions have been reported to employ acetylcholine, as in annelids, nematodes, and other bilaterians, rather than glutamate, as in arthropods. Here, we show that the large longitudinal muscles of Peripatoides respond indeed only to acetylcholine, whereas the oblique and ring muscles of the body wall are sensitive both to acetylcholine and to L-glutamate. Moreover, cytochemical staining reveals both acetylcholinesterase- and glutamate-positive synaptic boutons on oblique and ring muscles. These novel findings agree with a phylogenetic position of onychophorans basal to that of the arthropods. Although the glutamatergic phenotype of excitatory neuromuscular transmission may be a characteristic feature of arthropods and present even in a subset of onychophoran motor neurons, the motor neurons of the longitudinal muscles still retain the cholinergic phenotype typical for annelids and other taxa.

  14. Short-term high-fat-and-fructose feeding produces insulin signaling alterations accompanied by neurite and synaptic reduction and astroglial activation in the rat hippocampus

    PubMed Central

    Calvo-Ochoa, Erika; Hernández-Ortega, Karina; Ferrera, Patricia; Morimoto, Sumiko; Arias, Clorinda

    2014-01-01

    Chronic consumption of high-fat-and-fructose diets (HFFD) is associated with the development of insulin resistance (InsRes) and obesity. Systemic insulin resistance resulting from long-term HFFD feeding has detrimental consequences on cognitive performance, neurogenesis, and long-term potentiation establishment, accompanied by neuronal alterations in the hippocampus. However, diet-induced hippocampal InsRes has not been reported. Therefore, we investigated whether short-term HFFD feeding produced hippocampal insulin signaling alterations associated with neuronal changes in the hippocampus. Rats were fed with a control diet or an HFFD consisting of 10% lard supplemented chow and 20% high-fructose syrup in the drinking water. Our results show that 7 days of HFFD feeding induce obesity and InsRes, associated with the following alterations in the hippocampus: (1) a decreased insulin signaling; (2) a decreased hippocampal weight; (3) a reduction in dendritic arborization in CA1 and microtubule-associated protein 2 (MAP-2) levels; (4) a decreased dendritic spine number in CA1 and synaptophysin content, along with an increase in tau phosphorylation; and finally, (5) an increase in reactive astrocyte associated with microglial changes. To our knowledge, this is the first report addressing hippocampal insulin signaling, as well as morphologic, structural, and functional modifications due to short-term HFFD feeding in the rat. PMID:24667917

  15. Synaptic vesicle endocytosis.

    PubMed

    Saheki, Yasunori; De Camilli, Pietro

    2012-09-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization.

  16. Synaptic Vesicle Endocytosis

    PubMed Central

    Saheki, Yasunori; De Camilli, Pietro

    2012-01-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746

  17. Relative Contributions of Specific Activity Histories and Spontaneous Processes to Size Remodeling of Glutamatergic Synapses

    PubMed Central

    Dvorkin, Roman; Ziv, Noam E.

    2016-01-01

    The idea that synaptic properties are defined by specific pre- and postsynaptic activity histories is one of the oldest and most influential tenets of contemporary neuroscience. Recent studies also indicate, however, that synaptic properties often change spontaneously, even in the absence of specific activity patterns or any activity whatsoever. What, then, are the relative contributions of activity history-dependent and activity history-independent processes to changes synapses undergo? To compare the relative contributions of these processes, we imaged, in spontaneously active networks of cortical neurons, glutamatergic synapses formed between the same axons and neurons or dendrites under the assumption that their similar activity histories should result in similar size changes over timescales of days. The size covariance of such commonly innervated (CI) synapses was then compared to that of synapses formed by different axons (non-CI synapses) that differed in their activity histories. We found that the size covariance of CI synapses was greater than that of non-CI synapses; yet overall size covariance of CI synapses was rather modest. Moreover, momentary and time-averaged sizes of CI synapses correlated rather poorly, in perfect agreement with published electron microscopy-based measurements of mouse cortex synapses. A conservative estimate suggested that ~40% of the observed size remodeling was attributable to specific activity histories, whereas ~10% and ~50% were attributable to cell-wide and spontaneous, synapse-autonomous processes, respectively. These findings demonstrate that histories of naturally occurring activity patterns can direct glutamatergic synapse remodeling but also suggest that the contributions of spontaneous, possibly stochastic, processes are at least as great. PMID:27776122

  18. Synaptic and cellular changes induced by the schizophrenia susceptibility gene G72 are rescued by N-acetylcysteine treatment

    PubMed Central

    Pósfai, B; Cserép, C; Hegedüs, P; Szabadits, E; Otte, D M; Zimmer, A; Watanabe, M; Freund, T F; Nyiri, G

    2016-01-01

    Genetic studies have linked the primate-specific gene locus G72 to the development of schizophrenia and bipolar disorder. Transgenic mice carrying the entire gene locus express G72 mRNA in dentate gyrus (DG) and entorhinal cortex, causing altered electrophysiological properties of their connections. These transgenic mice exhibit behavioral alterations related to psychiatric diseases, including cognitive deficits that can be reversed by treatment with N-acetylcysteine, which was also found to be effective in human patients. Here, we show that G72 transgenic mice have larger excitatory synapses with an increased amount of N-methyl-d-aspartate (NMDA) receptors in the molecular layer of DG, compared with wild-type littermates. Furthermore, transgenic animals have lower number of dentate granule cells with a parallel, but an even stronger decrease in the number of excitatory synapses in the molecular layer. Importantly, we also show that treatment with N-acetylcysteine can effectively normalize all these changes in transgenic animals, resulting in a state similar to wild-type mice. Our results show that G72 transcripts induce robust alterations in the glutamatergic system at the synaptic level that can be rescued with N-acetylcysteine treatment. PMID:27163208

  19. Reversal of behavioral deficits and synaptic dysfunction in mice overexpressing neuregulin 1.

    PubMed

    Yin, Dong-Min; Chen, Yong-Jun; Lu, Yi-Sheng; Bean, Jonathan C; Sathyamurthy, Anupama; Shen, Chengyong; Liu, Xihui; Lin, Thiri W; Smith, Clifford A; Xiong, Wen-Cheng; Mei, Lin

    2013-05-22

    Neuregulin 1 (Nrg1) is a susceptibility gene of schizophrenia, a disabling mental illness that affects 1% of the general population. Here, we show that ctoNrg1 mice, which mimic high levels of NRG1 observed in forebrain regions of schizophrenic patients, exhibit behavioral deficits and hypofunction of glutamatergic and GABAergic pathways. Intriguingly, these deficits were diminished when NRG1 expression returned to normal in adult mice, suggesting that damage which occurred during development is recoverable. Conversely, increase of NRG1 in adulthood was sufficient to cause glutamatergic impairment and behavioral deficits. We found that the glutamatergic impairment by NRG1 overexpression required LIM domain kinase 1 (LIMK1), which was activated in mutant mice, identifying a pathological mechanism. These observations demonstrate that synaptic dysfunction and behavioral deficits in ctoNrg1 mice require continuous NRG1 abnormality in adulthood, suggesting that relevant schizophrenia may benefit from therapeutic intervention to restore NRG1 signaling. PMID:23719163

  20. Notch1 Regulates Hippocampal Plasticity Through Interaction with the Reelin Pathway, Glutamatergic Transmission and CREB Signaling

    PubMed Central

    Brai, Emanuele; Marathe, Swananda; Astori, Simone; Fredj, Naila Ben; Perry, Elisabeth; Lamy, Christophe; Scotti, Alessandra; Alberi, Lavinia

    2015-01-01

    Notch signaling plays a crucial role in adult brain function such as synaptic plasticity, memory and olfaction. Several reports suggest an involvement of this pathway in neurodegenerative dementia. Yet, to date, the mechanism underlying Notch activity in mature neurons remains unresolved. In this work, we investigate how Notch regulates synaptic potentiation and contributes to the establishment of memory in mice. We observe that Notch1 is a postsynaptic receptor with functional interactions with the Reelin receptor, apolipoprotein E receptor 2 (ApoER2) and the ionotropic receptor, N-methyl-D-aspartate receptor (NMDAR). Targeted loss of Notch1 in the hippocampal CA fields affects Reelin signaling by influencing Dab1 expression and impairs the synaptic potentiation achieved through Reelin stimulation. Further analysis indicates that loss of Notch1 affects the expression and composition of the NMDAR but not AMPAR. Glutamatergic signaling is further compromised through downregulation of CamKII and its secondary and tertiary messengers resulting in reduced cAMP response element-binding (CREB) signaling. Our results identify Notch1 as an important regulator of mechanisms involved in synaptic plasticity and memory formation. These findings emphasize the possible involvement of this signaling receptor in dementia. Highlights In this paper, we propose a mechanism for Notch1-dependent plasticity that likely underlies the function of Notch1 in memory formation: Notch1 interacts with another important developmental pathway, the Reelin cascade. Notch1 regulates both NMDAR expression and composition. Notch1 influences a cascade of cellular events culminating in CREB activation. PMID:26635527

  1. Inhibitory Control of Synaptic and Behavioral Plasticity by Octopaminergic Signaling

    PubMed Central

    Koon, Alex C.; Budnik, Vivian

    2012-01-01

    Adrenergic receptors and their ligands are important regulators of synaptic plasticity and metaplasticity, but the exact mechanisms underlying their action are still poorly understood. Octopamine, the invertebrate homolog of mammalian adrenaline or noradrenaline, plays important roles in modulating behavior and synaptic functions. We previously uncovered an octopaminergic positive feedback mechanism to regulate structural synaptic plasticity during development and in response to starvation. Under this mechanism, activation of Octß2R autoreceptors by octopamine at octopaminergic neurons initiated a cAMP-dependent cascade that stimulated the development of new synaptic boutons at the Drosophila larval neuromuscular junction (NMJ). However, the regulatory mechanisms that served to brake such positive feedback were not known. Here, we report the presence of an alternative octopamine autoreceptor, Octß1R, with antagonistic functions on synaptic growth. Mutations in octß1r result in the overgrowth of both glutamatergic and octopaminergic NMJs suggesting that Octß1R is a negative regulator of synaptic expansion. As Octß2R, Octß1R functioned in a cell autonomous manner at presynaptic motorneurons. However, unlike Octß2R, which activated a cAMP pathway, Octß1R likely inhibited cAMP production through inhibitory Goα. Despite its inhibitory role, Octß1R was required for acute changes in synaptic structure in response to octopamine and for starvation-induced increase in locomotor speed. These results demonstrate the dual action of octopamine on synaptic growth and behavioral plasticity, and highlight the important role of inhibitory influences for normal responses to physiological stimuli. PMID:22553037

  2. Origins of altered reinforcement effects in ADHD

    PubMed Central

    Johansen, Espen Borgå; Killeen, Peter R; Russell, Vivienne A; Tripp, Gail; Wickens, Jeff R; Tannock, Rosemary; Williams, Jonathan; Sagvolden, Terje

    2009-01-01

    Attention-deficit/hyperactivity disorder (ADHD), characterized by hyperactivity, impulsiveness and deficient sustained attention, is one of the most common and persistent behavioral disorders of childhood. ADHD is associated with catecholamine dysfunction. The catecholamines are important for response selection and memory formation, and dopamine in particular is important for reinforcement of successful behavior. The convergence of dopaminergic mesolimbic and glutamatergic corticostriatal synapses upon individual neostriatal neurons provides a favorable substrate for a three-factor synaptic modification rule underlying acquisition of associations between stimuli in a particular context, responses, and reinforcers. The change in associative strength as a function of delay between key stimuli or responses, and reinforcement, is known as the delay of reinforcement gradient. The gradient is altered by vicissitudes of attention, intrusions of irrelevant events, lapses of memory, and fluctuations in dopamine function. Theoretical and experimental analyses of these moderating factors will help to determine just how reinforcement processes are altered in ADHD. Such analyses can only help to improve treatment strategies for ADHD. PMID:19226460

  3. [Evidence on the key role of the metabotrobic glutamatergic receptors in the pathogenesis of schizophrenia: a "breakthrough" in pharmacological treatment].

    PubMed

    Pannese, Rossella; Minichino, Amedeo; Pignatelli, Marco; Delle Chiaie, Roberto; Biondi, Massimo; Nicoletti, Ferdinando

    2012-01-01

    The metabotropic glutamate receptors (mGluRs) are expressed pre- and post synaptically throughout the nervous system where they serve as modulators of synaptic transmission and neuronal excitability. The glutamatergic system is involved in a wide range of physiological processes in the brain, and its dysfunction plays an important role in the etiology and pathophysiology of psychiatric disorders, including schizophrenia. This paper reviews the neurodevelopmental origin and genetic susceptibility of schizophrenia relevant to NMDA receptor neurotransmission, and discusses the relationship between NMDA hypofunction and different domains of symptom in schizophrenia as well as putative treatment modality for the disorder. mGlu receptors have been hypothesizes as attractive therapeutic targets for the development of novel interventions for psychiatric disorders. Group II of mGlu receptors are of particular interest because of their unique distribution and the regulatory roles they have in neurotransmission. The glutamate hypothesis of schizophrenia predicts that agents that restore the balance in glutamatergic neurotransmission will ameliorate the symptomatology associated with this illness. Development of potent, efficacious, systemically active drugs will help to address the antipsychotic potential of these novel therapeutics. This review will discuss recent progress in elucidating the pharmacology and function of group II receptors in the context of current hypotheses on the pathophysiology of schizophrenia and the need for new and better antipsychotics.

  4. Endogenous Rho-kinase signaling maintains synaptic strength by stabilizing the size of the readily releasable pool of synaptic vesicles.

    PubMed

    González-Forero, David; Montero, Fernando; García-Morales, Victoria; Domínguez, Germán; Gómez-Pérez, Laura; García-Verdugo, José Manuel; Moreno-López, Bernardo

    2012-01-01

    Rho-associated kinase (ROCK) regulates neural cell migration, proliferation and survival, dendritic spine morphology, and axon guidance and regeneration. There is, however, little information about whether ROCK modulates the electrical activity and information processing of neuronal circuits. At neonatal stage, ROCKα is expressed in hypoglossal motoneurons (HMNs) and in their afferent inputs, whereas ROCKβ is found in synaptic terminals on HMNs, but not in their somata. Inhibition of endogenous ROCK activity in neonatal rat brainstem slices failed to modulate intrinsic excitability of HMNs, but strongly attenuated the strength of their glutamatergic and GABAergic synaptic inputs. The mechanism acts presynaptically to reduce evoked neurotransmitter release. ROCK inhibition increased myosin light chain (MLC) phosphorylation, which is known to trigger actomyosin contraction, and reduced the number of synaptic vesicles docked to active zones in excitatory boutons. Functional and ultrastructural changes induced by ROCK inhibition were fully prevented/reverted by MLC kinase (MLCK) inhibition. Furthermore, ROCK inhibition drastically reduced the phosphorylated form of p21-associated kinase (PAK), which directly inhibits MLCK. We conclude that endogenous ROCK activity is necessary for the normal performance of motor output commands, because it maintains afferent synaptic strength, by stabilizing the size of the readily releasable pool of synaptic vesicles. The mechanism of action involves a tonic inhibition of MLCK, presumably through PAK phosphorylation. This mechanism might be present in adults since unilateral microinjection of ROCK or MLCK inhibitors into the hypoglossal nucleus reduced or increased, respectively, whole XIIth nerve activity.

  5. Optogenetic Activation of Septal Glutamatergic Neurons Drive Hippocampal Theta Rhythms.

    PubMed

    Robinson, Jennifer; Manseau, Frédéric; Ducharme, Guillaume; Amilhon, Bénédicte; Vigneault, Erika; El Mestikawy, Salah; Williams, Sylvain

    2016-03-01

    The medial septum and diagonal band of Broca (MS-DBB) has an essential role for theta rhythm generation in the hippocampus and is critical for learning and memory. The MS-DBB contains cholinergic, GABAergic, and recently described glutamatergic neurons, but their specific contribution to theta generation is poorly understood. Here, we examined the role of MS-DBB glutamatergic neurons in theta rhythm using optogenetic activation and electrophysiological recordings performed in in vitro preparations and in freely behaving mice. The experiments in slices suggest that MS-DBB glutamatergic neurons provide prominent excitatory inputs to a majority of local GABAergic and a minority of septal cholinergic neurons. In contrast, activation of MS-DBB glutamatergic fiber terminals in hippocampal slices elicited weak postsynaptic responses in hippocampal neurons. In the in vitro septo-hippocampal preparation, activation of MS-DBB glutamatergic neurons did increase the rhythmicity of hippocampal theta oscillations, whereas stimulation of septo-hippocampal glutamatergic fibers in the fornix did not have an effect. In freely behaving mice, activation of these neurons in the MS-DBB strongly synchronized hippocampal theta rhythms over a wide range of frequencies, whereas activation of their projections to the hippocampus through fornix stimulations had no effect on theta rhythms, suggesting that MS-DBB glutamatergic neurons played a role in theta generation through local modulation of septal neurons. Together, these results provide the first evidence that MS-DBB glutamatergic neurons modulate local septal circuits, which in turn contribute to theta rhythms in the hippocampus. PMID:26961955

  6. De novo mutations in schizophrenia implicate synaptic networks.

    PubMed

    Fromer, Menachem; Pocklington, Andrew J; Kavanagh, David H; Williams, Hywel J; Dwyer, Sarah; Gormley, Padhraig; Georgieva, Lyudmila; Rees, Elliott; Palta, Priit; Ruderfer, Douglas M; Carrera, Noa; Humphreys, Isla; Johnson, Jessica S; Roussos, Panos; Barker, Douglas D; Banks, Eric; Milanova, Vihra; Grant, Seth G; Hannon, Eilis; Rose, Samuel A; Chambert, Kimberly; Mahajan, Milind; Scolnick, Edward M; Moran, Jennifer L; Kirov, George; Palotie, Aarno; McCarroll, Steven A; Holmans, Peter; Sklar, Pamela; Owen, Michael J; Purcell, Shaun M; O'Donovan, Michael C

    2014-02-13

    Inherited alleles account for most of the genetic risk for schizophrenia. However, new (de novo) mutations, in the form of large chromosomal copy number changes, occur in a small fraction of cases and disproportionally disrupt genes encoding postsynaptic proteins. Here we show that small de novo mutations, affecting one or a few nucleotides, are overrepresented among glutamatergic postsynaptic proteins comprising activity-regulated cytoskeleton-associated protein (ARC) and N-methyl-d-aspartate receptor (NMDAR) complexes. Mutations are additionally enriched in proteins that interact with these complexes to modulate synaptic strength, namely proteins regulating actin filament dynamics and those whose messenger RNAs are targets of fragile X mental retardation protein (FMRP). Genes affected by mutations in schizophrenia overlap those mutated in autism and intellectual disability, as do mutation-enriched synaptic pathways. Aligning our findings with a parallel case-control study, we demonstrate reproducible insights into aetiological mechanisms for schizophrenia and reveal pathophysiology shared with other neurodevelopmental disorders. PMID:24463507

  7. Normal photoresponses and altered b-wave responses to APB in the mdxCv3 mouse isolated retina ERG supports role for dystrophin in synaptic transmission

    PubMed Central

    GREEN, DANIEL G.; GUO, HAO

    2005-01-01

    The mdxCv3 mouse is a model for Duchenne muscular dystrophy (DMD). DMD is an X-linked disorder with defective expression of the protein dystrophin, and which is associated with a reduced b-wave and has other electroretinogram (ERG) abnormalities. To assess potential causes for the abnormalities, we recorded ERGs from pieces of isolated C57BL/6J and mdxCv3 mouse retinas, including measurements of transretinal and intraretinal potentials. The ERGs from the isolated mdxCv3 retina differ from those of control retinas in that they show reduced b-wave amplitudes and increased b-wave implicit times. Photovoltages obtained by recording across the photoreceptor outer segments of the retinas did not differ from normal, suggesting that the likely causes of the reduced b-wave are localized to the photoreceptor to ON-bipolar synapse. At a concentration of 50 μM, the glutamate analog DL-2-amino-4-phosphonobutyric acid (APB) blocks the b-wave component of the ERG, by binding to sites on the postsynaptic membrane. The On-bipolar cell contribution to the ERG was inferred by extracting the component that was blocked by APB. We found that this component was smaller in amplitude and had longer response latencies in the mdxCv3 mice, but was of similar overall time course. To assess the sensitivity of sites on the postsynaptic membrane to glutamate, the concentration of APB in the media was systematically varied, and the magnitude of blockage of the light response was quantified. We found that the mdxCv3 retina was 5-fold more sensitive to APB than control retinas. The ability of lower concentrations of APB to block the b-wave in mdxCv3 suggests that the ERG abnormalities may reflect alterations in either glutamate release, the glutamate postsynaptic binding sites, or in other proteins that modulate glutamate function in ON-bipolar cells. PMID:15683561

  8. Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes

    PubMed Central

    2012-01-01

    Action potentials at the neurons and graded signals at the synapses are primary codes in the brain. In terms of their functional interaction, the studies were focused on the influence of presynaptic spike patterns on synaptic activities. How the synapse dynamics quantitatively regulates the encoding of postsynaptic digital spikes remains unclear. We investigated this question at unitary glutamatergic synapses on cortical GABAergic neurons, especially the quantitative influences of release probability on synapse dynamics and neuronal encoding. Glutamate release probability and synaptic strength are proportionally upregulated by presynaptic sequential spikes. The upregulation of release probability and the efficiency of probability-driven synaptic facilitation are strengthened by elevating presynaptic spike frequency and Ca2+. The upregulation of release probability improves spike capacity and timing precision at postsynaptic neuron. These results suggest that the upregulation of presynaptic glutamate release facilitates a conversion of synaptic analogue signals into digital spikes in postsynaptic neurons, i.e., a functional compatibility between presynaptic and postsynaptic partners. PMID:22852823

  9. Endocytic Trafficking and Recycling Maintain a Pool of Mobile Surface AMPA Receptors Required for Synaptic Potentiation

    PubMed Central

    Petrini, Enrica Maria; Lu, Jiuyi; Cognet, Laurent; Lounis, Brahim; Ehlers, Michael D.; Choquet, Daniel

    2010-01-01

    SUMMARY At excitatory glutamatergic synapses, postsynaptic endocytic zones (EZs), which are adjacent to the postsynaptic density (PSD), mediate clathrin-dependent endocytosis of surface AMPA Receptors (AMPAR) as a first step to receptor recycling or degradation. However, it remains unknown if receptor recycling influences AMPARs lateral diffusion, and if EZs are important for the expression of synaptic potentiation. Here we demonstrate that the presence of both EZs and AMPAR recycling maintain a large pool of mobile AMPARs at synapses. In addition, we find that synaptic potentiation is accompanied by an accumulation and immobilization of AMPARs at synapses resulting from both their exocytosis and stabilization at the PSD. Displacement of EZs from the postsynaptic region impairs the expression of synaptic potentiation by blocking AMPAR recycling. Thus receptor recycling is crucial for maintaining a mobile population of surface AMPARs which can be delivered to synapses for increases in synaptic strength. PMID:19607795

  10. Mechanism of the modulating action of met-enkephalin on glutamatergic synaptic transmission

    SciTech Connect

    Kuznetsov, V.I.; Godukhin, O.V.

    1985-11-01

    The authors show that the inhibiting effect of met-enkephalin on the glutamate-induced responses of the neurons of the neostriatum may be due to the inhibiting influence of the opioid peptide on the binding of glutamate to its postsynaptic receptors. The authors extracted the striatum from the brains of Wistar rats (100-150 g) and homogenized in 20 volumes of 0.32 sucrose. The homogenate was centrifuged at 900g for 10 min. The supernatant was removed and centrifuged at 20,000g for 40 min. The precipitate obtained (P2-fraction) was subjected to hypoosmotic shock in de-ionized water and recentrifuged at 20,000g for 30 min. The precipitate, containing the fraction of plasma membranes, was suspended in 50 ml of Tris-HCl, pH 7.4, to a protein concentration of 1-2 mg/ml, and used in experiments on the binding of (/sup 3/H)glutamate on the same day. To determine the binding of (/sup 3/H)glutamate, 20 microliters of (/sup 3/H)glutamate (specific activity 29 Ci/mmole), 20 microliters of the membrane suspension, 40 microliters of (0.5 x 10/sup -8/-10/sup -7/ M) met-enkephalin, and 100 microliters of Tris-buffer were introduced into 1.5 ml polyethylene test tubes. The final concentration of (/sup 3/H)glutamate in solution was 10/sup -8/-4 x 10/sup -7/ M. Non-specific binding was determined in the presence of 10/sup -3/ M glutamate. The membranes were incubated with a solution of (/sup 3/H)glutamate at 20/sup 0/C for 30 min.

  11. Can Mismatch Negativity Be Linked to Synaptic Processes? A Glutamatergic Approach to Deviance Detection

    ERIC Educational Resources Information Center

    Strelnikov, Kuzma

    2007-01-01

    This article aims to provide a theoretical framework to elucidate the neurophysiological underpinnings of deviance detection as reflected by mismatch negativity. A six-step model of the information processing necessary for deviance detection is proposed. In this model, predictive coding of learned regularities is realized by means of long-term…

  12. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc

    PubMed Central

    Anderson, Charles T.; Radford, Robert J.; Zastrow, Melissa L.; Zhang, Daniel Y.; Apfel, Ulf-Peter; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling. PMID:25947151

  13. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc.

    PubMed

    Anderson, Charles T; Radford, Robert J; Zastrow, Melissa L; Zhang, Daniel Y; Apfel, Ulf-Peter; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-05-19

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling.

  14. Noradrenergic Modulation of Intrinsic and Synaptic Properties of Lumbar Motoneurons in the Neonatal Rat Spinal Cord

    PubMed Central

    Tartas, Maylis; Morin, France; Barrière, Grégory; Goillandeau, Michel; Lacaille, Jean-Claude; Cazalets, Jean-René; Bertrand, Sandrine S.

    2009-01-01

    Although it is known that noradrenaline (NA) powerfully controls spinal motor networks, few data are available regarding the noradrenergic (NAergic) modulation of intrinsic and synaptic properties of neurons in motor networks. Our work explores the cellular basis of NAergic modulation in the rat motor spinal cord. We first show that lumbar motoneurons express the three classes of adrenergic receptors at birth. Using patch-clamp recordings in the newborn rat spinal cord preparation, we characterized the effects of NA and of specific agonists of the three classes of adrenoreceptors on motoneuron membrane properties. NA increases the motoneuron excitability partly via the inhibition of a KIR like current. Methoxamine (α1), clonidine (α2) and isoproterenol (β) differentially modulate the motoneuron membrane potential but also increase motoneuron excitability, these effects being respectively inhibited by the antagonists prazosin (α1), yohimbine (α2) and propranolol (β). We show that the glutamatergic synaptic drive arising from the T13-L2 network is enhanced in motoneurons by NA, methoxamine and isoproterenol. On the other hand, NA, isoproterenol and clonidine inhibit both the frequency and amplitude of miniature glutamatergic EPSCs while methoxamine increases their frequency. The T13-L2 synaptic drive is thereby differentially modulated from the other glutamatergic synapses converging onto motoneurons and enhanced by presynaptic α1 and β receptor activation. Our data thus show that the NAergic system exerts a powerful and complex neuromodulation of lumbar motor networks in the neonatal rat spinal cord. PMID:20300468

  15. Wnt-related SynGAP1 is a neuroprotective factor of glutamatergic synapses against Aβ oligomers

    PubMed Central

    Codocedo, Juan F.; Montecinos-Oliva, Carla; Inestrosa, Nibaldo C.

    2015-01-01

    Wnt-5a is a synaptogenic factor that modulates glutamatergic synapses and generates neuroprotection against Aβ oligomers. It is known that Wnt-5a plays a key role in the adult nervous system and synaptic plasticity. Emerging evidence indicates that miRNAs are actively involved in the regulation of synaptic plasticity. Recently, we showed that Wnt-5a is able to control the expression of several miRNAs including miR-101b, which has been extensively studied in carcinogenesis. However, its role in brain is just beginning to be explored. That is why we aim to study the relationship between Wnt-5a and miRNAs in glutamatergic synapses. We performed in silico analysis which predicted that miR-101b may inhibit the expression of synaptic GTPase-Activating Protein (SynGAP1), a Ras GTPase-activating protein critical for the development of cognition and proper synaptic function. Through overexpression of miR-101b, we showed that miR-101b is able to regulate the expression of SynGAP1 in an hippocampal cell line. Moreover and consistent with a decrease of miR-101b, Wnt-5a enhances SynGAP expression in cultured hippocampal neurons. Additionally, Wnt-5a increases the activity of SynGAP in a time-dependent manner, with a similar kinetic to CaMKII phosphorylation. This also, correlates with a modulation in the SynGAP clusters density. On the other hand, Aβ oligomers permanently decrease the number of SynGAP clusters. Interestingly, when neurons are co-incubated with Wnt-5a and Aβ oligomers, we do not observe the detrimental effect of Aβ oligomers, indicating that, Wnt-5a protects neurons from the synaptic failure triggered by Aβ oligomers. Overall, our findings suggest that SynGAP1 is part of the signaling pathways induced by Wnt-5a. Therefore, possibility exists that SynGAP is involved in the synaptic protection against Aβ oligomers. PMID:26124704

  16. Wnt-related SynGAP1 is a neuroprotective factor of glutamatergic synapses against Aβ oligomers.

    PubMed

    Codocedo, Juan F; Montecinos-Oliva, Carla; Inestrosa, Nibaldo C

    2015-01-01

    Wnt-5a is a synaptogenic factor that modulates glutamatergic synapses and generates neuroprotection against Aβ oligomers. It is known that Wnt-5a plays a key role in the adult nervous system and synaptic plasticity. Emerging evidence indicates that miRNAs are actively involved in the regulation of synaptic plasticity. Recently, we showed that Wnt-5a is able to control the expression of several miRNAs including miR-101b, which has been extensively studied in carcinogenesis. However, its role in brain is just beginning to be explored. That is why we aim to study the relationship between Wnt-5a and miRNAs in glutamatergic synapses. We performed in silico analysis which predicted that miR-101b may inhibit the expression of synaptic GTPase-Activating Protein (SynGAP1), a Ras GTPase-activating protein critical for the development of cognition and proper synaptic function. Through overexpression of miR-101b, we showed that miR-101b is able to regulate the expression of SynGAP1 in an hippocampal cell line. Moreover and consistent with a decrease of miR-101b, Wnt-5a enhances SynGAP expression in cultured hippocampal neurons. Additionally, Wnt-5a increases the activity of SynGAP in a time-dependent manner, with a similar kinetic to CaMKII phosphorylation. This also, correlates with a modulation in the SynGAP clusters density. On the other hand, Aβ oligomers permanently decrease the number of SynGAP clusters. Interestingly, when neurons are co-incubated with Wnt-5a and Aβ oligomers, we do not observe the detrimental effect of Aβ oligomers, indicating that, Wnt-5a protects neurons from the synaptic failure triggered by Aβ oligomers. Overall, our findings suggest that SynGAP1 is part of the signaling pathways induced by Wnt-5a. Therefore, possibility exists that SynGAP is involved in the synaptic protection against Aβ oligomers.

