Sample records for altered muscle function

  1. Resistance training alters skeletal muscle structure and function in human heart failure: effects at the tissue, cellular and molecular levels

    PubMed Central

    Toth, Michael J; Miller, Mark S; VanBuren, Peter; Bedrin, Nicholas G; LeWinter, Martin M; Ades, Philip A; Palmer, Bradley M

    2012-01-01

    Reduced skeletal muscle function in heart failure (HF) patients may be partially explained by altered myofilament protein content and function. Resistance training increases muscle function, although whether these improvements are achieved by correction of myofilament deficits is not known. To address this question, we examined 10 HF patients and 14 controls prior to and following an 18 week high-intensity resistance training programme. Evaluations of whole muscle size and strength, single muscle fibre size, ultrastructure and tension and myosin–actin cross-bridge mechanics and kinetics were performed. Training improved whole muscle isometric torque in both groups, although there were no alterations in whole muscle size or single fibre cross-sectional area or isometric tension. Unexpectedly, training reduced the myofibril fractional area of muscle fibres in both groups. This structural change manifested functionally as a reduction in the number of strongly bound myosin–actin cross-bridges during Ca2+ activation. When post-training single fibre tension data were corrected for the loss of myofibril fractional area, we observed an increase in tension with resistance training. Additionally, training corrected alterations in cross-bridge kinetics (e.g. myosin attachment time) in HF patients back to levels observed in untrained controls. Collectively, our results indicate that improvements in myofilament function in sedentary elderly with and without HF may contribute to increased whole muscle function with resistance training. More broadly, these data highlight novel cellular and molecular adaptations in muscle structure and function that contribute to the resistance-trained phenotype. PMID:22199163

  2. Molecular and Cellular Mechanisms of Muscle Aging and Sarcopenia and Effects of Electrical Stimulation in Seniors.

    PubMed

    Barber, Laura; Scicchitano, Bianca Maria; Musaro, Antonio

    2015-08-24

    The prolongation of skeletal muscle strength in aging and neuromuscular disease has been the objective of numerous studies employing a variety of approaches. It is generally accepted that cumulative failure to repair damage related to an overall decrease in anabolic processes is a primary cause of functional impairment in muscle. The functional performance of skeletal muscle tissues declines during post- natal life and it is compromised in different diseases, due to an alteration in muscle fiber composition and an overall decrease in muscle integrity as fibrotic invasions replace functional contractile tissue. Characteristics of skeletal muscle aging and diseases include a conspicuous reduction in myofiber plasticity (due to the progressive loss of muscle mass and in particular of the most powerful fast fibers), alteration in muscle-specific transcriptional mechanisms, and muscle atrophy. An early decrease in protein synthetic rates is followed by a later increase in protein degradation, to affect biochemical, physiological, and morphological parameters of muscle fibers during the aging process. Alterations in regenerative pathways also compromise the functionality of muscle tissues. In this review we will give an overview of the work on molecular and cellular mechanisms of aging and sarcopenia and the effects of electrical stimulation in seniors..

  3. The influence of altered working-side occlusal guidance on masticatory muscles and related jaw movement.

    PubMed

    Belser, U C; Hannam, A G

    1985-03-01

    The effect of four different occlusal situations (group function, canine guidance, working side occlusal interference, and hyperbalancing occlusal interference) on EMG activity in jaw elevator muscles and related mandibular movement was investigated on 12 subjects. With a computer-based system, EMG and displacement signals were collected simultaneously during specific functional (unilateral chewing) and parafunctional tasks (mandibular gliding movements and various tooth clenching efforts) and analyzed quantitatively. When a naturally acquired group function was temporarily and artificially changed into a dominant canine guidance, a significant general reduction of elevator muscle activity was observed when subjects exerted full isometric tooth-clenching efforts in a lateral mandibular position. The original muscular coordination pattern (relative contraction from muscle to muscle) remained unaltered during this test. With respect to unilateral chewing, no significant alterations in the activity or coordination of the muscles occurred when an artificial canine guidance was introduced. Introduction of a hyperbalancing occlusal contact caused significant alterations in muscle activity and coordination during maximal tooth clenching in a lateral mandibular position. A marked shift of temporal muscle EMG activity toward the side of the interference and unchanged bilateral activity of the two masseter muscles were observed. The results suggest that canine-protected occlusions do not significantly alter muscle activity during mastication but significantly reduce muscle activity during parafunctional clenching. They also suggest that non-working side contacts dramatically alter the distribution of muscle activity during parafunctional clenching, and that this redistribution may affect the nature of reaction forces at the temporomandibular joints.

  4. Renal function alterations during skeletal muscle disuse in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Tucker, Bryan J.

    1992-01-01

    This project was to examine the alterations in renal functions during skeletal muscle disuse in simulated microgravity. Although this area could cover a wide range of investigative efforts, the limited funding resulted in the selection of two projects. These projects would result in data contributing to an area of research deemed high priority by NASA and would address issues of the alterations in renal response to vasoactive stimuli during conditions of skeletal muscle disuse as well as investigate the contribution of skeletal muscle disuse, conditions normally found in long term human exposure to microgravity, to the balance of fluid and macromolecules within the vasculature versus the interstitium. These two projects selected are as follows: investigate the role of angiotensin 2 on renal function during periods of simulated microgravity and skeletal muscle disuse to determine if the renal response is altered to changes in circulating concentrations of angiotensin 2 compared to appropriate controls; and determine if the shift of fluid balance from vasculature to the interstitium, the two components of extracellular fluid volume, that occur during prolonged exposure to microgravity and skeletal muscle disuse is a result, in part, to alterations in the fluid and macromolecular balance in the peripheral capillary beds, of which the skeletal muscle contains the majority of recruitment capillaries. A recruitment capillary bed would be most sensitive to alterations in Starling forces and fluid and macromolecular permeability.

  5. Lactate dehydrogenase regulation in aged skeletal muscle: Regulation by anabolic steroids and functional overload.

    PubMed

    Washington, Tyrone A; Healey, Julie M; Thompson, Raymond W; Lowe, Larry L; Carson, James A

    2014-09-01

    Aging alters the skeletal muscle response to overload-induced growth. The onset of functional overload is characterized by increased myoblast proliferation and an altered muscle metabolic profile. The onset of functional overload is associated with increased energy demands that are met through the interconversion of lactate and pyruvate via the activity of lactate dehydrogenase (LDH). Testosterone targets many of the processes activated at the onset of functional overload. However, the effect of aging on this metabolic plasticity at the onset of functional overload and how anabolic steroid administration modulates this response is not well understood. The purpose of this study was to determine if aging would alter overload-induced LDH activity and expression at the onset of functional overload and whether anabolic steroid administration would modulate this response. Five-month and 25-month male Fischer 344xF1 BRN were given nandrolone decanoate (ND) or sham injections for 14days and then the plantaris was functionally overloaded (OV) for 3days by synergist ablation. Aging reduced muscle LDH-A & LDH-B activity 70% (p<0.05). Aging also reduced LDH-A mRNA abundance, however there was no age effect on LDH-B mRNA abundance. In 5-month muscle, both ND and OV decreased LDH-A and LDH-B activity. However, there was no synergistic or additive effect. In 5-month muscle, ND and OV decreased LDH-A mRNA expression with no change in LDH-B expression. In 25-month muscle, ND and OV increased LDH-A and LDH-B activity. LDH-A mRNA expression was not altered by ND or OV in aged muscle. However, there was a main effect of OV to decrease LDH-B mRNA expression. There was also an age-induced LDH isoform shift. ND and OV treatment increased the "fast" LDH isoforms in aged muscle, whereas ND and OV increased the "slow" isoforms in young muscle. Our study provides evidence that aging alters aspects of skeletal muscle metabolic plasticity normally induced by overload and anabolic steroid administration. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Effects of moderate heart failure and functional overload on rat plantaris muscle

    NASA Technical Reports Server (NTRS)

    Spangenburg, Espen E.; Lees, Simon J.; Otis, Jeff S.; Musch, Timothy I.; Talmadge, Robert J.; Williams, Jay H.

    2002-01-01

    It is thought that changes in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) of skeletal muscle contribute to alterations in skeletal muscle function during congestive heart failure (CHF). It is well established that exercise training can improve muscle function. However, it is unclear whether similar adaptations will result from exercise training in a CHF patient. Therefore, the purpose of this study was to determine whether skeletal muscle during moderate CHF adapts to increased activity, utilizing the functional overload (FO) model. Significant increases in plantaris mass of the CHF-FO and sham-FO groups compared with the CHF and control (sham) groups were observed. Ca(2+) uptake rates were significantly elevated in the CHF group compared with all other groups. No differences were detected in Ca(2+) uptake rates between the CHF-FO, sham, and sham-FO groups. Increases in Ca(2+) uptake rates in moderate-CHF rats were not due to changes in SERCA isoform proportions; however, FO may have attenuated the CHF-induced increases through alterations in SERCA isoform expression. Therefore, changes in skeletal muscle Ca(2+) handling during moderate CHF may be due to alterations in regulatory mechanisms, which exercise may override, by possibly altering SERCA isoform expression.

  7. Skeletal muscle tissue transcriptome differences in lean and obese female beagle dogs.

    PubMed

    Grant, R W; Vester Boler, B M; Ridge, T K; Graves, T K; Swanson, K S

    2013-08-01

    Skeletal muscle is a large and insulin-sensitive tissue that is an important contributor to metabolic homeostasis and energy expenditure. Many metabolic processes are altered with obesity, but the contribution of muscle tissue in this regard is unclear. A limited number of studies have compared skeletal muscle gene expression of lean and obese dogs. Using microarray technology, our objective was to identify genes and functional classes differentially expressed in skeletal muscle of obese (14.6 kg; 8.2 body condition score; 44.5% body fat) vs. lean (8.6 kg; 4.1 body condition score; 22.9% body fat) female beagle adult dogs. Alterations in 77 transcripts was observed in genes pertaining to the functional classes of signaling, transport, protein catabolism and proteolysis, protein modification, development, transcription and apoptosis, cell cycle and differentiation. Genes differentially expressed in obese vs. lean dog skeletal muscle indicate oxidative stress and altered skeletal muscle cell differentiation. Many genes traditionally associated with lipid, protein and carbohydrate metabolism were not altered in obese vs. lean dogs, but genes pertaining to endocannabinoid metabolism, insulin signaling, type II diabetes mellitus and carnitine transport were differentially expressed. The relatively small response of skeletal muscle could indicate that changes are occurring at a post-transcriptional level, that other tissues (e.g., adipose tissue) were buffering skeletal muscle from metabolic dysfunction or that obesity-induced changes in skeletal muscle require a longer period of time and that the length of our study was not sufficient to detect them. Although only a limited number of differentially expressed genes were detected, these results highlight genes and functional classes that may be important in determining the etiology of obesity-induced derangement of skeletal muscle function. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  8. Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice.

    PubMed

    Jackson, Kathryn C; Wohlers, Lindsay M; Lovering, Richard M; Schuh, Rosemary A; Maher, Amy C; Bonen, Arend; Koves, Timothy R; Ilkayeva, Olga; Thomson, David M; Muoio, Deborah M; Spangenburg, Espen E

    2013-02-01

    Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile.

  9. Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice

    PubMed Central

    Jackson, Kathryn C.; Wohlers, Lindsay M.; Lovering, Richard M.; Schuh, Rosemary A.; Maher, Amy C.; Bonen, Arend; Koves, Timothy R.; Ilkayeva, Olga; Thomson, David M.; Muoio, Deborah M.

    2013-01-01

    Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile. PMID:23193112

  10. Aging alters contractile properties and fiber morphology in pigeon skeletal muscle.

    PubMed

    Pistilli, Emidio E; Alway, Stephen E; Hollander, John M; Wimsatt, Jeffrey H

    2014-12-01

    In this study, we tested the hypothesis that skeletal muscle from pigeons would display age-related alterations in isometric force and contractile parameters as well as a shift of the single muscle fiber cross-sectional area (CSA) distribution toward smaller fiber sizes. Maximal force output, twitch contraction durations and the force-frequency relationship were determined in tensor propatagialis pars biceps muscle from young 3-year-old pigeons, middle-aged 18-year-old pigeons, and aged 30-year-old pigeons. The fiber CSA distribution was determined by planimetry from muscle sections stained with hematoxylin and eosin. Maximal force output of twitch and tetanic contractions was greatest in muscles from young pigeons, while the time to peak force of twitch contractions was longest in muscles from aged pigeons. There were no changes in the force-frequency relationship between the age groups. Interestingly, the fiber CSA distribution in aged muscles revealed a greater number of larger sized muscle fibers, which was verified visually in histological images. Middle-aged and aged muscles also displayed a greater amount of slow myosin containing muscle fibers. These data demonstrate that muscles from middle-aged and aged pigeons are susceptible to alterations in contractile properties that are consistent with aging, including lower force production and longer contraction durations. These functional changes were supported by the appearance of slow myosin containing muscle fibers in muscles from middle-aged and aged pigeons. Therefore, the pigeon may represent an appropriate animal model for the study of aging-related alterations in skeletal muscle function and structure.

  11. Investigations of the Effects of Altered Vestibular System Function on Hindlimb Anti-Gravity Muscles

    NASA Technical Reports Server (NTRS)

    Lowery, Mary Sue

    1998-01-01

    Exposure to different gravitational environments, both the microgravity of spaceflight and the hypergravity of centrifugation, result in altered vestibulo-spinal function which can be reversed by reacclimation to earth gravity (2). Control of orientation, posture, and locomotion are functions of the vestibular system which are altered by changes in gravitational environment. Not only is the vestibular system involved with coordination and proprioception, but the gravity sensing portion of the vestibular system also plays a major role in maintaining muscle tone through projections to spinal cord motoneurons that control anti-gravity muscles. I have been involved with investigations of several aspects of the link between vestibular inputs and muscle morphology and function during my work with Dr. Nancy Daunton this summer and the previous summer. We have prepared a manuscript for submission (4) to Aviation, Space, and Environmental Medicine based on work that I performed last summer in Dr. Daunton's lab. Techniques developed for that project will be utilized in subsequent experiments begun in the summer of 1998. I have been involved with the development of a pilot project to test the effects of vestibular galvanic stimulation (VGS) on anti-gravity muscles and in another project testing the effects of the ototoxic drug streptomycin on the otolith-spinal reflex and anti-gravity muscle morphology.

  12. The central role of muscle stem cells in regenerative failure with aging

    PubMed Central

    Blau, Helen M; Cosgrove, Benjamin D; Ho, Andrew T V

    2016-01-01

    Skeletal muscle mass, function, and repair capacity all progressively decline with aging, restricting mobility, voluntary function, and quality of life. Skeletal muscle repair is facilitated by a population of dedicated muscle stem cells (MuSCs), also known as satellite cells, that reside in anatomically defined niches within muscle tissues. In adult tissues, MuSCs are retained in a quiescent state until they are primed to regenerate damaged muscle through cycles of self-renewal divisions. With aging, muscle tissue homeostasis is progressively disrupted and the ability of MuSCs to repair injured muscle markedly declines. Until recently, this decline has been largely attributed to extrinsic age-related alterations in the microenvironment to which MuSCs are exposed. However, as highlighted in this Perspective, recent reports show that MuSCs also progressively undergo cell-intrinsic alterations that profoundly affect stem cell regenerative function with aging. A more comprehensive understanding of the interplay of stem cell–intrinsic and extrinsic factors will set the stage for improving cell therapies capable of restoring tissue homeostasis and enhancing muscle repair in the aged. PMID:26248268

  13. Tumor Growth Increases Neuroinflammation, Fatigue and Depressive-like Behavior Prior to Alterations in Muscle Function

    PubMed Central

    Norden, Diana M.; Bicer, Sabahattin; Clark, Yvonne; Jing, Runfeng; Henry, Christopher J.; Wold, Loren E.; Reiser, Peter J.; Godbout, Jonathan P.; McCarthy, Donna O.

