Influence of gravity on the circadian timing system
NASA Technical Reports Server (NTRS)
Fuller, C. A.; Hoban-Higgins, T. M.; Griffin, D. W.; Murakami, D. M.
1994-01-01
The circadian timing system (CTS) is responsible for daily temporal coordination of physiological and behavioral functions both internally and with the external environment. Experiments in altered gravitational environments have revealed changes in circadian rhythms of species ranging from fungi to primates. The altered gravitational environments examined included both the microgravity environment of spaceflight and hyperdynamic environments produced by centrifugation. Acute exposure to altered gravitational environments changed homeostatic parameters such as body temperature. These changes were time of day dependent. Exposure to gravitational alterations of relatively short duration produced changes in both the homeostatic level and the amplitude of circadian rhythms. Chronic exposure to a non-earth level of gravity resulted in changes in the period of the expressed rhythms as well as in the phase relationships between the rhythms and between the rhythms and the external environment. In addition, alterations in gravity appeared to act as a time cue for the CTS. Altered gravity also affected the sensitivity of the pacemaker to other aspects of the environment (i.e., light) and to shifts of time cues. Taken together, these studies lead to the conclusion that the CTS is indeed sensitive to gravity and its alterations. This finding has implications for both basic biology and space medicine.
Modeling human perception of orientation in altered gravity
Clark, Torin K.; Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.
2015-01-01
Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments. PMID:25999822
Sajdel-Sulkowska, Elizabeth M
2008-01-01
As man embarks on space exploration and contemplates space habitation, there is a critical need for basic understanding of the impact of the environmental factors of space, and in particular gravity, on human survival, health, reproduction and development. This review summarizes our present knowledge on the effect of altered gravity on the developing CNS with respect to the response of the developing CNS to altered gravity (gravireaction), the physiological changes associated with altered gravity that could contribute to this effect (gravitransduction), and the possible mechanisms involved in the detection of altered gravity (graviperception). Some of these findings transcend gravitational research and are relevant to our understanding of the impact of environmental factors on CNS development on Earth.
Shang, Peng; Zhou, Xianlong; Ashforth, Elizabeth; Zhuo, Ying; Chen, Difei; Ren, Biao; Liu, Zhiheng; Zhang, Lixin
2011-01-01
Background Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T) inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. Methodology/Principal Findings S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD245 nm. The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g), showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. Conclusion/Significance We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena. PMID:22039402
NASA Technical Reports Server (NTRS)
Musacchia, X. J.
1974-01-01
Pathophysiological conditions resulting from prolonged exposure to zero gravity, cabin constraint, altered ambient environment, whether it be noise, vibrations, high temperatures, or combinations of such factors, are studied in laboratory animals and applied to manned space flight. Results and plans for further study are presented. Specific topics covered include: thermoregulation and its role in reflecting stress and adaptation to the gravity free environment and cabin confinement with its altered circadian forcings; renal function and its measurement in electrolyte distribution and blood flow dynamics; gastronintestinal function and an assessment of altered absorptive capacity in the intestinal mucosa; and catecholamine metabolism in terms of distribution and turnover rates in specific tissues.
Thiel, Cora S; Huge, Andreas; Hauschild, Swantje; Tauber, Svantje; Lauber, Beatrice A; Polzer, Jennifer; Paulsen, Katrin; Lier, Hartwin; Engelmann, Frank; Schmitz, Burkhard; Schütte, Andreas; Layer, Liliana E; Ullrich, Oliver
2017-01-01
In the last decades, a plethora of in vitro studies with living human cells contributed a vast amount of knowledge about cellular and molecular effects of microgravity. Previous studies focused mostly on the identification of gravity-responsive genes, whereas a multi-platform analysis at an integrative level, which specifically evaluates the extent and robustness of transcriptional response to an altered gravity environment was not performed so far. Therefore, we investigated the stability of gene expression response in non-activated human Jurkat T lymphocytic cells in different gravity environments through the combination of parabolic flights with a suborbital ballistic rocket and 2D clinostat and centrifuge experiments, using strict controls for excluding all possible other factors of influence. We revealed an overall high stability of gene expression in microgravity and identified olfactory gene expression in the chromosomal region 11p15.4 as particularly robust to altered gravity. We identified that classical reference genes ABCA5 , GAPDH , HPRT1 , PLA2G4A , and RPL13A were stably expressed in all tested gravity conditions and platforms, while ABCA5 and GAPDH were also known to be stably expressed in U937 cells in all gravity conditions. In summary, 10-20% of all transcripts remained totally unchanged in any gravitational environment tested (between 10 -4 and 9 g), 20-40% remained unchanged in microgravity (between 10 -4 and 10 -2 g) and 97-99% were not significantly altered in microgravity if strict exclusion criteria were applied. Therefore, we suppose a high stability of gene expression in microgravity. Comparison with other stressors suggests that microgravity alters gene expression homeostasis not stronger than other environmental factors.
Qian, Airong; Di, Shengmeng; Gao, Xiang; Zhang, Wei; Tian, Zongcheng; Li, Jingbao; Hu, Lifang; Yang, Pengfei; Yin, Dachuan; Shang, Peng
2009-07-01
The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has been widely applied in many fields. In this study, a special designed superconducting magnet, which can produce three apparent gravity levels (0, 1, and 2 g), namely high magneto-gravitational environment (HMGE), was used to simulate space gravity environment. The effects of HMGE on osteoblast gene expression profile were investigated by microarray. Genes sensitive to diamagnetic levitation environment (0 g), gravity changes, and high magnetic field changes were sorted on the basis of typical cell functions. Cytoskeleton, as an intracellular load-bearing structure, plays an important role in gravity perception. Therefore, 13 cytoskeleton-related genes were chosen according to the results of microarray analysis, and the expressions of these genes were found to be altered under HMGE by real-time PCR. Based on the PCR results, the expressions of WASF2 (WAS protein family, member 2), WIPF1 (WAS/WASL interacting protein family, member 1), paxillin, and talin 1 were further identified by western blot assay. Results indicated that WASF2 and WIPF1 were more sensitive to altered gravity levels, and talin 1 and paxillin were sensitive to both magnetic field and gravity changes. Our findings demonstrated that HMGE can affect osteoblast gene expression profile and cytoskeleton-related genes expression. The identification of mechanosensitive genes may enhance our understandings to the mechanism of bone loss induced by microgravity and may provide some potential targets for preventing and treating bone loss or osteoporosis.
Gravity and thermoregulation: metabolic changes and circadian rhythms
NASA Technical Reports Server (NTRS)
Robinson, E. L.; Fuller, C. A.
2000-01-01
Gravity appears to alter thermoregulation through changes in both the regulated level of body temperature and the rhythmic organization of temperature regulation. Gravity has been hypothesized to have an associated metabolic cost. Increased resting energy expenditure and dietary intake have been observed in animals during centrifuge experiments at hypergravity. Thus far, only animals have shown a corresponding reduction in metabolism in microgravity. Altered heat loss has been proposed as a response to altered gravitational environments, but remains documented only as changes in skin temperature. Changes in circadian timing, including the body temperature rhythm, have been shown in both hypergravity and microgravity, and probably contribute to alterations in sleep and performance. Changes in body temperature regulation may result from circadian disturbance, from the direct or indirect actions of gravity on the regulated temperature, or from changes in thermoregulatory effectors (heat production and heat loss) due to altered gravitational load and convective changes. To date, however, we have little data on the underlying thermoregulatory changes in altered gravity, and thus the precise mechanisms by which gravity alters temperature regulation remain largely unknown.
NASA Astrophysics Data System (ADS)
Serrano, Paloma; van Loon, Jack J. W. A.; Medina, F. Javier; Herranz, Raúl
2013-02-01
Motility and aging in Drosophila have proven to be highly modified under altered gravity conditions (both in space and ground simulation facilities). In order to find out how closely connected they are, five strains with altered geotactic response or survival rates were selected and exposed to an altered gravity environment of 2 g. By analysing the different motile and behavioural patterns and the median survival rates, we show that altered gravity leads to changes in motility, which will have a negative impact on the flies' survival. Previous results show a differential gene expression between sessile samples and adults and confirm that environmentally-conditioned behavioural patterns constrain flies' gene expression and life span. Therefore, hypergravity is considered an environmental stress factor and strains that do not respond to this new environment experience an increment in motility, which is the major cause for the observed increased mortality also under microgravity conditions. The neutral-geotaxis selected strain (strain M) showed the most severe phenotype, unable to respond to variations in the gravitational field. Alternatively, the opposite phenotype was observed in positive-geotaxis and long-life selected flies (strains B and L, respectively), suggesting that these populations are less sensitive to alterations in the gravitational load. We conclude that the behavioural response has a greater contribution to aging than the modified energy consumption in altered gravity environments.
Dynamic gene expression response to altered gravity in human T cells.
Thiel, Cora S; Hauschild, Swantje; Huge, Andreas; Tauber, Svantje; Lauber, Beatrice A; Polzer, Jennifer; Paulsen, Katrin; Lier, Hartwin; Engelmann, Frank; Schmitz, Burkhard; Schütte, Andreas; Layer, Liliana E; Ullrich, Oliver
2017-07-12
We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.
Modification of Pointing Performance in Altered Gravitational Environments
NASA Astrophysics Data System (ADS)
Ciofani, Gianni; Migliore, Antonio; Mazzei, Daniele; Carrozza, Maria Chiara; Dario, Paolo
2010-04-01
The Fitts' law describes a correlation between the time needed to complete basic tasks such as pointing movements and the level of knowledge of the specific target to be reached. While it has been largely proved in normal gravity, very few experiments have been carried out in altered gravitational conditions. In our experiment, four subjects were positioned in front of a panel where round targets were placed along a circumference. They carried out pointing movements towards the targets when these were switched on. The task time was acquired and processed off-line. In all the cases, the performance of each subject have been significantly modified in the altered gravitational environment and, in particular, hypergravity seems to affect motor performance more considerably than microgravity. Even if experiments involving several subjects and more complex tasks have to be carried out in order to confirm our findings, these results show that ergonomics could be strongly affected by the modification of gravity, especially during the first phase of exposure to gravity alteration.
Investigations of the Effects of Altered Vestibular System Function on Hindlimb Anti-Gravity Muscles
NASA Technical Reports Server (NTRS)
Lowery, Mary Sue
1998-01-01
Exposure to different gravitational environments, both the microgravity of spaceflight and the hypergravity of centrifugation, result in altered vestibulo-spinal function which can be reversed by reacclimation to earth gravity (2). Control of orientation, posture, and locomotion are functions of the vestibular system which are altered by changes in gravitational environment. Not only is the vestibular system involved with coordination and proprioception, but the gravity sensing portion of the vestibular system also plays a major role in maintaining muscle tone through projections to spinal cord motoneurons that control anti-gravity muscles. I have been involved with investigations of several aspects of the link between vestibular inputs and muscle morphology and function during my work with Dr. Nancy Daunton this summer and the previous summer. We have prepared a manuscript for submission (4) to Aviation, Space, and Environmental Medicine based on work that I performed last summer in Dr. Daunton's lab. Techniques developed for that project will be utilized in subsequent experiments begun in the summer of 1998. I have been involved with the development of a pilot project to test the effects of vestibular galvanic stimulation (VGS) on anti-gravity muscles and in another project testing the effects of the ototoxic drug streptomycin on the otolith-spinal reflex and anti-gravity muscle morphology.
Kamal, Khaled Y; Herranz, Raúl; van Loon, Jack J W A; Medina, F Javier
2018-04-23
Gravity is the only component of Earth environment that remained constant throughout the entire process of biological evolution. However, it is still unclear how gravity affects plant growth and development. In this study, an in vitro cell culture of Arabidopsis thaliana was exposed to different altered gravity conditions, namely simulated reduced gravity (simulated microgravity, simulated Mars gravity) and hypergravity (2g), to study changes in cell proliferation, cell growth, and epigenetics. The effects after 3, 14, and 24-hours of exposure were evaluated. The most relevant alterations were found in the 24-hour treatment, being more significant for simulated reduced gravity than hypergravity. Cell proliferation and growth were uncoupled under simulated reduced gravity, similarly, as found in meristematic cells from seedlings grown in real or simulated microgravity. The distribution of cell cycle phases was changed, as well as the levels and gene transcription of the tested cell cycle regulators. Ribosome biogenesis was decreased, according to levels and gene transcription of nucleolar proteins and the number of inactive nucleoli. Furthermore, we found alterations in the epigenetic modifications of chromatin. These results show that altered gravity effects include a serious disturbance of cell proliferation and growth, which are cellular functions essential for normal plant development.
2013-01-01
Background Previous experiments have shown that the reduced gravity aboard the International Space Station (ISS) causes important alterations in Drosophila gene expression. These changes were shown to be intimately linked to environmental space-flight related constraints. Results Here, we use an array of different techniques for ground-based simulation of microgravity effects to assess the effect of suboptimal environmental conditions on the gene expression of Drosophila in reduced gravity. A global and integrative analysis, using “gene expression dynamics inspector” (GEDI) self-organizing maps, reveals different degrees in the responses of the transcriptome when using different environmental conditions or microgravity/hypergravity simulation devices. Although the genes that are affected are different in each simulation technique, we find that the same gene ontology groups, including at least one large multigene family related with behavior, stress response or organogenesis, are over represented in each case. Conclusions These results suggest that the transcriptome as a whole can be finely tuned to gravity force. In optimum environmental conditions, the alteration of gravity has only mild effects on gene expression but when environmental conditions are far from optimal, the gene expression must be tuned greatly and effects become more robust, probably linked to the lack of experience of organisms exposed to evolutionary novel environments such as a gravitational free one. PMID:23806134
Hypergravity-induced altered behavior in Drosophila
NASA Astrophysics Data System (ADS)
Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila
2012-07-01
Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular mechanism of response to changes in gravity with a phenotypical outcome. Characterizing the changes in altered gravity that are consequential for the overall physiology of organisms is crucial for assessing the risks of long-term space travel.
Calcium signaling in plant cells in altered gravity
NASA Astrophysics Data System (ADS)
Kordyum, E. L.
2003-10-01
Changes in the intracellular Ca 2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca 2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80 th, a review highlighting the performed research and the possible significance of such Ca 2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface tension → alterations in the physicochemical properties of the membrane → changes in membrane permeability, ion transport, membrane-bound enzyme activity, etc. → metabolism rearrangements → physiological responses. An analysis of data available on biological effects of altered gravity at the cellular level allows one to conclude that microgravity environment appears to affect cytoskeleton, carbohydrate and lipid metabolism, cell wall biogenesis via changes in enzyme activity and protein expression, with involvement of regulatory Ca 2+ messenger system. Changes in Ca 2+ influx/efflux and possible pathways of Ca 2+ signaling in plant cell biochemical regulation in altered gravity are discussed.
NASA Astrophysics Data System (ADS)
Zhang, Ye; Wu, Honglu
2012-07-01
RESPONSE OF HUMAN PROSTATE CANCER CELLS TO MITOXANTRONE TREATMENT IN SIMULATED MICROGRAVITY ENVIRONMENT Ye Zhang1,2, Christopher Edwards3, and Honglu Wu1 1 NASA-Johnson Space Center, Houston, TX 2 Wyle Integrated Science and Engineering Group, Houston, TX 3 Oregon State University, Corvallis, OR This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on the ground. This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on the ground.
Adaptations of the vestibular system to short and long-term exposures to altered gravity
NASA Astrophysics Data System (ADS)
Bruce, L. L.
2003-10-01
Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival of a given organism. The development and maintenance of vestibular connections are controlled by environmental gravitational stimulation as well as genetically controlled molecular interactions. This paper describes the effects of hypergravity on axonal growth and dendritic morphology, respectively. Two aspects of this vestibular adaptation are examined: (1) How does long-term exposure to hypergravity affect the development of vestibular axons? (2) How does short-term exposure to extremely rapid changes in gravity, such as those that occur during shuttle launch and landing, affect dendrites of the vestibulocerebellar system? To study the effects of longterm exposures to altered gravity, embryonic rats that developed in hypergravity were compared to microgravity-exposed and control rats. Examination of the vestibular projections from epithelia devoted to linear and angular acceleration revealed that the terminal fields segregate differently in rat embryos that gestated in each of the gravitational environments.To study the effects of short-term exposures to altered gravity, mice were exposed briefly to strong vestibular stimuli and the vestibulocerebellum was examined for any resulting morphological changes. My data show that these stimuli cause intense vestibular excitation of cerebellar Purkinje cells, which induce up-regulation of clathrin-mediated endocytosis and other morphological changes that are comparable to those seen in long-term depression. This system provides a basis for studying how the vestibular environment can modify cerebellar function, allowing animals to adapt to new environments.
Calcium signaling in plant cells in microgravity
NASA Astrophysics Data System (ADS)
Kordyum, E.
Changes in the intracellular Ca 2 + concentration in altered gravity (microgravity and clinostating) evidence that Ca2 + signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in eighties, a review highlighting the performed research and the possible significance of such Ca 2 + changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumably specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2 + ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravis ensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface tensionalterations in the physicochemical properties of the membranechanges in membrane permeability, ion transport, membrane-bound enzyme activity, etc.metabolism rearrangementsphysiological responses. An analysis of data available on biological effects of altered gravity at the cellular level allows one to conclude that microgravity environment appears to affect, in the first place, cytoskeleton, carbohydrate and lipid metabolism, cell wall biogenesis via changes in enzyme activity and protein expression, with involvement of regulatory Ca 2 + messenger system. Changes in Ca 2 + influx/efflux and possible pathways of Ca 2 + signaling in plant cell biochemical regulation in altered gravity are discussed.
Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields
NASA Technical Reports Server (NTRS)
Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra
1997-01-01
Many of the physiological changes of the cardiovascular system during space flight may originate from the dysfunction of basic biological mechanisms caused by microgravity. The weightlessness affects the system when blood and other fluids move to the upper body causing the heart to enlarge to handle the increased blood flow to the upper extremities and decrease circulating volume. Increase arterial pressure triggers baroreceptors which signal the brain to adjust heart rate. Hemodynarnic studies indicate that the microgravity-induced headward fluid redistribution results in various cardiovascular changes such as; alteration of vascular permeability resulting in lipid accumulation in the lumen of the vasculature and degeneration of the the vascular wall, capillary alteration with extensive endothelial invagination. Achieving a true microgravity environment in ground based studies for prolonged periods is virtually impossible. The application of vector-averaged gravity to mammalian cells using horizontal clinostat produces alterations of cellular behavior similar to those observed in microgravity. Similarly, the low shear, horizontally rotating bioreactor (originally designed by NASA) also duplicates several properties of microgravity. Additionally, increasing gravity, i.e., hypcrgravity is easily achieved. Hypergravity has been found to increase the proliferation of several different cell lines (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. The effect of altered gravity on cells maybe similar to those of other physical forces, i.e. shear stress. Previous studies examining laminar flow and shear stress on endothelial cells found that the cells elongate, orient with the direction of flow, and reorganize their F-actin structure, with concomitant increase in cell stiffness. These studies suggest that alterations in the gravity environment will change the behavior of most cells, including vascular cells. However, few studies have been directed at assessing the effect of altered gravitational field on vascular cell fiction and metabolism, Using image analysis we examined how bovine aortic endothelial cells altered their morphological characteristics and their response to a denudation injury when cells were subjected to simulated microgravity and hypergravity.
Vector-averaged gravity does not alter acetylcholine receptor single channel properties
NASA Technical Reports Server (NTRS)
Reitstetter, R.; Gruener, R.
1994-01-01
To examine the physiological sensitivity of membrane receptors to altered gravity, we examined the single channel properties of the acetylcholine receptor (AChR), in co-cultures of Xenopus myocytes and neurons, to vector-averaged gravity in the clinostat. This experimental paradigm produces an environment in which, from the cell's perspective, the gravitational vector is "nulled" by continuous averaging. In that respect, the clinostat simulates one aspect of space microgravity where the gravity force is greatly reduced. After clinorotation, the AChR channel mean open-time and conductance were statistically not different from control values but showed a rotation-dependent trend that suggests a process of cellular adaptation to clinorotation. These findings therefore suggest that the ACHR channel function may not be affected in the microgravity of space despite changes in the receptor's cellular organization.
Effects of gravity reduction on phase equilibria. Part 1: Unary and binary isostructural solids
NASA Technical Reports Server (NTRS)
Larson, D. J., Jr.
1975-01-01
Analysis of the Skylab II M553 Experiment samples resulted in the hypothesis that the reduced gravity environment was altering the melting and solidification reactions. A theoretical study was conducted to define the conditions under which such alteration of phase relations is feasible, determine whether it is restricted to space processing, and, if so, ascertain which alloy systems or phase reactions are most likely to demonstrate such effects. Phase equilibria of unary and binary systems with a single solid phase (unary and isomorphous) were considered.
Gravity as a factor in the animal environment.
NASA Technical Reports Server (NTRS)
Smith, A. H.
1972-01-01
Review of current knowledge, research, and research planning on the influence of gravity upon living organisms. Discussed factors affecting the adaptability of animals to increased acceleration fields include age, sex, posture, and body size. Affected functions and aspects reviewed cover growth and mature body size, body composition, maintenance feed requirements, and feed utilization efficiency. It is expected that research involving the exposure of animals to altered gravity states will lead to new biological concepts of very broad importance.
Cell proliferation and plant development under novel altered gravity environments.
Herranz, R; Medina, F J
2014-01-01
Gravity is a key factor for life on Earth. It is the only environmental factor that has remained constant throughout evolution, and plants use it to modulate important physiological activities; gravity removal or alteration produces substantial changes in essential functions. For root gravitropism, gravity is sensed in specialised cells, which are capable of detecting magnitudes of the g vector lower than 10(-3) . Then, the mechanosignal is transduced to upper zones of the root, resulting in changes in the lateral distribution of auxin and in the rate of auxin polar transport. Gravity alteration has consequences for cell growth and proliferation rates in root meristems, which are the basis of the developmental programme of a plant, in which regulation via auxin is involved. The effect is disruption of meristematic competence, i.e. the strict coordination between cell proliferation and growth, which characterises meristematic cells. This effect can be related to changes in the transport and distribution of auxin throughout the root. However, similar effects of gravity alteration have been found in plant cell cultures in vitro, in which neither specialised structures for gravity sensing and signal transduction, nor apparent gravitropism have been described. We postulate that gravity resistance, a general mechanism of cellular origin for developing rigid structures in plants capable of resisting the gravity force, could also be responsible for the changes in cell growth and proliferation parameters detected in non-specialised cells. The mechanisms of gravitropism and graviresistance are complementary, the first being mostly sensitive to the direction of the gravity vector, and the second to its magnitude. At a global molecular level, the consequence of gravity alteration is that the genome should be finely tuned to counteract a type of stress that plants have never encountered before throughout evolution. Multigene families and redundant genes present an advantage in that they can experience changes without the risk of being deleterious and, for this reason, they should play a key role in the response to gravitational stress. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Manzano, Ana Isabel; Herranz, Raul; Manzano, Aránzazu; Van Loon, Jack; Medina, Francisco Javier
2016-02-01
Changes in the cell growth rate of an in vitro cellular system in Arabidopsis thaliana induced by short exposure to an altered gravity environment have been estimated by a novel approach. The method consisted of defining three structural nucleolar types which are easy and reliable indicators of the ribosome biogenesis activity and, consequently, of protein biosynthesis, a parameter strictly correlated to cell growth in this cellular system. The relative abundance of each nucleolar type was statistically assessed in different conditions of gravity. Samples exposed to simulated microgravity for 200 min showed a significant decrease in nucleolar activity compared to 1g controls, whereas samples exposed to hypergravity (2g) for the same period showed nucleolar activity slightly increased,. These effects could be considered as an early cellular response to the environmental alteration, given the short duration of the treatment. The functional significance of the structural data was validated by a combination of several different well-known parameters, using microscopical, flow cytometry, qPCR and proteomic approaches, which showed that the decreased cell growth rate was decoupled from an increased cell proliferation rate under simulated microgravity, and the opposite trend was observed under hypergravity. Actually, not all parameters tested showed the same quantitative changes, indicating that the response to the environmental alteration is time-dependent. These results are in agreement with previous observations in root meristematic cells and they show the ability of plant cells to produce a response to gravity changes, independently of their integration into plant organs.
Transcriptomic response of Drosophila melanogaster pupae developed in hypergravity.
Hateley, Shannon; Hosamani, Ravikumar; Bhardwaj, Shilpa R; Pachter, Lior; Bhattacharya, Sharmila
2016-10-01
Altered gravity can perturb normal development and induce corresponding changes in gene expression. Understanding this relationship between the physical environment and a biological response is important for NASA's space travel goals. We use RNA-Seq and qRT-PCR techniques to profile changes in early Drosophila melanogaster pupae exposed to chronic hypergravity (3g, or three times Earth's gravity). During the pupal stage, D. melanogaster rely upon gravitational cues for proper development. Assessing gene expression changes in the pupae under altered gravity conditions helps highlight gravity-dependent genetic pathways. A robust transcriptional response was observed in hypergravity-treated pupae compared to controls, with 1513 genes showing a significant (q<0.05) difference in gene expression. Five major biological processes were affected: ion transport, redox homeostasis, immune response, proteolysis, and cuticle development. This outlines the underlying molecular and biological changes occurring in Drosophila pupae in response to hypergravity; gravity is important for many biological processes on Earth. Published by Elsevier Inc.
Gravity as a Strong Prior: Implications for Perception and Action.
Jörges, Björn; López-Moliner, Joan
2017-01-01
In the future, humans are likely to be exposed to environments with altered gravity conditions, be it only visually (Virtual and Augmented Reality), or visually and bodily (space travel). As visually and bodily perceived gravity as well as an interiorized representation of earth gravity are involved in a series of tasks, such as catching, grasping, body orientation estimation and spatial inferences, humans will need to adapt to these new gravity conditions. Performance under earth gravity discrepant conditions has been shown to be relatively poor, and few studies conducted in gravity adaptation are rather discouraging. Especially in VR on earth, conflicts between bodily and visual gravity cues seem to make a full adaptation to visually perceived earth-discrepant gravities nearly impossible, and even in space, when visual and bodily cues are congruent, adaptation is extremely slow. We invoke a Bayesian framework for gravity related perceptual processes, in which earth gravity holds the status of a so called "strong prior". As other strong priors, the gravity prior has developed through years and years of experience in an earth gravity environment. For this reason, the reliability of this representation is extremely high and overrules any sensory information to its contrary. While also other factors such as the multisensory nature of gravity perception need to be taken into account, we present the strong prior account as a unifying explanation for empirical results in gravity perception and adaptation to earth-discrepant gravities.
Using Magnetic Forces to Probe the Gravi-response of Swimming Paramecium
NASA Astrophysics Data System (ADS)
Guevorkian, Karine; Valles, James M., Jr.
2004-03-01
Paramecium Caudatum, a single celled ciliate, alters its swimming behavior when subjected to different gravity environments (e.g. centrifugation and micro-gravity). To dissect the mechanisms behind this gravi-response and that of other biological systems, we are developing the use of magnetic body forces as a means of creating a rapidly tunable, simulated variable gravity environment. Since biological materials are weakly diamagnetic, we must subject them to intense inhomogeneous magnetic fields with characteristic field-field gradient products on the order of 16 T^2/cm. We will describe experiments on Paramecium Caudatum in which we adjust their net buoyancy with magnetic forces and measure the resulting changes in their swimming behavior.
The effects of gravity on the circadian timing system
NASA Technical Reports Server (NTRS)
Fuller, C. A.
1994-01-01
The physiological system responsible for the temporal coordination of an organism is the circadian timing system (CTS). This system provides two forms of temporal coordination. First, the CTS provides for synchronization of the organism with the 24 hour period of the external environment. This synchronization of the organism with the environment is termed entrainment. Second, this system also provides for internal coordination of the various physiological, behavioral, and biochemical events within the organism. When either of these two temporal relationships are disturbed, various dysfunctions can be manifest within the organism. Homeostatic capacity of other physiological systems may be reduced. Performance is decreased and sleep disorders, mental health impairment (e.g., depression), jet lag syndrome, and shift work maladaptation frequently occur. Over the last several years, several studies have evaluated the potential influence of gravity on this physiological control system by examining changes in rhythmic characteristics of organisms exposed to altered gravitational environments. The altered gravitational environments have included the microgravity of spaceflight as well as hyperdynamic fields produced via centrifugation.
The Mars Gravity Simulation Project
NASA Technical Reports Server (NTRS)
Korienek, Gene
1998-01-01
Human beings who make abrupt transitions between one gravitational environment and another undergo severe disruptions of their visual perception and visual- motor coordination, frequently accompanied by "space sickness." Clearly, such immediate effects of exposure to a novel gravitational condition have significant implications for human performance. For example, when astronauts first arrive in Earth orbit their attempts to move about in the spacecraft and to perform their duties are uncoordinated, inaccurate, and inefficient. Other inter-gravitational transitions for which these difficulties can be expected include going from the 0 g of the spacecraft to the. 16 g of the Moon, from 0 g to the .38 g of Mars, and from 0 g back to the 1.0 g of Earth. However, after astronauts have actively interacted with their new gravitational environment for several days, these problems tend to disappear, evidence that some sort of adaptive process has taken place. It would be advantageous, therefore, if there were some way to minimize or perhaps even to eliminate this potentially hazardous adaptive transition period by allowing astronauts to adapt to the altered gravitational conditions before actually entering them. Simultaneous adaptations to both the altered and the normal gravitational environment as a result of repeatedly adapting to one and readapting to the other, a phenomenon known as dual adaptation. The objective of the Mars Gravity Simulator (MGS) Project is to construct a simulation of the visual and bodily effects of altered gravity. This perceptual-motor simulation is created through the use of: 1) differential body pressure to produce simulated hypo-gravity and 2) treadmill-controlled virtual reality to create a corresponding visual effect. It is expected that this combination will produce sensory motor perturbations in the subjects. Both the immediate and adaptive behavioral (postural and ambulatory) responses to these sensory perturbations will be assessed.
Transcriptomic Response of Drosophila Melanogaster Pupae Developed in Hypergravity
NASA Technical Reports Server (NTRS)
Hosamani, Ravikumar; Hateley, Shannon; Bhardwaj, Shilpa R.; Pachter, Lior; Bhattacharya, Sharmila
2016-01-01
The metamorphosis of Drosophila is evolutionarily adapted to Earth's gravity, and is a tightly regulated process. Deviation from 1g to microgravity or hypergravity can influence metamorphosis, and alter associated gene expression. Understanding the relationship between an altered gravity environment and developmental processes is important for NASA's space travel goals. In the present study, 20 female and 20 male synchronized (Canton S, 2 to 3day old) flies were allowed to lay eggs while being maintained in a hypergravity environment (3g). Centrifugation was briefly stopped to discard the parent flies after 24hrs of egg laying, and then immediately continued until the eggs developed into P6-staged pupae (25 - 43 hours after pupation initiation). Post hypergravity exposure, P6-staged pupae were collected, total RNA was extracted using Qiagen RNeasy mini kits. We used RNA-Seq and qRT-PCR techniques to profile global transcriptomic changes in early pupae exposed to chronic hypergravity. During the pupal stage, Drosophila relies upon gravitational cues for proper development. Assessing gene expression changes in the pupa under altered gravity conditions helps highlight gravity dependent genetic pathways. A robust transcriptional response was observed in hypergravity-exposed pupae compared to controls, with 1,513 genes showing a significant (q < 0.05) difference in gene expression. Five major biological processes were affected: ion transport, redox homeostasis, immune response, proteolysis, and cuticle development. This outlines the underlying molecular changes occurring in Drosophila pupae in response to hypergravity.
Light and gravity signals synergize in modulating plant development
Vandenbrink, Joshua P.; Kiss, John Z.; Herranz, Raul; Medina, F. Javier
2014-01-01
Tropisms are growth-mediated plant movements that help plants to respond to changes in environmental stimuli. The availability of water and light, as well as the presence of a constant gravity vector, are all environmental stimuli that plants sense and respond to via directed growth movements (tropisms). The plant response to gravity (gravitropism) and the response to unidirectional light (phototropism) have long been shown to be interconnected growth phenomena. Here, we discuss the similarities in these two processes, as well as the known molecular mechanisms behind the tropistic responses. We also highlight research done in a microgravity environment in order to decouple two tropisms through experiments carried out in the absence of a significant unilateral gravity vector. In addition, alteration of gravity, especially the microgravity environment, and light irradiation produce important effects on meristematic cells, the undifferentiated, highly proliferating, totipotent cells which sustain plant development. Microgravity produces the disruption of meristematic competence, i.e., the decoupling of cell proliferation and cell growth, affecting the regulation of the cell cycle and ribosome biogenesis. Light irradiation, especially red light, mediated by phytochromes, has an activating effect on these processes. Phytohormones, particularly auxin, also are key mediators in these alterations. Upcoming experiments on the International Space Station will clarify some of the mechanisms and molecular players of the plant responses to these environmental signals involved in tropisms and the cell cycle. PMID:25389428
NASA Technical Reports Server (NTRS)
Paloski, William H.
2008-01-01
Balance control and locomotor patterns were altered in Apollo crewmembers on the lunar surface, owing, presumably, to a combination of sensory-motor adaptation during transit and lunar surface operations, decreased environmental affordances associated with the reduced gravity, and restricted joint mobility as well as altered center-of-gravity caused by the EVA pressure suits. Dr. Paloski will discuss these factors, as well as the potential human and mission impacts of falls and malcoordination during planned lunar sortie and outpost missions. Learning objectives: What are the potential impacts of postural instabilities on the lunar surface? CME question: What factors affect balance control and gait stability on the moon? Answer: Sensory-motor adaptation to the lunar environment, reduced mechanical and visual affordances, and altered biomechanics caused by the EVA suit.
Gravity as a Strong Prior: Implications for Perception and Action
Jörges, Björn; López-Moliner, Joan
2017-01-01
In the future, humans are likely to be exposed to environments with altered gravity conditions, be it only visually (Virtual and Augmented Reality), or visually and bodily (space travel). As visually and bodily perceived gravity as well as an interiorized representation of earth gravity are involved in a series of tasks, such as catching, grasping, body orientation estimation and spatial inferences, humans will need to adapt to these new gravity conditions. Performance under earth gravity discrepant conditions has been shown to be relatively poor, and few studies conducted in gravity adaptation are rather discouraging. Especially in VR on earth, conflicts between bodily and visual gravity cues seem to make a full adaptation to visually perceived earth-discrepant gravities nearly impossible, and even in space, when visual and bodily cues are congruent, adaptation is extremely slow. We invoke a Bayesian framework for gravity related perceptual processes, in which earth gravity holds the status of a so called “strong prior”. As other strong priors, the gravity prior has developed through years and years of experience in an earth gravity environment. For this reason, the reliability of this representation is extremely high and overrules any sensory information to its contrary. While also other factors such as the multisensory nature of gravity perception need to be taken into account, we present the strong prior account as a unifying explanation for empirical results in gravity perception and adaptation to earth-discrepant gravities. PMID:28503140
In vitro modeling of human tibial strains during exercise in micro-gravity
NASA Technical Reports Server (NTRS)
Peterman, M. M.; Hamel, A. J.; Cavanagh, P. R.; Piazza, S. J.; Sharkey, N. A.
2001-01-01
Prolonged exposure to micro-gravity causes substantial bone loss (Leblanc et al., Journal of Bone Mineral Research 11 (1996) S323) and treadmill exercise under gravity replacement loads (GRLs) has been advocated as a countermeasure. To date, the magnitudes of GRLs employed for locomotion in space have been substantially less than the loads imposed in the earthbound 1G environment, which may account for the poor performance of locomotion as an intervention. The success of future treadmill interventions will likely require GRLs of greater magnitude. It is widely held that mechanical tissue strain is an important intermediary signal in the transduction pathway linking the external loading environment to bone maintenance and functional adaptation; yet, to our knowledge, no data exist linking alterations in external skeletal loading to alterations in bone strain. In this preliminary study, we used unique cadaver simulations of micro-gravity locomotion to determine relationships between localized tibial bone strains and external loading as a means to better predict the efficacy of future exercise interventions proposed for bone maintenance on orbit. Bone strain magnitudes in the distal tibia were found to be linearly related to ground reaction force magnitude (R(2)>0.7). Strain distributions indicated that the primary mode of tibial loading was in bending, with little variation in the neutral axis over the stance phase of gait. The greatest strains, as well as the greatest strain sensitivity to altered external loading, occurred within the anterior crest and posterior aspect of the tibia, the sites furthest removed from the neutral axis of bending. We established a technique for estimating local strain magnitudes from external loads, and equations for predicting strain during simulated micro-gravity walking are presented.
The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells.
Vorselen, Daan; Roos, Wouter H; MacKintosh, Fred C; Wuite, Gijs J L; van Loon, Jack J W A
2014-02-01
A large body of evidence indicates that single cells in vitro respond to changes in gravity, and that this response might play an important role for physiological changes at the organism level during spaceflight. Gravity can lead to changes in cell proliferation, differentiation, signaling, and gene expression. At first glance, gravitational forces seem too small to affect bodies with the size of a cell. Thus, the initial response to gravity is both puzzling and important for understanding physiological changes in space. This also offers a unique environment to study the mechanical response of cells. In the past 2 decades, important steps have been made in the field of mechanobiology, and we use these advances to reevaluate the response of single cells to changes in gravity. Recent studies have focused on the cytoskeleton as initial gravity sensor. Thus, we review the observed changes in the cytoskeleton in a microgravity environment, both during spaceflight and in ground-based simulation techniques. We also evaluate to what degree the current experimental evidence supports the cytoskeleton as primary gravity sensor. Finally, we consider how the cytoskeleton itself could be affected by changed gravity. To make the next step toward understanding the response of cells to altered gravity, the challenge will be to track changes quantitatively and on short timescales.
NASA Astrophysics Data System (ADS)
Kamal, Khaled Y.; Herranz, Raúl; van Loon, Jack J. W. A.; Christianen, Peter C. M.; Medina, F. Javier
2016-06-01
Ground-Based Facilities (GBF) are essetial tools to understand the physical and biological effects of the absence of gravity and they are necessary to prepare and complement space experiments. It has been shown previously that a real microgravity environment induces the dissociation of cell proliferation from cell growth in seedling root meristems, which are limited populations of proliferating cells. Plant cell cultures are large and homogeneous populations of proliferating cells, so that they are a convenient model to study the effects of altered gravity on cellular mechanisms regulating cell proliferation and associated cell growth. Cell suspension cultures of the Arabidopsis thaliana cell line MM2d were exposed to four altered gravity and magnetic field environments in a magnetic levitation facility for 3 hours, including two simulated microgravity and Mars-like gravity levels obtained with different magnetic field intensities. Samples were processed either by quick freezing, to be used in flow cytometry for cell cycle studies, or by chemical fixation for microscopy techniques to measure parameters of the nucleolus. Although the trend of the results was the same as those obtained in real microgravity on meristems (increased cell proliferation and decreased cell growth), we provide a technical discussion in the context of validation of proper conditions to achieve true cell levitation inside a levitating droplet. We conclude that the use of magnetic levitation as a simulated microgravity GBF for cell suspension cultures is not recommended.
Cardiovascular models of simulated moon and mars gravities: head-up tilt vs. lower body unweighting.
Kostas, Vladimir I; Stenger, Michael B; Knapp, Charles F; Shapiro, Robert; Wang, Siqi; Diedrich, André; Evans, Joyce M
2014-04-01
In this study we compare two models [head-up tilt (HUT) vs. body unweighting using lower body positive pressure (LBPP)] to simulate Moon, Mars, and Earth gravities. A literature search did not reveal any comparisons of this type performed previously. We hypothesized that segmental fluid volume shifts (thorax, abdomen, upper and lower leg), cardiac output, and blood pressure (BP), heart rate (HR), and total peripheral resistance to standing would be similar in the LBPP and HUT models. There were 21 subjects who were studied while supine (simulation of spaceflight) and standing at 100% (Earth), 40% (Mars), and 20% (Moon) bodyweight produced by LBPP in Alter-G and while supine and tilted at 80 degrees, 20 degrees, and 10 degrees HUT (analogues of Earth, Mars, and Moon gravities, respectively). Compared to supine, fluid shifts from the chest to the abdomen, increases in HR, and decreases in stroke volume were greater at 100% bodyweight than at reduced weights in response to both LBPP and HUT. Differences between the two models were found for systolic BP, diastolic BP, mean arterial BP, stroke volume, total peripheral resistance, and thorax and abdomen impedances, while HR, cardiac output, and upper and lower leg impedances were similar. Bodyweight unloading via both LBPP and HUT resulted in cardiovascular changes similar to those anticipated in actual reduced gravity environments. The LBPP model/Alter-G has the advantage of providing an environment that allows dynamic activity at reduced bodyweight; however, the significant increase in blood pressures in the Alter-GC may favor the HUT model.
Porte, Yves; Morel, Jean-Luc
2012-01-01
On earth, gravity vector conditions the development of all living beings by physically imposing an axis along which to build their organism. Thus, during their whole life, they have to fight against this force not only to maintain their architectural organization but also to coordinate the communication between organs and keep their physiology in a balanced steady-state. In space, astronauts show physiological, psychological, and cognitive deregulations, ranging from bone decalcification or decrease of musculature, to depressive-like disorders, and spatial disorientation. Nonetheless, they are confronted to a great amount of physical changes in their environment such as solar radiations, loss of light-dark cycle, lack of spatial landmarks, confinement, and obviously a dramatic decrease of gravity force. It is thus very hard to selectively discriminate the strict role of gravity level alterations on physiological, and particularly cerebral, dysfunction. To this purpose, it is important to design autonomous models and apparatuses for behavioral phenotyping utilizable under modified gravity environments. Our team actually aims at working on this area of research. PMID:23015785
NASA Technical Reports Server (NTRS)
Smith, J.D.; Todd, P. W.; Staehelin, L. A.; Holton, Emily (Technical Monitor)
1997-01-01
Under normal (l-g) conditions the statocytes of root caps have a characteristic polarity with the nucleus in tight association with the proximal cell wall; but, in altered gravity environments including microgravity (mu-g) and the clinostat (c-g) movement of the nucleus away from the proximal cell wall is not uncommon. To further understand the cause of gravity-dependent nuclear displacement in statocytes, three-dimensional cell reconstruction techniques were used to precisely measure the volumes, shapes, and positions of nuclei in white clover (Trifolium repens) flown in space and rotated on a clinostat. Seeds were germinated and grown for 72 hours aboard the Space Shuttle (STS-63) in the Fluid Processing Apparatus (BioServe Space Technologies, Univ. of Colorado, Boulder). Clinorotation experiments were performed on a two-axis clinostat (BioServe). Computer reconstruction of selected groups of statocytes were made from serial sections (0.5 microns thick) using the ROSS (Reconstruction Of Serial Sections) software package (Biocomputation Center, NASA Ames Research Center). Nuclei were significantly displaced from the tops of cells in mu-g (4.2 +/- 1.0 microns) and c-g (4.9 +/- 1.4 microns) when compared to l-g controls (3.4 +/- 0.8 gm); but, nuclear volume (113 +/- 36 cu microns, 127 +/- 32 cu microns and 125 +/- 28 cu microns for l-g, mu-g and c-g respectively) and the ratio of nuclear volume to cell volume (4.310.7%, 4.211.0% and 4.911.4% respectively) were not significantly dependent on gravity treatment (ANOVA; alpha = 0.05). Three-dimensional analysis of nuclear shape and proximity to the cell wall, however, showed that nuclei from l-g controls appeared ellipsoidal while those from space and the clinostat were more spherically shaped. This change in nuclear shape may be responsible for its displacement under altered gravity conditions. Since the cytoskeleton is known to affect nuclear polarity in root cap statocytes, those same cytoskeletal elements could also control nuclear shape. This alteration in nuclear shape and position in mu-g and c-g when compared to l-g may lead to functional differences in the gravity signaling systems of plants subjected to altered gravity environments.
Hypergravity Alters the Susceptibility of Cells to Anoxia-Reoxygenation Injury
NASA Technical Reports Server (NTRS)
McCloud, Henry; Pink, Yulondo; Harris-Hooker, Sandra A.; Melhado, Caroline D.; Sanford, Gary L.
1997-01-01
Gravity is a physical force, much like shear stress or mechanical stretch, and should affect organ and cellular function. Researchers have shown that gravity plays a role in ventilation and blood flow distribution, gas exchange, alveolar size and mechanical stresses within the lung. Short exposure to microgravity produced marked alterations in lung blood flow and ventilation distribution while hypergravity exaggerated the regional differences in lung structure and function resulting in reduced ventilation at the base and no ventilation of the upper half of the lung. Microgravity also decreased metabolic activity in cardiac cells, WI-38 embryonic lung cells, and human lymphocytes. Rats, in the tail-suspended head-down tilt model, experienced transient loss of lung water, contrary to an expected increase due to pooling of blood in the pulmonary vasculature. Hypergravity has also been found to increase the proliferation of several different cell lines (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. These studies show that changes in the gravity environment will affect several aspects of organ and cellular function and produce major change in blood flow and tissue/organ perfusion. However, these past studies have not addressed whether ischemia-reperfusion injury will be exacerbated or ameliorated by changes in the gravity environment, e.g., space flight. Currently, nothing is known about how gravity will affect the susceptibility of different lung and vascular cells to this type of injury. We conducted studies that addressed the following question: Does the susceptibility of lung fibroblasts, vascular smooth muscle, and endothelial cells to anoxia/reoxygenation injury change following exposure to hypergravity conditions?
NASA Technical Reports Server (NTRS)
Paloski, William H.
2001-01-01
The terrestrial gravitational field serves as an important orientation reference for human perception and movement, being continually monitored by sensory receptors in the skin, muscles, joints, and vestibular otolith organs. Cues from these graviceptors are used by the brain to estimate spatial orientation and to control balance and movement. Changes in these cues associated with the tonic changes in gravity (gravito-inertial force),during the launch and entry phases of space flight missions result in altered perceptions, degraded motor control performance, and in some cases, "motion" sickness during, and for a period of time after, the g-transitions. In response to these transitions, however, physiological and behavioral response mechanisms are triggered to compensate for altered graviceptor cues and/or to adapt to the new sensory environment. Basic research in the neurophysiology discipline is focused on understanding the characteristic features of and the underlying mechanisms for the normal human response to tonic changes in the gravito-inertial force environment. These studies address fundamental questions regarding the role of graviceptors in orientation and movement in the terrestrial environment, as well as the capacity, specificity, and modes for neural plasticity in the sensory-motor and perceptual systems of the brain. At the 2001 workshop basic research studies were presented addressing: neuroanatomical responses to altered gravity environments, the neural mechanisms for resolving the ambiguity between tilting and translational stimuli in otolith organ sensory input, interactions between the vestibular system and the autonomic nervous system , the roles of haptic and visual cues in spatial orientation, mechanisms for training environment-appropriate sensorimotor responses triggered by environment-specific context cues, and studies of sensori-motor control of posture and locomotion in the terrestrial environment with and without recent exposure to space flight. Building on these basic research studies are more applied studies focused on the development of countermeasures to the untoward neurophysiological responses to space flight. At the 2001 workshop, applied research studies were presented addressing issues related to the use of rotational artificial gravity (centripetal acceleration) as a multisystem (bone, muscle, cardiovascular, and, perhaps, neurovestibular) countermeasure. Also presented was a clinical study reporting on a new rating system for clinical evaluation of postflight functional neurological status.
NASA Astrophysics Data System (ADS)
He, Jie; Zhang, Xiaoxian; Gao, Yong; Li, Shuijie; Sun, Yeqing
Some researchers suggest that the changes of cell cycle under the effect of microgravity may be associated with many serious adverse physiological changes. In the search for underlying mechanisms and possible new countermeasures, we used the slime mold Physarum polycephalum in which all the nuclei traverse the cell cycle in natural synchrony to study the effects of altered gravity on the cell cycle, actin cytoskeleton and proteome. In parallel, the cell cycle was analyzed in Physarum incubated (1) in altered gravity for 20 h, (2) in altered gravity for 40 h, (3) in altered gravity for 80 h, and (4) in ground controls. The cell cycle, the actin cytoskeleton, and proteome in the altered gravity and ground controls were examined. The results indicated that the duration of the G2 phase was lengthened 20 min in high aspect ratio vessel (HARV) for 20 h, and prolonged 2 h in altered gravity either for 40 h or for 80 h, whereas the duration of other phases in the cell cycle was unchanged with respect to the control. The microfilaments in G2 phase had a reduced number of fibers and a unique abnormal morphology in altered gravity for 40 h, whereas the microfilaments in other phases of cell cycle were unchanged when compared to controls. Employing classical two-dimensional electrophoresis (2-DE), we examined the effect of the altered gravity on P. polycephalum proteins. The increase in the duration of G2 phase in altered gravity for 40 h was accompanied by changes in the 2-DE protein profiles, over controls. Out of a total of 200 protein spots investigated in G2 phase, which were reproducible in repeated experiments, 72 protein spots were visually identified as specially expressed, and 11 proteins were up-regulated by 2-fold and 28 proteins were down-regulated by 2-fold over controls. Out of a total of three low-expressed proteins in G2 phase in altered gravity for 40 h, two proteins were unknown proteins, and one protein was spherulin 3b by MALDI-TOF mass spectrometry (MS). Our results suggest that a low level of spherulin 3b in G2 phase, which may lead to a reduction of Poly(b-L-malate) (PMLA), may contribute to the lengthened duration of G2 phase in altered gravity for 40 h. Present results indicate that altered gravity results in the prolongation of G2 phase with significantly altered actin cytoskeleton and proteome in P. polycephalum.
Sylos-Labini, Francesca; Ivanenko, Yuri P.
2014-01-01
Reduced gravity offers unique opportunities to study motor behavior. This paper aims at providing a review on current issues of the known tools and techniques used for hypogravity simulation and their effects on human locomotion. Walking and running rely on the limb oscillatory mechanics, and one way to change its dynamic properties is to modify the level of gravity. Gravity has a strong effect on the optimal rate of limb oscillations, optimal walking speed, and muscle activity patterns, and gait transitions occur smoothly and at slower speeds at lower gravity levels. Altered center of mass movements and interplay between stance and swing leg dynamics may challenge new forms of locomotion in a heterogravity environment. Furthermore, observations in the lack of gravity effects help to reveal the intrinsic properties of locomotor pattern generators and make evident facilitation of nonvoluntary limb stepping. In view of that, space neurosciences research has participated in the development of new technologies that can be used as an effective tool for gait rehabilitation. PMID:25247179
Resting Energy Expenditure of Rats Acclimated to Hyper-Gravity
NASA Technical Reports Server (NTRS)
Wade, Charles E.; Moran, Megan M.; Oyama, Jiro; Schwenke, David; Dalton, Bonnie P. (Technical Monitor)
2000-01-01
To determine the influence of body mass and age on resting energy expenditure (EE) following acclimation to hyper-gravity, oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured to calculate resting energy expenditure (EE), in male rats, ages 40 to 400 days, acclimated to 1.23 or 4.1 G for a minimum of two weeks. Animals were maintained on a centrifuge to produce the hyper-gravity environment. Measurements were made over three hours in hyper-gravity during the period when the lights were on, the inactive period of rats. In rats matched for body mass (approximately 400 g) hyper-gravity increased VO2 by 18% and VCO2 by 27% compared to controls, resulting in an increase in RER, 0.80 to 0.87. There were increases in resting EE with an increase in gravity. This increase was greater when the mass of the rat was larger. Rating EE for 400g animals were increased from 47 +/- 1 kcal/kg/day at 1 G, to 57 +/- 1.5 and 5.8 +/- 2.2 kcal/kg/day at 2,3 and 4.1 G, respectively. There was no difference between the two hyper-gravity environments. When differences in age of the animals were accounted for, the increase in resting EE adjusted for body mass was increased by over 36% in older animals due to exposure to hyper-gravity. Acclimation to hyper-gravity increases the resting EE of rats, dependent upon body mass and age, and appears to alter substrate metabolism. Increasing the level of hyper-gravity, from 2.3 to 4.1 G, produced no further changes raising questions as to a dose effect of gravity level on resting metabolism.
Gravity and light effects on the circadian clock of a desert beetle, Trigonoscelis gigas
NASA Technical Reports Server (NTRS)
Hoban-Higgins, T. M.; Alpatov, A. M.; Wassmer, G. T.; Rietveld, W. J.; Fuller, C. A.
2003-01-01
Circadian function is affected by exposure to altered ambient force environments. Under non-earth gravitational fields, both basic features of circadian rhythms and the expression of the clock responsible for these rhythms are altered. We examined the activity rhythm of the tenebrionid beetle, Trigonoscelis gigas, in conditions of microgravity (microG; spaceflight), earth's gravity (1 G) and 2 G (centrifugation). Data were recorded under a light-dark cycle (LD), constant light (LL), and constant darkness (DD). Free-running period (tau) was significantly affected by both the gravitational field and ambient light intensity. In DD, tau was longer under 2 G than under either 1 G or microG. In addition, tauLL was significantly different from tauDD under microG and 1 G, but not under 2 G.
NASA Astrophysics Data System (ADS)
Goswami, Nandu; Roma, Peter G.; De Boever, Patrick; Clément, Gilles; Hargens, Alan R.; Loeppky, Jack A.; Evans, Joyce M.; Peter Stein, T.; Blaber, Andrew P.; Van Loon, Jack J. W. A.; Mano, Tadaaki; Iwase, Satoshi; Reitz, Guenther; Hinghofer-Szalkay, Helmut G.
2012-12-01
Due to its proximity to Earth, the Moon is a promising candidate for the location of an extra-terrestrial human colony. In addition to being a high-fidelity platform for research on reduced gravity, radiation risk, and circadian disruption, the Moon qualifies as an isolated, confined, and extreme (ICE) environment suitable as an analog for studying the psychosocial effects of long-duration human space exploration missions and understanding these processes. In contrast, the various Antarctic research outposts such as Concordia and McMurdo serve as valuable platforms for studying biobehavioral adaptations to ICE environments, but are still Earth-bound, and thus lack the low-gravity and radiation risks of space. The International Space Station (ISS), itself now considered an analog environment for long-duration missions, better approximates the habitable infrastructure limitations of a lunar colony than most Antarctic settlements in an altered gravity setting. However, the ISS is still protected against cosmic radiation by the Earth magnetic field, which prevents high exposures due to solar particle events and reduces exposures to galactic cosmic radiation. On Moon the ICE environments are strengthened, radiations of all energies are present capable of inducing performance degradation, as well as reduced gravity and lunar dust. The interaction of reduced gravity, radiation exposure, and ICE conditions may affect biology and behavior - and ultimately mission success - in ways the scientific and operational communities have yet to appreciate, therefore a long-term or permanent human presence on the Moon would ultimately provide invaluable high-fidelity opportunities for integrated multidisciplinary research and for preparations of a manned mission to Mars.
Bone mechanobiology, gravity and tissue engineering: effects and insights.
Ruggiu, Alessandra; Cancedda, Ranieri
2015-12-01
Bone homeostasis strongly depends on fine tuned mechanosensitive regulation signals from environmental forces into biochemical responses. Similar to the ageing process, during spaceflights an altered mechanotransduction occurs as a result of the effects of bone unloading, eventually leading to loss of functional tissue. Although spaceflights represent the best environment to investigate near-zero gravity effects, there are major limitations for setting up experimental analysis. A more feasible approach to analyse the effects of reduced mechanostimulation on the bone is represented by the 'simulated microgravity' experiments based on: (1) in vitro studies, involving cell cultures studies and the use of bioreactors with tissue engineering approaches; (2) in vivo studies, based on animal models; and (3) direct analysis on human beings, as in the case of the bed rest tests. At present, advanced tissue engineering methods allow investigators to recreate bone microenvironment in vitro for mechanobiology studies. This group and others have generated tissue 'organoids' to mimic in vitro the in vivo bone environment and to study the alteration cells can go through when subjected to unloading. Understanding the molecular mechanisms underlying the bone tissue response to mechanostimuli will help developing new strategies to prevent loss of tissue caused by altered mechanotransduction, as well as identifying new approaches for the treatment of diseases via drug testing. This review focuses on the effects of reduced gravity on bone mechanobiology by providing the up-to-date and state of the art on the available data by drawing a parallel with the suitable tissue engineering systems. Copyright © 2014 John Wiley & Sons, Ltd.
Hill, Richard J. A.; Larkin, Oliver J.; Dijkstra, Camelia E.; Manzano, Ana I.; de Juan, Emilio; Davey, Michael R.; Anthony, Paul; Eaves, Laurence; Medina, F. Javier; Marco, Roberto; Herranz, Raul
2012-01-01
Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity. PMID:22219396
Hill, Richard J A; Larkin, Oliver J; Dijkstra, Camelia E; Manzano, Ana I; de Juan, Emilio; Davey, Michael R; Anthony, Paul; Eaves, Laurence; Medina, F Javier; Marco, Roberto; Herranz, Raul
2012-07-07
Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity.
Inflight Pharmacokinetic and Pharmacodynamic Responses to Medications Commonly Used in Spaceflight
NASA Technical Reports Server (NTRS)
Wotring, V. E.; Derendorf, H.; Kast, J.; Barger, L.; Basner, M.
2016-01-01
Researchers do not know if medications act the same in the spaceflight environment as they do on Earth. Aspects of the spaceflight environment (low gravity, radiation exposure, closed environment, stress) have been shown to alter human physiology. Some of these physiological changes could be expected to alter either pharmacokinetics (PK, how the body absorbs, distributes, metabolizes and excretes administered medications) or pharmacodynamics (PD, receptors or signaling systems that are the targets of medication action). Anecdotal data has suggested that, at least for certain medications or indications, inflight medication efficacy is poor. In order to prepare for exploration missions where speedy evacuation to Earth may not be a possibility, the likelihood of unexpected medication action must be determined.
Gruener, R
1998-01-01
This paper serves as a milepost in our work using the clinostat as a tool for mimicking certain aspects of altered gravity conditions (vector-nulled gravity) in order to gain insights into the adaptation of cells (and hence organisms) to the microgravity environment of space. I review here recent data, limited to cellular adaptation to altered gravity environments, from others in the field, and including some of our work using the clinostat and from spaceflight experiments. Finally, I report here preliminary results of experiments, carried out initially at Nagoya University's RIEM with follow-up experiments at the University of Arizona, to test the applicability of PC12 cells as neuronal models in which to assess adaptation to altered gravity conditions. PC12 (phaeochromocytoma) cells were used to examine two central hypotheses. The first is that the ubiquity of the cytoskeletally tethered nucleus of cells serves as a general gravisensing device which may be incidental to its other, more central genomic control-role. The second hypothesis is that the clinostat is a useful, earthbound platform on which to carry out space-biology relevant experiments in preparation for testing in space flights. PC12 cells were triggered to differentiate, into neuron-like cells, by the addition of Nerve Growth Factor (NGF) to the culture medium within 4-6 hours after cell plating and just before mounting cultures on the clinostat and control devices. Cultures, in 60 mm or 35 mm polylysine-coated dishes, were subjected to clinorotation, centrifugal force, motional controls and shear-turbulence control conditions for varying periods. Experiments were carried out at 37 degrees C. Cell morphology (including neurite characteristics) and gene activation were examined. Cytoskeletal integrity was assessed from the staining of tubulin and actin filaments. Confocal microscopy in combination with fluorescence monitoring was undertaken. At this point of the investigation, only preliminary data can be presented. This is due to various technical problems and the need to carry out rigorous statistical tests. Still, the preliminary data are of interest because they form the foundation for interpretation against the background of cellular gravisensing and adaptation to gravitational perturbations.
Motor control of landing from a countermovement jump in simulated microgravity.
Gambelli, C N; Theisen, D; Willems, P A; Schepens, B
2016-05-15
Landing from a jump implies proper positioning of the lower limb segments and the generation of an adequate muscular force to cope with the imminent collision with the ground. This study assesses how a hypogravitational environment affects the control of landing after a countermovement jump (CMJ). Eight participants performed submaximal CMJs on Earth (1-g condition) and in a weightlessness environment with simulated gravity conditions generated by a pull-down force (1-, 0.6-, 0.4-, and 0.2-g0 conditions). External forces applied to the body, movements of the lower limb segments, and muscular activity of six lower limb muscles were recorded. 1) All subjects were able to jump and stabilize their landing in all experimental conditions, except one subject in 0.2-g0 condition. 2) The mechanical behavior of lower limb muscles switches during landing from a stiff spring to a compliant spring associated with a damper. This is true whatever the environment, on Earth as well as in environments where sensory inputs are altered. 3) The motor control of landing in simulated 1 g0 reveals an increased "safety margin" strategy, illustrated by increased stiffness and damping coefficient compared with landing on Earth. 4) The motor command is adjusted to the task constraints: muscular activity of lower limb extensors and flexors, stiffness and damping coefficient decrease according to the decreased gravity level. Our results show that even if in daily living gravity can be perceived as a constant factor, subjects can cope with altered sensory signals, taking advantage of the remaining information (visual and/or decreased proprioceptive inputs). Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Lionheart, Gemma; Vandenbrink, Joshua P.; Hoeksema, Jason D.; Kiss, John Z.
2018-05-01
Simulated microgravity has been a useful tool to help understand plant development in altered gravity conditions. Thirty-one genotypes of the legume plant Medicago truncatula were grown in either simulated microgravity on a rotating clinostat, or in a static, vertical environment. Twenty morphological features were measured and compared between these two gravity treatments. Within-species genotypic variation was a significant predictor of the phenotypic response to gravity treatment in 100% of the measured morphological and growth features. In addition, there was a genotype-environment interaction (G × E) for 45% of the response variables, including shoot relative growth rate (p < 0.0005), median number of roots (p ˜ 0.02), and root dry mass (p < 0.005). Our studies demonstrate that genotype does play a significant role in M. truncatula morphology and affects the response of plants to the gravity treatment, influencing both the magnitude and direction of the gravity response. These findings are discussed in the context of improving future studies in plant space biology by controlling for genotypic differences. Thus, manipulation of genotype effects, in combination with M. truncatula's symbiotic relationships with bacteria and fungi, will be important for optimizing legumes for cultivation on long-term space missions.
Effect of Artificial Gravity: Central Nervous System Neurochemical Studies
NASA Technical Reports Server (NTRS)
Fox, Robert A.; D'Amelio, Fernando; Eng, Lawrence F.
1997-01-01
The major objective of this project was to assess chemical and morphological modifications occurring in muscle receptors and the central nervous system of animals subjected to altered gravity (2 x Earth gravity produced by centrifugation and simulated micro gravity produced by hindlimb suspension). The underlying hypothesis for the studies was that afferent (sensory) information sent to the central nervous system by muscle receptors would be changed in conditions of altered gravity and that these changes, in turn, would instigate a process of adaptation involving altered chemical activity of neurons and glial cells of the projection areas of the cerebral cortex that are related to inputs from those muscle receptors (e.g., cells in the limb projection areas). The central objective of this research was to expand understanding of how chronic exposure to altered gravity, through effects on the vestibular system, influences neuromuscular systems that control posture and gait. The project used an approach in which molecular changes in the neuromuscular system were related to the development of effective motor control by characterizing neurochemical changes in sensory and motor systems and relating those changes to motor behavior as animals adapted to altered gravity. Thus, the objective was to identify changes in central and peripheral neuromuscular mechanisms that are associated with the re-establishment of motor control which is disrupted by chronic exposure to altered gravity.
Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster
NASA Technical Reports Server (NTRS)
Bhattacharya, Sharmila; Hosamani, Ravikumar
2015-01-01
Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.
Quantification Of Fire Signatures For Practical Spacecraft Materials
NASA Technical Reports Server (NTRS)
VanderWal, Randy L.; Ruff, Gary A.; Tomasek, Aaron J.
2003-01-01
The overall objective of this project is to measure the fire signatures of typical spacecraft materials in 1-g and determine how these signatures may be altered in a microgravity environment. During this project, we will also develop a test technique to obtain representative low-gravity signatures. The specific tasks that will be accomplished to achieve these objectives are to: (1) measure the time history of various fire signatures of typical spacecraft materials in 1-g at varying heating rates, temperatures, convective velocities, and oxygen concentrations, (2) conduct tests in the Zero-Gravity Facility at NASA John H. Glenn Research Center to investigate the manner that a microgravity environment alters the fire signature,(3) compare 0-g and 1-g time histories and determine if 0-g data exhibits the same dependence on the test parameters as experienced in 1-g (4) develop a 1-g test technique by which 0-g fire signatures can be measured. The proposed study seeks to investigate the differences in the identities and relative concentrations of the volatiles produced by pyrolyzing and/or smoldering materials between normal gravity and microgravity environments. Test materials will be representative of typical spacecraft materials and, where possible, will be tested in appropriate geometries. Wire insulation materials of Teflon, polyimide, silicone, and PVC will be evaluated using either cylindrical samples or actual wire insulation. Other materials such as polyurethane, polyimide, melamine, and silicone-based foams will be tested using cylindrical samples, in addition to fabric materials, such as Nomex. Electrical components, such as resistors, capacitors, circuit board will also be tested.
Xu, Huiyun; Ning, Dandan; Zhao, Dezhi; Chen, Yunhe; Zhao, Dongdong; Gu, Sumin; Jiang, Jean X.; Shang, Peng
2017-01-01
Osteocytes, the most abundant cells in bone, are highly responsive to external environmental changes. We tested how Cx43 hemichannels which mediate the exchange of small molecules between cells and extracellular environment impact genome wide gene expression under conditions of abnormal gravity and magnetic field. To this end, we subjected osteocytic MLO-Y4 cells to a high magneto-gravitational environment and used microarray to examine global gene expression and a specific blocking antibody was used to assess the role of Cx43 hemichannels. While 3 hr exposure to abnormal gravity and magnetic field had relatively minor effects on global gene expression, blocking hemichannels significantly impacted the expression of a number of genes which are involved in cell viability, apoptosis, mineral absorption, protein absorption and digestion, and focal adhesion. Also, blocking of hemichannels enriched genes in multiple signaling pathways which are enaged by TGF-beta, Jak-STAT and VEGF. These results show the role of connexin hemichannels in bone cells in high magneto-gravitational environments. PMID:27814646
Biosignal alterations generated by parabolic flights of small aerobatic aircrafts
NASA Astrophysics Data System (ADS)
Simon, M. Jose; Perez-Poch, Antoni; Ruiz, Xavier; Gavalda, Fina; Saez, Nuria
Since the pioneering works of Prof. Strughold in 1948, the aerospace medicine aimed to characterize the modifications induced in the human body by changes in the gravity level. In this respect, it is nowadays well known that one of the most serious problems of these kind of environments is the fluid shift. If this effect is enough severe and persistent, serious changes in the hemodynamic of the brain (cerebral blood flow and blood oxigenation level) appear which could be detected as alterations in the electroencephalogram, EEG [1]. Also, this fluid redistribution, together with the relocation of the heart in the thorax, induces detectable changes in the electrocardiogram, ECG [2]. Other kind of important problems are related with vestibular instability, kinetosis and illusory sensations. In particular since the seventies [3,4] it is known that in parabolic flights and due to eye movements triggered by the changing input from the otholith system, fixed real targets appeared to have moved downward while visual afterimages appeared to have moved upward (oculogravic illusions). In order to cover all the above-mentioned potential alterations, the present work, together with the gravity level, continuously monitors the electroencephalogram, EEG, the electrocardiogram, ECG and the electrooculogram, EOG of a normal subject trying to detect correlations between the different alterations observed in these signals and the changes of gravity during parabolic flights. The small aerobatic aircraft used is a CAP10B and during the flight the subject is located near the pilot. To properly cover all the range of accelerations we have used two sensitive triaxial accelerometers covering the high and low ranges of acceleration. Biosignals have been gathered using a Biopac data unit together with the Acknowledge software package (from BionicÔ). It is important to finally remark that, due to the obvious difference between the power of the different engines, the accelerometric characteristics of the aerobatic parabolic flights are different from the ones corresponding to the big Airbus-300 of Novespace-CNES-ESA aircraft. In this case, the two episodes of hypergravity reach 1.8g for 3 seconds with 20-25 seconds of low gravity in between whereas the small aerobatic plane reaches 3g level during roughly 2.5 seconds and 8 seconds period of low gravity. This means that the present potential alterations of the human body are more aggressive but also faster. [1] Y. Kawai, M. Doi, A. Setogawa, R. Shimoyama, K. Ueda, Y. Asai, K. Tatebayashi, Effects of Microgravity on Cerebral Hemodynamics, Yonago Acta Medica, 46 (2003) 1-8. [2] E.A.I. Aidu, V.G. Trunov, L.I. Titomir, A. Capderou, P. Vaïda, Transformation of Vectorcardiogram Due to Gravitation Alteration, Measurement, Science Review, 3 (2003) 29-32. [3] R.J. Von Baumgarten, G. Baldrighi, G.L. Schillinger, O. Harth, R. Thuemler, Vestibular function in the space environment, Acta Astronautica, 2 (1975) 49-58. [4] http://reversiblefigures.blogspot.com.es/p/outreach.html
Effects of space flight on locomotor control
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob J.; Layne, Charles S.; McDonald, P. Vernon; Peters, Brian T.; Huebner, William P.; Reschke, Millard F.; Berthoz, Alain; Glasauer, Stefan; Newman, Dava; Jackson, D. Keoki
1999-01-01
In the microgravity environment of spaceflight, the relationship between sensory input and motor output is altered. During prolonged missions, neural adaptive processes come into play to recalibrate central nervous system function, thereby permitting new motor control strategies to emerge in the novel sensory environment of microgravity. However, the adaptive state achieved during spaceflight is inappropriate for a unit gravity environment and leads to motor control alterations upon return to Earth that include disturbances in locomotion. Indeed, gait and postural instabilities following the return to Earth have been reported in both U.S. astronauts and Russian cosmonauts even after short duration (5- to 10-day) flights. After spaceflight, astronauts may: (1) experience the sensation of turning while attempting to walk a straight path, (2) encounter sudden loss of postural stability, especially when rounding corners, (3) perceive exaggerated pitch and rolling head movements during walking, (4) experience sudden loss of orientation in unstructured visual environments, or (5) experience significant oscillopsia during locomotion.
NASA Astrophysics Data System (ADS)
Horn, E.; Agricola, H.; Böser, S.; Förster, S.; Kämper, G.; Riewe, P.; Sebastian, C.
"Crickets in Space" was a Neurolab experiment by which the balance between genetic programs and the gravitational environment for the development of a gravity sensitive neuronal system was studied. The model character of crickets was justified by their external gravity receptors, identified position-sensitive interneurons (PSI) and gravity-related compensatory head response, and by the specific relation of this behavior to neuronal arousal systems activated by locomotion. These advantages allowed to study the impact of modified gravity on cellular processes in a complex organism. Eggs, 1st, 4th and 6th stage larvae of Acheta domesticus were used. Post-flight experiments revealed a low susceptibility of the behavior to micro- and hypergravity while the physiology of the PSI was significantly affected. Immunocytological investigations revealed a stage-dependent sensitivity of thoracic GABAergic motoneurons to 3g-conditions concerning their soma sizes but not their topographical arrangement. The morphology of neuromuscular junctions was not affected by 3g-hypergravity. Peptidergic neurons from cerebral sensorimotor centers revealed no significant modifications by microgravity (μg). The contrary physiological and behavioral results indicate a facilitation of 1g-readaptation originating from accessory gravity, proprioceptive and visual sense organs. Absence of anatomical modifications point to an effective time window of μg- or 3g-expo-sure related to the period of neuronal proliferation. The analysis of basic mechanisms of how animals and man adapt to altered gravitational conditions will profit from a continuation of the project "Crickets in Space".
Effect of gravity on vestibular neural development
NASA Technical Reports Server (NTRS)
Ross, M. D.; Tomko, D. L.
1998-01-01
The timing, molecular basis, and morphophysiological and behavioral consequences of the interaction between external environment and the internal genetic pool that shapes the nervous system over a lifetime remain important questions in basic neuroscientific research. Space station offers the opportunity to study this interaction over several life cycles in a variety of organisms. This short review considers past work in altered gravity, particularly on the vestibular system, as the basis for proposing future research on space station, and discusses the equipment necessary to achieve goals. It is stressed that, in keeping with the international investment being made in this research endeavor, both the questions asked and the technologies to be developed should be bold. Advantage must be taken of this unique research environment to expand the frontiers of neuroscience. Copyright 1998 Published by Elsevier Science B.V.
NASA Technical Reports Server (NTRS)
Vellinger, J.; Deuser, M.; Hullinger, R.
1995-01-01
The Avian Development Facility (ADF) is designed to provide a 'window' for the study of embryogenesis in space. It allows researchers to determine and then to mitigate or nullify the forces of altered gravity upon embryos when leaving and re-entering the Earth's gravity. The ADF design will allow investigations to begin their incubation after their experiments have achieved orbit, and shut down the experiment and fix specimens before leaving orbit. In effect, the ADF makes every attempt to minimize launch and re-entry effects in order to isolate and preserve the effects of the experimental variable(s) of the space environment.
Neuro- and sensoriphysiological Adaptations to Microgravity using Fish as Model System
NASA Astrophysics Data System (ADS)
Anken, R.
The phylogenetic development of all organisms took place under constant gravity conditions, against which they achieved specific countermeasures for compensation and adaptation. On this background, it is still an open question to which extent altered gravity such as hyper- or microgravity (centrifuge/spaceflight) affects the normal individual development, either on the systemic level of the whole organism or on the level of individual organs or even single cells. The present review provides information on this topic, focusing on the effects of altered gravity on developing fish as model systems even for higher vertebrates including humans, with special emphasis on the effect of altered gravity on behaviour and particularly on the developing brain and vestibular system. Overall, the results speak in favour of the following concept: Short-term altered gravity (˜ 1 day) can induce transient sensorimotor disorders (kinetoses) due to malfunctions of the inner ear, originating from asymmetric otoliths. The regain of normal postural control is likely due to a reweighing of sensory inputs. During long-term altered gravity (several days and more), complex adptations on the level of the central and peripheral vestibular system occur. This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).
Laboratory outreach: student assessment of flow cytometer fluidics in zero gravity.
Crucian, B; Norman, J; Brentz, J; Pietrzyk, R; Sams, C
2000-10-01
Due to the the clinical utility of the flow cytometer, the National Aeronautics and Space Administration (NASA) is interested in the design of a space flight-compatible cytometer for use on long-duration space missions. Because fluid behavior is altered dramatically during space flight, it was deemed necessary to validate the principles of hydrodynamic focusing and laminar flow (cytometer fluidics) in a true microgravity environment. An experiment to validate these properties was conducted by 12 students from Sweetwater High School (Sweetwater, TX) participating in the NASA Reduced Gravity Student Flight Opportunity, Class of 2000. This program allows high school students to gain scientific experience by conducting an experiment on the NASA KC-135 zero gravity laboratory aircraft. The KC-135 creates actual zero-gravity conditions in 30-second intervals by flying a highly inclined parabolic flight path. The experiment was designed by their mentor in the program, the Johnson Space Center's flow cytometrist Brian Crucian, PhD, MT(ASCP). The students performed the experiment, with the mentor, onboard the NASA zero-gravity research aircraft in April 2000.
Can the graviton have a large mass near black holes?
NASA Astrophysics Data System (ADS)
Zhang, Jun; Zhou, Shuang-Yong
2018-04-01
The mass of the graviton, if nonzero, is usually considered to be very small, e.g., of the Hubble scale, from several observational constraints. In this paper, we propose a gravity model where the graviton mass is very small in the usual weak gravity environments, below all the current graviton mass bounds, but becomes much larger in the strong gravity regime such as a black hole's vicinity. For black holes in this model, significant deviations from general relativity emerge very close to the black hole horizon and alter the black hole quasinormal modes, which can be extracted from the ringdown wave form of black hole binary mergers. Also, the enhancement of the graviton mass near the horizon can result in echoes in the late-time ringdown, which can be verified in the upcoming gravitational wave observations of higher sensitivity.
Simulation of Local Blood Flow in Human Brain under Altered Gravity
NASA Technical Reports Server (NTRS)
Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan
2003-01-01
In addition to the altered gravitational forces, specific shapes and connections of arteries in the brain vary in the human population (Cebral et al., 2000; Ferrandez et al., 2002). Considering the geometric variations, pulsatile unsteadiness, and moving walls, computational approach in analyzing altered blood circulation will offer an economical alternative to experiments. This paper presents a computational approach for modeling the local blood flow through the human brain under altered gravity. This computational approach has been verified through steady and unsteady experimental measurements and then applied to the unsteady blood flows through a carotid bifurcation model and an idealized Circle of Willis (COW) configuration under altered gravity conditions.
Delineating the Impact of Weightlessness on Human Physiology Using Computational Models
NASA Technical Reports Server (NTRS)
Kassemi, Mohammad
2015-01-01
Microgravity environment has profound effects on several important human physiological systems. The impact of weightlessness is usually indirect as mediated by changes in the biological fluid flow and transport and alterations in the deformation and stress fields of the compliant tissues. In this context, Fluid-Structural and Fluid-Solid Interaction models provide a valuable tool in delineating the physical origins of the physiological changes so that systematic countermeasures can be devised to reduce their adverse effects. In this presentation, impact of gravity on three human physiological systems will be considered. The first case involves prediction of cardiac shape change and altered stress distributions in weightlessness. The second, presents a fluid-structural-interaction (FSI) analysis and assessment of the vestibular system and explores the reasons behind the unexpected microgravity caloric stimulation test results performed aboard the Skylab. The last case investigates renal stone development in microgravity and the possible impact of re-entry into partial gravity on the development and transport of nucleating, growing, and agglomerating renal calculi in the nephron. Finally, the need for model validation and verification and application of the FSI models to assess the effects of Artificial Gravity (AG) are also briefly discussed.
Experimental studies of protozoan response to intense magnetic fields and forces
NASA Astrophysics Data System (ADS)
Guevorkian, Karine
Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.
Identification and Evaluation of Integration and Cross Cutting Issues Across HRP Risks
NASA Technical Reports Server (NTRS)
Steinberg, S. L.; Shelhamer, Mark
2015-01-01
The HRP Integrated Research Plan contains the research plans for the 32 risks requiring research to characterize and mitigate. These risks to human health and performance in spaceflight are identified by evidence and each one focuses on a single aspect of human physiology or performance. They are further categorized by aspects of the spaceflight environment, such as altered gravity or space radiation, that that play a major role in their likelihood and consequence. From its inception the "integrate" in the Research Plan has denoted the integrated nature of risks to human health and performance, the connectedness of physiological systems within the human body regardless of the spaceflight environment, and the integrated response of the human body to the spaceflight environment. Common characteristics of the spaceflight environment include altered gravity, atmospheres and light/dark cycles, space radiation, isolation, noise, and periods of high or low workload. Long term exposure to this unique environment produces a suite of physiological effects such as stress; vision, neurocognitive and anthropometric changes; circadian misalignment; fluid shifts, deconditioning; immune dysregulation; and altered nutritional requirements. Matrix diagraming was used to systematically identify, analyze and rate the many-to-many relationships between environmental characteristics and the suite of physiological effects. It was also to identify patterns in the relationships of common physiological effects to each other. Analyses of patterns or relationships in these diagrams help to identify issues that cut across multiple risks. Cross cutting issues benefit from a multidisciplinary approach that synthesizes concepts or data from two or more disciplines to identify and characterize risk factors or develop countermeasures relevant to multiple risks. They also help to illuminate possible problem areas that may arise when a countermeasure impacts risks other than those which it was developed to mitigate, or identify groupings of physiological changes that are likely to occur that may impact the overall risk posture.
Lab-On-Chip Clinorotation System for Live-Cell Microscopy Under Simulated Microgravity
NASA Technical Reports Server (NTRS)
Yew, Alvin G.; Atencia, Javier; Chinn, Ben; Hsieh, Adam H.
2013-01-01
Cells in microgravity are subject to mechanical unloading and changes to the surrounding chemical environment. How these factors jointly influence cellular function is not well understood. We can investigate their role using ground-based analogues to spaceflight, where mechanical unloading is simulated through the time-averaged nullification of gravity. The prevailing method for cellular microgravity simulation is to use fluid-filled containers called clinostats. However, conventional clinostats are not designed for temporally tracking cell response, nor are they able to establish dynamic fluid environments. To address these needs, we developed a Clinorotation Time-lapse Microscopy (CTM) system that accommodates lab-on- chip cell culture devices for visualizing time-dependent alterations to cellular behavior. For the purpose of demonstrating CTM, we present preliminary results showing time-dependent differences in cell area between human mesenchymal stem cells (hMSCs) under modeled microgravity and normal gravity.
Lab-On-Chip Clinorotation System for Live-Cell Microscopy Under Simulated Microgravity
NASA Technical Reports Server (NTRS)
Yew, Alvin G.; Atencia, Javier; Chinn, Ben; Hsieh, Adam H.
1980-01-01
Cells in microgravity are subject to mechanical unloading and changes to the surrounding chemical environment. How these factors jointly influence cellular function is not well understood. We can investigate their role using ground-based analogues to spaceflight, where mechanical unloading is simulated through the time-averaged nullification of gravity. The prevailing method for cellular microgravity simulation is to use fluid-filled containers called clinostats. However, conventional clinostats are not designed for temporally tracking cell response, nor are they able to establish dynamic fluid environments. To address these needs, we developed a Clinorotation Time-lapse Microscopy (CTM) system that accommodates lab-on- chip cell culture devices for visualizing time-dependent alterations to cellular behavior. For the purpose of demonstrating CTM, we present preliminary results showing time-dependent differences in cell area between human mesenchymal stem cells (hMSCs) under modeled microgravity and normal gravity.
Gravitational biology and the mammalian circadian timing system
NASA Astrophysics Data System (ADS)
Fuller, Charles A.; Murakami, Dean M.; Sulzman, Frank M.
Mammals have evolved under the influence of many selective pressures. Two of these pressures have been the static force of gravity and the daily variations in the environment due to the rotation of the earth. It is now clear that each of these pressures has led to specific adaptations which influence how organisms respond to changes in either gravity or daily time cues. However, several unpredicted responses to altered gravitational environments occur within the homeostatic and circadian control systems. These results may be particularly relevant to biological and medical issues related to spaceflight. This paper demonstrates that the homeostatic regulation of rat body temperature, heart rate, and activity become depressed following exposure to a 2 G hyperdynamic field, and recovers within 5-6 days. In addition, the circadian rhythms of these same variables exhibit a depression of rhythm amplitude; however, recovery required a minimum of 7 days.
Simulated Microgravity Induced Cytoskeletal Rearrangements are Modulated by Protooncogenes
NASA Technical Reports Server (NTRS)
Melhado, C. D.; Sanford, G. L.; Bosah, F.; Harris-Hooker, S.
1998-01-01
Microgravity is the environment living systems encounter during space flight and gravitational unloading is the effect of this environment on living systems. The cell, being a multiphasic chemical system, is a useful starting point to study the potential impact of gravity unloading on physiological function. In the absence of gravity, sedimentation of organelles including chromosomes, mitochondria, nuclei, the Golgi apparatus, vacuoles, and the endoplasmic reticulum may be affected. Most of these organelles, however, are somewhat held in place by cytoskeleton. Hansen and Igber suggest that intermediate filaments act to stabilize the nuleus against rotational movement, and integrate cell and nuclear structure. The tensegrity theory supports the idea that mechanical or physical forces alters the cytoskeletal structures of a cell resulting in the changes in cell: matrix interactions and receptor-signaling coupling. This type of stress to the cytoskeleton may be largely responsible regulating cell shape, growth, movement and metabolism. Mouse MC3T3 El cells under microgravity exhibited significant cytoskeletal changes and alterations in cell growth. The alterations in cytoskeleton architecture may be due to changes in the expression of actin related proteins or integrins. Philopott and coworkers reported on changes in the distribution of microtubule and cytoskeleton elements in the cells of heart tissue from space flight rats and those centrifuged at 1.7g. Other researchers have showed that microgravity reduced EGF-induced c-fos and c-jun expression compared to 1 g controls. Since c-fos and c-jun are known regulators of cell growth, it is likely that altered signal transduction involving protooncogenes may play a crucial role in the reduced growth and alterations in cytoskeletal arrangements found during space flight. It is clear that a microgravity environment induces a number of changes in cell shape, cell surface molecules, gene expression, and cytoskeletal reorganization. However the underlying mechanism for these cellular changes have not been clearly defined. We examined alterations in endothelial migration, and cytoskeleton architecture (microfilamentous f-actin and vimentin-rich- intermediate filaments) following wounding under simulated microgravity. We also examined the possibility that altered signal transduction pathways, involving protooncogenes, may play a crucial role in microgravity-induced retardation of cell migration and alterations in cytoskeletal organization. We hypothesize that, based on the tensegrity theory, cytoskeletal organization respond to gravitational unloading and through this response, cell behavior, function and gene expression are modified.
NASA Technical Reports Server (NTRS)
Kondrachuk, Alexander V.; Boyle, Richard D.
2005-01-01
The variety of the effects of altered gravity (AG) on development and function of gravireceptors cannot be explained by simple feedback mechanism that correlates gravity level and weight of test mass. The reaction of organisms to the change of gravity depends on the phase of their development. To predict this reaction we need to know the details of the mechanisms of gravireceptor formation
Prevention of bone loss and muscle atrophy during manned space flight.
Keller, T S; Strauss, A M; Szpalski, M
1992-04-01
This paper reviews the biomedical literature concerning human adaptation to nonterrestrial environments, and focuses on the definition of practical countermeasures necessary for long-term survival on the Moon, Mars and during long-term space missions and exploration. Of particular importance is the development of clinically relevant countermeasures for prevention of pathophysiological changes in the musculoskeletal and cardiopulmonary systems under these conditions. The countermeasures which are proposed are based upon a combination of biomechanical and theoretical analyses. The biomechanical analyses are based upon clinical measurements of human skeletal density changes associated with weight lifting as well as clinical studies of human strength and fitness currently being conducted using an isoinertial trunk dynamometer. The theoretical analysis stems from a mathematical model for bone loss in altered gravity environments that we have begun to develop. These analyses provide guidelines for the development of practical therapeutic treatments (exercise, artificial gravity) designed to minimize musculoskeletal deconditioning associated with less than Earth gravity environments. Our findings suggest that very intensive exercise, which impose high loads on the musculoskeletal system for brief periods, may be more efficient in preserving bone and skeletal muscle conditioning within "safe" limits for longer periods than low intensity activities such as treadmill running and bicycling. A 1/6 to 1/7-g gravitational environment is predicted to be sufficient to preserve bone strength above the fracture risk level. Basic biomedical support of manned space missions, Moon and Mars bases should include routine assessment of skeletal density, muscle strength, cardiac output and total energy expenditure. This information can be used to periodically re-evaluate exercise programs and or artificial gravity requirements for crew members.
Vector-averaged gravity alters myocyte and neuron properties in cell culture
NASA Technical Reports Server (NTRS)
Gruener, Raphael; Hoeger, Glenn
1991-01-01
The effect of changes in the gravitational field of developing neurons and myocytes on the development of these cells was investigated using observations of rotated cultures of embryonic spinal neurons and myocytes in a horizontal clinostat, in which rotation produces, from the cells' perspective, a 'vector-free' gravity environment by continous averaging of the vector, thus simulating the microgravity of space. It was found that, at rotation rates between 1 and 50 rpm, cellular and nuclear areas of myocytes become significantly enlarged and the number of presumptive nucleoli increase; in neurons, frequent and large swellings appeared along neuritic shafts. Some of these changes were reversible after the cessation of rotation.
NASA Technical Reports Server (NTRS)
Spooner, Brian S.; Guikema, James A.; Barnes, Grady
1990-01-01
Alpha-fetoprotein (AFP), a single-chain polypeptide which is synthesized by the liver and yolk sac of the human fetus, provided a model ligand for assessing the effects of microgravity on ligand binding to surface-immobilized model receptor molecules. Monoclonal antibodies, used as receptors for AFP, were immobilized by covalent attachment to latex microparticles. Zero gravity environment was obtained by parabolic flight aboard NASA 930, a modified KC-135 aircraft. Buring the onset of an episode of zero gravity, ligand and receptor were mixed. Timed incubation (20 s) was terminated by centrifugation, the supernatant removed, and microparticies were assessed for bound AFP by immunochemical methods. The extent of binding was not influenced by microgravity, when compared with 1-G controls, which suggests that aberrant cellular activities observed in microgravity are not the simple expression of altered macromolecular interactions.
Soybean cotyledon starch metabolism is sensitive to altered gravity conditions
NASA Technical Reports Server (NTRS)
Brown, C. S.; Piastuch, W. C.; Knott, W. M.
1994-01-01
We have demonstrated that etiolated soybean seedlings grown under the altered gravity conditions of clinorotation (1 rpm) and centrifugation (5xg) exhibit changes in starch metabolism. Cotyledon starch concentration was lower (-28%) in clinorotated plants and higher (+24%) in centrifuged plants than in vertical control plants. The activity of ADP-glucose pyrophosphorylase in the cotyledons was affected in a similar way, i.e. lower (-37%) in the clinorotated plants and higher (+22%) in the centrifuged plants. Other starch metabolic enzyme activities, starch synthase, starch phosphorylase and total hydrolase were not affected by the altered gravity treatments. We conclude that the observed changes in starch concentrations were primarily due to gravity-mediated differences in ADP-glucose pyrophosphorylase activity.
NASA Technical Reports Server (NTRS)
DAndrea, Susan E.; Kahelin, Michael W.; Horowitz, Jay G.; OConnor, Philip A.
2004-01-01
While the neurovestibular system is capable of adapting to altered environments such as microgravity, the adaptive state achieved in space in inadequate for 1G. This leads to giant and postural instabilities when returning to a gravity environment and may create serious problems in future mission to Mars. New methods are needed to improve the understanding of the adaptive capabilities of the human neurovestibular system and to develop more effective countermeasures. The concept behind the current study is that by challenging the neurovestibular system while walking or running a treadmill can help to read just the relationship between the visual, vestibular and proprioceptive signals that are altered in a microgravity environment. As a countermeasure, this device could also benefit the musculoskeletal and cardiovascular systems and at the same time decrease the overall time spent exercising. The overall goal of this research is to design, develop, build and test a dual track treadmill, which utilizes virtual reality, VR, displays.
NASA Technical Reports Server (NTRS)
DAndrea, Susan E.; Kahelin, Michael W.; Horowitz, Jay G.; OConnor, Philip A.
2004-01-01
While the neurovestibular system is capable of adapting to altered environments such as microgravity, the adaptive state achieved in space in inadequate for 1G. This leads to gait and postural instabilities when returning to a gravity environment and may create serious problems in future missions to Mars. New methods are needed to improve the understanding of the adaptive capabilities of the human neurovestibular system and to develop more effective countermeasures. The concept behind the current study is that by challenging the neurovestibular system while walking or running, a treadmill can help to readjust the relationship between the visual, vestibular and proprioceptive signals that are altered in a microgravity environment. As a countermeasure, this device could also benefit the musculoskeletal and cardiovascular systems and at the same time decrease the overall time spent exercising. The overall goal of this research is to design, develop, build and test a dual track treadmill, which utilizes virtual reality,
High Sensitivity Gravity Measurements in the Adverse Environment of Oil Wells
NASA Astrophysics Data System (ADS)
Pfutzner, Harold
2014-03-01
Bulk density is a primary measurement within oil and gas reservoirs and is the basis of most reserves calculations by oil companies. The measurement is performed with a gamma-ray source and two scintillation gamma-ray detectors from within newly drilled exploration and production wells. This nuclear density measurement, while very precise is also very shallow and is therefore susceptible to errors due to any alteration of the formation and fluids in the vicinity of the borehole caused by the drilling process. Measuring acceleration due to gravity along a well provides a direct measure of bulk density with a very large depth of investigation that makes it practically immune to errors from near-borehole effects. Advances in gravity sensors and associated mechanics and electronics provide an opportunity for routine borehole gravity measurements with comparable density precision to the nuclear density measurement and with sufficient ruggedness to survive the rough handling and high temperatures experienced in oil well logging. We will describe a borehole gravity meter and its use under very realistic conditions in an oil well in Saudi Arabia. The density measurements will be presented. Alberto Marsala (2), Paul Wanjau (1), Olivier Moyal (1), and Justin Mlcak (1); (1) Schlumberger, (2) Saudi Aramco.
NASA Technical Reports Server (NTRS)
Wolgemuth, D. J.; Murashov, A. K.
1995-01-01
The extent to which gravity, and especially the lack thereof, can affect normal development in higher organisms is poorly understood. Underlying this question is the assumption that normal development depends on the embryo's ability to maintain a programmed temporal and spatial coordination of morphogenetic events. There are several reports documenting the apparently normal development of several vertebrate species, including mammals, under conditions of exposure to space flight during various periods of the development process. Evidence to the contrary also exists and it is therefore likely that some alterations in morphology do occur in a microgravity environment. Although subsequent development may appear overtly normal, more subtle abnormalities result. In all studies, the evaluation is restricted by the few numbers of specimens that can be examined and the relatively insensitive techniques for assessing potentially subtle effects. In the present discussion, we summarize some observations of mammalian development made in microgravity and consider which stages might be expected to be differentially sensitive to altered gravity conditions. While we emphasize mammalian development, we discuss the suitability of another model system for examining such effects in a cross-species context. Furthermore, we consider recent developments in our understanding of the molecular genetic program regulating embryogenesis that could serve as markers for assessing perturbations of development.
ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight
NASA Astrophysics Data System (ADS)
Zupanska, Agata K.; Schultz, Eric R.; Yao, JiQiang; Sng, Natasha J.; Zhou, Mingqi; Callaham, Jordan B.; Ferl, Robert J.; Paul, Anna-Lisa
2017-11-01
Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight.
Association between gravitational force and tissue metabolism in periparturient rats
NASA Technical Reports Server (NTRS)
Zakrzewska, E. I.; Maple, R.; Lintault, L.; Wade, C.; Baer, L.; Ronca, A.; Plaut, K.
2004-01-01
Recently, interest in mammalian reproduction and offspring survival in altered gravity has been growing. Because successful lactation is critical for mammalian neonate survival, we have been studying the effect of gravity metabolism. We have shown an exponential relationship between glucose metabolic rate in mammary tissue of periparturient rats and an increase in gravity load. In this study we showed that changes in mammary metabolic rate due to gravity force were accompanied by a decrease in glucose metabolism in adipose tissue and by a reduced size of adipocytes. We assume that these changes are likely due to changes in prolactin or leptin levels related to altered gravity load.
NASA Technical Reports Server (NTRS)
West, J. B.; Elliott, A. R.; Guy, H. J.; Prisk, G. K.
1997-01-01
The lung is exquisitely sensitive to gravity, and so it is of interest to know how its function is altered in the weightlessness of space. Studies on National Aeronautics and Space Administration (NASA) Spacelabs during the last 4 years have provided the first comprehensive data on the extensive changes in pulmonary function that occur in sustained microgravity. Measurements of pulmonary function were made on astronauts during space shuttle flights lasting 9 and 14 days and were compared with extensive ground-based measurements before and after the flights. Compared with preflight measurements, cardiac output increased by 18% during space flight, and stroke volume increased by 46%. Paradoxically, the increase in stroke volume occurred in the face of reductions in central venous pressure and circulating blood volume. Diffusing capacity increased by 28%, and the increase in the diffusing capacity of the alveolar membrane was unexpectedly large based on findings in normal gravity. The change in the alveolar membrane may reflect the effects of uniform filling of the pulmonary capillary bed. Distributions of blood flow and ventilation throughout the lung were more uniform in space, but some unevenness remained, indicating the importance of nongravitational factors. A surprising finding was that airway closing volume was approximately the same in microgravity and in normal gravity, emphasizing the importance of mechanical properties of the airways in determining whether they close. Residual volume was unexpectedly reduced by 18% in microgravity, possibly because of uniform alveolar expansion. The findings indicate that pulmonary function is greatly altered in microgravity, but none of the changes observed so far will apparently limit long-term space flight. In addition, the data help to clarify how gravity affects pulmonary function in the normal gravity environment on Earth.
Computational characterization of fracture healing under reduced gravity loading conditions.
Gadomski, Benjamin C; Lerner, Zachary F; Browning, Raymond C; Easley, Jeremiah T; Palmer, Ross H; Puttlitz, Christian M
2016-07-01
The literature is deficient with regard to how the localized mechanical environment of skeletal tissue is altered during reduced gravitational loading and how these alterations affect fracture healing. Thus, a finite element model of the ovine hindlimb was created to characterize the local mechanical environment responsible for the inhibited fracture healing observed under experimental simulated hypogravity conditions. Following convergence and verification studies, hydrostatic pressure and strain within a diaphyseal fracture of the metatarsus were evaluated for models under both 1 and 0.25 g loading environments and compared to results of a related in vivo study. Results of the study suggest that reductions in hydrostatic pressure and strain of the healing fracture for animals exposed to reduced gravitational loading conditions contributed to an inhibited healing process, with animals exposed to the simulated hypogravity environment subsequently initiating an intramembranous bone formation process rather than the typical endochondral ossification healing process experienced by animals healing in a 1 g gravitational environment. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1206-1215, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Beaton, Kara H.; Huffman, W. Cary; Schubert, Michael C.
2015-01-01
Increased ocular positioning misalignments upon exposure to altered gravity levels (g-levels) have been strongly correlated with space motion sickness (SMS) severity, possibly due to underlying otolith asymmetries uncompensated in novel gravitational environments. We investigated vertical and torsional ocular positioning misalignments elicited by the 0 and 1.8 g g-levels of parabolic flight and used these data to develop a computational model to describe how such misalignments might arise. Ocular misalignments were inferred through two perceptual nulling tasks: Vertical Alignment Nulling (VAN) and Torsional Alignment Nulling (TAN). All test subjects exhibited significant differences in ocular misalignments in the novel g-levels, which we postulate to be the result of healthy individuals with 1 g-tuned central compensatory mechanisms unadapted to the parabolic flight environment. Furthermore, the magnitude and direction of ocular misalignments in hypo-g and hyper-g, in comparison to 1 g, were nonlinear and nonmonotonic. Previous linear models of central compensation do not predict this. Here we show that a single model of the form a + bgε, where a, b, and ε are the model parameters and g is the current g-level, accounts for both the vertical and torsional ocular misalignment data observed inflight. Furthering our understanding of oculomotor control is critical for the development of interventions that promote adaptation in spaceflight (e.g., countermeasures for novel g-level exposure) and terrestrial (e.g., rehabilitation protocols for vestibular pathology) environments. PMID:26082691
Genetic Analysis of Mice Skin Exposed by Hyper-Gravity
NASA Astrophysics Data System (ADS)
Takahashi, Rika; Terada, Masahiro; Seki, Masaya; Higashibata, Akira; Majima, Hideyuki J.; Ohira, Yoshinobu; Mukai, Chiaki; Ishioka, Noriaki
2013-02-01
In the space environment, physiological alterations, such as low bone density, muscle weakness and decreased immunity, are caused by microgravity and cosmic radiation. On the other hand, it is known that the leg muscles are hypertrophy by 2G-gravity. An understanding of the effects on human body from microgravity to hyper-gravity is very important. Recently, the Japan Aerospace Exploration Agency (JAXA) has started a project to detect the changes on gene expression and mineral metabolism caused by microgravity by analyzing the hair of astronauts who stay in the international Space Station (ISS) for a long time. From these results of human hair’s research, the genetic effects of human hair roots by microgravity will become clear. However, it is unclear how the gene expression of hair roots was effected by hypergravity. Therefore, in this experiment, we analyzed the effect on mice skin contained hair roots by comparing microgravity or hypergravity exposed mice. The purpose of this experiment is to evaluate the genetic effects on mice skin by microgravity or 2G-gravity. The samples were taken from mice exposed to space flight (FL) or hypergravity environment (2G) for 3-months, respectively. The extracted and amplified RNA from these mice skin was used to DNA microarray analysis. in this experiment, we analyzed the effect of gravity by using mice skin contained hair roots, which exposed space (FL) and hyper-gravity (2G) for 3 months and each control. By DNA microarray analysis, we found the common 98 genes changed in both FL and 2G. Among these 98 genes, the functions and pathways were identified by Gene Ontology (GO) analysis and Ingenuity Pathways Analysis (IPA) software. Next, we focused the one of the identified pathways and compared the effects on each molecules in this pathways by the different environments, such as FL and 2G. As the results, we could detect some interesting molecules, which might be depended on the gravity levels. In addition, to investigate the relationships between genes and protein expression, the proteome analysis was performed. From the result of 2-dimentional electrophoresis, we could detect the some different spots between FL and 2G. These identifications are now in progress using by MALDI-TOF-MS/MS. These results suggested that many genes or proteins on the mice skin might be effected by the different gravity levels.
Vascular biology in altered gravity conditions
NASA Astrophysics Data System (ADS)
Bradamante, Silvia; Maier, Janette A. M.; Duncker, Dirk J.
2005-10-01
The physical environment of Endothelial Cells profoundly affects their gene expression, structure, function, growth differentiation and apoptosis. However, the mechanisms by which the genetic and local growth determinants driving morphogenesis are established and maintained remain unknown. Understanding how gravity affects vascular cells will offer new insights for novel therapeutical approaches for cardiovascular disease in general. In terms of tissue engineering and stem-cell therapy, significant future developments will depend on a profound understanding of the cellular and molecular basis of angiogenesis and of the biology of circulating Endothelial Precursor Cells. this MAP project has demonstrated how modelled microgravity influences endothelial proliferation and differentiation with the involvement of anti-angiogenic factors that may be responsible for the non-spontaneous formation of blood vessels.
Studies Toward Birth and Early Mammalian Development in Space
NASA Technical Reports Server (NTRS)
Ronca, April E.; Dalton, Bonnie (Technical Monitor)
2002-01-01
Successful reproduction is the hallmark of a species' ability to adapt to its environment and must be realized to sustain life beyond Earth. Before taking this immense step, we need to understand the effects of altered gravity on critical phases of mammalian reproduction, viz., those events surrounding pregnancy, birth and the early development of offspring. No mammal has yet undergone birth in space. however studies spanning the gravity continuum from 0 to 2-g are revealing insights into how birth and early postnatal development will proceed in space. In this presentation, I will report the results of behavioral studies of rat mothers and offspring exposed from mid- to late pregnancy to either hypogravity (0-g) or hypergravity (1.5 or 2-g).
Skeleton growth under uniformly distributed force conditions: producing spherical sea urchins
NASA Astrophysics Data System (ADS)
Cheng, Polly; Kambli, Ankita; Stone, Johnny
2017-10-01
Sea urchin skeletons, or tests, comprise rigid calcareous plates, interlocked and sutured together with collagen fibres. The tests are malleable due to mutability in the collagen fibres that loosen during active feeding, yielding interplate gaps. We designed an extraterrestrial simulation experiment wherein we subjected actively growing sea urchins to one factor associated with zero-gravity environments, by growing them under conditions in which reactionary gravitational forces were balanced, and observed how their tests responded. Preventing tests from adhering to surfaces during active growth produced more-spherical bodies, realized as increased height-to-diameter ratios. Sea urchin tests constitute ideal systems for obtaining data that could be useful in extraterrestrial biology research, particularly in how skeletons grow under altered-gravity conditions.
Effects of background gravity stimuli on gravity-controlled behavior
NASA Technical Reports Server (NTRS)
Mccoy, D. F.
1976-01-01
Physiological and developmental effects of altered gravity were researched. The stimulus properties of gravity have been found to possess reinforcing and aversive properties. Experimental approaches taken, used animals placed into fields of artificial gravity, in the form of parabolic or spiral centrifuges. Gravity preferences were noted and it was concluded that the psychophysics of gravity and background factors which support these behaviors should be further explored.
Endocrine and metabolic changes in payload specialist (L-1)
NASA Technical Reports Server (NTRS)
Matsui, Nobuo
1993-01-01
The endocrine system plays an important role in the adaptation to unusual environments by secreting hormones to control metabolism. Since human beings have long evolved on the surface of the Earth under a gravity environment, the weightless environment must be quite unusual for them. The purpose of this experiment is to study the mechanisms of human adaptation to a weightless environment from endocrine and metabolic changes. Our study plan is focused on four major physiological changes which were reported during past space flights or which may be expected to occur under that condition: (1) hormone and metabolic changes associated with fluid shift; (2) bone demineralization and muscle atrophy; (3) altered circadian rhythm; and (4) stress reaction during space flight.
Auditory and Vestibular Issues Related to Human Spaceflight
NASA Technical Reports Server (NTRS)
Danielson, Richard W.; Wood, Scott J.
2009-01-01
Human spaceflight provides unique opportunities to study human vestibular and auditory systems. This session will discuss 1) vestibular adaptive processes reflected by pronounced perceptual and motor coordination problems during, and after, space missions; 2) vestibular diagnostic and rehabilitative techniques (used to promote recovery after living in altered gravity environments) that may be relevant to treatment of vestibular disorders on earth; and 3) unique acoustical challenges to hearing loss prevention and crew performance during spaceflight missions.
Link, B M; Cosgrove, D J
1999-12-01
In young cucumber seedlings, the peg is a polar out-growth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. Previous studies have indicated that peg formation is gravity dependent. In this study we analyzed peg formation in cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) grown under conditions of normal gravity, microgravity, and simulated microgravity (clinostat rotation). Seeds were germinated on the ground, in clinostats and on board the space shuttle (STS 95) for 1-2 days, frozen and subsequently examined for their stage of development, degree of hook formation, number of pegs formed, and peg morphology. The frequency of peg formation in space grown seedlings was found to be nearly identical to that of clinostat grown seedlings and to differ from that of seedlings germinated under normal gravity only in a minority of cases; approximately 6% of the seedlings formed two pegs and nearly 2% of the seedlings lacked pegs, whereas such abnormalities did not occur in ground controls. The degree of hook formation was found to be less pronounced for space grown seedlings, compared to clinostat grown seedlings, indicating a greater degree of decoupling between peg formation and hook formation in space. Nonetheless, in all seedlings having single pegs and a hook, the peg was found to be positioned correctly on the inside of the hook, showing that there is coordinate development even in microgravity environments. Peg morphologies were altered in space grown samples, with the pegs having a blunt appearance and many pegs showing alterations in expansion, with the peg extending out over the edges of the seed coat and downwards. These phenotypes were not observed in clinostat or ground grown seedlings.
NASA Technical Reports Server (NTRS)
Link, B. M.; Cosgrove, D. J.
1999-01-01
In young cucumber seedlings, the peg is a polar out-growth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. Previous studies have indicated that peg formation is gravity dependent. In this study we analyzed peg formation in cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) grown under conditions of normal gravity, microgravity, and simulated microgravity (clinostat rotation). Seeds were germinated on the ground, in clinostats and on board the space shuttle (STS 95) for 1-2 days, frozen and subsequently examined for their stage of development, degree of hook formation, number of pegs formed, and peg morphology. The frequency of peg formation in space grown seedlings was found to be nearly identical to that of clinostat grown seedlings and to differ from that of seedlings germinated under normal gravity only in a minority of cases; approximately 6% of the seedlings formed two pegs and nearly 2% of the seedlings lacked pegs, whereas such abnormalities did not occur in ground controls. The degree of hook formation was found to be less pronounced for space grown seedlings, compared to clinostat grown seedlings, indicating a greater degree of decoupling between peg formation and hook formation in space. Nonetheless, in all seedlings having single pegs and a hook, the peg was found to be positioned correctly on the inside of the hook, showing that there is coordinate development even in microgravity environments. Peg morphologies were altered in space grown samples, with the pegs having a blunt appearance and many pegs showing alterations in expansion, with the peg extending out over the edges of the seed coat and downwards. These phenotypes were not observed in clinostat or ground grown seedlings.
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Baer, L. A.; Wade, C. E.
2003-01-01
Rats exposed to spaceflight or centrifugation from mid-to late pregnancy undergo either more or fewer labor contractions at birth, respectively, as compared to those in normal Earth gravity (1-g). In this paper, we report the development and validation of a new telemetric method for quantifying intrauterine pressure (IUP) in freely-moving, late pregnant and parturient rats. We plan to utilize this technique for studies of labor in altered gravity, specifically, to ascertain forces of uterine during birth, which we believe may be changed in micro- and hypergravity. The technique we describe yields precise, reliable measures of the forces experienced by rat fetuses during parturition. A small, surgically-implantable telemetric pressure sensor was fitted within a fluid-filled balloon. The total volume of the sensor-balloon assembly matched that of a full term rat fetus. Real-time videorecordings of sensor-implanted rat dams and non- implanted control dams enabled us to characterize effects of the intrauterine implant on behavioral aspects of parturition. Contraction frequency, duration, pup-to-pup birth intervals and pup-oriented activities of the dams measured during the peri-birth period were unaffected by the sensor implant. These findings establish intrauterine telemetry as a reliable, non-invasive technique for quantifying intrauterine pressures associated with parturition on Earth and in altered gravity environments. This new technology, readily amenable to spaceflight and centrifugation platforms, will enable us to answer key questions regarding the role of altered labor frequency labor in the adaptation of newborn mammals to hypo- and hypergravity.
Gravity as a biochemical determinant
NASA Technical Reports Server (NTRS)
Siegel, S. M.
1979-01-01
The existence of obvious morphological and physiological changes in living systems exposed to altered gravity immediately informs us that prior changes have taken place in the chemistry of exposed cells, tissues and organs. These changes include transients that return more or less promptly to the norm when the system is restored to the terrestrial g-field. For example, altered serum hormone and electrolyte levels in man, which appear to reflect successful adaptation to the conditions of orbital weightlessness, disappear shortly after return to Earth. Other changes--in mineral and protein constituents of the skeletal system in man, and cell wall composition in plants--are more persistent or even permanent. Hypogravitational departures from the norm include not only "weightlessness" as achieved in orbit, but also experimental modes of compensation, on the clinostat or by flotation. These techniques are useful in the study of hypogravity but cannot replace fully the weightless environment. Plant ethylene and peroxidase both increase under orbital, clinostat and/or flotation conditions whereas 3-phosphoglyceraldehyde-dehydrogenase increases under orbital but not clinostat conditions; cytochrome reductase and malic dehydrogenase levels are affected by the clinostat, but not by actual weightless conditions. How do the altered organismal biochemistries induced by the centrifuge and the clinostat relate to one another? Does gravity operate on living systems as a continuous variable from 0 to superterrestrial values, or do deviations from g(earth) generate non-uniform, discontinuous stress responses, irrespective of sign? In plants, measurements of wall lignin content and peroxidase activity yield opposite answers. Given the limited data so far available we will consider the meaning of these contradictions.
Topics in space gerontology: Effects of altered gravity and the problem of biological age
NASA Technical Reports Server (NTRS)
Economos, A. C.
1982-01-01
The use of altered gravity experimentation as a gerontological research tool is examined and a rationale for a systems approach to the adaptation to spaceflight is presented. The dependence of adaptation capacity on biological age is also discussed.
Residual acceleration data on IML-1: Development of a data reduction and dissemination plan
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Alexander, J. Iwan D.; Wolf, Randy
1992-01-01
The need to record some measure of the low-gravity environment of an orbiting space vehicle was recognized at an early stage of the U.S. Space Program. Such information was considered important for both the assessment of an astronaut's physical condition during and after space missions and the analysis of the fluid physics, materials processing, and biological sciences experiments run in space. Various measurement systems were developed and flown on space platforms beginning in the early 1970's. Similar in concept to land based seismometers that measure vibrations caused by earthquakes and explosions, accelerometers mounted on orbiting space vehicles measure vibrations in and of the vehicle due to internal and external sources, as well as vibrations in a sensor's relative acceleration with respect to the vehicle to which it is attached. The data collected over the years have helped to alter the perception of gravity on-board a space vehicle from the public's early concept of zero-gravity to the science community's evolution of thought from microgravity to milligravity to g-jitter or vibrational environment. Since the advent of the Shuttle Orbiter Program, especially since the start of Spacelab flights dedicated to scientific investigations, the interest in measuring the low-gravity environment in which experiments are run has increased. This interest led to the development and flight of numerous accelerometer systems dedicated to specific experiments. It also prompted the development of the NASA MSAD-sponsored Space Acceleration Measurement System (SAMS). The first SAMS units flew in the Spacelab on STS-40 in June 1991 in support of the first Spacelab Life Sciences mission (SLS-1). SAMS is currently manifested to fly on all future Spacelab missions.
Partial Gravity Biological Tether Experiment on the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Wallace, S.; Graham, L.
2018-02-01
A tether-based partial gravity bacterial biological experiment represents a viable biological experiment to investigate the fundamental internal cellular processes between altered levels of gravity and cellular adaption.
The behavior of surface tension on steady-state rotating fluids in the low gravity environments
NASA Technical Reports Server (NTRS)
Hung, R. J.; Leslie, Fred W.
1987-01-01
The effect of surface tension on steady-state rotating fluids in a low gravity environment is studied. All the values of the physical parameters used in these calculations, except in the low gravity environments, are based on the measurements carried out by Leslie (1985) in the low gravity environment of a free-falling aircraft. The profile of the interface of two fluids is derived from Laplace's equation relating the pressure drop across an interface to the radii of curvature which has been applied to a low gravity rotating bubble that contacts the container boundary. The interface shape depends on the ratio of gravity to surface tension forces, the ratio of centrifugal to surface tension forces, the contact radius of the interface to the boundary, and the contact angle. The shape of the bubble is symmetric about its equator in a zero-gravity environment. This symmetry disappears and gradually shifts to parabolic profiles as the gravity environment becomes non-zero. The location of the maximum radius of the bubble moves upward from the center of the depth toward the top boundary of the cylinder as gravity increases. The contact radius of interface to the boundary r0 at the top side of cylinder increases and r0 at the bottom side of the cylinder decreases as the gravity environment increases from zero to 1 g.
Raichlen, David A
2008-09-01
The dynamic similarity hypothesis (DSH) suggests that differences in animal locomotor biomechanics are due mostly to differences in size. According to the DSH, when the ratios of inertial to gravitational forces are equal between two animals that differ in size [e.g. at equal Froude numbers, where Froude = velocity2/(gravity x hip height)], their movements can be made similar by multiplying all time durations by one constant, all forces by a second constant and all linear distances by a third constant. The DSH has been generally supported by numerous comparative studies showing that as inertial forces differ (i.e. differences in the centripetal force acting on the animal due to variation in hip heights), animals walk with dynamic similarity. However, humans walking in simulated reduced gravity do not walk with dynamically similar kinematics. The simulated gravity experiments did not completely account for the effects of gravity on all body segments, and the importance of gravity in the DSH requires further examination. This study uses a kinematic model to predict the effects of gravity on human locomotion, taking into account both the effects of gravitational forces on the upper body and on the limbs. Results show that dynamic similarity is maintained in altered gravitational environments. Thus, the DSH does account for differences in the inertial forces governing locomotion (e.g. differences in hip height) as well as differences in the gravitational forces governing locomotion.
Klaus, D M
2001-06-01
The environment created on Earth within a clinostat or Rotating Wall Vessel (RWV) bioreactor is often referred to as "simulated microgravity". Both devices utilize constant reorientation to effectively nullify cumulative sedimentation of particles. Neither, however, can fully reproduce the concurrent lack of structural deformation, displacement of intercellular components and/or reduced mass transfer in the extracellular fluid that occur in actual weightlessness. Parameters including density, viscosity, and even container geometry must each be considered to determine the overall gravity-dependent effects produced by either a clinostat or the RWV bioreactor; in addition, the intended application of these two devices differs considerably. A state of particle "motionlessness" relative to the surrounding bulk fluid, which is nearly analogous to the extracellular environment encountered under weightless conditions, can theoretically be achieved through clinorotation. The RWV bioreactor, on the other hand, while similarly maintaining cells in suspension as they continually "fall" through the medium under 1 g conditions, can also purposefully induce a perfusion of nutrients to and waste from the culture. A clinostat, therefore, is typically used in an attempt to reproduce the quiescent, unstirred fluid conditions achievable on orbit; while the RWV bioreactor ideally creates a low shear, but necessarily mixed, fluid environment that is optimized for suspension culture and tissue growth. Other techniques for exploring altered inertial environments, such as freefall, neutral buoyancy and electromagnetic levitation, can also provide unique insight into how gravity affects biological systems. Ultimately, all underlying biophysical principles thought to give rise to gravity-dependent physiological responses must be identified and thoroughly examined in order to accurately interpret data from flight experiments or ground-based microgravity analogs.
Mechanisms of Sensorimotor Adaptation to Centrifugation
NASA Technical Reports Server (NTRS)
Paloski, W. H.; Wood, S. J.; Kaufman, G. D.
1999-01-01
We postulate that centripetal acceleration induced by centrifugation can be used as an inflight sensorimotor countermeasure to retain and/or promote appropriate crewmember responses to sustained changes in gravito-inertial force conditions. Active voluntary motion is required to promote vestibular system conditioning, and both visual and graviceptor sensory feedback are critical for evaluating internal representations of spatial orientation. The goal of our investigation is to use centrifugation to develop an analog to the conflicting visual/gravito-inertial force environment experienced during space flight, and to use voluntary head movements during centrifugation to study mechanisms of adaptation to altered gravity environments. We address the following two hypotheses: (1) Discordant canal-otolith feedback during head movements in a hypergravity tilted environment will cause a reorganization of the spatial processing required for multisensory integration and motor control, resulting in decreased postural stability upon return to normal gravity environment. (2) Adaptation to this "gravito-inertial tilt distortion" will result in a negative after-effect, and readaptation will be expressed by return of postural stability to baseline conditions. During the third year of our grant we concentrated on examining changes in balance control following 90-180 min of centrifugation at 1.4 9. We also began a control study in which we exposed subjects to 90 min of sustained roll tilt in a static (non-rotating) chair. This allowed us to examine adaptation to roll tilt without the hypergravity induced by centrifugation. To these ends, we addressed the question: Is gravity an internal calibration reference for postural control? The remainder of this report is limited to presenting preliminary findings from this study.
Plant mineral nutrition, gas exchange and photosynthesis in space: A review
NASA Astrophysics Data System (ADS)
Wolff, S. A.; Coelho, L. H.; Zabrodina, M.; Brinckmann, E.; Kittang, A.-I.
2013-02-01
Successful growth and development of higher plants in space rely on adequate availability and uptake of water and nutrients, and efficient energy distribution through photosynthesis and gas exchange. In the present review, literature has been reviewed to assemble the relevant knowledge within space plant research for future planetary missions. Focus has been on fractional gravity, space radiation, magnetic fields and ultimately a combined effect of these factors on gas exchange, photosynthesis and transport of water and solutes. Reduced gravity prevents buoyancy driven thermal convection in the physical environment around the plant and alters transport and exchange of gases and liquids between the plant and its surroundings. In space experiments, indications of root zone hypoxia have frequently been reported, but studies on the influences of the space environment on plant nutrition and water transport are limited or inconclusive. Some studies indicate that uptake of potassium is elevated when plants are grown under microgravity conditions. Based on the current knowledge, gas exchange, metabolism and photosynthesis seem to work properly in space when plants are provided with a well stirred atmosphere and grown at moderate light levels. Effects of space radiation on plant metabolism, however, have not been studied so far in orbit. Ground experiments indicated that shielding from the Earth's magnetic field alters plant gas exchange and metabolism, though more studies are required to understand the effects of magnetic fields on plant growth. It has been shown that plants can grow and reproduce in the space environment and adapt to space conditions. However, the influences of the space environment may result in a long term effect over multiple generations or have an impact on the plants' role as food and part of a regenerative life support system. Suggestions for future plant biology research in space are discussed.
Bugbee, William D; Pulido, Pamela A; Goldberg, Timothy; D'Lima, Darryl D
2016-01-01
The objective was to determine the safety, feasibility, and effects of anti-gravity gait training on functional outcomes (Knee Injury and Osteoarthritis Outcome Score [KOOS], the Timed Up and Go test [TUG], Numerical Rating Scale [NRS] for pain) with the AlterG® Anti-Gravity Treadmill® device for total knee arthroplasty (TKA) rehabilitation. Subjects (N = 30) were randomized to land-based vs anti-gravity gait training over 4 weeks of physical therapy after TKA. Adverse events, complications, and therapist satisfaction were recorded. All patients completed rehabilitation protocols without adverse events. KOOS, TUG, and NRS scores improved in both groups with no significant differences between groups. For the AlterG group, Sports/Recreation and Quality of Life subscales of the KOOS had the most improvement. At the end of physical therapy, TUG and NRS pain scores improved from 14 seconds to 8 seconds and from 2.8 to 1.1, respectively. Subjectively, therapists reported 100% satisfaction with the AlterG. This initial pilot study demonstrated that the AlterG Anti-Gravity Treadmill device was safe and feasible. While functional outcomes improved over time with use of the anti-gravity gait training, further studies are needed to define the role of this device as an alternative or adjunct to established rehabilitation protocols.
Planarians Sense Simulated Microgravity and Hypergravity
Adell, Teresa; Saló, Emili; van Loon, Jack J. W. A.
2014-01-01
Planarians are flatworms, which belong to the phylum Platyhelminthes. They have been a classical subject of study due to their amazing regenerative ability, which relies on the existence of adult totipotent stem cells. Nowadays they are an emerging model system in the field of developmental, regenerative, and stem cell biology. In this study we analyze the effect of a simulated microgravity and a hypergravity environment during the process of planarian regeneration and embryogenesis. We demonstrate that simulated microgravity by means of the random positioning machine (RPM) set at a speed of 60 °/s but not at 10 °/s produces the dead of planarians. Under hypergravity of 3 g and 4 g in a large diameter centrifuge (LDC) planarians can regenerate missing tissues, although a decrease in the proliferation rate is observed. Under 8 g hypergravity small planarian fragments are not able to regenerate. Moreover, we found an effect of gravity alterations in the rate of planarian scission, which is its asexual mode of reproduction. No apparent effects of altered gravity were found during the embryonic development. PMID:25309918
Planarians sense simulated microgravity and hypergravity.
Adell, Teresa; Saló, Emili; van Loon, Jack J W A; Auletta, Gennaro
2014-01-01
Planarians are flatworms, which belong to the phylum Platyhelminthes. They have been a classical subject of study due to their amazing regenerative ability, which relies on the existence of adult totipotent stem cells. Nowadays they are an emerging model system in the field of developmental, regenerative, and stem cell biology. In this study we analyze the effect of a simulated microgravity and a hypergravity environment during the process of planarian regeneration and embryogenesis. We demonstrate that simulated microgravity by means of the random positioning machine (RPM) set at a speed of 60 °/s but not at 10 °/s produces the dead of planarians. Under hypergravity of 3 g and 4 g in a large diameter centrifuge (LDC) planarians can regenerate missing tissues, although a decrease in the proliferation rate is observed. Under 8 g hypergravity small planarian fragments are not able to regenerate. Moreover, we found an effect of gravity alterations in the rate of planarian scission, which is its asexual mode of reproduction. No apparent effects of altered gravity were found during the embryonic development.
Using Tri-Axial Accelerometers to Assess the Dynamic Control of Head Posture During Gait
NASA Technical Reports Server (NTRS)
Lawrence, John H., III
2003-01-01
Long duration spaceflight is known to cause a variety of biomedical stressors to the astronaut. One of the more functionally destabilizing effects of spaceflight involves microgravity-induced changes in vestibular or balance control. Balance control requires the integration of the vestibular, visual, and proprioceptive systems. In the microgravity environment, the normal gravity vector present on Earth no longer serves as a reference for the balance control system. Therefore, adaptive changes occur to the vestibular system to affect control of body orientation with altered, or non-present, gravity and/or proprioceptive inputs. Upon return to a gravity environment, the vestibular system must re-incorporate the gravity vector and gravity-induced proprioceptive inputs into the balance control regime. The result is often a period of postural instability, which may also be associated with space motion sickness (oscillopsia, nausea, and vertigo). Previous studies by the JSC Neuroscience group have found that returning astronauts often employ alterations in gait mechanics to maintain postural control during gait. It is believed that these gait alterations are meant to decrease the transfer of heel strike shock energy to the head, thus limiting the contradictory head and eye movements that lead to gait instability and motion sickness symptoms. We analyzed pre- and post-spaceflight tri-axial accelerometer data from the NASA/MIR long duration spaceflight missions to assess the heel to head transfer of heel strike shock energy during locomotion. Up to seven gait sessions (three preflight, four postflight) of head and shank (lower leg) accelerometer data was previously collected from six astronauts who engaged in space flights of four to six months duration. In our analysis, the heel to head transmission of shock energy was compared using peak vertical acceleration (a), peak jerk (j) ratio, and relative kinetic energy (a). A host of generalized movement variables was produced in an effort to isolate those that best highlighted vestibular adaptation due to spaceflight. Data suggest that astronauts used either head or body centered control to reduce the effects of heel strike shock on head position during normal walking at self-selected speeds. Moreover, the form of that control appears to fall under one of two categories: homeostatic or adaptive. Homeostatic control refers to tight constraint (small error) over the value of a given variable before and after spaceflight with little or no adaptive changes. Adaptive control refers to lesser constraint over a given movement variable with clear adaptation to earth gravity upon return from spaceflight. Heel strike shock absorption (ratio of heel to head peak acceleration) best-discriminated head and body centered control strategies. Further, peak jerk data was useful for illustrating pre- and postflight differences in segmental (shank versus head) movement energy. Results from kinetic energy analysis show high consistency between subjects and across test dates. Whether this result highlights a control strategy or is an artifact of approximating body segments using anthropometric tables is, at this point, unclear.
NASA Technical Reports Server (NTRS)
Witt, A. F.
1986-01-01
Within the framework of the proposed research, emphasis was placed on application of magnetic fields to semiconductor growth systems. It was found that magnetic fields up to 3 kGauss do not affect the growth behavior nor the macro-segregation behavior in the system Ge(Ga). Applied fields are found to significantlty alter the radial dopant distribution, which is attributed to alterations in the spatial orientation of convective cells. Increasing the magnetic field to 30 kGauss is found to have a fundamental effect on dopant segregation. Emphasis is also placed on the potential of KC-135 flights for preliminary studies on the effects of reduced gravity environments on the wetting behavior of semiconductor systems in growth configuration. The limited number of experiments conducted does not allow any conclusions on the merits of KC-135 flights for semiconductor processing research.
Pathophysiology of immobilization osteoporosis
NASA Technical Reports Server (NTRS)
Doty, S. B.; DiCarlo, E. F.