  17. Wnt-related SynGAP1 is a neuroprotective factor of glutamatergic synapses against Aβ oligomers.

    PubMed

    Codocedo, Juan F; Montecinos-Oliva, Carla; Inestrosa, Nibaldo C

    2015-01-01

    Wnt-5a is a synaptogenic factor that modulates glutamatergic synapses and generates neuroprotection against Aβ oligomers. It is known that Wnt-5a plays a key role in the adult nervous system and synaptic plasticity. Emerging evidence indicates that miRNAs are actively involved in the regulation of synaptic plasticity. Recently, we showed that Wnt-5a is able to control the expression of several miRNAs including miR-101b, which has been extensively studied in carcinogenesis. However, its role in brain is just beginning to be explored. That is why we aim to study the relationship between Wnt-5a and miRNAs in glutamatergic synapses. We performed in silico analysis which predicted that miR-101b may inhibit the expression of synaptic GTPase-Activating Protein (SynGAP1), a Ras GTPase-activating protein critical for the development of cognition and proper synaptic function. Through overexpression of miR-101b, we showed that miR-101b is able to regulate the expression of SynGAP1 in an hippocampal cell line. Moreover and consistent with a decrease of miR-101b, Wnt-5a enhances SynGAP expression in cultured hippocampal neurons. Additionally, Wnt-5a increases the activity of SynGAP in a time-dependent manner, with a similar kinetic to CaMKII phosphorylation. This also, correlates with a modulation in the SynGAP clusters density. On the other hand, Aβ oligomers permanently decrease the number of SynGAP clusters. Interestingly, when neurons are co-incubated with Wnt-5a and Aβ oligomers, we do not observe the detrimental effect of Aβ oligomers, indicating that, Wnt-5a protects neurons from the synaptic failure triggered by Aβ oligomers. Overall, our findings suggest that SynGAP1 is part of the signaling pathways induced by Wnt-5a. Therefore, possibility exists that SynGAP is involved in the synaptic protection against Aβ oligomers. PMID:26124704

  18. GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer’s disease

    PubMed Central

    Nava-Mesa, Mauricio O.; Jiménez-Díaz, Lydia; Yajeya, Javier; Navarro-Lopez, Juan D.

    2014-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline, brain atrophy due to neuronal and synapse loss, and formation of two pathological lesions: extracellular amyloid plaques, composed largely of amyloid-beta peptide (Aβ), and neurofibrillary tangles formed by intracellular aggregates of hyperphosphorylated tau protein. Lesions mainly accumulate in brain regions that modulate cognitive functions such as the hippocampus, septum or amygdala. These brain structures have dense reciprocal glutamatergic, cholinergic, and GABAergic connections and their relationships directly affect learning and memory processes, so they have been proposed as highly susceptible regions to suffer damage by Aβ during AD course. Last findings support the emerging concept that soluble Aβ peptides, inducing an initial stage of synaptic dysfunction which probably starts 20–30 years before the clinical onset of AD, can perturb the excitatory–inhibitory balance of neural circuitries. In turn, neurotransmission imbalance will result in altered network activity that might be responsible of cognitive deficits in AD. Therefore, Aβ interactions on neurotransmission systems in memory-related brain regions such as amygdaloid complex, medial septum or hippocampus are critical in cognitive functions and appear as a pivotal target for drug design to improve learning and dysfunctions that manifest with age. Since treatments based on glutamatergic and cholinergic pharmacology in AD have shown limited success, therapies combining modulators of different neurotransmission systems including recent findings regarding the GABAergic system, emerge as a more useful tool for the treatment, and overall prevention, of this dementia. In this review, focused on inhibitory systems, we will analyze pharmacological strategies to compensate neurotransmission imbalance that might be considered as potential therapeutic interventions in AD. PMID:24987334

  19. Simulation of Postsynaptic Glutamate Receptors Reveals Critical Features of Glutamatergic Transmission

    PubMed Central

    Greget, Renaud; Pernot, Fabien; Bouteiller, Jean-Marie C.; Ghaderi, Viviane; Allam, Sushmita; Keller, Anne Florence; Ambert, Nicolas; Legendre, Arnaud; Sarmis, Merdan; Haeberle, Olivier; Faupel, Michel; Bischoff, Serge; Berger, Theodore W.; Baudry, Michel

    2011-01-01

    Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following

  20. Repeated Binge-Like Ethanol Drinking Alters Ethanol Drinking Patterns and Depresses Striatal GABAergic Transmission

    PubMed Central

    Wilcox, Mark V; Carlson, Verginia C Cuzon; Sherazee, Nyssa; Sprow, Gretchen M; Bock, Roland; Thiele, Todd E; Lovinger, David M; Alvarez, Veronica A

    2014-01-01

    Repeated cycles of binge alcohol drinking and abstinence are key components in the development of dependence. However, the precise behavioral mechanisms underlying binge-like drinking and its consequences on striatal synaptic physiology remain unclear. In the present study, ethanol and water drinking patterns were recorded with high temporal resolution over 6 weeks of binge-like ethanol drinking using the ‘drinking in the dark' (DID) protocol. The bottle exchange occurring at the beginning of each session prompted a transient increase in the drinking rate that might facilitate the acquisition of ethanol binge-like drinking. Ethanol drinking mice also displayed a ‘front-loading' behavior, in which the highest rate of drinking was recorded during the first 15 min. This rate increased over weeks and paralleled the mild escalation of blood ethanol concentrations. GABAergic and glutamatergic transmission in the dorsal striatum were examined following DID. Spontaneous glutamatergic transmission and the density of dendritic spines were unchanged after ethanol drinking. However, the frequency of GABAA receptor-mediated inhibitory postsynaptic currents was depressed in medium spiny neurons of ethanol drinking mice. A history of ethanol drinking also increased ethanol preference and altered the acute ethanol effects on GABAergic transmission differentially in dorsolateral and dorsomedial striatum. Together, the study shows that the bottle exchange during DID promotes fast, voluntary ethanol drinking and that this intermittent pattern of ethanol drinking causes a depression of GABAergic transmission in the dorsal striatum. PMID:23995582

  1. Excitatory synaptic transmission in the lateral and central amygdala.

    PubMed

    Sah, P; Lopez De Armentia, Mikel

    2003-04-01

    The amygdala plays a major role in the acquisition and expression of fear conditioning. NMDA receptor-dependent synaptic plasticity within the basolateral amygdala has been proposed to underlie the acquisition and possible storage of fear memories. Here the properties of fast glutamatergic transmission in the lateral and central nuclei of the amygdala are presented. In the lateral amygdala, two types of neurons, interneurons and projection neurons, could be distinguished by their different firing properties. Glutamatergic inputs to interneurons activated AMPA receptors with inwardly rectifying current-voltage relations (I-Vs), whereas inputs to projection neurons activated receptors that had linear I-Vs, indicating that receptors on interneurons lack GluR2 subunits. Inputs to projection neurons formed dual component synapses with both AMPA and NMDA components, whereas at inputs to interneurons, the contribution of NMDA receptors was very small. Neurons in the central amygdala received dual component glutamatergic inputs that activated AMPA receptors with linear I-Vs. NMDA receptor-mediated EPSCs had slow decay time constants in the central nucleus. Application of NR2B selective blockers ifenprodil or CP-101,606 blocked NMDA EPSCs by 70% in the central nucleus, but only by 30% in the lateral nucleus. These data show that the distribution of glutamatergic receptors on amygdalar neurons is not uniform. In the lateral amygdala, interneurons and pyramidal neurons express AMPA receptors with different subunit compositions. Synapses in the central nucleus activate NMDA receptors that contain NR1 and NR2B subunits, whereas synapses in the lateral nucleus contain receptors with both NR2A and NR2B subunits. PMID:12724149

  2. Lamina-specific contribution of glutamatergic and GABAergic potentials to hippocampal sharp wave-ripple complexes.

    PubMed

    Schönberger, Jan; Draguhn, Andreas; Both, Martin

    2014-01-01

    The mammalian hippocampus expresses highly organized patterns of neuronal activity which form a neuronal correlate of spatial memories. These memory-encoding neuronal ensembles form on top of different network oscillations which entrain neurons in a state- and experience-dependent manner. The mechanisms underlying activation, timing and selection of participating neurons are incompletely understood. Here we studied the synaptic mechanisms underlying one prominent network pattern called sharp wave-ripple complexes (SPW-R) which are involved in memory consolidation during sleep. We recorded SPW-R with extracellular electrodes along the different layers of area CA1 in mouse hippocampal slices. Contribution of glutamatergic excitation and GABAergic inhibition, respectively, was probed by local application of receptor antagonists into s. radiatum, pyramidale and oriens. Laminar profiles of field potentials show that GABAergic potentials contribute substantially to sharp waves and superimposed ripple oscillations in s. pyramidale. Inhibitory inputs to s. pyramidale and s. oriens are crucial for action potential timing by ripple oscillations, as revealed by multiunit-recordings in the pyramidal cell layer. Glutamatergic afferents, on the other hand, contribute to sharp waves in s. radiatum where they also evoke a fast oscillation at ~200 Hz. Surprisingly, field ripples in s. radiatum are slightly slower than ripples in s. pyramidale, resulting in a systematic shift between dendritic and somatic oscillations. This complex interplay between dendritic excitation and perisomatic inhibition may be responsible for the precise timing of discharge probability during the time course of SPW-R. Together, our data illustrate a complementary role of spatially confined excitatory and inhibitory transmission during highly ordered network patterns in the hippocampus. PMID:25202239

  3. Hippocampal Fast Glutamatergic Transmission Is Transiently Regulated by Corticosterone Pulsatility.

    PubMed

    Sarabdjitsingh, R Angela; Pasricha, Natasha; Smeets, Johanna A S; Kerkhofs, Amber; Mikasova, Lenka; Karst, Henk; Groc, Laurent; Joëls, Marian

    2016-01-01

    In recent years it has become clear that corticosteroid hormones (such as corticosterone) are released in ultradian pulses as a natural consequence of pituitary-adrenal interactions. All organs, including the brain, are thus exposed to pulsatile changes in corticosteroid hormone level, important to ensure full genomic responsiveness to stress-induced surges. However, corticosterone also changes neuronal excitability through rapid non-genomic pathways, particularly in the hippocampus. Potentially, background excitability of hippocampal neurons could thus be changed by pulsatile exposure to corticosteroids. It is currently unknown, though, how neuronal activity alters during a sequence of corticosterone pulses. To test this, hippocampal cells were exposed in vitro to four consecutive corticosterone pulses with a 60 min inter-pulse interval. During the pulses we examined four features of hippocampal signal transfer by the main excitatory transmitter glutamate-i.e., postsynaptic responses to spontaneous release of presynaptic vesicles, postsynaptic GluA2-AMPA receptor dynamics, basal (evoked) field responses, and synaptic plasticity, using a set of high resolution imaging and electrophysiological approaches. We show that the first pulse of corticosterone causes a transient increase in miniature EPSC frequency, AMPA receptor trafficking and synaptic plasticity, while basal evoked field responses are unaffected. This pattern is not maintained during subsequent applications: responses become more variable, attenuate or even reverse over time, albeit with different kinetics for the various experimental endpoints. This may indicate that the beneficial effect of ultradian pulses on transcriptional regulation in the hippocampus is not consistently accompanied by short-term perturbations in background excitability. In general, this could be interpreted as a means to keep hippocampal neurons responsive to incoming signals related to environmental challenges. PMID:26741493

  4. New tools for targeted disruption of cholinergic synaptic transmission in Drosophila melanogaster.

    PubMed

    Mejia, Monica; Heghinian, Mari D; Marí, Frank; Godenschwege, Tanja A

    2013-01-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. The α7 subtype of nAChRs is involved in neurological pathologies such as Parkinson's disease, Alzheimer's disease, addiction, epilepsy and autism spectrum disorders. The Drosophila melanogaster α7 (Dα7) has the closest sequence homology to the vertebrate α7 subunit and it can form homopentameric receptors just as the vertebrate counterpart. The Dα7 subunits are essential for the function of the Giant Fiber circuit, which mediates the escape response of the fly. To further characterize the receptor function, we generated different missense mutations in the Dα7 nAChR's ligand binding domain. We characterized the effects of targeted expression of two UAS-constructs carrying a single mutation, D197A and Y195T, as well as a UAS-construct carrying a triple D77T, L117Q, I196P mutation in a Dα7 null mutant and in a wild type background. Expression of the triple mutation was able to restore the function of the circuit in Dα7 null mutants and had no disruptive effects when expressed in wild type. In contrast, both single mutations severely disrupted the synaptic transmission of Dα7-dependent but not glutamatergic or gap junction dependent synapses in wild type background, and did not or only partially rescued the synaptic defects of the null mutant. These observations are consistent with the formation of hybrid receptors, consisting of D197A or Y195T subunits and wild type Dα7 subunits, in which the binding of acetylcholine or acetylcholine-induced conformational changes of the Dα7 receptor are altered and causes inhibition of cholinergic responses. Thus targeted expression of D197A or Y195T can be used to selectively disrupt synaptic transmission of Dα7-dependent synapses in neuronal circuits. Hence, these constructs can be used as tools to study learning and memory or addiction associated behaviors by allowing the manipulation of neuronal processing in the circuits without

  5. Oscillatory activity in developing prefrontal networks results from theta-gamma-modulated synaptic inputs.

    PubMed

    Bitzenhofer, Sebastian H; Sieben, Kay; Siebert, Kai D; Spehr, Marc; Hanganu-Opatz, Ileana L

    2015-04-21

    The hippocampus-driven entrainment of neonatal prefrontal circuits in theta-gamma oscillations contributes to the maturation of cognitive abilities, yet the underlying synaptic mechanisms are still unknown. Here we combine patch-clamp recordings from morphologically and neurochemically characterized layer V pyramidal neurons and interneurons in vivo, with extracellular recordings from the prelimbic cortex (PL) of awake and lightly anesthetized neonatal rats, to elucidate the synaptic framework of early network oscillations. We demonstrate that all neurons spontaneously fire bursts of action potentials. They receive barrages of fast and slow glutamatergic as well as GABAergic synaptic inputs. Oscillatory theta activity results from long-range coupling of pyramidal neurons, presumably within prelimbic-hippocampal circuits, and from local interactions between interneurons. In contrast, beta-low gamma activity requires external glutamatergic drive on prelimbic interneurons. High-frequency oscillations in layer V are independent of interactions at chemical synapses. Thus, specific theta-gamma-modulated synaptic interactions represent the substrate of network oscillations in the developing PL. PMID:25865885

  6. Differential synaptic changes in the striatum of subjects with undifferentiated versus paranoid schizophrenia.

    PubMed

    Roberts, Rosalinda C; Roche, Joy K; Conley, Robert R

    2008-08-01

    Subjects with schizophrenia (SZ) have an increased density of synapses characteristic of corticostriatal or thalamostriatal glutamatergic inputs in the caudate matrix and putamen patches. SZ is a heterogeneous disease in many aspects including symptoms. The purpose of the present study was to determine if the synaptic organization in two different DSM-i.v. subgroups of SZ was differentially affected. Postmortem striatal tissue was obtained from the Maryland Brain Collection from normal controls (NC), chronic paranoid SZs (SZP), and chronic undifferentiated SZs (SZU). Tissue was prepared for calbindin immunocytochemistry to identify patch matrix compartments, prepared for electron microscopy and analyzed using stereological methods. The synaptic density of asymmetric synapses, characteristic of glutamatergic inputs, was elevated equivalently in striatal patches in the SZP and SZU versus NC. The SZU also had an increased density of asymmetric synapses in the striatal matrix compared to NC. Moreover, symmetric axospinous synapses, characteristic of intrinsic inhibitory inputs and dopaminergic afferents, showed a dichotomy in synaptic density between the SZU and SZP in the striatal and caudate matrix. These data show discreet differences in synaptic organization between SZU and SZP and/or NCs. The results suggest that abnormal corticostriatal and/or corticothalamic inputs to striatal patches may be related to limbic dysfunction, which is perturbed in both subtypes of SZ. The selective increase in axospinous synapses in the matrix of the SZU subgroup compared to the SZP may be related to more severe cognitive problems in that subset of SZ compared to SZP.

  7. Superpriming of synaptic vesicles as a common basis for intersynapse variability and modulation of synaptic strength

    PubMed Central

    Taschenberger, Holger; Woehler, Andrew; Neher, Erwin

    2016-01-01

    Glutamatergic synapses show large variations in strength and short-term plasticity (STP). We show here that synapses displaying an increased strength either after posttetanic potentiation (PTP) or through activation of the phospholipase-C–diacylglycerol pathway share characteristic properties with intrinsically strong synapses, such as (i) pronounced short-term depression (STD) during high-frequency stimulation; (ii) a conversion of that STD into a sequence of facilitation followed by STD after a few conditioning stimuli at low frequency; (iii) an equalizing effect of such conditioning stimulation, which reduces differences among synapses and abolishes potentiation; and (iv) a requirement of long periods of rest for reconstitution of the original STP pattern. These phenomena are quantitatively described by assuming that a small fraction of “superprimed” synaptic vesicles are in a state of elevated release probability (p ∼ 0.5). This fraction is variable in size among synapses (typically about 30%), but increases after application of phorbol ester or during PTP. The majority of vesicles, released during repetitive stimulation, have low release probability (p ∼ 0.1), are relatively uniform in number across synapses, and are rapidly recruited. In contrast, superprimed vesicles need several seconds to be regenerated. They mediate enhanced synaptic strength at the onset of burst-like activity, the impact of which is subject to modulation by slow modulatory transmitter systems. PMID:27432975

  8. Synaptic pathology: A shared mechanism in neurological disease.

    PubMed

    Henstridge, Christopher M; Pickett, Eleanor; Spires-Jones, Tara L

    2016-07-01

    Synaptic proteomes have evolved a rich and complex diversity to allow the exquisite control of neuronal communication and information transfer. It is therefore not surprising that many neurological disorders are associated with alterations in synaptic function. As technology has advanced, our ability to study the anatomical and physiological function of synapses in greater detail has revealed a critical role for both central and peripheral synapses in neurodegenerative disease. Synapse loss has a devastating effect on cellular communication, leading to wide ranging effects such as network disruption within central neural systems and muscle wastage in the periphery. These devastating effects link synaptic pathology to a diverse range of neurological disorders, spanning Alzheimer's disease to multiple sclerosis. This review will highlight some of the current literature on synaptic integrity in animal models of disease and human post-mortem studies. Synaptic changes in normal brain ageing will also be discussed and finally the current and prospective treatments for neurodegenerative disorders will be summarised. PMID:27108053

  9. Clusters of synaptic inputs on dendrites of layer 5 pyramidal cells in mouse visual cortex

    PubMed Central

    Gökçe, Onur; Bonhoeffer, Tobias; Scheuss, Volker

    2016-01-01

    The spatial organization of synaptic inputs on the dendritic tree of cortical neurons plays a major role for dendritic integration and neural computations, yet, remarkably little is known about it. We mapped the spatial organization of glutamatergic synapses between layer 5 pyramidal cells by combining optogenetics and 2-photon calcium imaging in mouse neocortical slices. To mathematically characterize the organization of inputs we developed an approach based on combinatorial analysis of the likelihoods of specific synapse arrangements. We found that the synapses of intralaminar inputs form clusters on the basal dendrites of layer 5 pyramidal cells. These clusters contain 4 to 14 synapses within ≤30 µm of dendrite. According to the spatiotemporal characteristics of synaptic summation, these numbers suggest that there will be non-linear dendritic integration of synaptic inputs during synchronous activation. DOI: http://dx.doi.org/10.7554/eLife.09222.001 PMID:27431612

  10. Ly6h regulates trafficking of alpha7 nicotinic acetylcholine receptors and nicotine-induced potentiation of glutamatergic signaling.

    PubMed

    Puddifoot, Clare A; Wu, Meilin; Sung, Rou-Jia; Joiner, William J

    2015-02-25

    α7 nAChRs are expressed widely throughout the brain, where they are important for synaptic signaling, gene transcription, and plastic changes that regulate sensory processing, cognition, and neural responses to chronic nicotine exposure. However, the mechanisms by which α7 nAChRs are regulated are poorly understood. Here we show that trafficking of α7-subunits is controlled by endogenous membrane-associated prototoxins in the Ly6 family. In particular, we find that Ly6h reduces cell-surface expression and calcium signaling by α7 nAChRs. We detect Ly6h in several rat brain regions, including the hippocampus, where we find it is both necessary and sufficient to limit the magnitude of α7-mediated currents. Consistent with such a regulatory function, knockdown of Ly6h in rat hippocampal pyramidal neurons enhances nicotine-induced potentiation of glutamatergic mEPSC amplitude, which is known to be mediated by α7 signaling. Collectively our data suggest a novel cellular role for Ly6 proteins in regulating nAChRs, which may be relevant to plastic changes in the nervous system including rewiring of glutamatergic circuitry during nicotine addiction. PMID:25716842

  11. Glutamatergic plasticity in medial prefrontal cortex and ventral tegmental area following extended-access cocaine self-administration

    PubMed Central

    Ghasemzadeh, M. Behnam; Vasudevan, Preethi; Giles, Chad; Purgianto, Anthony; Seubert, Chad; Mantsch, John R.

    2013-01-01

    Glutamate signaling in prefrontal cortex and ventral tegmental area plays an important role in the molecular and behavioral plasticity associated with addiction to drugs of abuse. The current study investigated the expression and postsynaptic density redistribution of glutamate receptors and synaptic scaffolding proteins in dorsomedial and ventromedial prefrontal cortex and ventral tegmental area after cocaine self-administration. After 14 days of extended-access (6hr/day) cocaine self-administration, rats were exposed to one of three withdrawal regimen for 10 days. Animals either stayed in home cages (Home), returned to self-administration boxes with the levers withdrawn (Box), or underwent extinction training (Extinction). Extinction training was associated with significant glutamatergic plasticity. In dorsomedial prefrontal cortex of the Extinction group, there was an increase in postsynaptic density GluR1, PSD95, and actin proteins; while postsynaptic content of mGluR5 receptor protein decreased and there was no change in NMDAR1, Homer1b/c, or PICK1 proteins. These changes were not observed in ventromedial prefrontal cortex or ventral tegmental area. In ventral tegmental area, Extinction training reversed the decreased postsynaptic density NMDAR1 protein in the Home and Box withdrawal groups. These data suggest that extinction of drug seeking is associated with selective glutamatergic plasticity in prefrontal cortex and ventral tegmental area that include modulation of receptor trafficking to postsynaptic density. PMID:21855055

  12. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells

    PubMed Central

    Cheng, Yu-Che; Huang, Chi-Jung; Lee, Yih-Jing; Tien, Lu-Tai; Ku, Wei-Chi; Chien, Raymond; Lee, Fa-Kung; Chien, Chih-Cheng

    2016-01-01

    This study presents human placenta-derived multipotent cells (PDMCs) as a source from which functional glutamatergic neurons can be derived. We found that the small heat-shock protein 27 (HSP27) was downregulated during the neuronal differentiation process. The in vivo temporal and spatial profiles of HSP27 expression were determined and showed inverted distributions with neuronal proteins during mouse embryonic development. Overexpression of HSP27 in stem cells led to the arrest of neuronal differentiation; however, the knockdown of HSP27 yielded a substantially enhanced ability of PDMCs to differentiate into neurons. These neurons formed synaptic networks and showed positive staining for multiple neuronal markers. Additionally, cellular phenomena including the absence of apoptosis and rare proliferation in HSP27-silenced PDMCs, combined with molecular events such as cleaved caspase-3 and the loss of stemness with cleaved Nanog, indicated that HSP27 is located upstream of neuronal differentiation and constrains that process. Furthermore, the induced neurons showed increasing intracellular calcium concentrations upon glutamate treatment. These differentiated cells co-expressed the N-methyl-D-aspartate receptor, vesicular glutamate transporter, and synaptosomal-associated protein 25 but did not show expression of tyrosine hydroxylase, choline acetyltransferase or glutamate decarboxylase 67. Therefore, we concluded that HSP27-silenced PDMCs differentiated into neurons possessing the characteristics of functional glutamatergic neurons. PMID:27444754

  13. Synaptic commitment: developmentally regulated reciprocal changes in hippocampal granule cell NMDA and AMPA receptors over the lifespan.

    PubMed

    Yang, Zhiyong; Krause, Michael; Rao, Geeta; McNaughton, Bruce L; Barnes, C A

    2008-06-01

    Synaptic transmission in hippocampal field CA1 is largely N-methyl-d-aspartate receptor (NMDA(R)) dependent during the early postnatal period. It becomes increasingly mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) receptors until an adult ratio of AMPA to NMDA receptors is achieved. It is shown here that increases in the AMPA receptor (AMPA(R))-mediated field potential response continue over the life span of the F-344 rat at the perforant path-granule cell synapse in the dentate gyrus. In contrast, the NMDA(R)-dependent component of the response decreases with age between 1 and 27 mo, leading to an increase of AMPA(R)/NMDA(R) ratio with age. One possible explanation of this age difference is that the AMPA(R)/NMDA(R) ratio can be modified by experience. To test the idea that the changed ratio is caused by the old rats' longer lives, an intensive 10-mo period of enrichment treatment was given to a group of animals, beginning at 3 mo of age. Compared with animals housed in standard cages, the enrichment treatment did not alter the glutamatergic response ratio measured with field potential recording methods. These data provide support for the conclusion that the observed change with age is developmentally regulated rather than experience dependent. Given the role of the NMDA(R) in synaptic plasticity, these changes suggest a progressive commitment of perforant path synapses to particular weights over the life span. One possible implication of this effect includes preservation of selected memories, ultimately at the expense of a reduced capacity to store new information.

  14. Psychiatric risk factor ANK3/Ankyrin-G nanodomains regulate the structure and function of glutamatergic synapses

    PubMed Central

    Smith, Katharine R.; Kopeikina, Katherine J.; Fawcett-Patel, Jessica M.; Leaderbrand, Katherine; Gao, Ruoqi; Schürmann, Britta; Myczek, Kristoffer; Radulovic, Jelena; Swanson, Geoffrey T.; Penzes, Peter

    2014-01-01

    Summary Recent evidence implicates glutamatergic synapses as key pathogenic sites in psychiatric disorders. Common and rare variants in the ANK3 gene, encoding ankyrin-G, have been associated with bipolar disorder, schizophrenia, and autism. Here we demonstrate that ankyrin-G is integral to AMPAR-mediated synaptic transmission and maintenance of spine morphology. Using super-resolution microscopy we find that ankyrin-G forms distinct nanodomain structures within the spine head and neck. At these sites, it modulates mushroom spine structure and function, likely as a perisynaptic scaffold and barrier within the spine neck. Neuronal activity promotes ankyrin-G accumulation in distinct spine subdomains, where it differentially regulates NMDA receptor-dependent plasticity. These data implicate subsynaptic nanodomains containing a major psychiatric risk molecule, ankyrin-G, as having location-specific functions, and opens directions for basic and translational investigation of psychiatric risk molecules. PMID:25374361

  15. Translational control of synaptic plasticity.

    PubMed

    Richter, Joel D

    2010-12-01

    Synapses, points of contact between axons and dendrites, are conduits for the flow of information in the circuitry of the central nervous system. The strength of synaptic transmission reflects the interconnectedness of the axons and dendrites at synapses; synaptic strength in turn is modified by the frequency with which the synapses are stimulated. This modulation of synaptic strength, or synaptic plasticity, probably forms the cellular basis for learning and memory. RNA metabolism, particularly translational control at or near the synapse, is one process that controls long-lasting synaptic plasticity and, by extension, memory formation and consolidation. In the present paper, I review some salient features of translational control of synaptic plasticity.

  16. D1/5 modulation of synaptic NMDA receptor currents

    PubMed Central

    Varela, Juan A.; Hirsch, Silke J.; Chapman, David; Leverich, Leah S.; Greene, Robert W.