    2014-01-01

    Cancer patients frequently suffer from fatigue, a complex syndrome associated with loss of muscle mass, weakness, and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, during treatment, and persists for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. Currently there are no effective treatments to reduce CRF. The aim of this study was to use a mouse model of tumor growth and discriminate between two main components of fatigue: loss of muscle mass/function and altered mood/motivation. Here we show that tumor growth increased fatigue- and depressive-like behaviors, and reduced body and muscle mass. Decreased voluntary wheel running activity (VWRA) and increased depressive-like behavior in the forced swim and sucrose preference tests were evident in tumor-bearing mice within the first two weeks of tumor growth and preceded the loss of body and muscle mass. At three weeks, tumor-bearing mice had reduced grip strength but this was not associated with altered expression of myosin isoforms or impaired contractile properties of muscles. These increases in fatigue and depressive-like behaviors were paralleled by increased expression of IL-1β mRNA in the cortex and hippocampus. Minocycline administration reduced tumor-induced expression of IL-1β in the brain, reduced depressive-like behavior, and improved grip strength without altering muscle mass. Taken together, these results indicate that neuroinflammation and depressed mood, rather than muscle wasting, contribute to decreased voluntary activity and precede major changes in muscle contractile properties with tumor growth. PMID:25102452

  14. Tumor growth increases neuroinflammation, fatigue and depressive-like behavior prior to alterations in muscle function.

    PubMed

    Norden, Diana M; Bicer, Sabahattin; Clark, Yvonne; Jing, Runfeng; Henry, Christopher J; Wold, Loren E; Reiser, Peter J; Godbout, Jonathan P; McCarthy, Donna O

    2015-01-01

    Cancer patients frequently suffer from fatigue, a complex syndrome associated with loss of muscle mass, weakness, and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, during treatment, and persists for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. Currently there are no effective treatments to reduce CRF. The aim of this study was to use a mouse model of tumor growth and discriminate between two main components of fatigue: loss of muscle mass/function and altered mood/motivation. Here we show that tumor growth increased fatigue- and depressive-like behaviors, and reduced body and muscle mass. Decreased voluntary wheel running activity (VWRA) and increased depressive-like behavior in the forced swim and sucrose preference tests were evident in tumor-bearing mice within the first two weeks of tumor growth and preceded the loss of body and muscle mass. At three weeks, tumor-bearing mice had reduced grip strength but this was not associated with altered expression of myosin isoforms or impaired contractile properties of muscles. These increases in fatigue and depressive-like behaviors were paralleled by increased expression of IL-1β mRNA in the cortex and hippocampus. Minocycline administration reduced tumor-induced expression of IL-1β in the brain, reduced depressive-like behavior, and improved grip strength without altering muscle mass. Taken together, these results indicate that neuroinflammation and depressed mood, rather than muscle wasting, contribute to decreased voluntary activity and precede major changes in muscle contractile properties with tumor growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The microRNA miR-1 regulates a MEF-2 dependent retrograde signal at neuromuscular junctions

    PubMed Central

    Simon, David J.; Madison, Jon M.; Conery, Annie L.; Thompson-Peer, Katherine L.; Soskis, Michael; Ruvkun, Gary B.; Kaplan, Joshua M.; Kim, John K.

    2008-01-01

    Summary We show that miR-1, a conserved muscle specific microRNA, regulates aspects of both pre- and post-synaptic function at C. elegans neuromuscular junctions. miR-1 regulates the expression level of two nicotinic acetylcholine receptor (nAChR) subunits (UNC-29 and UNC-63), thereby altering muscle sensitivity to acetylcholine (ACh). miR-1 also regulates the muscle transcription factor MEF-2, which results in altered pre-synaptic ACh secretion, suggesting that MEF-2 activity in muscles controls a retrograde signal. The effect of the MEF-2-dependent retrograde signal on secretion is mediated by the synaptic vesicle protein RAB-3. Finally, acute activation of levamisole-sensitive nAChRs stimulates MEF-2-dependent transcriptional responses, and induces the MEF-2-dependent retrograde signal. We propose that miR-1 refines synaptic function by coupling changes in muscle activity to changes in pre-synaptic function. PMID:18510933

  16. Functional capacity and muscular abnormalities in subclinical hypothyroidism.

    PubMed

    Reuters, Vaneska S; Teixeira, Patrícia de Fátima S; Vigário, Patrícia S; Almeida, Cloyra P; Buescu, Alexandre; Ferreira, Márcia M; de Castro, Carmen L N; Gold, Jaime; Vaisman, Mario

    2009-10-01

    Neuromuscular abnormalities and low exercise tolerance are frequently observed in overt hypothyroidism, but it remains controversial if they can also occur in subclinical hypothyroidism (sHT). The aim of this study is to evaluate neuromuscular symptoms, muscle strength, and exercise capacity in sHT, compared with healthy euthyroid individuals. A cross-sectional study was performed with 44 sHT and 24 euthyroid outpatients from a university hospital. Neuromuscular symptoms were questioned. Muscle strength was tested for neck, shoulder, arm, and hip muscle groups, using manual muscle testing (MMT). Quadriceps muscle strength was tested with a chair dynamometer and inspiratory muscle strength (IS) by a manuvacuometer. Functional capacity was estimated based on the peak of oxygen uptake (mL/kg/min), using the Bruce treadmill protocol. Cramps (54.8% versus 25.0%; P < 0.05), weakness (45.2% versus 12.6; P < 0.05), myalgia (47.6% versus 25.0%; P = 0.07), and altered MMT (30.8% versus 8.3%; P = 0.040) were more frequent in sHT. Quadriceps strength and IS were not impaired in sHT and the same was observed for functional capacity. IS was significantly lower in patients complaining of fatigue and weakness (P < 0.05) and tended to be lower in those with altered MMT (P = 0.090). Neuromuscular complaints and altered MMT were significantly more frequent in sHT than in controls, and IS was lower in patients with these abnormalities. Results suggest that altered muscle strength by MMT and the coexistence of neuromuscular complaints in patients with sHT may indicate neuromuscular dysfunction.

  17. Effect of unilateral extraction of molar teeth on suprahyoid muscles: macroscopic and ultrastructural aspects.

    PubMed

    Iyomasa, Mamie Mizusaki; Issa, João Paulo Mardegan; Siéssere, Selma; Regalo, Simone Cecílio Hallak; Watanabe, Ii-sei

    2008-12-01

    Anatomical and physiologic components are parts of the stomatognathic system and their interaction results in integrated functional activities. Important alterations in the masticatory system originated by dental loss affect the bone, oral mucosa and muscular function. Dental arch structures specifically designed to receive and expose teeth allow performance of their functions. But the distinction between bony and soft tissues is lost when teeth are removed since there is not a specific function to be completed. The aim of this study was to evaluate the macroscopic and ultrastructural effects of the unilateral extraction of molar teeth on the suprahyoid muscles function, using twenty young male gerbils (Meriones unguiculatus) as the experimental animal model. They were divided in experimental malocclusion (n=10) and control (n=10) groups. The experimental malocclusion group was submitted to exodontia of the left upper molars and the control group was not submitted to this procedure and served as sham-operated. For macroscopic analysis of the suprahyoid muscle, the skin was uplifted and the muscles dissected individually and removed for weight analysis according to Scherle method. The electron microscopy analysis was made in ultra thin sections of small suprahyoid muscle fragments from the experimental and control groups, examined in a Jeol 1010, 880 Kv transmission electron microscope. Several micrographs at magnifications of 3000x, 6000x, 30,000x were randomly selected for the qualitative analysis of the muscle fiber ultrastructures. Sixty days after the induced unilateral occlusal alteration no macroscopic morphologic changes was detected in the suprahyoid muscles and the muscle volume differences between the right and left sides and between groups were not significant. However, in the ultrastructural analysis suprahyoid muscles showed characteristics of specific adaptation to the unilateral occlusal alteration, by the reduced density of subsarcolemmal mitochondria and the shorter and less numerous ramifications in intermyofibrilar mitochondria localized between electronlucid myofibrils. It is concluded that unilateral exodontia of all the upper left molars affect the ultrastructural morphology of suprahyoid muscle fibers.

  18. Muscle fiber type proportion and size is not altered in mcardle disease.

    PubMed

    Henning, Franclo; Cunninghame, Carol Anne; Martín, Miguel Angel; Rubio, Juan Carlos; Arenas, Joaquín; Lucia, Alejandro; HernáNdez-Laín, Aurelio; Kohn, Tertius Abraham

    2017-06-01

    McArdle disease is a metabolic myopathy that presents with exercise intolerance and episodic rhabdomyolysis. Excessive muscle recruitment has also been shown to be present during strenuous exercise, suggesting decreased power output. These findings could potentially be explained by either impaired contractility, decreased fiber size, or altered fiber type proportion. However, there is a paucity of data on the morphological features seen on muscle histology. We examined muscle biopsies of patients with McArdle disease from a Spanish cohort and compared the findings with healthy controls. We found no significant difference in the fiber type proportion or mean fiber size between McArdle patients and controls in the biceps brachii or vastus lateralis muscles. No alterations in muscle fiber type proportion or size were found on muscle histology of patients with McArdle disease. Future research should focus on assessment of muscle fiber contractility to investigate the functional impairment. Muscle Nerve 55: 916-918, 2017. © 2016 Wiley Periodicals, Inc.

  19. In utero and postnatal exposure to arsenic alters pulmonary structure and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, R. Clark; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ 85721; BIO5 Institute, University of Arizona, Tucson, AZ 85721

    2009-02-15

    In addition to cancer endpoints, arsenic exposures can also lead to non-cancerous chronic lung disease. Exposures during sensitive developmental time points can contribute to the adult disease. Using a mouse model, in utero and early postnatal exposures to arsenic (100 ppb or less in drinking water) were found to alter airway reactivity to methacholine challenge in 28 day old pups. Removal of mice from arsenic exposure 28 days after birth did not reverse the alterations in sensitivity to methacholine. In addition, adult mice exposed to similar levels of arsenic in drinking water did not show alterations. Therefore, alterations in airwaymore » reactivity were irreversible and specific to exposures during lung development. These functional changes correlated with protein and gene expression changes as well as morphological structural changes around the airways. Arsenic increased the whole lung levels of smooth muscle actin in a dose dependent manner. The level of smooth muscle mass around airways was increased with arsenic exposure, especially around airways smaller than 100 {mu}m in diameter. This increase in smooth muscle was associated with alterations in extracellular matrix (collagen, elastin) expression. This model system demonstrates that in utero and postnatal exposure to environmentally relevant levels of arsenic can irreversibly alter pulmonary structure and function in the adults.« less

  20. Cancer cachexia-induced muscle atrophy: evidence for alterations in microRNAs important for muscle size.

    PubMed

    Lee, David E; Brown, Jacob L; Rosa-Caldwell, Megan E; Blackwell, Thomas A; Perry, Richard A; Brown, Lemuel A; Khatri, Bhuwan; Seo, Dongwon; Bottje, Walter G; Washington, Tyrone A; Wiggs, Michael P; Kong, Byung-Whi; Greene, Nicholas P

    2017-05-01

    Muscle atrophy is a hallmark of cancer cachexia resulting in impaired function and quality of life and cachexia is the immediate cause of death for 20-40% of cancer patients. Multiple microRNAs (miRNAs) have been identified as being involved in muscle development and atrophy; however, less is known specifically on miRNAs in cancer cachexia. The purpose of this investigation was to examine the miRNA profile of skeletal muscle atrophy induced by cancer cachexia to uncover potential miRNAs involved with this catabolic condition. Phosphate-buffered saline (PBS) or Lewis lung carcinoma cells (LLC) were injected into C57BL/6J mice at 8 wk of age. LLC animals were allowed to develop tumors for 4 wk to induce cachexia. Tibialis anterior muscles were extracted and processed to isolate small RNAs, which were used for miRNA sequencing. Sequencing results were assembled with mature miRNAs, and functions of miRNAs were analyzed by Ingenuity Pathway Analysis. LLC animals developed tumors that contributed to significantly smaller tibialis anterior muscles (18.5%) and muscle cross-sectional area (40%) compared with PBS. We found 371 miRNAs to be present in the muscle above background levels. Of these, nine miRNAs were found to be differentially expressed. Significantly altered groups of miRNAs were categorized into primary functionalities including cancer, cell-to-cell signaling, and cellular development among others. Gene network analysis predicted specific alterations of factors contributing to muscle size including Akt, FOXO3, and others. These results create a foundation for future research into the sufficiency of targeting these genes to attenuate muscle loss in cancer cachexia. Copyright © 2017 the American Physiological Society.

  1. Shared Resistance to Aging and ALS in Neuromuscular Junctions of Specific Muscles

    PubMed Central

    Valdez, Gregorio; Tapia, Juan C.; Lichtman, Jeff W.; Fox, Michael A.; Sanes, Joshua R.

    2012-01-01

    Normal aging and neurodegenerative diseases both lead to structural and functional alterations in synapses. Comparison of synapses that are generally similar but respond differently to insults could provide the basis for discovering mechanisms that underlie susceptibility or resistance to damage. Here, we analyzed skeletal neuromuscular junctions (NMJs) in 16 mouse muscles to seek such differences. We find that muscles respond in one of three ways to aging. In some, including most limb and trunk muscles, age-related alterations to NMJs are progressive and extensive during the second postnatal year. NMJs in other muscles, such as extraocular muscles, are strikingly resistant to change. A third set of muscles, including several muscles of facial expression and the external anal sphinter, succumb to aging but not until the third postnatal year. We asked whether susceptible and resistant muscles differed in rostrocaudal or proximodistal position, source of innervation, motor unit size, or fiber type composition. Of these factors, muscle innervation by brainstem motor neurons correlated best with resistance to age-related decline. Finally, we compared synaptic alterations in normally aging muscles to those in a mouse model of amyotrophic lateral sclerosis (ALS). Patterns of resistance and susceptibility were strikingly correlated in the two conditions. Moreover, damage to NMJs in aged muscles correlated with altered expression and distribution of CRMP4a and TDP-43, which are both altered in motor neurons affected by ALS. Together, these results reveal novel structural, regional and molecular parallels between aging and ALS. PMID:22485182

  2. Endurance, interval sprint, and resistance exercise training: impact on microvascular dysfunction in type 2 diabetes

    PubMed Central

    Laughlin, M. Harold

    2015-01-01

    Type 2 diabetes (T2D) alters capillary hemodynamics, causes capillary rarefaction in skeletal muscle, and alters endothelial and vascular smooth muscle cell phenotype, resulting in impaired vasodilatory responses. These changes contribute to altered blood flow responses to physiological stimuli, such as exercise and insulin secretion. T2D-induced microvascular dysfunction impairs glucose and insulin delivery to skeletal muscle (and other tissues such as skin and nervous), thereby reducing glucose uptake and perpetuating hyperglycemia and hyperinsulinemia. In patients with T2D, exercise training (EX) improves microvascular vasodilator and insulin signaling and attenuates capillary rarefaction in skeletal muscle. EX-induced changes subsequently augment glucose and insulin delivery as well as glucose uptake. If these adaptions occur in a sufficient amount of tissue, and skeletal muscle in particular, chronic exposure to hyperglycemia and hyperinsulinemia and the risk of microvascular complications in all vascular beds will decrease. We postulate that EX programs that engage as much skeletal muscle mass as possible and recruit as many muscle fibers within each muscle as possible will generate the greatest improvements in microvascular function, providing that the duration of the stimulus is sufficient. Primary improvements in microvascular function occur in tissues (skeletal muscle primarily) engaged during exercise, and secondary improvements in microvascular function throughout the body may result from improved blood glucose control. We propose that the added benefit of combined resistance and aerobic EX programs and of vigorous intensity EX programs is not simply “more is better.” Rather, we believe the additional benefit is the result of EX-induced adaptations in and around more muscle fibers, resulting in more muscle mass and the associated microvasculature being changed. Thus, to acquire primary and secondary improvements in microvascular function and improved blood glucose control, EX programs should involve upper and lower body exercise and modulate intensity to augment skeletal muscle fiber recruitment. Under conditions of limited mobility, it may be necessary to train skeletal muscle groups separately to maximize whole body skeletal muscle fiber recruitment. PMID:26408541