1995-01-01
The reduction of gravity-related forces on the skeleton creates a type of osteoporosis that is unique because its severity is dependent on the mechanical stress bearing function of the skeleton as well as the length of time that the forces are absent or reduced. Bones that bear weight under normal conditions are more affected than bones that normally do not bear weight. The cytokine environment and the cells in the affected bones are altered in time so that stem cells produce fewer new cells and the differentiated cells tend to be less active. These alterations in the local environment of the affected parts appear to resemble those of age- and disease-associated systemic forms of osteoporosis. The osteoporosis produced as a result of the loss of normal activity however, appears to be at least partially reversible through remobilization, strenuous exercise, and--possibly in the future--cytokine therapy.
Cell-to-cell interactions in changed gravity: Ground-based and flight experiments
NASA Astrophysics Data System (ADS)
Buravkova, L.; Romanov, Yu.; Rykova, M.; Grigorieva, O.; Merzlikina, N.
2005-07-01
Cell-to-cell interactions play an important role in all physiological processes and are mediated by humoral and mechanical factors. Mechanosensitive cells (e.g., osteocytes, chondrocytes, and fibroblasts) can be studied ex vivo to understand the effects of an altered gravity environment. In particular, cultured endothelial cells (EC) are very sensitive to a broad spectrum of mechanical and biochemical stimuli. Earlier, we demonstrated that clinorotation leads to cytoskeletal remodeling in cultured ECs. Long-term gravity vector changes also modulate the expression of surface adhesion molecules (ICAM-1, E-selectin, VCAM-1) on cultured ECs. To study the interactions of geterological cells, we cocultured endothelial monolayers and human lymphocytes, immune cells and myeloleucemic (K-560) cells. It was found that, although clinorotation did not alter the basal adhesion level of non-activated immune cells on endothelial monolayers, the adhesion of PMA-activated lymphocytes was increased. During flight experiments onboard the Russian segment of the International Space Station, we measured the cytotoxic activity of natural killer (NK) cells incubated with labeled target cells. It was found that immune cells in microgravity retained their ability to contact, recognize, and destroy oncogenic cells in vitro. Together, our data concerning the effects of simulated and real microgravity suggest that, despite changes in the cytoskeleton, cell motility, and expression of adhesion molecules, cell-cell interactions are not compromised, thus preserving the critical physiological functions of immune and endothelial cells.
Anti-gravity treadmill can promote aerobic exercise for lower limb osteoarthritis patients
Kawae, Toshihiro; Mikami, Yukio; Fukuhara, Kouki; Kimura, Hiroaki; Adachi, Nobuo
2017-01-01
[Purpose] The anti-gravity treadmill (Alter-G®) allows the load on the lower limbs to be adjusted, which is considered useful for patients with lower limb osteoarthritis. The aim of the present study was to examine the effects of aerobic exercise using an anti-gravity treadmill in patients with lower limb osteoarthritis by using a cardiopulmonary exercise load monitoring system. [Subjects and Methods] The subjects were 20 patients with lower limb osteoarthritis. These subjects walked naturally for 8 minutes and then walked on the Alter-G for 8 minutes at their fastest speed at a load where lower limb pain was alleviated. [Results] Subjective and objective exercise intensity did not differ significantly between level ground walking and Alter-G walking neither before nor after walking. Pain before walking did not differ significantly between level ground walking and Alter-G walking, but pain after walking was significantly greater with level ground walking than with Alter-G walking. [Conclusion] Exercise therapy using an anti-gravity treadmill was useful for patients with lower limb osteoarthritis in terms of cardiopulmonary function, which suggested that this could become a new form of exercise therapy. PMID:28878480
Anti-gravity treadmill can promote aerobic exercise for lower limb osteoarthritis patients.
Kawae, Toshihiro; Mikami, Yukio; Fukuhara, Kouki; Kimura, Hiroaki; Adachi, Nobuo
2017-08-01
[Purpose] The anti-gravity treadmill (Alter-G ® ) allows the load on the lower limbs to be adjusted, which is considered useful for patients with lower limb osteoarthritis. The aim of the present study was to examine the effects of aerobic exercise using an anti-gravity treadmill in patients with lower limb osteoarthritis by using a cardiopulmonary exercise load monitoring system. [Subjects and Methods] The subjects were 20 patients with lower limb osteoarthritis. These subjects walked naturally for 8 minutes and then walked on the Alter-G for 8 minutes at their fastest speed at a load where lower limb pain was alleviated. [Results] Subjective and objective exercise intensity did not differ significantly between level ground walking and Alter-G walking neither before nor after walking. Pain before walking did not differ significantly between level ground walking and Alter-G walking, but pain after walking was significantly greater with level ground walking than with Alter-G walking. [Conclusion] Exercise therapy using an anti-gravity treadmill was useful for patients with lower limb osteoarthritis in terms of cardiopulmonary function, which suggested that this could become a new form of exercise therapy.
Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong
2015-01-01
The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis. PMID:25635858
Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong
2015-01-01
The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis.
Plant and Animal Gravitational Biology. Part 2
NASA Technical Reports Server (NTRS)
1997-01-01
Session WA2 includes short reports concerning: (1) The Asymmetrical Growth of Otoliths in Fish Affected by Altered Gravity and Causes Kinetosis; (2) Neurobiological Responses of Fish to Altered Gravity conditions: A Review; (3) An Age-Dependent Sensitivity of the Roll-Induced Vestibulocular Reflex to Hypergravity Exposure of Several Days in an Amphibian (Xenopus Laevis); (4) Mechanically-Induced Membrane Wounding During Parabolic Flight; and (5) Erythropoietin Stimulates Increased F Cell Numbers in Bone Marrow Cultures Established in Gravity and Microgravity Conditions.
NASA Technical Reports Server (NTRS)
Zhang, Ye; Edwards, Christopher; Wu, Honglu
2011-01-01
This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulation of cells in response to antineoplastic agents, we cultured LNCaP cells for 96 hr either in a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as a control. 24 hr after the culture started, mitoxantrone was introduced to the cells at a final concentration of 1 M. The mitoxantrone treatment lasted 72 hr and then the cells were collected for various measurements. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not show significant differences in cell viability, growth rate, or cell cycle distribution. However, in response to mitoxantrone (1uM), a significant proportion of bioreactor cultured cells (30%) was arrested at G2 phase and a significant number of these cells were apoptotic in comparison to their static controls. The expressions of 84 oxidative stress related genes were analyzed using Qiagen PCR array to identify the possible mechanism underlying the altered responses of bioreactor culture cells to mitoxantrone. Nine out of 84 genes showed higher expression at four hour post mitoxantrone treatment in cells cultured at rotating condition compared to those at static. Taken together, the results reported here indicate that simulated microgravity may alter the responses of LNCaP cells to mitoxantrone treatment. The alteration of oxidative stress pathways in cells cultured under simulated microgravity conditions may be one of the mechanisms to cause such changes of sensitivity of LNCaP cells to mitoxantrone treatment.
Cloning the Gravity and Shear Stress Related Genes from MG-63 Cells by Subtracting Hybridization
NASA Astrophysics Data System (ADS)
Zhang, Shu; Dai, Zhong-quan; Wang, Bing; Cao, Xin-sheng; Li, Ying-hui; Sun, Xi-qing
2008-06-01
Background The purpose of the present study was to clone the gravity and shear stress related genes from osteoblast-like human osteosarcoma MG-63 cells by subtractive hybridization. Method MG-63 cells were divided into two groups (1G group and simulated microgravity group). After cultured for 60 h in two different gravitational environments, two groups of MG-63 cells were treated with 1.5Pa fluid shear stress (FSS) for 60 min, respectively. The total RNA in cells was isolated. The gravity and shear stress related genes were cloned by subtractive hybridization. Result 200 clones were gained. 30 positive clones were selected using PCR method based on the primers of vector and sequenced. The obtained sequences were analyzed by blast. changes of 17 sequences were confirmed by RT-PCR and these genes are related to cell proliferation, cell differentiation, protein synthesis, signal transduction and apoptosis. 5 unknown genes related to gravity and shear stress were found. Conclusion In this part of our study, our result indicates that simulated microgravity may change the activities of MG-63 cells by inducing the functional alterations of specific genes.
Bone loss and human adaptation to lunar gravity
NASA Technical Reports Server (NTRS)
Keller, T. S.; Strauss, A. M.
1992-01-01
Long-duration space missions and establishment of permanently manned bases on the Moon and Mars are currently being planned. The weightless environment of space and the low-gravity environments of the Moon and Mars pose an unknown challenge to human habitability and survivability. Of particular concern in the medical research community today is the effect of less than Earth gravity on the human skeleton, since the limits, if any, of human endurance in low-gravity environments are unknown. This paper provides theoretical predictions on bone loss and skeletal adaptation to lunar and other nonterrestrial-gravity environments based upon the experimentally derived relationship, density approximately (mass x gravity)(exp 1/8). The predictions are compared to skeletal changes reported during bed rest, immobilization, certrifugation, and spaceflight. Countermeasures to reduce bone losses in fractional gravity are also discussed.
Tauber, Svantje; Lauber, Beatrice A; Paulsen, Katrin; Layer, Liliana E; Lehmann, Martin; Hauschild, Swantje; Shepherd, Naomi R; Polzer, Jennifer; Segerer, Jürgen; Thiel, Cora S; Ullrich, Oliver
2017-01-01
The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC-TOF-MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface-bound fucose. The reduced ICAM-1 expression and the loss of cell surface-bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non-significant cytoskeletal alterations represent a stable "steady state" after adaptive processes are initiated in the new microgravity environment. Due to the utmost importance of the human macrophage system for the elimination of pathogens and the clearance of apoptotic cells, its apparent robustness to a low gravity environment is crucial for human health and performance during long-term space missions.
Tauber, Svantje; Lauber, Beatrice A.; Paulsen, Katrin; Layer, Liliana E.; Lehmann, Martin; Hauschild, Swantje; Shepherd, Naomi R.; Polzer, Jennifer; Segerer, Jürgen; Thiel, Cora S.
2017-01-01
The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC–TOF–MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface–bound fucose. The reduced ICAM-1 expression and the loss of cell surface–bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non-significant cytoskeletal alterations represent a stable “steady state” after adaptive processes are initiated in the new microgravity environment. Due to the utmost importance of the human macrophage system for the elimination of pathogens and the clearance of apoptotic cells, its apparent robustness to a low gravity environment is crucial for human health and performance during long-term space missions. PMID:28419128
Effects of real or simulated microgravity on plant cell growth and proliferation
NASA Astrophysics Data System (ADS)
Medina, Francisco Javier; Manzano, Ana Isabel; Herranz, Raul; Dijkstra, Camelia; Larkin, Oliver; Hill, Richard; Carnero-Díaz, Eugénie; van Loon, Jack J. W. A.; Anthony, Paul; Davey, Michael R.; Eaves, Laurence
Experiments on seed germination and seedling growth performed in real microgravity on the International Space Station and in different facilities for simulating microgravity in Earth-based laboratories (Random Positioning Machine and Magnetic Levitation), have provided evidence that the absence of gravity (or the artificial compensation of the gravity vector) results in the uncoupling of cell growth and proliferation in root meristematic cells. These are two essential cellular functions that support plant growth and development, which are strictly coordinated under normal ground gravity conditions. Under conditions of altered gravity, we observe that cell proliferation is enhanced, whereas cell growth is reduced, according to different morphometric, cytological and immunocytochemical parameters. Since coordination of cell growth and proliferation are major features of meristematic cells, this observed uncoupling represents a major stress condition for these cells, inducing major alterations in the pattern of plant development. Moreover, the expression of the cyclin B1 gene, a regulator of the entry into mitosis and normally used as an indicator of cell proliferation, appears reduced in the smaller and more actively proliferating cells of samples grown under the conditions of our experiments. These results are compatible with an alteration of the regulation of the cell cycle, producing a shorter G2 period. Interestingly, while cyclin B1 expression is depleted in these conditions in root meristematic cells, it is enhanced in cotyledons of the same seedlings, as shown by qPCR and by the expression of the gus reporter gene. It is known that regulation of root growth (including regulation of root meristematic activity) is driven mainly by auxin, whereas cytokinin is the key hormone regulating cotyledon growth. Therefore, our results indicate a major role of auxin in the sensitivity to altered gravity of root meristematic cells. Auxin is crucial in maintaining the coupling of cell growth and proliferation under normal conditions and it should have a decisive influence in the uncoupling of these processes under altered gravity. Experiments to detect auxin distribution in roots under altered gravity produced by diamagnetic levitation have shown that the lateral balanced distribution of the growth regulator in the root cap is altered slightly and that the total concentration of the auxin detected in root tips is somewhat reduced. These effects are independent of the orientation of statoliths in columella cells.
Tauber, Svantje; Hauschild, Swantje; Paulsen, Katrin; Gutewort, Annett; Raig, Christiane; Hürlimann, Eva; Biskup, Josefine; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Pantaleo, Antonella; Cogoli, Augusto; Pippia, Proto; Layer, Liliana E; Thiel, Cora S; Ullrich, Oliver
2015-01-01
Several limiting factors for human health and performance in microgravity have been clearly identified arising from the immune system, and substantial research activities are required in order to provide the basic information for appropriate integrated risk management. The gravity-sensitive nature of cells of the immune system renders them an ideal biological model in search for general gravity-sensitive mechanisms and to understand how the architecture and function of human cells is related to the gravitational force and therefore adapted to life on Earth. We investigated the influence of altered gravity in parabolic flight and 2D clinostat experiments on key proteins of activation and signaling in primary T lymphocytes. We quantified components of the signaling cascade 1.) in non-activated T lymphocytes to assess the "basal status" of the cascade and 2.) in the process of activation to assess the signal transduction. We found a rapid decrease of CD3 and IL-2R surface expression and reduced p-LAT after 20 seconds of altered gravity in non-activated primary T lymphocytes during parabolic flight. Furthermore, we observed decreased CD3 surface expression, reduced ZAP-70 abundance and increased histone H3-acetylation in activated T lymphocytes after 5 minutes of clinorotation and a transient downregulation of CD3 and stable downregulation of IL-2R during 60 minutes of clinorotation. CD3 and IL-2R are downregulated in primary T lymphocytes in altered gravity. We assume that a gravity condition around 1g is required for the expression of key surface receptors and appropriate regulation of signal molecules in T lymphocytes. © 2015 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Zheng, H. Q.; Wang, H.
Gravity has a profound influence on plant growth and development Removed the influence of gravitational acceleration by spaceflight caused a wide range of cellular changes in plant Whole seedling that germinated and grown on clinostats showed the absent of gravitropism At the cellular level clinostat treatment has specific effects on plant cells such as induce alterations in cell wall composition increase production of heat-soluble proteins impact on the cellular energy metabolism facilitate a uniform distribution of plastids amyloplasts and increase number and volume of nucleoli A number of recent studies have shown that the exposure of Arabidopsis seedlings and callus cells to gravity stimulation hyper g-forces or clinostat rotation induces alterations in gene expression In our previous study the proteome of the Arabidopsis thaliana callus cells were separated by high resolution two-dimensional electrophoresis 2-DE Image analysis revealed that 80 protein spots showed quantitative and qualitative variations after exposure to clinostat rotation treatment We report here a systematic proteomic approach to investigate the altered gravity responsive proteins in root tip of Arabidopsis thaliana cv Landsberg erecta Three-day-old seedlings were exposed for 12h to a horizontal clinostat rotation H simulated weightlessness altered g-forces by centrifugation 7g hypergravity a vertical clinostat rotation V clinostat control or a stationary control grown conditions Total proteins of roots were extracted
NASA Astrophysics Data System (ADS)
Xu, Dan; Sun, Yeqing; Gao, Ying; Xing, Yanfang
microRNAs (miRNAs) is reported to be sensitive to radiation exposure and altered gravity, involved in a variety of biological processes through negative regulation of gene expression. Dystrophin-like dys-1 gene is expressed and required in muscle tissue, which plays a vital role in mechanical transduction when gravity varies. In the present study, we investigated the effect of dys-1 mutation on miRNA expression profile in Caenorhabditis elegans (C. elegans) under space radiation associated with microgravity (R+M) and radiation alone (R) environment during Shenzhou-8 mission. We performed miRNA microarray analysis in dys-1 mutant and wide-type (WT) of dauer larvae and found that 27 miRNAs changed in abundance after spaceflight. Compared with WT, there was different miRNA expression pattern in different treatments in dys-1 mutant. Cel-miR-796 and miR-124 were reversely expressed under R+M and R environment in WT and dys-1 mutant, respectively, indicating they might be affected by microgravity. Mutation of dys-1 remarkably reduced the number of altered miRNAs under space environment, resulting in the decrease of genes in biological categories of “body morphogenesis”, “behavior”, “cell adhesion” and so on. Particularly, we found that those genes controlling regulation of locomotion in WT were lost in dys-1 mutant, while genes in positive regulation of developmental process only existed in dys-1 mutant. miR-796 was predicted to target genes ace-1 and dyc-1 that are functionally linked to dys-1. Integration analysis of miRNA and mRNA expression profile revealed that miR-56 and miR-124 were involved in behavior and locomotion by regulating different target genes under space environment, among which nep-11, deb-1, C07H4.1 and F11H8.2 might be associated with neuromuscular system. Our findings suggest that dys-1 could cause alteration of miRNAs and target genes, involved in regulating the response of C. elegans to space microgravity in neuromuscular system. This research will provide new insight for better understanding of the mechanism in microgravity-induced muscular dystrophy.
ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight.
Zupanska, Agata K; Schultz, Eric R; Yao, JiQiang; Sng, Natasha J; Zhou, Mingqi; Callaham, Jordan B; Ferl, Robert J; Paul, Anna-Lisa
2017-11-01
Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight. Key Words: ARG1-Spaceflight-Gene expression-Physiological adaptation-BRIC. Astrobiology 17, 1077-1111.
Plant Growth Biophysics: the Basis for Growth Asymmetry Induced by Gravity
NASA Technical Reports Server (NTRS)
Cosgrove, D.
1985-01-01
The identification and quantification of the physical properties altered by gravity when plant stems grow upward was studied. Growth of the stem in vertical and horizontal positions was recorded by time lapse photography. A computer program that uses a cubic spline fitting algorithm was used to calculate the growth rate and curvature of the stem as a function of time. Plant stems were tested to ascertain whether cell osmotic pressure was altered by gravity. A technique for measuring the yielding properties of the cell wall was developed.
Invited review: gravitational biology of the neuromotor systems: a perspective to the next era
NASA Technical Reports Server (NTRS)
Edgerton, V. R.; Roy, R. R.
2000-01-01
Earth's gravity has had a significant impact on the designs of the neuromotor systems that have evolved. Early indications are that gravity also plays a key role in the ontogenesis of some of these design features. The purpose of the present review is not to assess and interpret a body of knowledge in the usual sense of a review but to look ahead, given some of the general concepts that have evolved and observations made to date, which can guide our future approach to gravitational biology. We are now approaching an era in gravitational biology during which well-controlled experiments can be conducted for sustained periods in a microgravity environment. Thus it is now possible to study in greater detail the role of gravity in phylogenesis and ontogenesis. Experiments can range from those conducted on the simplest levels of organization of the components that comprise the neuromotor system to those conducted on the whole organism. Generally, the impact of Earth's gravitational environment on living systems becomes more complex as the level of integration of the biological phenomenon of interest increases. Studies of the effects of gravitational vectors on neuromotor systems have and should continue to provide unique insight into these mechanisms that control and maintain neural control systems designed to function in Earth's gravitational environment. A number of examples are given of how a gravitational biology perspective can lead to a clearer understanding of neuromotor disorders. Furthermore, the technologies developed for spaceflight studies have contributed and should continue to contribute to studies of motor dysfunctions, such as spinal cord injury and stroke. Disorders associated with energy support and delivery systems and how these functions are altered by sedentary life styles at 1 G and by space travel in a microgravity environment are also discussed.
Spaceflight Transcriptomes: Unique Responses to a Novel Environment
Paul, Anna-Lisa; Zupanska, Agata K.; Ostrow, Dejerianne T.; Zhang, Yanping; Sun, Yijun; Li, Jian-Liang; Shanker, Savita; Farmerie, William G.; Amalfitano, Claire E.
2012-01-01
Abstract The spaceflight environment presents unique challenges to terrestrial biology, including but not limited to the direct effects of gravity. As we near the end of the Space Shuttle era, there remain fundamental questions about the response and adaptation of plants to orbital spaceflight conditions. We address a key baseline question of whether gene expression changes are induced by the orbital environment, and then we ask whether undifferentiated cells, cells presumably lacking the typical gravity response mechanisms, perceive spaceflight. Arabidopsis seedlings and undifferentiated cultured Arabidopsis cells were launched in April, 2010, as part of the BRIC-16 flight experiment on STS-131. Biologically replicated DNA microarray and averaged RNA digital transcript profiling revealed several hundred genes in seedlings and cell cultures that were significantly affected by launch and spaceflight. The response was moderate in seedlings; only a few genes were induced by more than 7-fold, and the overall intrinsic expression level for most differentially expressed genes was low. In contrast, cell cultures displayed a more dramatic response, with dozens of genes showing this level of differential expression, a list comprised primarily of heat shock–related and stress-related genes. This baseline transcriptome profiling of seedlings and cultured cells confirms the fundamental hypothesis that survival of the spaceflight environment requires adaptive changes that are both governed and displayed by alterations in gene expression. The comparison of intact plants with cultures of undifferentiated cells confirms a second hypothesis: undifferentiated cells can detect spaceflight in the absence of specialized tissue or organized developmental structures known to detect gravity. Key Words: Tissue culture—Microgravity—Low Earth orbit—Space Shuttle—Microarray. Astrobiology 12, 40–56. PMID:22221117
The Effect of Microgravity on Flame Spread over a Thin Fuel
NASA Technical Reports Server (NTRS)
Olson, Sandra L.
1987-01-01
A flame spreading over a thermally thin cellulose fuel was studied in a quiescent microgravity environment. Flame spread over two different fuel thicknesses was studied in ambient oxygen-nitrogen environments from the limiting oxygen concentration to 100 percent oxygen at 1 atm pressure. Comparative normal-gravity tests were also conducted. Gravity was found to play an important role in the mechanism of flame spread. In lower oxygen environments, the buoyant flow induced in normal gravity was found to accelerate the flame spread rate as compared to the microgravity flame spread rates. It was also found to stabilize the flame in oxidizer environments, where microgravity flames in a quiescent environment extinguish. In oxygen-rich environments, however, it was determined that gravity does not play an important role in the flame spread mechanism. Fuel thickness influences the flame spread rate in both normal gravity and microgravity. The flame spread rate varies inversely with fuel thickness in both normal gravity and in an oxygen-rich microgravity environment. In lower oxygen microgravity environments, however, the inverse relationship breaks down because finite-rate kinetics and heat losses become important. Two different extinction limits were found in microgravity for the two thicknesses of fuel. This is in contrast to the normal-gravity extinction limit, which was found to be independent of fuel thickness. In microgravity the flame is quenched because of excessive thermal losses, whereas in normal gravity the flame is extinguished by blowoff.
Study of adaptation to altered gravity through systems analysis of motor control.
Fox, R A; Daunton, N G; Corcoran, M L
1998-01-01
Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.
Study of adaptation to altered gravity through systems analysis of motor control
NASA Astrophysics Data System (ADS)
Fox, R. A.; Daunton, N. G.; Corcoran, M. L.
Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.
Aeromagnetic and Gravity Maps of the Central Marysvale Volcanic Field, Southwestern Utah
Campbell, David L.; Steven, Thomas A.; Cunningham, Charles G.; Rowley, Peter D.
1999-01-01
Gravity and aeromagnetic features in the Marysvale volcanic field result from the composite effects of many factors, including rock composition, style of magmatic emplacement, type and intensity of rock alteration, and effects of structural evolution. Densities and magnetic properties measured on a suite of rock samples from the Marysvale volcanic field differ in systematic ways. Generally, the measured densities, magnetic susceptibilities, and natural remanent magnetizations all increase with mafic index, but decrease with degree of alteration, and for tuffs, with degree of welding. Koenigsberger Q indices show no such systematic trends. The study area is divided into three geophysical domains. The northern domain is dominated by aeromagnetic lows that probably reflect reversed-polarity volcanic flows. There are no intermediate-sized magnetic highs in the northern domain that might reflect plutons. The northern domain has a decreasing-to-the-south gravity gradient that reflects the Pavant Range homocline. The central domain has gravity lows that reflect altered rocks in calderas and low-density plutons of the Marysvale volcanic field. Its aeromagnetic signatures consist of rounded highs that reflect plutons and birdseye patterns that reflect volcanic flows. In many places the birdseyes are attenuated, indicating that the flows there have been hydrothermally altered. We interpret the central domain to reflect an east-trending locus of plutons in the Marysvale volcanic field. The southern domain has intermediate gravity fields, indicating somewhat denser rocks there than in the central domain, and high-amplitude aeromagnetic birdseyes that reflect unaltered volcanic units. The southern domain contains no magnetic signatures that we interpret to reflect plutons. Basin-and-range tectonism has overprinted additional gravity features on the three domains. A deep gravity low follows the Sevier and Marysvale Valleys, reflecting grabens there. The gravity gradient in the north reflects the southern flank of a structural dome that led to the Pavant Range homocline and whose southern edge lies along the Clear Creek downwarp.
Electron Micrographs of Quail Limb Bones formed in microgravity
NASA Technical Reports Server (NTRS)
2003-01-01
Electron micrographs of quail limb bones that formed under the influence of microgravity show decreased mineralization compared to bones formed in normal gravity. The letters B and C indicate bone and cartilage sides of the sample, respectively, with the arrows marking the junction between bone and cartilage cells. The asterisks indicate where mineralization begins. The bone that developed during spaceflight (top) shows less mineral compared to the control sample (bottom); the control sample clearly shows mineral deposits (dark spots) that are absent in the flight sample. Quail eggs are small and develop quickly, making them ideal for space experiments. In late 2001, the Avian Development Facility (ADF) made its first flight and carried eggs used in two investigations, development and function of the irner-ear balance system in normal and altered gravity environments, and skeletal development in embryonic quail.
Gravity Sensor Plasticity in the Space Environment
NASA Technical Reports Server (NTRS)
Ross, Muriel D.
1996-01-01
The ability of the brain to learn from experience and to adapt to new environments is recognized to be profound. This ability, called 'neural plasticity,' depends directly on properties of neurons (nerve cells) that permit them to change in dimension, sprout new parts called spines, change the shape and/or size of existing parts, and to generate, alter, or delete synapses. (Synapses are communication sites between neurons.) These neuronal properties are most evident during development, when evolution guides the laying down of a general plan of the nervous system. However, once a nervous system is established, experience interacts with cellular and genetic mechanisms and the internal milieu to produce unique neuronal substrates that define each individual. The capacity for experience-related neuronal growth in the brain, as measured by the potential for synaptogenesis, is speculated to be in the trillions of synapses, but the range of increment possible for any one part of the nervous system is unknown. The question has been whether more primitive endorgans such as gravity sensors of the inner ear have a capacity for adaptive change, since this is a form of learning from experience.
2013-10-21
Platform for Testing a Space Robotic System to Perform Contact Tasks in Zero- Gravity Environment 5a. CONTRACT NUMBER FA9453-11-1-0306 5b...SUBJECT TERMS Microgravity, zero gravity , test platform, simulation, gravity offloading 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...4 3.3 Principle of Gravity Offloading
Novel roles of FKBP5 in muscle alteration induced by gravity change in mice.
Shimoide, Takeshi; Kawao, Naoyuki; Tamura, Yukinori; Morita, Hironobu; Kaji, Hiroshi
2016-10-21
Skeletal muscle hypertrophy and wasting are induced by hypergravity and microgravity, respectively. However, the mechanisms by which gravity change regulates muscle mass still remain unclear. We previously reported that hypergravity increases muscle mass via the vestibular system in mice. In this study, we performed comparative DNA microarray analysis of the soleus muscle from mice kept in 1 or 3 g environments with or without vestibular lesions. Mice were kept in 1 g or 3 g environment for 4 weeks by using a centrifuge 14 days after surgical bilateral vestibular lesions. FKBP5 was extracted as a gene whose expression was enhanced by hypergravity through the vestibular system. Stable FKBP5 overexpression increased the phosphorylations of Akt and p70 S6 kinase (muscle protein synthesis pathway) and myosin heavy chain, a myotube gene, mRNA level in mouse myoblastic C2C12 cells, although it reduced the mRNA levels of atrogin-1 and MuRF1, muscle protein degradation-related genes. In conclusion, we first showed that FKBP5 is induced by hypergravity through the vestibular system in anti-gravity muscle of mice. Our data suggest that FKBP5 might increase muscle mass through the enhancements of muscle protein synthesis and myotube differentiation as well as an inhibition of muscle protein degradation in mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Macromolecular assemblies in reduced gravity environments
NASA Technical Reports Server (NTRS)
Moos, Philip J.; Hayes, James W.; Stodieck, Louis S.; Luttges, Marvin W.
1990-01-01
The assembly of protein macro molecules into structures commonly produced within biological systems was achieved using in vitro techniques carried out in nominal as well as reduced gravity environments. Appropriate hardware was designed and fabricated to support such studies. Experimental protocols were matched to the available reduced gravity test opportunities. In evaluations of tubulin, fibrin and collagen assembly products the influence of differing gravity test conditions are apparent. Product homogeneity and organization were characteristic enhancements documented in reduced gravity samples. These differences can be related to the fluid flow conditions that exist during in vitro product formation. Reduced gravity environments may provide a robust opportunity for directing the products formed in a variety of bioprocessing applications.
Inflight Assay of Red Blood Cell Deformability
NASA Technical Reports Server (NTRS)
Ingram, M.; Paglia, D. E.; Eckstein, E. C.; Frazer, R. E.
1985-01-01
Studies on Soviet and American astronauts have demonstrated that red blood cell production is altered in response to low gravity (g) environment. This is associated with changes in individual red cells including increased mean cell volume and altered membrane deformability. During long orbital missions, there is a tendency for the red cell mass deficit to be at least partly corrected although the cell shape anomalies are not. Data currently available suggest that the observed decrease in red cell mass is the result of sudden suppression of erythropoieses and that the recovery trend observed during long missions reflects re-establishment of erythropoietic homeostasis at a "set point" for the red cell mass that is slightly below the normal level at 1 g.
NASA Astrophysics Data System (ADS)
van Loon, Jack J. W. A.; Bücker, N.; Berte, J.; Bok, K.; Bos, J.; Boyle, R.; Bravenoer, N.; Chouker, A.; Clement, G.; Cras, P.; Denise, D.; Eekhoff, M.; Felsenberg, D.; Fong, K.; Fuller, C.; Groen, E.; Heer, M.; Hinghofer-Szalkay, H.; Iwase, S.; Karemaker, J. M.; Linnarsson, D.; Lüthen, C.; Narici, M.; Norsk, P.; Paloski, W.; Rutten, M.; Saggini, R.; Stephan, A.; Ullrich, O.; Vautmans, V.; Wuyts, F.; Young, L.
Over the last decades a significant amount of knowledge has been accumulated on the adap-tation of the human body going into near weightless conditions and on its re-adaptation to 1g Earth conditions after space flight. Ground-based paradigms for microgravity simulation have been developed such as head down tilted bed rest and dry-immersion. In such systems the adaptations to long term immobilization and to head-ward fluid shifts have been studied. Questions we address here are: can long-term ground-based centrifugation help us to under-stand and even predict the adaptations to long-term increased gravity conditions? How does the body adapt to chronic (days, weeks or longer) exposure to a hypergravity environment? And, once the body has fully adapted to a hypergravity environment, how does it re-adapt going from a hypergravity state back to a relatively hypo-gravity condition of 1g, or even going from a centrifuge / hypergravity environment into a bed-rest setting? Can such transitions in well-controlled studies bring us closer to understanding the consequences of gravity transitions that the crews will likely experience going to the Moon or to Mars. Is hypergravity a good model to study the effect of re-entry in gravitational environments after long duration space flight? In an ESA -supported Topical Team we address all organ systems known so far to change directly or indirectly by altered gravity conditions. We will identify to which gravity levels the human body can be exposed for longer periods of time and what protocols could be applied to address the questions at hand. We also identify the technology required to ac-complish such long duration hypergravity and re-adaptation studies. Issues like ethics, safety and required logistics should be addressed. As there is limited experience with exposure of hu-man test subjects to prolonged periods of moderately increased g-forces, unexpected harm may occur. Therefore, the information, disclosure and informed consent procedures need special attention. The final outcome of the Topical Team will be a clear answer about the feasibility of the use of hypergravity as a tool and analogue for space research, and if and how hypergravity studies can provide useful knowledge to support future space flight on the one hand and current medical issues in the ageing population (osteoporosis, cardiovascular diseases, obesity) on the other hand.
Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues
NASA Technical Reports Server (NTRS)
Wood, S. J.; Clement, G. R.; Harm, D L.; Rupert, A. H.; Guedry, F. E.; Reschke, M. F.
2005-01-01
The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Our general hypothesis is that the central nervous system utilizes both multi-sensory integration and frequency segregation as neural strategies to resolve the ambiguity of tilt and translation stimuli. Movement in an altered gravity environment, such as weightlessness without a stable gravity reference, results in new patterns of sensory cues. For example, the semicircular canals, vision and neck proprioception provide information about head tilt on orbit without the normal otolith head-tilt position that is omnipresent on Earth. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth s gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of disorientation and tilt-translation disturbances reported by crewmembers during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.
Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues
NASA Technical Reports Server (NTRS)
Wood, S. J.; Clement, G. R.; Harm, D. L.; Rupert, A. H.; Guedry, F. E.; Reschke, M. F.
2005-01-01
The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Our general hypothesis is that the central nervous system utilizes both multi-sensory integration and frequency segregation as neural strategies to resolve the ambiguity of tilt and translation stimuli. Movement in an altered gravity environment, such as weightlessness without a stable gravity reference, results in new patterns of sensory cues. For example, the semicircular canals, vision and neck proprioception provide information about head tilt on orbit without the normal otolith head-tilt position that is omnipresent on Earth. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth's gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of disorientation and tilt-translation disturbances reported by crewmembers during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.
NASA Technical Reports Server (NTRS)
Chappell, Steve P.; Gernhardt, Michael L.
2009-01-01
Center of gravity (CG) is likely to be an important variable in astronaut performance during partial gravity extravehicular activity (EVA). The Apollo Lunar EVA experience revealed challenges with suit stability and control. The EVA Physiology, Systems and Performance Project (EPSP) in conjunction with the Constellation EVA Systems Project Office have developed plans to systematically understand the role of suit weight, CG and suit pressure on astronaut performance in partial gravity environments. This presentation based upon CG studies seeks to understand the impact of varied CG on human performance in lunar gravity.
Art & Space: the webbing projects of Eva Petrič
NASA Astrophysics Data System (ADS)
Petrič, E.; Schlacht, I. L.; Foing, B.
2015-10-01
Art is considered a form of communication often related to the perception of personal emotion of the artist. Space is the most extreme environment that a human could approach, this environment affects the human body and the individual's personal perception with metamorphosis created by factors such as, isolation, radiation and difference of gravity. This alteration of the perception could be viewed as a potentiality from artists to acquire and communicate new emotions. To investigate the capacity of an artist to come faster and closer to emotions and to communicate their feeling, a mission simulation has been performed in the ExoLab module [1] from ILEWG [A] on the 29th of April 2015.
NASA Technical Reports Server (NTRS)
Parang, Masood
1986-01-01
An experimental and analytical study of Thermoacoustic Convection heat transfer in gravity and zero-gravity environments is presented. The experimental apparatus consisted of a cylinder containing air as a fluid. The side wall of the cylinder was insulated while the bottom wall was allowed to remain at the ambient temperature. The enclosed air was rapidly heated by the top surface which consisted of a thin stainless steel foil connected to a battery pack as the power source. Thermocouples were used to measure the transient temperature of the air on the axis of the cylinder. The ouput of the thermocouples was displayed on digital thermometers and the temperature displays were recorded on film using a high-speed movie camera. Temperature measurements were obtained in the zero-gravity environment by dropping the apparatus in the 2-Seconds Zero-Gravity Drop Tower Facilities of NASA Lewis Research Center. In addition, experiments were also performed in the gravity environment and the results are compared in detail with those obtained under zero-gravity conditions.
NASA Technical Reports Server (NTRS)
Hayden, R. S. (Editor)
1985-01-01
The extension of space exploration to the Moon and to other planets has broadened the scope of geomorphology by providing information on landforms which have developed in environments that differ significantly in fundamental factors such as temperature, pressure and gravity from the environments in which Earth's landforms have been shaped. In some cases the landforming processes themselves appear to be significantly different than any found in the terrestrial environment. Some investigators have suggested that features observed on other planets, such as chaos terrian and labryinths on Mars, can help us understand Earth's early history better because they may have been formed by processes which were important in the early ages of Earth but have long ceased to be active here. Corresponding terrestrial landforms would have long since been altered or obliterated by subsequent activity.
Effect of Altered Gravity on the Neurobiology of Fish
NASA Astrophysics Data System (ADS)
Anken, R. H.; Rahmann, H.
In vertebrates (including humans) altered gravitational environments such as weightlessness can induce malfunction of the inner ears due to a mismatch between canal and statolith afferents. This leads to an illusionary tilt because the inputs from the inner ear are not confirmed by the other sensory organs, which then results in intersensory conflict. Vertebrates in orbit therefore face severe orientation problems. In humans the intersensory conflict may additionally lead to a malaise commonly referred to as space motion sickness (SMS). After the initial days of weightlessness the orientation problems (and SMS) disappear as the brain develops a new interpretation of the available sensory data. The present contribution reviews the neurobiological responses, particularly those of fish, observed under altered gravitational states concerning behavior and neuroplastic reactivities. Investigations employing microgravity (spaceflight, parabolic aircraft flights, clinostat) and hypergravity (laboratory centrifuges as ground-based research tools) provide insights for understanding the basic phenomena, many of which remain only incompletely explained
NASA Technical Reports Server (NTRS)
Daunton, N. G.; Tang, F.; Corcoran, M. L.; Fox, R. A.; Man, S. Y.
1998-01-01
In studies to determine the neurochemical mechanisms underlying adaptation to altered gravity we have investigated changes in neuropeptide levels in brainstem, cerebellum, hypothalamus, striatum, hippocampus, and cerebral cortex by radioimmunoassay. Fourteen days of hypergravity (hyperG) exposure resulted in significant increases in thyrotropin-releasing hormone (TRH) content of brainstem and cerebellum, but no changes in levels of other neuropeptides (beta-endorphin, cholecystokinin, met-enkephalin, somatostatin, and substance P) examined in these areas were found, nor were TRH levels significantly changed in any other brain regions investigated. The increase in TRH in brainstem and cerebellum was not seen in animals exposed only to the rotational component of centrifugation, suggesting that this increase was elicited by the alteration in the gravitational environment. The only other neuropeptide affected by chronic hyperG exposure was met-enkephalin, which was significantly decreased in the cerebral cortex. However, this alteration in met-enkephalin was found in both hyperG and rotation control animals and thus may be due to the rotational rather than the hyperG component of centrifugation. Thus it does not appear as if there is a generalized neuropeptide response to chronic hyperG following 2 weeks of exposure. Rather, there is an increase only of TRH and that occurs only in areas of the brain known to be heavily involved with vestibular inputs and motor control (both voluntary and autonomic). These results suggest that TRH may play a role in adaptation to altered gravity as it does in adaptation to altered vestibular input following labyrinthectomy, and in cerebellar and vestibular control of locomotion, as seen in studies of ataxia.
Models to study gravitational biology of Mammalian reproduction
NASA Technical Reports Server (NTRS)
Tou, Janet; Ronca, April; Grindeland, Richard; Wade, Charles
2002-01-01
Mammalian reproduction evolved within Earth's 1-g gravitational field. As we move closer to the reality of space habitation, there is growing scientific interest in how different gravitational states influence reproduction in mammals. Habitation of space and extended spaceflight missions require prolonged exposure to decreased gravity (hypogravity, i.e., weightlessness). Lift-off and re-entry of the spacecraft are associated with exposure to increased gravity (hypergravity). Existing data suggest that spaceflight is associated with a constellation of changes in reproductive physiology and function. However, limited spaceflight opportunities and confounding effects of various nongravitational factors associated with spaceflight (i.e., radiation, stress) have led to the development of ground-based models for studying the effects of altered gravity on biological systems. Human bed rest and rodent hindlimb unloading paradigms are used to study exposure to hypogravity. Centrifugation is used to study hypergravity. Here, we review the results of spaceflight and ground-based models of altered gravity on reproductive physiology. Studies utilizing ground-based models that simulate hyper- and hypogravity have produced reproductive results similar to those obtained from spaceflight and are contributing new information on biological responses across the gravity continuum, thereby confirming the appropriateness of these models for studying reproductive responses to altered gravity and the underlying mechanisms of these responses. Together, these unique tools are yielding new insights into the gravitational biology of reproduction in mammals.
Thiel, Cora S.; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E.
2015-01-01
Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098
Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver
2015-01-01
Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.
Effects of Microgravity and Hypergravity on Invertebrate Development
NASA Technical Reports Server (NTRS)
Miquel, J.
1985-01-01
Data suggest that abnormal gravity loads do not increase the rate of mutations in lower animals. Insects such as Drosophila melanogaster and Tribolium confusum have been able to reproduce aboard unmanned and manned space satellites, though no precise quantitative data have been obtained on mating competence and various aspects of development. Research with Drosophila flown on Cosmos spacecraft suggests that flight behavior is seriously disturbed in insects exposed to microgravity, which is reflected in increased oxygen utilization and concomitant life shortening. The decrease in longevity was less striking when the flies were enclosed in space, which suggests that they could adapt to the altered gravitational environment when maturation of flight behavior took place in microgravity. The reviewed data suggest that further research on the development of invertebrates in space is in order for clarification of the metabolic and behavioral effects of microgravity and of the development and function of the orientation and gravity sensing mechanisms of lower animals.
NASA Technical Reports Server (NTRS)
Nickerson, C. A.; Ott, C. M.; Mister, S. J.; Morrow, B. J.; Burns-Keliher, L.; Pierson, D. L.
2000-01-01
The effects of spaceflight on the infectious disease process have only been studied at the level of the host immune response and indicate a blunting of the immune mechanism in humans and animals. Accordingly, it is necessary to assess potential changes in microbial virulence associated with spaceflight which may impact the probability of in-flight infectious disease. In this study, we investigated the effect of altered gravitational vectors on Salmonella virulence in mice. Salmonella enterica serovar Typhimurium grown under modeled microgravity (MMG) were more virulent and were recovered in higher numbers from the murine spleen and liver following oral infection compared to organisms grown under normal gravity. Furthermore, MMG-grown salmonellae were more resistant to acid stress and macrophage killing and exhibited significant differences in protein synthesis than did normal-gravity-grown cells. Our results indicate that the environment created by simulated microgravity represents a novel environmental regulatory factor of Salmonella virulence.
NASA Astrophysics Data System (ADS)
Mixa, T.; Fritts, D. C.; Bossert, K.; Laughman, B.; Wang, L.; Lund, T.; Kantha, L. H.
2017-12-01
Gravity waves play a profound role in the mixing of the atmosphere, transporting vast amounts of momentum and energy among different altitudes as they propagate vertically. Above 60km in the middle atmosphere, high wave amplitudes enable a series of complex, nonlinear interactions with the background environment that produce highly-localized wind and temperature variations which alter the layering structure of the atmosphere. These small-scale interactions account for a significant portion of energy transport in the middle atmosphere, but they are difficult to characterize, occurring at spatial scales that are both challenging to observe with ground instruments and prohibitively small to include in weather forecasting models. Using high fidelity numerical simulations, these nuanced wave interactions are analyzed to better our understanding of these dynamics and improve the accuracy of long-term weather forecasting.
The influence of altered gravity on carbohydrate metabolism in excised wheat leaves
NASA Technical Reports Server (NTRS)
Obenland, D. M.; Brown, C. S.
1994-01-01
We developed a system to study the influence of altered gravity on carbohydrate metabolism in excised wheat leaves by means of clinorotation. The use of excised leaves in our clinostat studies offered a number of advantages over the use of whole plants, most important of which were minimization of exogenous mechanical stress and a greater amount of carbohydrate accumulation during the time of treatment. We found that horizontal clinorotation of excised wheat leaves resulted in significant reductions in the accumulation of fructose, sucrose, starch and fructan relative to control, vertically clinorotated leaves. Photosynthesis, dark respiration and the extractable activities of ADP glucose pyrophosphorylase (EC 2.7.7.27), sucrose phosphate synthase (EC 2.4.4.14), sucrose sucrose fructosyltransferase (EC 2.4.1.99), and fructan hydrolase (EC 3.2.1.80) were unchanged due to altered gravity treatment.
Kamisaka, Seiichiro
2003-08-01
Organisms borne in the primitive sea about 30 million years ago had evolved in water without a large influence of gravity on earth. About 4 million years ago, the first terrestrial organisms, plants appeared on the land from the sea. The terrestrial plants have adapted to and evolved on the land environment so that they can extend their roots downward in soil and their shoots upward against 1 g gravity. At least two functions that were acquired during the process of evolution helped the terrestrial plants to adapt to gravity environment on earth. One is gravitropism. The other is the reinforcement of the cell wall, particularly the secondary cell wall. In the present feature articles, the molecular mechanism of the adaptation of terrestrial plants to gravity environment on earth will be reviewed, paying special attention to the mechanism of the genetic control of the signaling of gravity stimulus in gravitropism, automorphogenesis, genes involved in auxin transport, gravity effect on cell wall properties and gravimorphogenesis in terrestrial plants.
Specific gravity and API gravity of biodiesel and ultra-low sulfur diesel (ULSD) blends
USDA-ARS?s Scientific Manuscript database
Biodiesel is an alternative fuel made from vegetable oils and animal fats. In 2006, the U. S. Environmental Protection Agency mandated a maximum sulfur content of 15 ppm in on-road diesel fuels. Processing to produce the new ultra-low sulfur petrodiesel (ULSD) alters specific gravity (SG) and othe...
NASA Astrophysics Data System (ADS)
Rahmann, H.; Hilbig, R.; Flemming, J.; Slenzka, K.
This study presents qualitative and quantitative data concerning gravity-dependent changes in the swimming behaviour of developing cichlid fish larvae (Oreochromis mossambicus) after a 9 resp. 10 days exposure to increased acceleration (centrifuge experiments), to reduced gravity (fast-rotating clinostat), changed accelerations (parabolic air craft flights) and to near weightlessness (2nd German Spacelab Mission D-2). Changes of gravity initially cause disturbances of the swimming performance of the fish larvae. With prolonged stay in orbit a step by step normalisation of the swimming behaviour took place in the fish. After return to 1g earth conditions no somersaulting or looping could be detected concerning the fish, but still slow and disorientated movements as compared to controls occurred. The fish larvae adapted to earth gravity within 3-5 days. Fish seem to be in a distinct early developmental stages extreme sensitive and adaptable to altered gravity. However, elder fish either do not react or show compensatory behaviour e.g. escape reactions.
The spinning artificial gravity environment: A design project
NASA Technical Reports Server (NTRS)
Pignataro, Robert; Crymes, Jeff; Marzec, Tom; Seibert, Joe; Walker, Gary
1987-01-01
The SAGE, or Spinning Artificial Gravity Environment, design was carried out to develop an artificial gravity space station which could be used as a platform for the performance of medical research to determine the benefits of various, fractional gravity levels for astronauts normally subject to zero gravity. Desirable both for its medical research mission and a mission for the study of closed loop life-support and other factors in prolonged space flight, SAGE was designed as a low Earth orbiting, solar powered, manned space station.
Thermosyphon Flooding in Reduced Gravity Environments
NASA Technical Reports Server (NTRS)
Gibson, Marc Andrew
2013-01-01
An innovative experiment to study the thermosyphon flooding limits was designed and flown on aparabolic flight campaign to achieve the Reduced Gravity Environments (RGE) needed to obtainempirical data for analysis. Current correlation models of Faghri and Tien and Chung do not agreewith the data. A new model is presented that predicts the flooding limits for thermosyphons inearths gravity and lunar gravity with a 95 confidence level of +- 5W.
The oxidative burst reaction in mammalian cells depends on gravity
2013-01-01
Gravity has been a constant force throughout the Earth’s evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in “functional weightlessness” were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function of the NADPH oxidase complex. PMID:24359439
The oxidative burst reaction in mammalian cells depends on gravity.
Adrian, Astrid; Schoppmann, Kathrin; Sromicki, Juri; Brungs, Sonja; von der Wiesche, Melanie; Hock, Bertold; Kolanus, Waldemar; Hemmersbach, Ruth; Ullrich, Oliver
2013-12-20
Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in "functional weightlessness" were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function of the NADPH oxidase complex.
NASA Astrophysics Data System (ADS)
Hilbig, Reinhard; Weigele, Jochen; Knie, Miriam; Hendrik Anken, Ralf
In vertebrates altered gravitational environments such as weightlessness (microgravity, g) in-duce changes in central and peripheral interpretation of sensory input leading to alterations in motor behaviour (e.g., intersensory-conflicts) including space motion sickness, a sensory motor kinetosis normally accompanied by malaise and vomiting. In fish it had been repeatedly shown that some fish of a given batch reveal motion sickness after transition from hypergravity (pull up) to microgravity microgravity in the course of parabolic aircraft flight (PF= low quality microgravity = LQM) experiments or in the case of drop tower experiments at ZARM (Bre-men) immediately after release of the capsule. The drop-tower studies were designed to further elucidate the role of otolith asymmetry concerning an individually different susceptibility to kinetoses. In order to test, whether the differing results between the PF and the drop-tower experiment were based exclusively on the differing quality of diminished gravity, or, if further parameters of the PF and the drop-tower environment need to be taken into consideration (e.g., vibrations and changing accelerations during PFs or the brisk compression of the drop-capsule at its release) to explain the differing results, drop-tower flights were performed at a series of increasing accelerations, by centrifugation in the drop capsule. This simulation of "differ-ent micro" gravity was carried out in housing larval cichlid fish (Oreochromis mossambicus) within a centrifuge at high quality microgravity 10-6g (HQM) and 10-4g to 0.3g during the drop-tower flights. The percentual ratios of the swimming behaviour at drop-tower changed significantly according to the increasing acceleration force of the centrifuge during flight. With increasing acceleration (= detectable gravity for fish) the relative proportion of looping an d spinning movements decreased in favour of normal swimming an at 0.3g nearly no kinetotic behaviour was observed. When during centrifugation in the drop-tower capsule LQM ranged between those of PF LQM the fish displayed comparable types of behaviour (normal and kine-totic swimming). This indicates that some normally swimming fish during PFs and drop-tower LQM use the residual gravity as a cue for orientation. Whereas kinetoses were exhibited by some 90 The present findings on otolith asymmetry support the concept, according to which kinetosis susceptibility is based on highly asymmetric inner ear stones.
NASA Technical Reports Server (NTRS)
Schatten, Heide
1999-01-01
Calcium loss and muscle atrophy are two of the main metabolic changes experienced by astronauts and crew members during exposure to microgravity in space. For long-term exposure to space it is crucial to understand the underlying mechanisms for altered physiological functions. Fundamental occurrences in cell biology which are likely to depend on gravity include cytoskeletal dynamics, chromatin and centrosome cycling, and ion immobilization. These events can be studied during fertilization and embryogenesis within invertebrate systems. We have chosen the sea urchin system to study the effects of microgravity on cytoskeletal processes and calcium metabolism during fertilization, cell division, development, and embryogenesis. Experiments during an aircraft parabolic flight (KC-135) demonstrated: (1) the viability of sea urchin eggs prior to fertilization, (2) the suitability of our specimen containment system, (3) the feasibility of fertilization in a reduced gravity environment (which was achieved during 25 seconds of reduced gravity under parabolic flight conditions). Two newly developed pieces of spaceflight hardware made further investigations possible on a spaceflight (STS-77); (1) the Aquatic Research Facility (ARF), and (2) the Fertilization Syringe Unit (FSU). The Canadian Space Agency developed ARF to conduct aquatic spaceflight experiments requiring controlled conditions of temperature, humidity, illumination, and fixation at predetermined time points. It contained a control centrifuge which simulated the 1 g environment of earth during spaceflight. The FSU was developed at the Kennedy Space Center (KSC) by the Bionetics Corporation specifically to enable the crew to perform sea urchin fertilization operations in space.
Active Response Gravity Offload and Method
NASA Technical Reports Server (NTRS)
Dungan, Larry K. (Inventor); Lieberman, Asher P. (Inventor); Shy, Cecil (Inventor); Bankieris, Derek R. (Inventor); Valle, Paul S. (Inventor); Redden, Lee (Inventor)
2015-01-01
A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.
Gravity: The Glue of the Universe. History and Activities.
ERIC Educational Resources Information Center
Gilbert, Harry; Smith, Diana Gilbert
This book presents a story of the history of gravity, the glue of the universe, and is based on two premises: (1) an understanding of mathematics is not required to grasp the concepts and implications of relativity; and (2) relativity has altered forever the perceptions of gravity, space, time, and how the universe works. A narrative text section…
NASA Technical Reports Server (NTRS)
Oslon, Sandra. L.; Ferkul, Paul
2012-01-01
Drop tower tests are conducted at Martian gravity to determine the flammability of three materials compared to previous tests in other normal gravity and reduced gravity environments. The comparison is made with consideration of a modified NASA standard test protocol. Material flammability limits in the different gravity and flow environments are tabulated to determine the factor of safety associated with normal gravity flammability screening. Previous testing at microgravity and Lunar gravity indicated that some materials burned to lower oxygen concentrations in low gravity than in normal gravity, although the low g extinction limit criteria are not the same as 1g due to time constraints in drop testing. Similarly, the data presented in this paper for Martian gravity suggest that there is a gravity level below Earth s at which materials burn more readily than on Earth. If proven for more materials, this may indicate the need to include a factor of safety on 1g flammability limits.
Studies toward birth and early mammalian development in space
NASA Astrophysics Data System (ADS)
Ronca, April E.
2003-10-01
Sustaining life beyond Earth on either space stations or other planets will require a clear understanding of how the space environment affects key phases of mammalian reproduction and development. Pregnancy, parturition (birth) and the early development of offspring are complex processes essential for successful reproduction and the proliferation of mammalian species. While no mammal has yet undergone birth within the space environment, studies spanning the gravity continuum from 0- to 2-g are revealing startling insights into how reproduction and development may proceed under gravitational conditions deviating from those typically experienced on Earth. In this report, I review studies of pregnant Norway rats and their offspring flown in microgravity (μg) onboard the NASA Space Shuttle throughout the period corresponding to mid- to late gestation, and analogous studies of pregnant rats exposed to hypergravity ( ht) onboard the NASA Ames Research Center 24-ft centrifuge. Studies of postnatal rats flown in space or exposed to centrifugation are reviewed. Although many important questions remain unanswered, the available data suggest that numerous aspects of pregnancy, birth and early mammalian development can proceed under altered gravity conditions. Published by Elsevier Ltd on behalf of COSPAR.
Plant Science in Reduced Gravity: Lessons Learned
NASA Technical Reports Server (NTRS)
Stutte, Gary W.; Monje, Oscar; Wheeler, Raymond M.
2012-01-01
The effect of gravity on the growth and development of plants has been the subject of scientific investigation for over a century. The results obtained in space to test specific hypotheses on gravitropism, gene expression, seed formation, or growth rate are affected by both the primary effect of the microgravity and secondary effects of the spaceflight environment. The secondary effects of the spaceflight environment include physical effects arising from physical changes, such as the absence of buoyancy driven convective mixing, altered behavior of liquids and gases, and the environmental conditions in the spacecraft atmosphere. Thus, the design of biological experiments (e.g. cells, plants, animals, etc.) conducted in microgravity must account for changes in the physical forces, as well as the environmental conditions, imposed by the specific spaceflight vehicle and experimental hardware. In addition, researchers must become familiar with other aspects of spaceflight experiments: payload integration with hardware developers, safety documentation and crew procedures, and the logistics of conducting flight and ground controls. This report reviews the physical and environmental factors that directly and indirectly affect the results of plant science experiments in microgravity and is intended to serve as a guide in the design and implementation plant experiments in space.
Thermosyphon Flooding in Reduced Gravity Environments Test Results
NASA Technical Reports Server (NTRS)
Gibson, Marc A.; Jaworske, Donald A.; Sanzi, Jim; Ljubanovic, Damir
2013-01-01
The condenser flooding phenomenon associated with gravity aided two-phase thermosyphons was studied using parabolic flights to obtain the desired reduced gravity environment (RGE). The experiment was designed and built to test a total of twelve titanium water thermosyphons in multiple gravity environments with the goal of developing a model that would accurately explain the correlation between gravitational forces and the maximum axial heat transfer limit associated with condenser flooding. Results from laboratory testing and parabolic flights are included in this report as part I of a two part series. The data analysis and correlations are included in a follow on paper.
Asgharian, Bahman; Price, Owen; Oberdörster, Gunter
2006-06-01
Inhalation of particles generated as a result of thermal degradation from fire or smoke, as may occur on spacecraft, is of major health concern to space-faring countries. Knowledge of lung airflow and particle transport under different gravity environments is required to addresses this concern by providing information on particle deposition. Gravity affects deposition of particles in the lung in two ways. First, the airflow distribution among airways is changed in different gravity environments. Second, particle losses by sedimentation are enhanced with increasing gravity. In this study, a model of airflow distribution in the lung that accounts for the influence of gravity was used for a mathematical description of particle deposition in the human lung to calculate lobar, regional, and local deposition of particles in different gravity environments. The lung geometry used in the mathematical model contained five lobes that allowed the assessment of lobar ventilation distribution and variation of particle deposition. At zero gravity, it was predicted that all lobes of the lung expanded and contracted uniformly, independent of body position. Increased gravity in the upright position increased the expansion of the upper lobes and decreased expansion of the lower lobes. Despite a slight increase in predicted deposition of ultrafine particles in the upper lobes with decreasing gravity, deposition of ultrafine particles was generally predicted to be unaffected by gravity. Increased gravity increased predicted deposition of fine and coarse particles in the tracheobronchial region, but that led to a reduction or even elimination of deposition in the alveolar region for coarse particles. The results from this study show that existing mathematical models of particle deposition at 1 G can be extended to different gravity environments by simply correcting for a gravity constant. Controlled studies in astronauts on future space missions are needed to validate these predictions.
The Use of Altered Gravity as a Tool to Understand Neurovestibular Mechanisms in Vertebrates
NASA Technical Reports Server (NTRS)
Boyle, R.; Popova, Y.; Varelas, J.
2017-01-01
Vertebrates sense gravito-inertial acceleration by mechanoreceptors (hair cells) in the otolith structures of the inner ear. These structures consist of ciliated sensory hair cells surmounted by biomineral grains of calcium carbonate (CaCO3) called otoconia that provide mechanical loading of hair cell cilia. Changes in their high density can alter the hair cells sensitivity to acceleration and orientation with respect to gravity. A widely considered mechanism by which the animal responds to a chronic change in amplitude of gravity is a change in weight-lending otoconia. Hair cells are synaptically coupled to the vestibular nerve afferents that convey the signals into the brain. Synapses are modifiable in strength and numbers, and thereby can be an additional target to adjust the sensation as the gravity load changes. Here, we present the results obtained in 2 species exposed both to G and HG. Adult toadfish, Opsanus tau, were exposed to G in 2 short-duration shuttle missions and to 1.4 2.24G [resultant] centrifugation for 1-32 days; re-adaptation was studied following 1-8 days after return to 1G. Results show a biphasic pattern in response to 2.24G: initial hypersensitivity, similar to that observed after G exposure, followed by transition to a significant decrease at 16-32 days. Recovery from HG exposure is 4-8 days. Two major pieces of information are still needed: vertebrate hair cell response to altered gravity and impact of longer duration exposures on sensory plasticity. To address the latter we applied electron microscopic techniques to image otoconia mass obtained from 1) mice subjected to 91-days of weightlessness in the Mouse Drawer System (MDS) flown on International Space Station, 2) mice subjected to 91-days of 1.24G centrifugation on ground, and 3) mice flown on 2 short-duration orbital missions. Images indicate a clear restructuring of individual otoconia, suggesting deposition to the outer shell. Images from their HG counterparts indicate the converse - an ablation of the otoconia mass. For shorter duration exposures to weightlessness on 13-day shuttle missions mice otoconia appear normal. Despite the permanence of 1G in evolution the animal senses exposure to a novel, non-1G, environment and adaptive mechanisms are initiated - in the short term compensation is likely confined to the peripheral sensory receptors, the brain or both. For longer exposures structural modifications of the endorgan may also result.
Space Biophysics: Accomplishments, Trends, Challenges
NASA Technical Reports Server (NTRS)
Smith, Jeffrey D.
2015-01-01
Physics and biology are inextricably linked. All the chemical and biological processes of life are dutifully bound to follow the rules and laws of physics. In space, these physical laws seem to turn on their head and biological systems, from microbes to humans, adapt and evolve in myriad ways to cope with the changed physical influences of the space environment. Gravity is the most prominent change in space that influences biology. In microgravity, the physical processes of sedimentation, density-driven convective flow, influence of surface tension and fluid pressure profoundly influence biology at the molecular and cellular level as well as at the whole-body level. Gravity sensing mechanisms are altered, structural and functional components of biology (such as bone and muscle) are reduced and changes in the way fluids and gasses behave also drive the way microbial systems and biofilms grow as well as the way plants and animals adapt. The radiation environment also effects life in space. Solar particle events and high energy cosmic radiation can cause serious damage to DNA and other biomolecules. The results can cause mutation, cellular damage or death, leading to health consequences of acute radiation damage or long-term health consequences such as increased cancer risk. Space Biophysics is the study and utilization of physical changes in space that cause changes in biological systems. The unique physical environment in space has been used successfully to grow high-quality protein crystals and 3D tissue cultures that could not be grown in the presence of unidirectional gravitational acceleration here on Earth. All biological processes that change in space have their root in a biophysical alteration due to microgravity and/or the radiation environment of space. In order to fully-understand the risks to human health in space and to fully-understand how humans, plants, animals and microbes can safely and effectively travel and eventually live for long periods beyond the protective environment of Earth, the biophysical properties underlying these changes must be studied, characterized and understood. This lecture reviews the current state of NASA biophysics research accomplishments and identifies future trends and challenges for biophysics research on the International Space Station and beyond.
Nonlinear evolution of f(R) cosmologies. II. Power spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyaizu, Hiroaki; Hu, Wayne; Department of Astronomy and Astrophysics, University of Chicago, Chicago Illinois 60637
2008-12-15
We carry out a suite of cosmological simulations of modified action f(R) models where cosmic acceleration arises from an alteration of gravity instead of dark energy. These models introduce an extra scalar degree of freedom which enhances the force of gravity below the inverse mass or Compton scale of the scalar. The simulations exhibit the so-called chameleon mechanism, necessary for satisfying local constraints on gravity, where this scale depends on environment, in particular, the depth of the local gravitational potential. We find that the chameleon mechanism can substantially suppress the enhancement of power spectrum in the nonlinear regime if themore » background field value is comparable to or smaller than the depth of the gravitational potentials of typical structures. Nonetheless power spectrum enhancements at intermediate scales remain at a measurable level for models even when the expansion history is indistinguishable from a cosmological constant, cold dark matter model. Simple scaling relations that take the linear power spectrum into a nonlinear spectrum fail to capture the modifications of f(R) due to the change in collapsed structures, the chameleon mechanism, and the time evolution of the modifications.« less
NASA Astrophysics Data System (ADS)
Rijken, P. J.; de Groot, R. P.; Kruijer, W.; de Laat, S. W.; Verkleij, A. J.; Boonstra, J.