    2009-01-01

    Converging evidence suggests that salience-associated modulation of behavior is mediated by the release of monoamines and that monoaminergic activation of D1/5 receptors is required for normal hippocampal-dependent learning and memory. However, it is not understood how D1/5 modulation of hippocampal circuits can affect salience-associated learning and memory. We have observed in CA1 pyramidal neurons that D1/5 receptor activation elicits a bi-directional long-term plasticity of NMDA receptor-mediated synaptic currents with the polarity of plasticity determined by NMDA receptor, NR2A/B subunit composition. This plasticity results in a decrease in the NR2A/NR2B ratio of subunit composition. Synaptic responses mediated by NMDA receptors that include NR2B subunits are potentiated by D1/5 receptor activation, while responses mediated by NMDA receptors that include NR2A subunits are depressed. Furthermore, these bidirectional, subunit-specific effects are mediated by distinctive intracellular signaling mechanisms. As there is a predominance of NMDA receptors composed of NR2A subunits observed in entorhinal-CA1 inputs and a predominance of NMDA receptors composed of NR2B subunits in CA3-CA1 synapses, potentiation of synaptic NMDA currents predominates in the proximal CA3-CA1 synapses, while depression of synaptic NMDA currents predominates in the distal entorhinal-CA1 synapses. Finally, all of these effects are reproduced by the release of endogenous monoamines through activation of D1/5 receptors. Thus, endogenous D1/5 activation can, 1) decrease the NR2A/B ratio of NMDAR subunit composition at glutamatergic synapses, a rejuvenation to a composition similar to developmentally immature synapses, and, 2) in CA1, bias NMDA receptor responsiveness towards the more highly processed tri-synaptic CA3-CA1 circuit and away from the direct entorhinal-CA1 input. PMID:19279248

  17. Synaptic Size Dynamics as an Effectively Stochastic Process

    PubMed Central

    Statman, Adiel; Kaufman, Maya; Minerbi, Amir; Ziv, Noam E.; Brenner, Naama

    2014-01-01

    Long-term, repeated measurements of individual synaptic properties have revealed that synapses can undergo significant directed and spontaneous changes over time scales of minutes to weeks. These changes are presumably driven by a large number of activity-dependent and independent molecular processes, yet how these processes integrate to determine the totality of synaptic size remains unknown. Here we propose, as an alternative to detailed, mechanistic descriptions, a statistical approach to synaptic size dynamics. The basic premise of this approach is that the integrated outcome of the myriad of processes that drive synaptic size dynamics are effectively described as a combination of multiplicative and additive processes, both of which are stochastic and taken from distributions parametrically affected by physiological signals. We show that this seemingly simple model, known in probability theory as the Kesten process, can generate rich dynamics which are qualitatively similar to the dynamics of individual glutamatergic synapses recorded in long-term time-lapse experiments in ex-vivo cortical networks. Moreover, we show that this stochastic model, which is insensitive to many of its underlying details, quantitatively captures the distributions of synaptic sizes measured in these experiments, the long-term stability of such distributions and their scaling in response to pharmacological manipulations. Finally, we show that the average kinetics of new postsynaptic density formation measured in such experiments is also faithfully captured by the same model. The model thus provides a useful framework for characterizing synapse size dynamics at steady state, during initial formation of such steady states, and during their convergence to new steady states following perturbations. These findings show the strength of a simple low dimensional statistical model to quantitatively describe synapse size dynamics as the integrated result of many underlying complex processes

  18. Glutamatergic mechanisms associated with stress-induced amygdala excitability and anxiety-related behavior.

    PubMed

    Masneuf, Sophie; Lowery-Gionta, Emily; Colacicco, Giovanni; Pleil, Kristen E; Li, Chia; Crowley, Nicole; Flynn, Shaun; Holmes, Andrew; Kash, Thomas

    2014-10-01

    The neural factors underlying individual differences in susceptibility to chronic stress remain poorly understood. Preclinical studies demonstrate that mouse strains vary greatly in anxiety-related responses to chronic stress in a manner paralleled by differential stress-induced changes in glutamatergic signaling in the basolateral amygdala (BLA). Previous work has also shown that alterations in the amygdala gene expression of the GluN1 NMDA and the GluK1 kainate receptors are associated with stress-induced alterations in anxiety-like behavior in the C57BL/6J mouse strain. Using in vivo behavioral pharmacological and ex vivo physiological approaches, the aim of the current study was to further elucidate changes in glutamate neurotransmission in the BLA caused by stress and to test the functional roles of GluN1 and GluK1 in mediating stress-related changes in behavior. Results showed that stress-induced alterations in anxiety-like behavior (light/dark exploration test) were absent following bilateral infusion of the GluK1 agonist ATPA into the BLA. Intra-BLA infusion of the competitive NMDA antagonist AP5 produced a generalized behavioral disinhibition/locomotor hyperactivity, irrespective of stress. Slice electrophysiological recordings showed that ATPA augmented BLA GABAergic neurotransmission and that stress increased the amplitude of network-dependent spontaneous excitatory postsynaptic currents and amplitude of GABAergic miniature inhibitory postsynaptic currents in BLA. These findings could indicate stress-induced BLA glutamatergic neuronal network hyperexcitability and a compensatory increase in GABAergic neurotransmission, suggesting that GluK1 agonism augmented GABAergic inhibition to prevent behavioral sequelae of stress. Current data could have implications for developing novel therapeutic approaches, including GluK1 agonists, for stress-related anxiety disorders.

  19. Role of MicroRNA in Governing Synaptic Plasticity

    PubMed Central

    2016-01-01

    Although synaptic plasticity in neural circuits is orchestrated by an ocean of genes, molecules, and proteins, the underlying mechanisms remain poorly understood. Recently, it is well acknowledged that miRNA exerts widespread regulation over the translation and degradation of target gene in nervous system. Increasing evidence suggests that quite a few specific miRNAs play important roles in various respects of synaptic plasticity including synaptogenesis, synaptic morphology alteration, and synaptic function modification. More importantly, the miRNA-mediated regulation of synaptic plasticity is not only responsible for synapse development and function but also involved in the pathophysiology of plasticity-related diseases. A review is made here on the function of miRNAs in governing synaptic plasticity, emphasizing the emerging regulatory role of individual miRNAs in synaptic morphological and functional plasticity, as well as their implications in neurological disorders. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel therapeutic strategy for plasticity-related diseases. PMID:27034846

  20. Epsin1 modulates synaptic vesicle retrieval capacity at CNS synapses.

    PubMed

    Kyung, Jae Won; Bae, Jae Ryul; Kim, Dae-Hwan; Song, Woo Keun; Kim, Sung Hyun

    2016-01-01

    Synaptic vesicle retrieval is an essential process for continuous maintenance of neural information flow after synaptic transmission. Epsin1, originally identified as an EPS15-interacting protein, is a major component of clathrin-mediated endocytosis. However, the role of Epsin1 in synaptic vesicle endocytosis at CNS synapses remains elusive. Here, we showed significantly altered synaptic vesicle endocytosis in neurons transfected with shRNA targeting Epsin1 during/after neural activity. Endocytosis was effectively restored by introducing shRNA-insensitive Epsin1 into Epsin1-depleted neurons. Domain studies performed on neurons in which domain deletion mutants of Epsin1 were introduced after Epsin1 knockdown revealed that ENTH, CLAP, and NPFs are essential for synaptic vesicle endocytosis, whereas UIMs are not. Strikingly, the efficacy of the rate of synaptic vesicle retrieval (the "endocytic capacity") was significantly decreased in the absence of Epsin1. Thus, Epsin1 is required for proper synaptic vesicle retrieval and modulates the endocytic capacity of synaptic vesicles. PMID:27557559

  1. Epsin1 modulates synaptic vesicle retrieval capacity at CNS synapses

    PubMed Central

    Kyung, Jae Won; Bae, Jae Ryul; Kim, Dae-Hwan; Song, Woo Keun; Kim, Sung Hyun

    2016-01-01

    Synaptic vesicle retrieval is an essential process for continuous maintenance of neural information flow after synaptic transmission. Epsin1, originally identified as an EPS15-interacting protein, is a major component of clathrin-mediated endocytosis. However, the role of Epsin1 in synaptic vesicle endocytosis at CNS synapses remains elusive. Here, we showed significantly altered synaptic vesicle endocytosis in neurons transfected with shRNA targeting Epsin1 during/after neural activity. Endocytosis was effectively restored by introducing shRNA-insensitive Epsin1 into Epsin1-depleted neurons. Domain studies performed on neurons in which domain deletion mutants of Epsin1 were introduced after Epsin1 knockdown revealed that ENTH, CLAP, and NPFs are essential for synaptic vesicle endocytosis, whereas UIMs are not. Strikingly, the efficacy of the rate of synaptic vesicle retrieval (the “endocytic capacity”) was significantly decreased in the absence of Epsin1. Thus, Epsin1 is required for proper synaptic vesicle retrieval and modulates the endocytic capacity of synaptic vesicles. PMID:27557559

  2. VEGF modulates synaptic activity in the developing spinal cord.

    PubMed

    Guérit, Sylvaine; Allain, Anne-Emilie; Léon, Céline; Cazenave, William; Ferrara, Napoleone; Branchereau, Pascal; Bikfalvi, Andréas

    2014-11-01

    Although it has been documented that the nervous and the vascular systems share numerous analogies and are closely intermingled during development and pathological processes, interactions between the two systems are still poorly described. In this study, we investigated whether vascular endothelial growth factor (VEGF), which is a key regulator of vascular development, also modulates neuronal developmental processes. We report that VEGF enhances the gamma-aminobutyric acid (GABA)/glycinergic but not glutamatergic synaptic activity in embryonic spinal motoneurons (MNs), without affecting MNs excitability. In response to VEGF, the frequency of these synaptic events but not their amplitude was increased. Blocking endogenous VEGF led to an opposite effect by decreasing frequency of synaptic events. We found that this effect occurred specifically at early developmental stages (E13.5 and E15.5) and vanished at the prenatal stage E17.5. Furthermore, VEGF was able to increase vesicular inhibitory amino acid transporter density at the MN membrane. Inhibition of single VEGF receptors did not modify electrophysiological parameters indicating receptor combinations or an alternative pathway. Altogether, our findings identify VEGF as a modulator of the neuronal activity during synapse formation and highlight a new ontogenic role for this angiogenic factor in the nervous system.

  3. Predicting protein-protein interactions in the post synaptic density.

    PubMed

    Bar-shira, Ossnat; Chechik, Gal

    2013-09-01

    The post synaptic density (PSD) is a specialization of the cytoskeleton at the synaptic junction, composed of hundreds of different proteins. Characterizing the protein components of the PSD and their interactions can help elucidate the mechanism of long-term changes in synaptic plasticity, which underlie learning and memory. Unfortunately, our knowledge of the proteome and interactome of the PSD is still partial and noisy. In this study we describe a computational framework to improve the reconstruction of the PSD network. The approach is based on learning the characteristics of PSD protein interactions from a set of trusted interactions, expanding this set with data collected from large scale repositories, and then predicting novel interaction with proteins that are suspected to reside in the PSD. Using this method we obtained thirty predicted interactions, with more than half of which having supporting evidence in the literature. We discuss in details two of these new interactions, Lrrtm1 with PSD-95 and Src with Capg. The first may take part in a mechanism underlying glutamatergic dysfunction in schizophrenia. The second suggests an alternative mechanism to regulate dendritic spines maturation.

  4. Amyloid-β induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse

    PubMed Central

    Nava-Mesa, Mauricio O.; Jiménez-Díaz, Lydia; Yajeya, Javier; Navarro-Lopez, Juan D.

    2013-01-01

    Last evidences suggest that, in Alzheimer's disease (AD) early stage, Amyloid-β (Aβ) peptide induces an imbalance between excitatory and inhibitory neurotransmission systems resulting in the functional impairment of neural networks. Such alterations are particularly important in the septohippocampal system where learning and memory processes take place depending on accurate oscillatory activity tuned at fimbria-CA3 synapse. Here, the acute effects of Aβ on CA3 pyramidal neurons and their synaptic activation from septal part of the fimbria were studied in rats. A triphasic postsynaptic response defined by an excitatory potential (EPSP) followed by both early and late inhibitory potentials (IPSP) was evoked. The EPSP was glutamatergic acting on ionotropic receptors. The early IPSP was blocked by GABAA antagonists whereas the late IPSP was removed by GABAB antagonists. Aβ perfusion induced recorded cells to depolarize, increase their input resistance and decrease the late IPSP. Aβ action mechanism was localized at postsynaptic level and most likely linked to GABAB-related ion channels conductance decrease. In addition, it was found that the specific pharmacological modulation of the GABAB receptor effector, G-protein-coupled inward rectifier potassium (GirK) channels, mimicked all Aβ effects previously described. Thus, our findings suggest that Aβ altering GirK channels conductance in CA3 pyramidal neurons might have a key role in the septohippocampal activity dysfunction observed in AD. PMID:23898239

  5. Glutamatergic lateral parabrachial neurons innervate orexin-containing hypothalamic neurons in the rat.

    PubMed

    Niu, Jian-Guo; Yokota, Shigefumi; Tsumori, Toshiko; Qin, Yi; Yasui, Yukihiko

    2010-10-28

    We performed this study to understand the anatomical substrates of parabrachial nucleus (PBN) modulation of orexin (ORX)-containing neurons in the hypothalamus. After biotinylated dextranamine (BDA) injection into the lateral PBN and immunostaining of ORX-containing neurons in the rat, the prominent overlap of the distribution field of the BDA-labeled fibers and that of the ORX-immunoreactive (ir) neurons was found in the lateralmost part of the dorsomedial nucleus and adjacent dorsal perifornical area (this overlapping field was referred to as "suprafornical area" in the present study), and the labeled axon terminals made asymmetrical synaptic contacts with somata and dendrites of the ORX-ir neurons. We further revealed that almost all the "suprafornical area"-projecting lateral PBN neurons were positive for vesicular glutamate transporter 2 mRNA and very few of them were positive for glutamic acid decarboxylase 67 mRNA. The present data suggest that ORX-containing neurons in the "suprafornical area" may be under the excitatory influence of the glutamatergic lateral PBN neurons probably for the regulation of arousal and waking.

  6. Glutamatergic Metabolites, Volume and Cortical Thickness in Antipsychotic-Naive Patients with First-Episode Psychosis: Implications for Excitotoxicity.

    PubMed

    Plitman, Eric; Patel, Raihaan; Chung, Jun Ku; Pipitone, Jon; Chavez, Sofia; Reyes-Madrigal, Francisco; Gómez-Cruz, Gladys; León-Ortiz, Pablo; Chakravarty, M Mallar; de la Fuente-Sandoval, Camilo; Graff-Guerrero, Ariel

    2016-09-01

    Neuroimaging studies investigating patients with schizophrenia often report appreciable volumetric reductions and cortical thinning, yet the cause of these deficits is unknown. The association between subcortical and cortical structural alterations, and glutamatergic neurometabolites is of particular interest due to glutamate's capacity for neurotoxicity; elevated levels may be related to neuroanatomical compromise through an excitotoxic process. To this end, we explored the relationships between glutamatergic neurometabolites and structural measures in antipsychotic-naive patients experiencing their first non-affective episode of psychosis (FEP). Sixty antipsychotic-naive patients with FEP and 60 age- and sex-matched healthy controls underwent a magnetic resonance imaging session, which included a T1-weighted volumetric image and proton magnetic resonance spectroscopy in the precommissural dorsal caudate. Group differences in precommissural caudate volume (PCV) and cortical thickness (CT), and the relationships between glutamatergic neurometabolites (ie, glutamate+glutamine (Glx) and glutamate) and these structural measures, were examined. PCV was decreased in the FEP group (p<0.001), yet did not differ when controlling for total brain volume. Cortical thinning existed in the FEP group within frontal, parietal, temporal, occipital, and limbic regions at a 5% false discovery rate. Glx levels were negatively associated with PCV only in the FEP group (p=0.018). The observed relationship between Glx and PCV in the FEP group is supportive of a focal excitotoxic mechanism whereby increased levels of glutamatergic markers are related to local structural losses. This process may be related to the prominent structural deficits that exist in patients with schizophrenia. PMID:27272768

  7. A Network of Three Types of Filaments Organizes Synaptic Vesicles for Storage, Mobilization, and Docking

    PubMed Central

    Chen, Xiaobing; Reese, Thomas S.

    2016-01-01

    Synaptic transmission between neurons requires precise management of synaptic vesicles. While individual molecular components of the presynaptic terminal are well known, exactly how the molecules are organized into a molecular machine serving the storage and mobilization of synaptic vesicles to the active zone remains unclear. Here we report three filament types associated with synaptic vesicles in glutamatergic synapses revealed by electron microscope tomography in unstimulated, dissociated rat hippocampal neurons. One filament type, likely corresponding to the SNAREpin complex, extends from the active zone membrane and surrounds docked vesicles. A second filament type contacts all vesicles throughout the active zone and pairs vesicles together. On the third filament type, vesicles attach to side branches extending from the long filament core and form vesicle clusters that are distributed throughout the vesicle cloud and along the active zone membrane. Detailed analysis of presynaptic structure reveals how each of the three filament types interacts with synaptic vesicles, providing a means to traffic reserved and recycled vesicles from the cloud of vesicles into the docking position at the active zone. SIGNIFICANCE STATEMENT The formation and release of synaptic vesicles has been extensively investigated. Explanations of the release of synaptic vesicles generally begin with the movement of vesicles from the cloud into the synaptic active zone. However, the presynaptic terminal is filled with filamentous material that would appear to limit vesicular diffusion. Here, we provide a systematic description of three filament types connecting synaptic vesicles. A picture emerges illustrating how the cooperative attachment and release of these three filament types facilitate the movement of vesicles to the active zone to become docked in preparation for release. PMID:26985032

  8. Agrin and Synaptic Laminin Are Required to Maintain Adult Neuromuscular Junctions

    PubMed Central

    Samuel, Melanie A.; Valdez, Gregorio; Tapia, Juan C.; Lichtman, Jeff W.; Sanes, Joshua R.

    2012-01-01

    As synapses form and mature the synaptic partners produce organizing molecules that regulate each other’s differentiation and ensure precise apposition of pre- and post-synaptic specializations. At the skeletal neuromuscular junction (NMJ), these molecules include agrin, a nerve-derived organizer of postsynaptic differentiation, and synaptic laminins, muscle-derived organizers of presynaptic differentiation. Both become concentrated in the synaptic cleft as the NMJ develops and are retained in adulthood. Here, we used mutant mice to ask whether these organizers are also required for synaptic maintenance. Deletion of agrin from a subset of adult motor neurons resulted in the loss of acetylcholine receptors and other components of the postsynaptic apparatus and synaptic cleft. Nerve terminals also atrophied and eventually withdrew from muscle fibers. On the other hand, mice lacking the presynaptic organizer laminin-α4 retained most of the synaptic cleft components but exhibited synaptic alterations reminiscent of those observed in aged animals. Although we detected no marked decrease in laminin or agrin levels at aged NMJs, we observed alterations in the distribution and organization of these synaptic cleft components suggesting that such changes could contribute to age-related synaptic disassembly. Together, these results demonstrate that pre- and post-synaptic organizers actively function to maintain the structure and function of adult NMJs. PMID:23056392

  9. Regulation of synaptic connectivity: levels of Fasciclin II influence synaptic growth in the Drosophila CNS.

    PubMed

    Baines, Richard A; Seugnet, Laurent; Thompson, Annemarie; Salvaterra, Paul M; Bate, Michael

    2002-08-01

    Much of our understanding of synaptogenesis comes from studies that deal with the development of the neuromuscular junction (NMJ). Although well studied, it is not clear how far the NMJ represents an adequate model for the formation of synapses within the CNS. Here we investigate the role of Fasciclin II (Fas II) in the development of synapses between identified motor neurons and cholinergic interneurons in the CNS of Drosophila. Fas II is a neural cell adhesion molecule homolog that is involved in both target selection and synaptic plasticity at the NMJ in Drosophila. In this study, we show that levels of Fas II are critical determinants of synapse formation and growth in the CNS. The initial establishment of synaptic contacts between these identified neurons is seemingly independent of Fas II. The subsequent proliferation of these synaptic connections that occurs postembryonically is, in contrast, significantly retarded by the absence of Fas II. Although the initial formation of synaptic connectivity between these neurons is seemingly independent of Fas II, we show that their formation is, nevertheless, significantly affected by manipulations that alter the relative balance of Fas II in the presynaptic and postsynaptic neurons. Increasing expression of Fas II in either the presynaptic or postsynaptic neurons, during embryogenesis, is sufficient to disrupt the normal level of synaptic connectivity that occurs between these neurons. This effect of Fas II is isoform specific and, moreover, phenocopies the disruption to synaptic connectivity observed previously after tetanus toxin light chain-dependent blockade of evoked synaptic vesicle release in these neurons. PMID:12151538

  10. Deletion of Shank1 has minimal effects on the molecular composition and function of glutamatergic afferent postsynapses in the mouse inner ear.

    PubMed

    Braude, Jeremy P; Vijayakumar, Sarath; Baumgarner, Katherine; Laurine, Rebecca; Jones, Timothy A; Jones, Sherri M; Pyott, Sonja J

    2015-03-01

    Shank proteins (1-3) are considered the master organizers of glutamatergic postsynaptic densities in the central nervous system, and the genetic deletion of either Shank1, 2, or 3 results in altered composition, form, and strength of glutamatergic postsynapses. To investigate the contribution of Shank proteins to glutamatergic afferent synapses of the inner ear and especially cochlea, we used immunofluorescence and quantitative real time PCR to determine the expression of Shank1, 2, and 3 in the cochlea. Because we found evidence for expression of Shank1 but not 2 and 3, we investigated the morphology, composition, and function of afferent postsynaptic densities from defined tonotopic regions in the cochlea of Shank1(-/-) mice. Using immunofluorescence, we identified subtle changes in the morphology and composition (but not number and localization) of cochlear afferent postsynaptic densities at the lower frequency region (8 kHz) in Shank1(-/-) mice compared to Shank1(+/+) littermates. However, we detected no differences in auditory brainstem responses at matching or higher frequencies. We also identified Shank1 in the vestibular afferent postsynaptic densities, but detected no differences in vestibular sensory evoked potentials in Shank1(-/-) mice compared to Shank1(+/+) littermates. This work suggests that Shank proteins play a different role in the development and maintenance of glutamatergic afferent synapses in the inner ear compared to the central nervous system.

  11. Adolescent chronic mild stress alters hippocampal CB1 receptor-mediated excitatory neurotransmission and plasticity.

    PubMed

    Reich, C G; Mihalik, G R; Iskander, A N; Seckler, J C; Weiss, M S

    2013-12-01

    Endocannabinoids (eCBs) are involved in the stress response and alterations in eCB signaling may contribute to the etiology of mood disorders. Exposure to chronic mild stress (CMS), a model of depression, produces downregulation of the cannabinoid 1 (CB1) receptor in the hippocampus of male rats. However, it is unknown how this stress-induced change in CB1 levels affects eCB-mediated neurotransmission. In vitro, field potential recordings from CMS-exposed (21-days) rats were performed to assess the effects of stress on eCB-regulated glutamatergic neurotransmission in/on hippocampal area CA1. We observed that application of the CB1 agonist, WIN 55,212-5 (1 μM), in stress animals resulted in a ∼135% increase in excitatory neurotransmission, whereas CB1 activation in non-stress animals leads to a ∼30% decrease. However, during blockade of GABA(A) neurotransmission with picrotoxin, CB1 activation yielded a ∼35% decrease in stress animals. These findings indicate that CMS does not directly affect glutamatergic neurotransmission. Rather, CMS sensitizes CB1 function on GABAergic terminals, leading to less inhibition and an increase in excitatory neurotransmission. This finding is reinforced in that induction of weak long-term-potentiation (LTP) is enhanced in CMS-exposed animals compared to controls and this enhancement is CB1-dependent. Lastly, we observed that the LTP-blocking property of WIN 55,212-5 shifts from being glutamate-dependent in non-stress animals to being GABA-dependent in stress animals. These results effectively demonstrate that CMS significantly alters hippocampal eCB-mediated neurotransmission and synaptic plasticity.

  12. Synaptic contacts impaired by styrene-7,8-oxide toxicity

    SciTech Connect

    Corsi, P. D'Aprile, A.; Nico, B.; Costa, G.L.; Assennato, G.

    2007-10-01

    Styrene-7,8-oxide (SO), a chemical compound widely used in industrial applications, is a potential hazard for humans, particularly in occupational settings. Neurobehavioral changes are consistently observed in occupationally exposed individuals and alterations of neurotransmitters associated with neuronal loss have been reported in animal models. Although the toxic effects of styrene have been extensively documented, the molecular mechanisms responsible for SO-induced neurotoxicity are still unclear. A possible dopamine-mediated effect of styrene neurotoxicity has been previously demonstrated, since styrene oxide alters dopamine neurotransmission in the brain. Thus, the present study hypothesizes that styrene neurotoxicity may involve synaptic contacts. Primary striatal neurons were exposed to styrene oxide at different concentrations (0.1-1 mM) for different time periods (8, 16, and 24 h) to evaluate the dose able to induce synaptic impairments. The expression of proteins crucial for synaptic transmission such as Synapsin, Synaptophysin, and RAC-1 were considered. The levels of Synaptophysin and RAC-1 decreased in a dose-dependent manner. Accordingly, morphological alterations, observed at the ultrastructural level, primarily involved the pre-synaptic compartment. In SO-exposed cultures, the biochemical cascade of caspases was activated affecting the cytoskeleton components as their target. Thus the impairments in synaptic contacts observed in SO-exposed cultures might reflect a primarily morphological alteration of neuronal cytoskeleton. In addition, our data support the hypothesis developed by previous authors of reactive oxygen species (ROS) initiating events of SO cytotoxicity.

  13. Differential Dendritic Integration of Synaptic Potentials and Calcium in Cerebellar Interneurons.

    PubMed

    Tran-Van-Minh, Alexandra; Abrahamsson, Therése; Cathala, Laurence; DiGregorio, David A

    2016-08-17

    Dendritic voltage integration determines the transformation of synaptic inputs into output firing, while synaptic calcium integration drives plasticity mechanisms thought to underlie memory storage. Dendritic calcium integration has been shown to follow the same synaptic input-output relationship as dendritic voltage, but whether similar operations apply to neurons exhibiting sublinear voltage integration is unknown. We examined the properties and cellular mechanisms of these dendritic operations in cerebellar molecular layer interneurons using dendritic voltage and calcium imaging, in combination with synaptic stimulation or glutamate uncaging. We show that, while synaptic potentials summate sublinearly, concomitant dendritic calcium signals summate either linearly or supralinearly depending on the number of synapses activated. The supralinear dendritic calcium triggers a branch-specific, short-term suppression of neurotransmitter release that alters the pattern of synaptic activation. Thus, differential voltage and calcium integration permits dynamic regulation of neuronal input-output transformations without altering intrinsic nonlinear integration mechanisms. PMID:27537486

  14. Differential Dendritic Integration of Synaptic Potentials and Calcium in Cerebellar Interneurons.

    PubMed

    Tran-Van-Minh, Alexandra; Abrahamsson, Therése; Cathala, Laurence; DiGregorio, David A

    2016-08-17

    Dendritic voltage integration determines the transformation of synaptic inputs into output firing, while synaptic calcium integration drives plasticity mechanisms thought to underlie memory storage. Dendritic calcium integration has been shown to follow the same synaptic input-output relationship as dendritic voltage, but whether similar operations apply to neurons exhibiting sublinear voltage integration is unknown. We examined the properties and cellular mechanisms of these dendritic operations in cerebellar molecular layer interneurons using dendritic voltage and calcium imaging, in combination with synaptic stimulation or glutamate uncaging. We show that, while synaptic potentials summate sublinearly, concomitant dendritic calcium signals summate either linearly or supralinearly depending on the number of synapses activated. The supralinear dendritic calcium triggers a branch-specific, short-term suppression of neurotransmitter release that alters the pattern of synaptic activation. Thus, differential voltage and calcium integration permits dynamic regulation of neuronal input-output transformations without altering intrinsic nonlinear integration mechanisms.

  15. Optical fiber synaptic sensor

    NASA Astrophysics Data System (ADS)

    Pisarchik, A. N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; García-Lopez, J. H.; Kazantsev, V. B.

    2011-06-01

    Understanding neuron connections is a great challenge, which is needed to solve many important problems in neurobiology and neuroengineering for recreation of brain functions and efficient biorobotics. In particular, a design of an optical synapse capable to communicate with neuron spike sequences would be crucial to improve the functionality of neuromimmetic networks. In this work we propose an optical synaptic sensor based on an erbium-doped fiber laser driven by a FitzHung-Nagumo electronic neuron, to connect with another electronic neuron. Two possible optical synaptic configurations are analyzed for optoelectronic coupling between neurons: laser cavity loss modulation and pump laser modulation. The control parameters of the proposed optical synapse provide additional degrees of flexibility to the neuron connection traditionally controlled only by coupling strengths in artificial networks.

  16. Activation of synaptic group II metabotropic glutamate receptors induces long-term depression at GABAergic synapses in CNS neurons.

    PubMed

    Tang, Zheng-Quan; Liu, Yu-Wei; Shi, Wei; Dinh, Emilie Hoang; Hamlet, William R; Curry, Rebecca J; Lu, Yong

    2013-10-01

    Metabotropic glutamate receptor (mGluR)-dependent homosynaptic long-term depression (LTD) has been studied extensively at glutamatergic synapses in the CNS. However, much less is known about heterosynaptic long-term plasticity induced by mGluRs at inhibitory synapses. Here we report that pharmacological or synaptic activation of group II mGluRs (mGluR II) induces LTD at GABAergic synapses without affecting the excitatory glutamatergic transmission in neurons of the chicken cochlear nucleus. Coefficient of variation and failure rate analysis suggested that the LTD was expressed presynaptically. The LTD requires presynaptic spike activity, but does not require the activation of NMDA receptors. The classic cAMP-dependent protein kinase A signaling is involved in the transduction pathway. Remarkably, blocking mGluR II increased spontaneous GABA release, indicating the presence of tonic activation of mGluR II by ambient glutamate. Furthermore, synaptically released glutamate induced by electrical stimulations that concurrently activated both the glutamatergic and GABAergic pathways resulted in significant and constant suppression of GABA release at various stimulus frequencies (3.3, 100, and 300 Hz). Strikingly, low-frequency stimulation (1 Hz, 15 min) of the glutamatergic synapses induced heterosynaptic LTD of GABAergic transmission, and the LTD was blocked by mGluR II antagonist, indicating that synaptic activation of mGluR II induced the LTD. This novel form of long-term plasticity in the avian auditory brainstem may play a role in the development as well as in temporal processing in the sound localization circuit.