  3. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirvent, P., E-mail: pascal.sirvent@univ-bpclermont.fr; CHRU Montpellier, 34295 Montpellier; Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en conditions Physiologiques et Pathologiques

    2012-03-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complexmore » I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.« less

  4. Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells

    PubMed Central

    Fontes-Oliveira, Cibely C.; Steinz, Maarten; Schneiderat, Peter; Mulder, Hindrik; Durbeej, Madeleine

    2017-01-01

    Skeletal muscle has high energy requirement and alterations in metabolism are associated with pathological conditions causing muscle wasting and impaired regeneration. Congenital muscular dystrophy type 1A (MDC1A) is a severe muscle disorder caused by mutations in the LAMA2 gene. Leigh syndrome (LS) is a neurometabolic disease caused by mutations in genes related to mitochondrial function. Skeletal muscle is severely affected in both diseases and a common feature is muscle weakness that leads to hypotonia and respiratory problems. Here, we have investigated the bioenergetic profile in myogenic cells from MDC1A and LS patients. We found dysregulated expression of genes related to energy production, apoptosis and proteasome in myoblasts and myotubes. Moreover, impaired mitochondrial function and a compensatory upregulation of glycolysis were observed when monitored in real-time. Also, alterations in cell cycle populations in myoblasts and enhanced caspase-3 activity in myotubes were observed. Thus, we have for the first time demonstrated an impairment of the bioenergetic status in human MDC1A and LS muscle cells, which could contribute to cell cycle disturbance and increased apoptosis. Our findings suggest that skeletal muscle metabolism might be a promising pharmacological target in order to improve muscle function, energy efficiency and tissue maintenance of MDC1A and LS patients. PMID:28367954

  5. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice

    PubMed Central

    Zabielski, Piotr; Lanza, Ian R.; Gopala, Srinivas; Holtz Heppelmann, Carrie J.; Bergen, H. Robert; Dasari, Surendra

    2016-01-01

    Insulin plays pivotal role in cellular fuel metabolism in skeletal muscle. Despite being the primary site of energy metabolism, the underlying mechanism on how insulin deficiency deranges skeletal muscle mitochondrial physiology remains to be fully understood. Here we report an important link between altered skeletal muscle proteome homeostasis and mitochondrial physiology during insulin deficiency. Deprivation of insulin in streptozotocin-induced diabetic mice decreased mitochondrial ATP production, reduced coupling and phosphorylation efficiency, and increased oxidant emission in skeletal muscle. Proteomic survey revealed that the mitochondrial derangements during insulin deficiency were related to increased mitochondrial protein degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved in mitochondrial respiration and β-oxidation. However, a paradoxical upregulation of proteins involved in cellular uptake of fatty acids triggered an accumulation of incomplete fatty acid oxidation products in skeletal muscle. These data implicate a mismatch of β-oxidation and fatty acid uptake as a mechanism leading to increased oxidative stress in diabetes. This notion was supported by elevated oxidative stress in cultured myotubes exposed to palmitate in the presence of a β-oxidation inhibitor. Together, these results indicate that insulin deficiency alters the balance of proteins involved in fatty acid transport and oxidation in skeletal muscle, leading to impaired mitochondrial function and increased oxidative stress. PMID:26718503

  6. Cigarette smoke directly impairs skeletal muscle function through capillary regression and altered myofibre calcium kinetics in mice.

    PubMed

    Nogueira, Leonardo; Trisko, Breanna M; Lima-Rosa, Frederico L; Jackson, Jason; Lund-Palau, Helena; Yamaguchi, Masahiro; Breen, Ellen C

    2018-05-23

    Cigarette smoke components directly alter muscle fatigue resistance and intracellular muscle fibre Ca 2+ handling independent of a change in lung structure. Changes in muscle vascular structure are associated with a depletion of satellite cells. Sarcoplasmic reticulum Ca 2+ uptake is substantially impaired in myofibres during fatiguing contractions in mice treated with cigarette smoke extract. Cigarette smokers exhibit exercise intolerance before a decline in respiratory function. In the present study, the direct effects of cigarette smoke on limb muscle function were tested by comparing cigarette smoke delivered to mice by weekly injections of cigarette smoke extract (CSE), or nose-only exposure (CS) 5 days each week, for 8 weeks. Cigarette smoke delivered by either route did not alter pulmonary airspace size. Muscle fatigue measured in situ was 50% lower in the CSE and CS groups than in control. This was accompanied by 34% and 22% decreases in soleus capillary-to-fibre ratio of the CSE and CS groups, respectively, and a trend for fewer skeletal muscle actin-positive arterioles (P = 0.07). In addition, fewer quiescent satellite cells (Nes+Pax7+) were associated with soleus fibres in mice with skeletal myofibre VEGF gene deletion (decreased 47%) and CS exposed (decreased 73%) than with control fibres. Contractile properties of isolated extensor digitorum longus and soleus muscles were impaired. In flexor digitorum brevis myofibres isolated from CSE mice, fatigue resistance was diminished by 43% compared to control and CS myofibres, and this was accompanied by a pronounced slowing in relaxation, an increase in intracellular Ca 2+ accumulation, and a slowing in sarcoplasmic reticulum Ca 2+ uptake. These data suggest that cigarette smoke components may impair hindlimb muscle vascular structure, fatigue resistance and myofibre calcium handling, and these changes ultimately affect contractile efficiency of locomotor muscles independent of a change in lung function. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  7. Loss of IL-15 receptor α alters the endurance, fatigability, and metabolic characteristics of mouse fast skeletal muscles

    PubMed Central

    Pistilli, Emidio E.; Bogdanovich, Sasha; Garton, Fleur; Yang, Nan; Gulbin, Jason P.; Conner, Jennifer D.; Anderson, Barbara G.; Quinn, LeBris S.; North, Kathryn; Ahima, Rexford S.; Khurana, Tejvir S.

    2011-01-01

    IL-15 receptor α (IL-15Rα) is a component of the heterotrimeric plasma membrane receptor for the pleiotropic cytokine IL-15. However, IL-15Rα is not merely an IL-15 receptor subunit, as mice lacking either IL-15 or IL-15Rα have unique phenotypes. IL-15 and IL-15Rα have been implicated in muscle phenotypes, but a role in muscle physiology has not been defined. Here, we have shown that loss of IL-15Rα induces a functional oxidative shift in fast muscles, substantially increasing fatigue resistance and exercise capacity. IL-15Rα–knockout (IL-15Rα–KO) mice ran greater distances and had greater ambulatory activity than controls. Fast muscles displayed fatigue resistance and a slower contractile phenotype. The molecular signature of these muscles included altered markers of mitochondrial biogenesis and calcium homeostasis. Morphologically, fast muscles had a greater number of muscle fibers, smaller fiber areas, and a greater ratio of nuclei to fiber area. The alterations of physiological properties and increased resistance to fatigue in fast muscles are consistent with a shift toward a slower, more oxidative phenotype. Consistent with a conserved functional role in humans, a genetic association was found between a SNP in the IL15RA gene and endurance in athletes stratified by sport. Therefore, we propose that IL-15Rα has a role in defining the phenotype of fast skeletal muscles in vivo. PMID:21765213

  8. Evaluation of substance P as a neurotransmitter in equine jejunum.

    PubMed

    Malone, E D; Kannan, M S; Brown, D R

    2000-10-01

    To determine whether substance P (SP) functions as a neurotransmitter in equine jejunum. Samples of jejunum obtained from horses that did not have lesions in the gastrointestinal tract. Jejunal smooth muscle strips, oriented in the plane of the circular or longitudinal muscle, were suspended isometrically in muscle baths. Neurotransmitter release was induced by electrical field stimulation (EFS) delivered at 2 intensities (30 and 70 V) and various frequencies on muscle strips that were maintained at low tension or were under contraction. A neurokinin-1 receptor blocker (CP-96,345) was added to baths prior to EFS to interrupt SP neurotransmission. Additionally, direct effects of SP on muscle strips were evaluated, and SP-like immunoreactivity was localized in intestinal tissues, using indirect immunofluorescence testing. Substance P contracted circularly and longitudinally oriented muscle strips. Prior treatment with CP-96,345 altered muscle responses to SP and EFS, suggesting that SP was released from depolarized myenteric neurons. Depending on orientation of muscle strips and stimulation variables used, CP-96,345 increased or decreased the contractile response to EFS. Substance P-like immunoreactivity was detected in the myenteric plexus and circular muscle layers. Substance P appears to function as a neurotransmitter in equine jejunum. It apparently modulates smooth muscle contractility, depending on preexisting conditions. Effects of SP may be altered in some forms of intestinal dysfunction. Altering SP neurotransmission in the jejunum may provide a therapeutic option for motility disorders of horses that are unresponsive to adrenergic and cholinergic drugs.

  9. Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welsh, Lillian; Tanguay, Robert L.; Svoboda, Kurt R.

    Zebrafish embryos offer a unique opportunity to investigate the mechanisms by which nicotine exposure impacts early vertebrate development. Embryos exposed to nicotine become functionally paralyzed by 42 hpf suggesting that the neuromuscular system is compromised in exposed embryos. We previously demonstrated that secondary spinal motoneurons in nicotine-exposed embryos were delayed in development and that their axons made pathfinding errors (Svoboda, K.R., Vijayaraghaven, S., Tanguay, R.L., 2002. Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci. 22, 10731-10741). In that study, we did not consider the potential role that altered skeletalmore » muscle development caused by nicotine exposure could play in contributing to the errors in spinal motoneuron axon pathfinding. In this study, we show that an alteration in skeletal muscle development occurs in tandem with alterations in spinal motoneuron development upon exposure to nicotine. The alteration in the muscle involves the binding of nicotine to the muscle-specific AChRs. The nicotine-induced alteration in muscle development does not occur in the zebrafish mutant (sofa potato, [sop]), which lacks muscle-specific AChRs. Even though muscle development is unaffected by nicotine exposure in sop mutants, motoneuron axonal pathfinding errors still occur in these mutants, indicating a direct effect of nicotine exposure on nervous system development.« less

  10. Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals.

    PubMed

    Schwörer, Simon; Becker, Friedrich; Feller, Christian; Baig, Ali H; Köber, Ute; Henze, Henriette; Kraus, Johann M; Xin, Beibei; Lechel, André; Lipka, Daniel B; Varghese, Christy S; Schmidt, Manuel; Rohs, Remo; Aebersold, Ruedi; Medina, Kay L; Kestler, Hans A; Neri, Francesco; von Maltzahn, Julia; Tümpel, Stefan; Rudolph, K Lenhard

    2016-12-15

    The functionality of stem cells declines during ageing, and this decline contributes to ageing-associated impairments in tissue regeneration and function. Alterations in developmental pathways have been associated with declines in stem-cell function during ageing, but the nature of this process remains poorly understood. Hox genes are key regulators of stem cells and tissue patterning during embryogenesis with an unknown role in ageing. Here we show that the epigenetic stress response in muscle stem cells (also known as satellite cells) differs between aged and young mice. The alteration includes aberrant global and site-specific induction of active chromatin marks in activated satellite cells from aged mice, resulting in the specific induction of Hoxa9 but not other Hox genes. Hoxa9 in turn activates several developmental pathways and represents a decisive factor that separates satellite cell gene expression in aged mice from that in young mice. The activated pathways include most of the currently known inhibitors of satellite cell function in ageing muscle, including Wnt, TGFβ, JAK/STAT and senescence signalling. Inhibition of aberrant chromatin activation or deletion of Hoxa9 improves satellite cell function and muscle regeneration in aged mice, whereas overexpression of Hoxa9 mimics ageing-associated defects in satellite cells from young mice, which can be rescued by the inhibition of Hoxa9-targeted developmental pathways. Together, these data delineate an altered epigenetic stress response in activated satellite cells from aged mice, which limits satellite cell function and muscle regeneration by Hoxa9-dependent activation of developmental pathways.

  11. Desmin Cytoskeleton Linked to Muscle Mitochondrial Distribution and Respiratory Function

    PubMed Central

    Milner, Derek J.; Mavroidis, Manolis; Weisleder, Noah; Capetanaki, Yassemi

    2000-01-01

    Ultrastructural studies have previously suggested potential association of intermediate filaments (IFs) with mitochondria. Thus, we have investigated mitochondrial distribution and function in muscle lacking the IF protein desmin. Immunostaining of skeletal muscle tissue sections, as well as histochemical staining for the mitochondrial marker enzymes cytochrome C oxidase and succinate dehydrogenase, demonstrate abnormal accumulation of subsarcolemmal clumps of mitochondria in predominantly slow twitch skeletal muscle of desmin-null mice. Ultrastructural observation of desmin-null cardiac muscle demonstrates in addition to clumping, extensive mitochondrial proliferation in a significant fraction of the myocytes, particularly after work overload. These alterations are frequently associated with swelling and degeneration of the mitochondrial matrix. Mitochondrial abnormalities can be detected very early, before other structural defects become obvious. To investigate related changes in mitochondrial function, we have analyzed ADP-stimulated respiration of isolated muscle mitochondria, and ADP-stimulated mitochondrial respiration in situ using saponin skinned muscle fibers. The in vitro maximal rates of respiration in isolated cardiac mitochondria from desmin-null and wild-type mice were similar. However, mitochondrial respiration in situ is significantly altered in desmin-null muscle. Both the maximal rate of ADP-stimulated oxygen consumption and the dissociation constant (K m) for ADP are significantly reduced in desmin-null cardiac and soleus muscle compared with controls. Respiratory parameters for desmin-null fast twitch gastrocnemius muscle were unaffected. Additionally, respiratory measurements in the presence of creatine indicate that coupling of creatine kinase and the adenine translocator is lost in desmin-null soleus muscle. This coupling is unaffected in cardiac muscle from desmin-null animals. All of these studies indicate that desmin IFs play a significant role in mitochondrial positioning and respiratory function in cardiac and skeletal muscle. PMID:10995435

  12. Age-related structural alterations in human skeletal muscle fibers and mitochondria are sex specific: relationship to single-fiber function.

    PubMed

    Callahan, Damien M; Bedrin, Nicholas G; Subramanian, Meenakumari; Berking, James; Ades, Philip A; Toth, Michael J; Miller, Mark S

    2014-06-15

    Age-related loss of skeletal muscle mass and function is implicated in the development of disease and physical disability. However, little is known about how age affects skeletal muscle structure at the cellular and ultrastructural levels or how such alterations impact function. Thus we examined skeletal muscle structure at the tissue, cellular, and myofibrillar levels in young (21-35 yr) and older (65-75 yr) male and female volunteers, matched for habitual physical activity level. Older adults had smaller whole muscle tissue cross-sectional areas (CSAs) and mass. At the cellular level, older adults had reduced CSAs in myosin heavy chain II (MHC II) fibers, with no differences in MHC I fibers. In MHC II fibers, older men tended to have fewer fibers with large CSAs, while older women showed reduced fiber size across the CSA range. Older adults showed a decrease in intermyofibrillar mitochondrial size; however, the age effect was driven primarily by women (i.e., age by sex interaction effect). Mitochondrial size was inversely and directly related to isometric tension and myosin-actin cross-bridge kinetics, respectively. Notably, there were no intermyofibrillar or subsarcolemmal mitochondrial fractional content or myofilament ultrastructural differences in the activity-matched young and older adults. Collectively, our results indicate age-related reductions in whole muscle size do not vary by sex. However, age-related structural alterations at the cellular and subcellular levels are different between the sexes and may contribute to different functional phenotypes in ways that modulate sex-specific reductions in physical capacity with age. Copyright © 2014 the American Physiological Society.