Epidermal growth factor (EGF) activates a well characterized signal transduction cascade in human A431 epidermoid carcinoma cells. The influence of gravity on EGF-induced EGF-receptor clustering and early gene expression as well as on actin polymerization and actin organization have been investigated. Different signalling pathways induced by the agents TPA, forskolin and A23187 that activate gene expression were tested for sensitivity to gravity. EGF-induced c-fos and c-jun expression were decreased in microgravity. However, constitutive β-2 microglobulin expression remained unaltered. Under simulated weightlessness conditions EGF- and TPA-induced c-fos expression was decreased, while forskolin- and A23187-induced c-fos expression was independent of the gravity conditions. These results suggest that gravity affects specific signalling pathways. Preliminary results indicate that EGF-induced EGF-receptor clustering remained unaltered irrespective of the gravity conditions. Furthermore, the relative filamentous actin content of steady state A431 cells was enhanced under microgravity conditions and actin filament organization was altered. Under simulated weightlessness actin filament organization in steady state cells as well as in EGF-treated cells was altered as compared to the 1 G reference experiment. Interestingly the microtubule and keratin organization in untreated cells showed no difference with the normal gravity samples. This indicates that gravity may affect specific components of the signal transduction circuitry.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Shyu, K. L.
1991-01-01
The requirement to settle or to position liquid fluid over the outlet end of spacecraft propellant tank prior to main engine restart poses a microgravity fluid behavior problem. Resettlement or reorientation of liquid propellant can be accomplished by providing optimal acceleration to the spacecraft such that the propellant is reoriented over the tank outlet without any vapor entrainment, any excessive geysering, or any other undesirable fluid motion for the space fluid management under microgravity environment. The purpose of present study is to investigate most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement, it shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment.
NASA Technical Reports Server (NTRS)
Love, Felisha D.; Melhado, Caroline; Bosah, Francis; Harris-Hooker, Sandra A.; Sanford, Gary L.
1997-01-01
A number of basic cellular functions, e.g., electrolyte concentration cell growth rate, glucose utilization, bone formation, response to growth stimulation and exocytosis are modified by microgravity or during spaceflight. Studies with intact animal during spaceflights have found lipid accumulations within the lumen of the vasculature and degeneration of the vascular wall. Capillary alterations with extensive endothelial invaginations were also seen. Hemodynamic studies have shown that there is a redistribution of blood from the lower extremities to the upper part of the body; this will alter vascular permeability, resulting in leakage into surrounding tissues. These studies indicate that changes in gravity will affect a number of physiological systems, including the vasculature. However, few studies have addressed the effect of microgravity on vascular cell function and metabolism. A major problem with ground based studies is that achieving a true microgravity hand, environment for prolonged period is not possible. On the other increasing gravity (i.e., hypergravity) is easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell limes (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. These studies suggest that hypergravity will alter the behavior of most cells. Several investigators have shown that hypergravity affects the expression of the early response genes (c-fos and c-myc) and the activation of several protein kinases (PK's) in cells (10,11). In this study we investigated whether hypergravity alters the expression of f-actin by aortic endothelial cells, and the possible role of protein kinases (calmodulin(II)-dependent and PKA) as mediators of these effects.
Tribology experiment. [journal bearings and liquid lubricants
NASA Technical Reports Server (NTRS)
Wall, W. A.
1981-01-01
A two-dimensional concept for Spacelab rack 7 was developed to study the interaction of liquid lubricants and surfaces under static and dynamic conditions in a low-gravity environment fluid wetting and spreading experiments of a journal bearing experiments, and means to accurately measure and record the low-gravity environment during experimentation are planned. The wetting and spreading process of selected commercial lubricants on representative surface are to the observes in a near-zero gravity environment.
Effects of Weightlessness on Vestibular Development of Quail
NASA Technical Reports Server (NTRS)
Fritzsch, Bernd; Bruce, Laura L.
1997-01-01
The lack of gravity is known to alter vestibular responses in developing and adult vertebrates. One cause of these altered responses may be changes in the connections between the vestibular receptor and the brain. Therefore we propose to investigate the effects of gravity on the formations of connections between the gravity receptors of the ear and the brain in developing quail incubated in space beginning at an age before these connections are established (incubation day three) until near the time of hatching, when they are to some extent functional. This investigation will make use of a novel technique, the diffusion of a lipophilic dye, DiI, in fixed tissue. This technique can thus be used to analyze the connections in specimens fixed in orbit, thus eliminating changes due to the earth's gravity. The evaluation of the data will enable us to detect gross deviations from normal patterns as well as detailed quantitative deviations.
Van Ombergen, Angelique; Wuyts, Floris L; Jeurissen, Ben; Sijbers, Jan; Vanhevel, Floris; Jillings, Steven; Parizel, Paul M; Sunaert, Stefan; Van de Heyning, Paul H; Dousset, Vincent; Laureys, Steven; Demertzi, Athena
2017-06-12
Spaceflight severely impacts the human body. However, little is known about how gravity and gravitational alterations affect the human brain. Here, we aimed at measuring the effects of acute exposure to gravity transitions. We exposed 28 naïve participants to repetitive alterations between normal, hyper- and microgravity induced by a parabolic flight (PF) and measured functional MRI connectivity changes. Scans were acquired before and after the PF. To mitigate motion sickness, PF participants received scopolamine prior to PF. To account for the scopolamine effects, 12 non-PF controls were scanned prior to and after scopolamine injection. Changes in functional connectivity were explored with the Intrinsic Connectivity Contrast (ICC). Seed-based analysis on the regions exhibiting localized changes was subsequently performed to understand the networks associated with the identified nodes. We found that the PF group was characterized by lower ICC scores in the right temporo-parietal junction (rTPJ), an area involved in multisensory integration and spatial tasks. The encompassed network revealed PF-related decreases in within- and inter-hemispheric anticorrelations between the rTPJ and the supramarginal gyri, indicating both altered vestibular and self-related functions. Our findings shed light on how the brain copes with gravity transitions, on gravity internalization and are relevant for the understanding of bodily self-consciousness.
Effect of Altered Gravity Environment on Tobacco Hornworm (Manduca Sexta) Development
NASA Technical Reports Server (NTRS)
Tischler, Marc E.
1996-01-01
Metamorphosis provides a unique condition for studying the role of gravity in development. Formation of new organs in a previously existing organism requires a highly active period of turnover of amino acids and proteins, and of changes in the endocrine profile. Furthermore, metamorphosis offers the advantage of studying a self-contained biological system. The tobacco hornworm provides a suitable species to study the effect of altered gravitational environment on invertebrate development. This species has been one of the most thoroughly investigated organisms in a variety of aspects of insect biology. M. sexta pharate adults can provide significant amounts of material with which to work, thus facilitating the study of metabolic aspects of adult development. During wandering, the period immediately following cessation of larval feeding, the larva burrows into the soil to form a pupation chamber. Despite burrowing down 25 to 30 cm, the insects reorient themselves to a slightly head-up (10 +/- 1 degree) position. Since light and temperature are not factors in this process, the larvae must sense the gravity vector. In our ground-based studies we had assessed whether developing adults might be sensitive to their gravitational environment by orienting pupae in a vertical head-up position within 24 to 48 h after pupal ecdysis. Our ground-based findings formed the foundation for determining which parameters would be evaluated in developing Manduca following spaceflight. Measurements were to include: (1) extent of development by all of the insects, (2) analysis of hemolymph obtained from half of the insects postflight for ecdysteroid, amino acid, urea, ammonia and trehalose concentrations, (3) further development of the other half of the insects to adult (moths), (4) analysis of the flight muscle protein content of the adults. Based on the first flight attempt in July, 1995, we modified the BRIC hardware to accommodate the insects. Our studies after BRIC-04 showed that sealing the top and bottom lids of the canisters with an 0-ring and with vacuum grease caused the insects to stop developing because of accumulation of carbon dioxide. Even though removing both the O-rings and vacuum grease permitted normal development, there was still some increase in carbon dioxide levels. Consequently, the canisters were vented and the vents covered with gas permeable membrane.
Altered Gravity Simulated by Parabolic Flight and Water Immersion Leads to Decreased Trunk Motion
Tian, Yu; Li, Fan; Zhang, Shaoyao; Zhang, Lin; Guo, Yaoyu; Liu, Weibo; Wang, Chunhui; Chen, Shanguang; Guo, Jinhu
2015-01-01
Gravity is one of the important environmental factors that influence the physiologies and behaviors of animals and humans, and changes in gravity elicit a variety of physiological and behavioral alterations that include impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions. To elucidate the effects of gravity on human physiology and behavior, we examined changes in wrist and trunk activities and heart rate during parabolic flight and the activity of wrist and trunk in water immersion experiments. Data from 195 person-time parabolas performed by eight subjects revealed that the trunk motion counts decreased by approximately half during ascending legs (hypergravity), relative to the data acquired before the parabolic flights. In contrast, the wrist activity remained unchanged. The results from the water immersion experiments demonstrated that in the underwater condition, both the wrist and trunk activities were significantly decreased but the latter decreased to a much lower level. Together, these data suggest that gravitational alterations can result in differential influences on the motions of the wrist and the trunk. These findings might be important for understanding the degeneration of skeleton and muscular system and performance of astronauts in microgravity. PMID:26208253
NASA Technical Reports Server (NTRS)
Ortiz, R. M.; Wade, C. E.; Morey-Holton, E.
2000-01-01
A dissociation between plasma luteinizing hormone (LH) and testosterone (T) appears to exist during exposure to altered gravity. The pulsatile nature of LH release and the diurnal variability of T secretion may mask or bias the effects of altered gravity on the pituitary-gonadal axis when analyzing plasma concentrations. Therefore, we examined the relationship between the excretion of urinary LH and T in male Sprague-Dawley rats during exposure to increased gravity upon return to Earth following a 14-day spaceflight (n = 6) and by 12 days of centrifugation at 2g (n = 8). Excreted LH and T were elevated on the first 3 days postflight. Excreted T was elevated between Days 1 and 8 of centrifugation; however, excreted LH was reduced on Days 2 and 3 compared with control animals. Excreted LH and T were significantly correlated (R = 0.731 and 0.706, respectively) in postspaceflight and centrifuged animals. Correlation curves had similar slopes (0.0213 and 0.023, respectively), but different y-intercepts (-1.43 and 3.32, respectively). The sustained increase in excreted T during centrifugation suggests that the pituitary-gonadal axis in postspaceflight animals may adapt quicker to increased gravity. The upward shift in the correlation curve exhibited by the centrifuged animals suggests that the sensitivity of LH-induced T release is increased in these animals. The previous dissociation between plasma LH and T during altered gravity was not observed in the present study in which excreted LH and T were measured.
Henkelmann, Ralf; Schneider, Sebastian; Müller, Daniel; Gahr, Ralf; Josten, Christoph; Böhme, Jörg
2017-03-14
Partial or complete immobilization leads to different adjustment processes like higher risk of muscle atrophy or a decrease of general performance. The present study is designed to prove efficacy of the anti-gravity treadmill (alter G®) compared to a standard rehabilitation protocol in patients with tibial plateau (group 1)or ankle fractures (group 2) with six weeks of partial weight bearing of 20 kg. This prospective randomized study will include a total of 60 patients for each group according to predefined inclusion and exclusion criteria. 1:1 randomization will be performed centrally via fax supported by the Clinical Trial Centre Leipzig (ZKS Leipzig). Patients in the treatment arm will be treated with an anti-gravity treadmill (alter G®) instead of physiotherapy. The protocol is designed parallel to standard physiotherapy with a frequency of two to three times of training with the treadmill per week with duration of 20 min for six weeks. Up to date no published randomized controlled trial with an anti-gravity treadmill is available. The findings of this study can help to modify rehabilitation of patients with partial weight bearing due to their injury or postoperative protocol. It will deliver interesting results if an anti-gravity treadmill is useful in rehabilitation in those patients. Further ongoing studies will identify different indications for an anti-gravity treadmill. Thus, in connection with those studies, a more valid statement regarding safety and efficacy is possible. NCT02790229 registered on May 29, 2016.
Human reproductive issues in space
NASA Technical Reports Server (NTRS)
Santy, Patricia A.; Jennings, Richard T.
1992-01-01
A review of reproductive functioning in animal species studied during space flight demonstrated that most species were affected significantly by the absence of gravity and/or the presence of radiation. These two factors induced alterations in normal reproductive functioning independently of, as well as in combination with, each other. Based on animal models, several potential problem areas regarding human reproductive physiology and functioning in the space environment were identified. While there are no current space flight investigations, the animal studies suggest priorities for future research in human reproduction. Such studies will be critical for the successful colonization of the space frontier.
Sediment-transport (wind) experiments in zero-gravity
NASA Technical Reports Server (NTRS)
Iverson, J.; Gillette, D.; Greeley, R.; Lee, J.; Mackinnon, I.; Marshall, J.; Nickling, W.; Werner, B.; White, B.; Williams, S.
1986-01-01
The carousel wind tunnel (CWT) can be a significant tool for the determination of the nature and magnitude of interparticlar forces at threshold of motion. By altering particle and drum surface electrical properties and/or by applying electric potential difference across the inner and outer drums, it should be possible to separate electrostatic effects from other forces of cohesion. Besides particle trajectory and bedform analyses, suggestions for research include particle aggregation in zero and subgravity environments, effect of suspension-saltation ratio on soil abrasion, and the effects of shear and shearfree turbulence on particle aggregation as applied to evolution of solar nebula.
Effects of space radiation and microgravity on miRNA expression profile in Caenorhabditis elegans
NASA Astrophysics Data System (ADS)
Xu, Dan; Sun, Yeqing; Lei, Huang; Gao, Ying
2012-07-01
Living organisms experience a shock and subsequent adaption when they are subjected to space radiation and microgravity during spaceflight. Such changes have been already documented for some biological consequences including skeletal muscle alterations, reduced immune function and bone loss. Recent advancement in the field of molecular biology has demonstrated that small non-coding microRNA (miRNA) can have a broad effect on gene expression networks, and play a key role in cellular response to environmental stresses. However, little is known about how radiation exposure and altered gravity affect miRNA expression. In the present study, we explored the changes in expression of miRNA and related genes from Caenorhabditis elegans (C.elegans) flown on spaceflight. We used wild-type (N2) and dys-1 mutant (deletion of dys-1) stains of C.elegans, which were cultured to Dauer stage and transferred to special SIMbox in the experiment container. These worms taken by Shenzhou VIII spacecraft experienced the 16.5-day shuttle spaceflight. During spaceflight, they suffered space radiation and underwent static zero gravity (microgravity) or imitated earth gravity (1g) in the rotating condition. In contrast, these worms live under static earth gravity (1g) in ground-based controls. To evaluate the effects of space radiation and microgravity on miRNA expression profile, we performed miRNA microarray expression analysis and found that a set of miRNAs in N2 groups were significantly upregulated or downregualted in radiation and microgravity conditions. Among these altered miRNAs, there are two up-regulated and four down-regulated miRNAs in space radiation conditions; one down-regulated miRNAs in microgravity condition. Expression of several miRNAs in N2 groups was only changed significantly in the imitated earth gravity (1g) conditions, presenting these altered miRNAs were affected by radiation exposure alone. Notably, dys-1 mutant is not sensitive to altered gravity due to muscle protein dystrophin deletion. Compared with those miRNAs in N2 groups, altered miRNAs in dys-1 mutant groups may play a role in the general class of myopathies. To confirm whether these altered miRNA expression correlates with gene expression and functional changes of C.elegans, we performed DNA microarray and found that expression of some muscle-related proteins and age-related factors were altered in radiation and microgravity conditions, accompanied with changes in biological processes such as oxidation, and signaling pathways. Our study suggested that molecular changes at the gene and miRNA levels might compromise the functional changes of C.elegans in response to radiation and microgravity.
Amphibian egg cytoplasm response to altered g-forces and gravity orientation
NASA Technical Reports Server (NTRS)
Neff, A. W.; Smith, R. C.; Malacinski, G. M.
1986-01-01
Elucidation of dorsal/ventral polarity and primary embryonic axis development in amphibian embryos requires an understanding of cytoplasmic rearrangements in fertile eggs at the biophysical, physiological, and biochemical levels. Evidence is presented that amphibian egg cytoplasmic components are compartmentalized. The effects of altered orientation to the gravitational vector (i.e., egg inversion) and alterations in gravity force ranging from hypergravity (centrifugation) to simulated microgravity (i.e., horizontal clinostat rotation) on cytoplasmic compartment rearrangements are reviewed. The behavior of yolk compartments as well as a newly defined (with monoclonal antibody) nonyolk cytoplasmic compartment, in inverted eggs and in eggs rotated on horizontal clinostats at their buoyant density, is discussed.
Altered Actin Dynamics and Functions of Osteoblast-Like Cells in Parabolic Flight may Involve ERK1/2
NASA Astrophysics Data System (ADS)
Dai, Zhongquan; Tan, Yingjun; Yang, Fen; Qu, Lina; Zhang, Hongyu; Wan, Yumin; Li, Yinghui
2011-01-01
Osteoblasts are sensitive to mechanical stressors such as gravity and alter their cytoskeletons and functions to adapt; however, the contribution of gravity to this phenomenon is not well understood. In this study, we investigated the effects of acute gravitational changes on the structure and function of osteoblast ROS17/2.8 as generated by parabolic flight. The changes in microfilament cytoskeleton was observed by immunofluorescence stain of Texas red conjugated Phalloidin and Alexa Fluor 488 conjugated DNase I for F-actin and G-actin, respectively. To examine osteoblast function, ALP (alkaline phosphatase) activity, osteocalcin secretions and the expression of ALP, COL1A1 (collagen type I alpha 1 chain) and osteocalcin were detected by modified Gomori methods, radioimmunity and RT-PCR, respectively. Double fluorescence staining of phosphorylated p44/42 and F-actin were performed to observe their colocalization relationship. The established semi-quantitative analysis method of fluorescence intensity of EGFP was used to detect the activity changes of COL1A1 promoter in EGFP-ROS cells with MAPK inhibitor PD98059 or F-actin inhibitor cytochalasin B. Results indicate that the altered gravity induced the reorganization of microfilament cytoskeletons of osteoblasts. After 3 h parabolic flight, F-actin of osteoblast cytoskeleton became thicker and directivity, whereas G-actin shrunk and became more concentrated at the edge of nucleus. The excretion of osteocalcin, the activity of ALP and the expression of mRNA decreased. Colocalization analysis indicated that phosphorylated p44/42 MAPK was coupled with F-actin. Inhibitor PD98059 and cytochalasin B decreased the fluorescence intensity of EGFP-ROS cells. Above results suggest that short time gravity variations induce the adjustment of osteoblast structure and functional and ERK1/2 signaling maybe involve these responses. We believe that it is an adaptive method of the osteoblasts to gravity alteration that structure alteration inhibits the function performing.
NASA Astrophysics Data System (ADS)
Raychev, R.; Griko, Y. V.
2018-02-01
Scenario drafting for early technology assessment of the external space centrifuge with little mass and variable radius of rotation is proposed to counteract micro gravity-associated physiological alterations in all physiological systems.
NASA Astrophysics Data System (ADS)
Jones, Scott B.; Or, Dani
1999-04-01
Plants grown in porous media are part of a bioregenerative life support system designed for long-duration space missions. Reduced gravity conditions of orbiting spacecraft (microgravity) alter several aspects of liquid flow and distribution within partially saturated porous media. The objectives of this study were to evaluate the suitability of conventional capillary flow theory in simulating water distribution in porous media measured in a microgravity environment. Data from experiments aboard the Russian space station Mir and a U.S. space shuttle were simulated by elimination of the gravitational term from the Richards equation. Qualitative comparisons with media hydraulic parameters measured on Earth suggest narrower pore size distributions and inactive or nonparticipating large pores in microgravity. Evidence of accentuated hysteresis, altered soil-water characteristic, and reduced unsaturated hydraulic conductivity from microgravity simulations may be attributable to a number of proposed secondary mechanisms. These are likely spawned by enhanced and modified paths of interfacial flows and an altered force ratio of capillary to body forces in microgravity.
Changes in miRNA expression profile of space-flown Caenorhabditis elegans during Shenzhou-8 mission
NASA Astrophysics Data System (ADS)
Xu, Dan; Gao, Ying; Huang, Lei; Sun, Yeqing
2014-04-01
Recent advances in the field of molecular biology have demonstrated that small non-coding microRNAs (miRNAs) have a broad effect on gene expression networks and play a key role in biological responses to environmental stressors. However, little is known about how space radiation exposure and altered gravity affect miRNA expression. The "International Space Biological Experiments" project was carried out in November 2011 by an international collaboration between China and Germany during the Shenzhou-8 (SZ-8) mission. To study the effects of spaceflight on Caenorhabditis elegans (C. elegans), we explored the expression profile miRNA changes in space-flown C. elegans. Dauer C. elegans larvae were taken by SZ-8 spacecraft and experienced the 16.5-day shuttle spaceflight. We performed miRNA microarray analysis, and the results showed that 23 miRNAs were altered in a complex space environment and different expression patterns were observed in the space synthetic and radiation environments. Most putative target genes of the altered miRNAs in the space synthetic environment were predicted to be involved in developmental processes instead of in the regulation of transcription, and the enrichment of these genes was due to space radiation. Furthermore, integration analysis of the miRNA and mRNA expression profiles confirmed that twelve genes were differently regulated by seven miRNAs. These genes may be involved in embryonic development, reproduction, transcription factor activity, oviposition in a space synthetic environment, positive regulation of growth and body morphogenesis in a space radiation environment. Specifically, we found that cel-miR-52, -55, and -56 of the miR-51 family were sensitive to space environmental stressors and could regulate biological behavioural responses and neprilysin activity through the different isoforms of T01C4.1 and F18A12.8. These findings suggest that C. elegans responded to spaceflight by altering the expression of miRNAs and some target genes that function in diverse regulatory pathways.
Altered gravity downregulates aquaporin-1 protein expression in choroid plexus.
Masseguin, C; Corcoran, M; Carcenac, C; Daunton, N G; Güell, A; Verkman, A S; Gabrion, J
2000-03-01
Aquaporin-1 (AQP1) is a water channel expressed abundantly at the apical pole of choroidal epithelial cells. The protein expression was quantified by immunocytochemistry and confocal microscopy in adult rats adapted to altered gravity. AQP1 expression was decreased by 64% at the apical pole of choroidal cells in rats dissected 5.5-8 h after a 14-day spaceflight. AQP1 was significantly overexpressed in rats readapted for 2 days to Earth's gravity after an 11-day flight (48% overshoot, when compared with the value measured in control rats). In a ground-based model that simulates some effects of weightlessness and alters choroidal structures and functions, apical AQP1 expression was reduced by 44% in choroid plexus from rats suspended head down for 14 days and by 69% in rats suspended for 28 days. Apical AQP1 was rapidly enhanced in choroid plexus of rats dissected 6 h after a 14-day suspension (57% overshoot, in comparison with control rats) and restored to the control level when rats were dissected 2 days after the end of a 14-day suspension. Decreases in the apical expression of choroidal AQP1 were also noted in rats adapted to hypergravity in the NASA 24-ft centrifuge: AQP1 expression was reduced by 47% and 85% in rats adapted for 14 days to 2 G and 3 G, respectively. AQP1 is downregulated in the apical membrane of choroidal cells in response to altered gravity and is rapidly restored after readaptation to normal gravity. This suggests that water transport, which is partly involved in the choroidal production of cerebrospinal fluid, might be decreased during spaceflight and after chronic hypergravity.
Computational Hemodynamic Simulation of Human Circulatory System under Altered Gravity
NASA Technical Reports Server (NTRS)
Kim. Chang Sung; Kiris, Cetin; Kwak, Dochan
2003-01-01
A computational hemodynamics approach is presented to simulate the blood flow through the human circulatory system under altered gravity conditions. Numerical techniques relevant to hemodynamics issues are introduced to non-Newtonian modeling for flow characteristics governed by red blood cells, distensible wall motion due to the heart pulse, and capillary bed modeling for outflow boundary conditions. Gravitational body force terms are added to the Navier-Stokes equations to study the effects of gravity on internal flows. Six-type gravity benchmark problems are originally presented to provide the fundamental understanding of gravitational effects on the human circulatory system. For code validation, computed results are compared with steady and unsteady experimental data for non-Newtonian flows in a carotid bifurcation model and a curved circular tube, respectively. This computational approach is then applied to the blood circulation in the human brain as a target problem. A three-dimensional, idealized Circle of Willis configuration is developed with minor arteries truncated based on anatomical data. Demonstrated is not only the mechanism of the collateral circulation but also the effects of gravity on the distensible wall motion and resultant flow patterns.
NASA Technical Reports Server (NTRS)
Capps, Stephen; Lorandos, Jason; Akhidime, Eval; Bunch, Michael; Lund, Denise; Moore, Nathan; Murakawa, Kiosuke
1989-01-01
The purpose of this study is to investigate comprehensive design requirements associated with designing habitats for humans in a partial gravity environment, then to apply them to a lunar base design. Other potential sites for application include planetary surfaces such as Mars, variable-gravity research facilities, and a rotating spacecraft. Design requirements for partial gravity environments include locomotion changes in less than normal earth gravity; facility design issues, such as interior configuration, module diameter, and geometry; and volumetric requirements based on the previous as well as psychological issues involved in prolonged isolation. For application to a lunar base, it is necessary to study the exterior architecture and configuration to insure optimum circulation patterns while providing dual egress; radiation protection issues are addressed to provide a safe and healthy environment for the crew; and finally, the overall site is studied to locate all associated facilities in context with the habitat. Mission planning is not the purpose of this study; therefore, a Lockheed scenario is used as an outline for the lunar base application, which is then modified to meet the project needs. The goal of this report is to formulate facts on human reactions to partial gravity environments, derive design requirements based on these facts, and apply the requirements to a partial gravity situation which, for this study, was a lunar base.
Effects of ozone and sulfur dioxide on height and stem specific gravity of Populus hybrids
Roy L. Patton
1981-01-01
Unfumigated hybrid poplars (Populus spp.) were compared with poplars of the same nine clones fumigated with 0.15 pprn ozone or 0.25 ppm sulfur dioxide. After 102 days, plant height and stem specific gravity were measured to determine whether specific gravity is altered by the fumigants and to compare that response to height suppression, an accepted...
Human Performance in Simulated Reduced Gravity Environments
NASA Technical Reports Server (NTRS)
Cowley, Matthew; Harvill, Lauren; Rajulu, Sudhakar
2014-01-01
NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. Our current understanding of human performance in reduced gravity in a planetary environment (the moon or Mars) is limited to lunar observations, studies from the Apollo program, and recent suit tests conducted at JSC using reduced gravity simulators. This study will look at our most recent reduced gravity simulations performed on the new Active Response Gravity Offload System (ARGOS) compared to the C-9 reduced gravity plane. Methods: Subjects ambulated in reduced gravity analogs to obtain a baseline for human performance. Subjects were tested in lunar gravity (1.6 m/sq s) and Earth gravity (9.8 m/sq s) in shirt-sleeves. Subjects ambulated over ground at prescribed speeds on the ARGOS, but ambulated at a self-selected speed on the C-9 due to time limitations. Subjects on the ARGOS were given over 3 minutes to acclimate to the different conditions before data was collected. Nine healthy subjects were tested in the ARGOS (6 males, 3 females, 79.5 +/- 15.7 kg), while six subjects were tested on the C-9 (6 males, 78.8 +/- 11.2 kg). Data was collected with an optical motion capture system (Vicon, Oxford, UK) and was analyzed using customized analysis scripts in BodyBuilder (Vicon, Oxford, UK) and MATLAB (MathWorks, Natick, MA, USA). Results: In all offloaded conditions, variation between subjects increased compared to 1-g. Kinematics in the ARGOS at lunar gravity resembled earth gravity ambulation more closely than the C-9 ambulation. Toe-off occurred 10% earlier in both reduced gravity environments compared to earth gravity, shortening the stance phase. Likewise, ankle, knee, and hip angles remained consistently flexed and had reduced peaks compared to earth gravity. Ground reaction forces in lunar gravity (normalized to Earth body weight) were 0.4 +/- 0.2 on the ARGOS, but only 0.2 +/- 0.1 on the C-9. Discussion: Gait analysis showed differences in joint kinematics and temporal-spatial parameters between the reduced gravity simulators and with respect to earth gravity. Although most of the subjects chose a somewhat unique ambulation style as a result of learning to ambulate in a new environment, all but two were consistent with keeping an Earth-like gait. Learning how reduced gravity affects ambulation will help NASA to determine optimal suit designs, influence mission planning, help train crew, and may shed light on the underlying methods the body uses to optimize gait for energetic efficiency. Conclusion: Kinematic and kinetic analysis demonstrated noteworthy differences between an offloaded environment and 1-g, as would be expected. The analysis showed a trend to change the ambulation style in an offloaded environment to a rolling-loping walk (resembling crosscountry skiing) with increased swing time. This ambulation modification, particularly in the ARGOS, indicated that the relative kinetic energy of the subject was increased, on average, per the static body weight compared to the 1-g condition. How much of this was influenced by the active offloading of the ARGOS system is unknown.
NASA Technical Reports Server (NTRS)
Pronych, S. P.; Souza, K. A.; Neff, A. W.; Wassersug, R. J.
1996-01-01
The ability of aquatic vertebrates to maintain their position requires integration of visual and vestibular sensory information. To understand better how aquatic animals integrate such information, we measured the optomotor behaviour of Xenopus laevis tadpoles raised in growth chambers in microgravity (< 10(-3)g), normal gravity (1 g), hypergravity (3 g) and on a slowly rotating clinostat (simulated microgravity). The goal of this research was to determine how development in an altered gravitational force field affects the visual- and vestibular-dependent behaviour of tadpoles. This research represents the first time that the optomotor behaviour of an organism raised from fertilization in microgravity has been tested. Significant differences were observed in the optomotor behaviour among the four gravity treatments. When first exposed to normal gravity, the microgravity-raised tadpoles exhibited the strongest (or most positive) optomotor behaviour, while the 3 g centrifuge tadpoles showed no optomotor response. Some abnormal behaviours (such as erratic swimming, lying motionless and abnormal swimming posture) were observed in the tadpoles raised in altered gravity on the initial day of testing. One day later, the tadpoles raised in hypergravity did not differ significantly in their optomotor behaviour from control tadpoles raised in normal gravity. However, tadpoles raised in microgravity still displayed an exaggerated optomotor response. One week after the tadpoles had been introduced to normal gravity, there was no longer a significant difference in optomotor behaviour among the different gravity treatments. This convergence of optomotor behaviour by tadpoles from the different treatment reflects the acclimation of their vestibular systems to normal gravity.
3. Neural changes in different gravity and ecophysiological environments - A survey
NASA Astrophysics Data System (ADS)
Slenzka, K.
Neural changes or neuronal plasticity occur after and during different stimulations and inputs in general. Gravity is one major input to the brain transferred from the vestibular system. However, often also direct effects of gravity on the cellular level are discussed. Our group was investigating the influence of different gravity environments on a large variety of neuronal enzymes in the developing fish brain. Long-term space travel or bases on Moon and Mars will have to deal not only with neural changes based on the different gravity environment, but also with potential negative or even toxic changes in the respective life support system. Our goal is now to identify reported enzyme activity changes in the brain based for example on potential toxic drugs or endocrine disruptors in combination with gravity induced changes. In this paper a survey will be undertaken discussing recent results obtained in ecotoxicology, gravitational biology combined with new data from our group regarding potential differences in brain glucose-6-phosphate dehydrogenase of medaka and zebrafish.
Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory
NASA Technical Reports Server (NTRS)
Hollinden, A. B.; Eaton, L. R.
1972-01-01
A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.
Low-gravity Orbiting Research Laboratory Environment Potential Impact on Space Biology Research
NASA Technical Reports Server (NTRS)
Jules, Kenol
2006-01-01
One of the major objectives of any orbital space research platform is to provide a quiescent low gravity, preferably a zero gravity environment, to perform fundamental as well as applied research. However, small disturbances exist onboard any low earth orbital research platform. The impact of these disturbances must be taken into account by space research scientists during their research planning, design and data analysis in order to avoid confounding factors in their science results. The reduced gravity environment of an orbiting research platform in low earth orbit is a complex phenomenon. Many factors, among others, such as experiment operations, equipment operation, life support systems and crew activity (if it is a crewed platform), aerodynamic drag, gravity gradient, rotational effects as well as the vehicle structural resonance frequencies (structural modes) contribute to form the overall reduced gravity environment in which space research is performed. The contribution of these small disturbances or accelerations is precisely why the environment is NOT a zero gravity environment, but a reduced acceleration environment. This paper does not discuss other factors such as radiation, electromagnetic interference, thermal and pressure gradient changes, acoustic and CO2 build-up to name a few that affect the space research environment as well, but it focuses solely on the magnitude of the acceleration level found on orbiting research laboratory used by research scientists to conduct space research. For ease of analysis this paper divides the frequency spectrum relevant to most of the space research disciplines into three regimes: a) quasi-steady, b) vibratory and c) transient. The International Space Station is used as an example to illustrate the point. The paper discusses the impact of these three regimes on space biology research and results from space flown experiments are used to illustrate the potential negative impact of these disturbances (accelerations) on space biology research.
Improving UXO Detection and Discrimination in Magnetic Environments
2010-05-01
Krahenbuhl, Todd Meglich Center for Gravity, Electrical , & Magnetic Studies Department of Geophysics Colorado School of Mines Doug Oldenburg, Len...NAME(S) AND ADDRESS(ES) Colorado School of Mines,Department of Geophysics,Center for Gravity, Electrical , & Magnetic Studies,Golden,CO,80401 8...SERDP Project MM-1414 Improving UXO Detection and Discrimination in Magnetic Environments Final Report Center for Gravity, Electrical , & Magnetic Studies
Penetrator Coring Apparatus for Cometary Surfaces
NASA Technical Reports Server (NTRS)
Braun, David F.; Heinrich, Michael; Ai, Huirong Anita; Ahrens, Thomas J.
2004-01-01
Touch and go impact coring is an attractive technique for sampling cometary nuclei and asteroidal surface on account of the uncertain strength properties and low surface gravities of these objects. Initial coring experiments in low temperature (approx. 153K polycrystalline ice) and porous rock demonstrate that simultaneous with impact coring, measurements of both the penetration strength and constraints on the frictional properties of surface materials can be obtained upon core penetration and core sample extraction. The method of sampling an asteroid, to be deployed, on the now launched MUSES-C mission, employs a small gun device that fires into the asteroid and the resulted impact ejecta is collected for return to Earth. This technique is well suited for initial sampling in a very low gravity environment and deployment depends little on asteroid surface mechanical properties. Since both asteroids and comets are believed to have altered surface properties a simple sampling apparatus that preserves stratigraphic information, such as impact coring is an attractive alternate to impact ejecta collection.
Animals and spaceflight: from survival to understanding.
Morey-Holton, E R; Hill, E L; Souza, K A
2007-01-01
Animals have been a critical component of the spaceflight program since its inception. The Russians orbited a dog one month after the Sputnik satellite was launched. The dog mission spurred U.S. interest in animal flights. The animal missions proved that individuals aboard a spacecraft not only could survive, but also could carry out tasks during launch, near-weightlessness, and re-entry; humans were launched into space only after the early animal flights demonstrated that spaceflight was safe and survivable. After these humble beginnings when animals preceded humans in space as pioneers, a dynamic research program was begun using animals as human surrogates aboard manned and unmanned space platforms to understand how the unique environment of space alters life. In this review article, the following questions have been addressed: How did animal research in space evolve? What happened to animal development when gravity decreased? How have animal experiments in space contributed to our understanding of musculoskeletal changes and fracture repair during exposure to reduced gravity?
Medical Issues for a Human Mission to Mars and Martian Surface Expeditions
NASA Astrophysics Data System (ADS)
Jones, J. A.; Barratt, M.; Effenhauser, R.; Cockell, C. S.; Lee, P.
The medical issues for an exploratory class mission to Mars are myriad and challenging. They include hazards from the space environment, such as space vacuum and radiation; hazards on the planetary surface such as micrometeoroids and Martian dust, and constitutional medical hazards, like appendicitis and tooth abscess. They include hazards in the transit vehicle like foreign bodies and toxic atmospheres, and hazards in the habitat like decompression and combustion events. They also include human physiological adaptation to variable conditions of reduced gravity and prolonged isolation and confinement. The health maintenance program for a Mars mission will employ strategies of disease prevention, early detection, and contingency management, to mitigate the risks of spaceflight and exploration. Countermeasures for altered gravity conditions will allow crewmembers to maintain high levels of performance and nominal physiologic functioning. Despite all of these issues, given sufficient redundancy in on-board life support systems, there are no medical show-stoppers for the first human exploratory class missions.
Paloski, W H; Black, F O; Reschke, M F; Calkins, D S; Shupert, C
1993-01-01
Orbital spaceflight exposes astronauts to an environment in which gravity is reduced to negligible magnitudes of 10(-3) to 10(-6) G. Upon insertion into earth orbit, the abrupt loss of the constant linear acceleration provided by gravity removes the otolith stimulus for vestibular sensation of vertical orientation constantly present on Earth. Since the central nervous system (CNS) assesses spatial orientation by simultaneously interpreting sensory inputs from the vestibular, visual, and proprioceptive systems, loss of the otolith-mediated vertical reference input results in an incorrect estimation of spatial orientation, which, in turn, causes a degradation in movement control. Over time, however, the CNS adapts to the loss of gravitational signals. Upon return to Earth, the vertical reference provided by gravitational stimulation of the otolith organ reappears. As a result, a period of CNS readaptation must occur upon return to terrestrial environment. Among the physiological changes observed during the postflight CNS readaptation period is a disruption of postural equilibrium control. Using a dynamic posturography system (modified NeuroCom EquiTest), 16 astronauts were tested at 60, 30, and 10 days preflight and retested at 1 to 5 hours, and 8 days postflight. All astronauts tested demonstrated decreased postural stability immediately upon return to Earth. The most dramatic increases in postural sway occurred during those sensory conditions in which both the visual and proprioceptive feedback information used for postural control were altered by the dynamic posturography system, requiring reliance primarily upon vestibular function for control of upright stance. Less marked but statistically significant increases in sway were observed under those conditions in which visual and foot support surface inputs alone were altered.(ABSTRACT TRUNCATED AT 250 WORDS)
Advances in space biology and medicine. Vol. 1
NASA Technical Reports Server (NTRS)
Bonting, Sjoerd L. (Editor)
1991-01-01
Topics discussed include the effects of prolonged spaceflights on the human body; skeletal responses to spaceflight; gravity effects on reproduction, development, and aging; neurovestibular physiology in fish; and gravity perception and circumnutation in plants. Attention is also given to the development of higher plants under altered gravitational conditions; the techniques, findings, and theory concerning gravity effects on single cells; protein crystal growth in space; and facilities for animal research in space.
Centrifuges in gravitational physiology research
NASA Technical Reports Server (NTRS)
Ballard, Rodney W.; Davies, Phil; Fuller, Charles A.
1993-01-01
Data from space flight and ground based experiments have clearly demonstrated the importance of Earth gravity for normal physiological function in man and animals. Gravitational Physiology is concerned with the role and influence of gravity on physiological systems. Research in this field examines how we perceive and respond to gravity and the mechanisms underlying these responses. Inherent in our search for answers to these questions is the ability to alter gravity, which is not physically possible without leaving Earth. However, useful experimental paradigms have been to modify the perceived force of gravity by changing either the orientation of subjects to the gravity vector (i.e., postural changes) or by applying inertial forces to augment the magnitude of the gravity vector. The later technique has commonly been used by applying centripetal force via centrifugation.
Preparation, testing and analysis of zinc diffusion samples, NASA Skylab experiment M-558
NASA Technical Reports Server (NTRS)
Braski, D. N.; Kobisk, E. H.; Odonnell, F. R.
1974-01-01
Transport mechanisms of zinc atoms in molten zinc were investigated by radiotracer techniques in unit and in near-zero gravity environments. Each melt in the Skylab flight experiments was maintained in a thermal gradient of 420 C to 790 C. Similar tests were performed in a unit gravity environment for comparison. After melting in the gradient furnace followed by a thermal soak period (the latter was used for flight samples only), the samples were cooled and analyzed for Zn-65 distribution. All samples melted in a unit gravity environment were found to have uniform Zn-65 distribution - no concentration gradient was observed even when the sample was brought rapidly to melting and then quenched. Space-melted samples, however, showed textbook distributions, obviously the result of diffusion. It was evident that convection phenomena were the dominant factors influencing zinc transport in unit gravity experiments, while diffusion was the dominant factor in near-zero gravity experiments.
Gravity and body mass regulation
NASA Technical Reports Server (NTRS)
Warren, L. E.; Horwitz, B. A.; Fuller, C. A.
1997-01-01
The effects of altered gravity on body mass, food intake, energy expenditure, and body composition are examined. Metabolic adjustments are reviewed in maintenance of energy balance, neural regulation, and humoral regulation are discussed. Experiments with rats indicate that genetically obese rats respond differently to hypergravity than lean rats.
NASA Astrophysics Data System (ADS)
Sobol, Margaryta; Kordyum, Elizabeth; Medina, Francisco Javier
The nucleolus is an inner nuclear organelle originated from the activity of hundreds of rRNA genes, typically spanning several megabases. It morphologically reflects the functional events leading to ribosome biogenesis, from the transcription of rDNA through the processing of nascent pre-rRNA to the assembly of pre-ribosomes. A typical nucleolus consists of three major elements, namely fibrillar centers (FCs), the dense fibrillar component (DFC), and granular component (GC). The rate of ribosome biosynthesis and the subnucleolar structure are reliable monitors of the general level of cell metabolism and, consequently, of the rate of cellular growth, being influenced with many external factors, among which altered gravity could be included. Thus, we can hypothesize that the structural organization of the nucleolar subcomponents and the level, distribution and quantitative/qualitative characteristics of the nucleolar proteins would be changed under conditions of altered gravity. To confirm our hypothesis, we applied parallel procedures, such as cytochemistry, immunofluorescence, confocal laser microscopy, immunogold electron microscopy, monoand bi-dimensional electrophoresis and immunoblotting in root meristematic cells from two-day cress seedlings grown under slow horizontal clinorotation (2 rpm) and in stationary control. The complex model of the ultrastructural organization and functions of the nucleolus was created based on the location of rDNA and the nucleolar proteins fibrillarin, NhL90 and NhL68, these latter being cress nucleolin homologues. The principal stages of ribosome biogenesis, namely ribosomal gene activation, rDNA transcription and pre-rRNA processing were reflected in this model. Compared to the pattern shown in control ground gravity conditions, we found firstly a redistribution of both rDNA and nucleolar proteins in nucleolar subcomponents, induced by clinorotation. Under the conditions of altered gravity, nucleolar DNA concentrated predominantly in FCs in the form of condensed chromatin inclusions and internal non condensed fibrils, redistributing from the DFC and the transition zone between FCs and the DFC, recognized as the site of rDNA transcription. Regarding nucleolar proteins, a general decrease in the levels of fibrillarin and the nucleolin homologues, evaluated by estimating the density of immunogold labeling on the nucleolus, was recorded firstly in clinorotated samples, compared to controls. Furthermore, the intranucleolar location of the investigated proteins was also observed to change in response to the growth in altered gravity conditions. In particular, a decrease in the quantity of these proteins in the transition zone FCs-DFC as well as in the bulk of the DFC was observed in the experimental samples, compared to controls, whereas the content of the proteins was much higher in the inner space of FCs. Concerning the two-dimensional nuclear proteome, we revealed a decrease in the isoelectric point (pI) range of soluble proteins, which are known to be actively engaged in RNA (including rRNA) metabolism, and a shortening in the molecular weight range of them under clinorotation. Besides, minor and major protein spots in clinorotated samples showed decreased optical densities in comparison to control ones. Moreover, we showed the shortening of both the pI and the molecular weight ranges of the spots corresponding to the major nucleolin homologue NhL90 (detected by cross-reaction with anti-onion NopA100) in the fraction of soluble proteins in altered gravity. Based on these data, an effect of altered gravity in lowering the level of rDNA transcription as well as rRNA processing, that could be the evidence of a decrease in the level of nucleolar functional activity, is suggested.
NASA Astrophysics Data System (ADS)
Kojima, Hirohisa; Hiraiwa, Kana; Yoshimura, Yasuhiro
2018-02-01
This paper presents the results of line-of-sight (LOS) attitude control using control moment gyros under a micro-gravity environment generated by parabolic flight. The W-Z parameters are used to describe the spacecraft attitude. In order to stabilize the current LOS to the target LOS, backstepping-based feedback control is considered using the W-Z parameters. Numerical simulations and experiments under a micro-gravity environment are carried out, and their results are compared in order to validate the proposed control methods.
Journal of Gravitational Physiology, Volume 12, Number 1
NASA Technical Reports Server (NTRS)
Fuller, Charles A. (Editor); Cogoli, Augusto (Editor); Hargens, Alan R. (Editor); Smith, Arthur H. (Editor)
2005-01-01
The following topics were covered: System Specificity in Responsiveness to Intermittent -Gx Gravitation during Simulated Microgravity in Rats; A Brief Overview of Animal Hypergravity Studies; Neurovestibular Adaptation to Short Radius Centrifugation; Effect of Artificial Gravity with Exercise Load by Using Short-Arm Centrifuge with Bicycle Ergometer as a Countermeasure Against Disused Osteoporosis; Perception of Body Vertical in Microgravity during Parabolic Flight; Virtual Environment a Behavioral and Countermeasure Tool for Assisted Gesture in Weightlessness: Experiments during Parabolic Flight; Artificial Gravity: Physiological Perspectives for Long-Term Space Exploration; Comparison of the Effects of DL-threo-Beta-Benzyloxyaspartate on the Glutamate Release from Synaptosomes before and after Exposure of Rats to Artificial Gravity; Do Perception and Postrotatory Vestibulo-Ocular Reflex Share the Same Gravity Reference?; Vestibular Adaptation to Changing Gravity Levels and the Orientation of Listing's Plane; Compound Mechanism Hypothesis on +Gz - Induced Brain Injury and Dysfunction of Learning and Memory; Environmental Challenge Impairs Prefrontal Brain Functions; Effect of 6-Days of Support Withdrawal on Characteristics of Balance Function; Hypergravity-Induced Changes of Neuronal Activities in CA1 Region of Rat Hippocampus; Audiological Findings in Antiorthostatic Position Modelling Microgravitation; Investigating Human Cognitive Performance during Spaceflight; The Relevance of the Minimization of Torque Exchange with the Environment in Weightlessness is Confirmed by Asimulation Study; Characteristics of the Eyes Pursuit Function during Readaptation to Terrestrial Gravity after Prolonged Flights Aboard the International Space Station; Comparison of Cognitive Performance Tests for Promethazine Pharmacodynamics in Human Subjects; Structural Reappraisal of Dendritic Tree of Cerebellar Purkinje Cell for Novel Functional Modeling of Elementary Sensorimotor Adaptive Processes; Orpheus 0 G or Ear in Microgravity to Establish Symptoms Concomittant of Inner and Middle Ear and Osteoporosis in Microgravity; Understanding Visual Perception in the Perspective of Gravity; Cortical Regions Associated with Orthostatic Stress in Conscious Humans; Restoration of Central Blood Volume: Application of a Simple Concept and Simple Device to Counteract Cardiovascular Instability in Syncope and Hemorrhage; WISE-2005: Integrative Cardiovascular Responses with LBNP during 60-Day Bed Rest in Women; Intracranial Pressure Increases during Weightlessness. A Parabolic Flights Study; Lower Limb & Portal Veins Echography for Predicting Risk of Thrombosis during a 90-D Bed Rest; Calf Tissue Liquid Stowage and Muscular and Deep Vein Distension in Orthostatic Tests after a 90-Day Head Down Bed Rest; Morphology of Brain Vessels in the Tail Suspended Rats Exposed to Intermittent 2 G; Alterations in Vasoreactivity of Femoral Artery Induced by Hindlimb Unweighting are Related to the Changes of Contractile Protein in Rats; and Respiratory Sinus Arrhythmia: A Marker of Decreased Parasympathetic Modulation after Short Duration.
The influence of gravity on the process of development of animal systems
NASA Technical Reports Server (NTRS)
Malacinski, G. M.; Neff, A. W.
1984-01-01
The development of animal systems is described in terms of a series of overlapping phases: pattern specification; differentiation; growth; and aging. The extent to which altered (micro) gravity (g) affects those phases is briefly reviewed for several animal systems. As a model, amphibian egg/early embryo is described. Recent data derived from clinostat protocols indicates that microgravity simulation alters early pattern specification (dorsal/ventral polarity) but does not adversely influence subsequent morphogenesis. Possible explanations for the absence of catastrophic microgravity effects on amphibian embryogenesis are discussed.
NASA Technical Reports Server (NTRS)
1998-01-01
In a microgravity environment aboard the Space Shuttle Columbia Life and Microgravity Mission STS-78, compression wood formation and hence altered lignin deposition and cell wall structure, was induced upon mechanically bending the stems of the woody gymnosperms, Douglas fir (Pseudotsuga menziesii) and loblolly pine (Pinus taeda). Although there was significant degradation of many of the plant specimens in space-flight due to unusually high temperatures experienced during the mission, it seems evident that gravity had little or no effect on compression wood formation upon bending even in microgravity. Instead, it apparently results from alterations in the stress gradient experienced by the plant itself during bending under these conditions. This preliminary study now sets the stage for long-term plant growth experiments to determine whether compression wood formation can be induced in microgravity during phototropic-guided realignment of growing woody plant specimens, in the absence of any externally provided stress and strain.
Mechanical forces and their second messengers in stimulating cell growth in vitro
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.
1992-01-01
Mechanical forces play an important role in modulating the growth of a number of different tissues including skeletal muscle, smooth muscle, cardiac muscle, bone, endothelium, epithelium, and lung. As interest increases in the molecular mechanisms by which mechanical forces are transduced into growth alterations, model systems are being developed to study these processes in tissue culture. This paper reviews the current methods available for mechanically stimulating tissue cultured cells. It then outlines some of the putative 'mechanogenic' second messengers involved in altering cell growth. Not surprisingly, many mechanogenic second messengers are the same as those involved in growth factor-induced cell growth. It is hypothesized that from an evolutionary standpoint, some second messenger systems may have initially evolved for unicellular organisms to respond to physical forces such as gravity and mechanical perturbation in their environment. As multicellular organisms came into existence, they appropriated these mechanogenic second messenger cascades for cellular regulation by growth factors.
Liquid phase sintered compacts in space
NASA Technical Reports Server (NTRS)
Mookherji, T. K.; Mcanelly, W. B.
1974-01-01
A model that will explain the effect of gravity on liquid phase sintering was developed. Wetting characteristics and density segregation which are the two important phenomena in liquid phase sintering are considered in the model development. Experiments were conducted on some selected material combinations to study the gravity effects on liquid phase sintering, and to verify the validity of the model. It is concluded that: (1) The surface tension forces acting on solid particles in a one-g environment are not appreciably different from those anticipated in a 0.00001g/g sub 0 (or lower) environment. (2) The capillary forces are dependent on the contact angle, the quantity of the liquid phase, and the distance between solid particles. (3) The pores (i.e., bubbles) do not appear to be driven to the surface by gravity-produced buoyancy forces. (4) The length of time to produce the same degree of settling in a low-gravity environment will be increased significantly. (5) A low gravity environment would appear to offer a unique means of satisfactorily infiltrating a larger and/or complex shaped compact.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Tsao, Y. D.; Leslie, Fred W.; Hong, B. B.
1988-01-01
Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) linear functions of increasing and decreasing gravity enviroment in high and low rotating cylidner speeds, (3) step functions of spin-up and spin-down in a low gravity environment, and (4) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds. The initial condition of bubble profiles was adopted from the steady-state formulations in which the computer algorithms have been developed by Hung and Leslie (1988), and Hung et al. (1988).
Zero Gravity Aircraft Testing of a Prototype Portable Fire Extinguisher for Use in Spacecraft
NASA Astrophysics Data System (ADS)
Butz, J.; Carriere, T.; Abbud-Madrid, A.; Easton, J.
2012-01-01
For the past five years ADA Technologies has been developing a portable fire extinguisher (PFE) for use in microgravity environments. This technology uses fine water mist (FWM) to effectively and efficiently extinguish fires representative of spacecraft hazards. Recently the FWM PFE was flown on a Zero-G (reduced gravity) aircraft to validate the performance of the technology in a microgravity environment. Test results demonstrated that droplet size distributions generated in the reduced gravity environment were in the same size range as data collected during normal gravity (1-g) discharges from the prototype PFE. Data taken in an obscured test configuration showed that the mist behind the obstacle was more dense in the low-g environment when compared to 1-g discharges. The mist behind the obstacle tended to smaller droplet sizes in both the low-g and 1-g test conditions.
Effect of Changing the Center of Gravity on Human Performance in Simulated Lunar Gravity
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.
2010-01-01
The presentation slides include: Moving Past Apollo, Testing in Analog Environments, NEEMO/NBL CG (center of gravity) Studies, Center of Gravity Test Design and Methods, CG Suited Locations and Results, CG Individual Considerations, CG Shirt-Sleeve Locations and Results.
Dense Gravity Currents with Breaking Internal Waves
NASA Astrophysics Data System (ADS)
Tanimoto, Yukinobu; Hogg, Charlie; Ouellette, Nicholas; Koseff, Jeffrey
2017-11-01
Shoaling and breaking internal waves along a pycnocline may lead to mixing and dilution of dense gravity currents, such as cold river inflows into lakes or brine effluent from desalination plants in near-coastal environments. In order to explore the interaction between gravity currents and breaking interfacial waves a series of laboratory experiments was performed in which a sequence of internal waves impinge upon a shelf-slope gravity current. The waves are generated in a two-layer thin-interface ambient water column under a variety of conditions characterizing both the waves and the gravity currents. The mixing of the gravity current is measured through both intrusive (CTD probe) and nonintrusive (Planar-laser inducted fluorescence) techniques. We will present results over a full range of Froude number (characterizing the waves) and Richardson number (characterizing the gravity current) conditions, and will discuss the mechanisms by which the gravity current is mixed into the ambient environment including the role of turbulence in the process. National Science Foundation.
Changes in root cap pH are required for the gravity response of the Arabidopsis root
NASA Technical Reports Server (NTRS)
Fasano, J. M.; Swanson, S. J.; Blancaflor, E. B.; Dowd, P. E.; Kao, T. H.; Gilroy, S.
2001-01-01
Although the columella cells of the root cap have been identified as the site of gravity perception, the cellular events that mediate gravity signaling remain poorly understood. To determine if cytoplasmic and/or wall pH mediates the initial stages of root gravitropism, we combined a novel cell wall pH sensor (a cellulose binding domain peptide-Oregon green conjugate) and a cytoplasmic pH sensor (plants expressing pH-sensitive green fluorescent protein) to monitor pH dynamics throughout the graviresponding Arabidopsis root. The root cap apoplast acidified from pH 5.5 to 4.5 within 2 min of gravistimulation. Concomitantly, cytoplasmic pH increased in columella cells from 7.2 to 7.6 but was unchanged elsewhere in the root. These changes in cap pH preceded detectable tropic growth or growth-related pH changes in the elongation zone cell wall by 10 min. Altering the gravity-related columella cytoplasmic pH shift with caged protons delayed the gravitropic response. Together, these results suggest that alterations in root cap pH likely are involved in the initial events that mediate root gravity perception or signal transduction.
Quail Egg compared to a quarter
NASA Technical Reports Server (NTRS)
2003-01-01
Quail eggs are small (shown here with a quarter for scale) and develop quickly, making them ideal for space experiments. The Avian Development Facility (ADF) supports 36 eggs in two carousels (below), one of which rotates to provide a 1-g control for comparing to eggs grown in microgravity. The ADF originated in NASA's Shuttle Student Involvement program in the 1980s and was developed under the NASA Small Business Irnovation Research program. In late 2001, the ADF made its first flight and carried eggs used in two investigations, Development and function of the inner-ear balance system in normal and altered gravity environments, and Skeletal development in embryonic quail.
Magnetic field effects on plant growth, development, and evolution
Maffei, Massimo E.
2014-01-01
The geomagnetic field (GMF) is a natural component of our environment. Plants, which are known to sense different wavelengths of light, respond to gravity, react to touch and electrical signaling, cannot escape the effect of GMF. While phototropism, gravitropism, and tigmotropism have been thoroughly studied, the impact of GMF on plant growth and development is not well-understood. This review describes the effects of altering magnetic field (MF) conditions on plants by considering plant responses to MF values either lower or higher than those of the GMF. The possible role of GMF on plant evolution and the nature of the magnetoreceptor is also discussed. PMID:25237317
Sensorimotor Adaptations Following Exposure to Ambiguous Inertial Motion Cues
NASA Technical Reports Server (NTRS)
Wood, S. J.; Harm, D. L.; Reschke, M. F.; Rupert, A. H.; Clement, G. R.
2009-01-01
The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. We hypothesize that multi-sensory integration will be adaptively optimized in altered gravity environments based on the dynamics of other sensory information available, with greater changes in otolith-mediated responses in the mid-frequency range where there is a crossover of tilt and translation responses. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of tilt-translation disturbances during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation.
Experience-dependent development of spinal motor neurons
NASA Technical Reports Server (NTRS)
Inglis, F. M.; Zuckerman, K. E.; Kalb, R. G.; Walton, K. D. (Principal Investigator)
2000-01-01
Locomotor activity in many species undergoes pronounced alterations in early postnatal life, and environmental cues may be responsible for modifying this process. To determine how these events are reflected in the nervous system, we studied rats reared under two different conditions-the presence or absence of gravity-in which the performance of motor operations differed. We found a significant effect of rearing environment on the size and complexity of dendritic architecture of spinal motor neurons, particularly those that are likely to participate in postural control. These results provide evidence that neurons subserving motor function undergo activity-dependent maturation in early postnatal life in a manner analogous to sensory systems.
Systems and Methods for Gravity-Independent Gripping and Drilling
NASA Technical Reports Server (NTRS)
Thatte, Nitish (Inventor); King, Jonathan P. (Inventor); Parness, Aaron (Inventor); Frost, Matthew A. (Inventor)
2016-01-01
Systems and methods for gravity independent gripping and drilling are described. The gripping device can also comprise a drill or sampling devices for drilling and/or sampling in microgravity environments, or on vertical or inverted surfaces in environments where gravity is present. A robotic system can be connected with the gripping and drilling devices via an ankle interface adapted to distribute the forces realized from the robotic system.
NASA Technical Reports Server (NTRS)
Olson, S. L.; T'ien, J. S.; Armstrong, J. B.
2001-01-01
The objective of this ground-based program is to study low stretch diffusion flames burning PMMA as the solid fuel to determine the relationship between buoyant low stretch burning in normal gravity and forced flow low stretch burning in microgravity. The low stretch is generated in normal gravity by using the buoyant convection induced by burning the bottom of a large radius of curvature sample. Low stretch is also generated using the Combustion Tunnel drop tower rig (2.2 and 5.2 second facilities), which provides a forced convective low velocity flow past smaller radius of curvature samples. Lastly, an ISS glovebox investigation is being developed to study low stretch burning of PMMA spheres to obtain long duration testing needed to accurately assess the flammability and burning characteristics of the material in microgravity. A comparison of microgravity experiment results with normal gravity test results allows us to establish a direct link between a material's burning characteristics in normal gravity (easily measured) with its burning characteristics in extraterrestrial environments, including microgravity forced convective environments. Theoretical predictions and recent experimental results indicate that it should be possible to understand a material's burning characteristics in the low stretch environment of spacecraft (non-buoyant air movement induced by fans and crew disturbances) by understanding its burning characteristics in an equivalent Earth-based low stretch environment (induced by normal gravity buoyancy). Similarly, Earth-based stretch environments can be made equivalent to those in Lunar- and Martian-surface stretch environments (which would induce partial-gravity buoyancy).
Chebli, Youssef; Pujol, Lauranne; Shojaeifard, Anahid; Brouwer, Iman; van Loon, Jack J. W. A.; Geitmann, Anja
2013-01-01
Plants are able to sense the magnitude and direction of gravity. This capacity is thought to reside in selected cell types within the plant body that are equipped with specialized organelles called statoliths. However, most plant cells do not possess statoliths, yet they respond to changes in gravitational acceleration. To understand the effect of gravity on the metabolism and cellular functioning of non-specialized plant cells, we investigated a rapidly growing plant cell devoid of known statoliths and without gravitropic behavior, the pollen tube. The effects of hyper-gravity and omnidirectional exposure to gravity on intracellular trafficking and on cell wall assembly were assessed in Camellia pollen tubes, a model system with highly reproducible growth behavior in vitro. Using an epi-fluorescence microscope mounted on the Large Diameter Centrifuge at the European Space Agency, we were able to demonstrate that vesicular trafficking is reduced under hyper-gravity conditions. Immuno-cytochemistry confirmed that both in hyper and omnidirectional gravity conditions, the characteristic spatial profiles of cellulose and callose distribution in the pollen tube wall were altered, in accordance with a dose-dependent effect on pollen tube diameter. Our findings suggest that in response to gravity induced stress, the pollen tube responds by modifying cell wall assembly to compensate for the altered mechanical load. The effect was reversible within few minutes demonstrating that the pollen tube is able to quickly adapt to changing stress conditions. PMID:23516452
Magnetic levitation-based Martian and Lunar gravity simulator
NASA Technical Reports Server (NTRS)
Valles, J. M. Jr; Maris, H. J.; Seidel, G. M.; Tang, J.; Yao, W.
2005-01-01
Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity. c2005 Published by Elsevier Ltd on behalf of COSPAR.
Magnetic levitation-based Martian and Lunar gravity simulator.
Valles, J M; Maris, H J; Seidel, G M; Tang, J; Yao, W
2005-01-01
Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity. c2005 Published by Elsevier Ltd on behalf of COSPAR.
Alteration of Electro-Cortical Activity in Microgravity
NASA Astrophysics Data System (ADS)
Schneider, Stefan; Brummer, Vera; Carnahan, Heather; Askew, Christopher D.; Guardiera, Simon; Struder, Heiko K.
2008-06-01
There is growing interest in the effects of weightlessness on central nervous system (CNS) activity. Due to technical and logistical limitations it presently seems impossible to apply imaging techniques as fMRI or PET in weightless environments e.g. on ISS or during parabolic flights. Within this study we evaluated changes in brain cortical activity using low resolution brain electromagnetic tomography (LORETA) during parabolic flights. Results showed a distinct inhibition of right frontal area activity >12Hz during phases of microgravity compared to normal gravity. We conclude that the inhibition of high frequency frontal activity during microgravity may serve as a marker of emotional anxiety and/or indisposition associated with weightlessness. This puts a new light on the debate as to whether cognitive and sensorimotor impairments are attributable to primary physiological effects or secondary psychological effects of a weightless environment.
Low-Gravity Centrifuge Facilities for Asteroid Lander and Material Processing and Manufacturing
NASA Astrophysics Data System (ADS)
Asphaug, E.; Thangavelautham, J.; Schwartz, S.