  17. Presynaptic Secretion of Mind-the-Gap Organizes the Synaptic Extracellular Matrix-Integrin Interface and Postsynaptic Environments

    PubMed Central

    Rushton, Emma; Rohrbough, Jeffrey; Broadie, Kendal

    2009-01-01

    Mind-the-Gap (MTG) is required during synaptogenesis of the Drosophila glutamatergic neuromuscular junction (NMJ) to organize the postsynaptic domain. Here, we generate MTG::GFP transgenic animals to demonstrate MTG is synaptically targeted, secreted, and localized to punctate domains in the synaptic extracellular matrix (ECM). Drosophila NMJs form specialized ECM carbohydrate domains, with carbohydrate moieties and integrin ECM receptors occupying overlapping territories. Presynaptically secreted MTG recruits and reorganizes secreted carbohydrates, and acts to recruit synaptic integrins and ECM glycans. Transgenic MTG::GFP expression rescues hatching, movement, and synaptogenic defects in embryonic-lethal mtg null mutants. Targeted neuronal MTG expression rescues mutant synaptogenesis defects, and increases rescue of adult viability, supporting an essential neuronal function. These results indicate that presynaptically secreted MTG regulates the ECM-integrin interface, and drives an inductive mechanism for the functional differentiation of the postsynaptic domain of glutamatergic synapses. We suggest that MTG pioneers a novel protein family involved in ECM-dependent synaptic differentiation. PMID:19235718

  18. A functional glutamatergic neurone network in the medial septum and diagonal band area.

    PubMed

    Manseau, F; Danik, M; Williams, S

    2005-08-01

    The medial septum and diagonal band complex (MS/DB) is important for learning and memory and is known to contain cholinergic and GABAergic neurones. Glutamatergic neurones have also been recently described in this area but their function remains unknown. Here we show that local glutamatergic neurones can be activated using 4-aminopyridine (4-AP) and the GABA(A) receptor antagonist bicuculline in regular MS/DB slices, or mini-MS/DB slices. The spontaneous glutamatergic responses were mediated by AMPA receptors and, to a lesser extend, NMDA receptors, and were characterized by large, sometimes repetitive activity that elicited bursts of action potentials postsynaptically. Similar repetitive AMPA receptor-mediated bursts were generated by glutamatergic neurone activation within the MS/DB in disinhibited organotypic MS/DB slices, suggesting that the glutamatergic responses did not originate from extrinsic glutamatergic synapses. It is interesting that glutamatergic neurones were part of a synchronously active network as large repetitive AMPA receptor-mediated bursts were generated concomitantly with extracellular field potentials in intact half-septum preparations in vitro. Glutamatergic neurones appeared important to MS/DB activation as strong glutamatergic responses were present in electrophysiologically identified putative cholinergic, GABAergic and glutamatergic neurones. In agreement with this, we found immunohistochemical evidence that vesicular glutamate-2 (VGLUT2)-positive puncta were in proximity to choline acetyltransferase (ChAT)-, glutamic acid decarboxylase 67 (GAD67)- and VGLUT2-positive neurones. Finally, MS/DB glutamatergic neurones could be activated under more physiological conditions as a cholinergic agonist was found to elicit rhythmic AMPA receptor-mediated EPSPs at a theta relevant frequency of 6-10 Hz. We propose that glutamatergic neurones within the MS/DB can excite cholinergic and GABAergic neurones, and that they are part of a connected

  19. A functional glutamatergic neurone network in the medial septum and diagonal band area

    PubMed Central

    Manseau, F; Danik, M; Williams, S

    2005-01-01

    The medial septum and diagonal band complex (MS/DB) is important for learning and memory and is known to contain cholinergic and GABAergic neurones. Glutamatergic neurones have also been recently described in this area but their function remains unknown. Here we show that local glutamatergic neurones can be activated using 4-aminopyridine (4-AP) and the GABAA receptor antagonist bicuculline in regular MS/DB slices, or mini-MS/DB slices. The spontaneous glutamatergic responses were mediated by AMPA receptors and, to a lesser extend, NMDA receptors, and were characterized by large, sometimes repetitive activity that elicited bursts of action potentials postsynaptically. Similar repetitive AMPA receptor-mediated bursts were generated by glutamatergic neurone activation within the MS/DB in disinhibited organotypic MS/DB slices, suggesting that the glutamatergic responses did not originate from extrinsic glutamatergic synapses. It is interesting that glutamatergic neurones were part of a synchronously active network as large repetitive AMPA receptor-mediated bursts were generated concomitantly with extracellular field potentials in intact half-septum preparations in vitro. Glutamatergic neurones appeared important to MS/DB activation as strong glutamatergic responses were present in electrophysiologically identified putative cholinergic, GABAergic and glutamatergic neurones. In agreement with this, we found immunohistochemical evidence that vesicular glutamate-2 (VGLUT2)-positive puncta were in proximity to choline acetyltransferase (ChAT)-, glutamic acid decarboxylase 67 (GAD67)- and VGLUT2-positive neurones. Finally, MS/DB glutamatergic neurones could be activated under more physiological conditions as a cholinergic agonist was found to elicit rhythmic AMPA receptor-mediated EPSPs at a theta relevant frequency of 6–10 Hz. We propose that glutamatergic neurones within the MS/DB can excite cholinergic and GABAergic neurones, and that they are part of a connected

  20. In vivo long-term synaptic plasticity of glial cells.

    PubMed

    Bélair, Eve-Lyne; Vallée, Joanne; Robitaille, Richard

    2010-04-01

    Evidence showing the ability of glial cells to detect, respond to and modulate synaptic transmission and plasticity has contributed to the notion of glial cells as active synaptic partners. However, synaptically induced plasticity of glia themselves remains ill defined. Here we used the amphibian neuromuscular junction (NMJ) to study plasticity of perisynaptic Schwann cells (PSCs), glial cells at this synapse, following long-term in vivo modifications of synaptic activity. We used two models that altered synaptic activity in different manners. First, chronic blockade of postsynaptic nicotinic receptors using alpha-bungarotoxin (alpha-BTx) decreased facilitation, increased synaptic depression and decreased post-tetanic potentiation (PTP). Second, chronic nerve stimulation increased facilitation and resistance to synaptic depression, while leaving PTP unaltered. Our results indicate that there is no direct relationship between transmitter release and PSC calcium responses. Indeed, despite changes in transmitter release and plasticity in stimulated NMJs, nerve-evoked PSC calcium responses were similar to control. Similarly, PSC calcium responses in alpha-BTx treated NMJs were delayed and smaller in amplitude, even though basal level of transmitter release was increased. Also, when isolating purinergic and muscarinic components of PSC calcium responses, we found an increased sensitivity to ATP and a decreased sensitivity to muscarine in chronically stimulated NMJs. Conversely, in alpha-BTx treated NMJs, PSC sensitivity remained unaffected, but ATP- and muscarine-induced calcium responses were prolonged. Thus, our results reveal complex modifications of PSC properties, with differential modulation of signalling pathways that might underlie receptor regulation or changes in Ca(2+) handling. Importantly, similar to neurons, perisynaptic glial cells undergo plastic changes induced by altered synaptic activity.

  1. Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function.

    PubMed

    Stauch, Kelly L; Purnell, Phillip R; Fox, Howard S

    2014-04-01

    Aging correlates with a progressive impairment of mitochondrial homeostasis and is an influential factor for several forms of neurodegeneration. However, the mechanisms underlying age-related alterations in synaptosomal mitochondria, a neuronal mitochondria population highly susceptible to insults and critical for brain function, remain incompletely understood. Therefore this study investigates the synaptic mitochondrial proteomic and bioenergetic alterations that occur with age. The utilization of a state of the art quantitative proteomics approach allowed for the comparison of protein expression levels in synaptic mitochondria isolated from 5 (mature), 12 (old), and 24 (aged) month old mice. During the process of aging we find that dynamic proteomic alterations occur in synaptic mitochondria. Despite direct (mitochondrial DNA deletions) and indirect (increased antioxidant protein levels) signs of mitochondrial damage in the aged mice, there was an overall maintenance of mitochondrial function. Therefore the synaptic mitochondrial proteomic changes that occur with aging correlate with preservation of synaptic mitochondrial function.

  2. Glutamatergic treatment strategies for age-related memory disorders.

    PubMed

    Müller, W E; Scheuer, K; Stoll, S

    1994-01-01

    Age-related changes of N-methyl-D-aspartate (NMDA) receptors have been found in cortical areas and in the hippocampus of many species. On the basis of a variety of experimental observations it has been suggested that the decrease of NMDA receptor density might be one of the causative factors of the cognitive decline with aging. Based on these findings several strategies have been developed to improve cognition by compensating the NMDA receptor deficits in aging. The most promising approaches are the indirect activation of glutamatergic neurotransmission by agonists of the glycine site or the restoration of the age-related deficit of receptor density by several nootropics. PMID:7997073

  3. Optical quantal analysis of synaptic transmission in wild-type and rab3-mutant Drosophila motor axons.

    PubMed

    Peled, Einat S; Isacoff, Ehud Y

    2011-04-01

    Synaptic transmission from a neuron to its target cells occurs via neurotransmitter release from dozens to thousands of presynaptic release sites whose strength and plasticity can vary considerably. We report an in vivo imaging method that monitors real-time synaptic transmission simultaneously at many release sites with quantal resolution. We applied this method to the model glutamatergic system of the Drosophila melanogaster larval neuromuscular junction. We find that, under basal conditions, about half of release sites have a very low release probability, but these are interspersed with sites with as much as a 50-fold higher probability. Paired-pulse stimulation depresses high-probability sites, facilitates low-probability sites, and recruits previously silent sites. Mutation of the small GTPase Rab3 substantially increases release probability but still leaves about half of the sites silent. Our findings suggest that basal synaptic strength and short-term plasticity are regulated at the level of release probability at individual sites.

  4. Linking Cholinergic Interneurons, Synaptic Plasticity, and Behavior during the Extinction of a Cocaine-Context Association.

    PubMed

    Lee, Junuk; Finkelstein, Joel; Choi, Jung Yoon; Witten, Ilana B

    2016-06-01

    Despite the fact that cholinergic interneurons are a key cell type within the nucleus accumbens, a relationship between synaptic plasticity and the in vivo activity of cholinergic interneurons remains to be established. Here, we identify a three-way link between the activity of cholinergic interneurons, synaptic plasticity, and learning in mice undergoing the extinction of a cocaine-context association. We found that activity of cholinergic interneurons regulates extinction learning for a cocaine-context association and generates a sustained reduction in glutamatergic presynaptic strength onto medium spiny neurons. Interestingly, activation of cholinergic interneurons does not support reinforcement learning or plasticity by itself, suggesting that these neurons have a modulatory rather than a reinforcing function. PMID:27210555

  5. Coordinated activation of distinct Ca2+ sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity

    PubMed Central

    Tigaret, Cezar M.; Olivo, Valeria; Sadowski, Josef H.L.P.; Ashby, Michael C.; Mellor, Jack R.

    2016-01-01

    At glutamatergic synapses, induction of associative synaptic plasticity requires time-correlated presynaptic and postsynaptic spikes to activate postsynaptic NMDA receptors (NMDARs). The magnitudes of the ensuing Ca2+ transients within dendritic spines are thought to determine the amplitude and direction of synaptic change. In contrast, we show that at mature hippocampal Schaffer collateral synapses the magnitudes of Ca2+ transients during plasticity induction do not match this rule. Indeed, LTP induced by time-correlated pre- and postsynaptic spikes instead requires the sequential activation of NMDARs followed by voltage-sensitive Ca2+ channels within dendritic spines. Furthermore, LTP requires inhibition of SK channels by mGluR1, which removes a negative feedback loop that constitutively regulates NMDARs. Therefore, rather than being controlled simply by the magnitude of the postsynaptic calcium rise, LTP induction requires the coordinated activation of distinct sources of Ca2+ and mGluR1-dependent facilitation of NMDAR function. PMID:26758963

  6. Comparison of spike parameters from optically identified GABAergic and glutamatergic neurons in sparse cortical cultures

    PubMed Central

    Weir, Keiko; Blanquie, Oriane; Kilb, Werner; Luhmann, Heiko J.; Sinning, Anne

    2015-01-01

    Primary neuronal cultures share many typical features with the in vivo situation, including similarities in distinct electrical activity patterns and synaptic network interactions. Here, we use multi-electrode array (MEA) recordings from spontaneously active cultures of wildtype and glutamic acid decarboxylase 67 (GAD67)-green fluorescent protein (GFP) transgenic mice to evaluate which spike parameters differ between GABAergic interneurons and principal, putatively glutamatergic neurons. To analyze this question we combine MEA recordings with optical imaging in sparse cortical cultures to assign individual spikes to visually-identified single neurons. In our culture system, excitatory and inhibitory neurons are present at a similar ratio as described in vivo, and spike waveform characteristics and firing patterns are fully developed after 2 weeks in vitro. Spike amplitude, but not other spike waveform parameters, correlated with the distance between the recording electrode and the location of the assigned neuron’s soma. Cluster analysis of spike waveform properties revealed no particular cell population that may be assigned to putative inhibitory or excitatory neurons. Moreover, experiments in primary cultures from transgenic GAD67-GFP mice, which allow optical identification of GABAergic interneurons and thus unambiguous assignment of extracellular signals, did not reveal any significant difference in spike timing and spike waveform parameters between inhibitory and excitatory neurons. Despite of our detailed characterization of spike waveform and temporal spiking properties we could not identify an unequivocal electrical parameter to discriminate between individual excitatory and inhibitory neurons in vitro. Our data suggest that under in vitro conditions cellular classifications of single neurons on the basis of their extracellular firing properties should be treated with caution. PMID:25642167

  7. Distribution of glutamatergic, GABAergic, and glycinergic neurons in the auditory pathways of macaque monkeys.

    PubMed

    Ito, T; Inoue, K; Takada, M

    2015-12-01

    Macaque monkeys use complex communication calls and are regarded as a model for studying the coding and decoding of complex sound in the auditory system. However, little is known about the distribution of excitatory and inhibitory neurons in the auditory system of macaque monkeys. In this study, we examined the overall distribution of cell bodies that expressed mRNAs for VGLUT1, and VGLUT2 (markers for glutamatergic neurons), GAD67 (a marker for GABAergic neurons), and GLYT2 (a marker for glycinergic neurons) in the auditory system of the Japanese macaque. In addition, we performed immunohistochemistry for VGLUT1, VGLUT2, and GAD67 in order to compare the distribution of proteins and mRNAs. We found that most of the excitatory neurons in the auditory brainstem expressed VGLUT2. In contrast, the expression of VGLUT1 mRNA was restricted to the auditory cortex (AC), periolivary nuclei, and cochlear nuclei (CN). The co-expression of GAD67 and GLYT2 mRNAs was common in the ventral nucleus of the lateral lemniscus (VNLL), CN, and superior olivary complex except for the medial nucleus of the trapezoid body, which expressed GLYT2 alone. In contrast, the dorsal nucleus of the lateral lemniscus, inferior colliculus, thalamus, and AC expressed GAD67 alone. The absence of co-expression of VGLUT1 and VGLUT2 in the medial geniculate, medial superior olive, and VNLL suggests that synaptic responses in the target neurons of these nuclei may be different between rodents and macaque monkeys.

  8. Enhancement by citral of glutamatergic spontaneous excitatory transmission in adult rat substantia gelatinosa neurons.

    PubMed

    Zhu, Lan; Fujita, Tsugumi; Jiang, Chang-Yu; Kumamoto, Eiichi

    2016-02-10

    Although citral, which is abundantly present in lemongrass, has various actions including antinociception, how citral affects synaptic transmission has not been examined as yet. Citral activates in heterologous cells transient receptor potential vanilloid-1, ankyrin-1, and melastatin-8 (TRPV1, TRPA1, and TRPM8, respectively) channels, the activation of which in the spinal lamina II [substantia gelatinosa (SG)] increases the spontaneous release of L-glutamate from nerve terminals. It remains to be examined what types of transient receptor potential channel in native neurons are activated by citral. With a focus on transient receptor potential activation, we examined the effect of citral on glutamatergic spontaneous excitatory transmission using the whole-cell patch-clamp technique to SG neurons in adult rat spinal cord slices. Bath-applied citral for 3 min increased the frequency of spontaneous excitatory postsynaptic current in a concentration-dependent manner (half-maximal effective concentration=0.58 mM), with a small increase in its amplitude. The spontaneous excitatory postsynaptic current frequency increase produced by citral was repeated at a time interval of 30 min, albeit this action recovered with a slow time course after washout. The presynaptic effect of citral was inhibited by TRPA1 antagonist HC-030031, but not by voltage-gated Na-channel blocker tetrodotoxin, TRPV1 antagonist capsazepine, and TRPM8 antagonist BCTC. It is concluded that citral increases spontaneous L-glutamate release in SG neurons by activating TRPA1 channels. Considering that the SG plays a pivotal role in modulating nociceptive transmission from the periphery, the citral activity could contribute toward at least a part of the modulation. PMID:26720890

  9. Synaptic Plasticity, a Symphony in GEF

    PubMed Central

    2010-01-01

    Dendritic spines are the postsynaptic sites for the majority of excitatory synapses in the mammalian forebrain. While many spines display great stability, others change shape in a matter of seconds to minutes. These rapid alterations in dendritic spine number and size require tight control of the actin cytoskeleton, the main structural component of dendritic spines. The ability of neurons to alter spine number and size is essential for the expression of neuronal plasticity. Within spines, guanine nucleotide exchange factors (GEFs) act as critical regulators of the actin cytoskeleton by controlling the activity of Rho-GTPases. In this review, we focus on the Rho-GEFs expressed in the nucleus accumbens and localized to the postsynaptic density and, thus, positioned to effect rapid alterations in the structure of dendritic spines. We review literature that ties these GEFs to different receptor systems and intracellular signaling cascades and discuss the effects these interactions are likely to have on synaptic plasticity. PMID:20543890

  10. Synaptic encoding of temporal contiguity

    PubMed Central

    Ostojic, Srdjan; Fusi, Stefano

    2013-01-01

    Often we need to perform tasks in an environment that changes stochastically. In these situations it is important to learn the statistics of sequences of events in order to predict the future and the outcome of our actions. The statistical description of many of these sequences can be reduced to the set of probabilities that a particular event follows another event (temporal contiguity). Under these conditions, it is important to encode and store in our memory these transition probabilities. Here we show that for a large class of synaptic plasticity models, the distribution of synaptic strengths encodes transitions probabilities. Specifically, when the synaptic dynamics depend on pairs of contiguous events and the synapses can remember multiple instances of the transitions, then the average synaptic weights are a monotonic function of the transition probabilities. The synaptic weights converge to the distribution encoding the probabilities also when the correlations between consecutive synaptic modifications are considered. We studied how this distribution depends on the number of synaptic states for a specific model of a multi-state synapse with hard bounds. In the case of bistable synapses, the average synaptic weights are a smooth function of the transition probabilities and the accuracy of the encoding depends on the learning rate. As the number of synaptic states increases, the average synaptic weights become a step function of the transition probabilities. We finally show that the information stored in the synaptic weights can be read out by a simple rate-based neural network. Our study shows that synapses encode transition probabilities under general assumptions and this indicates that temporal contiguity is likely to be encoded and harnessed in almost every neural circuit in the brain. PMID:23641210

  11. ProBDNF negatively regulates neuronal remodeling, synaptic transmission and synaptic plasticity in hippocampus

    PubMed Central

    Yang, Jianmin; Harte-Hargrove, Lauren C.; Siao, Chia-Jen; Marinic, Tina; Clarke, Roshelle; Ma, Qian; Jing, Deqiang; LaFrancois, John J.; Bath, Kevin G.; Mark, Willie; Ballon, Douglas; Lee, Francis S.; Scharfman, Helen E.; Hempstead, Barbara L.

    2014-01-01

    Summary Experience-dependent plasticity shapes postnatal development of neural circuits, but the mechanisms that refine dendritic arbors, remodel spines, and impair synaptic activity are poorly understood. Mature brain-derived neurotrophic factor (BDNF) modulates neuronal morphology and synaptic plasticity, including long-term potentiation (LTP) via TrkB activation. BDNF is initially translated as proBDNF which binds p75NTR. In vitro, recombinant proBDNF modulates neuronal structure and alters hippocampal long-term plasticity, but the actions of endogenously expressed proBDNF are unclear. Therefore, we generated a cleavage-resistant probdnf knock-in mouse. Our results demonstrate that proBDNF negatively regulates hippocampal dendritic complexity and spine density through p75NTR. Hippocampal slices from probdnf mice exhibit depressed synaptic transmission, impaired LTP and enhanced long-term depression (LTD) in area CA1. These results suggest that proBDNF acts in vivo as a biologically active factor that regulates hippocampal structure, synaptic transmission and plasticity, effects that are distinct from mature BDNF. PMID:24746813

  12. Adenosine inhibits glutamatergic input to basal forebrain cholinergic neurons

    PubMed Central

    Hawryluk, J. M.; Ferrari, L. L.; Keating, S. A.

    2012-01-01

    Adenosine has been proposed as an endogenous homeostatic sleep factor that accumulates during waking and inhibits wake-active neurons to promote sleep. It has been specifically hypothesized that adenosine decreases wakefulness and promotes sleep recovery by directly inhibiting wake-active neurons of the basal forebrain (BF), particularly BF cholinergic neurons. We previously showed that adenosine directly inhibits BF cholinergic neurons. Here, we investigated 1) how adenosine modulates glutamatergic input to BF cholinergic neurons and 2) how adenosine uptake and adenosine metabolism are involved in regulating extracellular levels of adenosine. Our experiments were conducted using whole cell patch-clamp recordings in mouse brain slices. We found that in BF cholinergic neurons, adenosine reduced the amplitude of AMPA-mediated evoked glutamatergic excitatory postsynaptic currents (EPSCs) and decreased the frequency of spontaneous and miniature EPSCs through presynaptic A1 receptors. Thus we have demonstrated that in addition to directly inhibiting BF cholinergic neurons, adenosine depresses excitatory inputs to these neurons. It is therefore possible that both direct and indirect inhibition may synergistically contribute to the sleep-promoting effects of adenosine in the BF. We also found that blocking the influx of adenosine through the equilibrative nucleoside transporters or inhibiting adenosine kinase and adenosine deaminase increased endogenous adenosine inhibitory tone, suggesting a possible mechanism through which adenosine extracellular levels in the basal forebrain are regulated. PMID:22357797

  13. MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity

    SciTech Connect

    Zhu Guoqi; Chen Ying; Huang Yuying; Li Qinglin; Behnisch, Thomas

    2011-08-01

    Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only at the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: > I.p. MPTP-injection mediates death of dopaminergic neurons. > I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. > I.p. MPTP-injection does not alter basal synaptic transmission. > Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. > Attenuation of NMDA-receptors mediated f

  14. Effects of hypoxic preconditioning on synaptic ultrastructure in mice.

    PubMed

    Liu, Yi; Sun, Zhishan; Sun, Shufeng; Duan, Yunxia; Shi, Jingfei; Qi, Zhifeng; Meng, Ran; Sun, Yongxin; Zeng, Xianwei; Chui, Dehua; Ji, Xunming

    2015-01-01

    Hypoxic preconditioning (HPC) elicits resistance to more drastic subsequent insults, which potentially provide neuroprotective therapeutic strategy, but the underlying mechanisms remain to be fully elucidated. Here, we examined the effects of HPC on synaptic ultrastructure in olfactory bulb of mice. Mice underwent up to five cycles of repeated HPC treatments, and hypoxic tolerance was assessed with a standard gasp reflex assay. As expected, HPC induced an increase in tolerance time. To assess synaptic responses, Western blots were used to quantify protein levels of representative markers for glia, neuron, and synapse, and transmission electron microscopy was used to examine synaptic ultrastructure and mitochondrial density. HPC did not significantly alter the protein levels of astroglial marker (GFAP), neuron-specific markers (GAP43, Tuj-1, and OMP), synaptic number markers (synaptophysin and SNAP25) or the percentage of excitatory synapses versus inhibitory synapses. However, HPC significantly affected synaptic curvature and the percentage of synapses with presynaptic mitochondria, which showed concomitant change pattern. These findings demonstrate that HPC is associated with changes in synaptic ultrastructure. PMID:25155519

  15. Synaptic Plasticity and Translation Initiation

    ERIC Educational Resources Information Center

    Klann, Eric; Antion, Marcia D.; Banko, Jessica L.; Hou, Lingfei

    2004-01-01

    It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is…

  16. Glutamatergic inputs to the CVLM independent of the NTS promote tonic inhibition of sympathetic vasomotor tone in rats.

    PubMed

    Mandel, Daniel A; Schreihofer, Ann M

    2008-10-01

    GABAergic neurons in the caudal ventrolateral medulla (CVLM) are driven by baroreceptor inputs relayed via the nucleus tractus solitarius (NTS), and they inhibit neurons in rostral ventrolateral medulla to reduce sympathetic nerve activity (SNA) and arterial pressure (AP). After arterial baroreceptor denervation or lesions of the NTS, inhibition of the CVLM continues to increase AP, suggesting additional inputs also tonically activate the CVLM. This study examined whether the NTS contributes to baroreceptor-independent drive to the CVLM and whether glutamate promotes baroreceptor- and NTS-independent activation of the CVLM to tonically reduce SNA. In addition, we evaluated whether altering central respiratory drive, a baroreceptor-independent regulator of CVLM neurons, influences glutamatergic inputs to the CVLM. Splanchnic SNA and AP were measured in chloralose-anesthetized, ventilated, paralyzed rats. The infusion of nitroprusside decreased AP below threshold for baroreceptor afferent firing (<50 mmHg) and increased SNA to 209+/-22% (P<0.05), but the subsequent inhibition of the NTS by microinjection of the GABA(A) agonist muscimol did not further increase SNA. In contrast, after inhibition of the NTS, blockade of glutamatergic inputs to CVLM by microinjection of kynurenate increased SNA (274+/-54%; P<0.05; n=7). In vagotomized rats with baroreceptors unloaded, inhibition of glutamatergic inputs to CVLM evoked a larger rise in SNA when central respiratory drive was increased (219+/-16% vs. 271+/-17%; n=5; P<0.05). These data suggest that baroreceptor inputs provide the major drive for the NTS-mediated excitation of the CVLM. Furthermore, glutamate tonically activates the CVLM to reduce SNA independent of the NTS, and this excitatory input appears to be affected by the strength of central respiratory drive.

  17. Ammonia impairs glutamatergic communication in astroglial cells: protective role of resveratrol.

    PubMed

    Bobermin, Larissa Daniele; Hansel, Gisele; Scherer, Emilene B S; Wyse, Angela T S; Souza, Diogo Onofre; Quincozes-Santos, André; Gonçalves, Carlos-Alberto

    2015-12-01

    Ammonia is a key toxin in the precipitation of hepatic encephalopathy (HE), a neuropsychiatric disorder associated with liver failure. In response to ammonia, various toxic events are triggered in astroglial cells, and alterations in brain glutamate communication are common. Resveratrol is a polyphenolic compound that has been extensively studied in pathological events because it presents several beneficial effects, including some in the central nervous system (CNS). We previously described that resveratrol is able to significantly modulate glial functioning and has a protective effect during ammonia challenge in vitro. In this study, we addressed the mechanisms by which resveratrol can protect C6 astroglial cells from glutamatergic alterations induced by ammonia. Resveratrol was able to prevent all the effects triggered by ammonia: (i) decrease in glutamate uptake activity and expression of the EAAC1 glutamate transporter, the main glutamate transporter present in C6 cells; (ii) increase of glutamate release, which was also dependent on the activation of the Na(+)-K(+)-Cl(-) co-transporter NKCC1; (iii) reduction in GS activity and intracellular GSH content; and (iv) impairment of Na(+)K(+)-ATPase activity. Interestingly, resveratrol, per se, also positively modulated the astroglial functions evaluated. Moreover, we demonstrated that heme oxygenase 1 (HO1), an enzyme that is part of the cellular defense system, mediated some of the effects of resveratrol. In conclusion, the mechanisms of the putative protective role of resveratrol against ammonia toxicity involve the modulation of pathways and molecules related to glutamate communication in astroglial cells.

  18. Synaptic electronics: materials, devices and applications.

    PubMed

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  19. Muscarinic receptor subtypes differentially control synaptic input and excitability of cerebellum-projecting medial vestibular nucleus neurons.