  13. Muscle Fiber Size and Function in Elderly Humans: A Longitudinal Study

    USDA-ARS?s Scientific Manuscript database

    Cross-sectional studies are likely to underestimate age-related changes in skeletal muscle strength and mass. The purpose of this longitudinal study was to assess whole muscle and single muscle fiber alterations in the same cohort of 12 older (mean age: start of study=71.1+/-5.4 yrs and end of study...

  14. Lumbar muscle structure and function in chronic versus recurrent low back pain: a cross-sectional study.

    PubMed

    Goubert, Dorien; De Pauw, Robby; Meeus, Mira; Willems, Tine; Cagnie, Barbara; Schouppe, Stijn; Van Oosterwijck, Jessica; Dhondt, Evy; Danneels, Lieven

    2017-09-01

    Heterogeneity exists within the low back pain (LBP) population. Some patients recover after every pain episode, whereas others suffer daily from LBP complaints. Until now, studies rarely make a distinction between recurrent low back pain (RLBP) and chronic low back pain (CLBP), although both are characterized by a different clinical picture. Clinical experiences also indicate that heterogeneity exists within the CLBP population. Muscle degeneration, like atrophy, fat infiltration, alterations in muscle fiber type, and altered muscle activity, compromises proper biomechanics and motion of the spinal units in LBP patients. The amount of alterations in muscle structure and muscle function of the paraspinal muscles might be related to the recurrence or chronicity of LBP. The aim of this experimental study is to evaluate differences in muscle structure (cross-sectional area and lean muscle fat index) and muscle activity of the multifidus (MF) and erector spinae (ES) during trunk extension, in patients with RLBP, non-continuous CLBP, and continuous CLBP. This cross-sectional study took place in the university hospital of Ghent, Belgium. Muscle structure characteristics and muscle activity were assessed by magnetic resonance imaging (MRI). Fifty-five adults with non-specific LBP (24 RLBP in remission, 15 non-continuous CLBP, 16 continuous CLBP) participated in this study. Total cross-sectional area, muscle cross-sectional area, fat cross-sectional area, lean muscle fat index, T2-rest and T2-shift were assessed. A T1-weighted Dixon MRI scan was used to evaluate spinal muscle cross-sectional area and fat infiltration in the lumbar MF and ES. Muscle functional MRI was used to evaluate the muscle activity of the lumbar MF and ES during a lumbar extension exercise. Before and after the exercise, a pain assessment was performed. This study was supported by grants from the Special Research Fund of Ghent University (DEF12/AOP/022) without potential conflict of interest-associated biases in the text of the paper. Fat cross-sectional area and lean muscle fat index were significantly higher in MF and ES in continuous CLBP compared with non-continuous CLBP and RLBP (p<.05). No differencesbetween groups were found for total cross-sectional area and muscle cross-sectional area in MF or ES (p>.05). Also, no significant differences between groups for T2-rest were established. T2-shift, however, was significantly lower in MF and ES in RLBP compared with, respectively, non-continuous CLBP and continuous CLBP (p<.05). These results indicate a higher amount of fat infiltration in the lumbar muscles, in the absence of clear atrophy, in continuous CLBP compared with RLBP. A lower metabolic activity of the lumbar muscles was seen in RLBP replicating a relative lower intensity in contractions performed by the lumbar muscles in RLBP compared with non-continuous and continuous CLBP. In conclusion, RLBP differs from continuous CLBP for both muscle structure and muscle function, whereas non-continuous CLBP seems comparable with RLBP for lumbar muscle structure and with continuous CLBP for lumbar muscle function. These results underline the differences in muscle structure and muscle function between different LBP populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. High-resolution respirometry of fine-needle muscle biopsies in pre-manifest Huntington's disease expansion mutation carriers shows normal mitochondrial respiratory function.

    PubMed

    Buck, Eva; Zügel, Martina; Schumann, Uwe; Merz, Tamara; Gumpp, Anja M; Witting, Anke; Steinacker, Jürgen M; Landwehrmeyer, G Bernhard; Weydt, Patrick; Calzia, Enrico; Lindenberg, Katrin S

    2017-01-01

    Alterations in mitochondrial respiration are an important hallmark of Huntington's disease (HD), one of the most common monogenetic causes of neurodegeneration. The ubiquitous expression of the disease causing mutant huntingtin gene raises the prospect that mitochondrial respiratory deficits can be detected in skeletal muscle. While this tissue is readily accessible in humans, transgenic animal models offer the opportunity to cross-validate findings and allow for comparisons across organs, including the brain. The integrated respiratory chain function of the human vastus lateralis muscle was measured by high-resolution respirometry (HRR) in freshly taken fine-needle biopsies from seven pre-manifest HD expansion mutation carriers and nine controls. The respiratory parameters were unaffected. For comparison skeletal muscle isolated from HD knock-in mice (HdhQ111) as well as a broader spectrum of tissues including cortex, liver and heart muscle were examined by HRR. Significant changes of mitochondrial respiration in the HdhQ knock-in mouse model were restricted to the liver and the cortex. Mitochondrial mass as quantified by mitochondrial DNA copy number and citrate synthase activity was stable in murine HD-model tissue compared to control. mRNA levels of key enzymes were determined to characterize mitochondrial metabolic pathways in HdhQ mice. We demonstrated the feasibility to perform high-resolution respirometry measurements from small human HD muscle biopsies. Furthermore, we conclude that alterations in respiratory parameters of pre-manifest human muscle biopsies are rather limited and mirrored by a similar absence of marked alterations in HdhQ skeletal muscle. In contrast, the HdhQ111 murine cortex and liver did show respiratory alterations highlighting the tissue specific nature of mutant huntingtin effects on respiration.

  16. Mitochondrial dysfunction and insulin resistance from the outside in: extracellular matrix, the cytoskeleton, and mitochondria

    PubMed Central

    Coletta, Dawn K.

    2011-01-01

    Insulin resistance in skeletal muscle is a prominent feature of obesity and type 2 diabetes. The association between mitochondrial changes and insulin resistance is well known. More recently, there is growing evidence of a relationship between inflammation, extracellular remodeling, and insulin resistance. The intent of this review is to propose a potentially novel mechanism for the development of insulin resistance, focusing on the underappreciated connections among inflammation, extracellular remodeling, cytoskeletal interactions, mitochondrial function, and insulin resistance in human skeletal muscle. Several sources of inflammation, including expansion of adipose tissue resulting in increased lipolysis and alterations in pro- and anti-inflammatory cytokines, contribute to the insulin resistance observed in obesity and type 2 diabetes. In the experimental model of lipid oversupply, an inflammatory response in skeletal muscle leads to altered expression extracellular matrix-related genes as well as nuclear encoded mitochondrial genes. A similar pattern also is observed in “naturally” occurring insulin resistance in muscle of obese nondiabetic individuals and patients with type 2 diabetes mellitus. More recently, alterations in proteins (including α-actinin-2, desmin, proteasomes, and chaperones) involved in muscle structure and function have been observed in insulin-resistant muscle. Some of these cytoskeletal proteins are mechanosignal transducers that allow muscle fibers to sense contractile activity and respond appropriately. The ensuing alterations in expression of genes coding for mitochondrial proteins and cytoskeletal proteins may contribute to the mitochondrial changes observed in insulin-resistant muscle. These changes in turn may lead to a reduction in fat oxidation and an increase in intramyocellular lipid, which contributes to the defects in insulin signaling in insulin resistance. PMID:21862724

  17. Metabolic effects of the iodothyronine functional analogue TRC150094 on the liver and skeletal muscle of high-fat diet fed overweight rats: an integrated proteomic study.

    PubMed

    Silvestri, Elena; Glinni, Daniela; Cioffi, Federica; Moreno, Maria; Lombardi, Assunta; de Lange, Pieter; Senese, Rosalba; Ceccarelli, Michele; Salzano, Anna Maria; Scaloni, Andrea; Lanni, Antonia; Goglia, Fernando

    2012-07-06

    A novel functional iodothyronine analogue, TRC150094, which has a much lower potency toward thyroid hormone receptor (α1/β1) activation than triiodothyronine, has been shown to be effective at reducing adiposity in rats simultaneously receiving a high-fat diet (HFD). Here, by combining metabolic, functional and proteomic analysis, we studied how the hepatic and skeletal muscle phenotypes might respond to TRC150094 treatment in HFD-fed overweight rats. Drug treatment increased both the liver and skeletal muscle mitochondrial oxidative capacities without altering mitochondrial efficiency. Coherently, in terms of individual respiratory in-gel activity, blue-native analysis revealed an increased activity of complex V in the liver and of complexes II and V in tibialis muscle in TCR150094-treated animals. Subsequently, the identification of differentially expressed proteins and the analysis of their interrelations gave an integrated view of the phenotypic/metabolic adaptations occurring in the liver and muscle proteomes during drug treatment. TRC150094 significantly altered the expression of several proteins involved in key liver metabolic pathways, including amino acid and nitrogen metabolism, and fructose and mannose metabolism. The canonical pathways most strongly influenced by TRC150094 in tibialis muscle included glycolysis and gluconeogenesis, amino acid, fructose and mannose metabolism, and cell signaling. The phenotypic/metabolic influence of TRC150094 on the liver and skeletal muscle of HFD-fed overweight rats suggests the potential clinical application of this iodothyronine analogue in ameliorating metabolic risk parameters altered by diet regimens.

  18. Development and Maturation of the Neuromuscular Junciton in Cell Culture Under Conditions of Simulated Zero-gravity

    NASA Technical Reports Server (NTRS)

    Gruener, R.

    1985-01-01

    Alterations in gravitational conditions which alter the normal development and interactions of nerve and muscle cells grown in culture is examined. Clinostat conditions, similating Og, which produce changes in cell morphology and growth patterns is studied. Data show that rotation of cocultures of nerve and muscle cells results in morphologic changes which are predicted to significantly alter the functional interactions between the elements of a prototypic synapse. It is further predicted that similar alterations may occur in central synapses which may therefore affect the development of the central nervous system when subjected to altered gravitational conditions.

  19. Comparison of Antagonist Muscle Activity During Walking Between Total Knee Replacement and Control Subjects Using Unnormalized Electromyography.

    PubMed

    Lundberg, Hannah J; Rojas, Idubijes L; Foucher, Kharma C; Wimmer, Markus A

    2016-06-01

    Although satisfactory outcomes have been reported after total knee replacement (TKR), full recovery of muscle strength and physical function is rare. We developed a relative activation index (RAI) to compare leg muscle activity from unnormalized surface electromyography (sEMG) between TKR and control subjects. Nineteen TKR and 19 control subjects underwent gait analysis and sEMG. RAIs were calculated by dividing the average sEMG for 2 consecutive subphases of stance defined by the direction of the external sagittal plane moment (flexion or extension). RAIs and external moments indicate TKR subjects have less initial stance antagonist rectus femoris activity (P = .004), greater middle stance antagonist biceps femoris activity (P < .001), and less late stance agonist biceps femoris activity (P < .001) than control subjects. Individuals with TKR demonstrate increased flexor muscle activation during weight bearing, potentially contributing to altered gait patterns found during the stance phase of gait. The RAI helps detail whether decreased external moments correspond to less agonist or more antagonist muscle activity to determine true muscle activity differences between subject groups. Identifying the mechanisms underlying altered muscle function both before and after TKR is critical for developing rehabilitation strategies to address functional deficits and disability found in this patient population. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Muscle wasting in cancer: the role of mitochondria.

    PubMed

    Argilés, Josep M; López-Soriano, Francisco J; Busquets, Silvia

    2015-05-01

    The aim of the present review is to examine the impact of mitochondrial dysfunction in cancer cachexia. Oxidative pathways are altered in this tissue during muscle wasting and this seems to be a consequence of mitochondrial abnormalities that include altered morphology and function, decreased ATP synthesis and uncoupling. An alteration of energy balance is the immediate cause of cachexia. Both alterations in energy intake and expenditure are responsible for the wasting syndrome associated with different types of pathological conditions, such as cancer. Different types of molecular mechanisms contribute to energy expenditure and, therefore, involuntary body weight loss, one of which is mitochondrial dysfunction.

  1. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    PubMed

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from dysferlinopathy (Dysfy), polymyositis (PM), and distal myopathy with rimmed vacuoles (DMRV) displayed morphological and biochemical evidences of mitochondrial dysfunction. Proteomic analysis revealed down-regulation of electron transport chain (ETC) subunits, assembly factors, and tricarboxylic acid (TCA) cycle enzymes, with 80 proteins common among the three pathologies. Mitochondrial proteins from muscle pathologies also displayed higher Trp oxidation that could alter the local structure. Cover image for this issue: doi: 10.1111/jnc.13324. © 2016 International Society for Neurochemistry.

  2. Effects of altered loading states on muscle plasticity: what have we learned from rodents?

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.

    1996-01-01

    This paper summarizes the key findings concerning the adaptive properties of rodent muscle in response to altered loading states. When the mechanical stress on the muscle is chronically increased, the muscle adapts by hypertrophying its fibers. This response is regulated by processes resulting in contractile protein expression reflecting slower phenotypes, thereby enabling the muscle to better support load-hearing activity. In contrast, reducing the load-bearing activity induces an opposite response whereby muscles used for both antigravity function and locomotion atrophy while transforming some of the slow fibers into faster contractile phenotypes. Accompanying the atrophy is both a reduced power generating and activity sustaining capability. These adaptive processes are regulated by both transcriptional and translational processes. Available evidence further suggests that the interaction of heavy resistance activity and hormonal/growth factors (insulin-like growth factor, growth hormone, glucocorticoids, etc.) are critical in the maintenance of muscle mass and function. Also resistance training, in contrast to other activities such as endurance running, provides a more economical form of stress because less mechanical activity is required to maintain muscle homeostasis in the context of chronic states of weightlessness.

  3. Mechano- and metabosensitive alterations after injection of botulinum toxin into gastrocnemius muscle.

    PubMed

    Caron, Guillaume; Rouzi, Talifujiang; Grelot, Laurent; Magalon, Guy; Marqueste, Tanguy; Decherchi, Patrick

    2014-07-01

    This study was designed to investigate effects of motor denervation by Clostridium botulinum toxin serotype A (BoNT/A) on the afferent activity of fibers originating from the gastrocnemius muscle of rats. Animals were randomized in two groups, 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle. Locomotor activity was evaluated once per day during 12 days with a test based on footprint measurements of walking rats (sciatic functional index). At the end of the functional assessment period, electrophysiological tests were used to measure muscle properties, metabosensitive afferent fiber responses to chemical (KCl and lactic acid) injections, electrically induced fatigue (EIF), and mechanosensitive responses to tendon vibrations. Additionally, ventilatory response was recorded during repetitive muscle contractions. Then, rats were sacrificed, and the BoNT/A-injected muscles were weighed. Twelve days postinjection we observed a complete motor denervation associated with a significant muscle atrophy and loss of force to direct muscle stimulation. In the BoNT/A group, the metabosensitive responses to KCl injections were unaltered. However, we observed alterations in responses to EIF and to 1 mM of lactic acid (which induces the greatest activation). The ventilatory adjustments during repetitive muscle activation were abolished, and the mechanosensitive fiber responses to tendon vibrations were reduced. These results indicate that BoNT/A alters the sensorimotor loop and may induce insufficient motor and physiological adjustments in patients in whom a motor denervation with BoNT/A was performed. Copyright © 2014 Wiley Periodicals, Inc.