2018-02-01
We are developing space centrifuge research facilities for attaining low-gravity to micro-gravity geological environmental conditions representative of the environment on the surfaces of asteroids and comets.
Length Scale and Gravity Effects on Microgravity Boiling Heat Transfer
NASA Technical Reports Server (NTRS)
Kim, Jungho; McQuillen, John; Balombin, Joe
2002-01-01
Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. In earth gravity, buoyancy is an important parameter that affects boiling heat transfer through the rate at which bubbles are removed from the surface. A simple model describing the bubble departure size based on a quasistatic force balance between buoyancy and surface tension is given by the Fritz [I] relation: Bo(exp 1/2) = 0.0208 theta where Bo is the ratio between buoyancy and surface tension forces. For small, rapidly growing bubbles, inertia associated with the induced liquid motion can also cause bubble departure. In microgravity, the magnitude of effects related to natural convection and buoyancy are small and physical mechanisms normally masked by natural convection in earth gravity such as Marangoni convection can substantially influence the boiling and vapor bubble dynamics. CHF (critical heat transfer) is also substantially affected by microgravity. In 1 g environments, Bo has been used as a correlating parameter for CHF. Zuber's CHF model for an infinite horizontal surface assumes that vapor columns formed by the merger of bubbles become unstable due to a Helmholtz instability blocking the supply of liquid to the surface. The jets are spaced lambda(sub D) apart, where lambda(sub D) = 2pi square root of 3[(sigma)/(g(rho(sub l) - rho(sub v)](exp 1/2) = 2pi square root of 3 L Bo(exp -1/2) = square root of 3 lambda(sub c) and is the wavelength that amplifies most rapidly. The critical wavelength, lambda(sub c), is the wavelength below which a vapor layer underneath a liquid layer is stable. For heaters with Bo smaller than about 3 (heaters smaller than lambda(sub D)), the above model is not applicable, and surface tension effects dominate. Bubble coalescence is thought to be the mechanism for CHF under these conditions. Small Bo can result by decreasing the size of a heater in earth gravity, or by operating a large heater in a lower gravity environment. In the microgravity of space, even large heaters can have low Bo, and models based on Helmholtz instability should not be applicable. The macrolayer model of Haramura and Katto is dimensionally equivalent to Zuber's model and has the same dependence on gravity, so it should not be applicable as well. The goal of this work is to determine how boiling heat transfer mechanisms in a low-g environment are altered from those at higher gravity levels. Boiling data using a microheater array was obtained under gravity environments ranging from 1.8 g to 0.02 g with heater sizes ranging from 2.7 mm to 1 mm. The boiling behavior for 2.7 mm at 0.02 g looked quite similar to boiling on the 1 mm heater at 1 g-the formation of a large primary bubble surrounded by smaller satellite bubbles was observed under both conditions. The similarity suggests that for heaters smaller than some fraction of I(sub c), coalescence and surface tension dominate boiling heat transfer. It also suggests that microgravity boiling can be studied by studying boiling on very small heaters.
Gravity Research on Plants: Use of Single-Cell Experimental Models
Chebli, Youssef; Geitmann, Anja
2011-01-01
Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single-celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided. PMID:22639598
Determination of the natural convection coefficient in low-gravity
NASA Technical Reports Server (NTRS)
Goldmeer, J.; Motevalli, V.; Haghdoust, M.; Jumper, G.
1992-01-01
Fire safety is an important issue in the current space program; ignition in low-g needs to be studied. The reduction in the gravitational acceleration causes changes in the ignition process. This paper examines the effect of gravity on natural convection, which is one of the important parameters in the ignition process. The NASA-Lewis 2.2 Second Drop Tower provided the low-gravity environment for the experiments. A series of experiments was conducted to measure the temperature of a small copper plate which was heated by a high intensity lamp. These experiments verified that in low-gravity the plate temperature increased faster than in the corresponding 1-g cases, and that the natural convection coefficient rapidly decreased in the low-gravity environment.
The Martian: Examining Human Physical Judgments across Virtual Gravity Fields.
Ye, Tian; Qi, Siyuan; Kubricht, James; Zhu, Yixin; Lu, Hongjing; Zhu, Song-Chun
2017-04-01
This paper examines how humans adapt to novel physical situations with unknown gravitational acceleration in immersive virtual environments. We designed four virtual reality experiments with different tasks for participants to complete: strike a ball to hit a target, trigger a ball to hit a target, predict the landing location of a projectile, and estimate the flight duration of a projectile. The first two experiments compared human behavior in the virtual environment with real-world performance reported in the literature. The last two experiments aimed to test the human ability to adapt to novel gravity fields by measuring their performance in trajectory prediction and time estimation tasks. The experiment results show that: 1) based on brief observation of a projectile's initial trajectory, humans are accurate at predicting the landing location even under novel gravity fields, and 2) humans' time estimation in a familiar earth environment fluctuates around the ground truth flight duration, although the time estimation in unknown gravity fields indicates a bias toward earth's gravity.
Clément, Gilles R; Bukley, Angelia P; Paloski, William H
2015-01-01
In spite of the experience gained in human space flight since Yuri Gagarin's historical flight in 1961, there has yet to be identified a completely effective countermeasure for mitigating the effects of weightlessness on humans. Were astronauts to embark upon a journey to Mars today, the 6-month exposure to weightlessness en route would leave them considerably debilitated, even with the implementation of the suite of piece-meal countermeasures currently employed. Continuous or intermittent exposure to simulated gravitational states on board the spacecraft while traveling to and from Mars, also known as artificial gravity, has the potential for enhancing adaptation to Mars gravity and re-adaptation to Earth gravity. Many physiological functions are adversely affected by the weightless environment of spaceflight because they are calibrated for normal, Earth's gravity. Hence, the concept of artificial gravity is to provide a broad-spectrum replacement for the gravitational forces that naturally occur on the Earth's surface, thereby avoiding the physiological deconditioning that takes place in weightlessness. Because researchers have long been concerned by the adverse sensorimotor effects that occur in weightlessness as well as in rotating environments, additional study of the complex interactions among sensorimotor and other physiological systems in rotating environments must be undertaken both on Earth and in space before artificial gravity can be implemented.
40 CFR 1065.630 - 1980 international gravity formula.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false 1980 international gravity formula. 1065.630 Section 1065.630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.630 1980...
40 CFR 1065.630 - 1980 international gravity formula.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false 1980 international gravity formula. 1065.630 Section 1065.630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.630 1980...
40 CFR 1065.630 - 1980 international gravity formula.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false 1980 international gravity formula. 1065.630 Section 1065.630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.630 1980...
40 CFR 1065.630 - 1980 international gravity formula.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false 1980 international gravity formula. 1065.630 Section 1065.630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.630 1980...
40 CFR 1065.630 - Local acceleration of gravity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Local acceleration of gravity. 1065.630 Section 1065.630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.630 Local...
NASA Technical Reports Server (NTRS)
Schatten, H.; Lewis, M. L.; Chakrabarti, A.
2001-01-01
The cytoskeleton is a complex network of fibers that is sensitive to environmental factors including microgravity and altered gravitational forces. Cellular functions such as transport of cell organelles depend on cytoskeletal integrity; regulation of cytoskeletal activity plays a role in cell maintenance, cell division, and apoptosis. Here we report cytoskeletal and mitochondria alterations in cultured human lymphocyte (Jurkat) cells after exposure to spaceflight and in insect cells of Drosophila melanogaster (Schneider S-1) after exposure to conditions created by clinostat rotation. Jurkat cells were flown on the space shuttle in Biorack cassettes while Schneider S-1 cells were exposed to altered gravity forces as produced by clinostat rotation. The effects of both treatments were similar in the different cell types. Fifty percent of cells displayed effects on the microtubule network in both cell lines. Under these experimental conditions mitochondria clustering and morphological alterations of mitochondrial cristae was observed to various degrees after 4 and 48 hours of culture. Jurkat cells underwent cell divisions during exposure to spaceflight but a large number of apoptotic cells was also observed. Similar results were obtained in Schneider S-1 cells cultured under clinostat rotation. Both cell lines displayed mitochondria abnormalities and mitochondria clustering toward one side of the cells which is interpreted to be the result of microtubule disruption and failure of mitochondria transport along microtubules. The number of mitochondria was increased in cells exposed to altered gravity while cristae morphology was severely affected indicating altered mitochondria function. These results show that spaceflight as well as altered gravity produced by clinostat rotation affects microtubule and mitochondria organization and results in increases in apoptosis. Grant numbers: NAG 10-0224, NAG2-985. c 2001. Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stutte, Gary W.; Roberts, Michael S.
2013-02-01
SyNRGE (Symbiotic Nodulation in a Reduced Gravity Environment) was a sortie mission on STS-135 in the Biological Research in Canisters (BRIC) hardware to study the effect of μg on a plant-microbe symbiosis resulting in biological nitrogen fixation. Medicago truncatula, a model species for the legume family, was inoculated with its bacterial symbiont, Sinorhizobium meliloti, to observe early biomolecular events associated with infection and nodulation in Petri Dish Fixation Units (PDFU’s). Two sets of experiments were conducted in orbit and in 24-hour delayed ground controls. Experiments were designed to determine if S. meliloti would infect M. truncatula and initiate biomolecular changes associated with nodule formation and if the μg environment altered the host plant and/or bacteria to induce nodule formation upon return to 1g. Initial analysis results demonstrate that the legumes and bacteria cultivated in μg have potential to develop a symbiotic interaction, but suggest that μg alters their ability to form nodules upon return to 1g. (Research supported by NASA ESMD/ Advance Capabilities Division grant NNX10AR09A)
Seeking the Light: Gravity Without the Influence of Gravity
NASA Technical Reports Server (NTRS)
Sack, Fred; Kern, Volker; Reed, Dave; Etheridge, Guy (Technical Monitor)
2002-01-01
All living things sense gravity like humans might sense light or sound. The Biological Research In Canisters (BRIC-14) experiment, explores how moss cells sense and respond to gravity and light. This experiment studies how gravity influences the internal structure of moss cells and seeks to understand the influences of the spaceflight environment on cell growth. This knowledge will help researchers understand the role of gravity in the evolution of cells and life on earth.
Plant response to gravity: towards a biosystems view of root gravitropism
NASA Astrophysics Data System (ADS)
Palme, Klaus; Volkmann, Dieter; Bennett, Malcolm J.; Gausepohl, Heinrich
2005-10-01
Plants are sessile organisms that originated and evolved in Earth's environment. They monitor a wide range of disparate external and internal signals and compute appropriate developmental responses. How do plant cells process these myriad signals into an appropriate response? How do they integrate these signals to reach a finely balanced decision on how to grow, how to determine the direction of growth and how to develop their organs to exploit the environment? As plant responses are generally irreversible growth responses, their signalling systems must compute each developmental decision with extreme care. One stimulus to which plants are continuously exposed is the gravity vector. Gravity affects adaptive growth responses that reorient organs towards light and nutrient resources. The MAP team was established by ESA to study in the model plant Arabidopsis thaliana the role of the hormone auxin in gravity-mediated growth control. Another goal was to dissect gravity perception and gravity signal transduction pathways.
NASA Technical Reports Server (NTRS)
Andracchio, C. R.; Cochran, T. H.
1974-01-01
An experimental program was conducted to investigate the combustion characteristics of solids burning in a weightless environment. The combustion characteristics of thin cellulose acetate material were obtained from specimens burned in supercritical as well as in low pressure oxygen atmospheres. Flame spread rates were measured and found to depend on material thickness and pressure in both normal gravity (1-g) and reduced gravity (0-g). A gravity effect on the burning process was also observed; the ratio of 1-g to 0-g flame spread rate becomes larger with increasing material thickness. Qualitative results on the combustion characteristics of metal screens (stainless steel, Inconel, copper, and aluminum) burning in supercritical oxygen and normal gravity are also presented. Stainless steel (300 sq mesh) was successfully ignited in reduced gravity; no apparent difference in the flame spread pattern was observed between 1-g and 0-g.
Gravity, Tissue Engineering, and the Missing Link.
Costa-Almeida, Raquel; Granja, Pedro L; Gomes, Manuela E
2018-04-01
The influence of microgravity and hypergravity on living systems has attracted significant attention, but the use of these tools in tissue engineering (TE) remains relatively unexplored. This Forum article highlights an emerging field of research to uncover new potential applications at the interface between altered gravity and TE. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Gertner, E. R.
1980-01-01
Techniques used for liquid and vapor phase epitaxy of gallium indium arsenide are described and the difficulties encountered are examined. Results show that the growth of bulk III-V solid solution single crystals in a low gravity environment will not have a major technological impact. The float zone technique in a low gravity environment is demonstrated using cadmium telluride. It is shown that this approach can result in the synthesis of a class of semiconductors that can not be grown in normal gravity because of growth problems rooted in the nature of their phase diagrams.
NASA Technical Reports Server (NTRS)
Hunt, R. J.; Wu, S. T.
1976-01-01
The general objectives of the Zero-Gravity Atmospheric Cloud Physics Laboratory Program are to improve the level of knowledge in atmospheric cloud research by placing at the disposal of the terrestrial-bound atmospheric cloud physicist a laboratory that can be operated in the environment of zero-gravity or near zero-gravity. This laboratory will allow studies to be performed without mechanical, aerodynamic, electrical, or other techniques to support the object under study. The inhouse analysis of the Skylab 3 and 4 experiments in dynamics of oscillations, rotations, collisions and coalescence of water droplets under low gravity-environment is presented.
Can inertia-gravity waves persistently alter the tropopause inversion layer?
NASA Astrophysics Data System (ADS)
Kunkel, Daniel; Hoor, Peter; Wirth, Volkmar
2014-11-01
Previous simulations of baroclinic life cycles have shown, among many other features, the evolution of a tropopause inversion layer (TIL) as well as the spontaneous emission of inertia-gravity waves (IGWs). This study suggests that the latter two are related to each other, i.e., that IGWs may affect the TIL in a persistent manner. The IGWs are emitted along the jet and grow to large amplitudes, leading to the appearance of low-gradient Richardson numbers that indicate Kelvin-Helmholtz instability. Ensuing energy dissipation, local heating, and turbulence may persistently alter the thermodynamical structure of the tropopause region and, therefore, contribute to TIL formation or alter an existing TIL. Moreover, the flow in the region of the IGW favors the occurrence of wave capture, which may enhance the effect of wave breaking.
Geophysical ore guides along the Colorado mineral belt
Case, James E.
1967-01-01
A 40-50-mgal gravity low trends northeast along the Colorado mineral belt between Monarch Pass and Breckenridge, Colorado. The low is probably caused by a silicic Tertiary batholith of lower density than adjacent Precambrian crystalline rocks. Many major mining districts associated with silicic Tertiary intrusives are near the axis of the low. Positive and negative aeromagnetic anomalies are present over the larger silicic Tertiary intrusive bodies. A good correlation exists between the magnetic lows and zones of altered, mineralized porphyry. Apparently, original magnetite in the silicic porphyries has been altered to relatively nonmagnetic pyrite or iron oxides. The regional gravity low aids in defining the limits of the mineral belt, and the magnetic lows over the porphyries indicate specific alteration zones and the possibility of associated mineral deposits.
Gas-laser behavior in a low-gravity environment
NASA Technical Reports Server (NTRS)
Owen, R. B.
1981-01-01
In connection with several experiments proposed for flight on the Space Shuttle, which involve the use of gas lasers, the behavior of a He-Ne laser in a low-gravity environment has been studied theoretically and experimentally in a series of flight tests using a low-gravity-simulation aircraft. No fluctuation in laser output above the noise level of the meter (1 part in 1000 for 1 hr) was observed during the low-gravity portion of the flight tests. The laser output gradually increased by 1.4% during a 1.5-hr test; at no time were rapid variations observed in the laser output. A maximum laser instability of 1 part in 100 was observed during forty low-gravity parabolic maneuvers. The beam remained Gaussian throughout the tests and no lobe patterns were observed.
Zero-gravity open-type urine receptacle
NASA Technical Reports Server (NTRS)
Girala, A. S.
1972-01-01
The development of the zero-gravity open-type urine receptacle used in the Apollo command module is described. This type receptacle eliminates the need for a cuff-type urine collector or for the penis to circumferentially contact the receptacle in order to urinate. This device may be used in a gravity environment, varying from zero gravity to earth gravity, such as may be experienced in a space station or space base.
NASA Technical Reports Server (NTRS)
Bukley, Angie; Paloski, William; Clement, Gilles
2006-01-01
This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.
Spatial Reorientation of Sensorimotor Balance Control in Altered Gravity
NASA Technical Reports Server (NTRS)
Paloski, W. H.; Black, F. L.; Kaufman, G. D.; Reschke, M. F.; Wood, S. J.
2007-01-01
Sensorimotor coordination of body segments following space flight are more pronounced after landing when the head is actively tilted with respect to the trunk. This suggests that central vestibular processing shifts from a gravitational frame of reference to a head frame of reference in microgravity. A major effect of such changes is a significant postural instability documented by standard head-erect Sensory Organization Tests. Decrements in functional performance may still be underestimated when head and gravity reference frames remained aligned. The purpose of this study was to examine adaptive changes in spatial processing for balance control following space flight by incorporating static and dynamic tilts that dissociate head and gravity reference frames. A second aim of this study was to examine the feasibility of altering the re-adaptation process following space flight by providing discordant visual-vestibular-somatosensory stimuli using short-radius pitch centrifugation.
Molecular mechanisms of gravity-dependent signaling in human melanocytic cells involve cyclic GMP
NASA Astrophysics Data System (ADS)
Ivanova, Krassimira; Lambers, Britta; Block, Ingrid; Bromeis, Birgit; Das, Pranab K.; Gerzer, Rupert
2005-08-01
Gravity alteration (micro- and hypergravity) is known to influence cell functions. As guanosine 3',5'-cyclic monophosphate (cGMP) is an important messenger in melanocyte signaling we have compared the regulation of cGMP levels in human melanocytes and melanoma cells with different metastatic potential under hypergravity conditions. We were able to demonstrate that long-term exposure to hypergravity stimulates cGMP efflux in cultured human melanocytes and non- metastatic melanoma cells, whereas highly metastatic melanoma cells appear to be insensitive to hypergravity, most probably, due to an up-regulated cGMP efflux at 1g. Here we report that these effects are associated with the expression of the multidrug resistance proteins 4 and 5 known to act as selective export pumps for amphiphilic anions like cGMP. Thus, an altered gravity vector may induce cGMP-dependent signaling events in melanocytic cells that could be important for malignant transformation.
Three-dimensional Myoblast Aggregates--Effects of Modeled Microgravity
NASA Technical Reports Server (NTRS)
Byerly, Diane; Sognier, M. A.; Marquette, M. L.
2006-01-01
The overall objective of these studies is to elucidate the molecular and cellular alterations that contribute to muscle atrophy in astronauts caused by exposure to microgravity conditions in space. To accomplish this, a three-dimensional model test system was developed using mouse myoblast cells (C2C12). Myoblast cells were grown as three-dimensional aggregates (without scaffolding or other solid support structures) in both modeled microgravity (Rotary Cell Culture System, Synthecon, Inc.) and at unit gravity in coated Petri dishes. Evaluation of H&E stained thin sections of the aggregates revealed the absence of any necrosis. Confocal microscopy evaluations of cells stained with the Live/Dead assay (Molecular Probes) confirmed that viable cells were present throughout the aggregates with an average of only three dead cells observed per aggregate. Preliminary results from gene array analysis (Affymetrix chip U74Av2) showed that approximately 14% of the genes were down regulated (decreased more than 3 fold) and 4% were upregulated in cells exposed to modeled microgravity for 12 hours compared to unit gravity controls. Additional studies using fluorescent phallacidin revealed a decrease in F-actin in the cells exposed to modeled microgravity compared to unit gravity. Myoblast cells grown as aggregates in modeled microgravity exhibited spontaneous differentiation into syncitia while no differentiation was seen in the unit gravity controls. These studies show that 1)the model test system developed is suitable for assessing cellular and molecular alterations in myoblasts; 2) gene expression alterations occur rapidly (within 12 hours) following exposure to modeled microgravity; and 3) modeled microgravity conditions stimulated myoblast cell differentiation. Achieving a greater understanding of the molecular alterations leading to muscle atrophy will eventually enable the development of cell-based countermeasures, which may be valuable for treatment of muscle diseases on Earth and future space explorations.
NASA Technical Reports Server (NTRS)
Grey, J. (Editor); Krop, C.
1979-01-01
Papers are presented on the various technological, political, economic, environmental and social aspects of large manufacturing facilities in space. Specific topics include the potential global market for satellite solar power stations in 2025, the electrostatic separation of lunar soil, methods for extraterrestrial materials processing, the socio-political status of efforts toward the development of space manufacturing facilities, the financing of space industrialization, the optimization of space manufacturing systems, the design and project status of Mass Driver Two, and the use of laser-boosted lighter-than-air-vehicles as heavy-lift launch vehicles. Attention is also given to systems integration in the development of controlled ecological life support systems, the design of a space manufacturing facility to use lunar materials, high performance solar sails, the environmental effects of the satellite power system reference design, the guidance, trajectory and capture of lunar materials ejected from the moon by mass driver, the relative design merits of zero-gravity and one-gravity space environments, consciousness alteration in space and the prospecting and retrieval of asteroids.
NASA Technical Reports Server (NTRS)
Knapp, Charles F.; Evans, J. M.; Patwardhan, A.; Levenhagen, D.; Wang, M.; Charles, John B.
1991-01-01
A major focus of our research program is to develop noninvasive procedures for determining changes in cardiovascular function associated with the null gravity environment. We define changes in cardiovascular function to be (1) the result of the regulatory system operating at values different from 'normal' but with an overall control system basically unchanged by the null gravity exposure, or (2) the result of operating with a control system that has significantly different regulatory characteristics after an exposure. To this end, we have used a model of weightlessness that consisted of exposing humans to 2 hrs. in the launch position, followed by 20 hrs. of 6 deg head down bedrest. Our principal objective was to use this model to measure cardiovascular responses to the 6 deg head down bedrest protocol and to develop the most sensitive 'systems identification' procedure for indicating change. A second objective, related to future experiments, is to use the procedure in combination with experiments designed to determine the degree to which a regulatory pathway has been altered and to determine the mechanisms responsible for the changes.
Allen, Trudie; Ingles, Patricia J; Praekelt, Uta; Smith, Harry; Whitelam, Garry C
2006-05-01
Plants use specialized photoreceptors to detect the amount, quality, periodicity and direction of light and to modulate their growth and development accordingly. These regulatory light signals often interact with other environmental cues. Exposure of etiolated Arabidopsis seedlings to red (R) or far-red (FR) light causes hypocotyls to grow in random orientations with respect to the gravitational vector, thus overcoming the signal from gravity to grow upwards. This light response, mediated by either phytochrome A or phytochrome B, represents a prime example of cross-talk between environmental signalling systems. Here, we report the isolation the mutant gil1 (for gravitropic in the light) in which hypocotyls continue to grow upwards after exposure of seedlings to R or FR light. The gil1 mutant displays no other phenotypic alterations in response to gravity or light. Cloning of GIL1 has identified a novel gene that is necessary for light-dependent randomization of hypocotyl growth orientation. Using gil1, we have demonstrated that phytochrome-mediated randomization of Arabidopsis hypocotyl orientation provides a fitness advantage to seedlings developing in patchy, low-light environments.
Clément, Gilles R.; Bukley, Angelia P.; Paloski, William H.
2015-01-01
In spite of the experience gained in human space flight since Yuri Gagarin’s historical flight in 1961, there has yet to be identified a completely effective countermeasure for mitigating the effects of weightlessness on humans. Were astronauts to embark upon a journey to Mars today, the 6-month exposure to weightlessness en route would leave them considerably debilitated, even with the implementation of the suite of piece-meal countermeasures currently employed. Continuous or intermittent exposure to simulated gravitational states on board the spacecraft while traveling to and from Mars, also known as artificial gravity, has the potential for enhancing adaptation to Mars gravity and re-adaptation to Earth gravity. Many physiological functions are adversely affected by the weightless environment of spaceflight because they are calibrated for normal, Earth’s gravity. Hence, the concept of artificial gravity is to provide a broad-spectrum replacement for the gravitational forces that naturally occur on the Earth’s surface, thereby avoiding the physiological deconditioning that takes place in weightlessness. Because researchers have long been concerned by the adverse sensorimotor effects that occur in weightlessness as well as in rotating environments, additional study of the complex interactions among sensorimotor and other physiological systems in rotating environments must be undertaken both on Earth and in space before artificial gravity can be implemented. PMID:26136665
Dynamical behavior of surface tension on rotating fluids in low and microgravity environments
NASA Technical Reports Server (NTRS)
Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.
1989-01-01
Consideration is given to the time-dependent evolutions of the free surface profile (bubble shapes) of a cylindrical container, partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry in low and microgravity environments. The dynamics of the bubble shapes are calculated for four cases: linear time-dependent functions of spin-up and spin-down in low and microgravity, linear time-dependent functions of increasing and decreasing gravity at high and low rotating cylinder speeds, time-dependent step functions of spin-up and spin-down in low gravity, and sinusoidal function oscillation of the gravity environment in high and low rotating cylinder speeds. It is shown that the computer algorithms developed by Hung et al. (1988) may be used to simulate the profile of time-dependent bubble shapes under variations of centrifugal, capillary, and gravity forces.
Cardiovascular adaptations during long-term altered gravity
NASA Technical Reports Server (NTRS)
Popovic, V. P.
1982-01-01
Cardiovascular studies were performed on unrestrained, unanesthetized rats and on the same animals in head-down hypokinetic conditions as well as during readaptation of the same animals to free activity. Possible circulatory mechanisms that evolved in mammals during long-lasting gravity exposure are considered. These mechanisms are likely to be affected during exposure to 0-g forces.
Heart rate monitoring and control in altered gravity conditions.
Di Rienzo, M; Parati, G; Rizzo, F; Meriggi, P; Merati, G; Faini, A; Castiglioni, P
2007-01-01
On the basis of indirect evidences it has been hypothesized that during space missions the almost complete absence of gravity might impair the baroreflex control of circulation. In the first part of this paper we report results obtained from a series of experiments carried out to directly verify this hypothesis during the 16-day STS 107 Shuttle flight. Spontaneous baroreflex sensitivity was assessed in four astronauts before flight (baseline) and at days 0-1, 6-7 and 12-13 during flight, both at rest and while performing moderate exercise. Our results indicate that at rest the baroreflex sensitivity significantly increased in the early flight phase, as compared to pre-flight values and tended to return to baseline in the mid-late phase of flight. During exercise, baroreflex sensitivity was lower than at rest, without any difference among pre-flight and in-flight values. These findings seem to exclude the hypothesis of an impairment of the baroreflex control of heart rate during exposure to microgravity, at least over a time window of 16 days. In the second part of the paper we propose a novel textile-based methodology for heart rate and other vital signs monitoring during gravity stress. The positive results obtained from its use during parachute jumps support the use of smart garments for the unobtrusive assessment of physiological parameters in extreme environments.
Partial gravity habitat study: With application to lunar base design
NASA Technical Reports Server (NTRS)
Capps, Stephen; Lorandos, Jason; Akhidime, Eval; Bunch, Michael; Lund, Denise; Moore, Nathan; Murakawa, Kio; Bell, Larry; Trotti, Guillermo; Neubek, Deb
1989-01-01
Comprehensive design requirements associated with designing habitats for humans in a partial gravity environment were investigated and then applied to a lunar base design. Other potential sites for application include planetary surfaces such as Mars, variable gravity research facilities, or a rotating spacecraft. Design requirements for partial gravity environments include: (1) locomotion changes in less than normal Earth gravity; (2) facility design issues, such as interior configuration, module diameter and geometry; and (3) volumetric requirements based on the previous as well as psychological issues involved in prolonged isolation. For application to a Lunar Base, it was necessary to study the exterior architecture and configuration to insure optimum circulation patterns while providing dual egress. Radiation protection issues were addressed to provide a safe and healthy environment for the crew, and finally, the overall site was studied to locate all associated facilities in context with the habitat. Mission planning was not the purpose of this study; therefore, a Lockheed scenario was used as an outline for the Lunar Base application, which was then modified to meet the project needs.
Commonality between Reduced Gravity and Microgravity Habitats for Long Duration Missions
NASA Technical Reports Server (NTRS)
Howard, Robert
2014-01-01
Many conceptual studies for long duration missions beyond Earth orbit have assumed unique habitat designs for each destination and for transit habitation. This may not be the most effective approach. A variable gravity habitat, one designed for use in microgravity, lunar, Martian, and terrestrial environments may provide savings that offset the loss of environment-specific optimization. However, a brief analysis of selected flown spacecraft and Constellation-era conceptual habitat designs suggests that one cannot simply lift a habitat from one environment and place it in another that it was not designed for without incurring significant human performance compromises. By comparison, a conceptual habitat based on the Skylab II framework but designed specifically to accommodate variable gravity environments can be shown to yield significant advantages while incurring only minimal human performance compromises.
Lignin Formation and the Effects of Gravity: A New Approach
NASA Technical Reports Server (NTRS)
Lewis, Norman G.
1997-01-01
Two aspects of considerable importance in the enigmatic processes associated with lignification have made excellent progress. The first is that, even in a microgravity environment, compression wood formation, and hence altered lignin deposition, can be induced upon mechanically bending the stems of woody gymnosperms. It now needs to be established if an organism reorientating its woody stem tissue will generate this tissue in microgravity, in the absence of externally applied pressure. If it does not, then gravity has no effect on its formation, and instead it results from alterations in the stress gradient experienced by the organism impacted. The second area of progress involves establishing how the biochemical pathway to lignin is regulated, particularly with respect to selective monolignol biosynthesis. This is an important question since individual monomer deposition occurs in a temporally and spatially specific manner. In this regard, the elusive metabolic switch between E-p-coumaryl alcohol and E-coniferyl alcohol synthesis has been detected, the significance of which now needs to be defined at the enzyme and gene level. Switching between monolignol synthesis is important, since it is viewed to be a consequence of different perceptions by plants in the gravitational load experienced, and thus in the control of the type of lignification response. Additional experiments also revealed the rate-limiting processes involved in monolignol synthesis, and suggest that a biological system (involving metabolite concentrations, as well as enzymatic and gene (in)activation processes) is involved, rather than a single rate-limiting step.
Unit operations for gas-liquid mass transfer in reduced gravity environments
NASA Technical Reports Server (NTRS)
Pettit, Donald R.; Allen, David T.
1992-01-01
Basic scaling rules are derived for converting Earth-based designs of mass transfer equipment into designs for a reduced gravity environment. Three types of gas-liquid mass transfer operations are considered: bubble columns, spray towers, and packed columns. Application of the scaling rules reveals that the height of a bubble column in lunar- and Mars-based operations would be lower than terrestrial designs by factors of 0.64 and 0.79 respectively. The reduced gravity columns would have greater cross-sectional areas, however, by factors of 2.4 and 1.6 for lunar and Martian settings. Similar results were obtained for spray towers. In contract, packed column height was found to be nearly independent of gravity.
NASA Astrophysics Data System (ADS)
Auletta, G.; Adell, T.; Colagè, I.; D'Ambrosio, P.; Salò, E.
2012-12-01
Planarians of the species Schmidtea mediterranea are a well-established model for regeneration studies. In this paper, we first recall the morphological characters and the molecular mechanisms involved in the regeneration process, especially focussing on the Wnt pathway and the establishment of the antero-posterior axial polarity. Then, after an assessment of a space-experiment (run in 2006 on the Russian Segment of the International Space Station) on planarians of the species Girardia tigrina, we present our experimental program to ascertain the effects that altered-gravity conditions may have on regeneration processes in S. mediterrnea at the molecular and genetic level.
NASA Technical Reports Server (NTRS)
Lewis, M. L.; Hughes-Fulford, M.
2000-01-01
Although our understanding of effects of space flight on human physiology has advanced significantly over the past four decades, the potential contribution of stress at the cellular and gene regulation level is not characterized. The objective of this ground-based study was to evaluate stress gene regulation in cells exposed to altered gravity and environmentally suboptimal conditions. We designed primers to detect message for both the constitutive and inducible forms of the heat shock protein, HSP-70. Applying the reverse transcriptase-polymerase chain reaction (RT-PCR), we probed for HSP-70 message in human acute T-cell leukemia cells, Jurkat, subjected to three types of environmental stressors: (1) altered gravity achieved by centrifugation (hypergravity) and randomization of the gravity vector in rotating bioreactors, (2) serum starvation by culture in medium containing 0.05% serum, and (3) temperature elevation (42 degrees C). Temperature elevation, as the positive control, significantly increased HSP-70 message, while centrifugation and culture in rotating bioreactors did not upregulate heat shock gene expression. We found a fourfold increase in heat shock message in serum-starved cells. Message for the housekeeping genes, actin and cyclophilin, were constant and comparable to unstressed controls for all treatments. We conclude that gravitational perturbations incurred by centrifugal forces, exceeding those characteristic of a Space Shuttle launch (3g), and culture in rotating bioreactors do not upregulate HSP-70 gene expression. In addition, we found RT-PCR useful for evaluating stress in cultured cells. Copyright 2000 Wiley-Liss, Inc.
Effect of Gravity on the Mammalian Cell Deformation
NASA Technical Reports Server (NTRS)
Hung, R. J.; Tsao, Y.; Gonda, Steven
1995-01-01
The effect of human cell immersed in culture liquid under a micro-gravity environment has been investigated. The study is based on the numerical simulation of the configuration of human cell affected by the time dependent variation of gravity acceleration ranging from 10(exp -3) to 2 g(sub o) (g(sub o) = 9.81 m/s(exp 2)) in 15 seconds. Both the free floating cell and the cell contacted to the upper and lower inclined walls imposed by the time-dependent reduced gravity acceleration are considered in this study. The results show that the cell configuration changes from spherical to horizontally elongated ellipsoid for both the free floating cell and the cell sitting on the lower inclined wall while the cell configuration varies from spherical to vertically elongated ellipsoid for the cell hanging to the upper inclined wall when the gravity acceleration increases. Experimental observations, carried out of human cells exposed to the variation of gravity levels, show that the results of experimental observations agree exactly with the theoretical model computation described in this paper. These results sre significant for humans exposed to the micro-gravity environment.
NASA Astrophysics Data System (ADS)
Guo, Hang; Liu, Xuan; Zhao, Jian Fu; Ye, Fang; Ma, Chong Fang
2017-06-01
In this work, proton exchange membrane fuel cells (PEMFCs) with transparent windows are designed to study the gas-liquid two-phase flow behaviors inside flow channels and the performance of a PEMFC with vertical channels and a PEMFC with horizontal channels in a normal gravity environment and a 3.6 s short-term microgravity environment. Experiments are conducted under high external circuit load and low external circuit load at low temperature where is 35 °C. The results of the present experimental work demonstrate that the performance and the gas-liquid two-phase flow behaviors of the PEMFC with vertical channels exhibits obvious changes when the PEMFCs enter the 3.6 s short-term microgravity environment from the normal gravity environment. Meanwhile, the performance of the PEMFC with vertical channels increases after the PEMFC enters the 3.6 s short-term microgravity environment under high external circuit load, while under low external circuit load, the PEMFC with horizontal channels exhibits better performance in both the normal gravity environment and the 3.6 s short-term microgravity environment.
Mapping and Quantification of Vascular Branching in Plants, Animals and Humans by VESGEN Software
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia A.; Vickerman, Mary B.; Keith, Patricia A.
2010-01-01
Humans face daunting challenges in the successful exploration and colonization of space, including adverse alterations in gravity and radiation. The Earth-determined biology of humans, animals and plants is significantly modified in such extraterrestrial environments. One physiological requirement shared by humans with larger plants and animals is a complex, highly branching vascular system that is dynamically responsive to cellular metabolism, immunological protection and specialized cellular/tissue function. The VESsel GENeration (VESGEN) Analysis has been developed as a mature beta version, pre-release research software for mapping and quantification of the fractal-based complexity of vascular branching. Alterations in vascular branching pattern can provide informative read-outs of altered vascular regulation. Originally developed for biomedical applications in angiogenesis, VESGEN 2D has provided novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and other microvascular remodeling phenomena. Vascular trees, networks and tree-network composites are mapped and quantified. Applications include disease progression from clinical ophthalmic images of the human retina; experimental regulation of vascular remodeling in the mouse retina; avian and mouse coronary vasculature, and other experimental models in vivo. We envision that altered branching in the leaves of plants studied on ISS such as Arabidopsis thaliana cans also be analyzed.
Mapping and Quantification of Vascular Branching in Plants, Animals and Humans by VESGEN Software
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, P. A.; Vickerman, M. B.; Keith, P. A.
2010-01-01
Humans face daunting challenges in the successful exploration and colonization of space, including adverse alterations in gravity and radiation. The Earth-determined biology of plants, animals and humans is significantly modified in such extraterrestrial environments. One physiological requirement shared by larger plants and animals with humans is a complex, highly branching vascular system that is dynamically responsive to cellular metabolism, immunological protection and specialized cellular/tissue function. VESsel GENeration (VESGEN) Analysis has been developed as a mature beta version, pre-release research software for mapping and quantification of the fractal-based complexity of vascular branching. Alterations in vascular branching pattern can provide informative read-outs of altered vascular regulation. Originally developed for biomedical applications in angiogenesis, VESGEN 2D has provided novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and other microvascular remodeling phenomena. Vascular trees, networks and tree-network composites are mapped and quantified. Applications include disease progression from clinical ophthalmic images of the human retina; experimental regulation of vascular remodeling in the mouse retina; avian and mouse coronary vasculature, and other experimental models in vivo. We envision that altered branching in the leaves of plants studied on ISS such as Arabidopsis thaliana cans also be analyzed.
Black hole solutions in mimetic Born-Infeld gravity
NASA Astrophysics Data System (ADS)
Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin
2018-01-01
The vacuum, static, and spherically symmetric solutions in the mimetic Born-Infeld gravity are studied. The mimetic Born-Infeld gravity is a reformulation of the Eddington-inspired-Born-Infeld (EiBI) model under the mimetic approach. Due to the mimetic field, the theory contains non-trivial vacuum solutions different from those in Einstein gravity. We find that with the existence of the mimetic field, the spacelike singularity inside a Schwarzschild black hole could be altered to a lightlike singularity, even though the curvature invariants still diverge at the singularity. Furthermore, in this case, the maximal proper time for a timelike radially-infalling observer to reach the singularity is found to be infinite.
Black hole solutions in mimetic Born-Infeld gravity.
Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin
2018-01-01
The vacuum, static, and spherically symmetric solutions in the mimetic Born-Infeld gravity are studied. The mimetic Born-Infeld gravity is a reformulation of the Eddington-inspired-Born-Infeld (EiBI) model under the mimetic approach. Due to the mimetic field, the theory contains non-trivial vacuum solutions different from those in Einstein gravity. We find that with the existence of the mimetic field, the spacelike singularity inside a Schwarzschild black hole could be altered to a lightlike singularity, even though the curvature invariants still diverge at the singularity. Furthermore, in this case, the maximal proper time for a timelike radially-infalling observer to reach the singularity is found to be infinite.
Black hole solutions in mimetic Born-Infeld gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin
The vacuum, static, and spherically symmetric solutions in the mimetic Born-Infeld gravity are studied. The mimetic Born-Infeld gravity is a reformulation of the Eddington-inspired-Born-Infeld (EiBI) model under the mimetic approach. Due to the mimetic field, the theory contains non-trivial vacuum solutions different from those in Einstein gravity. Here, we find that with the existence of the mimetic field, the spacelike singularity inside a Schwarzschild black hole could be altered to a lightlike singularity, even though the curvature invariants still diverge at the singularity. Furthermore, in this case, the maximal proper time for a timelike radially-infalling observer to reach the singularitymore » is found to be infinite.« less
Black hole solutions in mimetic Born-Infeld gravity
Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin
2018-01-23
The vacuum, static, and spherically symmetric solutions in the mimetic Born-Infeld gravity are studied. The mimetic Born-Infeld gravity is a reformulation of the Eddington-inspired-Born-Infeld (EiBI) model under the mimetic approach. Due to the mimetic field, the theory contains non-trivial vacuum solutions different from those in Einstein gravity. Here, we find that with the existence of the mimetic field, the spacelike singularity inside a Schwarzschild black hole could be altered to a lightlike singularity, even though the curvature invariants still diverge at the singularity. Furthermore, in this case, the maximal proper time for a timelike radially-infalling observer to reach the singularitymore » is found to be infinite.« less
Performance of Thermal Mass Flow Meters in a Variable Gravitational Environment
NASA Technical Reports Server (NTRS)
Brooker, John E.; Ruff, Gary A.
2004-01-01
The performance of five thermal mass flow meters, MKS Instruments 179A and 258C, Unit Instruments UFM-8100, Sierra Instruments 830L, and Hastings Instruments HFM-200, were tested on the KC-135 Reduced Gravity Aircraft in orthogonal, coparallel, and counterparallel orientations relative to gravity. Data was taken throughout the parabolic trajectory where the g-level varied from 0.01 to 1.8 times normal gravity. Each meter was calibrated in normal gravity in the orthogonal position prior to flight followed by ground testing at seven different flow conditions to establish a baseline operation. During the tests, the actual flow rate was measured independently using choked-flow orifices. Gravitational acceleration and attitude had a unique effect on the performance of each meter. All meters operated within acceptable limits at all gravity levels in the calibrated orthogonal position. However, when operated in other orientations, the deviations from the reference flow became substantial for several of the flow meters. Data analysis indicated that the greatest source of error was the effect of orientation, followed by the gravity level. This work emphasized that when operating thermal flow meters in a variable gravity environment, it is critical to orient the meter in the same direction relative to gravity in which it was calibrated. Unfortunately, there was no test in normal gravity that could predict the performance of a meter in reduced gravity. When operating in reduced gravity, all meters indicated within 5 percent of the full scale reading at all flow conditions and orientations.
Microgravity strategic plan, 1990
NASA Technical Reports Server (NTRS)
1990-01-01
The mission of the NASA Microgravity program is to utilize the unique characteristics of the space environment, primarily the near absence of gravity, to understand the role of gravity in materials processing, and to demonstrate the feasibility of space production of improved materials that have high technological, and possible commercial, utility. The following five goals for the Microgravity Program are discussed: (1) Develop a comprehensive research program in fundamental sciences, materials science, and biotechnology for the purpose of attaining a structured understanding of gravity dependent physical phenomena in both Earth and non-Earth environments; (2) Foster the growth of interdisciplinary research community to conduct research in the space environment; (3) Encourage international cooperation for the purpose of conducting research in the space environment; (4) Utilize a permanently manned, multi-facility national microgravity laboratory in low-Earth orbit to provide a long-duration, stable microgravity environment; (5) Promote industrial applications of space research for the development of new, commercially viable products, services, and markets resulting from research in the space environment.
NASA Astrophysics Data System (ADS)
Popova, A.
The results of the experiments with two species of a green alga ?hlorella in spaceflight conditions and under altered gravity testified that the regular rearrangements has been revealed first of all in the cell mitochondriome. Such reorganizations were observed at auto- and geterotrophic regimes of the culture growth in the experiments of average duration (9-18 days) and also in long-term experiments (30 days - 4.5 months) (Popova, 1999). The mitochondria rearrangements become apparent at intensification of the cell proliferation, which results in increasing a relative volume of the mitohondria per cell (up to 5.3 % in microgravity compared to the control - 2.1 %). Moreover, the size of these organelles and their cristae increased in the experimental cells. The indicated mitochondria changes were accompanied by intensifying the electron density of a matrix and often by well-ordered topography of the cristae. Taking into account that the main set of the enzymes catalyzing the oxidative phosphorylation and conduction of the electrons are localized in the cristae membranes, the considerable growth of the mitochondria size and the cristae areas testified probably about a high functional activity of these organelles. Our investigations were carried out with the purpose to check the functional state of mitochondria under altered gravity (using slow horizontal clinorotator) and under influence of the inhibitory agent, separating an oxidation and oxidative phosphorylation. The ultrastructural peculiarities of the mitochondria as the energetic organelles were studied under the different 2,4- dinitrophenole concentrations and during the different terms of clinoritation at the logarithmic and stationary phases of Chlorella culture growth. The various characters of the mitochondria rearrangements and their relative volumes per cell were revealed under 2,4-dinitrophenole influence compared to the different terms of microgravity and altered gravity influences. The obtained results about various ultrastructural mitochondrial rearrangements and their total volume per cell under influence of 2,4- dinitrophenole are discussed by help of the obtained early data of adenylate content, activity, and topography of Mg2+-activated-ATPase in Chlorella cells under altered gravity.
Effect of Environmental Density and Buoyancy on Growth and Gravitropic Response in Maize Roots
NASA Astrophysics Data System (ADS)
Robbins, J. L.; Mulkey, T. J.
2008-06-01
The mechanism by which plants sense gravity is not fully understood. The hydrostatic model was proposed as an alternative to the statolith model. These experiments are designed to provide further understanding about the underlying mechanism of the gravitropic sensing. Primary roots of maize with a length of about 1 cm were used. The roots were placed in environments of various density and buoyancy using air, water, sucrose, sucrose/polyethylene glycol 4000 (PEG), PEG 8000, and Ficoll PM 400. The rates of growth and gravitropic curvature were monitored using time-lapse video and digital recordings. Comparison of roots in air to roots in oxygenated water indicate that there is no significant difference in growth rates but the higher density of water and the other test solutions significantly slows the gravitropic response. Altering the environmental density and buoyancy of the solution surrounding the root does not appear to alter sedimentation of statoliths within the root tip.
Gravitational Neurobiology of Fish
NASA Astrophysics Data System (ADS)
Rahmann, H.; Anken, R. H.
In vertebrates (including man), altered gravitational environments such as weightlessness can induce malfunctions of the inner ears, based on irregular movements of the semicircular cristae or on dislocations of the inner ear otoliths from the corresponding sensory epithelia. This will lead to illusionary tilts, since the vestibular inputs are not confirmed by the other sensory organs, which results in an intersensory conflict. Vertebrates in orbit therefore face severe orientation problems. In humans, the intersensory conflict may additionally lead to a malaise, commonly referred to as space motion sickness (SMS), a kinetosis. During the first days at weightlessness, the orientation problems (and SMS) disappear, since the brain develops a new compensatory interpretation of the available sensory data. The present review reports on the neurobiological responses - particularly of fish - observed at altered gravitational states, concerning behaviour and neuroplastic reactivities. Recent investigations employing microgravity (spaceflight, parabolic aircraft flights, clinostat) and hyper-gravity (laboratory centrifuges as ground based research tools) yielded clues and insights into the understanding of the respective basic phenomena
Tanimoto, Mimi; Tremblay, Reynald; Colasanti, Joseph
2008-05-01
Plants have developed sophisticated gravity sensing mechanisms to interpret environmental signals that are vital for optimum plant growth. Loss of SHOOT GRAVITROPISM 5 (SGR5) gene function has been shown to affect the gravitropic response of Arabidopsis inflorescence stems. SGR5 is a member of the INDETERMINATE DOMAIN (IDD) zinc finger protein family of putative transcription factors. As part of an ongoing functional analysis of Arabidopsis IDD genes (AtIDD) we have extended the characterisation of SGR5, and show that gravity sensing amyloplasts in the shoot endodermis of sgr5 mutants sediment more slowly than wild type, suggesting a defect in gravity perception. This is correlated with lower amyloplast starch levels, which may account for the reduced gravitropic sensitivity in sgr5. Further, we find that sgr5 mutants have a severely attenuated stem circumnutation movement typified by a reduced amplitude and an decreased periodicity. adg1-1 and sex1-1 mutants, which contain no starch or increased starch, respectively, also show alterations in the amplitude and period of circumnutation. Together these results suggest that plant growth movement may depend on starch levels and/or gravity sensing. Overall, we propose that loss of SGR5 regulatory activity affects starch accumulation in Arabidopsis shoot tissues and causes decreased sensitivity to gravity and diminished circumnutational movements.
On the influence of altered gravity on the growth of fish inner ear otoliths
NASA Astrophysics Data System (ADS)
Beier, Marion
1999-09-01
Inner ear stones (otoliths) of developing cichlid fish ( Oreochromis mossambicus) were marked with the calcium tracer alizarin-complexone (AC) at 1g-earth gravity before and after a long-term (20 days) stay of the animals at moderate hypergravity conditions (3g; centrifuge). AC deposition at the otoliths resulted in two fluorescence bands, which enclosed the area grown during exposure to altered gravity. This area was measured with regard to size and asymmetry (size difference between the left and the right stones). Both utricular and saccular otoliths (lapilli and sagittae, respectively) were significantly smaller after hyper-g exposure as compared to parallely raised 1g-control specimens. The asymmetry concerning the lapilli was pronouncedly decreased in comparison to the 1g-controls. These findings suggest, that the growth and the development of bilateral asymmetry of otoliths is guided by the environmental gravity vector. Some of the hyper-g animals revealed a kinetotic behaviour at the transfer from hyper-g to normal 1g-earth gravity conditions, which was qualitatively similar to the behaviour observed in previous experiments at the transfer from 1g to microgravity in the course of parabolic aircraft flights. The lapillar asymmetry of kinetotic samples was found to be significantly higher than that of normally behaving experimental specimens. This result supports an earlier theoretical concept, according to which human static space sickness might be based on asymmetric utricular otoliths.
Adaptations of the vestibular system to short and long-term exposures to altered gravity
NASA Astrophysics Data System (ADS)
Bruce, L.
Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival. We are studying two aspects of this vestibular adaptation: (1) How does long-term exposure to microgravity and hypergravity affect the development of vestibular afferents? (2) How does short- term exposure to extremely rapid changes in gravity, such as those that occur during launch and landing, affect the vestibular system. During space flight the gravistatic receptors in the otolith organs are effectively unloaded. In hypergravity conditions they are overloaded. However, the angular acceleration receptors of the semicircular canals receive relatively normal stimulation in both micro- and hypergravity.Rat embryos exposed to microgravity from gestation day 10 (prior to vestibular function) until gestation day 20 (vestibular system is somewhat functional) showed that afferents from the posterior vertical canal projecting to the medial vestibular nucleus developed similarly in microgravity, hypergravity, and in controls . However, afferents from the saccule showed delayed development in microgravity as compared to development in hypergravity and in controls. Cerebellar plasticity is crucial for modification of sensory-motor control and learning. Thus we explored the possibility that strong vestibular stimuli would modify cerebellar motor control (i.e., eye movement, postural control, gut motility) by altering the morphology of cerebellar Purkinje cells. To study the effects of short-term exposures to strong vestibular stimuli we focused on structural changes in the vestibulo-cerebellum that are caused by strong vestibular stimuli. Adult mice were exposed to various combinations of constant and/or rapidly changing angular and linear accelerations for 8.5 min (the time length of shuttle launch). Our data shows that these stimuli cause intense excitation of cerebellar Purkinje cells, inducing up-regulation of clathrin-mediated endocytosis. Different types of stimulation affect Purkinje cells in particular locations of the vestibulo-cerebellum. This system allows us to study how the vestibular environment can modify cerebellar function, allowing animals to adapt to new environments. Supported by NASA grant NAG2-1353.
NASA Astrophysics Data System (ADS)
Sakamoto, H.; Shibata, M.; Owada, H.; Kaneko, M.; Kuno, Y.; Asano, H.
A multibarrier system consisting of cement-based backfill, structures and support materials, and a bentonite-based buffer material has been studied for the TRU waste disposal concept being developed in Japan, the aim being to restrict the migration of radionuclides. Concern regarding bentonite-based materials in this disposal environment relates to long-term alteration under hyper-alkaline conditions due to the presence of cementitious materials. In tests simulating the interaction between bentonite and cement, formation of secondary minerals due to alteration reactions under the conditions expected for geological disposal of TRU waste (equilibrated water with cement at low liquid/solid ratio) has not been observed, although alteration was observed under extremely hyper-alkaline conditions with high temperatures. This was considered to be due to the fact that analysis of C-S-H gel formed at the interface as a secondary mineral was difficult using XRD, because of its low crystallinity and low content. This paper describes an analytical technique for the characterization of C-S-H gel using a heavy liquid separation method which separates C-S-H gel from Kunigel V1 bentonite (bentonite produced in Japan) based on the difference in specific gravity between the crystalline minerals constituting Kunigel V1 and the secondary C-S-H gel. For development of C-S-H gel separation methods, simulated alteration samples were prepared by mixing 990 mg of unaltered Kunigel V1 and 10 mg of C-S-H gel synthesized using pure chemicals at a ratio of Ca/Si = 1.2. The simulated alteration samples were dispersed in bromoform-methanol mixtures with specific gravities ranging from 2.00 to 2.57 g/cm 3 and subjected to centrifuge separation to recover the light density fraction. Subsequent XRD analysis to identify the minerals was complemented by dissolution in 0.6 N hydrochloric acid to measure the Ca and Si contents. The primary peak (2 θ = 29.4°, Cu Kα) and secondary peaks (2 θ = 32.1° and 50.1°, Cu Kα) of the C-S-H gel, which could not be distinguished before the heavy liquid separation, were clearly identified by XRD after separation. The result of the analyses of the light density fraction indicates highest recovery of C-S-H gel and least inclusion of bentonite for separation using heavy liquid with a specific gravity of 2.10 g/cm 3. The traces of bentonite minerals included in the suspension were identified to be montmorillonite, quartz, clinoptilolite, and calcite. The separation technique was also tested for Ca-bentonite prepared by passing a calcium hydroxide solution through a bentonite (Kunigel V1)-silica sand mixture. The results indicated that the technique would also be applicable to separation of C-S-H gel from Ca-bentonite.
Regulation of auxin transport during gravitropism
NASA Astrophysics Data System (ADS)
Rashotte, A.; Brady, S.; Kirpalani, N.; Buer, C.; Muday, G.
Plants respond to changes in the gravity vector by differential growth across the gravity-stimulated organ. The plant hormone auxin, which is normally basipetally transported, changes in direction and auxin redistribution has been suggested to drive this differential growth or gravitropism. The mechanisms by which auxin transport directionality changes in response to a change in gravity vector are largely unknown. Using the model plant, Arabidopsis thaliana, we have been exploring several regulatory mechanisms that may control auxin transport. Mutations that alter protein phosphorylation suggest that auxin transport in arabidopsis roots may be controlled via phosphorylation and this signal may facilitate gravitropic bending. The protein kinase mutant pinoid (pid9) has reduced auxin transport; whereas the protein phosphatase mutant, rcn1, has elevated transport, suggesting reciprocal regulation of auxin transport by reversible protein phosphorylation. In both of these mutants, the auxin transport defects are accompanied by gravitropic defects, linking phosphorylation signaling to gravity-induced changes in auxin transport. Additionally, auxin transport may be regulated during gravity response by changes in an endogenous auxin efflux inhibitor. Flavonoids, such as quercetin and kaempferol, have been implicated in regulation of auxin transport in vivo and in vitro. Mutants that make no flavonoids have reduced root gravitropic bending. Furthermore, changes in auxin-induced gene expression and flavonoid accumulation patterns have been observed during gravity stimulation. Current studies are examining whether there are spatial and temporal changes in flavonoid accumulation that precede gravitropic bending and whether the absence of these changes are the cause of the altered gravity response in plants with mutations that block flavonoid synthesis. These results support the idea that auxin transport may be regulated during gravity response by several mechanisms including phosphorylation of auxin transport proteins as well as synthesis of ligands that control the activity of these proteins. (This work is support by NASA grant NAG2-1507 and the NSCORT in Plant Biology at NCSU.)
Effects of gravity changes on gene expression of BDNF and serotonin receptors in the mouse brain.
Ishikawa, Chihiro; Li, Haiyan; Ogura, Rin; Yoshimura, Yuko; Kudo, Takashi; Shirakawa, Masaki; Shiba, Dai; Takahashi, Satoru; Morita, Hironobu; Shiga, Takashi
2017-01-01
Spaceflight entails various stressful environmental factors including microgravity. The effects of gravity changes have been studied extensively on skeletal, muscular, cardiovascular, immune and vestibular systems, but those on the nervous system are not well studied. The alteration of gravity in ground-based animal experiments is one of the approaches taken to address this issue. Here we investigated the effects of centrifugation-induced gravity changes on gene expression of brain-derived neurotrophic factor (BDNF) and serotonin receptors (5-HTRs) in the mouse brain. Exposure to 2g hypergravity for 14 days showed differential modulation of gene expression depending on regions of the brain. BDNF expression was decreased in the ventral hippocampus and hypothalamus, whereas increased in the cerebellum. 5-HT1BR expression was decreased in the cerebellum, whereas increased in the ventral hippocampus and caudate putamen. In contrast, hypergravity did not affect gene expression of 5-HT1AR, 5-HT2AR, 5-HT2CR, 5-HT4R and 5-HT7R. In addition to hypergravity, decelerating gravity change from 2g hypergravity to 1g normal gravity affected gene expression of BDNF, 5-HT1AR, 5-HT1BR, and 5-HT2AR in various regions of the brain. We also examined involvement of the vestibular organ in the effects of hypergravity. Surgical lesions of the inner ear's vestibular organ removed the effects induced by hypergravity on gene expression, which suggests that the effects of hypergravity are mediated through the vestibular organ. In summary, we showed that gravity changes induced differential modulation of gene expression of BDNF and 5-HTRs (5-HT1AR, 5-HT1BR and 5-HT2AR) in some brain regions. The modulation of gene expression may constitute molecular bases that underlie behavioral alteration induced by gravity changes.
Effects of gravity changes on gene expression of BDNF and serotonin receptors in the mouse brain
Yoshimura, Yuko; Kudo, Takashi; Shirakawa, Masaki; Shiba, Dai; Takahashi, Satoru; Morita, Hironobu
2017-01-01
Spaceflight entails various stressful environmental factors including microgravity. The effects of gravity changes have been studied extensively on skeletal, muscular, cardiovascular, immune and vestibular systems, but those on the nervous system are not well studied. The alteration of gravity in ground-based animal experiments is one of the approaches taken to address this issue. Here we investigated the effects of centrifugation-induced gravity changes on gene expression of brain-derived neurotrophic factor (BDNF) and serotonin receptors (5-HTRs) in the mouse brain. Exposure to 2g hypergravity for 14 days showed differential modulation of gene expression depending on regions of the brain. BDNF expression was decreased in the ventral hippocampus and hypothalamus, whereas increased in the cerebellum. 5-HT1BR expression was decreased in the cerebellum, whereas increased in the ventral hippocampus and caudate putamen. In contrast, hypergravity did not affect gene expression of 5-HT1AR, 5-HT2AR, 5-HT2CR, 5-HT4R and 5-HT7R. In addition to hypergravity, decelerating gravity change from 2g hypergravity to 1g normal gravity affected gene expression of BDNF, 5-HT1AR, 5-HT1BR, and 5-HT2AR in various regions of the brain. We also examined involvement of the vestibular organ in the effects of hypergravity. Surgical lesions of the inner ear’s vestibular organ removed the effects induced by hypergravity on gene expression, which suggests that the effects of hypergravity are mediated through the vestibular organ. In summary, we showed that gravity changes induced differential modulation of gene expression of BDNF and 5-HTRs (5-HT1AR, 5-HT1BR and 5-HT2AR) in some brain regions. The modulation of gene expression may constitute molecular bases that underlie behavioral alteration induced by gravity changes. PMID:28591153
Centrifuge Facility for the International Space Station Alpha
NASA Technical Reports Server (NTRS)
Johnson, Catherine C.; Hargens, Alan R.
1994-01-01
The Centrifuge Facility planned for the International Space Station Alpha has under-one considerable redesign over the past year, primarily because the Station is now viewed as a 10 year mission rather than a 30 year mission and because of the need to simply the design to meet budget constraints and a 2000 launch date. The basic elements of the Centrifuge Facility remain the same, i.e., a 2.5 m diameter centrifuge, a micro-g holding unit, plant and animal habitats, a glovebox and a service unit. The centrifuge will still provide the full range of artificial gravity from 0.01 a to 2 - as originally planned; however, the extractor to permit withdrawal of habitats from the centrifuge without stopping the centrifuge has been eliminated. The specimen habitats have also been simplified and are derived from other NASA programs. The Plant Research Unit being developed by the Gravitational Biology Facility will be used to house plants in the Centrifuge Facility. Although not as ambitious as the Centrifuge Facility plant habitat, it will provide much better environmental control and lighting than the current Shuttle based Plant Growth Facility. Similarly, rodents will be housed in the Advanced Animal Habitat being developed for the Shuttle program. The Centrifuge Facility and ISSA will provide the opportunity to perform repeatable, high quality science. The long duration increments available on the Station will permit multigeneration studies on both plants and animals which have not previously been possible. The Centrifuge Facility will accommodate sufficient number of specimens to permit statistically significant sampling of specimens to investigate the time course of adaptation to altered gravity environments. The centrifuge will for the first time permit investigators to use gravity itself as a tool to investigate fundamental processes, to investigate the intensity and duration of gravity to maintain normal structure and function, to separate the effects of micro-g from other 0 environmental factors and to examine artificial gravity as a potential countermeasure for the physical deconditioning observed during spaceflight.
Resting energy expenditure of rats acclimated to hypergravity
NASA Technical Reports Server (NTRS)
Wade, Charles E.; Moran, Megan M.; Oyama, Jiro
2002-01-01
BACKGROUND: The use of centrifugation at 1 G has been advocated as a control condition during spaceflight and as a countermeasure to compensate for the adverse effects of spaceflight. Rodents are the primary animal model for the study of the effects of spaceflight and will be used in the evaluation of centrifugation as a countermeasure and means of control at 1 G during flight. HYPOTHESIS: The present study was designed to assess whether resting energy expenditure (EER) of male rats was increased in relation to the magnitude of the level of gravity to which the animals were exposed. The influence of body mass and age on resting energy expenditure (EER) of male rats (n = 42, age 40-400 d) was determined following 2 wk of acclimation to 1, 2.3, or 4.1 G. Hypergravity environments were created by centrifugation. Measurements were made at the gravity level to which the animal was acclimated and during the lights-on period. RESULTS: In rats matched for body mass (approximately 400 g), mean O2 consumption and CO2 production were higher (18% and 27%, respectively) in the 2.3- and 4.1 -G groups than controls. Mean respiratory exchange ratio (RER) increased from 0.80 to 0.87. EER was increased from 47 +/- 0.1 kcal x d(-1) at 1 G, to 57 +/- 1.5 and 58 +/- 2.2 kcal x d(-1) at 2.3 and 4.1 G, respectively. There was no difference in EER between the hypergravity groups. When age differences were considered, EER (kcal x kg(-1) x d(-1)) with increased gravity was 40% higher than at 1 G. The increase in EER was not proportional over gravity levels. CONCLUSION: Acclimation of rats to hypergravity increases their EER, dependent on body mass and age, and may alter substrate metabolism. The increase in EER was not related to the level of gravity increase.
d'Ascanio, Paola; Centini, Claudia; Pompeiano, Maria; Pompeiano, Ottavio; Balaban, Evan
2002-10-15
The nucleus paragigantocellularis lateralis (LPGi) exerts a prominent excitatory influence over locus coeruleus (LC) neurons, which respond to gravity signals. We investigated whether adult albino rats exposed to different gravitational fields during the NASA Neurolab Mission (STS-90) showed changes in Fos and Fos-related antigen (FRA) protein expression in the LPGi and related cardiovascular, vasomotor, and respiratory areas. Fos and FRA proteins are induced rapidly by external stimuli and return to basal levels within hours (Fos) or days (FRA) after stimulation. Exposure to a light pulse (LP) 1 h prior to sacrifice led to increased Fos expression in subjects maintained for 2 weeks in constant gravity (either at approximately 0 or 1 G). Within 24 h of a gravitational change (launch or landing), the Fos response to LP was abolished. A significant Fos response was also induced by gravitational stimuli during landing, but not during launch. FRA responses to LP showed a mirror image pattern, with significant responses 24 h after launch and landing, but no responses after 2 weeks at approximately 0 or 1 G. There were no direct FRA responses to gravity changes. The juxtafacial and retrofacial parts of the LPGi, which integrate somatosensory/acoustic and autonomic signals, respectively, also showed gravity-related increases in LP-induced FRA expression 24 h after launch and landing. The neighboring nucleus ambiguus (Amb) showed completely different patterns of Fos and FRA expression, demonstrating the anatomical specificity of these results. Immediate early gene expression in the LPGi and related cardiovascular vasomotor and ventral respiratory areas may be directly regulated by excitatory afferents from vestibular gravity receptors. These structures could play an important role in shaping cardiovascular and respiratory function during adaptation to altered gravitational environments encountered during space flight and after return to earth. Copyright 2002 Elsevier Science Inc.