    PubMed

    Zhu, Yun; Chen, Shao-Rui; Pan, Hui-Lin

    2016-04-01

    Neurons in the vestibular nuclei have a vital function in balance maintenance, gaze stabilization, and posture. Although muscarinic acetylcholine receptors (mAChRs) are expressed and involved in regulating vestibular function, it remains unclear how individual mAChR subtypes regulate vestibular neuronal activity. In this study, we determined which specific subtypes of mAChRs control synaptic input and excitability of medial vestibular nucleus (MVN) neurons that project to the cerebellum. Cerebellum-projecting MVN neurons were labeled by a fluorescent retrograde tracer and then identified in rat brainstem slices. Quantitative PCR analysis suggested that M2 and M3 were the possible major mAChR subtypes expressed in the MVN. The mAChR agonist oxotremorine-M significantly reduced the amplitude of glutamatergic excitatory post-synaptic currents evoked by stimulation of vestibular primary afferents, and this effect was abolished by the M2-preferring antagonist AF-DX 116. However, oxotremorine-M had no effect on GABA-mediated spontaneous inhibitory post-synaptic currents of labeled MVN neurons. Furthermore, oxotremorine-M significantly increased the firing activity of labeled MVN neurons, and this effect was blocked by the M3-preferring antagonist J104129 in most neurons tested. In addition, AF-DX 116 reduced the onset latency and prolonged the excitatory effect of oxotremorine-M on the firing activity of labeled MVN neurons. Our findings suggest that M3 is the predominant post-synaptic mAChR involved in muscarinic excitation of cerebellum-projecting MVN neurons. Pre-synaptic M2 mAChR regulates excitatory glutamatergic input from vestibular primary afferents, which in turn influences the excitability of cerebellum-projecting MVN neurons. This new information has important therapeutic implications for treating vestibular disorders with mAChR subtype-selective agents. Medial vestibular nucleus (MVN) neurons projecting to the cerebellum are involved in balance control. We

  20. Muscarinic receptor subtypes differentially control synaptic input and excitability of cerebellum-projecting medial vestibular nucleus neurons.

    PubMed

    Zhu, Yun; Chen, Shao-Rui; Pan, Hui-Lin

    2016-04-01

    Neurons in the vestibular nuclei have a vital function in balance maintenance, gaze stabilization, and posture. Although muscarinic acetylcholine receptors (mAChRs) are expressed and involved in regulating vestibular function, it remains unclear how individual mAChR subtypes regulate vestibular neuronal activity. In this study, we determined which specific subtypes of mAChRs control synaptic input and excitability of medial vestibular nucleus (MVN) neurons that project to the cerebellum. Cerebellum-projecting MVN neurons were labeled by a fluorescent retrograde tracer and then identified in rat brainstem slices. Quantitative PCR analysis suggested that M2 and M3 were the possible major mAChR subtypes expressed in the MVN. The mAChR agonist oxotremorine-M significantly reduced the amplitude of glutamatergic excitatory post-synaptic currents evoked by stimulation of vestibular primary afferents, and this effect was abolished by the M2-preferring antagonist AF-DX 116. However, oxotremorine-M had no effect on GABA-mediated spontaneous inhibitory post-synaptic currents of labeled MVN neurons. Furthermore, oxotremorine-M significantly increased the firing activity of labeled MVN neurons, and this effect was blocked by the M3-preferring antagonist J104129 in most neurons tested. In addition, AF-DX 116 reduced the onset latency and prolonged the excitatory effect of oxotremorine-M on the firing activity of labeled MVN neurons. Our findings suggest that M3 is the predominant post-synaptic mAChR involved in muscarinic excitation of cerebellum-projecting MVN neurons. Pre-synaptic M2 mAChR regulates excitatory glutamatergic input from vestibular primary afferents, which in turn influences the excitability of cerebellum-projecting MVN neurons. This new information has important therapeutic implications for treating vestibular disorders with mAChR subtype-selective agents. Medial vestibular nucleus (MVN) neurons projecting to the cerebellum are involved in balance control. We

  1. Molecular Mechanisms of Synaptic Specificity

    PubMed Central

    Margeta, Milica A.; Shen, Kang

    2011-01-01

    Synapses are specialized junctions that mediate information flow between neurons and their targets. A striking feature of the nervous system is the specificity of its synaptic connections: an individual neuron will form synapses only with a small subset of available presynaptic and postsynaptic partners. Synaptic specificity has been classically thought to arise from homophilic or heterophilic interactions between adhesive molecules acting across the synaptic cleft. Over the past decade, many new mechanisms giving rise to synaptic specificity have been identified. Synapses can be specified by secreted molecules that promote or inhibit synaptogenesis, and their source can be a neighboring guidepost cell, not just presynaptic and postsynaptic neurons. Furthermore, lineage, fate, and timing of development can also play critical roles in shaping neural circuits. Future work utilizing large-scale screens will aim to elucidate the full scope of cellular mechanisms and molecular players that can give rise to synaptic specificity. PMID:19969086

  2. A Model of Synaptic Reconsolidation

    PubMed Central

    Kastner, David B.; Schwalger, Tilo; Ziegler, Lorric; Gerstner, Wulfram

    2016-01-01

    Reconsolidation of memories has mostly been studied at the behavioral and molecular level. Here, we put forward a simple extension of existing computational models of synaptic consolidation to capture hippocampal slice experiments that have been interpreted as reconsolidation at the synaptic level. The model implements reconsolidation through stabilization of consolidated synapses by stabilizing entities combined with an activity-dependent reservoir of stabilizing entities that are immune to protein synthesis inhibition (PSI). We derive a reduced version of our model to explore the conditions under which synaptic reconsolidation does or does not occur, often referred to as the boundary conditions of reconsolidation. We find that our computational model of synaptic reconsolidation displays complex boundary conditions. Our results suggest that a limited resource of hypothetical stabilizing molecules or complexes, which may be implemented by protein phosphorylation or different receptor subtypes, can underlie the phenomenon of synaptic reconsolidation. PMID:27242410

  3. Cell-specific synaptic plasticity induced by network oscillations

    PubMed Central

    Zarnadze, Shota; Bäuerle, Peter; Santos-Torres, Julio; Böhm, Claudia; Schmitz, Dietmar; Geiger, Jörg RP

    2016-01-01

    Gamma rhythms are known to contribute to the process of memory encoding. However, little is known about the underlying mechanisms at the molecular, cellular and network levels. Using local field potential recording in awake behaving mice and concomitant field potential and whole-cell recordings in slice preparations we found that gamma rhythms lead to activity-dependent modification of hippocampal networks, including alterations in sharp wave-ripple complexes. Network plasticity, expressed as long-lasting increases in sharp wave-associated synaptic currents, exhibits enhanced excitatory synaptic strength in pyramidal cells that is induced postsynaptically and depends on metabotropic glutamate receptor-5 activation. In sharp contrast, alteration of inhibitory synaptic strength is independent of postsynaptic activation and less pronounced. Further, we found a cell type-specific, directionally biased synaptic plasticity of two major types of GABAergic cells, parvalbumin- and cholecystokinin-expressing interneurons. Thus, we propose that gamma frequency oscillations represent a network state that introduces long-lasting synaptic plasticity in a cell-specific manner. DOI: http://dx.doi.org/10.7554/eLife.14912.001 PMID:27218453

  4. Synaptic reorganisation of the medial amygdala during puberty.

    PubMed

    Cooke, B M

    2011-01-01

    The medial amygdala (MeA) is an important site for the gonadal hormone control of several socio-sexual behaviours that emerge during puberty, including aggression, mating and parental behaviour. We have previously shown that rising levels of pubertal androgens increase the regional volume and mean soma size of neurones in the posterodorsal subnucleus of the MeA, the MePD. The present study aimed to determine some of the constituents of pubertal volumetric growth. Using computer-guided unbiased stereology, we compared the regional volume, mean somal volume and the overall number of neurones and glia in 45-day-old male Siberian hamsters (Phodopus sungorus). Half of the hamsters had completed puberty, whereas the remainder were prepubertal as a result of photoinhibition of the hypothalamic-pituitary-gonadal axis. Puberty significantly increased MePD regional volume and mean somal volume, as previously observed. We also compared the number of puncta immunoreactive for vesicular glutamate transporter-2 (vGlut2) and post-synaptic density 95 (PSD-95), which are both markers of glutamatergic pre- and post-synaptic specialisations, as well as glutamic acid decarboxylase 65 (GAD-65), which is a marker of GABAergic terminals. Puberty increased the number of vGlut2 and PSD-95 immunoreactive puncta by two- and three-fold, respectively, whereas the number of GAD-65 immunoreactive puncta was unchanged. These results suggest that numerous excitatory synapses are added to the MeA during puberty. More broadly, they show that the pubertal emergence of sexual behaviour is accompanied by synaptic reorganisation of a key network involved in the expression of sexual behaviour.

  5. Alcohol effects on synaptic transmission in periaqueductal gray dopamine neurons

    PubMed Central

    Li, Chia; McCall, Nora M.; Lopez, Alberto J.; Kash, Thomas L.

    2014-01-01

    The role of dopamine (DA) signaling in regulating the rewarding properties of drugs, including alcohol, has been widely studied. The majority of these studies, however, have focused on the DA neurons located in the ventral tegmental area (VTA), and their projections to the nucleus accumbens. DA neurons within the ventral periaqueductal gray (vPAG) have been shown to regulate reward but little is known about the functional properties of these neurons, or how they are modified by drugs of abuse. This lack of knowledge is likely due to the highly heterogeneous cell composition of the vPAG, with both γ-amino-butyric acid (GABA) and glutamate neurons present in addition to DA neurons. In this study, we performed whole-cell recordings in a TH–eGFP transgenic mouse line to evaluate the properties of vPAG-DA neurons. Following this initial characterization, we examined how both acute and chronic alcohol exposure modify synaptic transmission onto vPAG-DA neurons. We found minimal effects of acute alcohol exposure on GABA transmission, but a robust enhancement of glutamatergic synaptic transmission in vPAG-DA. Consistent with this effect on excitatory transmission, we also found that alcohol caused an increase in firing rate. These data were in contrast to the effects of chronic intermittent alcohol exposure, which had no significant impact on either inhibitory or excitatory synaptic transmission on the vPAG-DA neurons. These data add to a growing body of literature that points to alcohol having both region-dependent and cell-type dependent effects on function. PMID:23597415

  6. Propagation of Homeostatic Sleep Signals by Segregated Synaptic Microcircuits of the Drosophila Mushroom Body.

    PubMed

    Sitaraman, Divya; Aso, Yoshinori; Jin, Xin; Chen, Nan; Felix, Mario; Rubin, Gerald M; Nitabach, Michael N

    2015-11-16

    The Drosophila mushroom body (MB) is a key associative memory center that has also been implicated in the control of sleep. However, the identity of MB neurons underlying homeostatic sleep regulation, as well as the types of sleep signals generated by specific classes of MB neurons, has remained poorly understood. We recently identified two MB output neuron (MBON) classes whose axons convey sleep control signals from the MB to converge in the same downstream target region: a cholinergic sleep-promoting MBON class and a glutamatergic wake-promoting MBON class. Here, we deploy a combination of neurogenetic, behavioral, and physiological approaches to identify and mechanistically dissect sleep-controlling circuits of the MB. Our studies reveal the existence of two segregated excitatory synaptic microcircuits that propagate homeostatic sleep information from different populations of intrinsic MB "Kenyon cells" (KCs) to specific sleep-regulating MBONs: sleep-promoting KCs increase sleep by preferentially activating the cholinergic MBONs, while wake-promoting KCs decrease sleep by preferentially activating the glutamatergic MBONs. Importantly, activity of the sleep-promoting MB microcircuit is increased by sleep deprivation and is necessary for homeostatic rebound sleep (i.e., the increased sleep that occurs after, and in compensation for, sleep lost during deprivation). These studies reveal for the first time specific functional connections between subsets of KCs and particular MBONs and establish the identity of synaptic microcircuits underlying transmission of homeostatic sleep signals in the MB.

  7. Classification: Molecular & Synaptic Mechanisms

    PubMed Central

    Lussier, Marc P.; Gu, Xinglong; Lu, Wei; Roche, Katherine W.

    2014-01-01

    Controlling the density of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) at synapses is essential for regulating the strength of excitatory neurotransmission. In particular, the phosphorylation of AMPARs is important for defining both synaptic expression and intracellular routing of receptors. Phosphorylation is a posttranslational modification known to regulate many cellular events and the C-termini of glutamate receptors are important targets. Recently, the first intracellular loop1 region of the GluA1 subunit of AMPARs was reported to regulate synaptic targeting through phosphorylation of S567 by Ca2+/calmodulin-dependent protein kinase II (CaMKII). Intriguingly, the loop1 region of all four AMPAR subunits contains many putative phosphorylation sites (S/T/Y), leaving the possibility that other kinases may regulate AMPAR surface expression via phosphorylation of the loop regions. To explore this hypothesis, we used in vitro phosphorylation assays with a small panel of purified kinases and found that casein kinase 2 (CK2) phosphorylates the GluA1 and GluA2 loop1 regions, but not GluA3 or GluA4. Interestingly, when we reduced the endogenous expression of CK2 using a specific shRNA against the regulatory subunit CK2β, we detected a reduction of GluA1 surface expression, whereas GluA2 was unchanged. Furthermore, we identified S579 of GluA1 as a substrate of CK2, and the expression of GluA1 phospho-deficient mutants in hippocampal neurons displayed reduced surface expression. Therefore, our study identifies CK2 as a regulator of GluA1 surface expression by phosphorylating the intracellular loop1 region. PMID:24712994

  8. GABAergic innervation organizes synaptic and extrasynaptic GABAA receptor clustering in cultured hippocampal neurons.

    PubMed

    Christie, Sean B; Miralles, Celia P; De Blas, Angel L

    2002-02-01

    We have studied the effects of GABAergic innervation on the clustering of GABA(A) receptors (GABA(A)Rs) in cultured hippocampal neurons. In the absence of GABAergic innervation, pyramidal cells form small (0.36 +/- 0.01 micrometer diameter) GABA(A)R clusters at their surface in the dendrites and soma. When receiving GABAergic innervation from glutamic acid decarboxylase-containing interneurons, pyramidal cells form large (1.62 +/- 0.08 micrometer breadth) GABA(A)R clusters at GABAergic synapses. This is accompanied by a disappearance of the small GABA(A)R clusters in the local area surrounding each GABAergic synapse. Although the large synaptic GABA(A)R clusters of any neuron contained all GABA(A)R subunits and isoforms expressed by that neuron, the small clusters not localized at GABAergic synapses showed significant heterogeneity in subunit and isoform composition. Another difference between large GABAergic and small non-GABAergic GABA(A)R clusters was that a significant proportion of the latter was juxtaposed to postsynaptic markers of glutamatergic synapses such as PSD-95 and AMPA receptor GluR1 subunit. The densities of both the glutamate receptor-associated and non-associated small GABA(A)R clusters were decreased in areas surrounding GABAergic synapses. However, no effect on the density or distribution of glutamate receptor clusters was observed. The results suggest that there are local signals generated at GABAergic synapses that induce both assembly of large synaptic GABA(A)R clusters at the synapse and disappearance of the small GABA(A)R clusters in the surrounding area. In the absence of GABAergic innervation, weaker GABA(A)R-clustering signals, generated at glutamatergic synapses, induce the formation of small postsynaptic GABA(A)R clusters that remain juxtaposed to glutamate receptors at glutamatergic synapses.

  9. Reduced Glutamatergic Currents and Dendritic Branching of Layer 5 Pyramidal Cells Contribute to Medial Prefrontal Cortex Deactivation in a Rat Model of Neuropathic Pain

    PubMed Central

    Kelly, Crystle J.; Huang, Mei; Meltzer, Herbert; Martina, Marco

    2016-01-01

    Multiple studies have demonstrated that neuropathic pain is associated with major reorganization in multiple brain areas. In line with the strong emotional salience of chronic pain, involvement of the limbic system appears particularly important. Within the past few years, it has become clear that the functional deactivation of the prefrontal cortex (PFC) is critical for both the cognitive/emotional and the sensory components of pain. However, at the cellular level, details of this deactivation remain in large part unclear. Here we show that 1 week after a peripheral neuropathic injury (Spared Nerve Injury model) pyramidal cells in layer 5 (L5) of the rat medial PFC show responses to excitatory glutamatergic inputs that are reduced by about 50%, as well as reduced frequency of spontaneous excitatory synaptic currents. Additionally, these cells have reduced membrane capacitance and increased input resistance. All these findings are consistent with decreased dendritic length, thus we performed a detailed morphological analysis on a subset of the recorded neurons. We found that the apical dendrites proximal to the soma (excluding the tuft) are shorter and less complex in SNI animals, in agreement with the reduced capacitance and glutamatergic input. Finally, we used in vivo microdialysis to compare the basal concentrations of glutamate and GABA in the PFC of sham and SNI rats and found that ambient glutamate is decreased in SNI rats. Taken together, these data show that impaired glutamatergic transmission contributes to the functional deactivation of the mPFC in neuropathic pain. Additionally, the reduced branching of apical dendrites of L5 pyramidal neurons may underlay the gray matter reduction in chronic pain. PMID:27252623

  10. Early Impairment of Synaptic and Intrinsic Excitability in Mice Expressing ALS/Dementia-Linked Mutant UBQLN2

    PubMed Central

    Radzicki, Daniel; Liu, Erdong; Deng, Han-Xiang; Siddique, Teepu; Martina, Marco

    2016-01-01

    Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are believed to represent the different outcomes of a common pathogenic mechanism. However, while researchers have intensely studied the involvement of motor neurons in the ALS/FTD syndrome, very little is known about the function of hippocampal neurons, although this area is critical for memory and other cognitive functions. We investigated the electrophysiological properties of CA1 pyramidal cells in slices from 1 month-old UBQLN2P497H mice, a recently generated model of ALS/FTD that shows heavy depositions of ubiquilin2-positive aggregates in this brain region. We found that, compared to wild-type mice, cells from UBQLN2P497H mice were hypo-excitable. The amplitude of the glutamatergic currents elicited by afferent fiber stimulation was reduced by ~50%, but no change was detected in paired-pulse plasticity. The maximum firing frequency in response to depolarizing current injection was reduced by ~30%; the fast afterhyperpolarization in response to a range of depolarizations was reduced by almost 10 mV; the maximum slow afterhyperpolarization (sAHP) was also significantly decreased, likely in consequence of the decreased number of spikes. Finally, the action potential (AP) upstroke was blunted and the threshold depolarized compared to controls. Thus, synaptic and intrinsic excitability are both impaired in CA1 pyramidal cells of UBQLN2P497H mice, likely constituting a cellular mechanism for the cognitive impairments. Because these alterations are detectable before the establishment of overt pathology, we hypothesize that they may affect the further course of the disease. PMID:27703430

  11. Combination of methamphetamine and HIV-1 gp120 causes distinct long-term alterations of behavior, gene expression, and injury in the central nervous system.

    PubMed

    Hoefer, Melanie M; Sanchez, Ana B; Maung, Ricky; de Rozieres, Cyrus M; Catalan, Irene C; Dowling, Cari C; Thaney, Victoria E; Piña-Crespo, Juan; Zhang, Dongxian; Roberts, Amanda J; Kaul, Marcus

    2015-01-01

    Methamphetamine (METH) abuse is frequent in individuals infected with human immunodeficiency virus type-1 (HIV-1) and is suspected to aggravate HIV-associated neurocognitive disorders (HAND). METH is a psychostimulant that compromises several neurotransmitter systems and HIV proteins trigger neuronal injury but the combined effects of viral infection and METH abuse are incompletely understood. In this study we treated transgenic mice expressing the HIV envelope protein gp120 in the brain (HIV-1 gp120tg) at 3-4 months of age with an escalating-dose, multiple-binge METH regimen. The long-term effects were analyzed after 6-7 months of drug abstinence employing behavioral tests and analysis of neuropathology, electrophysiology and gene expression. Behavioral testing showed that both HIV-1 gp120tg and WT animals treated with METH displayed impaired learning and memory. Neuropathological analysis revealed that METH similar to HIV-1 gp120 caused a significant loss of neuronal dendrites and pre-synaptic terminals in hippocampus and cerebral cortex of WT animals. Electrophysiological studies in hippocampal slices showed that METH exposed HIV-1 gp120tg animals displayed reduced post-tetanic potentiation, whereas both gp120 expression and METH lead to reduced long-term potentiation. A quantitative reverse transcription-polymerase chain reaction array showed that gp120 expression, METH and their combination each caused a significant dysregulation of specific components of GABAergic and glutamatergic neurotransmission systems, providing a possible mechanism for synaptic dysfunction and behavioral impairment. In conclusion, both HIV-1 gp120 and METH caused lasting behavioral impairment in association with neuropathology and altered gene expression. However, combined METH exposure and HIV-1 gp120 expression resulted in the most pronounced, long lasting pre- and post-synaptic alterations coinciding with impaired learning and memory. PMID:25246228

  12. Combination of Methamphetamine and HIV-1 gp120 causes distinct long-term alterations of behavior, gene expression, and injury in the central nervous system

    PubMed Central

    Hoefer, Melanie M.; Sanchez, Ana B.; Maung, Ricky; de Rozieres, Cyrus M.; Catalan, Irene C.; Dowling, Cari C.; Thaney, Victoria E.; Piña-Crespo, Juan; Zhang, Dongxian; Roberts, Amanda J.; Kaul, Marcus

    2014-01-01

    Methamphetamine (METH) abuse is frequent in individuals infected with human immunodeficiency virus type-1 (HIV-1) and is suspected to aggravate HIV-associated neurocognitive disorders (HAND). METH is a psychostimulant that compromises several neurotransmitter systems and HIV proteins trigger neuronal injury but the combined effects of viral infection and METH abuse are incompletely understood. In this study we treated transgenic mice expressing the HIV envelope protein gp120 in the brain (HIV/gp120tg) at 3–4 months of age with an escalating-dose, multiple-binge METH regimen. The long-term effects were analyzed after 6–7 months of drug abstinence employing behavioral tests and analysis of neuropathology, electrophysiology and gene expression. Behavioral testing showed that both HIV/gp120tg and WT animals treated with METH displayed impaired learning and memory. Neuropathological analysis revealed that METH similar to HIV/gp120 caused a significant loss of neuronal dendrites and pre-synaptic terminals in hippocampus and cerebral cortex of WT animals. Electrophysiological studies in hippocampal slices showed that METH exposed HIV/gp120tg animals displayed reduced post-tetanic potentiation, whereas both gp120 expression and METH lead to reduced long-term potentiation. A quantitative reverse transcription-polymerase chain reaction array showed that gp120 expression, METH and their combination each caused a significant dysregulation of specific components of GABAergic and glutamatergic neurotransmission systems, providing a possible mechanism for synaptic dysfunction and behavioral impairment. In conclusion, both HIV-1/gp120 and METH caused lasting behavioral impairment in association with neuropathology and altered gene expression. However, combined METH exposure and HIV-1/gp120 expression resulted in the most pronounced, long lasting pre-and post-synaptic alterations coinciding with impaired learning and memory. PMID:25246228

  13. NG2 glial cells integrate synaptic input in global and dendritic calcium signals

    PubMed Central

    Sun, Wenjing; Matthews, Elizabeth A; Nicolas, Vicky; Schoch, Susanne; Dietrich, Dirk

    2016-01-01

    Synaptic signaling to NG2-expressing oligodendrocyte precursor cells (NG2 cells) could be key to rendering myelination of axons dependent on neuronal activity, but it has remained unclear whether NG2 glial cells integrate and respond to synaptic input. Here we show that NG2 cells perform linear integration of glutamatergic synaptic inputs and respond with increasing dendritic calcium elevations. Synaptic activity induces rapid Ca2+ signals mediated by low-voltage activated Ca2+ channels under strict inhibitory control of voltage-gated A-type K+ channels. Ca2+ signals can be global and originate throughout the cell. However, voltage-gated channels are also found in thin dendrites which act as compartmentalized processing units and generate local calcium transients. Taken together, the activity-dependent control of Ca2+ signals by A-type channels and the global versus local signaling domains make intracellular Ca2+ in NG2 cells a prime signaling molecule to transform neurotransmitter release into activity-dependent myelination. DOI: http://dx.doi.org/10.7554/eLife.16262.001 PMID:27644104

  14. Lineage origins of GABAergic versus glutamatergic neurons in the neocortex

    PubMed Central

    Marín, Oscar; Müller, Ulrich

    2014-01-01

    Summary Neocortical circuits are assembled from subtypes of glutamatergic excitatory and GABAergic inhibitory neurons with divergent anatomical and molecular signatures and unique physiological properties. Excitatory neurons derive from progenitors in the pallium, whereas inhibitory neurons originate from progenitors in the subpallium. Both classes of neurons subsequently migrate along well-defined routes to their final target area, where they integrate into common neuronal circuits. Recent findings show that neuronal diversity within the lineages of excitatory and inhibitory neurons is in part already established at the level of progenitor cells prior to migration. This poses challenges for our understanding of how radial units of interconnected excitatory and inhibitory neurons are assembled from progenitors that are spatially segregated and diverse in nature. PMID:24549207

  15. Manipulations of MeCP2 in glutamatergic neurons highlight their contributions to Rett and other neurological disorders

    PubMed Central

    Meng, Xiangling; Wang, Wei; Lu, Hui; He, Ling-jie; Chen, Wu; Chao, Eugene S; Fiorotto, Marta L; Tang, Bin; Herrera, Jose A; Seymour, Michelle L; Neul, Jeffrey L; Pereira, Fred A; Tang, Jianrong; Xue, Mingshan; Zoghbi, Huda Y

    2016-01-01

    Many postnatal onset neurological disorders such as autism spectrum disorders (ASDs) and intellectual disability are thought to arise largely from disruption of excitatory/inhibitory homeostasis. Although mouse models of Rett syndrome (RTT), a postnatal neurological disorder caused by loss-of-function mutations in MECP2, display impaired excitatory neurotransmission, the RTT phenotype can be largely reproduced in mice simply by removing MeCP2 from inhibitory GABAergic neurons. To determine what role excitatory signaling impairment might play in RTT pathogenesis, we generated conditional mouse models with Mecp2 either removed from or expressed solely in glutamatergic neurons. MeCP2 deficiency in glutamatergic neurons leads to early lethality, obesity, tremor, altered anxiety-like behaviors, and impaired acoustic startle response, which is distinct from the phenotype of mice lacking MeCP2 only in inhibitory neurons. These findings reveal a role for excitatory signaling impairment in specific neurobehavioral abnormalities shared by RTT and other postnatal neurological disorders. DOI: http://dx.doi.org/10.7554/eLife.14199.001 PMID:27328325

  16. Manipulations of MeCP2 in glutamatergic neurons highlight their contributions to Rett and other neurological disorders.

    PubMed

    Meng, Xiangling; Wang, Wei; Lu, Hui; He, Ling-Jie; Chen, Wu; Chao, Eugene S; Fiorotto, Marta L; Tang, Bin; Herrera, Jose A; Seymour, Michelle L; Neul, Jeffrey L; Pereira, Fred A; Tang, Jianrong; Xue, Mingshan; Zoghbi, Huda Y

    2016-01-01

    Many postnatal onset neurological disorders such as autism spectrum disorders (ASDs) and intellectual disability are thought to arise largely from disruption of excitatory/inhibitory homeostasis. Although mouse models of Rett syndrome (RTT), a postnatal neurological disorder caused by loss-of-function mutations in MECP2, display impaired excitatory neurotransmission, the RTT phenotype can be largely reproduced in mice simply by removing MeCP2 from inhibitory GABAergic neurons. To determine what role excitatory signaling impairment might play in RTT pathogenesis, we generated conditional mouse models with Mecp2 either removed from or expressed solely in glutamatergic neurons. MeCP2 deficiency in glutamatergic neurons leads to early lethality, obesity, tremor, altered anxiety-like behaviors, and impaired acoustic startle response, which is distinct from the phenotype of mice lacking MeCP2 only in inhibitory neurons. These findings reveal a role for excitatory signaling impairment in specific neurobehavioral abnormalities shared by RTT and other postnatal neurological disorders. PMID:27328325

  17. Glutamatergic Neurometabolites during Early Abstinence from Chronic Methamphetamine Abuse

    PubMed Central

    Tobias, Marc C.; Hudkins, Matthew; London, Edythe D.

    2015-01-01

    Background: The acute phase of abstinence from methamphetamine abuse is critical for rehabilitation success. Proton magnetic resonance spectroscopy has detected below-normal levels of glutamate+glutamine in anterior middle cingulate of chronic methamphetamine abusers during early abstinence, attributed to abstinence-induced downregulation of the glutamatergic systems in the brain. This study further explored this phenomenon. Methods: We measured glutamate+glutamine in additional cortical regions (midline posterior cingulate, midline precuneus, and bilateral inferior frontal cortex) putatively affected by methamphetamine. We examined the relationship between glutamate+glutamine in each region with duration of methamphetamine abuse as well as the depressive symptoms of early abstinence. Magnetic resonance spectroscopic imaging was acquired at 1.5 T from a methamphetamine group of 44 adults who had chronically abused methamphetamine and a control group of 23 age-, sex-, and tobacco smoking-matched healthy volunteers. Participants in the methamphetamine group were studied as inpatients during the first week of abstinence from the drug and were not receiving treatment. Results: In the methamphetamine group, small but significant (5–15%, P<.05) decrements (vs control) in glutamate+glutamine were observed in posterior cingulate, precuneus, and right inferior frontal cortex; glutamate+glutamine in posterior cingulate was negatively correlated (P<.05) with years of methamphetamine abuse. The Beck Depression Inventory score was negatively correlated (P<.005) with glutamate+glutamine in right inferior frontal cortex. Conclusions: Our findings support the idea that glutamatergic metabolism is downregulated in early abstinence in multiple cortical regions. The extent of downregulation may vary with length of abuse and may be associated with severity of depressive symptoms emergent in early recovery. PMID:25522400

  18. Circadian Regulation of Synaptic Plasticity

    PubMed Central

    Frank, Marcos G.

    2016-01-01

    Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity. PMID:27420105

  19. Circadian Regulation of Synaptic Plasticity.

    PubMed

    Frank, Marcos G

    2016-01-01

    Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity. PMID:27420105

  20. Synaptic Tagging During Memory Allocation

    PubMed Central

    Rogerson, Thomas; Cai, Denise; Frank, Adam; Sano, Yoshitake; Shobe, Justin; Aranda, Manuel L.; Silva, Alcino J.