  4. Alterations in protein metabolism during space flight and inactivity

    NASA Technical Reports Server (NTRS)

    Ferrando, Arny A.; Paddon-Jones, Doug; Wolfe, Robert R.

    2002-01-01

    Space flight and the accompanying diminished muscular activity lead to a loss of body nitrogen and muscle function. These losses may affect crew capabilities and health in long-duration missions. Space flight alters protein metabolism such that the body is unable to maintain protein synthetic rates. A concomitant hypocaloric intake and altered anabolic/catabolic hormonal profiles may contribute to or exacerbate this problem. The inactivity associated with bedrest also reduces muscle and whole-body protein synthesis. For this reason, bedrest provides a good model for the investigation of potential exercise and nutritional countermeasures to restore muscle protein synthesis. We have demonstrated that minimal resistance exercise preserves muscle protein synthesis throughout bedrest. In addition, ongoing work indicates that an essential amino acid and carbohydrate supplement may ameliorate the loss of lean body mass and muscle strength associated with 28 d of bedrest. The investigation of inactivity-induced alterations in protein metabolism, during space flight or prolonged bedrest, is applicable to clinical populations and, in a more general sense, to the problems associated with the decreased activity that occur with aging.

  5. Altered resting state neuromotor connectivity in men with chronic prostatitis/chronic pelvic pain syndrome: A MAPP

    PubMed Central

    Kutch, Jason J.; Yani, Moheb S.; Asavasopon, Skulpan; Kirages, Daniel J.; Rana, Manku; Cosand, Louise; Labus, Jennifer S.; Kilpatrick, Lisa A.; Ashe-McNalley, Cody; Farmer, Melissa A.; Johnson, Kevin A.; Ness, Timothy J.; Deutsch, Georg; Harris, Richard E.; Apkarian, A. Vania; Clauw, Daniel J.; Mackey, Sean C.; Mullins, Chris; Mayer, Emeran A.

    2015-01-01

    Brain network activity associated with altered motor control in individuals with chronic pain is not well understood. Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is a debilitating condition in which previous studies have revealed altered resting pelvic floor muscle activity in men with CP/CPPS compared to healthy controls. We hypothesized that the brain networks controlling pelvic floor muscles would also show altered resting state function in men with CP/CPPS. Here we describe the results of the first test of this hypothesis focusing on the motor cortical regions, termed pelvic-motor, that can directly activate pelvic floor muscles. A group of men with CP/CPPS (N = 28), as well as group of age-matched healthy male controls (N = 27), had resting state functional magnetic resonance imaging scans as part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network study. Brain maps of the functional connectivity of pelvic-motor were compared between groups. A significant group difference was observed in the functional connectivity between pelvic-motor and the right posterior insula. The effect size of this group difference was among the largest effect sizes in functional connectivity between all pairs of 165 anatomically-defined subregions of the brain. Interestingly, many of the atlas region pairs with large effect sizes also involved other subregions of the insular cortices. We conclude that functional connectivity between motor cortex and the posterior insula may be among the most important markers of altered brain function in men with CP/CPPS, and may represent changes in the integration of viscerosensory and motor processing. PMID:26106574

  6. Multi-scale Finite Element Modeling of Eustachian Tube Function: Influence of Mucosal Adhesion

    PubMed Central

    Malik, J.E.; Swarts, J.D.; Ghadiali, S. N.

    2017-01-01

    The inability to open the collapsible Eustachian tube (ET) leads to the development of chronic Otitis Media (OM). Although mucosal inflammation during OM leads to increased mucin gene expression and elevated adhesion forces within the ET lumen, it is not known how changes in mucosal adhesion alter the biomechanical mechanisms of ET function. In this study, we developed a novel multi-scale finite element model of ET function in adults that utilizes adhesion spring elements to simulate changes in mucosal adhesion. Models were created for six adult subjects and dynamic patterns in muscle contraction were used to simulate the wave-like opening of the ET that occurs during swallowing. Results indicate that ET opening is highly sensitive to the level of mucosal adhesion and that exceeding a critical value of adhesion leads to rapid ET dysfunction. Parameter variation studies and sensitivity analysis indicate that increased mucosal adhesion alters the relative importance of several tissue biomechanical properties. For example, increases in mucosal adhesion reduced the sensitivity of ET function to tensor veli palatini muscle forces but did not alter the insensitivity of ET function to levator veli palatini muscle forces. Interestingly, although changes in cartilage stiffness did not significantly influence ET opening under low adhesion conditions, ET opening was highly sensitive to changes in cartilage stiffness under high adhesion conditions. Therefore, our multi-scale computational models indicate that changes in mucosal adhesion as would occur during inflammatory OM alter the biomechanical mechanisms of ET function. PMID:26891171

  7. Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Contributes to Muscle Insulin Resistance in Mice and Humans.

    PubMed

    Tubbs, Emily; Chanon, Stéphanie; Robert, Maud; Bendridi, Nadia; Bidaux, Gabriel; Chauvin, Marie-Agnès; Ji-Cao, Jingwei; Durand, Christine; Gauvrit-Ramette, Daphné; Vidal, Hubert; Lefai, Etienne; Rieusset, Jennifer

    2018-04-01

    Modifications of the interactions between endoplasmic reticulum (ER) and mitochondria, defined as mitochondria-associated membranes (MAMs), were recently shown to be involved in the control of hepatic insulin action and glucose homeostasis, but with conflicting results. Whereas skeletal muscle is the primary site of insulin-mediated glucose uptake and the main target for alterations in insulin-resistant states, the relevance of MAM integrity in muscle insulin resistance is unknown. Deciphering the importance of MAMs on muscle insulin signaling could help to clarify this controversy. Here, we show in skeletal muscle of different mice models of obesity and type 2 diabetes (T2D) a marked disruption of ER-mitochondria interactions as an early event preceding mitochondrial dysfunction and insulin resistance. Furthermore, in human myotubes, palmitate-induced insulin resistance is associated with a reduction of structural and functional ER-mitochondria interactions. Importantly, experimental increase of ER-mitochondria contacts in human myotubes prevents palmitate-induced alterations of insulin signaling and action, whereas disruption of MAM integrity alters the action of the hormone. Lastly, we found an association between altered insulin signaling and ER-mitochondria interactions in human myotubes from obese subjects with or without T2D compared with healthy lean subjects. Collectively, our data reveal a new role of MAM integrity in insulin action of skeletal muscle and highlight MAM disruption as an essential subcellular alteration associated with muscle insulin resistance in mice and humans. Therefore, reduced ER-mitochondria coupling could be a common alteration of several insulin-sensitive tissues playing a key role in altered glucose homeostasis in the context of obesity and T2D. © 2018 by the American Diabetes Association.

  8. Does long-term passive stretching alter muscle-tendon unit mechanics in children with spastic cerebral palsy?

    PubMed

    Theis, Nicola; Korff, Thomas; Mohagheghi, Amir A

    2015-12-01

    Cerebral palsy causes motor impairments during development and many children may experience excessive neural and mechanical muscle stiffness. The clinical assumption is that excessive stiffness is thought to be one of the main reasons for functional impairments in cerebral palsy. As such, passive stretching is widely used to reduce stiffness, with a view to improving function. However, current research evidence on passive stretching in cerebral palsy is not adequate to support or refute the effectiveness of stretching as a management strategy to reduce stiffness and/or improve function. The purpose was to identify the effect of six weeks passive ankle stretching on muscle-tendon unit parameters in children with spastic cerebral palsy. Thirteen children (8-14 y) with quadriplegic/diplegic cerebral palsy were randomly assigned to either an experimental group (n=7) or a control group (n=6). The experimental group underwent an additional six weeks of passive ankle dorsiflexion stretching for 15 min (per leg), four days per week, whilst the control group continued with their normal routine, which was similar for the two groups. Measures of muscle and tendon stiffness, strain and resting length were acquired pre- and post-intervention. The experimental group demonstrated a 3° increase in maximum ankle dorsiflexion. This was accompanied by a 13% reduction in triceps surae muscle stiffness, with no change in tendon stiffness. Additionally, there was an increase in fascicle strain with no changes in resting length, suggesting muscle stiffness reductions were a result of alterations in intra/extra-muscular connective tissue. The results demonstrate that stretching can reduce muscle stiffness by altering fascicle strain but not resting fascicle length. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth M.; Haddad, Fadia

    2002-01-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  10. Structural and functional remodeling of skeletal muscle microvasculature is induced by simulated microgravity

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Colleran, P. N.; Wilkerson, M. K.; McCurdy, M. R.; Muller-Delp, J.

    2000-01-01

    Hindlimb unloading of rats results in a diminished ability of skeletal muscle arterioles to constrict in vitro and elevate vascular resistance in vivo. The purpose of the present study was to determine whether alterations in the mechanical environment (i.e., reduced fluid pressure and blood flow) of the vasculature in hindlimb skeletal muscles from 2-wk hindlimb-unloaded (HU) rats induces a structural remodeling of arterial microvessels that may account for these observations. Transverse cross sections were used to determine media cross-sectional area (CSA), wall thickness, outer perimeter, number of media nuclei, and vessel luminal diameter of feed arteries and first-order (1A) arterioles from soleus and the superficial portion of gastrocnemius muscles. Endothelium-dependent dilation (ACh) was also determined. Media CSA of resistance arteries was diminished by hindlimb unloading as a result of decreased media thickness (gastrocnemius muscle) or reduced vessel diameter (soleus muscle). ACh-induced dilation was diminished by 2 wk of hindlimb unloading in soleus 1A arterioles, but not in gastrocnemius 1A arterioles. These results indicate that structural remodeling and functional adaptations of the arterial microvasculature occur in skeletal muscles of the HU rat; the data suggest that these alterations may be induced by reductions in transmural pressure (gastrocnemius muscle) and wall shear stress (soleus muscle).

  11. Experimental masseter muscle pain alters jaw-neck motor strategy.

    PubMed

    Wiesinger, B; Häggman-Henrikson, B; Hellström, F; Wänman, A

    2013-08-01

    A functional integration between the jaw and neck regions has been demonstrated during normal jaw function. The effect of masseter muscle pain on this integrated motor behaviour in man is unknown. The aim of this study was to investigate the effect of induced masseter muscle pain on jaw-neck movements during a continuous jaw opening-closing task. Sixteen healthy men performed continuous jaw opening-closing movements to a target position, defined as 75% of the maximum jaw opening. Each subject performed two trials without pain (controls) and two trials with masseter muscle pain, induced with hypertonic saline as a single injection. Simultaneous movements of the mandible and the head were registered with a wireless optoelectronic three-dimensional recording system. Differences in movement amplitudes between trials were analysed with Friedman's test and corrected Wilcoxon matched pairs test. The head movement amplitudes were significantly larger during masseter muscle pain trials compared with control. Jaw movement amplitudes did not differ significantly between any of the trials after corrected Wilcoxon tests. The ratio between head and jaw movement amplitudes was significantly larger during the first pain trial compared with control. Experimental masseter muscle pain in humans affected integrated jaw-neck movements by increasing the neck component during continuous jaw opening-closing tasks. The findings indicate that pain can alter the strategy for jaw-neck motor control, which further underlines the functional integration between the jaw and neck regions. This altered strategy may have consequences for development of musculoskeletal pain in the jaw and neck regions. © 2012 European Federation of International Association for the Study of Pain Chapters.

  12. Fiber type conversion alters inactivation of voltage-dependent sodium currents in murine C2C12 skeletal muscle cells.

    PubMed

    Zebedin, Eva; Sandtner, Walter; Galler, Stefan; Szendroedi, Julia; Just, Herwig; Todt, Hannes; Hilber, Karlheinz

    2004-08-01

    Each skeletal muscle of the body contains a unique composition of "fast" and "slow" muscle fibers, each of which is specialized for certain challenges. This composition is not static, and the muscle fibers are capable of adapting their molecular composition by altered gene expression (i.e., fiber type conversion). Whereas changes in the expression of contractile proteins and metabolic enzymes in the course of fiber type conversion are well described, little is known about possible adaptations in the electrophysiological properties of skeletal muscle cells. Such adaptations may involve changes in the expression and/or function of ion channels. In this study, we investigated the effects of fast-to-slow fiber type conversion on currents via voltage-gated Na+ channels in the C(2)C(12) murine skeletal muscle cell line. Prolonged treatment of cells with 25 nM of the Ca2+ ionophore A-23187 caused a significant shift in myosin heavy chain isoform expression from the fast toward the slow isoform, indicating fast-to-slow fiber type conversion. Moreover, Na+ current inactivation was significantly altered. Slow inactivation less strongly inhibited the Na+ currents of fast-to-slow fiber type-converted cells. Compared with control cells, the Na+ currents of converted cells were more resistant to block by tetrodotoxin, suggesting enhanced relative expression of the cardiac Na+ channel isoform Na(v)1.5 compared with the skeletal muscle isoform Na(v)1.4. These results imply that fast-to-slow fiber type conversion of skeletal muscle cells involves functional adaptation of their electrophysiological properties.

  13. Myostatin deficiency is associated with lipidomic abnormalities in skeletal muscles.

    PubMed

    Baati, Narjes; Feillet-Coudray, Christine; Fouret, Gilles; Vernus, Barbara; Goustard, Bénédicte; Coudray, Charles; Lecomte, Jérome; Blanquet, Véronique; Magnol, Laetitia; Bonnieu, Anne; Koechlin-Ramonatxo, Christelle

    2017-10-01

    Myostatin (Mstn) deficiency leads to skeletal muscle overgrowth and Mstn inhibition is considered as a promising treatment for muscle-wasting disorders. Mstn gene deletion in mice also causes metabolic changes with decreased mitochondria content, disturbance in mitochondrial respiratory function and increased muscle fatigability. However the impact of MSTN deficiency on these metabolic changes is not fully elucidated. Here, we hypothesized that lack of MSTN will alter skeletal muscle membrane lipid composition in relation with pronounced alterations in muscle function and metabolism. Indeed, phospholipids and in particular cardiolipin mostly present in the inner mitochondrial membrane, play a crucial role in mitochondria function and oxidative phosphorylation process. We observed that Mstn KO muscle had reduced fat membrane transporter levels (FAT/CD36, FABP3, FATP1 and FATP4) associated with decreased lipid oxidative pathway (citrate synthase and β-HAD activities) and impaired lipogenesis (decreased triglyceride and free fatty acid content), indicating a role of mstn in muscle lipid metabolism. We further analyzed phospholipid classes and fatty acid composition by chromatographic methods in muscle and mitochondrial membranes. Mstn KO mice showed increased levels of saturated and polyunsaturated fatty acids at the expense of monounsaturated fatty acids. We also demonstrated, in this phenotype, a reduction in cardiolipin proportion in mitochondrial membrane versus the proportion of others phospholipids, in relation with a decrease in the expression of phosphatidylglycerolphosphate synthase and cardiolipin synthase, enzymes involved in cardiolipin synthesis. These data illustrate the importance of lipids as a link by which MSTN deficiency can impact mitochondrial bioenergetics in skeletal muscle. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Skeletal Muscle Function during Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide

    PubMed Central

    Suhr, Frank; Gehlert, Sebastian; Grau, Marijke; Bloch, Wilhelm

    2013-01-01

    Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less involved in all of these regulations. Nitric oxide is one of the central signaling molecules involved in functional and structural adaption in different cell types. It is mainly produced by nitric oxide synthases (NOS) and by non-enzymatic pathways also in skeletal muscle. The relevance of a NOS-dependent NO signaling in skeletal muscle is underlined by the differential subcellular expression of NOS1, NOS2, and NOS3, and the alteration of NO production provoked by changes of workload. In skeletal muscle, a variety of highly relevant tasks to maintain skeletal muscle integrity and proper signaling mechanisms during adaptation processes towards mechanical and metabolic stimulations are taken over by NO signaling. The NO signaling can be mediated by cGMP-dependent and -independent signaling, such as S-nitrosylation-dependent modulation of effector molecules involved in contractile and metabolic adaptation to exercise. In this review, we describe the most recent findings of NO signaling in skeletal muscle with a special emphasis on exercise conditions. However, to gain a more detailed understanding of the complex role of NO signaling for functional adaptation of skeletal muscle (during exercise), additional sophisticated studies are needed to provide deeper insights into NO-mediated signaling and the role of non-enzymatic-derived NO in skeletal muscle physiology. PMID:23538841

  15. Skeletal Muscle Mitochondria and Aging: A Review

    PubMed Central

    Peterson, Courtney M.; Johannsen, Darcy L.; Ravussin, Eric

    2012-01-01

    Aging is characterized by a progressive loss of muscle mass and muscle strength. Declines in skeletal muscle mitochondria are thought to play a primary role in this process. Mitochondria are the major producers of reactive oxygen species, which damage DNA, proteins, and lipids if not rapidly quenched. Animal and human studies typically show that skeletal muscle mitochondria are altered with aging, including increased mutations in mitochondrial DNA, decreased activity of some mitochondrial enzymes, altered respiration with reduced maximal capacity at least in sedentary individuals, and reduced total mitochondrial content with increased morphological changes. However, there has been much controversy over measurements of mitochondrial energy production, which may largely be explained by differences in approach and by whether physical activity is controlled for. These changes may in turn alter mitochondrial dynamics, such as fusion and fission rates, and mitochondrially induced apoptosis, which may also lead to net muscle fiber loss and age-related sarcopenia. Fortunately, strategies such as exercise and caloric restriction that reduce oxidative damage also improve mitochondrial function. While these strategies may not completely prevent the primary effects of aging, they may help to attenuate the rate of decline. PMID:22888430

  16. Spacelab Life Sciences 1 - Dedicated life sciences mission

    NASA Technical Reports Server (NTRS)

    Womack, W. D.