Thermosyphon Flooding Limits in Reduced Gravity Environments
NASA Technical Reports Server (NTRS)
Gibson, Marc A.; Jaworske, Donald A.; Sanzi, James L.; Ljubanovic, Damir
2012-01-01
Fission Power Systems have long been recognized as potential multi-kilowatt power solutions for lunar, Martian, and extended planetary surface missions. Current heat rejection technology associated with fission surface power systems has focused on titanium water thermosyphons embedded in carbon composite radiator panels. The thermosyphons, or wickless heat pipes, are used as a redundant and efficient way to spread the waste heat from the power conversion unit(s) over the radiator surface area where it can be rejected to space. It is well known that thermosyphon performance is reliant on gravitational forces to keep the evaporator wetted with the working fluid. One of the performance limits that can be encountered, if not understood, is the phenomenon of condenser flooding, otherwise known as evaporator dry out. This occurs when the gravity forces acting on the condensed fluid cannot overcome the shear forces created by the vapor escaping the evaporator throat. When this occurs, the heat transfer process is stalled and may not re-stabilize to effective levels without corrective control actions. The flooding limit in earth's gravity environment is well understood as experimentation is readily accessible, but when the environment and gravity change relative to other planetary bodies, experimentation becomes difficult. An innovative experiment was designed and flown on a parabolic flight campaign to achieve the Reduced Gravity Environments (RGE) needed to obtain empirical data for analysis. The test data is compared to current correlation models for validation and accuracy.
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Ouazzani, Jalil
1988-01-01
It has become clear from measurements of the acceleration environment in the Spacelab that the residual gravity levels on board a spacecraft in low Earth orbit can be significant and should be of concern to experimenters who wish to take advantage of the low gravity conditions on future Spacelab missions and on board the Space Station. The basic goals are to better understand the low gravity tolerance of three classes of materials science experiments: crystal growth from a melt, a vapor, and a solution. The results of the research will provide guidance toward the determination of the sensitivity of the low gravity environment, the design of the laboratory facilites, and the timelining of materials science experiments. To data, analyses of the effects of microgravity environment were, with a few exceptions, restricted to order of magnitude estimates. Preliminary results obtained from numerical models of the effects of residual steady and time dependent acceleration are reported on: heat, mass, and momentum transport during the growth of a dilute alloy by the Bridgman-Stockbarger technique, and the response of a simple fluid physics experiment involving buoyant convection in a square cavity.
Altered Orientation and Flight Paths of Pigeons Reared on Gravity Anomalies: A GPS Tracking Study
Blaser, Nicole; Guskov, Sergei I.; Meskenaite, Virginia; Kanevskyi, Valerii A.; Lipp, Hans-Peter
2013-01-01
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates. PMID:24194860
Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.
Blaser, Nicole; Guskov, Sergei I; Meskenaite, Virginia; Kanevskyi, Valerii A; Lipp, Hans-Peter
2013-01-01
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.
The snake geothermal drilling project. Innovative approaches to geothermal exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shervais, John W.; Evans, James P.; Liberty, Lee M.
2014-02-21
The goal of our project was to test innovative technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution,more » and new thermal gradient measurements.« less
Plant and Animal Gravitational Biology. Part 1
NASA Technical Reports Server (NTRS)
1997-01-01
Session TA2 includes short reports covering: (1) The Interaction of Microgravity and Ethylene on Soybean Growth and Metabolism; (2) Structure and G-Sensitivity of Root Statocytes under Different Mass Acceleration; (3) Extracellular Production of Taxanes on Cell Surfaces in Simulated Microgravity and Hypergravity; (4) Current Problems of Space Cell Phytobiology; (5) Biological Consequences of Microgravity-Induced Alterations in Water Metabolism of Plant Cells; (6) Localization of Calcium Ions in Chlorella Cells Under Clinorotation; (7) Changes of Fatty Acids Content of Plant Cell Plasma Membranes under Altered Gravity; (8) Simulation of Gravity by Non-Symmetrical Vibrations and Ultrasound; and (9) Response to Simulated weightlessness of In Vitro Cultures of Differentiated Epithelial Follicular Cells from Thyroid.
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.
1993-01-01
The low gravity environment provided by space flight has afforded the science community a unique area for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior 'microgravity' experiments and prompted concern for the viability of proposed space experiments requiring long term, low gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment have been developed. This dissertation deals with the design constraints imposed by acceleration sensitive, microgravity experiment payloads in the unique environment of space. A theoretical background for the inertial feedback and feedforward isolation of a payload was developed giving the basis for two experimental active inertial isolation systems developed for the demonstration of these advanced active isolation techniques. A prototype six degree of freedom digital active isolation system was designed and developed for the ground based testing of an actively isolated payload in three horizontal degrees of freedom. A second functionally equivalent system was built for the multi-dimensional testing of an active inertial isolation system in a reduced gravity environment during low gravity aircraft trajectories. These multi-input multi-output control systems are discussed in detail with estimates on acceleration noise floor performance as well as the actual performance acceleration data. The attenuation performance is also given for both systems demonstrating the advantages between inertial and non-inertial control of a payload for both the ground base environment and the low gravity aircraft acceleration environment. A future goal for this area of research is to validate the technical approaches developed to the 0.01 Hz regime by demonstrating a functional active inertial feedforward/feedback isolation system during orbital flight. A NASA IN-STEP flight experiment has been proposed to accomplish this goal, and the expected selection for the IN-STEP program has been set for Jul. of 1993.
NASA Technical Reports Server (NTRS)
Sedbrook, J. C.; Chen, R.; Masson, P. H.
1999-01-01
Gravitropism allows plant organs to direct their growth at a specific angle from the gravity vector, promoting upward growth for shoots and downward growth for roots. Little is known about the mechanisms underlying gravitropic signal transduction. We found that mutations in the ARG1 locus of Arabidopsis thaliana alter root and hypocotyl gravitropism without affecting phototropism, root growth responses to phytohormones or inhibitors of auxin transport, or starch accumulation. The positional cloning of ARG1 revealed a DnaJ-like protein containing a coiled-coil region homologous to coiled coils found in cytoskeleton-interacting proteins. These data suggest that ARG1 participates in a gravity-signaling process involving the cytoskeleton. A combination of Northern blot studies and analysis of ARG1-GUS fusion-reporter expression in transgenic plants demonstrated that ARG1 is expressed in all organs. Ubiquitous ARG1 expression in Arabidopsis and the identification of an ortholog in Caenorhabditis elegans suggest that ARG1 is involved in other essential processes.
NASA Technical Reports Server (NTRS)
Horwitz, B. A.; Horowitz, J. M.
1977-01-01
Male, Long-Evans hooded rats were instrumented for monitoring core and hypothalamic temperatures as well as shivering and nonshivering thermogenesis in response to decreased ambient temperature in order to characterize the nature of the neural controller of temperature in rats at 1G and evaluate chronic implantation techniques for the monitoring of appropriate parameters at hypergravic fields. The thermoregulatory responses of cold-exposed rats at 2G were compared to those at 1G. A computer model was developed to simulate the thermoregulatory system in the rat. Observations at 1 and 2G were extended to acceleration fields of 1.5, 3.0 and 4.0G and the computer model was modified for application to altered gravity conditions. Changes in the acceleration field resulted in inadequate heat generation rather than increased heat loss. Acceleration appears to impair the ability of the neurocontroller to appropriately integrate input signals for body temperature maintenance.
Teaching from a Microgravity Environment: Harmonic Oscillator and Pendulum
NASA Astrophysics Data System (ADS)
Benge, Raymond; Young, Charlotte; Davis, Shirley; Worley, Alan; Smith, Linda; Gell, Amber
2009-04-01
This presentation reports on an educational experiment flown in January 2009 as part of NASA's Microgravity University program. The experiment flown was an investigation into the properties of harmonic oscillators in reduced gravity. Harmonic oscillators are studied in every introductory physics class. The equation for the period of a harmonic oscillator does not include the acceleration due to gravity, so the period should be independent of gravity. However, the equation for the period of a pendulum does include the acceleration due to gravity, so the period of a pendulum should appear longer under reduced gravity (such as lunar or Martian gravity) and shorter under hyper-gravity. These environments can be simulated aboard an aircraft. Video of the experiments being performed aboard the aircraft is to be used in introductory physics classes. Students will be able to record information from watching the experiment performed aboard the aircraft in a similar manner to how they collect data in the laboratory. They can then determine if the experiment matches theory. Video and an experimental procedure are being prepared based upon this flight, and these materials will be available for download by faculty anywhere with access to the internet who wish to use the experiment in their own classrooms.
NASA Astrophysics Data System (ADS)
Manzano, Ana I.; Herranz, Raúl; van Loon, Jack J. W. A.; Medina, F. Javier
2012-12-01
Seeds of Arabidopsis thaliana were exposed to hypergravity environments (2 g and 6 g) and germinated during centrifugation. Seedlings grew for 2 and 4 days before fixation. In all cases, comparisons were performed against an internal (subjected to rotational vibrations and other factors of the machine) and an external control at 1 g. On seedlings grown in hypergravity the total length and the root length were measured. The cortical root meristematic cells were analyzed to investigate the alterations in cell proliferation, which were quantified by counting the number of cells per millimeter in the specific cell files, and cell growth, which were appraised through the rate of ribosome biogenesis, assessed by morphological and morphometrical parameters of the nucleolus. The expression of cyclin B1, a key regulator of entry in mitosis, was assessed by the use of a CYCB1:GUS genetic construction. The results showed significant differences in some of these parameters when comparing the 1 g internal rotational control with the 1 g external control, indicating that the machine by itself was a source of alterations. When the effect of hypergravity was isolated from other environmental factors, by comparing the experimental conditions with the rotational control, cell proliferation appeared depleted, cell growth was increased and there was an enhanced expression of cyclin B1. The functional meaning of these effects is that cell proliferation and cell growth, which are strictly associated functions under normal 1 g ground conditions, are uncoupled under hypergravity. This uncoupling was also described by us in previous experiments as an effect of microgravity, but in an opposite way. Furthermore, root meristems appear thicker in hypergravity-treated than in control samples, which can be related to changes in the cell wall induced by altered gravity.
The Effects of Gravity on the Circadian Timing System
NASA Technical Reports Server (NTRS)
Fuller, Charles A.
1999-01-01
All vertebrates have a physiological control system that regulates the timing of the rhythms of their daily life. Dysfunction of this system, the circadian timing system (CTS), adversely affects an organism's ability to respond to environmental challenges and has been linked to physiological and psychological disorders. Exposure to altered gravitational environments (the microgravity of space and hyperdynamic environments produced via centrifugation) produces changes in both the functioning of the CTS and the rhythmic variables it controls. The earliest record of primate rhythms in a spaceflight environment come from Biosatellite III. The subject, a pig-tailed macaque, showed a loss of synchronization of the body temperature rhythm and a fragmented sleep-wake cycle. Alterations in the rhythm of body temperature were also seen in rhesus macaques flown on COSMOS 1514. Squirrel monkeys exposed to chronic centrifugation showed an initial decrease in the amplitude and mean of their body temperature and activity rhythms. In a microgravity environment, Squirrel monkeys on Spacelab-3 showed a reduction in the mean and amplitude of their feeding rhythms. Since 1992 we have had the opportunity to participate on three US/Russian sponsored biosatellite missions on which a total of six juvenile male rhesus macaques were flown. These animals uniformly exhibited delays in the phasing of their temperature rhythms, but not their heart rate or activity rhythms during spaceflight. There was also a tendency for changes in waveform mean and amplitude. These data suggest that the spaceflight environment may have a differential effect on the different oscillators controlling different rhythmic variables. Ongoing studies are examining the effects of +G on the CTS. The long-term presence of humans in space highlights the need for effective countermeasures to gravitational effects on the CTS.
Genomic response of the nematode Caenorhabditis elegans to spaceflight
Selch, Florian; Higashibata, Akira; Imamizo-Sato, Mari; Higashitani, Atsushi; Ishioka, Noriaki; Szewczyk, Nathaniel J.; Conley, Catharine A.
2008-01-01
On Earth, it is common to employ laboratory animals such as the nematode Caenorhabditis elegans to help understand human health concerns. Similar studies in Earth orbit should help understand and address the concerns associated with spaceflight. The “International Caenorhabditis elegans Experiment FIRST” (ICE FIRST), was carried out onboard the Dutch Taxiflight in April of 2004 by an international collaboration of laboratories in France, Canada, Japan and the United States. With the exception of a slight movement defect upon return to Earth, the result of altered muscle development, no significant abnormalities were detected in spaceflown C. elegans. Work from Japan revealed apoptosis proceeds normally and work from Canada revealed no significant increase in the rate of mutation. These results suggest that C. elegans can be used to study non-lethal responses to spaceflight and can possibly be developed as a biological sensor. To further our understanding of C. elegans response to spaceflight, we examined the gene transcription response to the 10 days in space using a near full genome microarray analysis. The transcriptional response is consistent with the observed normal developmental timing, apoptosis, DNA repair, and altered muscle development. The genes identified as altered in response to spaceflight are enriched for genes known to be regulated, in C. elegans, in response to altered environmental conditions (Insulin and TGF-β regulated). These results demonstrate C. elegans can be used to study the effects of altered gravity and suggest that C. elegans responds to spaceflight by altering the expression of at least some of the same metabolic genes that are altered in response to differing terrestrial environments. PMID:18392117
NASA Astrophysics Data System (ADS)
Matía, Isabel; van Loon, Jack W. A.; Carnero-Díaz, Eugénie; Marco, Roberto; Medina, Francisco Javier
2009-01-01
The study of the modifications induced by altered gravity in functions of plant cells is a valuable tool for the objective of the survival of terrestrial organisms in conditions different from those of the Earth. We have used the system "cell proliferation-ribosome biogenesis", two inter-related essential cellular processes, with the purpose of studying these modifications. Arabidopsis seedlings belonging to a transformed line containing the reporter gene GUS under the control of the promoter of the cyclin gene CYCB1, a cell cycle regulator, were grown in a Random Positioning Machine, a device known to accurately simulate microgravity. Samples were taken at 2, 4 and 8 days after germination and subjected to biometrical analysis and cellular morphometrical, ultrastructural and immunocytochemical studies in order to know the rates of cell proliferation and ribosome biogenesis, plus the estimation of the expression of the cyclin gene, as an indication of the state of cell cycle regulation. Our results show that cells divide more in simulated microgravity in a Random Positioning Machine than in control gravity, but the cell cycle appears significantly altered as early as 2 days after germination. Furthermore, higher proliferation is not accompanied by an increase in ribosome synthesis, as is the rule on Earth, but the functional markers of this process appear depleted in simulated microgravity-grown samples. Therefore, the alteration of the gravitational environmental conditions results in a considerable stress for plant cells, including those not specialized in gravity perception.
Generating a Reduced Gravity Environment on Earth
NASA Technical Reports Server (NTRS)
Dungan, L. K.; Valle, P.; Shy, C.
2015-01-01
The Active Response Gravity Offload System (ARGOS) is designed to simulate reduced gravity environments, such as Lunar, Martian, or microgravity using a vertical lifting hoist and horizontal motion system. Three directions of motion are provided over a 41 ft x 24 ft x 25 ft tall area. ARGOS supplies a continuous offload of a portion of a person's weight during dynamic motions such as walking, running, and jumping. The ARGOS system tracks the person's motion in the horizontal directions to maintain a vertical offload force directly above the person or payload by measuring the deflection of the cable and adjusting accordingly.
Gravitropism in plants: Hydraulics and wall growth properties of responding cells
NASA Technical Reports Server (NTRS)
Cosgrove, Daniel J.
1989-01-01
Gravitropism is the asymmetrical alteration of plant growth in response to a change in the gravity vector, with the typical result that stems grow up and roots grow down. The gravity response is important for plants because it enables them to grow their aerial parts in a mechanically stable (upright) position and to develop their roots and leaves to make efficient use of soil nutrients and sunlight. The elucidation of gravitropic responses will tell much about how gravity exerts its morphogenetic effects on plants and how plants regulate their growth at the cellular and molecular levels.
NASA Astrophysics Data System (ADS)
Unruh, E.; Brungs, S.; Langer, S.; Bornemann, G.; Frett, T.; Hansen, P.-D.
2016-06-01
Microgravity induces alterations in the functioning of immune cell; however, the underlying mechanisms have not yet been identified. In this study, hemocytes (blood cells) of the blue mussel Mytilus edulis were investigated under altered gravity conditions. The study was conducted on the ground in preparation for the BIOLAB TripleLux-B experiment, which will be performed on the International Space Station (ISS). On-line kinetic measurements of reactive oxygen species (ROS) production during the oxidative burst and thus cellular activity of isolated hemocytes were performed in a photomultiplier (PMT)-clinostat (simulated microgravity) and in the 1 g operation mode of the clinostat in hypergravity on the Short-Arm Human Centrifuge (SAHC) as well as during parabolic flights. In addition to studies with isolated hemocytes, the effect of altered gravity conditions on whole animals was investigated. For this purpose, whole mussels were exposed to hypergravity (1.8 g) on a multi-sample incubator centrifuge (MuSIC) or to simulated microgravity in a submersed clinostat. After exposure for 48 h, hemocytes were taken from the mussels and ROS production was measured under 1 g conditions. The results from the parabolic flights and clinostat studies indicate that mussel hemocytes respond to altered gravity in a fast and reversible manner. Hemocytes (after cryo-conservation) exposed to simulated microgravity ( μ g), as well as fresh hemocytes from clinorotated animals, showed a decrease in ROS production. Measurements during a permanent exposure of hemocytes to hypergravity (SAHC) show a decrease in ROS production. Hemocytes of mussels measured after the centrifugation of whole mussels did not show an influence to the ROS response at all. Hypergravity during parabolic flights led to a decrease but also to an increase in ROS production in isolated hemocytes, whereas the centrifugation of whole mussels did not influence the ROS response at all. This study is a good example how ground-based facility experiments can be used to prepare for an upcoming ISS experiment, in this case the TRIPLE LUX B experiment.
Lin, Fan; Xiao, Bin
2017-01-01
Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment. PMID:29088228
Hong, Zhiling; Lin, Fan; Xiao, Bin
2017-01-01
Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.
Small heat shock protein message in etiolated Pea seedlings under altered gravity
NASA Astrophysics Data System (ADS)
Talalaiev, O.
Plants are subjected to various environmental changes during their life cycle To protect themselves against unfavorable influences plant cells synthesize several classes of small heat shock proteins sHsp ranging in size from 15 to 30 kDa This proteins are able to enhance the refolding of chemically denatured proteins in an ATP-independent manner in other words they can function as molecular chaperones The potential contribution of effects of space flight at the plant cellular and gene regulation level has not been characterized yet The object of our study is sHsp gene expression in etiolated Pisum sativum seedlings exposed to altered gravity and environmental conditions We designed primers to detect message for two inducible forms of the cytosolic small heat shock proteins sHsp 17 7 and sHsp 18 1 Applying the RT- PCR we explore sHsps mRNA in pea seedling cells subjected to two types of altered gravity achieved by centrifugation from 3 to 8g by clinorotation 2 rpm and temperature elevation 42oC Temperature elevation as the positive control significantly increased PsHspl7 7 PsHspl8 1 expression We investigate the expression of actin it was constant and comparable for unstressed controls for all variants Results are under discussion
NASA Technical Reports Server (NTRS)
Swider, J. E., Jr.
1974-01-01
The zero gravity test program demonstrated the feasibility and practicability of collecting urine from both male and female crew members in a zero gravity environment in an earthlike manner not requiring any manual handling of urine containers. In addition, the testing demonstrated that a seat which is comfortable in both regimes of operation could be designed for use on the ground and in zero-gravity. Further, the tests showed that the vortex liquid/air separator is an effective liquid/air separation method in zero gravity. Visual observations indicate essentially zero liquid carry over. The system also demonstrated its ability to handle post elimination wipes without difficulty. The designs utilized in the WCS were verified as acceptable for usage in the space shuttle or other space vehicles.
Device for Extracting Flavors and Fragrances
NASA Technical Reports Server (NTRS)
Chang, F. R.
1986-01-01
Machine for making coffee and tea in weightless environment may prove even more valuable on Earth as general extraction apparatus. Zero-gravity beverage maker uses piston instead of gravity to move hot water and beverage from one chamber to other and dispense beverage. Machine functions like conventional coffeemaker during part of operating cycle and includes additional features that enable operation not only in zero gravity but also extraction under pressure in presence or absence of gravity.
jsc2018m000256_Rooting_for_Answers
2018-03-22
Rooting for Answers: Simulating G-Force in Plants---------On Earth, plants use gravity and light to orient their roots and shoots, but in space, microgravity is too weak to provide a growth cue. The Gravity Perception Systems (Plant Gravity Perception) investigation germinates normal and variant forms of thale cress, a model research plant, to study the plants’ gravity and light perception. Results provide new information about plants’ ability to detect gravity and adapt to an environment without it. The investigation continues efforts to grow plants for food on future missions.
Three-Dimensional Upward Flame Spreading in Partial-Gravity Buoyant Flows
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt R.; Feier, Ioan I.; Shih, Hsin-Yi; T'ien, James S.
2001-01-01
Reduced-gravity environments have been used to establish low-speed, purely forced flows for both opposed- and concurrent-flow flame spread studies. Altenkirch's group obtained spacebased experimental results and developed unsteady, two-dimensional numerical simulations of opposed-flow flame spread including gas-phase radiation, primarily away from the flammability limit for thin fuels, but including observations of thick fuel quenching in quiescent environments. T'ien's group contributed some early flame spreading results for thin fuels both in opposed flow and concurrent flow regimes, with more focus on near-limit conditions. T'ien's group also developed two- and three-dimensional numerical simulations of concurrent-flow flame spread incorporating gas-phase radiative models, including predictions of a radiatively-induced quenching limit reached in very low-speed air flows. Radiative quenching has been subsequently observed in other studies of combustion in very low-speed flows including other flame spread investigations, droplet combustion and homogeneous diffusion flames, and is the subject of several contemporary studies reported in this workshop. Using NASA aircraft flying partial-gravity "parabolic" trajectories, flame spreading in purely buoyant, opposed-flow (downward burning) has been studied. These results indicated increases in flame spread rates and enhanced flammability (lower limiting atmospheric oxygen content) as gravity levels were reduced from normal Earth gravity, and were consistent with earlier data obtained by Altenkirch using a centrifuge. In this work, experimental results and a three-dimensional numerical simulation of upward flame spreading in variable partial-gravity environments were obtained including some effects of reduced pressure and variable sample width. The simulation provides physical insight for interpreting the experimental results and shows the intrinsic 3-D nature of buoyant, upward flame spreading. This study is intended to link the evolving understanding of flame spreading in purely-forced flows to the purely-buoyant flow environment, particularly in the concurrent flow regime; provide additional insight into the existence of steady flame spread in concurrent flows; and stimulate direct comparisons between opposed- and concurrent-flow flame spread. Additionally, this effort is intended to provide direct practical understanding applicable to fire protection planning for the habitable facilities in partial gravity environments of anticipated Lunar and Martian explorations.
Training to Facilitate Adaptation to Novel Sensory Environments
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Ploutz-Snyder, R. J.; Cohen, H. S.
2010-01-01
After spaceflight, the process of readapting to Earth s gravity causes locomotor dysfunction. We are developing a gait training countermeasure to facilitate adaptive responses in locomotor function. Our training system is comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to train subjects to rapidly adapt their gait patterns to changes in the sensory environment. The goal of our present study was to determine if training improved both the locomotor and dual-tasking ability responses to a novel sensory environment and to quantify the retention of training. Subjects completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill without any support surface or visual alterations. To determine the efficacy of training, all subjects were then tested using a novel visual flow and support surface movement not previously experienced during training. This test was performed 20 minutes, 1 week, and 1, 3, and 6 months after the final training session. Stride frequency and auditory reaction time were collected as measures of postural stability and cognitive effort, respectively. Subjects who received training showed less alteration in stride frequency and auditory reaction time compared to controls. Trained subjects maintained their level of performance over 6 months. We conclude that, with training, individuals became more proficient at walking in novel discordant sensorimotor conditions and were able to devote more attention to competing tasks.
Zheng, Yiwen; Gliddon, Catherine M; Aitken, Phillip; Stiles, Lucy; Machado, Marie-Laure; Philoxene, Bruno; Denise, Pierre; Smith, Paul F; Besnard, Stephane
2017-07-27
Both parabolic flight, i.e. a condition of altered gravity, and loss of vestibular function, have been suggested to affect spatial learning and memory, which is known to be influenced by neurogenesis in the hippocampus. In this study we investigated whether short alternated micro- and hyper-gravity stimulations during parabolic flight and/or loss of vestibular function, would alter cell proliferation in the hippocampal dentate gyrus of rats, by measuring the number of bromodeoxyuridine (BrdU)-incorporated cells. Rats were randomly allocated to the following experimental groups: (1) sham transtympanic saline injection only (n=5); (2) bilateral vestibular deafferentation (BVD) by sodium arsanilate transtympanic injection only (n=5); (3) sham treatment and parabolic flight (n=5); (4) BVD and parabolic flight (n=6). Forty-two days following transtympanic injection, the animals were subjected to parabolic flight in an awake restrained condition after habituation. A modified Airbus A300 aircraft was flown on a parabolic path, creating 20s of 1.8G during both climbing and descending and 22s of 0G at the apex of each parabola. The no flight animals were subjected to the same housing for the same duration. Immediately after the parabolic flight or control ground condition, animals were injected with BrdU (300mg/kg, i.p). Twenty-four hs after BrdU injection, rats were sacrificed. BrdU immunolabelling was performed and the number of BrdU +ve cells in the dentate gyrus of the hippocampus was quantified using a modified fractionator method. BVD caused a large and significant reduction in the number of BrdU-positive cells compared to sham animals (P≤0.0001); however, flight and all interactions were non-significant. These results indicate that BVD significantly decreased cell proliferation irrespective of the short exposure to altered/modified gravity. Copyright © 2017 Elsevier B.V. All rights reserved.
Liposome formation in microgravity.
Claassen, D E; Spooner, B S
1996-01-01
Liposomes are artificial vesicles with a phospholipid bilayer membrane. The formation of liposomes is a self-assembly process that is driven by the amphipathic nature of phospholipid molecules and can be observed during the removal of detergent from phospholipids dissolved in detergent micelles. As detergent concentration in the mixed micelles decreases, the non-polar tail regions of phospholipids produce a hydrophobic effect that drives the micelles to fuse and form planar bilayers in which phospholipids orient with tail regions to the center of the bilayer and polar head regions to the external surface. Remaining detergent molecules shield exposed edges of the bilayer sheet from the aqueous environment. Further removal of detergent leads to intramembrane folding and membrane folding and membrane vesiculation, forming liposomes. We have observed that the formation of liposomes is altered in microgravity. Liposomes that were formed at 1-g did not exceed 150 nm in diameter, whereas liposomes that were formed during spaceflight exhibited diameters up to 2000 nm. Using detergent-stabilized planar bilayers, we determined that the stage of liposome formation most influenced by gravity is membrane vesiculation. In addition, we found that small, equipment-induced fluid disturbances increased vesiculation and negated the size-enhancing effects of microgravity. However, these small disturbances had no effect on liposome size at 1-g, likely due to the presence of gravity-induced buoyancy-driven fluid flows (e.g., convection currents). Our results indicate that fluid disturbances, induced by gravity, influence the vesiculation of membranes and limit the diameter of forming liposomes.
Liposome formation in microgravity
NASA Astrophysics Data System (ADS)
Claassen, D. E.; Spooner, B. S.
Liposomes are artificial vesicles with a phospholipid bilayer membrane. The formation of liposomes is a self-assembly process that is driven by the amphipathic nature of phospholipid molecules and can be observed during the removal of detergent from phospholipids dissolved in detergent micelles. As detergent concentration in the mixed micelles decreases, the non-polar tail regions of phospholipids produce a hydrophobic effect that drives the micelles to fuse and form planar bilayers in which phospholipids orient with tail regions to the center of the bilayer and polar head regions to the external surface. Remaining detergent molecules shield exposed edges of the bilayer sheet from the aqueous environment. Further removal of detergent leads to intramembrane folding and membrane vesiculation, forming liposomes. We have observed that the formation of liposomes is altered in microgravity. Liposomes that were formed at 1-g did not exceed 150 nm in diameter, whereas liposomes that were formed during spaceflight exhibited diameters up to 2000 nm. Using detergent-stabilized planar bilayers, we determined that the stage of liposome formation most influenced by gravity is membrane vesiculation. In addition, we found that small, equipment-induced fluid disturbances increased vesiculation and negated the size-enhancing effects of microgravity. However, these small disturbances had no effect on liposome size at 1-g, likely due to the presence of gravity-induced buoyancy-driven fluid flows (e.g., convection currents). Our results indicate that fluid disturbances, induced by gravity, influence the vesiculation of membranes and limit the diameter of forming liposomes.
Suppression of morphogenesis in embryonic mouse limbs exposed in vitro to excess gravity.
Duke, J C
1983-06-01
This paper is a report of the first investigation of the effect of excess gravity on in vitro mammalian limb chondrogenesis. Limb buds from mice of various gestational stages were exposed to excess gravity (2.6G) using a culture centrifuge. Both forelimbs and hind limbs were cultured and the development of various limb elements was scored after four to six days. The 2.6G force significantly depressed the development of limb elements when applied during the teratogen-sensitive period of chondrogenesis. There was a proximodistal gradient of sensitivity to excess gravity in the limb with proximal structures being less susceptible than distal ones. In some cases, proximal limb elements present prior to explantation disappeared upon exposure to excess gravity. Hypergravity's teratogenic effect is assumed to operate via changes in tension and/or pressure on the cells, accompanied by alterations in cell morphometry and membrane properties.
Decompression to altitude: assumptions, experimental evidence, and future directions.
Foster, Philip P; Butler, Bruce D
2009-02-01
Although differences exist, hypobaric and hyperbaric exposures share common physiological, biochemical, and clinical features, and their comparison may provide further insight into the mechanisms of decompression stress. Although altitude decompression illness (DCI) has been experienced by high-altitude Air Force pilots and is common in ground-based experiments simulating decompression profiles of extravehicular activities (EVAs) or astronauts' space walks, no case has been reported during actual EVAs in the non-weight-bearing microgravity environment of orbital space missions. We are uncertain whether gravity influences decompression outcomes via nitrogen tissue washout or via alterations related to skeletal muscle activity. However, robust experimental evidence demonstrated the role of skeletal muscle exercise, activities, and/or movement in bubble formation and DCI occurrence. Dualism of effects of exercise, positive or negative, on bubble formation and DCI is a striking feature in hypobaric exposure. Therefore, the discussion and the structure of this review are centered on those highlighted unresolved topics about the relationship between muscle activity, decompression, and microgravity. This article also provides, in the context of altitude decompression, an overview of the role of denitrogenation, metabolic gases, gas micronuclei, stabilization of bubbles, biochemical pathways activated by bubbles, nitric oxide, oxygen, anthropometric or physiological variables, Doppler-detectable bubbles, and potential arterialization of bubbles. These findings and uncertainties will produce further physiological challenges to solve in order to line up for the programmed human return to the Moon, the preparation for human exploration of Mars, and the EVAs implementation in a non-zero gravity environment.
NASA Technical Reports Server (NTRS)
Symons, E. P.
1979-01-01
An analysis is presented for defining the outlet contour of a hemispherical-bottomed cylindrical tank that will prevent vapor ingestion when the tank is drained. The analysis was used to design two small-scale tanks that were fabricated and then tested in a low gravity environment. The draining performance of the tanks was compared with that for a tank with a conventional outlet having a constant circular cross-sectional area, under identical conditions. Even when drained at off-design conditions, the contoured tank had less liquid residuals at vapor ingestion than the conventional outlet tank. Effects of outflow rate, gravitational environment, and fluid properties on the outlet contour are discussed. Two potential applications of outlet contouring are also presented and discussed.
Measurement of the gravity-field curvature by atom interferometry.
Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M
2015-01-09
We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.
NASA Astrophysics Data System (ADS)
Pereda-Loth, V.; Franceries, X.; Afonso, A. S.; Ayala, A.; Eche, B.; Ginibrière, D.; Gauquelin-Koch, G.; Bardiès, M.; Lacoste-Collin, L.; Courtade-Saïdi, M.
2018-02-01
Astronauts are exposed to microgravity and chronic irradiation but experimental conditions combining these two factors are difficult to reproduce on earth. We have created an experimental device able to combine chronic irradiation and altered gravity that may be used for cell cultures or plant models in a ground based facility. Irradiation was provided by thorium nitrate powder, conditioned so as to constitute a sealed source that could be placed in an incubator. Cell plates or plant seedlings could be placed in direct contact with the source or at various distances above it. Moreover, a random positioning machine (RPM) could be positioned on the source to simulate microgravity. The activity of the source was established using the Bateman formula. The spectrum of the source, calculated according to the natural decrease of radioactivity and the gamma spectrometry, showed very good adequacy. The experimental fluence was close to the theoretical fluence evaluation, attesting its uniform distribution. A Monte Carlo model of the irradiation device was processed by GATE code. Dosimetry was performed with radiophotoluminescent dosimeters exposed for one month at different locations (x and y axes) in various cell culture conditions. Using the RPM placed on the source, we reached a mean absorbed dose of gamma rays of (0.33 ± 0.17) mSv per day. In conclusion, we have elaborated an innovative device allowing chronic radiation exposure to be combined with altered gravity. Given the limited access to the International Space Station, this device could be useful to researchers interested in the field of space biology.
Azizi, Sh; Marzbani, H; Raminfard, S; Birgani, P M; Rasooli, A H; Mirbagheri, M M
2017-07-01
We studied the effects of an anti-gravity treadmill (AlterG) training on walking capacity and corticospinal tract structure in children with Cerebral Palsy (CP). AlterG can help CP children walk on the treadmill by reducing their weights up to 80% and maintain their balance during locomotion. AlterG training thus has the potential to improve walking capacity permanently as it can provide systematic and intense locomotor training for sufficiently long period of time and produce brain neuroplasticity. AlterG training was given for 45 minutes, three times a week for two months. The neuroplasticity of corticospinal tract was evaluated using Diffusion Tensor Imaging (DTI). The fractional Anisotropy (FA) feature was extracted to quantify structural changes of the corticospinal tract. Walking capacity was evaluated using popular clinical measurements of gait; i.e., walking speed, mobility and balance. The evaluations were done before and after training. Our results revealed that AlterG training resulted in an increase in average FA value of the corticospinal tract following the training. The outcome measures of clinical assessments of gait presented enhanced walking capacity of the CP subjects. Our findings indicated that the improved walking capacity was concurrent with the enhancement of the corticospinal tract structure. The clinical implication is that AlterG training may be considered as a therapeutic tool for permanent gait improvement in CP children.
Altered gravity effects on mothers and offspring: the importance of maternal behavior
NASA Technical Reports Server (NTRS)
Ronca, A. E.
2001-01-01
In this paper, I review and discuss recent studies of pregnant, parturient and lactating rat mothers and neonates exposed to hypo- and hypergravity. These studies are revealing new insights into how deviations form Earth-normal gravity may affect fundamental reproductive and ontogenetic processes in mammals. By way of background, I will first briefly summarize the spaceflights that have carried mammalian mothers and their offspring into space.
Effects of Simulated Microgravity on Functions of Neutrophil-like HL-60 Cells
NASA Astrophysics Data System (ADS)
Wang, Chengzhi; Li, Ning; Zhang, Chen; Sun, Shujin; Gao, Yuxin; Long, Mian
2015-11-01
Altered gravity, especially microgravity affects cellular functions of immune cells and can result in immune dysfunction for long-term, manned spaceflight and space exploration. The underlying mechanism, however, of sensing and responding to the gravity alteration is poorly understood. Here, a rotary cell culture system (RCCS) bioreactor was used to elucidate the effects of simulated microgravity on polymorphonuclear neutrophils (PMN)-like HL-60 cells. Alteration of cell morphology, up-regulation of (nitric oxide) NO production, enhancement of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein 1 (MCP-1) secretion, and diversity of cellular adhesion molecule expression were observed for the cells cultured in RCCS, leading to the up-regulated inflammatory immune responses and host defense. It was also indicated that such alterations in biological responses of PMNs mediated the reduced rolling velocity and decreased adhesion of PMN-like HL-60 cells on endothelial cells under shear flow. This work furthers the understandings in the effects and mechanism of microgravity on PMN functions, which are potentially helpful for optimizing the countermeasures to immune suppression in the future long-term, manned spaceflight.
NASA Technical Reports Server (NTRS)
Wiederhold, Michael L.; Pedrozo, Hugo A.; Harrison, Jeffrey L.; Hejl, Robert; Gao, Wenyuan
1997-01-01
Several components of the systems animals use to orient to gravity might develop differently in micrograms. If the growth of the "test masses" on which gravity acts (otoliths, in vertebrates, statoliths or statoconia in most invertebrates) is controlled on the basis of their weight, larger otoliths (or their analogs) would be expected to develop in micrograms. The vestibular systems in animals reared in altered gravity have been studied in several species, with varied results being reported. Early Russian reports of Xenopus larvae reared in space indicated no qualitative differences in the vestibular organs, compared to ground-reared controls. A similar lack of differences in Xenopus were reported. The ultricular otolith was 30% larger in space-reared Xenopus. No differences in saccular otolith volume between centrifuged and control adult rats were found. A delay in otoconial development in chick embryos reared at 2 grams on a centrifuge was reported but in a later report, no differences in otolith weight between 2 grams and control chicks were found. Increased optokinetic responses in flight-reared Xenopus tadpoles, suggesting that the animals reared in the absence of gravity made greater relative use of their visual system, rather than the vestibular system, in orienting to a moving stimulus was reported. To test early Japanese newt, CYnops pyrrhogaster, were maintained in orbit for 15 days on the IML-2 mission in 1994. All specimens reached orbit before any otoconia were formed and all major components of the inner ear were formed by the end of the flight. In ground-based studies of he Aplysia statocyst, the volume of the statolith in embryos and the number statoconia in post-metamorphic animals were compared between 1-gram controls and specimens reared at 2 to 5.7 grams.
Pan, Feng; Liu, Shuo; Wang, Zhe; Shang, Peng; Xiao, Wen
2012-05-07
The long-term and real-time monitoring the cell division and changes of osteoblasts under simulated zero gravity condition were succeed by combing a digital holographic microscopy (DHM) with a superconducting magnet (SM). The SM could generate different magnetic force fields in a cylindrical cavity, where the gravitational force of biological samples could be canceled at a special gravity position by a high magnetic force. Therefore the specimens were levitated and in a simulated zero gravity environment. The DHM was modified to fit with SM by using single mode optical fibers and a vertically-configured jig designed to hold specimens and integrate optical device in the magnet's bore. The results presented the first-phase images of living cells undergoing dynamic divisions and changes under simulated zero gravity environment for a period of 10 hours. The experiments demonstrated that the SM-compatible DHM setup could provide a highly efficient and versatile method for research on the effects of microgravity on biological samples.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.
1988-01-01
Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) step functions of spin-up and spin-down in a low gravity environment, and (3) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds.
Lessons Learned from Performance Testing of Humans in Spacesuits in Simulated Reduced Gravity
NASA Technical Reports Server (NTRS)
Norcross, Jason R.; Chappell, Steven P.; Gernhardt, Michael L.
2010-01-01
Introduction: The overarching objective of the Integrated Suit Test (IST) series is to evaluate suited human performance using reduced-gravity analogs and learn what aspects of an EVA suit system affect human performance. For this objective to be successfully achieved, the testing methodology should be valid and reproducible, and the partial-gravity simulations must be as accurate and realistic as possible. Objectives: To highlight some of the key lessons learned about partial-gravity analogs and testing methodology, and to suggest considerations for optimizing the effectiveness and quality of results of future tests. Methods: Performance testing of suited and unsuited subjects was undertaken in different reduced-gravity analogs including the Space Vehicle Mockup Facility s Partial Gravity Simulator (POGO), parabolic flight on the C-9 aircraft, underwater environments including NASA s Extreme Environment Mission Operations (NEEMO) and the Neutral Buoyancy Lab (NBL), and in field analogs including Desert Research and Technology Studies (RATS), the Haughton Mars Project (HMP), and the JSC Rock Pile. Subjects performed level walking, incline/decline walking, running, shoveling, picking up and transferring rocks, kneeling/standing, and task boards. Lessons Learned Analogs: No single analog will properly simulate all aspects of the true partial-gravity environment. The POGO is an ideal environment from the standpoint that there are no time limits or significant volumetric constraints, but it does have several limitations. It allows only 2 translational degrees of freedom (DOF) and applies true partial-gravity offload only through the subject s center of gravity (CG). Also, when a subject is doing non-stationary tasks, significant overhead inertia from the lift column seems to have a negative impact on performance. Parabolic flight allows full translational and rotational DOF and applies offload to all parts of the body, but the simulation lasts less than 30 seconds. When this is coupled with the volumetric constraints of the plane, both task selection and data collection options are significantly limited. The underwater environments also allow all 6 DOF and allow off-loading to be applied throughout the body, but the data collection capabilities are limited to little more than subjective ratings. In addition, water drag negatively affects performance of tasks requiring dynamic motion. Field analogs provide the ability to simulate lunar terrain and more realistic mission-like objectives, but all of them operate at 1-g, so suited human performance testing generally must utilize a reduced-mass or "mockup" suit, depending on study objectives. In general, the ground-based overhead-suspension partial-gravity analogs like POGO allow the most diverse data collection methods possible while still simulating partial gravity. However, as currently designed, the POGO has significant limitations. Design of the Active Response Gravity Offload System (ARGOS) has begun and is focusing on adding full x,y,z translational DOF, improved offload accuracy, increased lift capacity, and active control of the x and y axes to minimize offload system inertia. Additionally, a new gimbal is being designed to reduce mass and inertia and to be able to work with different suits, as the current gimbal only supports suited testing with the Mark III Technology Demonstrator Suit (MKIII).
Tethered variable gravity laboratory study: Low gravity process identification report
NASA Technical Reports Server (NTRS)
Briccarello, M.
1989-01-01
Experiments are described performable in the variable gravity environment, and the related compatible/beneficial residual accelerations, both for pure and applied research in the fields of Fluid Mechanics (static and dynamic), Materials Sciences (Crystal Growth, Metal and Alloy Solidification, Glasses, etc.), and Life Sciences, so as to assess the relevance of a variable G-level laboratory.
Spacecraft utensil/hand cleansing fixture
NASA Technical Reports Server (NTRS)
Jonkoniec, T. G.
1978-01-01
A fixture which provides a means for a crewman to perform, in zero gravity, laboratory utensil/tool cleansing and personal hygiene functions such as handwashing, shaving, body wash, and teeth brushing is described. A prototype unit developed incorporating design improvements resulting from breadboard tests in a one gravity and zero gravity environment demonstrated the capability of performing the different cleansing functions.
Variable-Speed Instrumented Centrifuges
NASA Technical Reports Server (NTRS)
Chapman, David K.; Brown, Allan H.
1991-01-01
Report describes conceptual pair of centrifuges, speed of which varied to produce range of artificial gravities in zero-gravity environment. Image and data recording and controlled temperature and gravity provided for 12 experiments. Microprocessor-controlled centrifuges include video cameras to record stop-motion images of experiments. Potential applications include studies of effect of gravity on growth and on production of hormones in corn seedlings, experiments with magnetic flotation to separate cells, and electrophoresis to separate large fragments of deoxyribonucleic acid.
Partial gravity reaction experiment sysytem on graund using multi-Copter
NASA Astrophysics Data System (ADS)
Hasegawa, Katsuya; Maeda, Naoko
2016-07-01
In order to enable further space exploration into the space, Moon, Mars, and other planets, it is essential to understand the physiological response to low gravity environments. However, We made low gravity environment for studies using the satellite parabolic flight and drop tower. It is very expensive experiment that low gravity physiological response. Because, it requires rockets and airplanes and dedicated Tower, low gravity conditions test have not been conducted sufficiently due to the extraordinary high cost for conducting experiments. The study present is to develop the radio-controlled multicopter system that is used for the controlled falling flight vehicle (not free fall). During the controlled falling, the payload is exposed to a certain level of low gravity. 1) G profile: low gravity from 0 g to 1 g that will last approximately 5seconds, 50 kg. 2) Supply limited imaging techniques, high-speed or normal video and X ray images. 3) Wireless transmission of up to 64 channels of analog and digital signals. This vehicle is designed for experimentation on various model organisms, from cells to animals and plants. The multicopter flight system enables conducting experiments in low gravity conditions with less than 1% of the budget for spaceflight or parabolic flights. Experiment is possible to perform repeated many times in one day. We can expect reproducible results from many repeated trials at the lowest cost.
Ceiling Fires Studied to Simulate Low-Gravity Fires
NASA Technical Reports Server (NTRS)
Olson, Sandra L.
2001-01-01
A unique new way to study low-gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low-stretch environments, a normal gravity low-stretch diffusion flame was generated using a cylindrical PMMA sample of varying large radii, as shown in the photograph. These experiments have demonstrated that low-gravity flame characteristics can be generated in normal gravity through the proper use of scaling. On the basis of this work, it is feasible to apply this concept toward the development of an Earth-bound method of evaluating material flammability in various gravitational environments from normal gravity to microgravity, including the effects of partial gravity low-stretch rates such as those found on the Moon (1/6g) or Mars (1/3g). During these experiments, the surface regression rates for PMMA were measured for the first time over the full range of flammability in air, from blowoff at high stretch, to quenching at low stretch, as plotted in the graph. The solid line drawn through the central portion of the data (3
Fluid Interfaces of Triangular Containers in Reduced Gravity Environments
NASA Technical Reports Server (NTRS)
Guttromson, Jayleen; Manning, Robert; Collicott, Steven H.
2002-01-01
Capillary dominated fluid dynamics will be examined in a reduced-gravity environment onboard the KC-135; in particular, the behavior of the lower portion of the meniscus in triangular tank geometries. Seven clear acrylic tanks were constructed to view seven angles of the four geometries. Silicon oil with two different viscosities, 2cs and 5cs silicon oil, were used on different days of the flight. Six tanks and one control tank are filled with a certain viscosity fluid for each flight day. During each parabola, three tanks are tested at time. The experimental tanks are exchanged between parabola sets on the KC-135. The 60deg -60deg -60deg control tank is viewed throughout the flight. To gather data, two digital video cameras and one digital still camera are placed perpendicular the viewing surface. To provide a greater contrast in the meniscus, an EL backlighting sheet was used to backlight the tanks. These images and video are then digitized, passed through NASA's mini-tracker software, and compared to a theory published my M. M. Weislogel, "Fluid Interface Phenomena in a Low-Gravity Environment: Recent Results from Drop Tower Experimentation." By focusing on a lower portion of the meniscus and using longer periods of reduced gravity, this experiment may confirm that a stationary point exists on the fluid surface. This information will enable better designing of propellant management devices, especially satellite propellant refilling and gas venting. Also, biological and material processing systems in reduced gravity environments will benefit from this data.
NASA Technical Reports Server (NTRS)
Ostrach, S.
1982-01-01
The behavior of fluids in micro-gravity conditions is examined, with particular regard to applications in the growth of single crystals. The effects of gravity on fluid behavior are reviewed, and the advent of Shuttle flights are noted to offer extended time for experimentation and processing in a null-gravity environment, with accelerations resulting solely from maneuvering rockets. Buoyancy driven flows are considered for the cases stable-, unstable-, and mixed-mode convection. Further discussion is presented on g-jitter, surface-tension gradient, thermoacoustic, and phase-change convection. All the flows are present in both gravity and null gravity conditions, although the effects of buoyancy and g-jitter convection usually overshadow the other effects while in a gravity field. Further work is recommended on critical-state and sedimentation processes in microgravity conditions.
Altered gravity causes the changes in the proteins NoA100 in plant cell nucleoli
NASA Astrophysics Data System (ADS)
Sobol, Margarita A.; Gonzalez-Camacho, Fernando; Kordyum, Elizabeth L.; Medina, Francisco Javier
2005-08-01
A nucleolar protein homologous to the mammalian nucleolin and to the onion nucleolin-like protein NopA100 was detected in nuclear soluble protein fraction from Lepidium sativum root meristematic cells, using the specific silver staining method and the cross-reaction with the anti-NopA100 antibody. In 2D Western blots of soluble nuclear fraction, NopA100 was revealed as a smear extending through a certain range of pI. In extracts obtained from seedlings grown under clinorotation, the extension of the pI range was shorter than in the stationary control indicating a lower phosphorylation of the protein. This suggests that altered gravity causes a decrease in the rate of nucleolar activity.
NASA Technical Reports Server (NTRS)
Gruener, Raphael; Hoeger, Glenn
1988-01-01
Cocultured Xenopus neurons and myocytes were subjected to nonvectorial gravity by clinostat rotation to determine the effects of microgravity on cell development and communications. Observed effects included increases in the myocyte and its nuclear area, fragmentation of nucleoli, the appearance of neuritic aneurysms, decreased growth in the presence of trophic factors, and decreased yolk utilization. These effects were most notable at 1-10 rpm and depended on the onset and duration of rotation. It is found that, in microgravity, cell differentiation is altered by interference with cytoskeleton-related mechanisms. It is suggested that the alteration of the distribution of acetylcholine receptor aggregates on myocytes which occurs might indicate that microgravity affects brain development.
NASA Astrophysics Data System (ADS)
Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.
2015-12-01
Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.
Altered gravity influences rDNA and NopA100 localization in nucleoli
NASA Astrophysics Data System (ADS)
Sobol, M. A.; Kordyum, E. L.
Fundamental discovery of gravisensitivity of cells no specified to gravity perception focused increasing attention on an elucidation of the mechanisms involved in altered gravity effects at the cellular and subcellular levels. The nucleolus is the transcription site of rRNA genes as well as the site of processing and initial packaging of their transcripts with ribosomal and nonribosomal proteins. The mechanisms inducing the changes in the subcomponents of the nucleolus that is morphologically defined yet highly dynamic structure are still unknown in detail. To understand the functional organization of the nucleolus as in the control as under altered gravity conditions it is essential to determine both the precise location of rDNA and the proteins playing the key role in rRNA processing. Lepidium sativum seeds were germinated in 1% agar medium on the slow horizontal clinostat (2 rpm) and in the stationary conditions. We investigated the root meristematic cells dissected from the seedlings grown in darkness for two days. The investigations were carried out with anti-DNA and anti-NopA100 antibodies labeling as well as with TdT procedure, and immunogold electron microscopy. In the stationary growth conditions, the anti-DNA antibody as well TdT procedure were capable of detecting fibrillar centers (FCs) and the dense fibrillar component (DFC) in the nucleolus. In FCs, gold particles were revealed on the condensed chromatin inclusions, internal fibrils of decondensed rDNA and the transition zone FC-DFC. Quantitatively, FCs appeared 1,5 times more densely labeled than DFC. NopA100 was localized in FCs and in DFC. In FCs, the most of protein was revealed in the transition zone FC-DFC. After a quantitative study, FCs and the transition zone FC-DFC appeared to contain NopA100 1,7 times more than DFC. Under the conditions of altered gravity, quantitative data clearly showed a redistribution of nucleolar DNA and NopA100 between FCs and DFC in comparison with the control. In labeling both with anti-DNA antibody and by TdT method, 1,5 times more gold particles were localized on FCs, and 1,5 times less in DFC. Unlike the control, condensed r-chromatin blocks and inner rDNA were labeled much more than the transition zone FC-DFC in fibrillar centers. The content of NopA100 in FCs and the transition zone FC-DFC was 2,4 times more than in the control. Twice less quantity of the protein was revealed in DFC as compared to the control. In fibrillar centers, the majority of NopA100 was localized in the inner space of FCs than in the transition zone FC-DFC. Re-localization of rDNA and NopA100 in the nucleolar subcomponents indicates lowering the level of rDNA transcription as well as middle and late processing of rRNA that let us to propose lowering the functional activity of the nucleolus under the influence of altered gravity.
Physical effects at the cellular level under altered gravity conditions
NASA Technical Reports Server (NTRS)
Todd, Paul
1992-01-01
Several modifications of differentiated functions of animal cells cultivated in vitro have been reported when cultures have been exposed to increased or decreased inertial acceleration fields by centrifugation, clinorotation, and orbital space flight. Variables modified by clinorotation conditions include inertial acceleration, convection, hydrostatic pressure, sedimentation, and shear stress, which also affect transport processes in the extracellular chemical environment. Autocrine, paracrine and endocrine substances, to which cells are responsive via specific receptors, are usually transported in vitro (and possibly in certain embryos) by convection and in vivo by a circulatory system or ciliary action. Increased inertial acceleration increases convective flow, while microgravity nearly abolishes it. In the latter case the extracellular transport of macromolecules is governed by diffusion. By making certain assumptions it is possible to calculate the Peclet number, the ratio of convective transport to diffusive transport. Some, but not all, responses of cells in vitro to modified inertial environments could be manifestations of modified extracellular convective flow.
Skylab experiment M-171 'Metabolic Activity' - Results of the first manned mission
NASA Technical Reports Server (NTRS)
Michel, E. L.; Rummel, J. A.; Sawin, C. F.
1975-01-01
The experiment was performed to ascertain whether man's ability to perform mechanical work would be altered as a result of exposure to the weightless environment. Skylab II crewmen were exercised on a bicycle ergometer at loads approximating 25%, 50%, and 75% of their maximum oxygen uptake while their physiological responses were monitored. The results of these tests indicate that the crewmen had no significant decrement in their response to exercise during their exposure to zero gravity. Immediately postflight, however, all crewmen demonstrated an inability to perform the programmed exercise with the same metabolic effectiveness as they did both preflight and inflight. The most significant changes were elevated heart rates for the same work load and oxygen consumption (decreased oxygen pulse), decreased stroke volume, and decreased cardiac output at the same oxygen consumption level. It is apparent that the changes occurred inflight, but did not manifest themselves until the crewmen attempted to readapt to the 1-G environment.
Gravity Functions of Circumnutation by Hypocotyls of Helianthus annuus in Simulated Hypogravity 12
Chapman, David K.; Venditti, Allen L.; Brown, Allan H.
1980-01-01
For more than a decade research on the botanical mechanism responsible for circumnutation has centered on whether or not these nearly ubiquitous oscillations can be attributed to a hunting process whereby the plant organ continuously responds to the gravity force and, by overshooting each stimulus, initiates a sustained oscillation or, driven by a not yet defined autogenic mechanism, performs oscillatory activities that require no external reinforcement to maintain the observed rhythms of differential growth. We explore here the effects of altered gravity force on parameters of circumnutation. Following our earlier publication on circumnutation in hypergravity we report here an exploration of circumnutation in hypogravity. Parameters of circumnutation are recorded as functions of the axially imposed gravity force. The same method was used (two-axes clinostat rotation) to produce sustained gravity forces referred to as hypergravity (1 < g), hypogravity (0 [unk] g < 1), and negative gravity (−1 < g < 0). In these three regions of the g-parameter nutational frequency and nutational amplitude were influenced in different ways. The results of our tests describe the gravity dependence of circumnutation over the full range of real or simulated gravity levels that are available in an earth laboratory. Our results demonstrated that nutational parameters are indeed gravity-dependent but are not inconsistent with the postulate that circumnutation can proceed in the absence of a significant gravity force. PMID:16661229
NASA Technical Reports Server (NTRS)
Gernhardt, M.L.; Chappell, S.P.
2009-01-01
The EVA Physiology, Systems and Performance (EPSP) Project is performing tests in different analog environments to understand human performance during Extravehicular Activity (EVA) with the aim of developing more safe and efficient systems for lunar exploration missions and the Constellation Program. The project is characterizing human EVA performance in studies using several test beds, including the underwater NASA Extreme Environment Mission Operations (NEEMO) and Neutral Buoyancy Laboratory (NBL) facilities, JSC fs Partial Gravity Simulator (POGO), and the NASA Reduced Gravity Office (RGO) parabolic flight aircraft. Using these varied testing environments, NASA can gain a more complete understanding of human performance issues related to EVA and the limitations of each testing environment. Tests are focused on identifying and understanding the EVA system factors that affect human performance such as center of gravity (CG), inertial mass, ground reaction forces (GRF), suit weight, and suit pressure. The test results will lead to the development of lunar EVA systems operations concepts and design requirements that optimize human performance and exploration capabilities. METHODS: Tests were conducted in the NBL and during NEEMO missions in the NOAA Aquarius Habitat. A reconfigurable back pack with repositionable mass was used to simulate Perfect, Low, Forward, High, Aft and NASA Baseline CG locations. Subjects performed simulated exploration tasks that included ambulation, kneel and recovery, rock pick-up, and shoveling. Testing using POGO, that simulates partial gravity via pneumatic weight offload system and a similar reconfigurable rig, is underway for a subset of the same tasks. Additionally, test trials are being performed on the RGO parabolic flight aircraft. Subject performance was assessed using a modified Cooper-Harper scale to assess operator compensation required to achieve desired performance. All CG locations are based on the assumption of a standardized 6 ft 180 lb subject. RESULTS: The modified Cooper-Harper Scale assesses desired task performance described as performance in a reduced gravity environment as compared to a 1G environment. Modified Cooper-Harper ratings of . 3 indicate no improvements are needed, ratings of 4-6 indicate improvements are desirable, and ratings . 7 indicate improvements are mandatory. DISCUSSION: Differences were noted in suited CH results based on environment at the same CG and suit pressure. Additionally, results suggest that CG location affects unsuited human performance. Subjects preferred locations near their natural CG over those that are high, aft, or a combination of high and aft. Further testing and analyses are planned to compare these unsuited results to suited performance.
Grip Force Adjustments Reflect Prediction of Dynamic Consequences in Varying Gravitoinertial Fields
White, Olivier; Thonnard, Jean-Louis; Lefèvre, Philippe; Hermsdörfer, Joachim
2018-01-01
Humans have a remarkable ability to adjust the way they manipulate tools through a genuine regulation of grip force according to the task. However, rapid changes in the dynamical context may challenge this skill, as shown in many experimental approaches. Most experiments adopt perturbation paradigms that affect only one sensory modality. We hypothesize that very fast adaptation can occur if coherent information from multiple sensory modalities is provided to the central nervous system. Here, we test whether participants can switch between different and never experienced dynamical environments induced by centrifugation of the body. Seven participants lifted an object four times in a row successively in 1, 1.5, 2, 2.5, 2, 1.5, and 1 g. We continuously measured grip force, load force and the gravitoinertial acceleration that was aligned with body axis (perceived gravity). Participants adopted stereotyped grasping movements immediately upon entry in a new environment and needed only one trial to adapt grip forces to a stable performance in each new gravity environment. This result was underlined by good correlations between grip and load forces in the first trial. Participants predictively applied larger grip forces when they expected increasing gravity steps. They also decreased grip force when they expected decreasing gravity steps, but not as much as they could, indicating imperfect anticipation in that condition. The participants' performance could rather be explained by a combination of successful scaling of grip force according to gravity changes and a separate safety factor. The data suggest that in highly unfamiliar dynamic environments, grip force regulation is characterized by a combination of a successful anticipation of the experienced environmental condition, a safety factor reflecting strategic response to uncertainties about the environment and rapid feedback mechanisms to optimize performance under constant conditions. PMID:29527176
NASA Technical Reports Server (NTRS)
Eisner, M. (Editor)
1975-01-01
The importance of zero gravity environment in the development and production of new and improved materials is considered along with the gravitational effects on phase changes or critical behavior in a variety of materials. Specific experiments discussed include: fine scale phase separation in zero gravity; glass formation in zero gravity; effects of gravitational perturbations on determination of critical exponents; and light scattering from long wave fluctuations in liquids in zero gravity. It is concluded that the space shuttle/spacelab system is applicable to various fields of interest.
Detection of Directions of Gravity by Organisms and Contributions to SmaggIce
NASA Technical Reports Server (NTRS)
Dill, Loren H.
2003-01-01
Research covers the following: In the Microgravity Environment and Telescience Branch, a study wasI extended thar focused upon a flagellated alga or other swimming microbe and the effect of gravity upon its swimming direction. It has long been known that many organisms tend to swim up or down on Earth. How organisms detect the direction of gravity is a question not fully resolved. The response of such organisms to reduced gravity or the absence of gravity is also of interest, particularly because the expected modified behavior may affect the health of astronauts.
The Role of Gravity on the Reproduction of Arabidopsis Plants
NASA Technical Reports Server (NTRS)
Hoshizaki, T.
1985-01-01
The presence of gravity as a necessary environmental factor for higher plants to complete their life cycle was examined. Arabidopsis thalliana (L.) Heynh. Columbia strain plants were grown continuously for three generations in a simulated micro-g environment as induced by horizontal clinostats. Growth, development and reproduction were followed. The Arabidopsis plants were selected for three generations on clinostats because: (1) a short life cycle of around 35 days; (2) the cells of third generation plants would in theory be free of gravity imprint; and (3) a third generation plant would therefore more than likely grow and respond like a plant growing in a micro-g environment. It is found that gravity is not a required environmental factor for higher plants to complete their life cycle, at least as tested by a horizontal clinostat. Clinostatting does not prevent the completion of the plant life cycle. However, clinostatting does appear to slow down the reproductive process of Arabidopsis plants. Whether higher plants can continue to reproduce for many generations in a true micro-g environment of space can only be determined by long duration experiments in space.