    2014-01-01

    There is now compelling evidence that the allocation of memory to specific neurons (neuronal allocation) and synapses (synaptic allocation) in a neurocircuit is not random and that instead specific mechanisms, such as increases in neuronal excitability and synaptic tagging and capture, determine the exact sites where memories are stored. We propose an integrated view of these processes, such that neuronal allocation, synaptic tagging and capture, spine clustering and metaplasticity reflect related aspects of memory allocation mechanisms. Importantly, the properties of these mechanisms suggest a set of rules that profoundly affect how memories are stored and recalled. PMID:24496410

  1. It’s MORe exciting than mu: crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system

    PubMed Central

    Chartoff, Elena H.; Connery, Hilary S.

    2014-01-01

    Opioids selective for the G protein-coupled mu opioid receptor (MOR) produce potent analgesia and euphoria. Heroin, a synthetic opioid, is considered one of the most addictive substances, and the recent exponential rise in opioid addiction and overdose deaths has made treatment development a national public health priority. Existing medications (methadone, buprenorphine, and naltrexone), when combined with psychosocial therapies, have proven efficacy in reducing aspects of opioid addiction. Unfortunately, these medications have critical limitations including those associated with opioid agonist therapies (e.g., sustained physiological dependence and opioid withdrawal leading to high relapse rates upon discontinuation), non-adherence to daily dosing, and non-renewal of monthly injection with extended-release naltrexone. Furthermore, current medications fail to ameliorate key aspects of addiction such as powerful conditioned associations that trigger relapse (e.g., cues, stress, the drug itself). Thus, there is a need for developing novel treatments that target neural processes corrupted with chronic opioid use. This requires a basic understanding of molecular and cellular mechanisms underlying effects of opioids on synaptic transmission and plasticity within reward-related neural circuits. The focus of this review is to discuss how crosstalk between MOR-associated G protein signaling and glutamatergic neurotransmission leads to immediate and long-term effects on emotional states (e.g., euphoria, depression) and motivated behavior (e.g., drug-seeking, relapse). Our goal is to integrate findings on how opioids modulate synaptic release of glutamate and postsynaptic transmission via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in the nucleus accumbens and ventral tegmental area with the clinical (neurobehavioral) progression of opioid dependence, as well as to identify gaps in knowledge that can be addressed in future studies

  2. Endocannabinoid signaling and synaptic function

    PubMed Central

    Castillo, Pablo E.; Younts, Thomas J.; Chávez, Andrés E.; Hashimotodani, Yuki

    2012-01-01

    Endocannabinoids are key modulators of synaptic function. By activating cannabinoid receptors expressed in the central nervous system, these lipid messengers can regulate several neural functions and behaviors. As experimental tools advance, the repertoire of known endocannabinoid-mediated effects at the synapse, and their underlying mechanism, continues to expand. Retrograde signaling is the principal mode by which endocannabinoids mediate short- and long-term forms of plasticity at both excitatory and inhibitory synapses. However, growing evidence suggests that endocannabinoids can also signal in a non-retrograde manner. In addition to mediating synaptic plasticity, the endocannabinoid system is itself subject to plastic changes. Multiple points of interaction with other neuromodulatory and signaling systems have now been identified. Synaptic endocannabinoid signaling is thus mechanistically more complex and diverse than originally thought. In this review, we focus on new advances in endocannabinoid signaling and highlight their role as potent regulators of synaptic function in the mammalian brain. PMID:23040807

  3. Neurexin and neuroligin mediate retrograde synaptic inhibition in C. elegans.

    PubMed

    Hu, Zhitao; Hom, Sabrina; Kudze, Tambudzai; Tong, Xia-Jing; Choi, Seungwon; Aramuni, Gayane; Zhang, Weiqi; Kaplan, Joshua M

    2012-08-24

    The synaptic adhesion molecules neurexin and neuroligin alter the development and function of synapses and are linked to autism in humans. Here, we found that Caenorhabditis elegans neurexin (NRX-1) and neuroligin (NLG-1) mediated a retrograde synaptic signal that inhibited neurotransmitter release at neuromuscular junctions. Retrograde signaling was induced in mutants lacking a muscle microRNA (miR-1) and was blocked in mutants lacking NLG-1 or NRX-1. Release was rapid and abbreviated when the retrograde signal was on, whereas release was slow and prolonged when retrograde signaling was blocked. The retrograde signal adjusted release kinetics by inhibiting exocytosis of synaptic vesicles (SVs) that are distal to the site of calcium entry. Inhibition of release was mediated by increased presynaptic levels of tomosyn, an inhibitor of SV fusion.

  4. Optical mapping reveals developmental dynamics of Mg2+-/APV-sensitive components of glossopharyngeal glutamatergic EPSPs in the embryonic chick NTS.

    PubMed

    Sato, Katsushige; Momose-Sato, Yoko

    2004-10-01

    To examine whether there are any differences in functional organization between the glossopharyngeal nerve (N. IX)- and vagus nerve (N. X)-projecting areas in the nucleus of the tractus solitarius (NTS), we performed optical recording of neural responses evoked by N. IX stimulation in 5- to 9-day-old embryonic chick brain stem preparations and compared the results with those in our previous studies concerning the N. X-related NTS. First, we investigated DL-2-amino-5-phosphonovaleric acid (APV)/Mg2+ sensitivity of the glutamatergic excitatory postsynaptic potentials (EPSPs) in the N. IX-related NTS. In 7- to 9-day-old preparations, we found regional differences in the degree of both the APV-induced reduction and Mg2+-free-induced enhancement of the EPSPs. We constructed developmental maps of spatial patterns of the APV- and Mg2+-sensitive components and showed that functional expression of the N-methyl-D-aspartate (NMDA) receptor dynamically changed during development. Second, we studied initial expression of synaptic functions in the N. IX-related NTS. In 6-day-old preparations, although action potentials alone were usually detected in normal Ringer solution, small EPSPs were elicited in a Mg2+-free solution. This result suggests that the NMDA receptor-mediated synaptic function is latently generated in the N. IX-related NTS at the 6-day-old embryonic stage and that external Mg2+ regulates the onset of synaptic functions. Developmental patterns of APV/Mg2+ sensitivity and the stage of initial expression of the glossopharyngeal EPSP were similar to those of the N. X, suggesting that the developmental sequence of the synaptic function in the NTS is the same for the N. IX- and N. X-related NTS.

  5. In the developing rat hippocampus a tonic GABAA-mediated conductance selectively enhances the glutamatergic drive of principal cells

    PubMed Central

    Marchionni, Ivan; Omrani, Azar; Cherubini, Enrico

    2007-01-01

    In the adult hippocampus, two different forms of GABAA receptor-mediated inhibition have been identified: phasic and tonic. The first is due to the activation of GABAA receptors facing the presynaptic releasing sites, whereas the second is due to the activation of receptors localized away from the synapses. Because of their high affinity and low desensitization rate, extrasynaptic receptors are persistently able to sense low concentrations of GABA. Here we show that, early in postnatal life, between postnatal day (P) 2 and P6, CA1 and CA3 pyramidal cells but not stratum radiatum interneurons, express a tonic GABAA-mediated conductance. Block of the neuronal GABA transporter GAT-1 slightly enhanced the persistent GABA conductance in principal cells but not in GABAergic interneurons. However, in adulthood, a tonic GABAA-mediated conductance could be revealed in stratum radiatum interneurons, indicating that the ability of these cells to sense ambient GABA levels is developmentally regulated. Pharmacological analysis of the tonic conductance in principal cells demonstrated the involvement of β2/β3, α5 and γ2 GABAA receptor subunits. Removal of the tonic depolarizing action of GABA with picrotoxin, reduced the excitability and the glutamatergic drive of principal cells but did not modify the excitability of stratum radiatum interneurons. The increased cell excitability and synaptic activity following the activation of extrasynaptic GABAA receptors by ambient GABA would facilitate the induction of giant depolarizing potentials. PMID:17317750

  6. Sumatriptan inhibits synaptic transmission in the rat midbrain periaqueductal grey

    PubMed Central

    Jeong, Hyo-Jin; Chenu, David; Johnson, Emma E; Connor, Mark; Vaughan, Christopher W

    2008-01-01

    Background There is evidence to suggest that the midbrain periaqueductal grey (PAG) has a role in migraine and the actions of the anti-migraine drug sumatriptan. In the present study we examined the serotonergic modulation of GABAergic and glutamatergic synaptic transmission in rat midbrain PAG slices in vitro. Results Serotonin (5-hydroxytriptamine, 5-HT, IC50 = 142 nM) and the selective serotonin reuptake inhibitor fluoxetine (30 μM) produced a reduction in the amplitude of GABAA-mediated evoked inhibitory postsynaptic currents (IPSCs) in all PAG neurons which was associated with an increase in the paired-pulse ratio of evoked IPSCs. Real time PCR revealed that 5-HT1A, 5-HT1B, 5-HT1D and 5-HT1F receptor mRNA was present in the PAG. The 5-HT1A, 5-HT1B and 5-HT1D receptor agonists 8-OH-DPAT (3 μM), CP93129 (3 μM) and L694247 (3 μM), but not the 5-HT1F receptor agonist LY344864 (1 – 3 μM) inhibited evoked IPSCs. The 5-HT (1 μM) induced inhibition of evoked IPSCs was abolished by the 5-HT1B antagonist NAS181 (10 μM), but not by the 5-HT1A and 5-HT1D antagonists WAY100135 (3 μM) and BRL15572 (10 μM). Sumatriptan also inhibited evoked IPSCs with an IC50 of 261 nM, and reduced the rate, but not the amplitude of spontaneous miniature IPSCs. The sumatriptan (1 μM) induced inhibition of evoked IPSCs was abolished by NAS181 (10 μM) and BRL15572 (10 μM), together, but not separately. 5-HT (10 μM) and sumatriptan (3 μM) also reduced the amplitude of non-NMDA mediated evoked excitatory postsynaptic currents (EPSCs) in all PAG neurons tested. Conclusion These results indicate that sumatriptan inhibits GABAergic and glutamatergic synaptic transmission within the PAG via a 5-HT1B/D receptor mediated reduction in the probability of neurotransmitter release from nerve terminals. These actions overlap those of other analgesics, such as opioids, and provide a mechanism by which centrally acting 5-HT1B and 5-HT1D ligands might lead to novel anti

  7. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders.

    PubMed

    Sala, Carlo; Vicidomini, Cinzia; Bigi, Ilaria; Mossa, Adele; Verpelli, Chiara

    2015-12-01

    Shank/ProSAP proteins are essential to synaptic formation, development, and function. Mutations in the family of SHANK genes are strongly associated with autism spectrum disorders (ASD) and other neurodevelopmental and neuropsychiatric disorders, such as intellectual disability (ID), and schizophrenia. Thus, the term 'Shankopathies' identifies a number of neuronal diseases caused by alteration of Shank protein expression leading to abnormal synaptic development. With this review we want to summarize the major genetic, molecular, behavior and electrophysiological studies that provide new clues into the function of Shanks and pave the way for the discovery of new therapeutic drugs targeted to treat patients with SHANK mutations and also patients affected by other neurodevelopmental and neuropsychiatric disorders. Shank/ProSAP proteins are essential to synaptic formation, development, and function. Mutations in the family of SHANK genes are strongly associated with autism spectrum disorders (ASD) and other neurodevelopmental and neuropsychiatric disorders, such as intellectual disability (ID), and schizophrenia (SCZ). With this review we want to summarize the major genetic, molecular, behavior and electrophysiological studies that provide new clues into the function of Shanks and pave the way for the discovery of new therapeutic drugs targeted to treat patients with SHANK mutations.

  8. Relationship between developmental synaptic modulation and conditioning-induced synaptic change in Lymnaea.

    PubMed

    Karasawa, T; Sato, Nao; Horikoshi, T; Sakakibara, M

    2008-01-01

    Though adult Lymnaea are bimodal breathers, young animals breathe mainly through the skin and adults through the lung. Operant conditioning changes adult breathing behavior from aerial to cutaneous. We hypothesized that this behavioral change is caused by alterations in the neuronal circuit during both development and conditioning. We focused our study on whether the synaptic connection between RPeD1 and RPA6 neurons is modulated during development and conditioning. Our findings indicated that the RPeD1 has an excitatory monosynaptic contact with the RPA6 in young naive and operantly-conditioned adult animals. The relationship of this contact was well correlated with their respiratory behavior.

  9. Balance and stability of synaptic structures during synaptic plasticity.

    PubMed

    Meyer, Daniel; Bonhoeffer, Tobias; Scheuss, Volker

    2014-04-16

    Subsynaptic structures such as bouton, active zone, postsynaptic density (PSD) and dendritic spine, are highly correlated in their dimensions and also correlate with synapse strength. Why this is so and how such correlations are maintained during synaptic plasticity remains poorly understood. We induced spine enlargement by two-photon glutamate uncaging and examined the relationship between spine, PSD, and bouton size by two-photon time-lapse imaging and electron microscopy. In enlarged spines the PSD-associated protein Homer1c increased rapidly, whereas the PSD protein PSD-95 increased with a delay and only in cases of persistent spine enlargement. In the case of nonpersistent spine enlargement, the PSD proteins remained unchanged or returned to their original level. The ultrastructure at persistently enlarged spines displayed matching dimensions of spine, PSD, and bouton, indicating their correlated enlargement. This supports a model in which balancing of synaptic structures is a hallmark for the stabilization of structural modifications during synaptic plasticity. PMID:24742464

  10. Reelin supplementation recovers synaptic plasticity and cognitive deficits in a mouse model for Angelman syndrome.

    PubMed

    Hethorn, Whitney R; Ciarlone, Stephanie L; Filonova, Irina; Rogers, Justin T; Aguirre, Daniela; Ramirez, Raquel A; Grieco, Joseph C; Peters, Melinda M; Gulick, Danielle; Anderson, Anne E; L Banko, Jessica; Lussier, April L; Weeber, Edwin J

    2015-05-01

    The Reelin signaling pathway is implicated in processes controlling synaptic plasticity and hippocampus-dependent learning and memory. A single direct in vivo application of Reelin enhances long-term potentiation, increases dendritic spine density and improves associative and spatial learning and memory. Angelman syndrome (AS) is a neurological disorder that presents with an overall defect in synaptic function, including decreased long-term potentiation, reduced dendritic spine density, and deficits in learning and memory, making it an attractive model in which to examine the ability of Reelin to recover synaptic function and cognitive deficits. In this study, we investigated the effects of Reelin administration on synaptic plasticity and cognitive function in a mouse model of AS and demonstrated that bilateral, intraventricular injections of Reelin recover synaptic function and corresponding hippocampus-dependent associative and spatial learning and memory. Additionally, we describe alteration of the Reelin profile in tissue from both the AS mouse and post-mortem human brain. PMID:25864922

  11. Wnt signaling pathway improves central inhibitory synaptic transmission in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Fuenzalida, Marco; Espinoza, Claudia; Pérez, Miguel Ángel; Tapia-Rojas, Cheril; Cuitino, Loreto; Brandan, Enrique; Inestrosa, Nibaldo C

    2016-02-01

    The dystrophin-associated glycoprotein complex (DGC) that connects the cytoskeleton, plasma membrane and the extracellular matrix has been related to the maintenance and stabilization of channels and synaptic receptors, which are both essential for synaptogenesis and synaptic transmission. The dystrophin-deficient (mdx) mouse model of Duchenne muscular dystrophy (DMD) exhibits a significant reduction in hippocampal GABA efficacy, which may underlie the altered synaptic function and abnormal hippocampal long-term plasticity exhibited by mdx mice. Emerging studies have implicated Wnt signaling in the modulation of synaptic efficacy, neuronal plasticity and cognitive function. We report here that the activation of the non-canonical Wnt-5a pathway and Andrographolide, improves hippocampal mdx GABAergic efficacy by increasing the number of inhibitory synapses and GABA(A) receptors or GABA release. These results indicate that Wnt signaling modulates GABA synaptic efficacy and could be a promising novel target for DMD cognitive therapy. PMID:26626079

  12. A network of autism linked genes stabilizes two pools of synaptic GABAA receptors

    PubMed Central

    Tong, Xia-Jing; Hu, Zhitao; Liu, Yu; Anderson, Dorian; Kaplan, Joshua M

    2015-01-01

    Changing receptor abundance at synapses is an important mechanism for regulating synaptic strength. Synapses contain two pools of receptors, immobilized and diffusing receptors, both of which are confined to post-synaptic elements. Here we show that immobile and diffusing GABAA receptors are stabilized by distinct synaptic scaffolds at C. elegans neuromuscular junctions. Immobilized GABAA receptors are stabilized by binding to FRM-3/EPB4.1 and LIN-2A/CASK. Diffusing GABAA receptors are stabilized by the synaptic adhesion molecules Neurexin and Neuroligin. Inhibitory post-synaptic currents are eliminated in double mutants lacking both scaffolds. Neurexin, Neuroligin, and CASK mutations are all linked to Autism Spectrum Disorders (ASD). Our results suggest that these mutations may directly alter inhibitory transmission, which could contribute to the developmental and cognitive deficits observed in ASD. DOI: http://dx.doi.org/10.7554/eLife.09648.001 PMID:26575289

  13. Reelin supplementation recovers synaptic plasticity and cognitive deficits in a mouse model for Angelman syndrome

    PubMed Central

    Hethorn, Whitney R; Ciarlone, Stephanie L; Filonova, Irina; Rogers, Justin T; Aguirre, Daniela; Ramirez, Raquel A; Grieco, Joseph C; Peters, Melinda M; Gulick, Danielle; Anderson, Anne E; L Banko, Jessica; Lussier, April L; Weeber, Edwin J

    2015-01-01

    The Reelin signaling pathway is implicated in processes controlling synaptic plasticity and hippocampus-dependent learning and memory. A single direct in vivo application of Reelin enhances long-term potentiation, increases dendritic spine density and improves associative and spatial learning and memory. Angelman syndrome (AS) is a neurological disorder that presents with an overall defect in synaptic function, including decreased long-term potentiation, reduced dendritic spine density, and deficits in learning and memory, making it an attractive model in which to examine the ability of Reelin to recover synaptic function and cognitive deficits. In this study, we investigated the effects of Reelin administration on synaptic plasticity and cognitive function in a mouse model of AS and demonstrated that bilateral, intraventricular injections of Reelin recover synaptic function and corresponding hippocampus-dependent associative and spatial learning and memory. Additionally, we describe alteration of the Reelin profile in tissue from both the AS mouse and post-mortem human brain. PMID:25864922

  14. VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons

    PubMed Central

    Qi, Jia; Zhang, Shiliang; Wang, Hui-Ling; Barker, David J.; Miranda-Barrientos, Jorge; Morales, Marisela

    2016-01-01

    The ventral tegmental area (VTA) is best known for its dopamine neurons, some of which project to nucleus accumbens (nAcc). However, the VTA also has glutamatergic neurons that project to nAcc. The function of the mesoaccumbens-glutamatergic pathway remains unknown. Here, we report that nAcc photoactivation of mesoaccumbens-glutamatergic fibers promotes aversion. Although we found that these mesoaccumbens-glutamate-fibers lack GABA, the aversion evoked by their photoactivation depends on glutamate and GABA receptor signaling, and not on dopamine receptor signaling. We found that mesoaccumbens-glutamatergic-fibers establish multiple asymmetric synapses on single parvalbumin-GABAergic interneurons, and that nAcc photoactivation of these fibers drives AMPA-mediated cellular firing of parvalbumin-GABAergic interneurons. These parvalbumin-GABAergic-interneurons, in turn, inhibit nAcc medium spiny output neurons, as such, controlling inhibitory neurotransmission within nAcc. The mesoaccumbens-glutamatergic pathway is the first glutamatergic input to nAcc shown to mediate aversion, instead of reward, and the first pathway shown to establish excitatory synapses on nAcc parvalbumin-GABAergic interneurons. PMID:27019014

  15. Glutamatergic projection from the nucleus incertus to the septohippocampal system.

    PubMed

    Cervera-Ferri, Ana; Rahmani, Yasamin; Martínez-Bellver, Sergio; Teruel-Martí, Vicent; Martínez-Ricós, Joana

    2012-05-31

    Recent findings support a relevant role of the nucleus incertus in the control of the hippocampal activity through the modulation of theta rhythm. Previous studies from our group have shown that this nucleus is a critical relay between reticularis pontis oralis and the medial septum/diagonal band, regarded as the main activator and the pacemaker of the hippocampal oscillations, respectively. Besides, the nucleus incertus is highly linked to activated states related to the arousal response. The neurotransmission of the nucleus incertus, however, remains uncertain. Only GABA and the neuromodulator relaxin 3 are usually considered to be involved in its contribution to the septohippocampal system. In this work, we have analyzed the existence of an excitatory projection from the nucleus incertus to the medial septum. We have found a group of glutamatergic neurons in the nucleus incertus projecting to the medial septum. Moreover, we were able to describe a segregated distribution of calbindin and calretinin neurons. While calretinin expression was restricted to the nucleus incertus pars compacta, calbindin positive neurons where observed both in the pars dissipata and the pars compacta of the nucleus. The present work provides innovative data supporting an excitatory component in the pontoseptal pathway.

  16. Glutamatergic neurons are present in the rat ventral tegmental area

    PubMed Central

    Yamaguchi, Tsuyoshi; Sheen, Whitney; Morales, Marisela

    2010-01-01

    The ventral tegmental area (VTA) is thought to play an important role in reward function. Two populations of neurons, containing either dopamine (DA) or γ-amino butyric acid (GABA), have been extensively characterized in this area. However, recent electrophysiological studies are consistent with the notion that neurons that utilize neurotransmitters other than DA or GABA are likely to be present in the VTA. Given the pronounced phenotypic diversity of neurons in this region, we have proposed that additional cell types, such as those that express the neurotransmitter glutamate may also be present in this area. Thus, by using in situ hybridization histochemistry we investigated whether transcripts encoded by genes for the two vesicular glutamate transporters, VGluT1 or VGluT2, were expressed in the VTA. We found that VGluT2 mRNA but not VGluT1 mRNA is expressed in the VTA. Neurons expressing VGluT2 mRNA were differentially distributed throughout the rostro-caudal and medio-lateral aspects of the VTA, with the highest concentration detected in rostro-medial areas. Phenotypic characterization with double in situ hybridization of these neurons indicated that they rarely co–expressed mRNAs for tyrosine hydroxylase (TH, marker for DAergic neurons) or glutamic acid decarboxylase (GAD, marker for GABAergic neurons). Based on the results described here, we concluded that the VTA contains glutamatergic neurons that in their vast majority are clearly non-DAergic and non-GABAergic. PMID:17241272

  17. Transient ECM protease activity promotes synaptic plasticity

    PubMed Central

    Magnowska, Marta; Gorkiewicz, Tomasz; Suska, Anna; Wawrzyniak, Marcin; Rutkowska-Wlodarczyk, Izabela; Kaczmarek, Leszek; Wlodarczyk, Jakub

    2016-01-01

    Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity, and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP), and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation. PMID:27282248

  18. Influence of location of a fluorescent zinc probe in brain slices on its response to synaptic activation.

    PubMed

    Kay, Alan R; Tóth, Katalin

    2006-03-01

    The precise role of the high concentration of ionic zinc found in the synaptic vesicles of certain glutamatergic terminals is unknown. Fluorescent probes with their ability to detect ions at low concentrations provide a powerful approach to monitoring cellular Zn2+ levels. In the last few years, a number of fluorescent probes (indicators) have been synthesized that can be used to visualize Zn2+ in live cells. The interpretation of data gathered using such probes depends crucially on the location of the probe. Using acutely prepared hippocampal slices, we provide evidence that the Zn2+ probes, ZnAF-2 and ZP4, are membrane permeant and are able to pass into synaptic vesicles. In addition, we show that changes in fluorescence of the Zn2+ probes can be used to monitor presynaptic activity; however, these changes are inconsistent with Zn2+ release.

  19. Enhancement of extinction learning attenuates ethanol-seeking behavior and alters plasticity in the prefrontal cortex.

    PubMed

    Gass, Justin T; Trantham-Davidson, Heather; Kassab, Amanda S; Glen, William B; Olive, M Foster; Chandler, L Judson

    2014-05-28

    Addiction is a chronic relapsing disorder in which relapse is often initiated by exposure to drug-related cues. The present study examined the effects of mGluR5 activation on extinction of ethanol-cue-maintained responding, relapse-like behavior, and neuronal plasticity. Rats were trained to self-administer ethanol and then exposed to extinction training during which they were administered either vehicle or the mGluR5 positive allosteric modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) or CDPPB. CDPPB treatment reduced active lever responding during extinction, decreased the total number of extinction sessions required to meet criteria, and attenuated cue-induced reinstatement of ethanol seeking. CDPPB facilitation of extinction was blocked by the local infusion of the mGluR5 antagonist 3-((2-methyl-4-thiazolyl)ethynyl) pyridine into the infralimbic (IfL) cortex, but had no effect when infused into the prelimbic (PrL) cortex. Analysis of dendritic spines revealed alterations in structural plasticity, whereas electrophysiological recordings demonstrated differential alterations in glutamatergic neurotransmission in the PrL and IfL cortex. Extinction was associated with increased amplitude of evoked synaptic PrL and IfL NMDA currents but reduced amplitude of PrL AMPA currents. Treatment with CDPPB prevented the extinction-induced enhancement of NMDA currents in PrL without affecting NMDA currents in the IfL. Whereas CDPPB treatment did not alter the amplitude of PrL or IfL AMPA currents, it did promote the expression of IfL calcium-permeable GluR2-lacking receptors in both abstinence- and extinction-trained rats, but had no effect in ethanol-naive rats. These results confirm changes in the PrL and IfL cortex in glutamatergic neurotransmission during extinction learning and demonstrate that manipulation of mGluR5 facilitates extinction of ethanol cues in association with neuronal plasticity.

  20. Effects of Neural Morphology and Input Distribution on Synaptic Processing by Global and Focal NMDA-Spikes

    PubMed Central

    Poleg-Polsky, Alon

    2015-01-01

    Cortical neurons can respond to glutamatergic stimulation with regenerative N-Methyl-D-aspartic acid (NMDA)-spikes. NMDA-spikes were initially thought to depend on clustered synaptic activation. Recent work had shown however a new variety of a global NMDA-spike, which can be generated by randomly distributed inputs. Very little is known about the factors that influence the generation of these global NMDA-spikes, as well the potentially distinct rules of synaptic integration and the computational significance conferred by the two types of NMDA-spikes. Here I show that the input resistance (RIN) plays a major role in influencing spike initiation; while the classical, focal NMDA-spike depended upon the local (dendritic) RIN, the threshold of global NMDA-spike generation was set by the somatic RIN. As cellular morphology can exert a large influence on RIN, morphologically distinct neuron types can have dissimilar rules for NMDA-spikes generation. For example, cortical neurons in superficial layers were found to be generally prone to global NMDA-spike generation. In contrast, electric properties of cortical layer 5b cells clearly favor focal NMDA-spikes. These differences can translate into diverse synaptic integration rules for the different classes of cortical cells; simulated superficial layers neurons were found to exhibit strong synaptic interactions between different dendritic branches, giving rise to a single integrative compartment mediated by the global NMDA-spike. In these cells, efficiency of postsynaptic activation was relatively little dependent on synaptic distribution. By contrast, layer 5b neurons were capable of true multi-unit computation involving independent integrative compartments formed by clustered synaptic input which could trigger focal NMDA-spikes. In a sharp contrast to superficial layers neurons, randomly distributed synaptic inputs were not very effective in driving firing the layer 5b cells, indicating a possibility for different

  1. Phosphorylation of Complexin by PKA Regulates Activity-Dependent Spontaneous Neurotransmitter Release and Structural Synaptic Plasticity.

    PubMed

    Cho, Richard W; Buhl, Lauren K; Volfson, Dina; Tran, Adrienne; Li, Feng; Akbergenova, Yulia; Littleton, J Troy

    2015-11-18

    Synaptic plasticity is a fundamental feature of the nervous system that allows adaptation to changing behavioral environments. Most studies of synaptic plasticity have examined the regulated trafficking of postsynaptic glutamate receptors that generates alterations in synaptic transmission. Whether and how changes in the presynaptic release machinery contribute to neuronal plasticity is less clear. The SNARE complex mediates neurotransmitter release in response to presynaptic Ca(2+) entry. Here we show that the SNARE fusion clamp Complexin undergoes activity-dependent phosphorylation that alters the basic properties of neurotransmission in Drosophila. Retrograde signaling following stimulation activates PKA-dependent phosphorylation of the Complexin C terminus that selectively and transiently enhances spontaneous release. Enhanced spontaneous release is required for activity-dependent synaptic growth. These data indicate that SNARE-dependent fusion mechanisms can be regulated in an activity-dependent manner and highlight the key role of spontaneous neurotransmitter release as a mediator of functional and structural plasticity.