    1990-01-01

    The Spacelab Life Sciences 1 (SLS-1) mission is discussed, and an overview of the SLS-1 Spacelab configuration is shown. Twenty interdisciplinary experiments, planned for this mission, are intended to explore the early stages of human and animal physiological adaptation to space flight conditions. Biomedical and gravitational biology experiments include cardiovascular and cardiopulmonary deconditioning, altered vestibular functions, altered metabolic functions (including altered fluid-electrolyte regulation), muscle atrophy, bone demineralization, decreased red blood cell mass, and altered immunologic responses.

  17. Muscle atrophy in cachexia: can dietary protein tip the balance?

    PubMed

    Op den Kamp, Céline M; Langen, Ramon C; Haegens, Astrid; Schols, Annemie M

    2009-11-01

    To review the efficacy of dietary protein supplementation in attenuating muscle atrophy in cachexia. Only very few recent randomized controlled trials have studied the effects of protein supplementation in clinical cachexia. It appears that supplementation of dietary protein (>1.5 g/kg per day) alone or in combination with other anabolic stimuli such as exercise training maintains or even improves muscle mass, but results on muscle function are controversial and no clinical studies have yet directly linked alterations in cellular signaling or metabolic signatures of protein intake-induced muscle anabolism to muscle weight gain. To elucidate the role of dietary protein supplementation in attenuating muscle atrophy in cachectic patients, randomized clinical trials are needed in adequately phenotyped patients using sensitive measures of muscle mass and function.

  18. Differential Effects of Sepsis and Chronic Inflammation on Diaphragm Muscle Fiber Type, Thyroid Hormone Metabolism, and Mitochondrial Function.

    PubMed

    Bloise, Flavia F; van der Spek, Anne H; Surovtseva, Olga V; Ortiga-Carvalho, Tania Maria; Fliers, Eric; Boelen, Anita

    2016-04-01

    The diaphragm is the main respiratory muscle, and its function is compromised during severe illness. Altered local thyroid hormone (TH) metabolism may be a determinant of impaired muscle function during illness. This study investigates the effects of bacterial sepsis and chronic inflammation on muscle fiber type, local TH metabolism, and mitochondrial function in the diaphragm. Two mouse models were used: sepsis induced by S. pneumoniae infection or chronic inflammation induced by subcutaneous turpentine injection. In vitro, the effect of bacterial endotoxin (LPS) on mitochondrial function in C2C12 myotubes was studied. Sepsis induced a transient increase in the fiber type I profile and increased Dio3 expression while decreasing Dio2, Thra1, and Slc16a2 expression. Triiodothyronine positively regulated genes Tnni2 and Myog were decreased, indicating reduced TH signaling in the diaphragm. In contrast, chronic inflammation increased the fiber type II profile in the diaphragm as well as Thra1, Thrb1, and Myog expression while decreasing Dio3 expression, suggesting increased TH responsiveness during chronic inflammation. LPS-stimulated C2C12 myotubes showed decreased Dio2 expression and reduced basal oxygen consumption as well as non-mitochondrial respiration. The same respiratory profile was induced by Dio2 knockdown in myotubes. The in vivo results show differential effects of sepsis and chronic inflammation on diaphragm muscle fiber type, TH metabolism, and mitochondrial function, while the in vitro results point to a causal role for altered TH metabolism in functional muscle impairment. These findings may be relevant for the pathogenesis of impaired respiratory function in critical illness.

  19. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM:The effects of poor maternal nutrition during gestation on offspring postnatal growth and metabolism.

    PubMed

    Hoffman, M L; Reed, S A; Pillai, S M; Jones, A K; McFadden, K K; Zinn, S A; Govoni, K E

    2017-05-01

    Poor maternal nutrition during gestation has been linked to poor growth and development, metabolic dysfunction, impaired health, and reduced productivity of offspring in many species. Poor maternal nutrition can be defined as an excess or restriction of overall nutrients or specific macro- or micronutrients in the diet of the mother during gestation. Interestingly, there are several reports that both restricted- and over-feeding during gestation negatively affect offspring postnatal growth with reduced muscle and bone deposition, increased adipose accumulation, and metabolic dysregulation through reduced leptin and insulin sensitivity. Our laboratory and others have used experimental models of restricted- and over-feeding during gestation to evaluate effects on early postnatal growth of offspring. Restricted- and over-feeding during gestation alters body size, circulating growth factors, and metabolic hormones in offspring postnatally. Both restricted- and over-feeding alter muscle growth, increase lipid content in the muscle, and cause changes in expression of myogenic factors. Although the negative effects of poor maternal nutrition on offspring growth have been well characterized in recent years, the mechanisms contributing to these changes are not well established. Our laboratory has focused on elucidating these mechanisms by evaluating changes in gene and protein expression, and stem cell function. Through RNA-Seq analysis, we observed changes in expression of genes involved in protein synthesis, metabolism, cell function, and signal transduction in muscle tissue. We recently reported that satellite cells, muscle stem cells, have altered expression of myogenic factors in offspring from restricted-fed mothers. Bone marrow derived mesenchymal stem cells, multipotent cells that contribute to development and maintenance of several tissues including bone, muscle, and adipose, have a 50% reduction in cell proliferation and altered metabolism in offspring from both restricted- and over-fed mothers. These findings indicate that poor maternal nutrition may alter offspring postnatal growth by programming stem cell populations. In conclusion, poor maternal nutrition during gestation negatively affects offspring postnatal growth, potentially through impaired stem and satellite cell function. Therefore, determining the mechanisms that contribute to fetal programming is critical to identifying effective management interventions for these offspring and improving efficiency of production.

  20. Changes in shoulder muscle activity pattern on surface electromyography after breast cancer surgery.

    PubMed

    Yang, Eun Joo; Kwon, YoungOk

    2018-02-01

    Alterations in muscle activation and restricted shoulder mobility, which are common in breast cancer patients, have been found to affect upper limb function. The purpose of this study was to determine muscle activity patterns, and to compare the prevalence of abnormal patterns among the type of breast surgery. In total, 274 breast cancer patients were recruited after surgery. Type of breast surgery was divided into mastectomy without reconstruction (Mastectomy), reconstruction with tissue expander/implant (TEI), latissimus dorsi (LD) flap, or transverse rectus abdominis flap (TRAM). Activities of shoulder muscles were measured using surface electromyography. Experimental analysis was conducted using a Gaussian filter smoothing method with regression. Patients demonstrated different patterns of muscle activation, such as normal, lower muscle electrical activity, and tightness. After adjusting for BMI and breast surgery, the odds of lower muscle electrical activity and tightness in the TRAM are 40.2% and 38.4% less than in the Mastectomy only group. The prevalence of abnormal patterns was significantly greater in the ALND than SLNB in all except TRAM. Alterations in muscle activity patterns differed by breast surgery and reconstruction type. For breast cancer patients with ALND, TRAM may be the best choice for maintaining upper limb function. © 2017 Wiley Periodicals, Inc.

  1. Effect of enzyme therapy and prognostic factors in 69 adults with Pompe disease: an open-label single-center study

    PubMed Central

    2012-01-01

    Background Enzyme replacement therapy (ERT) in adults with Pompe disease, a progressive neuromuscular disorder, is of promising but variable efficacy. We investigated whether it alters the course of disease, and also identified potential prognostic factors. Methods Patients in this open-label single-center study were treated biweekly with 20 mg/kg alglucosidase alfa. Muscle strength, muscle function, and pulmonary function were assessed every 3–6 months and analyzed using repeated-measures ANOVA. Results Sixty-nine patients (median age 52.1 years) were followed for a median of 23 months. Muscle strength increased after start of ERT (manual muscle testing 1.4 percentage points per year (pp/y); hand-held dynamometry 4.0 pp/y; both p < 0.001). Forced vital capacity (FVC) remained stable when measured in upright, but declined in supine position (−1.1 pp/y; p = 0.03). Muscle function did not improve in all patients (quick motor function test 0.7 pp/y; p = 0.14), but increased significantly in wheelchair-independent patients and those with mild and moderate muscle weakness. Relative to the pre-treatment period (49 patients with 14 months pre-ERT and 22 months ERT median follow-up), ERT affected muscle strength positively (manual muscle testing +3.3 pp/y, p < 0.001 and hand-held dynamometry +7.9 pp/y, p < 0.001). Its effect on upright FVC was +1.8 pp/y (p = 0.08) and on supine FVC +0.8 (p = 0.38). Favorable prognostic factors were female gender for muscle strength, and younger age and better clinical status for supine FVC. Conclusions We conclude that ERT positively alters the natural course of Pompe disease in adult patients; muscle strength increased and upright FVC stabilized. Functional outcome is probably best when ERT intervention is timely. PMID:23013746

  2. Elevated PGC-1α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS.

    PubMed

    Da Cruz, Sandrine; Parone, Philippe A; Lopes, Vanda S; Lillo, Concepción; McAlonis-Downes, Melissa; Lee, Sandra K; Vetto, Anne P; Petrosyan, Susanna; Marsala, Martin; Murphy, Anne N; Williams, David S; Spiegelman, Bruce M; Cleveland, Don W

    2012-05-02

    The transcriptional coactivator PGC-1α induces multiple effects on muscle, including increased mitochondrial mass and activity. Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, adult-onset neurodegenerative disorder characterized by selective loss of motor neurons and skeletal muscle degeneration. An early event is thought to be denervation-induced muscle atrophy accompanied by alterations in mitochondrial activity and morphology within muscle. We now report that elevation of PGC-1α levels in muscles of mice that develop fatal paralysis from an ALS-causing SOD1 mutant elevates PGC-1α-dependent pathways throughout disease course. Mitochondrial biogenesis and activity are maintained through end-stage disease, accompanied by retention of muscle function, delayed muscle atrophy, and significantly improved muscle endurance even at late disease stages. However, survival was not extended. Therefore, muscle is not a primary target of mutant SOD1-mediated toxicity, but drugs increasing PGC-1α activity in muscle represent an attractive therapy for maintaining muscle function during progression of ALS. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Multi-scale finite element modeling of Eustachian tube function: influence of mucosal adhesion.

    PubMed

    Malik, J E; Swarts, J D; Ghadiali, S N

    2016-12-01

    The inability to open the collapsible Eustachian tube (ET) leads to the development of chronic Otitis Media (OM). Although mucosal inflammation during OM leads to increased mucin gene expression and elevated adhesion forces within the ET lumen, it is not known how changes in mucosal adhesion alter the biomechanical mechanisms of ET function. In this study, we developed a novel multi-scale finite element model of ET function in adults that utilizes adhesion spring elements to simulate changes in mucosal adhesion. Models were created for six adult subjects, and dynamic patterns in muscle contraction were used to simulate the wave-like opening of the ET that occurs during swallowing. Results indicate that ET opening is highly sensitive to the level of mucosal adhesion and that exceeding a critical value of adhesion leads to rapid ET dysfunction. Parameter variation studies and sensitivity analysis indicate that increased mucosal adhesion alters the relative importance of several tissue biomechanical properties. For example, increases in mucosal adhesion reduced the sensitivity of ET function to tensor veli palatini muscle forces but did not alter the insensitivity of ET function to levator veli palatini muscle forces. Interestingly, although changes in cartilage stiffness did not significantly influence ET opening under low adhesion conditions, ET opening was highly sensitive to changes in cartilage stiffness under high adhesion conditions. Therefore, our multi-scale computational models indicate that changes in mucosal adhesion as would occur during inflammatory OM alter the biomechanical mechanisms of ET function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Effects of Aging on the Respiratory System.

    ERIC Educational Resources Information Center

    Levitzky, Michael G.

    1984-01-01

    Relates alterations in respiratory system functions occurring with aging to changes in respiratory system structure during the course of life. Main alterations noted include loss of alveolar elastic recoil, alteration in chest wall structure and decreased respiratory muscle strength, and loss of surface area and changes in pulmonary circulation.…

  5. Impaired voluntary neuromuscular activation limits muscle power in mobility-limited older adults

    USDA-ARS?s Scientific Manuscript database

    Background. Age-related alterations of neuromuscular activation may contribute to deficits in muscle power and mobility function. This study assesses whether impaired activation of the agonist quadriceps and antagonist hamstrings, including amplitude- and velocity-dependent characteristics of activa...

  6. Directed Energy Non-lethal Weapons

    DTIC Science & Technology

    2010-06-16

    technologies that alter skeletal muscle contraction and/or neural functioning (i.e., neurosecretion) via radiofrequency (RF)/microwave (MW...chromaffin cells and 2) completion of studies on the effect of 0.75 to 1 GHz RF fields on skeletal muscle contraction , using in each study fixed

  7. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.