NASA Technical Reports Server (NTRS)
Globus, Ruth K.; Searby, Nancy D.; Almeida, Eduardo A. C.; Sutijono, Darrell; Yu, Joon-Ho; Malouvier, Alexander; Doty, Steven B.; Morey-Holton, Emily; Weinstein, Steven L.; Dalton, Bonnie P. (Technical Monitor)
2000-01-01
Mechanical loading helps define the architecture of weight-bearing bone via the tightly regulated process of skeletal turnover. Turnover occurs by the concerted activity of osteoblasts, responsible for bone formation. and osteoclasts, responsible for bone resorption. Osteoclasts are specialized megakaryon macrophages, which differentiate from monocytes in response to resorption stimuli, such as reduced weight-bearing. Habitation in space dramatically alters musculoskeletal loading, which modulates both cell function and bone structure. Our long-term objective is to define the molecular and cellular mechanisms that mediate skeletal adaptations to altered gravity environments. Our experimental approach is to apply hypergravity loads by centrifugation to rodents and cultured cells. As a first step, we examined the influence of centrifugation on the structure of cancellous bone in rats to test the ability of hypergravity to change skeletal architecture. Since cancellous bone undergoes rapid turnover we expected the most dramatic structural changes to occur in the shape of trabeculae of weight-bearing, cancellous bone. To define the cellular responses to hypergravity loads, we exposed cultured osteoblasts and macrophages to centrifugation. The intraosseous and intramedullary pressures within long bones in vivo reportedly range from 12-40 mm Hg, which would correspond to 18-59 gravity (g) in our cultures. We assumed that hydrostatic pressure from the medium above the cell layer is at least one major component of the mechanical load generated by centrifuging cultured cells. and therefore we exposed the cells to 10-50g. In osteoblasts, we examined the structure of their actin and microtubule networks, production of prostaglandin E2 (PGE2), and cell survival. Analysis of the shape of the cytoskeletal networks provides evidence for the ability of centrifugation to affect cell structure, while the production of PGE2 serves as a convenient marker for mechanical stimulation. We examined cell survival, reasoning that osteoblasts might mold skeletal structure in a hypergravity environment in part by regulating apoptosis and thus the duration of osteoblast productivity. Finally, we tested the influence of centrifugation on microbial activation of a macrophage cell line (RAW264.7). In response to the appropriate hormonal stimulation, this cell line is reportedly capable of undergoing differentiation to express osteoclast markers. In addition, a component of the cell wall of gram-negative bacteria, lipopolysaccaride (LPS), stimulates the formation of osteoclasts in vivo. Thus we tested the influence on centrifugation on RAW264.7 cells stimulated with LPS to provide an index of the function of osteoclast precursors.
Materials processing threshold report: 2. Use of low gravity for cast iron process development
NASA Technical Reports Server (NTRS)
Frankhouser, W. L.
1980-01-01
Potential applications of a low gravity environment of interest to the commercial producers of cast iron were assessed to determine whether low gravity conditions offer potential opportunities to producers for improving cast iron properties and expanding the use of cast irons. The assessment is limited to the gray and nodular types of iron, however, the findings are applicable to all cast irons. The potential advantages accrued through low gravity experiments with cast irons are described.
Gravity-Dependent Transport in Industrial Processes
NASA Technical Reports Server (NTRS)
Ostrach, Simon; Kamotani, Yasuhiro
1996-01-01
Gravity dependent transport phenomena in various industrial processes are investigated in order to indicate new directions for micro-gravity research that enhance the commercial success of the space program. The present article describes the commercialization possibilities of such topics associated with physicochemical transport phenomena. The topics are: coating flow, rotating electrochemical system, and convection in low Plandtl number fluids. The present study is directed to understand these phenomena, and to develop a knowledge base for their applications with emphasis to a micro-gravity environment.
Parametrized modified gravity and the CMB bispectrum
NASA Astrophysics Data System (ADS)
Di Valentino, Eleonora; Melchiorri, Alessandro; Salvatelli, Valentina; Silvestri, Alessandra
2012-09-01
We forecast the constraints on modified theories of gravity from the cosmic microwave background (CMB) anisotropies bispectrum that arises from correlations between lensing and the Integrated Sachs-Wolfe effect. In models of modified gravity the evolution of the metric potentials is generally altered and the contribution to the CMB bispectrum signal can differ significantly from the one expected in the standard cosmological model. We adopt a parametrized approach and focus on three different classes of models: Linder’s growth index, Chameleon-type models, and f(R) theories. We show that the constraints on the parameters of the models will significantly improve with future CMB bispectrum measurements.
Time variations in the Earth's gravity field
NASA Astrophysics Data System (ADS)
Shum, C. K.; Eanes, R. J.
1992-01-01
At the present time, the causes and consequences of changes in the Earth's gravity field due to geophysical and meteorological phenomena are not well understood. The Earth's gravity field represents the complicated distribution of all of the matter that makes up our planet. Its variations are caused by the motions of the solid Earth interacting with the gravitational attraction of the Sun and the Moon (tides) and with the Earth's atmosphere, oceans, polar ice caps and groundwater due to changing weather patterns. These variations influence the rotation of the Earth, alter the orbits of Earth satellites, cause sea level fluctuations, and indirectly affect the global climate pattern.
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Greco, E. V.
1973-01-01
The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.
Tethered gravity laboratories study
NASA Technical Reports Server (NTRS)
Lucchetti, F.
1990-01-01
The scope of the study is to investigate ways of controlling the microgravity environment of the International Space Station by means of a tethered system. Four main study tasks were performed. First, researchers analyzed the utilization of the tether systems to improve the lowest possible steady gravity level on the Space Station and the tether capability to actively control the center of gravity position in order to compensate for activities that would upset the mass distribution of the Station. The purpose of the second task was to evaluate the whole of the experiments performable in a variable gravity environment and the related beneficial residual accelerations, both for pure and applied research in the fields of fluid, materials, and life science, so as to assess the relevance of a variable g-level laboratory. The third task involves the Tethered Variable Gravity Laboratory. The use of the facility that would crawl along a deployed tether and expose experiments to varying intensities of reduced gravity is discussed. Last, a study performed on the Attitude Tether Stabilizer concept is discussed. The stabilization effect of ballast masses tethered to the Space Station was investigated as a means of assisting the attitude control system of the Station.
Assessment of geophysical flows for zero-gravity simulation
NASA Technical Reports Server (NTRS)
Winn, C. B.; Cox, A.; Srivatsangam, R.
1976-01-01
The results of research relating to the feasibility of using a low gravity environment to model geophysical flows are presented. Atmospheric and solid earth flows are considered. Possible experiments and their required apparatus are suggested.
Effects of g-Jitter on Diffusion in Binary Liquids
NASA Technical Reports Server (NTRS)
Duval, Walter M. B.
1999-01-01
The microgravity environment offers the potential to measure the binary diffusion coefficients in liquids without the masking effects introduced by buoyancy-induced flows due to Earth s gravity. However, the background g-jitter (vibrations from the shuttle, onboard machinery, and crew) normally encountered in many shuttle experiments may alter the benefits of the microgravity environment and introduce vibrations that could offset its intrinsic advantages. An experiment during STS-85 (August 1997) used the Microgravity Vibration Isolation Mount (MIM) to isolate and introduce controlled vibrations to two miscible liquids inside a cavity to study the effects of g-jitter on liquid diffusion. Diffusion in a nonhomogeneous liquid system is caused by a nonequilibrium condition that results in the transport of mass (dispersion of the different kinds of liquid molecules) to approach equilibrium. The dynamic state of the system tends toward equilibrium such that the system becomes homogeneous. An everyday example is the mixing of cream and coffee (a nonhomogeneous system) via stirring. The cream diffuses into the coffee, thus forming a homogeneous system. At equilibrium the system is said to be mixed. However, during stirring, simple observations show complex flow field dynamics-stretching and folding of material interfaces, thinning of striation thickness, self-similar patterns, and so on. This example illustrates that, even though mixing occurs via mass diffusion, stirring to enhance transport plays a major role. Stirring can be induced either by mechanical means (spoon or plastic stirrer) or via buoyancy-induced forces caused by Earth s gravity. Accurate measurements of binary diffusion coefficients are often inhibited by buoyancy-induced flows. The microgravity environment minimizes the effect of buoyancy-induced flows and allows the true diffusion limit to be achieved. One goal of this experiment was to show that the microgravity environment suppresses buoyancy-induced convection, thereby mass diffusion becomes the dominant mechanism for transport. Since g-jitter transmitted by the shuttle to the experiment can potentially excite buoyancy-induced flows, we also studied the effects of controlled vibrations on the system.
Low-g simulation testing of propellant systems using neutral buoyancy
NASA Technical Reports Server (NTRS)
Balzer, D. L.; Lake, R. J., Jr.
1972-01-01
A two liquid, neutral buoyancy technique is being used to simulate propellant behavior in a weightless environment. By equalizing the density of two immiscible liquids within a container (propellant tank), the effect of gravity at the liquid interface is balanced. Therefore the surface-tension forces dominate to control the liquid/liquid system configuration in a fashion analogous to a liquid/gas system in a zero gravity environment.
The Identification of Scientific Programs to Utilize the Space Environment
NASA Technical Reports Server (NTRS)
Kulacki, F. A.; Nerem, R. M.
1976-01-01
A program to identify and develop ideas for scientific experimentation on the long duration exposure facility (LDEF) was completed. Four research proposals were developed: (1) Ultra pure germanium gamma ray radiation detectors in the space environment, intended to develop and demonstrate an X-ray and gamma-ray spectroscopy system incorporating a temperature cyclable high-purity germanium detector and diode heat pipe cryogenic system for cooling, (2) growth, morphogenesis and metabolism of plant embryos in the zero-gravity environment, to investigate if the space environment induces mutations in the embryogenic cells so that mutants of commercial significance with desirable attributes may be obtained, (3) effect of zero gravity on the growth and pathogenicity of selected zoopathic fungi. It is possible that new kinds of treatment for candidiasis, and tichophytosis could eventuate from the results of the proposed studies, and (4) importance of gravity to survival strategies of small animals. Gravitational effects may be direct or mediate the selection of genetic variants that are preadapted to weightlessness.
Space vehicle with artificial gravity and earth-like environment
NASA Technical Reports Server (NTRS)
Gray, V. H. (Inventor)
1973-01-01
A space vehicle adapted to provide an artificial gravity and earthlike atmospheric environment for occupants is disclosed. The vehicle comprises a cylindrically shaped, hollow pressure-tight body, one end of which is tapered from the largest diameter of the body, the other end is flat and transparent to sunlight. The vehicle is provided with thrust means which rotates the body about its longitudinal axis, generating an artificial gravity effect upon the interior walls of the body due to centrifugal forces. The walls of the tapered end of the body are maintained at a temperature below the dew point of water vapor in the body and lower than the temperature near the transparent end of the body. The controlled environment and sunlight permits an earth like environment to be maintained wherein the CO2/O2 is balanced, and food for the travelers is supplied through a natural system of plant life grown on spacecraft walls where soil is located.
NASA Technical Reports Server (NTRS)
Gruener, R.; Hoeger, G.
1988-01-01
Cocultured Xenopus neurons and myocytes were subjected to non-vectorial gravity by clinostat rotation to determine if microgravity, during space flights, may affect cell development and communications. Clinorotated cells showed changes consistent with the hypothesis that cell differentiation, in microgravity, is altered by interference with cytoskeleton-related mechanisms. We found: increases in the myocyte and its nuclear area, "fragmentation" of nucleoli, appearance of neuritic "aneurysms", decreased growth in the presence of "trophic" factors, and decreased yolk utilization. The effects were most notable at 1-10 rpm and depended on the onset and duration of rotation. Some parameters returned to near control values within 48 hrs after cessation of rotation. Cells from cultures rotated at higher speeds (>50 rpm) appeared comparable to controls. Compensation by centrifugal forces may account for this finding. Our data are consistent, in principle, with effects on other, flighted cells and suggest that "vector-free" gravity may simulate certain aspects of microgravity. The distribution of acetylcholine receptor aggregates, on myocytes, was also altered. This indicates that brain development, in microgravity, may also be affected.
Failures in sand in reduced gravity environments
NASA Astrophysics Data System (ADS)
Marshall, Jason P.; Hurley, Ryan C.; Arthur, Dan; Vlahinic, Ivan; Senatore, Carmine; Iagnemma, Karl; Trease, Brian; Andrade, José E.
2018-04-01
The strength of granular materials, specifically sand is important for understanding physical phenomena on other celestial bodies. However, relatively few experiments have been conducted to determine the dependence of strength properties on gravity. In this work, we experimentally investigated relative values of strength (the peak friction angle, the residual friction angle, the angle of repose, and the peak dilatancy angle) in Earth, Martian, Lunar, and near-zero gravity. The various angles were captured in a classical passive Earth pressure experiment conducted on board a reduced gravity flight and analyzed using digital image correlation. The data showed essentially no dependence of the peak friction angle on gravity, a decrease in the residual friction angle between Martian and Lunar gravity, no dependence of the angle of repose on gravity, and an increase in the dilation angle between Martian and Lunar gravity. Additionally, multiple flow surfaces were seen in near-zero gravity. These results highlight the importance of understanding strength and deformation mechanisms of granular materials at different levels of gravity.
Nucleolar proteins change in altered gravity
NASA Astrophysics Data System (ADS)
Sobol, M. A.; Kordyum, E. L.; Gonzalez-Camacho, F.; Medina, F. J.
Discovery of gravisensitivity of cells no specified to gravity perception focused continuous attention on an elucidation of mechanisms involved in altered gravity effects at the different levels of cellular organization A nucleolus is the nuclear domain in which the major portion of ribosome biogenesis takes place This is a basic process for cell vitality beginning with the transcription of rDNA followed by processing newly synthesized pre-rRNA molecules A wide range of nucleolar proteins plays a highly significant role in all stages of biosynthesis of ribosomes Different steps of ribosome biogenesis should respond to various external factors affecting generally the cell metabolism Nevertheless a nucleolus remains not enough studied under the influence of altered environmental conditions For this reason we studied root apices from 2-day old Lepidium sativum seedlings germinated and grown under slow horizontal clinorotation and stationary conditions in darkness The extraction of cell nuclei followed by sequential fractionation of nuclear proteins according to their solubility in buffers of increasing ionic strength was carried out This procedure gave rise to 5 distinct fractions We analyzed nuclear subproteomes of the most soluble fraction called S2 It is actually a functionally significant fraction consisting of ribonucleoproteins actively engaged in pre-rRNA synthesis and processing 2D-electrophoresis of S2 fraction proteins was carried out The gels were silver stained and stained gels were scanned and analyzed
Altered Gravity and Early Heart Development in Culture
NASA Technical Reports Server (NTRS)
Wiens, Darrell J.; Lwigale, P.; Denning, J.
1996-01-01
The macromolecules comprising the cytoskeleton and extracellular matrix of cells may be sensitive to gravitation. Since early development of organs depends on dynamic interactions across cell surfaces, altered gravity may disturb development. We investigated this possibility for heart development. Previous studies showed that the extracellular matrix glycoprotein fibronectin (Fn) is necessary for normal heart development. We cultured precardiac tissue explants in a high aspect ratio bioreactor vessel (HARV) to simulate microgravity. We observed tissue morphology, contraction, and Fn distribution by immunolocalization in HARV rotated and control (lxg) explants, cultured 18 hr. We also measured Fn amount by immunoassay. Explants in HARV were rotated at 6 rpm to achieve continuous freefall. Thirty-five of 37 control, but only 1 of 37 matched rotated explants exhibited contractions. Tissue architecture was identical. Immunolocalization of Fn showed remarkable differences which may be related to the development of contractions. The Fn staining in the HARV explants was less intense in all areas. Areas of linear staining along epithelia were present but shorter, and there was less intercellular staining in both mesenchymal tissue and myocardium. Initial immunoassay results of 5 matched pairs of explants showed a 22% reduction in total tissue Fn in the HARV rotated samples. Our results indicate that altered gravity in the HARV reduced the amount and distribution of Fn, as assessed by two independent criteria. This was correlated with a reduction in the development of contractile activity.
Effects of Gravity, Microgravity or Microgravity Simulation on Early Mammalian Development.
Ruden, Douglas M; Bolnick, Alan; Awonuga, Awoniyi; Abdulhasan, Mohammed; Perez, Gloria; Puscheck, Elizabeth E; Rappolee, Daniel A
2018-06-11
Plant and animal life forms evolved mechanisms for sensing and responding to gravity on Earth where homeostatic needs require responses. The lack of gravity, such as in the International Space Station (ISS), causes acute, intra-generational changes in the quality of life. These include maintaining calcium levels in bone, maintaining muscle tone, and disturbances in the vestibular apparatus in the ears. These problems decrease work efficiency and quality of life of humans not only during microgravity exposures but also after return to higher gravity on Earth or destinations such as Mars or the Moon. It has been hypothesized that lack of gravity during mammalian development may cause prenatal, postnatal and transgenerational effects that conflict with the environment, especially if the developing organism and its progeny are returned, or introduced de novo, into the varied gravity environments mentioned above. Although chicken and frog pregastrulation development, and plant root development, have profound effects due to orientation of cues by gravity-sensing mechanisms and responses, mammalian development is not typically characterized as gravity-sensing. Although no effects of microgravity simulation (MGS) on mouse fertilization were observed in two reports, negative effects of MGS on early mammalian development after fertilization and before gastrulation are presented in four reports that vary with the modality of MGS. This review will analyze the positive and negative mammalian early developmental outcomes, and enzymatic and epigenetic mechanisms known to mediate developmental responses to simulated microgravity on Earth and microgravity during spaceflight experiments. We will update experimental techniques that have already been developed or need to be developed for zero gravity molecular, cellular, and developmental biology experiments.
Can an anti-gravity treadmill improve stability of children with cerebral palsy?
Birgani, P M; Ashtiyani, M; Rasooli, A; Shahrokhnia, M; Shahrokhi, A; Mirbagheri, M M
2016-08-01
We aimed to study the effects of an anti-gravity treadmill (AlterG) training on balance and postural stability in children with cerebral palsy (CP). AlterG training was performed 3 days/week for 8 weeks, with up to 45 minutes of training per session. The subject was evaluated before and after the 8-week training. The effects of training on the balance and postural stability was evaluated based on the Romberg test that was performed by using a posturography device. The parameters quantifying Center-of-Pressure (CoP) were calculated using different analytical approaches including power spectral density and principal components analyses. All of the key parameters including the Stabilogram, the Fast Fourier Transform (FFT) Energy, the Eigenvectors, and the Eigenvalues of CoP were modified between 14%-84%. The results indicated that the balance features were improved substantially after training. The clinical implication is that the AlterG has the potential to effectively improve postural stability in children with cerebral palsy.
Antibody binding in altered gravity: implications for immunosorbent assay during space flight
NASA Technical Reports Server (NTRS)
Maule, Jake; Fogel, Marilyn; Steele, Andrew; Wainwright, Norman; Pierson, Duane L.; McKay, David S.
2003-01-01
A single antibody-incubation step of an indirect, enzyme-linked immunosorbent assay (ELISA) was performed during microgravity, Martian gravity (0.38 G) and hypergravity (1.8 G) phases of parabolic flight, onboard the NASA KC-135 aircraft. Antibody-antigen binding occurred within 15 seconds; the level of binding did not differ between microgravity, Martian gravity and 1 G (Earth's gravity) conditions. During hypergravity and 1 G, antibody binding was directly proportional to the fluid volume (per microtiter well) used for incubation; this pattern was not observed during microgravity. These effects in microgravity may be due to "fluid spread" within the chamber (observed during microgravity with digital photography), leading to greater fluid-surface contact and subsequently antibody-antigen contact. In summary, these results demonstrate that: i) ELISA antibody-incubation and washing steps can be successfully performed by human operators during microgravity, Martian gravity and hypergravity; ii) there is no significant difference in antibody binding between microgravity, Martian gravity and 1 G conditions; and iii) a smaller fluid volume/well (and therefore less antibody) was required for a given level of binding during microgravity. These conclusions indicate that reduced gravity would not present a barrier to successful operation of immunosorbent assays during spaceflight.
Effects of Modeled Microgravity on Expression Profiles of Micro RNA in Human Lymphoblastoid Cells
NASA Technical Reports Server (NTRS)
Mangala, Lingegowda S.; Emami, Kamal; Story, Michael; Ramesh, Govindarajan; Rohde, Larry; Wu, Honglu
2010-01-01
Among space radiation and other environmental factors, microgravity or an altered gravity is undoubtedly the most significant stress experienced by living organisms during flight. In comparison to the static 1g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. Micro RNA (miRNA) has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. miRNA represents a class of single-stranded noncoding regulatory RNA molecules ( 22 nt) that control gene expressions by inhibiting the translation of mRNA to proteins. However, very little is known on the effect of altered gravity on miRNA expression. We hypothesized that the miRNA expression profile will be altered in zero gravity resulting in regulation of the gene expression and functional changes of the cells. To test this hypothesis, we cultured TK6 human lymphoblastoid cells in Synthecon s Rotary cell culture system (bioreactors) for 72 h either in the rotating (10 rpm) to model the microgravity in space or in the static condition. The cell viability was determined before and after culturing the cells in the bioreactor using both trypan blue and guava via count. Expressions of a panel of 352 human miRNA were analyzed using the miRNA PCRarray. Out of 352 miRNAs, expressions of 75 were significantly altered by a change of greater than 1.5 folds and seven miRNAs were altered by a fold change greater than 2 under the rotating culture condition. Among these seven, miR-545 and miR-517a were down regulated by 2 folds, whereas miR-150, miR-302a, miR-139-3p, miR-515-3p and miR-564 were up regulated by 2 to 8 folds. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA Illumina Microarray Analysis and validated the related genes using q-RT PCR.
NASA Technical Reports Server (NTRS)
Jones, Patricia M.; Fiedler, Edna
2010-01-01
Human factors is a critical discipline for human spaceflight. Nearly every human factors research area is relevant to space exploration -- from the ergonomics of hand tools used by astronauts, to the displays and controls of a spacecraft cockpit or mission control workstation, to levels of automation designed into rovers on Mars, to organizational issues of communication between crew and ground. This chapter focuses more on the ways in which the space environment (especially altered gravity and the isolated and confined nature of long-duration spaceflight) affects crew performance, and thus has specific novel implications for human factors research and practice. We focus on four aspects of human performance: neurovestibular integration, motor control and musculo-skeletal effects, cognitive effects, and behavioral health. We also provide a sampler of recent human factors studies from NASA.
NASA Technical Reports Server (NTRS)
Yesilyurt, Serhat; Vujisic, Ljubomir; Motakef, Shariar; Szofran, F. R.; Volz, Martin P.
1998-01-01
Thermoelectric currents at the growth interface of GeSi during Bridgman growth are shown to promote convection when a low intensity axial magnetic field is applied. TEMC, typically, is characterized by a meridional flow driven by the rotation of the fluid; meridional convection alters composition of the melt, and shape of the growth interface substantially. TEMC effect is more important in micro-gravity environment than the terrestrial one, and can be used to control convection during the growth of GeSi. In this work, coupled thermo-solutal flow equations (energy, scalar transport, momentum and mass) are solved in tandem with Maxwell's equations to compute the thermo-solutat flow field, electric currents, and the growth-interface shape.
1994-03-04
Onboard Space Shuttle Columbia (STS-62) Mission specialist Charles D. (Sam) Gemar works with the Middeck 0-Gravity Dynamics Experiment (MODE). The reusable test facility is designed to study the nonlinear, gravity-dependent behavior of liquids and skewed space structures in the microgravity environment.
Liquid-vapor interface locations in a spheroidal container under low gravity
NASA Technical Reports Server (NTRS)
Carney, M. J.
1986-01-01
As a part of the general study of liquid behavior in low gravity environments, an experimental investigation was conducted to determine if there are equilibrium liquid-vapor interface configurations that can exist at more than one location in oblate spheroidal containers under reduced gravity conditions. Static contact angles of the test liquids on the spheroid surface were restricted to near 0 deg. The experiments were conducted in a low gravity environment. An oblate spheroidal tank was tested with an eccentricity of 0.68 and a semimajor axis of 2.0 cm. Both quantitative and qualitative data were obtained on the liquid-vapor interface configuration and position inside the container. The results of these data, and their impat on previous work in this area, are discussed. Of particular interest are those equilibrium interface configurations that can exist at multiple locations in the container.
3D Simulation: Microgravity Environments and Applications
NASA Technical Reports Server (NTRS)
Hunter, Steve L.; Dischinger, Charles; Estes, Samantha; Parker, Nelson C. (Technical Monitor)
2001-01-01
Most, if not all, 3-D and Virtual Reality (VR) software programs are designed for one-G gravity applications. Space environments simulations require gravity effects of one one-thousandth to one one-million of that of the Earth's surface (10(exp -3) - 10(exp -6) G), thus one must be able to generate simulations that replicate those microgravity effects upon simulated astronauts. Unfortunately, the software programs utilized by the National Aeronautical and Space Administration does not have the ability to readily neutralize the one-G gravity effect. This pre-programmed situation causes the engineer or analysis difficulty during micro-gravity simulations. Therefore, microgravity simulations require special techniques or additional code in order to apply the power of 3D graphic simulation to space related applications. This paper discusses the problem and possible solutions to allow microgravity 3-D/VR simulations to be completed successfully without program code modifications.
Teaching Physics from a Reduced Gravity Environment
NASA Astrophysics Data System (ADS)
Benge, Raymond D.; Young, C.; Davis, S.; Worley, A.; Smith, L.; Gell, A.
2010-01-01
This poster reports on an educational experiment flown in January 2009 as part of NASA's Microgravity University program. The experiment flown was an investigation into the properties of harmonic oscillators in reduced gravity. Harmonic oscillators are studied in every introductory physics class. The equation for the period of a harmonic oscillator does not include the acceleration due to gravity, so the period should be independent of gravity. However, the equation for the period of a pendulum does include the acceleration due to gravity, so the period of a pendulum should appear longer under reduced gravity (such as lunar or Martian gravity) and shorter under hyper-gravity. Typical homework problems for introductory physics classes ask questions such as "What would be the period of oscillation if this experiment were performed on the Moon or Mars?” This gives students a chance to actually see the effects predicted by the equations. These environments can be simulated aboard an aircraft. Video of the experiments being performed aboard the aircraft is to be used in introductory physics classes. Students will be able to record information from watching the experiment performed aboard the aircraft in a similar manner to how they collect data in the laboratory. They can then determine if the experiment matches theory. Video and an experimental procedure are being prepared based upon this flight, and these materials will be available for download by faculty anywhere with access to the internet who wish to use the experiment in their own classrooms in both college and high school physics classes.
NASA Technical Reports Server (NTRS)
Rashotte, A. M.; DeLong, A.; Muday, G. K.; Brown, C. S. (Principal Investigator)
2001-01-01
Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.
Definition of experiments to investigate fire suppressants in microgravity
NASA Technical Reports Server (NTRS)
Reuther, James J.
1990-01-01
Defined and justified here are the conceptual design and operation of a critical set of experiments expected to yield information on suppressants and on suppressant delivery systems under realistic spacecraft-fire conditions (smoldering). Specific experiment parameters are provided on the solid fuel (carbon), oxidants (habitable spacecraft atmospheres), fuel/oxidant supply, mixing mode, and rate (quiescent and finite; ventilated and replenishable), ignition mode, event, and reignition tendency, fire-zone size, fire conditions, lifetime, and consequences (toxicity), suppressants (CO2, H2O, N2) and suppressant delivery systems, and diagnostics. Candidate suppressants were identified after an analysis of how reduced gravity alters combustion, and how these alterations may influence the modes, mechanisms, and capacities of terrestrial agents to suppress unwanted combustion, or fire. Preferred spacecraft suppression concepts included the local, near-quiescent application of a gas, vapor, or mist that has thermophysical fire-suppression activity and is chemically inert under terrestrial (normal gravity) combustion conditions. The scale, number, and duration (about 1 hour) of the proposed low-gravity experiments were estimated using data not only on the limitations imposed by spacecraft-carrier (Shuttle or Space Station Freedom) accommodations, but also data on the details and experience of standardized smolder-suppression experiments at normal gravity. Deliberately incorporated into the conceptual design was sufficient interchangeability for the prototype experimental package to fly either on Shuttle now or Freedom later. This flexibility is provided by the design concept of up to 25 modular fuel canisters within a containment vessel, which permits both integration into existing low-gravity in-space combustion experiments and simultaneous testing of separate experiments to conserve utilities and time.
Analysis of the Quality of Parabolic Flight
NASA Technical Reports Server (NTRS)
Lambot, Thomas; Ord, Stephan F.
2016-01-01
Parabolic flight allows researchers to conduct several micro-gravity experiments, each with up to 20 seconds of micro-gravity, in the course of a single day. However, the quality of the flight environment can vary greatly over the course of a single parabola, thus affecting the experimental results. Researchers therefore require knowledge of the actual flight environment as a function of time. The NASA Flight Opportunities program (FO) has reviewed the acceleration data for over 400 parabolas and investigated the level of micro-gravity quality. It was discovered that a typical parabola can be segmented into multiple phases with different qualities and durations. The knowledge of the microgravity characteristics within the parabola will prove useful when planning an experiment.
Cosmic history of chameleonic dark matter in F (R ) gravity
NASA Astrophysics Data System (ADS)
Katsuragawa, Taishi; Matsuzaki, Shinya
2018-03-01
We study the cosmic history of the scalaron in F (R ) gravity with constructing the time evolution of the cosmic environment and discuss the chameleonic dark matter based on the chameleon mechanism in the early and current Universe. We then find that the scalaron can be a dark matter. We also propose an interesting possibility that the F (R ) gravity can address the coincidence problem.
William L. Headlee; Ronald S. Jr. Zalesny; Richard B. Hall; Edmund O. Bauer; Bradford Bender; Bruce A. Birr; Raymond O. Miller; Jesse A. Randall; Adam H. Wiese
2013-01-01
Specific gravity is an important consideration for traditional uses of hybrid poplars for pulp and solid wood products, as well as for biofuels and bioenergy production. While specific gravity has been shown to be under strong genetic control and subject to within-tree variability, the role of genotype × environment interactions is poorly understood. Most...
The effects of short-term hypergravity on Caenorhabditis elegans
NASA Astrophysics Data System (ADS)
Saldanha, Jenifer N.; Pandey, Santosh; Powell-Coffman, Jo Anne
2016-08-01
As we seek to recognize the opportunities of advanced aerospace technologies and spaceflight, it is increasingly important to understand the impacts of hypergravity, defined as gravitational forces greater than those present on the earth's surface. The nematode Caenorhabditis elegans has been established as a powerful model to study the effects of altered gravity regimens and has displayed remarkable resilience to space travel. In this study, we investigate the effects of short-term and defined hypergravity exposure on C. elegans motility, brood size, pharyngeal pumping rates, and lifespan. The results from this study advance our understanding of the effects of shorter durations of exposure to increased gravitational forces on C. elegans, and also contribute to the growing body of literature on the impacts of altered gravity regimens on earth's life forms.
Artificial gravity - The evolution of variable gravity research
NASA Technical Reports Server (NTRS)
Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard
1987-01-01
The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.
Miniaturized sensors to monitor simulated lunar locomotion.
Hanson, Andrea M; Gilkey, Kelly M; Perusek, Gail P; Thorndike, David A; Kutnick, Gilead A; Grodsinsky, Carlos M; Rice, Andrea J; Cavanagh, Peter R
2011-02-01
Human activity monitoring is a useful tool in medical monitoring, military applications, athletic coaching, and home healthcare. We propose the use of an accelerometer-based system to track crewmember activity during space missions in reduced gravity environments. It is unclear how the partial gravity environment of the Moorn or Mars will affect human locomotion. Here we test a novel analogue of lunar gravity in combination with a custom wireless activity tracking system. A noninvasive wireless accelerometer-based sensor system, the activity tracking device (ATD), was developed. The system has two sensor units; one footwear-mounted and the other waist-mounted near the midlower back. Subjects (N=16) were recruited to test the system in the enhanced Zero Gravity Locomotion Simulator (eZLS) at NASA Glenn Research Center. Data were used to develop an artificial neural network for activity recognition. The eZLS demonstrated the ability to replicate reduced gravity environments. There was a 98% agreement between the ATD and force plate-derived stride times during running (9.7 km x h(-1)) at both 1 g and 1/6 g. A neural network was designed and successfully trained to identify lunar walking, running, hopping, and loping from ATD measurements with 100% accuracy. The eZLS is a suitable tool for examining locomotor activity at simulated lunar gravity. The accelerometer-based ATD system is capable of monitoring human activity and may be suitable for use during remote, long-duration space missions. A neural network has been developed to use data from the ATD to aid in remote activity monitoring.
Phipps, William S; Yin, Zhizhong; Bae, Candice; Sharpe, Julia Z; Bishara, Andrew M; Nelson, Emily S; Weaver, Aaron S; Brown, Daniel; McKay, Terri L; Griffin, DeVon; Chan, Eugene Y
2014-11-13
Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described.
Bae, Candice; Sharpe, Julia Z.; Bishara, Andrew M.; Nelson, Emily S.; Weaver, Aaron S.; Brown, Daniel; McKay, Terri L.; Griffin, DeVon; Chan, Eugene Y.
2014-01-01
Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described. PMID:25490614
Jellyfish: Special Tools for Biological Research on Earth and in Space
NASA Technical Reports Server (NTRS)
Spangenberg, Dorothy B.
1991-01-01
The most intriguing nature of the jellyfish polyps is their ability to metamorphose, giving rise to tiny immature medusae called ephyrae which have a different form or shape from the polyps. The Aurelia Metamorphosis Test System was used to determine the subtle effects of hydrocarbons found in oil spills and the effects of X-irradiation on developing ephyrae. Currently, this test system is used to determine the effects of the gravity-less environment of outer space on the development and behavior of ephyrae. For this purpose, the effects of clinostat rotation on development of the ephyrae and their gravity receptor are being studied. The behavior of the ephyrae during 0 gravity achieved for short intervals of 30 seconds in parabolic flight is examined. The developing ephyrae and the mature ephyrae are exposed to gravity-less environment of outer space via a six or seven day shuttle experiment. If gravity receptors do form in outer space, they will be studied in detail using various types of microscopes, including the electron microscope, to determin whether they developed normally in space as compared with control on Earth.
NASA Technical Reports Server (NTRS)
Vaughan, O. H., Jr.; Hung, R. J.
1975-01-01
Skylab 4 crew members performed a series of demonstrations showing the oscillations, rotations, as well as collision coalescence of water droplets which simulate various physical models of fluids under low gravity environment. The results from Skylab demonstrations provide information and illustrate the potential of an orbiting space-oriented research laboratory for the study of more sophisticated fluid mechanic experiments. Experiments and results are discussed.
Center of Gravity in the Asymmetric Environment: Applicable or Not
2006-06-01
public release; distribution unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The military concept of a Center of Gravity ( COG ) in...changed a great deal since the introduction of COG . And in today’s asymmetric environment, in which non-state actors use unconventional tactics, it is...becoming extremely difficult to apply the COG concept. The primary reason for this difficulty is that non-state actors do not operate as a unitary
The study of single crystals for space processing and the effect of zero gravity
NASA Technical Reports Server (NTRS)
Lal, R. B.
1975-01-01
A study was undertaken to analyze different growth techniques affected by a space environment. Literature on crystal growth from melt, vapor phase and float zone was reviewed and the physical phenomena important for crystal growth in zero-gravity environment was analyzed. Recommendations for potential areas of crystal growth feasible for space missions are presented and a bibliography of articles in the area of crystal growth in general is listed.
2004-04-15
The Reduced-Gravity Program provides the unique weightless or zero-g environment of space flight for testing and training of human and hardware reactions. The reduced-gravity environment is obtained with a specially modified KC-135A turbojet transport which flies parabolic arcs to produce weightless periods of 20 to 25 seconds. KC-135A cargo bay test area is approximately 60 feet long, 10 feet wide, and 7 feet high. The image shows KC-135A in flight.
Potentially improved glasses from space environment
NASA Technical Reports Server (NTRS)
Nichols, R.
1977-01-01
The benefits of processing glasses in a low-gravity space environment are examined. Containerless processing, the absence of gravity driven convection, and lack of sedimentation are seen as potential advantages. Potential applications include the formation of glass-ceramics with a high content of active elements for ferromagnetic devices, the production of ultrapure chalcogenide glasses for laser windows and IR fiber optics, and improved glass products for use in optical systems and laser fusion targets.
Utilization of Low Gravity Environment for Measuring Liquid Viscosity
NASA Technical Reports Server (NTRS)
Antar, Basil N.; Ethridge, Edwin
1998-01-01
The method of drop coalescence is used for determining the viscosity of highly viscous undercooled liquids. Low gravity environment is necessary in order to allow for examining large volumes affording much higher accuracy for the viscosity calculations than possible for smaller volumes available under 1 - g conditions. The drop coalescence method is preferred over the drop oscillation technique since the latter method can only be applied for liquids with vanishingly small viscosities. The technique developed relies on both the highly accurate solution of the Navier-Stokes equations as well as on data from experiments conducted in near zero gravity environment. Results are presented for method validation experiments recently performed on board the NASA/KC-135 aircraft. While the numerical solution was produced using the Boundary Element Method. In these tests the viscosity of a highly viscous liquid, glycerine at room temperature, was determined using the liquid coalescence method. The results from these experiments will be discussed.
Cryogenic liquid resettlement activated by impulsive thrust in space-based propulsion system
NASA Technical Reports Server (NTRS)
Hung, R. J.; Shyu, K. L.
1991-01-01
The purpose of present study is to investigate most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement, it shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment. Comparison among impulsive reverse gravity thrust with 0.1, 1.0 and 10 Hz frequencies for liquid filled level in the range between 30 to 80 percent, it shows that the selection of 1.0 Hz frequency impulsive thrust over the other frequency ranges of impulsive thrust is most proper based on the present study.
Cryogenic liquid resettlement activated by impulsive thrust in space-based propulsion system
NASA Technical Reports Server (NTRS)
Hung, R. J.; Shyu, K. L.
1991-01-01
The purpose of present study is to investigate the most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment. Comparison among impulsive reverse gravity thrust with 0.1, 1.0, and 10 Hz frequencies for liquid-filled level in the range between 30 to 80 percent shows that the selection of a medium frequency of 1.0 Hz impulsive thrust over the other frequency ranges of impulsive thrust is the most proper.
Action potential properties are gravity dependent
NASA Astrophysics Data System (ADS)
Meissner, Klaus; Hanke, Wolfgang
2005-06-01
The functional properties of neuronal tissue critically depend on cellular composition and intercellular comunication. A basic principle of such communication found in various types of neurons is the generation of action potentials (APs). These APs depend on the presence of voltage gated ion channels and propagate along cellular processes (e.g. axons) towards target neurons or other cells. It has already been shown that the properties of ion channels depend on gravity. To discover whether the properties of APs also depend on gravity, we examined the propagation of APs in earthworms (invertebrates) and isolated nerve fibres (i.e. bundles of axons) from earthworms under conditions of micro- and macro-gravity. In a second set of experiments we could verify our results on rat axons (vertebrates). Our experiments carried out during two parabolic flight campaigns revealed that microgravity slows AP propagation velocity and macrogravity accelerates the transmission of action potentials. The relevance for live-science related questions is considerable, taking into account that altered gravity conditions might affect AP velocity in man during space flight missions.
Microgravity effects of sea urchin fertilization and development
NASA Technical Reports Server (NTRS)
Steffen, S.; Simerly, C.; Schatten, H.; Schatten, G.; Fiser, R.
1992-01-01
Gravity has been a pervasive influence on all living systems and there is convincing evidence to suggest that it alters fertilization and embryogenesis in several developmental systems. Notwithstanding the global importance of gravity on development, it has only been recently possible to begin to design experiments which might directly investigate the specific effects of this vector. The goal of this research program is to explore and understand the effects of gravity on fertilization and early development using sea urchins as a model system. Sea urchin development has several advantages for this project including the feasibility of maintaining and manipulating these cells during spaceflight, the high percentage of normal fertilization and early development, and the abundant knowledge about molecular, biochemical, and cellular events during embryogenesis which permits detailed insights into the mechanism by which gravity might interfere with development. Furthermore, skeletal calcium is deposited into the embryonic spicules within a day of fertilization permitting studies of the effects of gravity on bone calcium deposition.
Haltere removal alters responses to gravity in standing flies.
Daltorio, Kathryn; Fox, Jessica
2018-05-31
Animals detect the force of gravity with multiple sensory organs, from subcutaneous receptors at body joints to specialized sensors like the vertebrate inner ear. The halteres of flies, specialized mechanoreceptive organs derived from hindwings, are known to detect body rotations during flight, and some groups of flies also oscillate their halteres while walking. The dynamics of halteres are such that they could act as gravity detectors for flies standing on substrates, but their utility during non-flight behaviors is not known. We observed the behaviors of intact and haltere-ablated flies during walking and during perturbations in which the acceleration due to gravity suddenly changed. We found that intact halteres are necessary for flies to maintain normal walking speeds on vertical surfaces and to respond to sudden changes in gravity. Our results suggest that halteres can serve multiple sensory purposes during different behaviors, expanding their role beyond their canonical use in flight. © 2018. Published by The Company of Biologists Ltd.
Dark Energy and Gravity Experiment Explorer and Pathfinder
NASA Astrophysics Data System (ADS)
Chiow, S.-w.; Yu, N.
2018-02-01
We propose to utilize the unique gravity and vacuum environment in the orbits of the Deep Space Gateway for direct detections of dark energy using atom interferometers, and for pathfinder experiments for future gravitational wave and dark matter detections.
Gravity-induced cellular and molecular processes in plants studied under altered gravity conditions
NASA Astrophysics Data System (ADS)
Vagt, Nicole; Braun, Markus
With the ability to sense gravity plants possess a powerful tool to adapt to a great variety of environmental conditions and to respond to environmental changes in a most beneficial way. Gravity is the only constant factor that provides organisms with reliable information for their orientation since billions of years. Any deviation of the genetically determined set-point angle of the plants organs from the vector of gravity is sensed by specialized cells, the statocytes of roots and shoots in higher plants. Dense particles, so-called statoliths, sediment in the direction of gravity and activate membrane-bound gravireceptors. A physiological signalling-cascade is initiated that eventually results in the gravitropic curvature response, namely, the readjust-ment of the growth direction. Experiments under microgravity conditions have significantly contributed to our understanding of plant gravity-sensing and gravitropic reorientation. For a gravity-sensing lower plant cell type, the rhizoid of the green alga Chara, and for statocytes of higher plant roots, it was shown that the interactions between statoliths and the actomyosin system consisting of the actin cytoskeleton and motor proteins (myosins) are the basis for highly efficient gravity-sensing processes. In Chara rhizoids, the actomyosin represents a guid-ing system that directs sedimenting statoliths to a specific graviperception site. Parabolic flight experiments aboard the airbus A300 Zero-G have provided evidence that lower and higher plant cells use principally the same statolith-mediated gravireceptor-activation mechanism. Graviper-ception is not dependent on mechanical pressure mediated through the weight of the sedimented statoliths, but on direct interactions between the statoliths's surface and yet unknown gravire-ceptor molecules. In contrast to Chara rhizoids, in the gravity-sensing cells of higher plants, the actin cytoskeleton is not essentially involved in the early phases of gravity sensing. Dis-rupting the actomyosin system did not impair the sedimentation of statoliths and did not prevent the activation of gravireceptors. However, experiments in microgravity and inhibitor experiments have demonstrated that the actomyosin system optimizes the statolith-receptor interactions by keeping the sedimented statoliths in motion causing a consistent activation of different gravireceptor molecules. Thereby, a triggered gravitropic signal is created which is the basis for a highly sensitive control and readjustment mechanism. In addition, the results of recent parabolic flight studies on the effects of altered gravity conditions on the gene expres-sion pattern of Arabidopsis seedlings support these findings and provide new insight into the molecular basis of the plants response to different acceleration conditions. The work was financially supported by DLR on behalf of Bundesministerium für Wirtschaft und Technologie (50WB0815).
Biological and geochemical data of gravity cores from Mobile Bay, Alabama
Richwine, Kathryn A.; Marot, Marci; Smith, Christopher G.; Osterman, Lisa E.; Adams, C. Scott
2013-01-01
A study was conducted to understand the marine-influenced environments of Mobile Bay, Alabama, by collecting a series of box cores and gravity cores. One gravity core in particular demonstrates a long reference for changing paleoenvironmental parameters in Mobile Bay. Due to lack of abundance of foraminifers and (or) lack of diversity, the benthic foraminiferal data for two of the three gravity cores are not included in the results. The benthic foraminiferal data collected and geochemical analyses in this study provide a baseline for recent changes in the bay.
Some physiological effects of alternation between zero gravity and one gravity
NASA Technical Reports Server (NTRS)
Graybiel, A.
1977-01-01
The anatomy and physiology of the healthy vestibular system and the history of its study, maintenance of muskuloskeletal fitness under low-gravity conditions, tests of motion sickness, and data and techniques on testing subjects in a slow rotation room, are covered. Components of the inner ear labyrinth and their behavior in relation to equilibrium, gravity and inertial forces, motion sickness, and dizziness are discussed. Preventive medicine, the biologically effective force environment, weightlessness per se, activity in a weightless spacecraft, exercizing required to maintain musculoskeletal function, and ataxia problems are dealt with.
Walking in a rotating space station, an electromyographic and kinematic study
NASA Technical Reports Server (NTRS)
Harris, R. L.
1975-01-01
Biomechanics were studied of locomotion in a rotating environment like that of a space station at various gravity levels. Comparisons were made of the walking gait patterns and the amplitudes of various leg muscle electrical outputs at different gravity levels. The results of these tests are applicable to planning future space missions by providing a part of the information that will be needed to determine the type of vehicle and the gravity level to be provided for the astronauts if it is decided that artificial gravity is to be utilized.
Rasooli, A H; Birgani, P M; Azizi, Sh; Shahrokhi, A; Mirbagheri, M M
2017-07-01
We evaluated the therapeutic effects of anti-gravity locomotor treadmill (AlterG) training on postural stability in children with Cerebral Palsy (CP) and spasticity, particularly in the lower extremity. AlterG can facilitate walking by reducing the weight of CP children by up to 80%; it can also help subjects maintain an appropriate posture during the locomotor AlterG training. Thus, we hypothesized that AlterG training, for a sufficient period of time, has a potential to produce cerebellum neuroplasticity, and consequently result in an effective permanent postural stability. AlterG training was given for 45 minutes, three times a week for two months. Postural balance was evaluated using posturography. The parameters of the Romberg based posturography were extracted to quantify the Center of Balance (CoP). The neuroplasticity of Cerebellum was evaluated using a Diffusion Tensor Imaging (DTI). The evaluations were done pre- and post-training. The Fractional Anisotropy (FA) feature was used for quantifying structural changes in the cerebellum. The results showed that AlterG training resulted in an increase in average FA value of the cerebellum white matter following the training. The results of the posturography evaluations showed a consistent improvement in postural stability. These results were consistent in all subjects. Our findings indicated that the improvement in the posture was accompanied with the enhancement of the cerebellum white matter structure. The clinical implication is that AlterG training can be considered a therapeutic tool for an effective and permanent improvement of postural stability in CP children.
NASA Technical Reports Server (NTRS)
Van Dresar, N. T.
1992-01-01
A review of technology, history, and current status for pressurized expulsion of cryogenic tankage is presented. Use of tank pressurization to expel cryogenic fluid will continue to be studied for future spacecraft applications over a range of operating conditions in the low-gravity environment. The review examines experimental test results and analytical model development for quiescent and agitated conditions in normal-gravity followed by a discussion of pressurization and expulsion in low-gravity. Validated, 1-D, finite difference codes exist for the prediction of pressurant mass requirements within the range of quiescent normal-gravity test data. To date, the effects of liquid sloshing have been characterized by tests in normal-gravity, but analytical models capable of predicting pressurant gas requirements remain unavailable. Efforts to develop multidimensional modeling capabilities in both normal and low-gravity have recently occurred. Low-gravity cryogenic fluid transfer experiments are needed to obtain low-gravity pressurized expulsion data. This data is required to guide analytical model development and to verify code performance.
NASA Technical Reports Server (NTRS)
Vandresar, N. T.
1992-01-01
A review of technology, history, and current status for pressurized expulsion of cryogenic tankage is presented. Use of tank pressurization to expel cryogenic fluids will continue to be studied for future spacecraft applications over a range of operating conditions in the low-gravity environment. The review examines experimental test results and analytical model development for quiescent and agitated conditions in normal-gravity, followed by a discussion of pressurization and expulsion in low-gravity. Validated, 1-D, finite difference codes exist for the prediction of pressurant mass requirements within the range of quiescent normal-gravity test data. To date, the effects of liquid sloshing have been characterized by tests in normal-gravity, but analytical models capable of predicting pressurant gas requirements remain unavailable. Efforts to develop multidimensional modeling capabilities in both normal and low-gravity have recently occurred. Low-gravity cryogenic fluid transfer experiments are needed to obtain low-gravity pressurized expulsion data. This data is required to guide analytical model development and to verify code performance.
Experiments with suspended cells on the Space Shuttle
NASA Technical Reports Server (NTRS)
Morrison, D. R.; Chapes, S. K.; Guikema, J. A.; Spooner, B. S.; Lewis, M. L.
1992-01-01
Spaceflight experiments since 1981 have demonstrated that certain cell functions are altered by micro-g. Biophysical models suggest that cell membranes and organelles should not be affected directly by gravity, however, the chemical microenvironment surrounding the cell and molecular transport could be altered by reduced gravity. Most experiments have used suspended live cells in small chambers without stirring or medium exchange. Flight results include increased attachment of anchorage-dependent human cells to collagen coated microcarriers, reduced secretion of growth hormone from pituitary cells, decreased mitogenic response of lymphocytes, increased Interferon-alpha by lymphocytes, increased Interleukin-1 and Tumor Necrosis Factor secretion by macrophages. Related experiments on cells immediately postflight and on procaryotic cells have shown significant changes in secretory capacity, cell proliferation, differentiation and development. Postulated mechanism include altered cell-cell interactions, altered calcium ion transport, effects on cell cytoskeleton, transport of transmitters and interactions with receptors. The discussion includes use of new molecular methods, considerations for cell environmental control and a preview of several experiments planned for the Shuttle and Spacelab flights to study the basic effects of microgravity on cellular physiology and potential interactions of spaceflight with radiation damage and cellular repair mechanisms.
Paths and patterns: the biology and physics of swimming bacterial populations
NASA Technical Reports Server (NTRS)
Kessler, J. O.; Strittmatter, R. P.; Swartz, D. L.; Wiseley, D. A.; Wojciechowski, M. F.
1995-01-01
The velocity distribution of swimming micro-organisms depends on directional cues supplied by the environment. Directional swimming within a bounded space results in the accumulation of organisms near one or more surfaces. Gravity, gradients of chemical concentration and illumination affect the motile behaviour of individual swimmers. Concentrated populations of organisms scatter and absorb light or consume molecules, such as oxygen. When supply is one-sided, consumption creates gradients; the presence of the population alters the intensity and the symmetry of the environmental cues. Patterns of cues interact dynamically with patterns of the consumer population. In suspensions, spatial variations in the concentration of organisms are equivalent to variations of mean mass density of the fluid. When organisms accumulate in one region whilst moving away from another region, the force of gravity causes convection that translocates both organisms and dissolved substances. The geometry of the resulting concentration-convection patterns has features that are remarkably reproducible. Of interest for biology are (1) the long-range organisation achieved by organisms that do not communicate, and (2) that the entire system, consisting of fluid, cells, directional supply of consumables, boundaries and gravity, generates a dynamic that improves the organisms' habitat by enhancing transport and mixing. Velocity distributions of the bacterium Bacillus subtilis have been measured within the milieu of the spatially and temporally varying oxygen concentration which they themselves create. These distributions of swimming speed and direction are the fundamental ingredients required for a quantitative mathematical treatment of the patterns. The quantitative measurement of swimming behaviour also contributes to our understanding of aerotaxis of individual cells.
A Study of Bubble and Slug Gas-Liquid Flow in a Microgravity Environment
NASA Technical Reports Server (NTRS)
McQuillen, J.
2000-01-01
The influence of gravity on the two-phase flow dynamics is obvious.As the gravity level is reduced,there is a new balance between inertial and interfacial forces, altering the behavior of the flow. In bubbly flow,the absence of drift velocity leads to spherical-shaped bubbles with a rectilinear trajectory.Slug flow is a succession of long bubbles and liquid slug carrying a few bubbles. There is no flow reversal in the thin liquid film as the long bubble and liquid slug pass over the film. Although the flow structure seems to be simpler than in normal gravity conditions,the models developed for the prediction of flow behavior in normal gravity and extended to reduced gravity flow are unable to predict the flow behavior correctly.An additional benefit of conducting studies in microgravity flows is that these studies aide the development of understanding for normal gravity flow behavior by removing the effects of buoyancy on the shape of the interface and density driven shear flows between the gas and the liquid phases. The proposal calls to study specifically the following: 1) The dynamics of isolated bubbles in microgravity liquid flows will be analyzed: Both the dynamics of spherical isolated bubbles and their dispersion by turbulence, their interaction with the pipe wall,the behavior of the bubbles in accelerated or decelerated flows,and the dynamics of isolated cylindrical bubbles, their deformation in accelerated/decelerated flows (in converging or diverging channels), and bubble/bubble interaction. Experiments will consist of the use of Particle Image Velocimetry (PIV) and Laser Doppler Velocimeters (LDV) to study single spherical bubble and single and two cylindrical bubble behavior with respect to their influence on the turbulence of the surrounding liquid and on the wall 2) The dynamics of bubbly and slug flow in microgravity will be analyzed especially for the role of the coalescence in the transition from bubbly to slug flow (effect of fluid properties and surfactant), to identify clusters that promote coalescence and transition the void fraction distribution in bubbly and slug flow,to measure the wall friction in bubbly flow. These experiments will consist of multiple bubbles type flows and will utilize hot wire and film anemometers to measure liquid velocity and wall shear stress respectively and double fiber optic probes to measure bubble size and velocity as a function of tube radius and axial location.
Fiber pulling apparatus modification
NASA Technical Reports Server (NTRS)
Smith, Guy A.; Workman, Gary L.
1992-01-01
A reduced gravity fiber pulling apparatus (FPA) was constructed in order to study the effects of gravity on glass fiber formation. The apparatus was specifically designed and built for use on NASA's KC-135 aircraft. Four flights have been completed to date during which E-glass fiber was successfully produced in simulated zero, high, and lunar gravity environments. In addition simulated lunar soil samples were tested for their fiber producing properties using the FPA.
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Holland, R. L.
1978-01-01
A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.
NASA Technical Reports Server (NTRS)
Gruener, R.
1985-01-01
Alterations in gravitational conditions which alter the normal development and interactions of nerve and muscle cells grown in culture is examined. Clinostat conditions, similating Og, which produce changes in cell morphology and growth patterns is studied. Data show that rotation of cocultures of nerve and muscle cells results in morphologic changes which are predicted to significantly alter the functional interactions between the elements of a prototypic synapse. It is further predicted that similar alterations may occur in central synapses which may therefore affect the development of the central nervous system when subjected to altered gravitational conditions.
Modulation of osteoblast attachment and growth in vitro by inertial forces
NASA Astrophysics Data System (ADS)
Kacena, Melissa Ann
1999-11-01
Spaceflight exploration and associated experiments show that human bones lose in density during inertial unloading, due principally to their demineralization. This research project examines the effect of gravity on osteoblast attachment and function in various inertial environments. Chicken calvarial osteoblasts were cultured under the following inertial conditions: spaceflight, simulated shuttle launch accelerations and vibrations, centrifugation, clino-rotation, and inversion. Cultures exposed to these conditions were compared with cultures grown in the laboratory as static 1G controls. Electron and light microscopy revealed the number of total osteoblasts attached to their substrate. Biochemical assays discerned changes in viable cell number, alkaline phosphatase levels, and mineralization. Immunohistochemical assays were used to investigate differences in cytoskeletal and extracellular matrix protein concentrations in the cultures, the percentage of proliferative cells, and cell viability. Compared to controls, spaceflight results indicated that the number of attached osteoblast cells was reduced. Launch simulation data indicated that the associated accelerations and vibrations may contribute to the reduction of attached osteoblasts in spaceflight cultures. Following centrifugation, the number of attached cells was unaltered; however, immunostaining of actin, fibronectin, and vinculin did show alterations in cultures exposed to hypergravity. Confluent cultures that were right side up, inverted, and clino-rotated contained a comparable number of attached cells and functioned similarly on the basis of measured alkaline phosphatase and bound calcium content. Sparse clino-rotated or inverted cultures showed an immediate response of diminished viable osteoblast numbers, but this effect disappeared with time and all remaining attached cells functioned similarly (APase and bound calcium). On the basis of these data osteoblast attachment and function in confluent cultures is minimally, if at all, affected by alterations in inertial environments. However, in sparse cultures about half as many cells are found attached initially. The remaining attached cells appear to multiply and function normally. These results suggest that the effects of spaceflight on bone are thus not likely to be caused by direct intrinsic effects of gravity on single osteoblasts that can be simulated in laboratory experiments in vitro experiments.
Cheng, Feixiong; Liu, Chuang; Lin, Chen-Ching; Zhao, Junfei; Jia, Peilin; Li, Wen-Hsiung; Zhao, Zhongming
2015-09-01
Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics.
Lin, Chen-Ching; Zhao, Junfei; Jia, Peilin; Li, Wen-Hsiung; Zhao, Zhongming
2015-01-01
Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics. PMID:26352260
NASA Technical Reports Server (NTRS)
Hughes-Fulford, M.; Gilbertson, V.
1999-01-01
The well-defined osteoblast line, MC3T3-E1 was used to examine fibronectin (FN) mRNA levels, protein synthesis, and extracellular FN matrix accumulation after growth activation in spaceflight. These osteoblasts produce FN extracellular matrix (ECM) known to regulate adhesion, differentiation, and function in adherent cells. Changes in bone ECM and osteoblast cell shape occur in spaceflight. To determine whether altered FN matrix is a factor in causing these changes in spaceflight, quiescent osteoblasts were launched into microgravity and were then sera activated with and without a 1-gravity field. Synthesis of FN mRNA, protein, and matrix were measured after activation in microgravity. FN mRNA synthesis is significantly reduced in microgravity (0-G) when compared to ground (GR) osteoblasts flown in a centrifuge simulating earth's gravity (1-G) field 2.5 h after activation. However, 27.5 h after activation there were no significant differences in mRNA synthesis. A small but significant reduction of FN protein was found in the 0-G samples 2.5 h after activation. Total FN protein 27.5 h after activation showed no significant difference between any of the gravity conditions, however, there was a fourfold increase in absolute amount of protein synthesized during the incubation. Using immunofluorescence, we found no significant differences in the amount or in the orientation of the FN matrix after 27.5 h in microgravity. These results demonstrate that FN is made by sera-activated osteoblasts even during exposure to microgravity. These data also suggest that after a total period of 43 h of spaceflight FN transcription, translation, or altered matrix assembly is not responsible for the altered cell shape or altered matrix formation of osteoblasts.
Gravity regulated genes in Arabidopsis thaliana (GENARA experiment)
NASA Astrophysics Data System (ADS)
Boucheron-Dubuisson, Elodie; Carnero-D&íaz, Eugénie; Medina, Francisco Javier; Gasset, Gilbert; Pereda-Loth, Veronica; Graziana, Annick; Mazars, Christian; Le Disquet, Isabelle; Eche, Brigitte; Grat, Sabine; Gauquelin-Koch, Guillemette
2012-07-01
In higher plants, post-embryonic development is possible through the expression of a set of genes constituting the morphogenetic program that contribute to the production of tissues and organs during the whole plant life cycle. Plant development is mainly controlled by internal factors such as phytohormones, as well as by environmental factors, among which gravity plays a key role (gravi-morphogenetic program). The GENARA space experiment has been designed with the goal of contributing to a better understanding of this gravi-morphogenetic program through the identification and characterization of some gravity regulated proteins (GR proteins) by using quantitative proteomic methods, and through the study of the impact of plant hormones on the expression of this program. Among plant hormones, auxin is the major regulator of organogenesis. In fact, it affects numerous plant developmental processes, e.g. cell division and elongation, autumnal loss of leaves, and the formation of buds, roots, flowers and fruits. Furthermore, it also plays a key role in the mechanisms of different tropisms (including gravitropism) that modulate fundamental features of plant growth. The expression of significant genes involved in auxin transport and in auxin signal perception in root cells is being studied in space-grown seedlings and compared with the corresponding ground controls. This experiment was scheduled to be performed in The European Modular Cultivation System (EMCS), a new facility for plant cultivation and Plant Molecular Biology studies, at ISS. However only one aspect of this experiment was flown and concerns the qualitative and quantitative changes in membrane proteins supposed to be mainly associated with cell signaling and has been called GENARA A. The second part dealing with the function of auxin in the gravi-morphogenetic program and the alterations induced by microgravity will be studied through mutants affected on biosynthesis, transport or perception of auxin in a future experiment called GENARA B. Membrane proteins differentially accumulated under microgravity versus 1g controls have been selectively extracted from membranes and being identified by mass spectrometry using LC MS/MS. The first data issued from mass spectra analysis will be presented. Overall the expected results from the GENARA experiment should significantly increase our knowledge on the alterations induced by the space environment on plant growth and development and the molecular mechanisms involved in these alterations. This knowledge is absolutely required for making possible the successful culture of plants on board of space vehicles, which is a pre-requisite for the plans of space exploration currently promoted by the most important Space Agencies of the world.
A rehabilitation tool for functional balance using altered gravity and virtual reality.
Oddsson, Lars I E; Karlsson, Robin; Konrad, Janusz; Ince, Serdar; Williams, Steve R; Zemkova, Erika
2007-07-10
There is a need for effective and early functional rehabilitation of patients with gait and balance problems including those with spinal cord injury, neurological diseases and recovering from hip fractures, a common consequence of falls especially in the elderly population. Gait training in these patients using partial body weight support (BWS) on a treadmill, a technique that involves unloading the subject through a harness, improves walking better than training with full weight bearing. One problem with this technique not commonly acknowledged is that the harness provides external support that essentially eliminates associated postural adjustments (APAs) required for independent gait. We have developed a device to address this issue and conducted a training study for proof of concept of efficacy. We present a tool that can enhance the concept of BWS training by allowing natural APAs to occur mediolaterally. While in a supine position in a 90 deg tilted environment built around a modified hospital bed, subjects wear a backpack frame that is freely moving on air-bearings (cf. puck on an air hockey table) and attached through a cable to a pneumatic cylinder that provides a load that can be set to emulate various G-like loads. Veridical visual input is provided through two 3-D automultiscopic displays that allow glasses free 3-D vision representing a virtual surrounding environment that may be acquired from sites chosen by the patient. Two groups of 12 healthy subjects were exposed to either strength training alone or a combination of strength and balance training in such a tilted environment over a period of four weeks. Isokinetic strength measured during upright squat extension improved similarly in both groups. Measures of balance assessed in upright showed statistically significant improvements only when balance was part of the training in the tilted environment. Postural measures indicated less reliance on visual and/or increased use of somatosensory cues after training. Upright balance function can be improved following balance specific training performed in a supine position in an environment providing the perception of an upright position with respect to gravity. Future studies will implement this concept in patients.
Direction-dependent arm kinematics reveal optimal integration of gravity cues.
Gaveau, Jeremie; Berret, Bastien; Angelaki, Dora E; Papaxanthis, Charalambos
2016-11-02
The brain has evolved an internal model of gravity to cope with life in the Earth's gravitational environment. How this internal model benefits the implementation of skilled movement has remained unsolved. One prevailing theory has assumed that this internal model is used to compensate for gravity's mechanical effects on the body, such as to maintain invariant motor trajectories. Alternatively, gravity force could be used purposely and efficiently for the planning and execution of voluntary movements, thereby resulting in direction-depending kinematics. Here we experimentally interrogate these two hypotheses by measuring arm kinematics while varying movement direction in normal and zero-G gravity conditions. By comparing experimental results with model predictions, we show that the brain uses the internal model to implement control policies that take advantage of gravity to minimize movement effort.