  2. Towards a quantitative model of the post-synaptic proteome.

    PubMed

    Sorokina, Oksana; Sorokin, Anatoly; Armstrong, J Douglas

    2011-10-01

    The postsynaptic compartment of the excitatory glutamatergic synapse contains hundreds of distinct polypeptides with a wide range of functions (signalling, trafficking, cell-adhesion, etc.). Structural dynamics in the post-synaptic density (PSD) are believed to underpin cognitive processes. Although functionally and morphologically diverse, PSD proteins are generally enriched with specific domains, which precisely define the mode of clustering essential for signal processing. We applied a stochastic calculus of domain binding provided by a rule-based modelling approach to formalise the highly combinatorial signalling pathway in the PSD and perform the numerical analysis of the relative distribution of protein complexes and their sizes. We specified the combinatorics of protein interactions in the PSD by rules, taking into account protein domain structure, specific domain affinity and relative protein availability. With this model we interrogated the critical conditions for the protein aggregation into large complexes and distribution of both size and composition. The presented approach extends existing qualitative protein-protein interaction maps by considering the quantitative information for stoichiometry and binding properties for the elements of the network. This results in a more realistic view of the postsynaptic proteome at the molecular level. PMID:21874189

  3. SynProt: A Database for Proteins of Detergent-Resistant Synaptic Protein Preparations

    PubMed Central

    Pielot, Rainer; Smalla, Karl-Heinz; Müller, Anke; Landgraf, Peter; Lehmann, Anne-Christin; Eisenschmidt, Elke; Haus, Utz-Uwe; Weismantel, Robert; Gundelfinger, Eckart D.; Dieterich, Daniela C.

    2012-01-01

    Chemical synapses are highly specialized cell–cell contacts for communication between neurons in the CNS characterized by complex and dynamic protein networks at both synaptic membranes. The cytomatrix at the active zone (CAZ) organizes the apparatus for the regulated release of transmitters from the presynapse. At the postsynaptic side, the postsynaptic density constitutes the machinery for detection, integration, and transduction of the transmitter signal. Both pre- and postsynaptic protein networks represent the molecular substrates for synaptic plasticity. Their function can be altered both by regulating their composition and by post-translational modification of their components. For a comprehensive understanding of synaptic networks the entire ensemble of synaptic proteins has to be considered. To support this, we established a comprehensive database for synaptic junction proteins (SynProt database) primarily based on proteomics data obtained from biochemical preparations of detergent-resistant synaptic junctions. The database currently contains 2,788 non-redundant entries of rat, mouse, and some human proteins, which mainly have been manually extracted from 12 proteomic studies and annotated for synaptic subcellular localization. Each dataset is completed with manually added information including protein classifiers as well as automatically retrieved and updated information from public databases (UniProt and PubMed). We intend that the database will be used to support modeling of synaptic protein networks and rational experimental design. PMID:22737123

  4. Synaptic computation and sensory processing in neocortical layer 2/3.

    PubMed

    Petersen, Carl C H; Crochet, Sylvain

    2013-04-10

    Computations in neocortical circuits are predominantly driven by synaptic integration of excitatory glutamatergic and inhibitory GABAergic inputs. New optical, electrophysiological, and genetic methods allow detailed in vivo investigation of the superficial neocortical layers 2 and 3 (L2/3). Here, we review current knowledge of mouse L2/3 sensory cortex, focusing on somatosensory barrel cortex with comparisons to visual and auditory cortex. Broadly tuned, dense subthreshold synaptic input accompanied by sparse action potential (AP) firing in excitatory neurons provides a simple and reliable neural code useful for associative learning. Sparse AP firing is enforced by strong inhibition from genetically defined classes of GABAergic neurons. Subnetworks of strongly and specifically connected excitatory neurons may drive L2/3 network function, with potential contributions from dendritic spikes evoked by spatiotemporally clustered synaptic input. These functional properties of L2/3 are under profound regulation by brain state and behavior, providing interesting avenues for future mechanistic investigations into context-specific processing of sensory information.

  5. Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis.

    PubMed

    Mukherjee, Konark; Yang, Xiaofei; Gerber, Stefan H; Kwon, Hyung-Bae; Ho, Angela; Castillo, Pablo E; Liu, Xinran; Südhof, Thomas C

    2010-04-01

    Piccolo and bassoon are highly homologous multidomain proteins of the presynaptic cytomatrix whose function is unclear. Here, we generated piccolo knockin/knockout mice that either contain wild-type levels of mutant piccolo unable to bind Ca(2+) (knockin), approximately 60% decreased levels of piccolo that is C-terminally truncated (partial knockout), or <5% levels of piccolo (knockout). All piccolo mutant mice were viable and fertile, but piccolo knockout mice exhibited increased postnatal mortality. Unexpectedly, electrophysiology and electron microscopy of piccolo-deficient synapses failed to uncover a major phenotype either in acute hippocampal slices or in cultured cortical neurons. To unmask potentially redundant functions of piccolo and bassoon, we thus acutely knocked down expression of bassoon in wild-type and piccolo knockout neurons. Despite a nearly complete loss of piccolo and bassoon, however, we still did not detect an electrophysiological phenotype in cultured piccolo- and bassoon-deficient neurons in either GABAergic or glutamatergic synaptic transmission. In contrast, electron microscopy revealed a significant reduction in synaptic vesicle clustering in double bassoon/piccolo-deficient synapses. Thus, we propose that piccolo and bassoon play a redundant role in synaptic vesicle clustering in nerve terminals without directly participating in neurotransmitter release.

  6. Effects of Modafinil on Behavioral Learning and Hippocampal Synaptic Transmission in Rats

    PubMed Central

    Chen, Chong; Wang, Hai-Xia; Li, Chu-Hua; Huang, Jun-Ni; Xiao, Peng

    2015-01-01

    Purpose: Modafinil is a wake-promoting agent that has been proposed to improve cognitive performance at the preclinical and clinical levels. Since there is insufficient evidence for modafinil to be regarded as a cognitive enhancer, the aim of this study was to investigate the effects of chronic modafinil administration on behavioral learning in healthy adult rats. Methods: Y-maze training was used to assess learning performance, and the whole-cell patch clamp technique was used to assess synaptic transmission in pyramidal neurons of the hippocampal CA1 region of rats. Results: Intraperitoneal administration of modafinil at 200 mg/kg or 300 mg/kg significantly improved learning performance. Furthermore, perfusion with 1mM modafinil enhanced the frequency and amplitude of spontaneous postsynaptic currents and spontaneous excitatory postsynaptic currents in CA1 pyramidal neurons in hippocampal slices. However, the frequency and amplitude of spontaneous inhibitory postsynaptic currents in CA1 pyramidal neurons were inhibited by treatment with 1mM modafinil. Conclusions: These results indicate that modafinil improves learning and memory in rats possibly by enhancing glutamatergic excitatory synaptic transmission and inhibiting GABAergic (gamma-aminobutyric acid-ergic) inhibitory synaptic transmission. PMID:26739176

  7. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors.

    PubMed

    Tang, Ai-Hui; Chen, Haiwen; Li, Tuo P; Metzbower, Sarah R; MacGillavry, Harold D; Blanpied, Thomas A

    2016-08-11

    Synaptic transmission is maintained by a delicate, sub-synaptic molecular architecture, and even mild alterations in synapse structure drive functional changes during experience-dependent plasticity and pathological disorders. Key to this architecture is how the distribution of presynaptic vesicle fusion sites corresponds to the position of receptors in the postsynaptic density. However, while it has long been recognized that this spatial relationship modulates synaptic strength, it has not been precisely described, owing in part to the limited resolution of light microscopy. Using localization microscopy, here we show that key proteins mediating vesicle priming and fusion are mutually co-enriched within nanometre-scale subregions of the presynaptic active zone. Through development of a new method to map vesicle fusion positions within single synapses in cultured rat hippocampal neurons, we find that action-potential-evoked fusion is guided by this protein gradient and occurs preferentially in confined areas with higher local density of Rab3-interacting molecule (RIM) within the active zones. These presynaptic RIM nanoclusters closely align with concentrated postsynaptic receptors and scaffolding proteins, suggesting the existence of a trans-synaptic molecular 'nanocolumn'. Thus, we propose that the nanoarchitecture of the active zone directs action-potential-evoked vesicle fusion to occur preferentially at sites directly opposing postsynaptic receptor-scaffold ensembles. Remarkably, NMDA receptor activation triggered distinct phases of plasticity in which postsynaptic reorganization was followed by trans-synaptic nanoscale realignment. This architecture suggests a simple organizational principle of central nervous system synapses to maintain and modulate synaptic efficiency. PMID:27462810

  8. Matrix Metalloproteinase-9 as a Novel Player in Synaptic Plasticity and Schizophrenia

    PubMed Central

    Lepeta, Katarzyna; Kaczmarek, Leszek

    2015-01-01

    Recent findings implicate alterations in glutamate signaling, leading to aberrant synaptic plasticity, in schizophrenia. Matrix metalloproteinase-9 (MMP-9) has been shown to regulate glutamate receptors, be regulated by glutamate at excitatory synapses, and modulate physiological and morphological synaptic plasticity. By means of functional gene polymorphism, gene responsiveness to antipsychotics and blood plasma levels MMP-9 has recently been implicated in schizophrenia. This commentary critically reviews these findings based on the hypothesis that MMP-9 contributes to pathological synaptic plasticity in schizophrenia. PMID:25837304

  9. Emerging approaches for treatment of schizophrenia: modulation of glutamatergic signaling.

    PubMed

    Noetzel, Meredith J; Jones, Carrie K; Conn, P Jeffrey

    2012-11-01

    Treatment options for schizophrenia that address all symptom categories (positive, negative, and cognitive) are lacking. Novel compounds that regulate signaling by the major excitatory neurotransmitter in the brain, glutamate, are emerging as a novel approach for the treatment of this disorder. Currently available medications ameliorate positive symptoms but do not have efficacy in reducing negative symptoms or cognitive disturbances. It is possible that agents that target glutamatergic signaling in the CNS could have efficacy in reducing all major symptom clusters, providing a more comprehensive treatment strategy, and also avoiding some of the adverse effects that are seen with currently available treatments. Three major approaches for targeting glutamate signaling are now advancing in preclinical and clinical development. First are inhibitors for a transporter for glycine termed GlyT1. Glycine is a co-agonist with glutamate for a specific subtype of glutamate receptor, termed the NMDA receptor, which is thought to be critically involved in brain circuits that are disrupted in schizophrenia patients. Inhibiting GlyT1 increases glycine levels and can selectively increase NMDA receptor signaling. Another promising approach is to increase activity of another family of glutamate receptors, termed metabotropic glutamate receptors (mGlus), which play important modulatory roles in brain circuits that are thought to be disrupted in schizophrenia patients. Activation of the group I (mGlu5) and the group II (mGlu2 and mGlu3) mGlus is hypothesized to normalize the disruption of aberrant signaling in these circuits. Novel drug-like molecules that increase activity of these receptors have robust efficacy in animal models that predict efficacy in treatment of schizophrenia. Early clinical studies provide some support for potential utility of these targets in reducing symptoms in schizophrenia patients. Clinical studies that are underway will provide further insights into the

  10. Glutamatergic Neurotransmission Links Sensitivity to Volatile Anesthetics with Mitochondrial Function.

    PubMed

    Zimin, Pavel I; Woods, Christian B; Quintana, Albert; Ramirez, Jan-Marino; Morgan, Philip G; Sedensky, Margaret M

    2016-08-22

    An enigma of modern medicine has persisted for over 150 years. The mechanisms by which volatile anesthetics (VAs) produce their effects (loss of consciousness, analgesia, amnesia, and immobility) remain an unsolved mystery. Many attractive putative molecular targets have failed to produce a significant effect when genetically tested in whole-animal models [1-3]. However, mitochondrial defects increase VA sensitivity in diverse organisms from nematodes to humans [4-6]. Ndufs4 knockout (KO) mice lack a subunit of mitochondrial complex I and are strikingly hypersensitive to VAs yet resistant to the intravenous anesthetic ketamine [7]. The change in VA sensitivity is the largest reported for a mammal. Limiting NDUFS4 loss to a subset of glutamatergic neurons recapitulates the VA hypersensitivity of Ndufs4(KO) mice, while loss in GABAergic or cholinergic neurons does not. Baseline electrophysiologic function of CA1 pyramidal neurons does not differ between Ndufs4(KO) and control mice. Isoflurane concentrations that anesthetize only Ndufs4(KO) mice (0.6%) decreased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) only in Ndufs4(KO) CA1 neurons, while concentrations effective in control mice (1.2%) decreased sEPSC frequencies in both control and Ndufs4(KO) CA1 pyramidal cells. Spontaneous inhibitory postsynaptic currents (sIPSCs) were not differentially affected between genotypes. The effects of isoflurane were similar on evoked field excitatory postsynaptic potentials (fEPSPs) and paired pulse facilitation (PPF) in KO and control hippocampal slices. We propose that CA1 presynaptic excitatory neurotransmission is hypersensitive to isoflurane in Ndufs4(KO) mice due to the inhibition of pre-existing reduced complex I function, reaching a critical reduction that can no longer meet metabolic demands. PMID:27498564

  11. Impaired synaptic development in a maternal immune activation mouse model of neurodevelopmental disorders

    PubMed Central

    Coiro, Pierluca; Padmashri, Ragunathan; Suresh, Anand; Spartz, Elizabeth; Pendyala, Gurudutt; Chou, Shinnyi; Jung, Yoosun; Meays, Brittney; Roy, Shreya; Gautam, Nagsen; Alnouti, Yazen; Li, Ming; Dunaevsky, Anna

    2016-01-01

    Both genetic and environmental factors are thought to contribute to neurodevelopmental and neuropsychiatric disorders with maternal immune activation (MIA) being a risk factor for both autism spectrum disorders and schizophrenia. Although MIA mouse offspring exhibit behavioral impairments, the synaptic alterations in vivo that mediate these behaviors are not known. Here we employed in vivo multiphoton imaging to determine that in the cortex of young MIA offspring there is a reduction in number and turnover rates of dendritic spines, sites of majority of excitatory synaptic inputs. Significantly, spine impairments persisted into adulthood and correlated with increased repetitive behavior, an ASD relevant behavioral phenotype. Structural analysis of synaptic inputs revealed a reorganization of presynaptic inputs with a larger proportion of spines being contacted by both excitatory and inhibitory presynaptic terminals. These structural impairments were accompanied by altered excitatory and inhibitory synaptic transmission. Finally, we report that a postnatal treatment of MIA offspring with the anti-inflammatory drug ibudilast, prevented both synaptic and behavioral impairments. Our results suggest that a possible altered inflammatory state associated with maternal immune activation results in impaired synaptic development that persists into adulthood but which can be prevented with early anti-inflammatory treatment. PMID:26218293

  12. Subregional Expression of Hippocampal Glutamatergic and GABAergic Genes in F344 Rats with Social Isolation after Weaning

    PubMed Central

    Iwata, Hisaya; Yamamuro, Yutaka

    2016-01-01

    Many studies have shown that postweaning social isolation (pwSI) alters various behavioral phenotypes, including hippocampus-dependent tasks. Here, we report the comprehensive analysis of the expression of glutamatergic and GABAergic neurotransmission-related genes in the distinct hippocampal subregions of pwSI rats. Male F344 rats (age, 4 wk) experienced either pwSI or group housing (controls). At 7 wk of age, the hippocampus of each rat was removed and laser-microdissected into the CA1 and CA3 layers of pyramidal cells and the granule cell layer of the dentate gyrus. Subsequently, the expression of glutamatergic- and GABAergic-related genes was analyzed by quantitative RT-PCR. In the CA1 and CA3 pyramidal cell layers, 18 of 24 glutamate receptor subunit genes were at least 1.5-fold increased in expression after pwSI. In particular, the expression of several N-methyl-D-aspartate and kainate receptors (for example, Grin2a in CA1, Grik4 in CA3) was significantly increased after pwSI. In contrast, pwSI tended to decrease the expression of GABAA receptor subunit genes, and Gabra1, Gabra2, Gabra4, Gabra5, Gabrb2, Gabrg1, and Gabrg2 were all significantly decreased in expression compared with the levels in the group-housed rats. These results indicate a subregion-specific increase of glutamate receptors and reduction of GABAA receptors, suggesting that the hippocampal circuits of pwSI rats may be in more excitable states than those of group-housed rats. PMID:26884404

  13. Unique pH dynamics in GABAergic synaptic vesicles illuminates the mechanism and kinetics of GABA loading.

    PubMed

    Egashira, Yoshihiro; Takase, Miki; Watanabe, Shoji; Ishida, Junji; Fukamizu, Akiyoshi; Kaneko, Ryosuke; Yanagawa, Yuchio; Takamori, Shigeo

    2016-09-20

    GABA acts as the major inhibitory neurotransmitter in the mammalian brain, shaping neuronal and circuit activity. For sustained synaptic transmission, synaptic vesicles (SVs) are required to be recycled and refilled with neurotransmitters using an H(+) electrochemical gradient. However, neither the mechanism underlying vesicular GABA uptake nor the kinetics of GABA loading in living neurons have been fully elucidated. To characterize the process of GABA uptake into SVs in functional synapses, we monitored luminal pH of GABAergic SVs separately from that of excitatory glutamatergic SVs in cultured hippocampal neurons. By using a pH sensor optimal for the SV lumen, we found that GABAergic SVs exhibited an unexpectedly higher resting pH (∼6.4) than glutamatergic SVs (pH ∼5.8). Moreover, unlike glutamatergic SVs, GABAergic SVs displayed unique pH dynamics after endocytosis that involved initial overacidification and subsequent alkalization that restored their resting pH. GABAergic SVs that lacked the vesicular GABA transporter (VGAT) did not show the pH overshoot and acidified further to ∼6.0. Comparison of luminal pH dynamics in the presence or absence of VGAT showed that VGAT operates as a GABA/H(+) exchanger, which is continuously required to offset GABA leakage. Furthermore, the kinetics of GABA transport was slower (τ > 20 s at physiological temperature) than that of glutamate uptake and may exceed the time required for reuse of exocytosed SVs, allowing reuse of incompletely filled vesicles in the presence of high demand for inhibitory transmission. PMID:27601664

  14. Encephalitis and antibodies to synaptic and neuronal cell surface proteins

    PubMed Central

    Lancaster, Eric; Martinez-Hernandez, Eugenia

    2011-01-01

    The identification of encephalitis associated with antibodies against cell surface and synaptic proteins, although recent, has already had a substantial impact in clinical neurology and neuroscience. The target antigens are receptors and proteins that have critical roles in synaptic transmission and plasticity, including the NMDA receptor, the AMPA receptor, the GABAB receptor, and the glycine receptor. Other autoantigens, such as leucine-rich glioma-inactivated 1 and contactin-associated protein-like 2, form part of trans-synaptic complexes and neuronal cell adhesion molecules involved in fine-tuning synaptic transmission and nerve excitability. Syndromes resulting from these immune responses resemble those of pharmacologic or genetic models in which the antigens are disrupted. For some immune responses, there is evidence that the antibodies alter the structure and function of the antigen, suggesting a direct pathogenic effect. These disorders are important because they can affect children and young adults, are severe and protracted, occur with or without tumor association, and respond to treatment but may relapse. This review provides an update on these syndromes and autoantigens with special emphasis on clinical diagnosis and treatment. PMID:21747075

  15. Salient features of synaptic organisation in the cerebral cortex.

    PubMed

    Somogyi, P; Tamás, G; Lujan, R; Buhl, E H

    1998-05-01

    The neuronal and synaptic organisation of the cerebral cortex appears exceedingly complex, and the definition of a basic cortical circuit in terms of defined classes of cells and connections is necessary to facilitate progress of its analysis. During the last two decades quantitative studies of the synaptic connectivity of identified cortical neurones and their molecular dissection revealed a number of general rules that apply to all areas of cortex. In this review, first the precise location of postsynaptic GABA and glutamate receptors is examined at cortical synapses, in order to define the site of synaptic interactions. It is argued that, due to the exclusion of G protein-coupled receptors from the postsynaptic density, the presence of extrasynaptic receptors and the molecular compartmentalisation of the postsynaptic membrane, the synapse should include membrane areas beyond the membrane specialisation. Subsequently, the following organisational principles are examined: 1. The cerebral cortex consists of: (i) a large population of principal neurones reciprocally connected to the thalamus and to each other via axon collaterals releasing excitatory amino acids, and, (ii) a smaller population of mainly local circuit GABAergic neurones. 2. Differential reciprocal connections are also formed amongst GABAergic neurones. 3. All extrinsic and intracortical glutamatergic pathways terminate on both the principal and the GABAergic neurones, differentially weighted according to the pathway. 4. Synapses of multiple sets of glutamatergic and GABAergic afferents subdivide the surface of cortical neurones and are often co-aligned on the dendritic domain. 5. A unique feature of the cortex is the GABAergic axo-axonic cell, influencing principal cells through GABAA receptors at synapses located exclusively on the axon initial segment. The analysis of these salient features of connectivity has revealed a remarkably selective array of connections, yet a highly adaptable design of

  16. Exocytosis regulates trafficking of GABA and glycine heterotransporters in spinal cord glutamatergic synapses: a mechanism for the excessive heterotransporter-induced release of glutamate in experimental amyotrophic lateral sclerosis.

    PubMed

    Milanese, Marco; Bonifacino, Tiziana; Fedele, Ernesto; Rebosio, Claudia; Cattaneo, Luca; Benfenati, Fabio; Usai, Cesare; Bonanno, Giambattista

    2015-02-01

    The impact of synaptic vesicle endo-exocytosis on the trafficking of nerve terminal heterotransporters was studied by monitoring membrane expression and function of the GABA transporter-1 (GAT-1) and of type-1/2 glycine (Gly) transporters (GlyT-1/2) at spinal cord glutamatergic synaptic boutons. Experiments were performed by inducing exocytosis in wild-type (WT) mice, in amphiphysin-I knockout (Amph-I KO) mice, which show impaired endocytosis, or in mice expressing high copy number of mutant human SOD1 with a Gly93Ala substitution (SOD1(G93A)), a model of human amyotrophic lateral sclerosis showing constitutively excessive Glu exocytosis. Exposure of spinal cord synaptosomes from WT mice to a 35mM KCl pulse increased the expression of GAT-1 at glutamatergic synaptosomal membranes and enhanced the GAT-1 heterotransporter-induced [(3)H]d-aspartate ([(3)H]d-Asp) release. Similar results were obtained in the case of GlyT-1/2 heterotransporters. Preventing depolarization-induced exocytosis normalized the excessive GAT-1 and GlyT-1/2 heterotransporter-induced [(3)H]d-Asp release in WT mice. Impaired endocytosis in Amph-I KO mice increased GAT-1 membrane expression and [(3)H]GABA uptake in spinal cord synaptosomes. Also the GAT-1 heterotransporter-evoked release of [(3)H]d-Asp was augmented in Amph-I KO mice. The constitutively excessive Glu exocytosis in SOD1(G93A) mice resulted in augmented GAT-1 expression at glutamatergic synaptosomal membranes and GAT-1 or GlyT-1/2 heterotransporter-mediated [(3)H]d-Asp release. Thus, endo-exocytosis regulates the trafficking of GAT-1 and GlyT-1/2 heterotransporters sited at spinal cord glutamatergic nerve terminals. As a consequence, it can be hypothesized that the excessive GAT-1 and GlyT-1/2 heterotransporter-mediated Glu release, in the spinal cord of SOD1(G93A) mice, is due to the heterotransporter over-expression at the nerve terminal membrane, promoted by the excessive Glu exocytosis.

  17. Spike-timing control by dendritic plateau potentials in the presence of synaptic barrages

    PubMed Central

    Shai, Adam S.; Koch, Christof; Anastassiou, Costas A.

    2014-01-01

    Apical and tuft dendrites of pyramidal neurons support regenerative electrical potentials, giving rise to long-lasting (approximately hundreds of milliseconds) and strong (~50 mV from rest) depolarizations. Such plateau events rely on clustered glutamatergic input, can be mediated by calcium or by NMDA currents, and often generate somatic depolarizations that last for the time course of the dendritic plateau event. We address the computational significance of such single-neuron processing via reduced but biophysically realistic modeling. We introduce a model based on two discrete integration zones, a somatic and a dendritic one, that communicate from the dendritic to the somatic compartment via a long plateau-conductance. We show principled differences in the way dendritic vs. somatic inhibition controls spike timing, and demonstrate how this could implement spike time control in the face of barrages of synaptic inputs. PMID:25177288

  18. Large Structural Change in Isolated Synaptic Vesicles upon Loading with Neurotransmitter

    PubMed Central

    Budzinski, Kristi L.; Allen, Richard W.; Fujimoto, Bryant S.; Kensel-Hammes, P.; Belnap, David M.; Bajjalieh, Sandra M.; Chiu, Daniel T.

    2009-01-01

    The size of a synaptic vesicle (SV) is generally thought to be determined by the amount of lipid and membrane protein it contains. Once formed, it is thought to remain constant in size. Using fluorescence correlation spectroscopy and cryogenic electron microscopy, we show that glutamatergic vesicles reversibly increase their size upon filling with glutamate. The increase (∼25% in diameter) corresponds to an increase in surface area of ∼50% and in volume of ∼100%. This large size increase implies a large structural change in the SV upon loading with neurotransmitters. Vesicles lacking SV protein 2A (SV2A) did not manifest a change in size after loading with glutamate, indicating that SV2A is required for this phenomenon. PMID:19883601

  19. Carbonic anhydrase-related protein VIII is expressed in rod bipolar cells and alters signaling at the rod bipolar to AII-amacrine cell synapse in the mammalian retina.

    PubMed

    Puthussery, T; Gayet-Primo, J; Taylor, W R

    2011-11-01

    Mutation of the gene encoding carbonic anhydrase-related protein VIII (CAVIII) results in motor coordination deficits in mice and humans, due to loss of this protein in Purkinje cells of the cerebellum. Recent studies have indicated that the CAVIII gene, Car8, is also expressed in rod bipolar cells (RBCs), a critical glutamatergic neuron for scotopic vision. We investigated the localization of CAVIII in the mouse and macaque retina, and utilized the wdl mouse, which has a null mutation in the Car8 gene, to determine how the loss of CAVIII affects retinal signaling. CAVIII immunoreactivity was observed in RBCs, with particularly high staining intensity in the axon terminals. In addition, weaker staining was observed in a subset of cone bipolar cells and γ-aminobutyric acid (GABA)ergic amacrine cells. Light-evoked current and voltage responses of RBCs were not altered in the wdl mutant. However, light-evoked current responses from the AII-amacrine cell, a postsynaptic partner at the RBC ribbon synapse, were significantly larger, and more prolonged than in control mice. These changes could not be attributed to alterations in calcium current activation or inactivation, or to changes in the density of RBCs. Furthermore, no gross synaptic alterations were evident in the wdl mutant at the light or ultrastructural level. These data provide evidence that the CAVIII protein, which is highly conserved in vertebrates, is selectively expressed within neural circuits, and may be important for modulating retinal neurotransmission.

  20. Whiplash-like facet joint loading initiates glutamatergic responses in the DRG and spinal cord associated with behavioral hypersensitivity

    PubMed Central

    Dong, Ling; Quindlen, Julia C.; Lipschutz, Daniel E.; Winkelstein, Beth A.

    2012-01-01

    The cervical facet joint and its capsule are a common source of neck pain from whiplash. Mechanical hyperalgesia elicited by painful facet joint distraction is associated with spinal neuronal hyperexcitability that can be induced by transmitter/receptor systems that potentiate the synaptic activation of neurons. This study investigated the temporal response of a glutamate receptor and transporters in the dorsal root ganglia (DRG) and spinal cord. Bilateral C6/C7 facet joint distractions were imposed in the rat either to produce behavioral sensitivity or without inducing any sensitivity. Neuronal metabotropic glutamate receptor-5 (mGluR5) and protein kinase C-epsilon (PKCε) expression in the DRG and spinal cord were evaluated on days 1 and 7. Spinal expression of a glutamate transporter, excitatory amino acid carrier 1 (EAAC1), was also quantified at both time points. Painful distraction produced immediate behavioral hypersensitivity that was sustained for 7 days. Increased expression of mGluR5 and PKCε in the DRG was not evident until day 7 and only following painful distraction; this increase was observed in small-diameter neurons. Only painful facet joint distraction produced a significant increase (p<0.001) in neuronal mGluR5 over time, and this increase also was significantly elevated (p ≤ 0.05) over responses in the other groups at day 7. However, there were no differences in spinal PKCε expression on either day or between groups. Spinal EAAC1 expression was significantly increased (p<0.03) only in the nonpainful groups on day 7. Results from this study suggest spinal glutamatergic plasticity is selectively modulated in association with facet-mediated pain. PMID:22578356

  1. Enhancement of inorganic Martian dust simulant with carbon component and its effects on key characteristics of glutamatergic neurotransmission

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Krisanova, Natalia; Nazarova, Anastasiya; Borysov, Arseniy; Pastukhov, Artem; Pozdnyakova, Natalia; Dudarenko, Marina

    2016-07-01

    Evidence on the past existence of subsurface organic-bearing fluids on Mars was recently achieved basing on the investigation of organic carbon from the Tissint Martian meteorite (Lin et al., 2014). Tremendous amount of meteorites containing abundant carbon and carbon-enriched dust particles have reached the Earth daily (Pizzarello and Shock 2010). National Institute of Environmental Health Sciences/National Institute of Health panel of research scientists revealed recently that accumulating evidences suggest that nano-sized air pollution may have a significant impact on central nervous system in health and disease (Block et al., Neurotoxicology, 2012). During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and can be transported to the central nervous system (Oberdorster et al., 2004). Based on above facts, the aims of this study were: 1) to upgrade inorganic Martian dust stimulant derived from volcanic ash (JSC-1a/JSC, ORBITEC Orbital Technologies Corporation, Madison, Wisconsin) by the addition of carbon components, that is, nanodiamonds; 2) to analyse acute effects of upgraded stimulant on the key characteristic of synaptic neurotransmission and to compare its effects with those of inorganic dust and carbon components per se. Acute administration of carbon-containing Martian dust analogue resulted in a significant decrease in Na+-dependent uptake of L-[14C]glutamate that is the major excitatory neurotransmitter in the central nervous system (CNS). The ambient level of the neurotransmitter in the preparation of isolated rat brain nerve terminals increased in the presence of carbon-contained Martian dust analogue. This fact indicated that carbon component of native Martian dust can have deleterious effects on extracellular glutamate homeostasis in the CNS, and so glutamatergic neurtransmission.