    PubMed

    Church, Jarrod E; Trieu, Jennifer; Chee, Annabel; Naim, Timur; Gehrig, Stefan M; Lamon, Séverine; Angelini, Corrado; Russell, Aaron P; Lynch, Gordon S

    2014-04-01

    New Findings What is the central question of this study? The Notch signalling pathway plays an important role in muscle regeneration, and activation of the pathway has been shown to enhance muscle regeneration in aged mice. It is unknown whether Notch activation will have a similarly beneficial effect on muscle regeneration in the context of Duchenne muscular dystrophy (DMD). What is the main finding and its importance? Although expression of Notch signalling components is altered in both mouse models of DMD and in human DMD patients, activation of the Notch signalling pathway does not confer any functional benefit on muscles from dystrophic mice, suggesting that other signalling pathways may be more fruitful targets for manipulation in treating DMD. Abstract In Duchenne muscular dystrophy (DMD), muscle damage and impaired regeneration lead to progressive muscle wasting, weakness and premature death. The Notch signalling pathway represents a central regulator of gene expression and is critical for cellular proliferation, differentiation and apoptotic signalling during all stages of embryonic muscle development. Notch activation improves muscle regeneration in aged mice, but its potential to restore regeneration and function in muscular dystrophy is unknown. We performed a comprehensive examination of several genes involved in Notch signalling in muscles from dystrophin-deficient mdx and dko (utrophin- and dystrophin-null) mice and DMD patients. A reduction of Notch1 and Hes1 mRNA in tibialis anterior muscles of dko mice and quadriceps muscles of DMD patients and a reduction of Hes1 mRNA in the diaphragm of the mdx mice were observed, with other targets being inconsistent across species. Activation and inhibition of Notch signalling, followed by measures of muscle regeneration and function, were performed in the mouse models of DMD. Notch activation had no effect on functional regeneration in C57BL/10, mdx or dko mice. Notch inhibition significantly depressed the frequency-force relationship in regenerating muscles of C57BL/10 and mdx mice after injury, indicating reduced force at each stimulation frequency, but enhanced the frequency-force relationship in muscles from dko mice. We conclude that while Notch inhibition produces slight functional defects in dystrophic muscle, Notch activation does not significantly improve muscle regeneration in murine models of muscular dystrophy. Furthermore, the inconsistent expression of Notch targets between murine models and DMD patients suggests caution when making interspecies comparisons.

  8. Osteogenesis Imperfecta: Muscle-Bone Interactions when Bi-directionally Compromised.

    PubMed

    Phillips, Charlotte L; Jeong, Youngjae

    2018-06-16

    Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder of skeletal fragility and more recently muscle weakness. This review highlights our current knowledge of the impact of compromised OI muscle function on muscle-bone interactions and skeletal strength in OI. The ramifications of inherent muscle weakness in OI muscle-bone interactions are just beginning to be elucidated. Studies in patients and in OI mouse models implicate altered mechanosensing, energy metabolism, mitochondrial dysfunction, and paracrine/endocrine crosstalk in the pathogenesis of OI. Compromised muscle-bone unit impacts mechanosensing and the ability of OI muscle and bone to respond to physiotherapeutic and pharmacologic treatment strategies. Muscle and bone are both compromised in OI, making it essential to understand the mechanisms responsible for both impaired muscle and bone functions and their interdependence, as this will expand and drive new physiotherapeutic and pharmacological approaches to treat OI and other musculoskeletal disorders.

  9. Proteome-wide Adaptations of Mouse Skeletal Muscles during a Full Month in Space.

    PubMed

    Tascher, Georg; Brioche, Thomas; Maes, Pauline; Chopard, Angèle; O'Gorman, Donal; Gauquelin-Koch, Guillemette; Blanc, Stéphane; Bertile, Fabrice

    2017-07-07

    The safety of space flight is challenged by a severe loss of skeletal muscle mass, strength, and endurance that may compromise the health and performance of astronauts. The molecular mechanisms underpinning muscle atrophy and decreased performance have been studied mostly after short duration flights and are still not fully elucidated. By deciphering the muscle proteome changes elicited in mice after a full month aboard the BION-M1 biosatellite, we observed that the antigravity soleus incurred the greatest changes compared with locomotor muscles. Proteomics data notably suggested mitochondrial dysfunction, metabolic and fiber type switching toward glycolytic type II fibers, structural alterations, and calcium signaling-related defects to be the main causes for decreased muscle performance in flown mice. Alterations of the protein balance, mTOR pathway, myogenesis, and apoptosis were expected to contribute to muscle atrophy. Moreover, several signs reflecting alteration of telomere maintenance, oxidative stress, and insulin resistance were found as possible additional deleterious effects. Finally, 8 days of recovery post flight were not sufficient to restore completely flight-induced changes. Thus in-depth proteomics analysis unraveled the complex and multifactorial remodeling of skeletal muscle structure and function during long-term space flight, which should help define combined sets of countermeasures before, during, and after the flight.

  10. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    PubMed

    Housley, Michael P; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y R

    2016-06-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.

  11. Deregulation of the Protocadherin Gene FAT1 Alters Muscle Shapes: Implications for the Pathogenesis of Facioscapulohumeral Dystrophy

    PubMed Central

    Caruso, Nathalie; Herberth, Balàzs; Bartoli, Marc; Puppo, Francesca; Dumonceaux, Julie; Zimmermann, Angela; Denadai, Simon; Lebossé, Marie; Roche, Stephane; Geng, Linda; Magdinier, Frederique; Attarian, Shahram; Bernard, Rafaelle; Maina, Flavio; Levy, Nicolas; Helmbacher, Françoise

    2013-01-01

    Generation of skeletal muscles with forms adapted to their function is essential for normal movement. Muscle shape is patterned by the coordinated polarity of collectively migrating myoblasts. Constitutive inactivation of the protocadherin gene Fat1 uncoupled individual myoblast polarity within chains, altering the shape of selective groups of muscles in the shoulder and face. These shape abnormalities were followed by early onset regionalised muscle defects in adult Fat1-deficient mice. Tissue-specific ablation of Fat1 driven by Pax3-cre reproduced muscle shape defects in limb but not face muscles, indicating a cell-autonomous contribution of Fat1 in migrating muscle precursors. Strikingly, the topography of muscle abnormalities caused by Fat1 loss-of-function resembles that of human patients with facioscapulohumeral dystrophy (FSHD). FAT1 lies near the critical locus involved in causing FSHD, and Fat1 mutant mice also show retinal vasculopathy, mimicking another symptom of FSHD, and showed abnormal inner ear patterning, predictive of deafness, reminiscent of another burden of FSHD. Muscle-specific reduction of FAT1 expression and promoter silencing was observed in foetal FSHD1 cases. CGH array-based studies identified deletion polymorphisms within a putative regulatory enhancer of FAT1, predictive of tissue-specific depletion of FAT1 expression, which preferentially segregate with FSHD. Our study identifies FAT1 as a critical determinant of muscle form, misregulation of which associates with FSHD. PMID:23785297

  12. Physiologic and biochemical aspects of skeletal muscle denervation and reinnervation

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Mayer, R. F.

    1984-01-01

    Some of the physiologic and biochemical changes that occur in mammalian skeletal muscle following denervation and reinnervation are considered and some comparisons are made with changes observed following altered motor function. The nature of the trophic influence by which nerves control muscle properties are discussed, including the effects of choline acetyltransferase and acetylcholinesterase and the role of the acetylcholine receptor.

  13. Muscle thickness measurements of the lower trapezius with rehabilitative ultrasound imaging are confounded by scapular dyskinesis.

    PubMed

    Seitz, Amee L; Baxter, Caralyn J; Benya, Kristen

    2015-08-01

    Alterations in scapular muscle activity have been theorized to contribute to abnormal scapular motion and shoulder pain, but pose challenges to quantify in the clinic. Rehabilitative Ultrasound Imaging (RUSI) has proved useful identifying dysfunction of lumbar regional stabilizing muscle activity, specifically contractile behavior. Although, recent examinations of scapular stabilizing trapezius muscle function using RUSI did not detect alterations individuals with shoulder pain or differences in muscle thickness between varying external loads in asymptomatic individuals, a potential confounder to prior results, scapular dyskinesis has not been controlled. It is unknown if dyskinesis alters scapular muscle thickness during activation measured with RUSI. Thus, the purpose of this study was to compare change in scapular muscle thickness between individuals with and without scapular dyskinesis. Thirty-nine asymptomatic adults with (n = 19) and without (n = 20) scapular dyskinesis, defined with a reliable and validated method, participated. Two separate ultrasound images of the serratus anterior (SA) and lower trapezius (LT) were captured under two randomized conditions, rest and isometric contraction against gravity, and saved for blinded measurement. Change in thickness with contraction was calculated and expressed as a percentage. The dyskinesis group demonstrated a greater increase (p = 0.005) in LT thickness with the isometric contraction than the group without (mean difference = 31.6%; 95%CI = 10.3, 53.0). No differences in SA or resting thickness of either muscle were found between groups. The presence of scapular dyskinesis alters thickness changes of the lower trapezius during activation. Furthermore, potential underlying reasons beyond muscle contractile behavior must be considered. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Denervation and reinnervation of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Mayer, R. F.; Max, S. R.

    1983-01-01

    A review is presented of the physiological and biochemical changes that occur in mammalian skeletal muscle after denervation and reinnervation. These changes are compared with those observed after altered motor function. Also considered is the nature of the trophic influence by which nerves control muscle properties. Topics examined include the membrane and contractile properties of denervated and reinnervated muscle; the cholinergic proteins, such as choline acetyltransferase, acetylcholinesterase, and the acetylcholine receptor; and glucose-6-phosphate dehydrogenase.

  15. Response of mitochondrial function to hypothyroidism in normal and regenerated rat skeletal muscle.

    PubMed

    Zoll, J; Ventura-Clapier, R; Serrurier, B; Bigard, A X

    2001-01-01

    Although thyroid hormones induce a well known decrease in muscle oxidative capacity, nothing is known concerning their effects on mitochondrial function and regulation in situ. Similarly, the influence of regeneration process is not completely understood. We investigated the effects of hypothyroidism on mitochondrial function in fast gastrocnemius (GS) and slow soleus (SOL) muscles either intact or having undergone a cycle of degeneration/regeneration (Rg SOL) following a local injection of myotoxin. Thyroid hormone deficiency was induced by thyroidectomy and propylthiouracyl via drinking water. Respiration was measured in muscle fibres permeabilised by saponin in order to assess the oxidative capacity of the muscles and the regulation of mitochondria in situ. Oxidative capacities were 8.9 in SOL, 8.5 in Rg SOL and 5.9 micromol O2/min/g dry weight in GS and decreased by 52, 42 and 39% respectively (P < 0.001) in hypothyroid rats. Moreover, the Km of mitochondrial respiration for the phosphate acceptor ADP exhibited a two-fold decrease in Rg SOL and intact SOL by hypothyroidism (P < 0.01), while mitochondrial creatine kinase activity and sensitivity of mitochondrial respiration to creatine were not altered. The results of this study demonstrate that hypothyroidism markedly altered the sensitivity of mitochondrial respiration to ADP but not to creatine in SOL muscles, suggesting that mitochondrial regulation could be partially controlled by thyroid hormones. On the other hand, mitochondrial function completely recovered following regeneration/degeneration, suggesting that thyroid hormones are not involved in the regeneration process per se.

  16. Simulating the effect of muscle weakness and contracture on neuromuscular control of normal gait in children.

    PubMed

    Fox, Aaron S; Carty, Christopher P; Modenese, Luca; Barber, Lee A; Lichtwark, Glen A

    2018-03-01

    Altered neural control of movement and musculoskeletal deficiencies are common in children with spastic cerebral palsy (SCP), with muscle weakness and contracture commonly experienced. Both neural and musculoskeletal deficiencies are likely to contribute to abnormal gait, such as equinus gait (toe-walking), in children with SCP. However, it is not known whether the musculoskeletal deficiencies prevent normal gait or if neural control could be altered to achieve normal gait. This study examined the effect of simulated muscle weakness and contracture of the major plantarflexor/dorsiflexor muscles on the neuromuscular requirements for achieving normal walking gait in children. Initial muscle-driven simulations of walking with normal musculoskeletal properties by typically developing children were undertaken. Additional simulations with altered musculoskeletal properties were then undertaken; with muscle weakness and contracture simulated by reducing the maximum isometric force and tendon slack length, respectively, of selected muscles. Muscle activations and forces required across all simulations were then compared via waveform analysis. Maintenance of normal gait appeared robust to muscle weakness in isolation, with increased activation of weakened muscles the major compensatory strategy. With muscle contracture, reduced activation of the plantarflexors was required across the mid-portion of stance suggesting a greater contribution from passive forces. Increased activation and force during swing was also required from the tibialis anterior to counteract the increased passive forces from the simulated dorsiflexor muscle contracture. Improvements in plantarflexor and dorsiflexor motor function and muscle strength, concomitant with reductions in plantarflexor muscle stiffness may target the deficits associated with SCP that limit normal gait. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Targeted lipidomics analysis identified altered serum lipid profiles in patients with polymyositis and dermatomyositis.

    PubMed

    Raouf, Joan; Idborg, Helena; Englund, Petter; Alexanderson, Helene; Dastmalchi, Maryam; Jakobsson, Per-Johan; Lundberg, Ingrid E; Korotkova, Marina

    2018-05-02

    Polymyositis (PM) and dermatomyositis (DM) are severe chronic autoimmune diseases, characterized by muscle fatigue and low muscle endurance. Conventional treatment includes high doses of glucocorticoids and immunosuppressive drugs; however, few patients recover full muscle function. One explanation of the persistent muscle weakness could be altered lipid metabolism in PM/DM muscle tissue as we previously reported. Using a targeted lipidomic approach we aimed to characterize serum lipid profiles in patients with PM/DM compared to healthy individuals (HI) in a cross-sectional study. Also, in the longitudinal study we compared serum lipid profiles in patients newly diagnosed with PM/DM before and after immunosuppressive treatment. Lipidomic profiles were analyzed in serum samples from 13 patients with PM/DM, 12 HI and 8 patients newly diagnosed with PM/DM before and after conventional immunosuppressive treatment using liquid chromatography tandem mass spectrometry (LC-MS/MS) and a gas-chromatography flame ionization detector (GC-FID). Functional Index (FI), as a test of muscle performance and serum levels of creatine kinase (s-CK) as a proxy for disease activity were analyzed. The fatty acid (FA) composition of total serum lipids was altered in patients with PM/DM compared to HI; the levels of palmitic (16:0) acid were significantly higher while the levels of arachidonic (20:4, n-6) acid were significantly lower in patients with PM/DM. The profiles of serum phosphatidylcholine and triacylglycerol species were changed in patients with PM/DM compared to HI, suggesting disproportionate levels of saturated and polyunsaturated FAs that might have negative effects on muscle performance. After immunosuppressive treatment the total serum lipid levels of eicosadienoic (20:2, n-6) and eicosapentaenoic (20:5, n-3) acids were increased and serum phospholipid profiles were altered in patients with PM/DM. The correlation between FI or s-CK and levels of several lipid species indicate the important role of lipid changes in muscle performance and inflammation. Serum lipids profiles are significantly altered in patients with PM/DM compared to HI. Moreover, immunosuppressive treatment in patients newly diagnosed with PM/DM significantly affected serum lipid profiles. These findings provide new evidence of the dysregulated lipid metabolism in patients with PM/DM that could possibly contribute to low muscle performance.

  18. Drosophila small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance.

    PubMed

    Wójtowicz, Inga; Jabłońska, Jadwiga; Zmojdzian, Monika; Taghli-Lamallem, Ouarda; Renaud, Yoan; Junion, Guillaume; Daczewska, Malgorzata; Huelsmann, Sven; Jagla, Krzysztof; Jagla, Teresa

    2015-03-01

    Molecular chaperones, such as the small heat shock proteins (sHsps), maintain normal cellular function by controlling protein homeostasis in stress conditions. However, sHsps are not only activated in response to environmental insults, but also exert developmental and tissue-specific functions that are much less known. Here, we show that during normal development the Drosophila sHsp CryAB [L(2)efl] is specifically expressed in larval body wall muscles and accumulates at the level of Z-bands and around myonuclei. CryAB features a conserved actin-binding domain and, when attenuated, leads to clustering of myonuclei and an altered pattern of sarcomeric actin and the Z-band-associated actin crosslinker Cheerio (filamin). Our data suggest that CryAB and Cheerio form a complex essential for muscle integrity: CryAB colocalizes with Cheerio and, as revealed by mass spectrometry and co-immunoprecipitation experiments, binds to Cheerio, and the muscle-specific attenuation of cheerio leads to CryAB-like sarcomeric phenotypes. Furthermore, muscle-targeted expression of CryAB(R120G), which carries a mutation associated with desmin-related myopathy (DRM), results in an altered sarcomeric actin pattern, in affected myofibrillar integrity and in Z-band breaks, leading to reduced muscle performance and to marked cardiac arrhythmia. Taken together, we demonstrate that CryAB ensures myofibrillar integrity in Drosophila muscles during development and propose that it does so by interacting with the actin crosslinker Cheerio. The evidence that a DRM-causing mutation affects CryAB muscle function and leads to DRM-like phenotypes in the fly reveals a conserved stress-independent role of CryAB in maintaining muscle cell cytoarchitecture. © 2015. Published by The Company of Biologists Ltd.