Japanese flowering cherry tree as a woody plant candidate grown in space
NASA Astrophysics Data System (ADS)
Tomita-Yokotani, K.; Yoshida, S.; Hashimoto, H.; Nyunoya, H.; Funada, R.; Katayama, T.; Suzuki, T.; Honma, T.; Nagatomo, M.; Nakamura, T.
We are proposing to raise woody plant in space for several applications Japanese flowering cherry tree is a candidate to do wood science in space Mechanism of sensing gravity and controlling shape of tree has been studied quite extensively Cherry mutants associated with gravity are telling responsible plant hormones and molecular machinery for plant adaptation against action of gravity Space experiment using our wood model contribute to understand molecular and cellular process of gravitropism in plant Tree is considered to be an important member in space agriculture to produce excess oxygen wooden materials for constructing living environment and provide biomass for cultivating mushrooms and insects Furthermore trees and their flowers improve quality of life under stressful environment in outer space
NASA Astrophysics Data System (ADS)
Qi, Bin; Guo, Linli; Zhang, Zhixian
2016-07-01
Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key technologies.
Spacelab J: Microgravity and life sciences
NASA Technical Reports Server (NTRS)
1992-01-01
Spacelab J is a joint venture between NASA and the National Space Development Agency of Japan (NASDA). Using a Spacelab pressurized long module, 43 experiments will be performed in the areas of microgravity and life sciences. These experiments benefit from the microgravity environment available on an orbiting Shuttle. Removed from the effects of gravity, scientists will seek to observe processes and phenomena impossible to study on Earth, to develop new and more uniform mixtures, to study the effects of microgravity and the space environment on living organisms, and to explore the suitability of microgravity for certain types of research. Mission planning and an overview of the experiments to be performed are presented. Orbital research appears to hold many advantages for microgravity science investigations, which on this mission include electronic materials, metals and alloys, glasses and ceramics, fluid dynamics and transport phenomena, and biotechnology. Gravity-induced effects are eliminated in microgravity. This allows the investigations on Spacelab J to help scientists develop a better understanding of how these gravity-induced phenomena affect both processing and products on Earth and to observe subtle phenomena that are masked in gravity. The data and samples from these investigations will not only allow scientists to better understand the materials but also will lead to improvements in the methods used in future experiments. Life sciences research will collect data on human adaptation to the microgravity environment, investigate ways of assisting astronauts to readapt to normal gravity, explore the effects of microgravity and radiation on living organisms, and gather data on the fertilization and development of organisms in the absence of gravity. This research will improve crew comfort and safety on future missions while helping scientists to further understand the human body.
NASA Astrophysics Data System (ADS)
Keane, J. T.; Matsuyama, I.
2018-05-01
We use new MESSENGER gravity data to investigate how impact basins and volcanic provinces alter Mercury's moments of inertia. We find that Mercury has reoriented tens of degrees over its history, affecting tectonics, volatiles, and more.
NASA Astrophysics Data System (ADS)
Lathers, Claire M.; Mukai, Chiaki; Smith, Cedric M.; Schraeder, Paul L.
2001-08-01
This paper proposes a new goldfish model to predict pharmacodynamic/pharmacokinetic effects of drugs used to treat motion sickness administered in differing gravity loads. The assumption of these experiments is that the vestibular system is dominant in producing motion sickness and that the visual system is secondary or of small import in the production of motion sickness. Studies will evaluate the parameter of gravity and the contribution of vision to the role of the neurovestibular system in the initiation of motion sickness with and without pharmacologic agents. Promethazine will be studied first. A comparison of data obtained in different groups of goldfish will be done (normal vs. acutely and chronically bilaterally blinded vs. sham operated). Some fish will be bilaterally blinded 10 months prior to initiation of the experiment (designated the chronically bilaterally blinded group of goldfish) to evaluate the neuroplasticity of the nervous system and the associated return of neurovestibular function. Data will be obtained under differing gravity loads with and without a pharmacological agent for motion sickness. Experiments will differentiate pharmacological effects on vision vs. neurovestibular input to motion sickness. Comparison of data obtained in the normal fish and in acutely and chronically bilaterally blinded fish with those obtained in fish with intact and denervated otoliths will differentiate if the visual or neurovestibular system is dominant in response to altered gravity and/or drugs. Experiments will contribute to validation of the goldfish as a model for humans since plasticity of the central nervous system allows astronauts to adapt to the altered visual stimulus conditions of 0-g. Space motion sickness may occur until such an adaptation is achieved.
Characterization of Gravity Regulated Osteoprotegerin Expression in Fish Models
NASA Astrophysics Data System (ADS)
Renn, J.; Nourizadeh-Lillabadi, R.; Alestrom, P.; Seibt, D.; Goerlich, R.; Schartl, M.; Winkler, C.
Human osteoprotegerin (opg) is a secreted protein of 401 amino acids that acts as a decoy receptor for RANKL (receptor activator of NFB ligand). Opg prevents binding of RANKL to its receptor, which is present on osteoclasts and their precursors. Thereby, opg blocks the formation, differentiation and activation of osteoclasts and stimulates apoptosis of mature osteoclasts. As a consequence, opg regulates the degree of bone resorption in order to keep a constant bone mass under normal gravity conditions. Recently, clinorotation experiments using mammalian cell cultures have shown that the opg gene is down-regulated in simulated microgravity at the transcriptional level (Kanematsu et al., Bone 30, 2002). We have identified opg genes in the fish models Medaka and zebrafish to study gravity regulation of opg expression in these models at the organismal level. In Medaka embryos, opg expression starts at stages when first skeletal elements are already detectable. Putative consensus binding sites for transcription factors were identified in the promoter region of the Medaka opg gene indicating possible evolutionary conservation of gene regulatory mechanisms between fish and mammals. To analyze, whether model fish species are suitable tools to study microgravity induced changes at the molecular level in vivo, we investigated regulation of fish opg genes as a consequence of altered gravity. For this, we performed centrifugation and clinorotation experiments, subjecting fish larvae to hypergravity and simulated microgravity, and analyzed expression profiles of skeletal genes by real-time PCR. Our data represent the first experiments using whole animal model organisms to study gravity induced alteration of skeletal factors at the molecular level. Acknowledgement: This work is supported by the German Aerospace Center (DLR) (50 WB 0152) and the European Space Agency (AO-LS-99-MAP-LSS-003).
Expression of small heat shock proteins from pea seedlings under gravity altered conditions
NASA Astrophysics Data System (ADS)
Talalaev, Alexandr S.
2005-08-01
A goal of our study was to evaluate the stress gene expression in Pisum sativum seedlings exposed to altered gravity and temperature elevation. We investigate message for the two inducible forms of the cytosolic small heat shock proteins (sHsp), sHsp 17.7 and sHsp 18.1. Both proteins are able to enhance the refolding of chemically denatured proteins in an ATP- independent manner, in other words they can function as molecular chaperones. We studied sHsps expression in pea seedlings cells by Western blotting. Temperature elevation, as the positive control, significantly increased PsHsp 17.7 and PsHsp 18.1 expression. Expression of the housekeeping protein, actin was constant and comparable to unstressed controls for all treatments. We concluded that gravitational perturbations incurred by clinorotation did not change sHsp genes expression.
The biological clock of Neurospora in a microgravity environment.
Ferraro, J S; Fuller, C A; Sulzman, F M
1989-01-01
The circadian rhythm of conidiation in Neurospora crassa is thought to be an endogenously derived circadian oscillation; however, several investigators have suggested that circadian rhythms may, instead, be driven by some geophysical time cue(s). An experiment was conducted on space shuttle flight STS-9 in order to test this hypothesis; during the first 7-8 cycles in space, there were several minor alterations observed in the conidiation rhythm, including an increase in the period of the oscillation, an increase in the variability of the growth rate and a diminished rhythm amplitude, which eventually damped out in 25% of the flight tubes. On day seven of flight, the tubes were exposed to light while their growth fronts were marked. Some aspect of the marking process reinstated a robust rhythm in all the tubes which continued throughout the remainder of the flight. These results from the last 86 hours of flight demonstrated that the rhythm can persist in space. Since the aberrant rhythmicity occurred prior to the marking procedure, but not after, it was hypothesized that the damping on STS-9 may have resulted from the hypergravity pulse of launch. To test this hypothesis, we conducted investigations into the effects of altered gravitational forces on conidiation. Exposure to hypergravity (via centrifugation), simulated microgravity (via the use of a clinostat) and altered orientations (via alterations in the vector of a 1 g force) were used to examine the effects of gravity upon the circadian rhythm of conidiation.
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.
2010-01-01
The Apollo lunar EVA experience revealed challenges with suit stability and control-likely a combination of mass, mobility, and center of gravity (CG) factors. The EVA Physiology, Systems and Performence (EPSP) Project is systematically working with other NASA projects, labs, and facilities to lead a series of studies to understand the role of suit mass, weight, CG, and other parameters on astronaut performance in partial gravity environments.
ERIC Educational Resources Information Center
Jaeger, Paul T.; McClure, Charles R.; Bertot, John Carlo; Snead, John T.
2004-01-01
While the USA PATRIOT Act has altered how certain types of federal intelligence investigations affect libraries, the act also greatly alters how researchers can study information policy issues related to libraries. To date, the gravity and scope of the act's implications for researchers of library services, resources, operations, and policies have…
Development and approach to low-frequency microgravity isolation systems
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.
1990-01-01
The low-gravity environment provided by space flight has afforded the science community a unique arena for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment are being developed. The design constraints imposed by acceleration-sensitive, microgravity experiment payloads in the unique environment of space and a theoretical background for active isolation are discussed. A design is presented for a six-degree-of-freedom, active, inertial isolation system based on the baseline relative and inertial isolation techniques described.
Two-phase reduced gravity experiments for a space reactor design
NASA Technical Reports Server (NTRS)
Antoniak, Zenen I.
1987-01-01
Future space missions researchers envision using large nuclear reactors with either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed to coordinate all ongoing and planned reduced gravity flow experiments.
New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica
Scheinert, M.; Ferraccioli, F.; Schwabe, J.; Bell, R.; Studinger, M.; Damaske, D.; Jokat, W.; Aleshkova, N.; Jordan, T.; Leitchenkov, G.; Blankenship, D. D.; Damiani, T. M.; Young, D.; Cochran, J. R.; Richter, T. D.
2018-01-01
Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km2, which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated levelling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica. PMID:29326484
New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica
NASA Technical Reports Server (NTRS)
Scheinert, M.; Ferraccioli, F.; Schwabe, J.; Bell, R.; Studinger, M.; Damaske, D.; Jokat, W.; Aleshkova, N.; Jordan, T.; Leitchenkov, G.;
2016-01-01
Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, air-borne and ship-borne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million sq km, which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated leveling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica.
New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica.
Scheinert, M; Ferraccioli, F; Schwabe, J; Bell, R; Studinger, M; Damaske, D; Jokat, W; Aleshkova, N; Jordan, T; Leitchenkov, G; Blankenship, D D; Damiani, T M; Young, D; Cochran, J R; Richter, T D
2016-01-28
Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km 2 , which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated levelling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica.
NASA Astrophysics Data System (ADS)
Newswander, T.; Riesland, David W.; Miles, Duane; Reinhart, Lennon
2017-09-01
For space optical systems that image extended scenes such as earth-viewing systems, modulation transfer function (MTF) test data is directly applicable to system optical resolution. For many missions, it is the most direct metric for establishing the best focus of the instrument. Additionally, MTF test products can be combined to predict overall imaging performance. For fixed focus instruments, finding the best focus during ground testing is critical to achieving good imaging performance. The ground testing should account for the full-imaging system, operational parameters, and operational environment. Testing the full-imaging system removes uncertainty caused by breaking configurations and the combination of multiple subassembly test results. For earth viewing, the imaging system needs to be tested at infinite conjugate. Operational environment test conditions should include temperature and vacuum. Optical MTF testing in the presence of operational vibration and gravity release is less straightforward and may not be possible on the ground. Gravity effects are mitigated by testing in multiple orientations. Many space telescope systems are designed and built to have optimum performance in a gravity-free environment. These systems can have imaging performance that is dominated by aberration including astigmatism. This paper discusses how the slanted edge MTF test is applied to determine the best focus of a space optical telescope in ground testing accounting for gravity sag effects. Actual optical system test results and conclusions are presented.
Shaikh, Aasef G; Miller, Benjamin R; Sundararajan, Sophia; Katirji, Bashar
2014-04-01
Cerebellar lesions may present with gravity-dependent nystagmus, where the direction and velocity of the drifts change with alterations in head position. Two patients had acute onset of hearing loss, vertigo, oscillopsia, nausea, and vomiting. Examination revealed gravity-dependent nystagmus, unilateral hypoactive vestibulo-ocular reflex (VOR), and hearing loss ipsilateral to the VOR hypofunction. Traditionally, the hypoactive VOR and hearing loss suggest inner-ear dysfunction. Vertigo, nausea, vomiting, and nystagmus may suggest peripheral or central vestibulopathy. The gravity-dependent modulation of nystagmus, however, localizes to the posterior cerebellar vermis. Magnetic resonance imaging in our patients revealed acute cerebellar infarct affecting posterior cerebellar vermis, in the vascular distribution of the posterior inferior cerebellar artery (PICA). This lesion explains the gravity-dependent nystagmus, nausea, and vomiting. Acute onset of unilateral hearing loss and VOR hypofunction could be the manifestation of inner-ear ischemic injury secondary to the anterior inferior cerebellar artery (AICA) compromise. In cases of combined AICA and PICA infarction, the symptoms of peripheral vestibulopathy might masquerade the central vestibular syndrome and harbor a cerebellar stroke. However, the gravity-dependent nystagmus allows prompt identification of acute cerebellar infarct. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Aquatic Invertebrate Development Working Group
NASA Technical Reports Server (NTRS)
Meyers, D.
1985-01-01
Little definitive evidence exists to show that gravity plays a major role in embyrogenesis of aquatic invertebrates. Two reasons for this may be: (1) few studies have been done that emphasize the role of gravity; and (2) there simply may not be any gravity effect. The buoyant nature of the aquatic environment could have obscured any evolutionary effect of gravity. The small size of most eggs and their apparent lack of orientation suggests reduced gravitational influence. Therefore, it is recommended that the term development, as applied to aquatic invertebrates, be loosely defined to encompass behavioral and morphological parameters for which baseline data already exist.
Space artificial gravity facilities - An approach to their construction
NASA Technical Reports Server (NTRS)
Wercinski, P. F.; Searby, N. D.; Tillman, B. W.
1988-01-01
In the course of adaptation to a space microgravity environment, humans experience cardiovascular deconditioning, loss of muscle mass, and loss of bone minerals. One possible solution to these space adaptation problems is to simulate earth's gravity using the centripetal acceleration created by a rotating system. The design and construction of rotating space structures pose many challenges. Before committing to the use of artificial gravity in future space missions, a man-rated Variable Gravity Research Facility (VGRF) should be developed in earth orbit as a gravitational research tool and testbed. This paper addresses the requirements and presents preliminary concepts for such a facility.
Electronic materials processing and the microgravity environment
NASA Technical Reports Server (NTRS)
Witt, A. F.
1988-01-01
The nature and origin of deficiencies in bulk electronic materials for device fabrication are analyzed. It is found that gravity generated perturbations during their formation account largely for the introduction of critical chemical and crystalline defects and, moreover, are responsible for the still existing gap between theory and experiment and thus for excessive reliance on proprietary empiricism in processing technology. Exploration of the potential of reduced gravity environment for electronic materials processing is found to be not only desirable but mandatory.
Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment
NASA Technical Reports Server (NTRS)
Keshock, Edward G.; Lin, Chin S.
1996-01-01
A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.
Improving Realism in Reduced Gravity Simulators
NASA Technical Reports Server (NTRS)
Cowley, Matthew; Harvil, Lauren; Clowers, Kurt; Clark, Timothy; Rajulu, Sudhakar
2010-01-01
Since man was first determined to walk on the moon, simulating the lunar environment became a priority. Providing an accurate reduced gravity environment is crucial for astronaut training and hardware testing. This presentation will follow the development of reduced gravity simulators to a final comparison of environments between the currently used systems. During the Apollo program era, multiple systems were built and tested, with several NASA centers having their own unique device. These systems ranged from marionette-like suspension devices where the subject laid on his side, to pneumatically driven offloading harnesses, to parabolic flights. However, only token comparisons, if any, were made between systems. Parabolic flight allows the entire body to fall at the same rate, giving an excellent simulation of reduced gravity as far as the biomechanics and physical perceptions are concerned. While the effects are accurate, there is limited workspace, limited time, and high cost associated with these tests. With all mechanical offload systems only the parts of the body that are actively offloaded feel any reduced gravity effects. The rest of the body still feels the full effect of gravity. The Partial Gravity System (Pogo) is the current ground-based offload system used to training and testing at the NASA Johnson Space Center. The Pogo is a pneumatic type system that allows for offloaded motion in the z-axis and free movement in the x-axis, but has limited motion in the y-axis. The pneumatic system itself is limited by cylinder stroke length and response time. The Active Response Gravity Offload System (ARGOS) is a next generation groundbased offload system, currently in development, that is based on modern robotic manufacturing lines. This system is projected to provide more z-axis travel and full freedom in both the x and y-axes. Current characterization tests are underway to determine how the ground-based offloading systems perform, how they compare to parabolic flights, and which of the systems is preferable for specific uses. These tests were conducted with six degree of freedom robots and manual inputs. Initial results show a definitive difference in abilities of the two offload systems.
NASA Technical Reports Server (NTRS)
Muday, G. K.; Brown, C. S. (Principal Investigator)
2001-01-01
Differential growth of plants in response to the changes in the light and gravity vectors requires a complex signal transduction cascade. Although many of the details of the mechanisms by which these differential growth responses are induced are as yet unknown, auxin has been implicated in both gravitropism and phototropism. Specifically, the redistribution of auxin across gravity or light-stimulated tissues has been detected and shown to be required for this process. The approaches by which auxin has been implicated in tropisms include isolation of mutants altered in auxin transport or response with altered gravitropic or phototropic response, identification of auxin gradients with radiolabeled auxin and auxin-inducible gene reporter systems, and by use of inhibitors of auxin transport that block gravitropism and phototropism. Proteins that transport auxin have been identified and the mechanisms which determine auxin transport polarity have been explored. In addition, recent evidence that reversible protein phosphorylation controls this process is summarized. Finally, the data in support of several hypotheses for mechanisms by which auxin transport could be differentially regulated during gravitropism are examined. Although many details of the mechanisms by which plants respond to gravity and light are not yet clear, numerous recent studies demonstrate the role of auxin in these processes.
Cell cycle gene expression under clinorotation
NASA Astrophysics Data System (ADS)
Artemenko, Olga
2016-07-01
Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.
Ignition and Combustion Characteristics of Pure Bulk Metals: Normal-Gravity Test Results
NASA Technical Reports Server (NTRS)
Abbud-Madrid, A.; Fiechtner, G. J.; Branch, M. C.; Daily, J. W.
1994-01-01
An experimental apparatus has been designed for the study of bulk metal ignition under elevated, normal and reduced gravity environments. The present work describes the technical characteristics of the system, the analytical techniques employed, the results obtained from the ignition of a variety of metals subjected to normal gravity conditions and the first results obtained from experiments under elevated gravity. A 1000 W xenon short-arc lamp is used to irradiate the top surface of a cylindrical metal specimen 4 mm in diameter and 4 mm high in a quiescent pure-oxygen environment at 0.1 MPa. Iron, titanium, zirconium, magnesium, zinc, tin, and copper specimens are investigated. All these metals exhibit ignition and combustion behavior varying in strength and speed. Values of ignition temperatures below, above or in the range of the metal melting point are obtained from the temperature records. The emission spectra from the magnesium-oxygen gas-phase reaction reveals the dynamic evolution of the ignition event. Scanning electron microscope and x-ray spectroscopic analysis provide the sequence of oxide formation on the burning of copper samples. Preliminary results on the effect of higher-than-normal gravity levels on the ignition of titanium specimens is presented.
NASA Astrophysics Data System (ADS)
Gerrard, Andrew John
Although the role of gravity waves in the global atmospheric circulation is generally understood, discussion of synoptic gravity wave activity, especially pertaining to high latitude summer environments, is lacking in the literature. Tropospherically generated gravity waves greatly contribute to the zonal drag necessary to induce meridional outflow and subsequent upwelling observed in the adiabatically cooled summer mesosphere, ultimately resulting in an environment conducive to mesospheric cloud formation. However, the very gravity wave activity responsible for this induced cooling is also believed to be a major source of variability on mesospheric clouds over shorter time scales, and this topic should be of considerable interest if such clouds are to be used as tracers of the global climate. It is therefore the purpose of this thesis to explore high latitude synoptic gravity wave activity and ultimately seek an understanding of the associated influence on overlaying summer mesospheric clouds. Another goal is to better understand and account for potential variability in high latitude middle and upper atmospheric measurements that can be directly associated with "weather conditions" at lower altitudes. These endeavors are addressed through Rayleigh/aerosol lidar data obtained from the ARCtic LIdar TEchnology (ARCLITE) facility located at Sondrestrom, Greenland (67°N, 310°E), global tropospheric and stratospheric analyses and forecasts, and the Gravity-wave Regional Or Global RAy Tracer (GROGRAT) model. In this study we are able to show that (a) the upper stratospheric gravity wave strength and the brightness of overlaying mesospheric clouds, as measured by representative field proxies, are negatively correlated over time scales of less than a day, (b) such upper stratospheric gravity wave variability is inversely related to mesospheric cloud variability on time scales of ˜1 to 4 hours, (c) gravity wave hindcasts faithfully reproduce experimental lidar observations taken over the month of August 1996, (d) the observed upper stratospheric gravity wave activity is shown to originate from regionalized, non-orographic sources in the troposphere, (e) such gravity wave activity can propagate through the middle atmosphere, potentially impacting overlaying mesospheric clouds, and (f) the forecasting of such upper stratospheric gravity wave activity, and therefore the corresponding mesospheric cloud activity, is feasible. In conclusion, the results herein provide additional evidence of gravity wave influence on mesospheric clouds, a step towards the forecasting of regional gravity wave activity, and ultimately a better understanding of synoptic gravity wave activity at high latitudes.
Contributions of microgravity test results to the design of spacecraft fire-safety systems
NASA Technical Reports Server (NTRS)
Friedman, Robert; Urban, David L.
1993-01-01
Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.
Gravity-Off-loading System for Large-Displacement Ground Testing of Spacecraft Mechanisms
NASA Technical Reports Server (NTRS)
Han, Olyvia; Kienholz, David; Janzen, Paul; Kidney, Scott
2010-01-01
Gravity-off-loading of deployable spacecraft mechanisms during ground testing is a long-standing problem. Deployable structures which are usually too weak to support their own weight under gravity require a means of gravity-off-loading as they unfurl. Conventional solutions to this problem have been helium-filled balloons or mechanical pulley/counterweight systems. These approaches, however, suffer from the deleterious effects of added inertia or friction forces. The changing form factor of the deployable structure itself and the need to track the trajectory of the center of gravity also pose a challenge to these conventional technologies. This paper presents a novel testing apparatus for high-fidelity zero-gravity simulation for special application to deployable space structures such as solar arrays, magnetometer booms, and robotic arms in class 100,000 clean room environments
NASA Technical Reports Server (NTRS)
Hirsch, David B.
2010-01-01
This slide presentation discusses the application of testing aerospace materials to the environment of space for flammability. Test environments include use of drop towers, and the parabolic flight to simulate the low gravity environment of space.
Impact cratering in reduced-gravity environments: Early experiments on the NASA KC-135 aircraft
NASA Technical Reports Server (NTRS)
Cintala, Mark J.; Hoerz, F.; See, T. H.
1987-01-01
Impact experimentation on the NASA KC-135 Reduced-Gravity Aircraft was shown to be possible, practical, and of considerable potential use in examining the role of gravity on various impact phenomena. With a minimal facility, crater dimensional and growth-times were measured, and have demonstrated both agreement and disagreement with predictions. A larger facility with vacuum capability and a high-velocity gun would permit a much wider range of experimentation.
Generating a Reduced Gravity Environment on Earth
NASA Technical Reports Server (NTRS)
Dungan, Larry K.; Cunningham, Tom; Poncia, Dina
2010-01-01
Since the 1950s several reduced gravity simulators have been designed and utilized in preparing humans for spaceflight and in reduced gravity system development. The Active Response Gravity Offload System (ARGOS) is the newest and most realistic gravity offload simulator. ARGOS provides three degrees of motion within the test area and is scalable for full building deployment. The inertia of the overhead system is eliminated by an active motor and control system. This presentation will discuss what ARGOS is, how it functions, and the unique challenges of interfacing to the human. Test data and video for human and robotic systems will be presented. A major variable in the human machine interaction is the interface of ARGOS to the human. These challenges along with design solutions will be discussed.
The Influence of Reduced Gravity on the Crystal Growth of Electronic Materials
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Gillies, D. C.; Szofran, F. R.; Watring, D. A.; Lehoczky, S. L.
1996-01-01
The imperfections in the grown crystals of electronic materials, such as compositional nonuniformity, dopant segregation and crystalline structural defects, are detrimental to the performance of the opto-electronic devices. Some of these imperfections can be attributed to effects caused by Earth gravity during crystal growth process and four areas have been identified as the uniqueness of material processing in reduced gravity environment. The significant results of early flight experiments, i.e. prior to space shuttle era, are briefly reviewed followed by an elaborated review on the recent flight experiments conducted on shuttle missions. The results are presented for two major growth methods of electronic materials: melt and vapor growth. The use of an applied magnetic field in the melt growth of electrically conductive melts on Earth to simulate the conditions of reduced gravity has been investigated and it is believed that the superimposed effect of moderate magnetic fields and the reduced gravity environment of space can result in reduction of convective intensities to the extent unreachable by the exclusive use of magnet on Earth or space processing. In the Discussions section each of the significant results of the flight experiments is attributed to one of the four effects of reduced gravity and the unresolved problems on the measured mass fluxes in some of the vapor transport flight experiments are discussed.
Microgravity Fluid Separation Physics: Experimental and Analytical Results
NASA Technical Reports Server (NTRS)
Shoemaker, J. Michael; Schrage, Dean S.
1997-01-01
Effective, low power, two-phase separation systems are vital for the cost-effective study and utilization of two-phase flow systems and flow physics of two-phase flows. The study of microgravity flows have the potential to reveal significant insight into the controlling mechanisms for the behavior of flows in both normal and reduced gravity environments. The microgravity environment results in a reduction in gravity induced buoyancy forces acting on the discrete phases. Thus, surface tension, viscous, and inertial forces exert an increased influence on the behavior of the flow as demonstrated by the axisymmetric flow patterns. Several space technology and operations groups have studied the flow behavior in reduced gravity since gas-liquid flows are encountered in several systems such as cabin humidity control, wastewater treatment, thermal management, and Rankine power systems.
The response of single human cells to zero gravity
NASA Technical Reports Server (NTRS)
Montgomery, P. O., Jr.; Cook, J. E.; Reynolds, R. C.; Paul, J. S.; Hayflick, L.; Schulz, W. W.; Stock, D.; Kinzey, S.; Rogers, T.; Campbell, D.
1975-01-01
Twenty separate cultures of Wistar-38 human embryonic lung cells were exposed to a zero-gravity environment on Skylab for periods of time ranging from one to 59 days. Duplicate cultures were run concurrently as ground controls. Ten cultures were fixed on board the satellite during the first 12 days of flight. Growth curves, DNA microspectrophotometry, phase microscopy, and ultrastructural studies of the fixed cells revealed no effects of a zero-gravity environment on the ten cultures. Two cultures were photographed with phase time lapse cinematography during the first 27 days of flight. No differences were found in mitotic index, cell cycle, and migration between the flight and control cells. Eight cultures were returned to earth in an incubated state. Karyotyping and chromosome banding tests show no differences between the flight and control cells.
High temperature aircraft research furnace facilities
NASA Technical Reports Server (NTRS)
Smith, James E., Jr.; Cashon, John L.
1992-01-01
Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.
Mechano-biological Coupling of Cellular Responses to Microgravity
NASA Astrophysics Data System (ADS)
Long, Mian; Wang, Yuren; Zheng, Huiqiong; Shang, Peng; Duan, Enkui; Lü, Dongyuan
2015-11-01
Cellular response to microgravity is a basic issue in space biological sciences as well as space physiology and medicine. It is crucial to elucidate the mechano-biological coupling mechanisms of various biological organisms, since, from the principle of adaptability, all species evolved on the earth must possess the structure and function that adapts their living environment. As a basic element of an organism, a cell usually undergoes mechanical and chemical remodeling to sense, transmit, transduce, and respond to the alteration of gravitational signals. In the past decades, new computational platforms and experimental methods/techniques/devices are developed to mimic the biological effects of microgravity environment from the viewpoint of biomechanical approaches. Mechanobiology of plant gravisensing in the responses of statolith movements along the gravity vector and the relevant signal transduction and molecular regulatory mechanisms are investigated at gene, transcription, and protein levels. Mechanotransduction of bone or immune cell responses and stem cell development and tissue histogenesis are elucidated under microgravity. In this review, several important issues are briefly discussed. Future issues on gravisensing and mechanotransducing mechanisms are also proposed for ground-based studies as well as space missions.
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Granett, D.; Lee, M. C.
1984-01-01
Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.
Insect Development in Altered Gravitational Environment
NASA Technical Reports Server (NTRS)
Tischler, Marc E.
1996-01-01
When tobacco hornworm (Manduca sexta) larvae burrow underground (25-30 cm) to pupate, they reorient themselves to a relatively horizontal position indicating an ability to sense gravity. To evaluate their sensitivity to gravitational environment during metamorphosis, Manduca (pharate adults) were placed in a vertical (head-up) position. Distinct morphological changes, each one reflecting ensuing phases, were used to follow adult development. Five days after pupation, the vertical group showed accelerated (P less than 0.05) development and were nearly 4 phases ahead (P less than 0.0001) after 10 days. Differences in development in the vertical group were characterized further by increased (7-48%) hemolymph concentrations of 13 amino acids, but a decrease in cys and pro and no change in arg, his, met and val (trp, undetectable). Decreased (36%) turnover of injected H-3 - phenylalanine suggested slower utilization of amino acids contributed, at least partly, to the increased concentrations. Vertically-oriented Manduca also exhibited a greater (20 %, P less than 0.001) protein content in their flight muscles near the end of development. Analysis of hemolymph sugar levels showed a redistribution of sugars from the monosaccharide glucose to the disaccharide trehalose. Since injection of 20-hydroxyecdysone decreased (49%) turnover of H-3- phenylalanine in pharate adults and since ecdysteroids are known to increase flight muscle size and control adult development, these results are consistent with our measuring a greater (+80%, P less than 0.05) ecdysteroid titer in the vertically-oriented insects. These results suggest that gravity environment influences ecdysone output by the pharate adult. When we evaluated hemolymph flow in the head-up and control positions, we found that injected C-14-inulin was distributed somewhat more rapidly in the head-up group irrespective of the sight of injection (head or abdomen) likely because in the head-up position flow of the hemolymph is facilitated throughout the animal. Other experiments showed that an intact prothoracic gland is needed for the response. Hence vertical, head-up orientation affects release of ecdysone from the prothoracic gland.
Physical and Chemical Aspects of Fire Suppression in Extraterrestrial Environments
NASA Technical Reports Server (NTRS)
Takahashi, F.; Linteris, G. T.; Katta, V. R.
2001-01-01
A fire, whether in a spacecraft or in occupied spaces on extraterrestrial bases, can lead to mission termination or loss of life. While the fire-safety record of US space missions has been excellent, the advent of longer duration missions to Mars, the moon, or aboard the International Space Station (ISS) increases the likelihood of fire events, with more limited mission termination options. The fire safety program of NASA's manned space flight program is based largely upon the principles of controlling the flammability of on-board materials and greatly eliminating sources of ignition. As a result, very little research has been conducted on fire suppression in the microgravity or reduced-gravity environment. The objectives of this study are: to obtain fundamental knowledge of physical and chemical processes of fire suppression, using gravity and oxygen concentration as independent variables to simulate various extraterrestrial environments, including spacecraft and surface bases in Mars and moon missions; to provide rigorous testing of analytical models, which include comprehensive descriptions of combustion and suppression chemistry; and to provide basic research results useful for technological advances in fire safety, including the development of new fire-extinguishing agents and approaches, in the microgravity environment associated with ISS and in the partial-gravity Martian and lunar environments.
Unique cell culture systems for ground based research
NASA Technical Reports Server (NTRS)
Lewis, Marian L.
1990-01-01
The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.
Gravitational waves in the spectral action of noncommutative geometry
NASA Astrophysics Data System (ADS)
Nelson, William; Ochoa, Joseph; Sakellariadou, Mairi
2010-10-01
The spectral triple approach to noncommutative geometry allows one to develop the entire standard model (and supersymmetric extensions) of particle physics from a purely geometry standpoint and thus treats both gravity and particle physics on the same footing. The bosonic sector of the theory contains a modification to Einstein-Hilbert gravity, involving a nonconformal coupling of curvature to the Higgs field and conformal Weyl term (in addition to a nondynamical topological term). In this paper we derive the weak-field limit of this gravitational theory and show that the production and dynamics of gravitational waves are significantly altered. In particular, we show that the graviton contains a massive mode that alters the energy lost to gravitational radiation, in systems with evolving quadrupole moment. We explicitly calculate the general solution and apply it to systems with periodically varying quadrupole moments, focusing, in particular, on the well-known energy loss formula for circular binaries.
Zeredo, Jorge L.; Toda, Kazuo; Kumei, Yasuhiro
2014-01-01
The reduced-gravity environment in space is known to cause an upward shift in body fluids and thus require cardiovascular adaptations in astronauts. In this study, we recorded in rats the neuronal activity in the subthalamic cerebrovasodilator area (SVA), a key area that controls cerebral blood flow (CBF), in response to partial gravity. “Partial gravity” is the term that defines the reduced-gravity levels between 1 g (the unit gravity acceleration on Earth) and 0 g (complete weightlessness in space). Neuronal activity was recorded telemetrically through chronically implanted microelectrodes in freely moving rats. Graded levels of partial gravity from 0.4 g to 0.01 g were generated by customized parabolic-flight maneuvers. Electrophysiological signals in each partial-gravity phase were compared to those of the preceding 1 g level-flight. As a result, SVA neuronal activity was significantly inhibited by the partial-gravity levels of 0.15 g and lower, but not by 0.2 g and higher. Gravity levels between 0.2–0.15 g could represent a critical threshold for the inhibition of neurons in the rat SVA. The lunar gravity (0.16 g) might thus trigger neurogenic mechanisms of CBF control. This is the first study to examine brain electrophysiology with partial gravity as an experimental parameter. PMID:25370031
Morrison, Michael D; Fajardo-Cavazos, Patricia; Nicholson, Wayne L
2017-08-18
Past results have suggested that bacterial antibiotic susceptibility is altered during space flight. To test this notion, Bacillus subtilis cells were cultivated in matched hardware, medium, and environmental conditions either in spaceflight microgravity on the International Space Station, termed Flight (FL) samples, or at Earth-normal gravity, termed Ground Control (GC) samples. Susceptibility of FL and GC samples was compared to 72 antibiotics and growth-inhibitory compounds using the Omnilog Phenotype Microarray (PM) system. Only 9 compounds were identified by PM screening as exhibiting significant differences ( P < 0.05, Student's t-test) in FL vs. GC samples: 6-mercaptopurine, cesium chloride, enoxacin, lomefloxacin, manganese (II) chloride, nalidixic acid, penimepicycline, rolitetracycline, and trifluoperazine. Testing of the same compounds by standard broth dilution assay did not reveal statistically significant differences in the IC 50 values between FL and GC samples. The results indicate that the susceptibility of B. subtilis cells to a wide range of antibiotics and growth inhibitors is not dramatically altered by space flight. Importance: This study addresses a major concern of mission planners for human spaceflight, that bacteria accompanying astronauts on long-duration missions might develop a higher level of resistance to antibiotics due to exposure to the spaceflight environment. The results of this study do not support that notion. Copyright © 2017 American Society for Microbiology.
Morrison, Michael D.; Fajardo-Cavazos, Patricia
2017-01-01
ABSTRACT Past results have suggested that bacterial antibiotic susceptibility is altered during space flight. To test this notion, Bacillus subtilis cells were cultivated in matched hardware, medium, and environmental conditions either in space flight microgravity on the International Space Station, termed flight (FL) samples, or at Earth-normal gravity, termed ground control (GC) samples. The susceptibility of FL and GC samples was compared to 72 antibiotics and growth-inhibitory compounds using the Omnilog phenotype microarray (PM) system. Only 9 compounds were identified by PM screening as exhibiting significant differences (P < 0.05, Student's t test) in FL versus GC samples: 6-mercaptopurine, cesium chloride, enoxacin, lomefloxacin, manganese(II) chloride, nalidixic acid, penimepicycline, rolitetracycline, and trifluoperazine. Testing of the same compounds by standard broth dilution assay did not reveal statistically significant differences in the 50% inhibitory concentrations (IC50s) between FL and GC samples. The results indicate that the susceptibility of B. subtilis cells to a wide range of antibiotics and growth inhibitors is not dramatically altered by space flight. IMPORTANCE This study addresses a major concern of mission planners for human space flight, that bacteria accompanying astronauts on long-duration missions might develop a higher level of resistance to antibiotics due to exposure to the space flight environment. The results of this study do not support that notion. PMID:28821547
Artificial gravity for long duration spaceflight
NASA Technical Reports Server (NTRS)
Cohen, Malcolm M.
1989-01-01
This paper reviews the fundamental physical properties of gravitational and centrifugal forces, describes the physiological changes that result from long-term exposure to the nearly gravity-free environment of space, and explores the nature of these changes. The paper then cites currently employed and advanced techniques that can be used to prevent some of these changes. Following this review, the paper examines the potential use of artificial gravity as the ultimate technique to maintain terrestrial levels of physiological functioning in space, and indicates some of the critical studies that must be conducted and some of the trade-offs that must be made before artificial gravity can intelligently be used for long duration spaceflight.
Artificial gravity as a countermeasure in long-duration space flight
NASA Technical Reports Server (NTRS)
Lackner, J. R.; DiZio, P.
2000-01-01
Long-duration exposure to weightlessness results in bone demineralization, muscle atrophy, cardiovascular deconditioning, altered sensory-motor control, and central nervous system reorganizations. Exercise countermeasures and body loading methods so far employed have failed to prevent these changes. A human mission to Mars might last 2 or 3 years and without effective countermeasures could result in dangerous levels of bone and muscle loss. Artificial gravity generated by rotation of an entire space vehicle or of an inner chamber could be used to prevent structural changes. Some of the physical characteristics of rotating environments are outlined along with their implications for human performance. Artificial gravity is the centripetal force generated in a rotating vehicle and is proportional to the product of the square of angular velocity and the radius of rotation. Thus, for a particular g-level, there is a tradeoff between velocity of rotation and radius. Increased radius is vastly more expensive to achieve than velocity, so it is important to know the highest rotation rates to which humans can adapt. Early studies suggested that 3 rpm might be the upper limit because movement control and orientation were disrupted at higher velocities and motion sickness and chronic fatigue were persistent problems. Recent studies, however, are showing that, if the terminal velocity is achieved over a series of gradual steps and many body movements are made at each dwell velocity, then full adaptation of head, arm, and leg movements is possible. Rotation rates as high as 7.5-10 rpm are likely feasible. An important feature of the new studies is that they provide compelling evidence that equilibrium point theories of movement control are inadequate. The central principles of equilibrium point theories lead to the equifinality prediction, which is violated by movements made in rotating reference frames. Copyright 2000 Wiley-Liss, Inc.
A numerical solution for thermoacoustic convection of fluids in low gravity
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Bourgeois, S. V., Jr.; Fan, C.; Grodzka, P. G.
1973-01-01
A finite difference numerical technique for solving the differential equations which describe thermal convection of compressible fluids in low gravity are reported. Results of one-dimensional calculations are presented, and comparisons are made to previous solutions. The primary result presented is a one-dimensional radial model of the Apollo 14 heat flow and convection demonstration flight experiment. The numerical calculations show that thermally induced convective motion in a confined fluid can have significant effects on heat transfer in a low gravity environment.
Cautionary tales for reduced-gravity particle research
NASA Technical Reports Server (NTRS)
Marshall, John R.; Greeley, Ronald; Tucker, D. W.
1987-01-01
Failure of experiments conducted on the KC-135 aircraft in zero gravity are discussed. Tests that were a total failure are reported. Why the failure occurred and the sort of questions that potential researchers should ask in order to avoid the appearance of abstracts such as this are discussed. Many types of aggregation studies were proposed for the Space Station, and it is hoped that the following synopsis of events will add a touch of reality to experimentation proposed for this zero-gravity environment.
Satellite borne gravity gradiometer study
NASA Technical Reports Server (NTRS)
Metzger, E.; Jircitano, A.; Affleck, C.
1976-01-01
Gravity gradiometry is recognized to be a very difficult instrumentation problem because extremely small differential acceleration levels have to be measured, 0.1 EU corresponds to an acceleration of 10 to the minus 11th power g at two points 1 meter apart. A feasibility model of a gravity gradiometer is being developed for airborne applications using four modified versions of the proven Model VII accelerometers mounted on a slowly rotating fixture. Gravity gradients are being measured to 1.07 EU in a vertical rotation axis orientation. Equally significant are the outstanding operational characteristics such as fast reaction time, low temperature coefficients and high degree of bias stability over long periods of time. The rotating accelerometer gravity gradiometer approach and its present status is discussed and it is the foundation for the orbital gravity gradiometer analyzed. The performance levels achieved in a 1 g environment of the earth and under relatively high seismic disturbances, lend the orbital gravity gradiometer a high confidence level of success.
Energetics and mechanics for partial gravity locomotion.
Newman, D J; Alexander, H L; Webbon, B W
1994-09-01
The role of gravitational acceleration on human locomotion is not clearly understood. It is hypothesized that the mechanics and energetics of locomotion depend upon the prevailing gravity level. A unique human-rated underwater treadmill and an adjustable ballasting harness were used to stimulate partial gravity environments. This study has two research aspects, biomechanics and energetics. Vertical forces which are exerted by subjects on the treadmill-mounted, split-plate force platform show that peak vertical force and stride frequency significantly decrease (p < 0.05) as the gravity level is reduced, while ground contact time is independent of gravity level. A loping gait is employed over a wide range of speeds (approximately 1.5 m/s to approximately 2.3 m/s) suggesting a change in the mechanics for lunar (1/6 G) and Martian (3/8 G) locomotion. As theory predicts, locomotion energy requirements for partial gravity levels are significantly less than at 1 G (p < 0.05).
Direction-dependent arm kinematics reveal optimal integration of gravity cues
Gaveau, Jeremie; Berret, Bastien; Angelaki, Dora E; Papaxanthis, Charalambos
2016-01-01
The brain has evolved an internal model of gravity to cope with life in the Earth's gravitational environment. How this internal model benefits the implementation of skilled movement has remained unsolved. One prevailing theory has assumed that this internal model is used to compensate for gravity's mechanical effects on the body, such as to maintain invariant motor trajectories. Alternatively, gravity force could be used purposely and efficiently for the planning and execution of voluntary movements, thereby resulting in direction-depending kinematics. Here we experimentally interrogate these two hypotheses by measuring arm kinematics while varying movement direction in normal and zero-G gravity conditions. By comparing experimental results with model predictions, we show that the brain uses the internal model to implement control policies that take advantage of gravity to minimize movement effort. DOI: http://dx.doi.org/10.7554/eLife.16394.001 PMID:27805566
Contributions of Microgravity Test Results to the Design of Spacecraft Fire Safety Systems
NASA Technical Reports Server (NTRS)
Friedman, Robert; Urban, David L.
1993-01-01
Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) as compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.
Medical considerations for extending human presence in space
NASA Technical Reports Server (NTRS)
Leach, C. S.; Dietlein, L. F.; Pool, S. L.; Nicogossian, A. E.
1990-01-01
The prospects for extending the length of time that humans can safely remain in space depend partly on resolution of a number of medical issues. Physiologic effects of weightlessness that may affect health during flight include loss of body fluid, functional alterations in the cardiovascular system, loss of red blood cells and bone mineral, compromised immune system function, and neurosensory disturbances. Some of the physiologic adaptations to weightlessness contribute to difficulties with readaptation to Earth's gravity. These include cardiovascular deconditioning and loss of body fluids and electrolytes; red blood cell mass; muscle mass, strength, and endurance; and bone mineral. Potentially harmful factors in space flight that are not related to weightlessness include radiation, altered circadian rhythms and rest/work cycles, and the closed, isolated environment of the spacecraft. There is no evidence that space flight has long-term effects on humans, except that bone mass lost during flight may not be replaced, and radiation damage is cumulative. However, the number of people who have spent several months or longer in space is still small. Only carefully-planned experiments in space preceded by thorough ground-based studies can provide the information needed to increase the amount of time humans can safely spend in space.
Vestibulospinal adaptation to microgravity
NASA Technical Reports Server (NTRS)
Paloski, W. H.
1998-01-01
Human balance control is known to be transiently disrupted after spaceflight; however, the mechanisms responsible for postflight postural ataxia are still under investigation. In this report, we propose a conceptual model of vestibulospinal adaptation based on theoretical adaptive control concepts and supported by the results from a comprehensive study of balance control recovery after spaceflight. The conceptual model predicts that immediately after spaceflight the balance control system of a returning astronaut does not expect to receive gravity-induced afferent inputs and that descending vestibulospinal control of balance is disrupted until the central nervous system is able to cope with the newly available vestibular otolith information. Predictions of the model are tested using data from a study of the neurosensory control of balance in astronauts immediately after landing. In that study, the mechanisms of sensorimotor balance control were assessed under normal, reduced, and/or altered (sway-referenced) visual and somatosensory input conditions. We conclude that the adaptive control model accurately describes the neurobehavioral responses to spaceflight and that similar models of altered sensory, motor, or environmental constraints are needed clinically to predict responses that patients with sensorimotor pathologies may have to various visual-vestibular or changing stimulus environments.
NASA Astrophysics Data System (ADS)
Kamal, Khaled Y.; Hemmersbach, Ruth; Medina, F. Javier; Herranz, Raúl
2015-04-01
Understanding the physical and biological effects of the absence of gravity is necessary to conduct operations on space environments. It has been previously shown that the microgravity environment induces the dissociation of cell proliferation from cell growth in young seedling root meristems, but this source material is limited to few cells in each row of meristematic layers. Plant cell cultures, composed by a large and homogeneous population of proliferating cells, are an ideal model to study the effects of altered gravity on cellular mechanisms regulating cell proliferation and associated cell growth. Cell suspension cultures of Arabidopsis thaliana cell line (MM2d) were exposed to 2D-clinorotation in a pipette clinostat for 3.5 or 14 h, respectively, and were then processed either by quick freezing, to be used in flow cytometry, or by chemical fixation, for microscopy techniques. After long-term clinorotation, the proportion of cells in G1 phase was increased and the nucleolus area, as revealed by immunofluorescence staining with anti-nucleolin, was decreased. Despite the compatibility of these results with those obtained in real microgravity on seedling meristems, we provide a technical discussion in the context of clinorotation and proper 1 g controls with respect to suspension cultures. Standard 1 g procedure of sustaining the cell suspension is achieved by continuously shaking. Thus, we compare the mechanical forces acting on cells in clinorotated samples, in a control static sample and in the standard 1 g conditions of suspension cultures in order to define the conditions of a complete and reliable experiment in simulated microgravity with corresponding 1 g controls.
Killifish Hatching and Orientation experiment MA-161
NASA Technical Reports Server (NTRS)
Scheld, H. W.; Boyd, J. F.; Bozarth, G. A.; Conner, J. A.; Eichler, V. B.; Fuller, P. M.; Hoffman, R. B.; Keefe, J. R.; Kuchnow, K. P.; Oppenheimer, J. M.
1976-01-01
The killifish Fundulus heteroclitus was used as a model system for study of embryonic development and vestibular adaptation in orbital flight. Juvenile fish in a zero gravity environment exhibited looping swimming activity similar to that observed during the Skylab 3 mission. Hatchings from a 336 hour egg stage were also observed to loop. At splashdown, both juveniles and hatchings exhibited a typical diving response suggesting relatively normal vestibular function. Juveniles exhibited swimming patterns suggestive of abnormal swim bladders. The embryos exhibited no abnormalities resulting from development in a zero gravity environment.
NASA Technical Reports Server (NTRS)
Bosart, Lance F.
2001-01-01
The research effort supported by NASA Grant NAG5-7469, awarded to the University at Albany, State University of New York (UA/SUNY), comprises the following two projects: (1) the observational study of large-amplitude inertia-gravity wave environments over the continental United States; and (2) the definition of opportunities and issues in extratropical cyclone dynamics and related phenomenological studies that may be addressed using high-resolution global datasets produced by the Data Assimilation Office (DAO) at the NASA/Goddard Space Flight Center.
Numerical study of gravity effects on phase separation in a swirl chamber.
Hsiao, Chao-Tsung; Ma, Jingsen; Chahine, Georges L
2016-01-01
The effects of gravity on a phase separator are studied numerically using an Eulerian/Lagrangian two-phase flow approach. The separator utilizes high intensity swirl to separate bubbles from the liquid. The two-phase flow enters tangentially a cylindrical swirl chamber and rotate around the cylinder axis. On earth, as the bubbles are captured by the vortex formed inside the swirl chamber due to the centripetal force, they also experience the buoyancy force due to gravity. In a reduced or zero gravity environment buoyancy is reduced or inexistent and capture of the bubbles by the vortex is modified. The present numerical simulations enable study of the relative importance of the acceleration of gravity on the bubble capture by the swirl flow in the separator. In absence of gravity, the bubbles get stratified depending on their sizes, with the larger bubbles entering the core region earlier than the smaller ones. However, in presence of gravity, stratification is more complex as the two acceleration fields - due to gravity and to rotation - compete or combine during the bubble capture.
Molecular aspects of stress-gene regulation during spaceflight
NASA Technical Reports Server (NTRS)
Paul, Anna-Lisa; Ferl, Robert J.
2002-01-01
Spaceflight-associated stress has been the topic of investigation since the first terrestrial organisms were exposed to this unique environment. Organisms that evolved under the selection pressures of earth-normal environments can perceive spaceflight as a stress, either directly because gravity influences an intrinsic biological process, or indirectly because of secondary effects imparted by spaceflight upon environmental conditions. Different organisms and even different organs within an organism adapt to a spaceflight environment with a diversity of tactics. Plants are keenly sensitive to gravity for directed development, and are also sensitive to other stresses associated with closed-system spaceflight environments. Within the past decade, the tools of molecular biology have begun to provide a sophisticated evaluation of spaceflight-associated stress and the genetic responses that accompany metabolic adaptation to spaceflight.
NASA Technical Reports Server (NTRS)
Israelsson, U. E.; Duncan, R. V.
1993-01-01
A design is presented of a low gravity simulator where a magnetic field gradient is employed to oppose the hydrostatic pressure effects of gravity. It appears feasible to reduce the effective gravity environment of the helium in the cell by about two orders of magnitude. The corresponding shift in transition temperature with vertical height would be reduced to 12.7 nK/cm. Methods for instrumenting the simulator to perform high resolution investigations of non-equilibrium phenomena near the lambda point are presented. The advantages of using a low gravity simulator in searching for the predicted change in character of the superfluid transition from continuous to first order in the presence of a heat current are also discussed.
Complete Bouguer gravity anomaly map of the state of Colorado
Abrams, Gerda A.
1993-01-01
The Bouguer gravity anomaly map is part of a folio of maps of Colorado cosponsored by the National Mineral Resources Assessment Program (NAMRAP) and the National Geologic Mapping Program (COGEOMAP) and was produced to assist in studies of the mineral resource potential and tectonic setting of the State. Previous compilations of about 12,000 gravity stations by Behrendt and Bajwa (1974a,b) are updated by this map. The data was reduced at a 2.67 g/cm3 and the grid contoured at 3 mGal intervals. This map will aid in the mineral resource assessment by indicating buried intrusive complexes, volcanic fields, major faults and shear zones, and sedimentary basins; helping to identify concealed geologic units; and identifying localities that might be hydrothermically altered or mineralized.
Effects of chronic centrifugation on mice
NASA Technical Reports Server (NTRS)
Janer, L.; Duke, J.
1984-01-01
Previous studies have shown that exposure to excess gravity in vitro alters the developmental sequence in embryonic mouse limbs and palates (Duke, Janer and Campbell, 1984; Duke, 1983). The effects of excess gravity on in vivo mammalian development was investigated using a small animal centrifuge. Four-week old female mice exposed to excess gravities of 1.8-3.5 G for eight weeks weighed significantly less than controls. Mice were mated after five weeks of adaptation to excess G, and sacrificed either at gestational day 12 or 18. There were fewer pregnancies in the centrifuged group (4/36) than in controls (9/31), and crown rump lengths (CRL) of embryos developing in the centrifuge were less than CRLs of 1-G embryos. These results show that although immersed in amniotic fluid, embryos are responsive to Delta-G.
Gravity and Heater Size Effects on Pool Boiling Heat Transfer
NASA Technical Reports Server (NTRS)
Kim, Jungho; Raj, Rishi
2014-01-01
The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.
Centrifuge in Free Fall: Combustion at Partial Gravity
NASA Technical Reports Server (NTRS)
Ferkul, Paul
2017-01-01
A centrifuge apparatus is developed to study the effect of variable acceleration levels in a drop tower environment. It consists of a large rotating chamber, within which the experiment is conducted. NASA Glenn Research Center 5.18-second Zero-Gravity Facility drop tests were successfully conducted at rotation rates up to 1 RPS with no measurable effect on the overall Zero-Gravity drop bus. Arbitrary simulated gravity levels from zero to 1-g (at a radius of rotation 30 cm) were produced. A simple combustion experiment was used to exercise the capabilities of the centrifuge. A total of 23 drops burning a simulated candle with heptane and ethanol fuel were performed. The effect of gravity level (rotation rate) and Coriolis force on the flames was observed. Flames became longer, narrower, and brighter as gravity increased. The Coriolis force tended to tilt the flames to one side, as expected, especially as the rotation rate was increased. The Zero-Gravity Centrifuge can be a useful tool for other researchers interested in the effects of arbitrary partial gravity on experiments, especially as NASA embarks on future missions which may be conducted in non-Earth gravity.
The preferred walk to run transition speed in actual lunar gravity.
De Witt, John K; Edwards, W Brent; Scott-Pandorf, Melissa M; Norcross, Jason R; Gernhardt, Michael L
2014-09-15
Quantifying the preferred transition speed (PTS) from walking to running has provided insight into the underlying mechanics of locomotion. The dynamic similarity hypothesis suggests that the PTS should occur at the same Froude number across gravitational environments. In normal Earth gravity, the PTS occurs at a Froude number of 0.5 in adult humans, but previous reports found the PTS occurred at Froude numbers greater than 0.5 in simulated lunar gravity. Our purpose was to (1) determine the Froude number at the PTS in actual lunar gravity during parabolic flight and (2) compare it with the Froude number at the PTS in simulated lunar gravity during overhead suspension. We observed that Froude numbers at the PTS in actual lunar gravity (1.39±0.45) and simulated lunar gravity (1.11±0.26) were much greater than 0.5. Froude numbers at the PTS above 1.0 suggest that the use of the inverted pendulum model may not necessarily be valid in actual lunar gravity and that earlier findings in simulated reduced gravity are more accurate than previously thought. © 2014. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Cardenas, Crystal; Harter, Andrew; Hoyle, C. D.; Leopardi, Holly; Smith, David
2014-03-01
Gravity was the first force to be described mathematically, yet it is the only fundamental force not well understood. The Standard Model of quantum mechanics describes interactions between the fundamental strong, weak and electromagnetic forces while Einstein's theory of General Relativity (GR) describes the fundamental force of gravity. There is yet to be a theory that unifies inconsistencies between GR and quantum mechanics. Scenarios of String Theory predicting more than three spatial dimensions also predict physical effects of gravity at sub-millimeter levels that would alter the gravitational inverse-square law. The Weak Equivalence Principle (WEP), a central feature of GR, states that all objects are accelerated at the same rate in a gravitational field independent of their composition. A violation of the WEP at any length would be evidence that current models of gravity are incorrect. At the Humboldt State University Gravitational Research Laboratory, an experiment is being developed to observe gravitational interactions below the 50-micron distance scale. The experiment measures the twist of a parallel-plate torsion pendulum as an attractor mass is oscillated within 50 microns of the pendulum, providing time varying gravitational torque on the pendulum. The size and distance dependence of the torque amplitude provide means to determine deviations from accepted models of gravity on untested distance scales. undergraduate.
Gravity Wave Detection through All-sky Imaging of Airglow
NASA Astrophysics Data System (ADS)
Nguyen, T. V.; Martinez, A.; Porat, I.; Hampton, D. L.; Bering, E., III; Wood, L.
2017-12-01
Airglow, the faint glow of the atmosphere, is caused by the interaction of air molecules with radiation from the sun. Similarly, the aurora is created by interactions of air molecules with the solar wind. It has been shown that airglow emissions are altered by gravity waves passing through airglow source region (100-110km), making it possible to study gravity waves and their sources through airglow imaging. University of Houston's USIP - Airglow team designed a compact, inexpensive all-sky imager capable of detecting airglow and auroral emissions using a fisheye lens, a simple optical train, a filter wheel with 4 specific filters, and a CMOS camera. This instrument has been used in USIP's scientific campaign in Alaska throughout March 2017. During this period, the imager captured auroral activity in the Fairbanks region. Due to lunar conditions and auroral activity images from the campaign did not yield visible signs of airglow. Currently, the team is trying to detect gravity wave patterns present in the images through numerical analysis. Detected gravity wave patterns will be compared to local weather data, and may be used to make correlations between gravity waves and weather events. Such correlations could provide more data on the relationship between the mesosphere and lower layers of the atmosphere. Practical applications of this research include weather prediction and detection of air turbulence.
Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel
NASA Technical Reports Server (NTRS)
McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli
2012-01-01
A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.
Virtual environment application with partial gravity simulation
NASA Technical Reports Server (NTRS)
Ray, David M.; Vanchau, Michael N.
1994-01-01
To support manned missions to the surface of Mars and missions requiring manipulation of payloads and locomotion in space, a training facility is required to simulate the conditions of both partial and microgravity. A partial gravity simulator (Pogo) which uses pneumatic suspension is being studied for use in virtual reality training. Pogo maintains a constant partial gravity simulation with a variation of simulated body force between 2.2 and 10 percent, depending on the type of locomotion inputs. this paper is based on the concept and application of a virtual environment system with Pogo including a head-mounted display and glove. The reality engine consists of a high end SGI workstation and PC's which drive Pogo's sensors and data acquisition hardware used for tracking and control. The tracking system is a hybrid of magnetic and optical trackers integrated for this application.
A Summary of the Quasi-Steady Acceleration Environment on-Board STS-94 (MSL-1)
NASA Technical Reports Server (NTRS)
McPherson, Kevin M.; Nati, Maurizio; Touboul, Pierre; Schuette, Andreas; Sablon, Gert
1999-01-01
The continuous free-fall state of a low Earth orbit experienced by NASA's Orbiters results in a unique reduced gravity environment. While microgravity science experiments are conducted in this reduced gravity environment, various accelerometer systems measure and record the microgravity acceleration environment for real-time and post-flight correlation with microgravity science data. This overall microgravity acceleration environment is comprised of quasi-steady, oscillatory, and transient contributions. The First Microgravity Science Laboratory (MSL-1) payload was dedicated to experiments studying various microgravity science disciplines, including combustion, fluid physics, and materials processing. In support of the MSL-1 payload, two systems capable of measuring the quasi-steady acceleration environment were flown: the Orbital Acceleration Research Experiment (OARE) and the Microgravity Measurement Assembly (MMA) system's Accelerometre Spatiale Triaxiale most evident in the quasi-steady acceleration regime. Utilizing such quasi-steady events, a comparison and summary of the quasi-steady acceleration environment for STS-94 will be presented
To crash or not to crash: how do hoverflies cope with free-fall situations and weightlessness?
Goulard, Roman; Vercher, Jean-Louis; Viollet, Stéphane
2016-08-15
Insects' aptitude to perform hovering, automatic landing and tracking tasks involves accurately controlling their head and body roll and pitch movements, but how this attitude control depends on an internal estimation of gravity orientation is still an open question. Gravity perception in flying insects has mainly been studied in terms of grounded animals' tactile orientation responses, but it has not yet been established whether hoverflies use gravity perception cues to detect a nearly weightless state at an early stage. Ground-based microgravity simulators provide biologists with useful tools for studying the effects of changes in gravity. However, in view of the cost and the complexity of these set-ups, an alternative Earth-based free-fall procedure was developed with which flying insects can be briefly exposed to microgravity under various visual conditions. Hoverflies frequently initiated wingbeats in response to an imposed free fall in all the conditions tested, but managed to avoid crashing only in variably structured visual environments, and only episodically in darkness. Our results reveal that the crash-avoidance performance of these insects in various visual environments suggests the existence of a multisensory control system based mainly on vision rather than gravity perception. © 2016. Published by The Company of Biologists Ltd.
Teaching old spacecraft new tricks
NASA Technical Reports Server (NTRS)
Farquhar, Robert; Dunham, David
1988-01-01
The technique of sending existing space probes on extended mission by altering their orbital paths with gravity-assist maneuvers and relatively brief rocket firings is examined. The use of the technique to convert the International Sun-Earth Explorer 3 mission into the International Cometary Explorer mission is discussed. Other examples are considered, including the extension of the Giotto mission and the retargeting of the Sakigake spacecraft. The original and altered trajectories of these three missions are illustrated.
NASA Technical Reports Server (NTRS)
Wunder, Charles C.; Cook, Kenneth M.; Watkins, Stanley R.; Moressi, William J.
1987-01-01
The dependence of gravitationally related changes in femur bone strength on the comparable changes in calcium content was investigated in rats exposed to chronic simulations of altered gravity from the 28th to 42nd day of age. Zero G was simulated by harness suspension and 3 G by centrifugation. Bone strength (S) was determined by bending (using modified quasi-static cantilever bending methods and equipment described by Wunder et al., 1977 and 1979) and Ca content (C, by mass pct) determined by atomic absorption spectrometry; results were compared with data obtained on both normal and harnessed control animals at 1 G. Multiple regression showed significant dependence of S upon earth's gravity, independent from C, for which there was no significant coefficient of partial regression. It is suggested that the lack of S/C correlation might have been due to the fact that considerable fraction of the calcium in these young, developing bones has not yet crystallized into the hydroxyapatite which provides strength.
NASA Technical Reports Server (NTRS)
Mccay, M. H.
1988-01-01
The Casting and Solidification Technology (CAST) experiment will study the phenomena that occur during directional solidification of an alloy, e.g., constitutional supercooling, freckling, and dendrite coarsening. The reduced gravity environment of space will permit the individual phenomena to be examined with minimum complication from buoyancy driven flows.