  2. Developmental Exposure to the Organochlorine Insecticide Endosulfan Alters Expression of Proteins Associated with Neurotransmission in the Frontal Cortex

    PubMed Central

    Wilson, W. Wyatt; Onyenwe, Wellington; Bradner, Joshua M.; Nennig, Sadie E.; Caudle, W. Michael

    2014-01-01

    Exposure to environmental contaminants, such as organochlorine insecticides during critical periods of neurodevelopment has been shown to be a major contributor to several neuropsychological deficits seen in children, adolescence, and adults. Although the neurobehavioral outcomes resulting from exposure to these compounds are known the neurotransmitter circuitry and molecular targets that mediate these endpoints have not been identified. Given the importance of the frontal cortex in facilitating numerous neuropsychological processes, our current study sought to investigate the effects of developmental exposure to the organochlorine insecticide, endosulfan, on the expression of specific proteins associated with neurotransmission in the frontal cortex. Utilizing in vitro models we were able to show endosulfan reduces cell viability in IMR-32 neuroblastoma cells in addition to reducing synaptic puncta and neurite outgrowth in primary cultured neurons isolated from the frontal cortex of mice. Elaborating these findings to an in vivo model we found that developmental exposure of female mice to endosulfan during gestation and lactation elicited significant alterations to the GABAergic (GAT1, vGAT, GABAA receptor), glutamatergic (vGlut and GluN2B receptor), and dopaminergic (DAT, TH, VMAT2, and D2 receptor) neurotransmitter systems in the frontal cortex of male offspring. These findings identify damage to critical neurotransmitter circuits and proteins in the frontal cortex, which may underlie the neurobehavioral deficits observed following developmental exposure to endosulfan and other organochlorine insecticides. PMID:25042905

  3. The Free Zinc Concentration in the Synaptic Cleft of Artificial Glycinergic Synapses Rises to At least 1 μM

    PubMed Central

    Zhang, Yan; Keramidas, Angelo; Lynch, Joseph W.

    2016-01-01

    Zn2+ is concentrated into presynaptic vesicles at many central synapses and is released into the synaptic cleft by nerve terminal stimulation. There is strong evidence that synaptically released Zn2+ modulates glutamatergic neurotransmission, although there is debate concerning the peak concentration it reaches in the synaptic cleft. Glycine receptors (GlyRs), which mediate inhibitory neurotransmission in the spinal cord and brainstem, are potentiated by low nanomolar Zn2+ and inhibited by micromolar Zn2+. Mutations that selectively ablate Zn2+ potentiation result in hyperekplexia phenotypes suggesting that Zn2+ is a physiological regulator of glycinergic neurotransmission. There is, however, little evidence that Zn2+ is stored presynaptically at glycinergic terminals and an alternate possibility is that GlyRs are modulated by constitutively bound Zn2+. We sought to estimate the peak Zn2+ concentration in the glycinergic synaptic cleft as a means of evaluating whether it is likely to be synaptically released. We employed ‘artificial’ synapses because they permit the insertion of engineered α1β GlyRs with defined Zn2+ sensitivities into synapses. By comparing the effect of Zn2+ chelation on glycinergic IPSCs with the effects of defined Zn2+ and glycine concentrations applied rapidly to the same recombinant GlyRs in outside-out patches, we inferred that synaptic Zn2+ rises to at least 1 μM following a single presynaptic stimulation. Moreover, using the fast, high-affinity chelator, ZX1, we found no evidence for tonic Zn2+ bound constitutively to high affinity GlyR binding sites. We conclude that diffusible Zn2+ reaches 1 μM or higher and is therefore likely to be phasically released in artificial glycinergic synapses. PMID:27713689

  4. GABA transporter subtype 1 and GABA transporter subtype 3 modulate glutamatergic transmission via activation of presynaptic GABA(B) receptors in the rat globus pallidus.

    PubMed

    Jin, Xiao-Tao; Paré, Jean-Francois; Smith, Yoland

    2012-08-01

    The intra-pallidal application of γ-aminobutyric acid (GABA) transporter subtype 1 (GAT-1) or GABA transporter subtype 3 (GAT-3) transporter blockers [1-(4,4-diphenyl-3-butenyl)-3-piperidinecarboxylic acid hydrochloride (SKF 89976A) or 1-[2-[tris(4-methoxyphenyl)methoxy]ethyl]-(S)-3-piperidinecarboxylic acid (SNAP 5114)] reduces the activity of pallidal neurons in monkey. This effect could be mediated through the activation of presynaptic GABA(B) heteroreceptors in glutamatergic terminals by GABA spillover following GABA transporter (GAT) blockade. To test this hypothesis, we applied the whole-cell recording technique to study the effects of SKF 89976A and SNAP 5114 on evoked excitatory postsynaptic currents (eEPSCs) in the presence of gabazine, a GABA(A) receptor antagonist, in rat globus pallidus slice preparations. Under the condition of postsynaptic GABA(B) receptor blockade by the intra-cellular application of N-(2,6-dimethylphenylcarbamoylmethyl)-triethylammonium bromide (OX314), bath application of SKF 89976A (10 μM) or SNAP 5114 (10 μM) decreased the amplitude of eEPSCs, without a significant effect on its holding current and whole cell input resistance. The inhibitory effect of GAT blockade on eEPSCs was blocked by (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid, a GABA(B) receptor antagonist. The paired-pulse ratio of eEPSCs was increased, whereas the frequency, but not the amplitude, of miniature excitatory postsynaptic currents was reduced in the presence of either GAT blocker, demonstrating a presynaptic effect. These results suggest that synaptically released GABA can inhibit glutamatergic transmission through the activation of presynaptic GABA(B) heteroreceptors following GAT-1 or GAT-3 blockade. In conclusion, our findings demonstrate that presynaptic GABA(B) heteroreceptors in putative glutamatergic subthalamic afferents to the globus pallidus are sensitive to increases in extracellular GABA induced

  5. Synaptic activity and Alzheimer's disease: a critical update

    PubMed Central

    Tampellini, Davide

    2015-01-01

    Synapses have been known for many years to be the crucial target of pathology in different forms of dementia, in particular Alzheimer's disease (AD). Synapses and their appropriate activation or inhibition are fundamental for the proper brain function. Alterations in synaptic/neuronal activity and brain metabolism are considered among the earliest symptoms linked to the progression of AD, and lead to a central question in AD research: what is the role played by synaptic activity in AD pathogenesis? Intriguingly, in the last decade, important studies demonstrated that the state of activation of synapses affects the homeostasis of beta-amyloid (Aβ) and tau, both of which aggregate and accumulate during AD, and are involved in neuronal dysfunction. In this review we aim to summarize the up-to-date data linking synaptic/neuronal activity with Aβ and tau; moreover, we also intend to provide a critical overview on brain activity alterations in AD, and their role in the disease's pathophysiology. PMID:26582973

  6. Factors Influencing Short-term Synaptic Plasticity in the Avian Cochlear Nucleus Magnocellularis

    PubMed Central

    Sanchez, Jason Tait; Quinones, Karla; Otto-Meyer, Sebastian

    2015-01-01

    Defined as reduced neural responses during high rates of activity, synaptic depression is a form of short-term plasticity important for the temporal filtering of sound. In the avian cochlear nucleus magnocellularis (NM), an auditory brainstem structure, mechanisms regulating short-term synaptic depression include pre-, post-, and extrasynaptic factors. Using varied paired-pulse stimulus intervals, we found that the time course of synaptic depression lasts up to four seconds at late-developing NM synapses. Synaptic depression was largely reliant on exogenous Ca2+-dependent probability of presynaptic neurotransmitter release, and to a lesser extent, on the desensitization of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPA-R). Interestingly, although extrasynaptic glutamate clearance did not play a significant role in regulating synaptic depression, blocking glutamate clearance at early-developing synapses altered synaptic dynamics, changing responses from depression to facilitation. These results suggest a developmental shift in the relative reliance on pre-, post-, and extrasynaptic factors in regulating short-term synaptic plasticity in NM. PMID:26527054

  7. The interplay between neuronal activity and actin dynamics mimic the setting of an LTD synaptic tag.

    PubMed

    Szabó, Eszter C; Manguinhas, Rita; Fonseca, Rosalina

    2016-01-01

    Persistent forms of plasticity, such as long-term depression (LTD), are dependent on the interplay between activity-dependent synaptic tags and the capture of plasticity-related proteins. We propose that the synaptic tag represents a structural alteration that turns synapses permissive to change. We found that modulation of actin dynamics has different roles in the induction and maintenance of LTD. Inhibition of either actin depolymerisation or polymerization blocks LTD induction whereas only the inhibition of actin depolymerisation blocks LTD maintenance. Interestingly, we found that actin depolymerisation and CaMKII activation are involved in LTD synaptic-tagging and capture. Moreover, inhibition of actin polymerisation mimics the setting of a synaptic tag, in an activity-dependent manner, allowing the expression of LTD in non-stimulated synapses. Suspending synaptic activation also restricts the time window of synaptic capture, which can be restored by inhibiting actin polymerization. Our results support our hypothesis that modulation of the actin cytoskeleton provides an input-specific signal for synaptic protein capture. PMID:27650071

  8. The interplay between neuronal activity and actin dynamics mimic the setting of an LTD synaptic tag.

    PubMed

    Szabó, Eszter C; Manguinhas, Rita; Fonseca, Rosalina

    2016-09-21

    Persistent forms of plasticity, such as long-term depression (LTD), are dependent on the interplay between activity-dependent synaptic tags and the capture of plasticity-related proteins. We propose that the synaptic tag represents a structural alteration that turns synapses permissive to change. We found that modulation of actin dynamics has different roles in the induction and maintenance of LTD. Inhibition of either actin depolymerisation or polymerization blocks LTD induction whereas only the inhibition of actin depolymerisation blocks LTD maintenance. Interestingly, we found that actin depolymerisation and CaMKII activation are involved in LTD synaptic-tagging and capture. Moreover, inhibition of actin polymerisation mimics the setting of a synaptic tag, in an activity-dependent manner, allowing the expression of LTD in non-stimulated synapses. Suspending synaptic activation also restricts the time window of synaptic capture, which can be restored by inhibiting actin polymerization. Our results support our hypothesis that modulation of the actin cytoskeleton provides an input-specific signal for synaptic protein capture.

  9. The interplay between neuronal activity and actin dynamics mimic the setting of an LTD synaptic tag

    PubMed Central

    Szabó, Eszter C.; Manguinhas, Rita; Fonseca, Rosalina

    2016-01-01

    Persistent forms of plasticity, such as long-term depression (LTD), are dependent on the interplay between activity-dependent synaptic tags and the capture of plasticity-related proteins. We propose that the synaptic tag represents a structural alteration that turns synapses permissive to change. We found that modulation of actin dynamics has different roles in the induction and maintenance of LTD. Inhibition of either actin depolymerisation or polymerization blocks LTD induction whereas only the inhibition of actin depolymerisation blocks LTD maintenance. Interestingly, we found that actin depolymerisation and CaMKII activation are involved in LTD synaptic-tagging and capture. Moreover, inhibition of actin polymerisation mimics the setting of a synaptic tag, in an activity-dependent manner, allowing the expression of LTD in non-stimulated synapses. Suspending synaptic activation also restricts the time window of synaptic capture, which can be restored by inhibiting actin polymerization. Our results support our hypothesis that modulation of the actin cytoskeleton provides an input-specific signal for synaptic protein capture. PMID:27650071

  10. Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: possible involvement of glutamatergic and cholinergic systems.

    PubMed

    Le, Xoan Thi; Pham, Hang Thi Nguyet; Do, Phuong Thi; Fujiwara, Hironori; Tanaka, Ken; Li, Feng; Van Nguyen, Tai; Nguyen, Khoi Minh; Matsumoto, Kinzo

    2013-10-01

    This study investigated the effects of alcoholic extract of Bacopa monnieri (L.) Wettst. (BM) on cognitive deficits using olfactory bulbectomized (OBX) mice and the underlying molecular mechanisms of its action. OBX mice were treated daily with BM (50 mg/kg, p.o.) or a reference drug, tacrine (2.5 mg/kg, i.p.), 1 week before and continuously 3 days after OBX. Cognitive performance of the animals was analyzed by the novel object recognition test, modified Y maze test, and fear conditioning test. Brain tissues of OBX animals were used for neurochemical and immunohistochemical studies. OBX impaired non-spatial short-term memory, spatial working memory, and long-term fair memory. BM administration ameliorated these memory disturbances. The effect of BM on short-term memory deficits was abolished by a muscarinic receptor antagonist, scopolamine. OBX downregulated phosphorylation of synaptic plasticity-related signaling proteins: NR1 subunit of N-methyl-D-aspartate receptor, glutamate receptor 1 (GluR1), and calmodulin-dependent kinase II but not cyclic AMP-responsive element binding protein (CREB), and reduced brain-derived neurotrophic factor (BDNF) mRNA in the hippocampus. OBX also reduced choline acetyltransferase in the hippocampus and cholinergic neurons in the medial septum, and enlarged the size of lateral ventricle. BM administration reversed these OBX-induced neurochemical and histological alterations, except the decrease of GluR1 phosphorylation, and enhanced CREB phosphorylation. Moreover, BM treatment inhibited ex vivo activity of acetylcholinesterase in the brain. These results indicate that BM treatment ameliorates OBX-induced cognition dysfunction via a mechanism involving enhancement of synaptic plasticity-related signaling and BDNF transcription and protection of cholinergic systems from OBX-induced neuronal damage.

  11. A correlated nickelate synaptic transistor.

    PubMed

    Shi, Jian; Ha, Sieu D; Zhou, You; Schoofs, Frank; Ramanathan, Shriram

    2013-01-01

    Inspired by biological neural systems, neuromorphic devices may open up new computing paradigms to explore cognition, learning and limits of parallel computation. Here we report the demonstration of a synaptic transistor with SmNiO₃, a correlated electron system with insulator-metal transition temperature at 130°C in bulk form. Non-volatile resistance and synaptic multilevel analogue states are demonstrated by control over composition in ionic liquid-gated devices on silicon platforms. The extent of the resistance modulation can be dramatically controlled by the film microstructure. By simulating the time difference between postneuron and preneuron spikes as the input parameter of a gate bias voltage pulse, synaptic spike-timing-dependent plasticity learning behaviour is realized. The extreme sensitivity of electrical properties to defects in correlated oxides may make them a particularly suitable class of materials to realize artificial biological circuits that can be operated at and above room temperature and seamlessly integrated into conventional electronic circuits. PMID:24177330

  12. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome.

    PubMed

    Ferreira, Joana S; Schmidt, Jeannette; Rio, Pedro; Águas, Rodolfo; Rooyakkers, Amanda; Li, Ka Wan; Smit, August B; Craig, Ann Marie; Carvalho, Ana Luisa

    2015-06-01

    NMDA receptors play a central role in shaping the strength of synaptic connections throughout development and in mediating synaptic plasticity mechanisms that underlie some forms of learning and memory formation in the CNS. In the hippocampus and the neocortex, GluN1 is combined primarily with GluN2A and GluN2B, which are differentially expressed during development and confer distinct molecular and physiological properties to NMDA receptors. The contribution of each subunit to the synaptic traffic of NMDA receptors and therefore to their role during development and in synaptic plasticity is still controversial. We report a critical role for the GluN2B subunit in regulating NMDA receptor synaptic targeting. In the absence of GluN2B, the synaptic levels of AMPA receptors are increased and accompanied by decreased constitutive endocytosis of GluA1-AMPA receptor. We used quantitative proteomic analysis to identify changes in the composition of postsynaptic densities from GluN2B(-/-) mouse primary neuronal cultures and found altered levels of several ubiquitin proteasome system components, in particular decreased levels of proteasome subunits. Enhancing the proteasome activity with a novel proteasome activator restored the synaptic levels of AMPA receptors in GluN2B(-/-) neurons and their endocytosis, revealing that GluN2B-mediated anchoring of the synaptic proteasome is responsible for fine tuning AMPA receptor synaptic levels under basal conditions.

  13. Ketamine as the prototype glutamatergic antidepressant: pharmacodynamic actions, and a systematic review and meta-analysis of efficacy

    PubMed Central

    Caddy, Caroline; Giaroli, Giovanni; White, Thomas P.; Shergill, Sukhwinder S.

    2014-01-01

    The burden of depressive disorders and the frequent inadequacy of their current pharmacological treatments are well established. The anaesthetic and hallucinogenic drug ketamine has provoked much interest over the past decade or so as an extremely rapidly acting antidepressant that does not modify ‘classical’ monoaminergic receptors. Current evidence has shown several ways through which it might exert therapeutic antidepressant actions: blockade of glutamatergic NMDA receptors and relative upregulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtypes may alter cortical connectivity patterns; through intracellular changes in protein expression, including the proteins mammalian target of rapamycin (mTOR) and brain-derived neurotrophic factor (BDNF); and alteration of intracellular signalling cascades. The clinical evidence demonstrates rapid improvements in mood and suicidal thinking in most participants, although study numbers have generally been small and many trials are unblinded and methodologically weak. There is a small body of work to suggest ketamine might also augment electroconvulsive therapy and potentially have a role as a surgical anaesthetic in depressed patients. A major problem is that the effects of ketamine appear temporary, disappearing after days to weeks (although longer benefits have been sustained in some), and attempts to circumvent this through pharmacological augmentation have been disappointing thus far. These exciting data are providing new insights into neurobiological models of depression, and potentially opening up a new class of antidepressants, but there are significant practical and ethical issues about any future mainstream clinical role it might have. PMID:24688759

  14. ERK, synaptic plasticity and acid-induced muscle pain

    PubMed Central

    Yang, Hsiu-Wen; Yen, Chen-Tung; Chen, Chien-Chang; Chen, Chih-Cheng; Cheng, Sin-Jhong

    2011-01-01

    Chronic pain is characterized by post-injury pain hypersensitivity. Current evidence suggests that it might result from altered neuronal excitability and/or synaptic functions in pain-related pathways and brain areas, an effect known as central sensitization. Increased activity of extracellular signal-regulated kinase (ERK) has been well-demonstrated in the dorsal horn of the spinal cord in chronic pain animal models. Recently, increased ERK activity has also been identified in two supraspinal areas, the central amygdala and the paraventricular thalamic nucleus anterior. Our recent work on the capsular central amygdala has shown that this increased ERK activity can enhance synaptic transmission, which might account for central sensitization and behavior hypersensitivity in animals receiving noxious stimuli. PMID:21966555

  15. Synaptic Plasticity and Neurological Disorders in Neurotropic Viral Infections

    PubMed Central

    Atluri, Venkata Subba Rao; Hidalgo, Melissa; Samikkannu, Thangavel; Kurapati, Kesava Rao Venkata; Nair, Madhavan

    2015-01-01

    Based on the type of cells or tissues they tend to harbor or attack, many of the viruses are characterized. But, in case of neurotropic viruses, it is not possible to classify them based on their tropism because many of them are not primarily neurotropic. While rabies and poliovirus are considered as strictly neurotropic, other neurotropic viruses involve nervous tissue only secondarily. Since the AIDS pandemic, the interest in neurotropic viral infections has become essential for all clinical neurologists. Although these neurotropic viruses are able to be harbored in or infect the nervous system, not all the neurotropic viruses have been reported to cause disrupted synaptic plasticity and impaired cognitive functions. In this review, we have discussed the neurotropic viruses, which play a major role in altered synaptic plasticity and neurological disorders. PMID:26649202

  16. Synaptic amplifier of inflammatory pain in the spinal dorsal horn.

    PubMed

    Ikeda, Hiroshi; Stark, Johanna; Fischer, Harald; Wagner, Matthias; Drdla, Ruth; Jäger, Tino; Sandkühler, Jürgen

    2006-06-16

    Inflammation and trauma lead to enhanced pain sensitivity (hyperalgesia), which is in part due to altered sensory processing in the spinal cord. The synaptic hypothesis of hyperalgesia, which postulates that hyperalgesia is induced by the activity-dependent long-term potentiation (LTP) in the spinal cord, has been challenged, because in previous studies of pain pathways, LTP was experimentally induced by nerve stimulation at high frequencies ( approximately 100 hertz). This does not, however, resemble the real low-frequency afferent barrage that occurs during inflammation. We identified a synaptic amplifier at the origin of an ascending pain pathway that is switched-on by low-level activity in nociceptive nerve fibers. This model integrates known signal transduction pathways of hyperalgesia without contradiction.

  17. Molecular underpinnings of synaptic vesicle pool heterogeneity.

    PubMed

    Crawford, Devon C; Kavalali, Ege T

    2015-04-01

    Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.

  18. Adolescent Alcohol Exposure: Burden of Epigenetic Reprogramming, Synaptic Remodeling, and Adult Psychopathology.

    PubMed

    Kyzar, Evan J; Floreani, Christina; Teppen, Tara L; Pandey, Subhash C

    2016-01-01

    Adolescence represents a crucial phase of synaptic maturation characterized by molecular changes in the developing brain that shape normal behavioral patterns. Epigenetic mechanisms play an important role in these neuromaturation processes. Perturbations of normal epigenetic programming during adolescence by ethanol can disrupt these molecular events, leading to synaptic remodeling and abnormal adult behaviors. Repeated exposure to binge levels of alcohol increases the risk for alcohol use disorder (AUD) and comorbid psychopathology including anxiety in adulthood. Recent studies in the field clearly suggest that adolescent alcohol exposure causes widespread and persistent changes in epigenetic, neurotrophic, and neuroimmune pathways in the brain. These changes are manifested by altered synaptic remodeling and neurogenesis in key brain regions leading to adult psychopathology such as anxiety and alcoholism. This review details the molecular mechanisms underlying adolescent alcohol exposure-induced changes in synaptic plasticity and the development of alcohol addiction-related phenotypes in adulthood. PMID:27303256

  19. Adolescent Alcohol Exposure: Burden of Epigenetic Reprogramming, Synaptic Remodeling, and Adult Psychopathology

    PubMed Central

    Kyzar, Evan J.; Floreani, Christina; Teppen, Tara L.; Pandey, Subhash C.

    2016-01-01

    Adolescence represents a crucial phase of synaptic maturation characterized by molecular changes in the developing brain that shape normal behavioral patterns. Epigenetic mechanisms play an important role in these neuromaturation processes. Perturbations of normal epigenetic programming during adolescence by ethanol can disrupt these molecular events, leading to synaptic remodeling and abnormal adult behaviors. Repeated exposure to binge levels of alcohol increases the risk for alcohol use disorder (AUD) and comorbid psychopathology including anxiety in adulthood. Recent studies in the field clearly suggest that adolescent alcohol exposure causes widespread and persistent changes in epigenetic, neurotrophic, and neuroimmune pathways in the brain. These changes are manifested by altered synaptic remodeling and neurogenesis in key brain regions leading to adult psychopathology such as anxiety and alcoholism. This review details the molecular mechanisms underlying adolescent alcohol exposure-induced changes in synaptic plasticity and the development of alcohol addiction-related phenotypes in adulthood. PMID:27303256

  20. Activation of α7 nicotinic acetylcholine receptors persistently enhances hippocampal synaptic transmission and prevents Aß-mediated inhibition of LTP in the rat hippocampus.

    PubMed

    Ondrejcak, Tomas; Wang, Qinwen; Kew, James N C; Virley, David J; Upton, Neil; Anwyl, Roger; Rowan, Michael J

    2012-02-29

    Nicotinic acetylcholine receptors mediate fast cholinergic modulation of glutamatergic transmission and synaptic plasticity. Here we investigated the effects of subtype selective activation of the α7 nicotinic acetylcholine receptors on hippocampal transmission and the inhibition of synaptic long-term potentiation by the Alzheimer's disease associated amyloid ß-protein (Aß). The α7 nicotinic acetylcholine receptor agonist "compound A" ((R)-N-(1-azabicyclo[2.2.2]oct-3-yl)(5-(2-pyridyl))thiophene-2-carboxamide) induced a rapid-onset persistent enhancement of synaptic transmission in the dentate gyrus in vitro. Consistent with a requirement for activation of α7 nicotinic acetylcholine receptors, the type II α7-selective positive allosteric modulator PheTQS ((3aR, 4S, 9bS)-4-(4-methylphenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) potentiated, and the antagonist methyllycaconitine (MLA) prevented the persistent enhancement. Systemic injection of the agonist also induced a similar MLA-sensitive persistent enhancement of synaptic transmission in the CA1 area in vivo. Remarkably, although compound A did not affect control long-term potentiation (LTP) in vitro, it prevented the inhibition of LTP by Aß1-42 and this effect was inhibited by MLA. These findings strongly indicate that activation of α7 nicotinic acetylcholine receptors is sufficient to persistently enhance hippocampal synaptic transmission and to overcome the inhibition of LTP by Aß.

  1. Toxoplasma gondii Infections Alter GABAergic Synapses and Signaling in the Central Nervous System

    PubMed Central

    Brooks, Justin M.; Carrillo, Gabriela L.; Su, Jianmin; Lindsay, David S.; Blader, Ira J.

    2015-01-01

    ABSTRACT During infections with the protozoan parasite Toxoplasma gondii, gamma-aminobutyric acid (GABA) is utilized as a carbon source for parasite metabolism and also to facilitate parasite dissemination by stimulating dendritic-cell motility. The best-recognized function for GABA, however, is its role in the nervous system as an inhibitory neurotransmitter that regulates the flow and timing of excitatory neurotransmission. When this pathway is altered, seizures develop. Human toxoplasmosis patients suffer from seizures, suggesting that Toxoplasma interferes with GABA signaling in the brain. Here, we show that while excitatory glutamatergic presynaptic proteins appeared normal, infection with type II ME49 Toxoplasma tissue cysts led to global changes in the distribution of glutamic acid decarboxylase 67 (GAD67), a key enzyme that catalyzes GABA synthesis in the brain. Alterations in GAD67 staining were not due to decreased expression but rather to a change from GAD67 clustering at presynaptic termini to a more diffuse localization throughout the neuropil. Consistent with a loss of GAD67 from the synaptic terminals, Toxoplasma-infected mice develop spontaneous seizures and are more susceptible to drugs that induce seizures by antagonizing GABA receptors. Interestingly, GABAergic protein mislocalization and the response to seizure-inducing drugs were observed in mice infected with type II ME49 but not type III CEP strain parasites, indicating a role for a polymorphic parasite factor(s) in regulating GABAergic synapses. Taken together, these data support a model in which seizures and other neurological complications seen in Toxoplasma-infected individuals are due, at least in part, to changes in GABAergic signaling. PMID:26507232

  2. Dynamic activation model for a glutamatergic neurovascular unit.

    PubMed

    Calvetti, Daniela; Somersalo, Erkki

    2011-04-01

    This article considers a dynamic spatially lumped model for brain energy metabolism and proposes to use the results of a Markov chain Monte Carlo (MCMC) based flux balance analysis to estimate the kinetic model parameters. By treating steady state reaction fluxes and transport rates as random variables we are able to propagate the uncertainty in the steady state configurations to the predictions of the dynamic model, whose responses are no longer individual but ensembles of time courses. The kinetic model consists of five compartments and is governed by kinetic mass balance equations with Michaelis-Menten type expressions for reaction rates and transports between the compartments. The neuronal activation is implemented in terms of the effect of neuronal activity on parameters controlling the blood flow and neurotransmitter transport, and a feedback mechanism coupling the glutamate concentration in the synaptic cleft and the ATP hydrolysis, thus accounting for the energetic cost of the membrane potential restoration in the postsynaptic neurons. The changes in capillary volume follow the balloon model developed for BOLD MRI. The model follows the time course of the saturation levels of the blood hemoglobin, which link metabolism and BOLD FMRI signal. Analysis of the model predictions suggest that stoichiometry alone is not enough to determine glucose partitioning between neuron and astrocyte. Lactate exchange between neuron and astrocyte is supported by the model predictions, but the uncertainty on the direction and rate is rather elevated. By and large, the model suggests that astrocyte produces and effluxes lactate, while neuron may switch from using to producing lactate. The level of ATP hydrolysis in astrocyte is substantially higher than strictly required for neurotransmitter cycling, in agreement with the literature.

  3. Glutamatergic Effects of Divalproex in Adolescents with Mania: A Proton Magnetic Resonance Spectroscopy Study

    ERIC Educational Resources Information Center

    Strawn, Jeffrey R.; Patel, Nick C.; Chu, Wen-Jang; Lee, Jing-Huei; Adler, Caleb M.; Kim, Mi Jung; Bryan, Holly S.; Alfieri, David C.; Welge, Jeffrey A.; Blom, Thomas J.; Nandagopal, Jayasree J.; Strakowski, Stephen M.; DelBello, Melissa P.

    2012-01-01

    Objectives: This study used proton magnetic resonance spectroscopy ([superscript 1]H MRS) to evaluate the in vivo effects of extended-release divalproex sodium on the glutamatergic system in adolescents with bipolar disorder, and to identify baseline neurochemical predictors of clinical remission. Method: Adolescents with bipolar disorder who were…

  4. Generation of glutamatergic neurons from postnatal and adult subventricular zone with pyramidal-like morphology.

    PubMed

    Sequerra, Eduardo B; Miyakoshi, Leo M; Fróes, Maira M; Menezes, João R L; Hedin-Pereira, Cecilia

    2010-11-01

    The mammalian subventricular zone (SVZ) contains progenitors derived from cerebral cortex radial glia cells, which give rise to glutamatergic pyramidal neurons during embryogenesis. However, during postnatal life, SVZ generates neurons that migrate and differentiate into olfactory bulb γ-aminobutyric acid (GABA)ergic interneurons. In this work, we test