  19. Respiratory Muscle Plasticity

    PubMed Central

    Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.

    2014-01-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306

  20. Neuromuscular adaptation to actual and simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Roy, R. R.

    1994-01-01

    The chronic "unloading" of the neuromuscular system during spaceflight has detrimental functional and morphological effects. Changes in the metabolic and mechanical properties of the musculature can be attributed largely to the loss of muscle protein and the alteration in the relative proportion of the proteins in skeletal muscle, particularly in the muscles that have an antigravity function under normal loading conditions. These adaptations could result in decrements in the performance of routine or specialized motor tasks, both of which may be critical for survival in an altered gravitational field, i.e., during spaceflight and during return to 1 G. For example, the loss in extensor muscle mass requires a higher percentage of recruitment of the motor pools for any specific motor task. Thus, a faster rate of fatigue will occur in the activated muscles. These consequences emphasize the importance of developing techniques for minimizing muscle loss during spaceflight, at least in preparation for the return to 1 G after spaceflight. New insights into the complexity and the interactive elements that contribute to the neuromuscular adaptations to space have been gained from studies of the role of exercise and/or growth factors as countermeasures of atrophy. The present chapter illustrates the inevitable interactive effects of neural and muscular systems in adapting to space. It also describes the considerable progress that has been made toward the goal of minimizing the functional impact of the stimuli that induce the neuromuscular adaptations to space.

  1. Neck muscle fatigue differentially alters scapular and humeral kinematics during humeral elevation in subclinical neck pain participants versus healthy controls.

    PubMed

    Zabihhosseinian, Mahboobeh; Holmes, Michael W R; Howarth, Samuel; Ferguson, Brad; Murphy, Bernadette

    2017-04-01

    Scapular orientation is highly dependent on axioscapular muscle function. This study examined the impact of neck muscle fatigue on scapular and humeral kinematics in participants with and without subclinical neck pain (SCNP) during humeral elevation. Ten SCNP and 10 control participants performed three unconstrained trials of dominant arm humeral elevation in the scapular plane to approximately 120 degrees before and after neck extensor muscle fatigue. Three-dimensional scapular and humeral kinematics were measured during the humeral elevation trials. Humeral elevation plane angle showed a significant interaction between groups (SCNP vs controls) and trial (pre- vs post-fatigue) (p=0.001). Controls began the unconstrained humeral elevation task after fatigue in a more abducted position, (p=0.002). Significant baseline differences in scapular rotation existed between the two groups (Posterior/Anterior tilt, p=0.04; Internal/External Rotation, p=0.001). SCNP contributed to altered scapular kinematics. Neck muscle fatigue influenced humeral kinematics in controls but not the SCNP group; suggesting that altered scapular motor control in the SCNP group resulted in an impaired adaption further to the neck muscle fatigue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle in mdx mice

    PubMed Central

    Smith, Lucas R.

    2014-01-01

    Many skeletal muscle diseases are associated with progressive fibrosis leading to impaired muscle function. Collagen within the extracellular matrix is the primary structural protein providing a mechanical scaffold for cells within tissues. During fibrosis collagen not only increases in amount but also undergoes posttranslational changes that alter its organization that is thought to contribute to tissue stiffness. Little, however, is known about collagen organization in fibrotic muscle and its consequences for function. To investigate the relationship between collagen content and organization with muscle mechanical properties, we studied mdx mice, a model for Duchenne muscular dystrophy (DMD) that undergoes skeletal muscle fibrosis, and age-matched control mice. We determined collagen content both histologically, with picosirius red staining, and biochemically, with hydroxyproline quantification. Collagen content increased in the mdx soleus and diaphragm muscles, which was exacerbated by age in the diaphragm. Collagen packing density, a parameter of collagen organization, was determined using circularly polarized light microscopy of picosirius red-stained sections. Extensor digitorum longus (EDL) and soleus muscle had proportionally less dense collagen in mdx muscle, while the diaphragm did not change packing density. The mdx muscles had compromised strength as expected, yet only the EDL had a significantly increased elastic stiffness. The EDL and diaphragm had increased dynamic stiffness and a change in relative viscosity. Unexpectedly, passive stiffness did not correlate with collagen content and only weakly correlated with collagen organization. We conclude that muscle fibrosis does not lead to increased passive stiffness and that collagen content is not predictive of muscle stiffness. PMID:24598364

  3. Prolonged stretching of the ankle plantarflexors elicits muscle-tendon adaptations relevant to ankle gait kinetics in children with spastic cerebral palsy.

    PubMed

    Martín Lorenzo, Teresa; Rocon, Eduardo; Martínez Caballero, Ignacio; Ramírez Barragán, Ana; Lerma Lara, Sergio

    2017-11-01

    Tissue related ankle hyper-resistance has been reported to contribute to equinus gait in children with spastic cerebral palsy. Hence, ankle plantarflexor stretching programs have been developed in order to restore passive ankle dorsiflexion. Despite high quality evidence on the limited effects of stretching on passive joint mobility, further muscle-tendon adaptations have been reported which may impact gait performance. As such, children with spastic cerebral palsy subject to long-term manual static stretching achieved dorsiflexion gains through the reduction of muscle and fascicle strain whilst preserving tendon strain, and prolonged use of ankle-foot orthoses achieved similar dorsiflexion gains through increased tendon strain whilst preserving muscle and fascicle strain. The latter concurred with normalization of early stance plantarflexor moment yet reductions in push-off plantarflexor moment given the increase in tendon compliance. Therefore, similar limited gains in passive ankle joint mobility in response to stretching may be achieved either by preserving/restoring optimal muscle-tendon function, or at the expense of muscle-tendon function and thus contributing gait impairments. The largest increase in ankle passive joint mobility in children with SCP has been obtained through prolonged plantarflexor stretching through ankle casting combined with botulinum neurotoxin type A. However, to our knowledge, there are no published studies on muscle-tendinous adaptations to ankle casting combined with botulinum toxin type A and its effect on ankle joint gait kinetics. Therefore, we hypothesized that ankle casting elicits muscle-tendon adaptations which concur with altered ankle joint kinetics during the stance phase of gait in children with SCP. More information is needed about the relationships between muscle structure and function, and the effect of specific interventions designed to alter muscle properties and associated functional outcomes in children with spastic cerebral palsy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cholesterol removal from adult skeletal muscle impairs excitation–contraction coupling and aging reduces caveolin-3 and alters the expression of other triadic proteins

    PubMed Central

    Barrientos, Genaro; Llanos, Paola; Hidalgo, Jorge; Bolaños, Pura; Caputo, Carlo; Riquelme, Alexander; Sánchez, Gina; Quest, Andrew F. G.; Hidalgo, Cecilia

    2015-01-01

    Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation–contraction (E–C) coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum (SR) calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not SR membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX) activity and protein content of NOX2 subunits (p47phox and gp91phox), implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs E–C coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged animals. PMID:25914646

  5. Effects of Experimental Anterior Knee Pain on Muscle Activation During Landing and Jumping Performed at Various Intensities.

    PubMed

    Park, Jihong; Denning, W Matt; Pitt, Jordan D; Francom, Devin; Hopkins, J Ty; Seeley, Matthew K

    2017-01-01

    Although knee pain is common, some facets of this pain are unclear. The independent effects (ie, independent from other knee injury or pathology) of knee pain on neural activation of lower-extremity muscles during landing and jumping have not been observed. To investigate the independent effects of knee pain on lower-extremity muscle (gastrocnemius, vastus medialis, medial hamstrings, gluteus medius, and gluteus maximus) activation amplitude during landing and jumping, performed at 2 different intensities. Laboratory-based, pretest, posttest, repeated-measures design, where all subjects performed both data-collection sessions. Thirteen able-bodied subjects performed 2 different land and jump tasks (forward and lateral) under 2 different conditions (control and pain), at 2 different intensities (high and low). For the pain condition, experimental knee pain was induced via a hypertonic saline injection into the right infrapatellar fat pad. Functional linear models were used to evaluate the influence of experimental knee pain on muscle-activation amplitude throughout the 2 land and jump tasks. Experimental knee pain independently altered activation for all of the observed muscles during various parts of the 2 different land and jump tasks. These activation alterations were not consistently influenced by task intensity. Experimental knee pain alters activation amplitude of various lower-extremity muscles during landing and jumping. The nature of the alteration varies between muscles, intensities, and phases of the movement (ie, landing and jumping). Generally, experimental knee pain inhibits the gastrocnemius, medial hamstring, and gluteus medius during landing while independently increasing activation of the same muscles during jumping.

  6. Effects of simulated microgravity on microRNA and mRNA expression profile of rat soleus

    NASA Astrophysics Data System (ADS)

    Dai, Zhongquan; Wu, Feng; Qu, Lina

    Abstract Spaceflight induces muscle atrophy but mechanism is not well understood. Here, we quantified microRNAs (miRNAs) and mRNA shifts of rat soleus after 7, 14 and 28 days tail suspension (TS). Microarray data revealed that TS altered 23 miRNAs and 1313 mRNAs at least 2-fold change. QRT-PCR confirmed changes of miRNAs and mRNAs related to muscle atrophy. MiR-214, miR-486-5p and miR-320 family decreased, but Let-7e increased. Actn3 and myh4 displayed abundant upregulation and a3galt2 downregulated. Predicted targeted genes (whyz, ywhaz and SFRP2) of altered miRNAs decreased. Further analysis of gene functional annotation confirmed consistency of alteration profile between miRNAs and mRNA and enrichment of main clusters in regulation of muscle metabolism. Our results highlight the importance of miR-214, miR-486-5p, miR-320 and Let-7e in muscle atrophy process induced by microgravity.

  7. Synergizing Engineering and Biology to Treat and Model Skeletal Muscle Injury and Disease

    PubMed Central

    Bursac, Nenad; Juhas, Mark; Rando, Thomas A.

    2016-01-01

    Although skeletal muscle is one of the most regenerative organs in our body, various genetic defects, alterations in extrinsic signaling, or substantial tissue damage can impair muscle function and the capacity for self-repair. The diversity and complexity of muscle disorders have attracted much interest from both cell biologists and, more recently, bioengineers, leading to concentrated efforts to better understand muscle pathology and develop more efficient therapies. This review describes the biological underpinnings of muscle development, repair, and disease, and discusses recent bioengineering efforts to design and control myomimetic environments, both to study muscle biology and function and to aid in the development of new drug, cell, and gene therapies for muscle disorders. The synergy between engineering-aided biological discovery and biology-inspired engineering solutions will be the path forward for translating laboratory results into clinical practice. PMID:26643021

  8. Sublethal effect of copper toxicity against histopathological changes in the spiny lobster, Panulirus homarus (Linnaeus, 1758).

    PubMed

    Maharajan, A; Rajalakshmi, S; Vijayakumaran, M; Kumarasamy, P

    2012-02-01

    The tissue damage induced by various organic pollutants in aquatic animals is well documented, but there is a dearth of information relating to the histological alterations induced by copper in the spiny lobster. In the present study, intermoult juveniles of the spiny lobster Panulirus homarus (average weight 150-200 g) were exposed to two sublethal concentrations of the copper (9.55 and 19.1 μg/l) for a period of 28 days. The muscle, hepatopancreas, midgut, gills, thoracic ganglion and heart of the lobsters were then dissected out and processed for light microscopic studies. Exposure to copper was found to result in several alterations in the histoarchitecture of the muscle, hepatopancreas, midgut, gills, thoracic ganglion and heart of P. homarus. The alterations included disruption and congestion of muscle bundle in muscle tissue; blackened haemocytes; distended lumen and F cell; necrosis of the tubules of the hepatopancreas; disarrangement of circular muscle of the midgut; accumulation of haemocytes in the haemocoelic space; swelling and fusion of lamellae; abnormal gill tips; hyperplastic, necrotic, and blackened secondary gill lamellae of the gills; damaged neurosecretory cell and sensory and motor fibre; necrotic of the thoracic ganglion; dispersedly arranged muscle bands; clumped satellite cells and nucleus of the heart. The results obtained suggest that the muscle, hepatopancreas, midgut, gills, thoracic ganglion and heart of lobsters exposed to copper were structurally altered. Such alterations could affect vital physiological functions, such as absorption, storage and secretion of the hepatopancreas, digestion of gut and respiration, osmotic and ionic regulations of the gills, which in turn could ultimately affect the survival and growth of P. homarus. Thus, all possible remedial measures should be adopted to prevent the occurrence of copper contamination in the aquatic environment.

  9. Muscle cell and motor protein function in patients with a IIa myosin missense mutation (Glu-706 to Lys).

    PubMed

    Li, M; Lionikas, A; Yu, F; Tajsharghi, H; Oldfors, A; Larsson, L

    2006-11-01

    The pathogenic events leading to the progressive muscle weakness in patients with a E706K mutation in the head of the myosin heavy chain (MyHC) IIa were analyzed at the muscle cell and motor protein levels. Contractile properties were measured in single muscle fiber segments using the skinned fiber preparation and a single muscle fiber in vitro motility assay. A dramatic impairment in the function of the IIa MyHC isoform was observed at the motor protein level. At the single muscle fiber level, on the other hand, a general decrease was observed in the number of preparations where the specific criteria for acceptance were fulfilled irrespective of MyHC isoform expression. Our results provide evidence that the pathogenesis of the MyHC IIa E706K myopathy involves defective function of the mutated myosin as well as alterations in the structural integrity of all muscle cells irrespective of MyHC isoform expression.

  10. Alterations in Skeletal Muscle Microcirculation of Head-Down Tilted Rats

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Stepke, Bernhard; Fleming, John T.; Joshua, Irving G.

    1992-01-01

    In this study we assessed the function of microscopic blood vessels in skeletal muscle (cremaster muscle) for alterations which may contribute to the observed elevation of blood pressure associated with head-down tilted whole body suspension (HDT/WBS), a model of weightlessness. Arteriolar baseline diameters, vasoconstrictor responses to norepinephrine (NE) and vasodilation to nitroprusside (NP) were assessed in control rats, rats suspended for 7 or 14 day HDT/WBS rats, and rats allowed to recover for 1 day after 7 days HDT/WBS. Neither baseline diameters nor ability to dilate were influenced by HDT/WBS. Maximum vasoconstriction to norepinephrine was significantly greater in arterioles of hypertensive 14 day HDT/WBS rats. This first study of the intact microvasculature in skeletal muscle indicates that an elevated contractility of arterioles to norepinephrine in suspended rats, and suggests an elevated peripheral resistance in striated muscle may contribute to the increase in blood pressures among animals subjected to HDT/WBS.

  11. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish

    PubMed Central

    Housley, Michael P.; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A.; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y. R.

    2016-01-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy. PMID:27294373

  12. Are mechanically sensitive regulators involved in the function and (patho)physiology of cerebral palsy-related contractures?

    PubMed

    Pingel, Jessica; Suhr, Frank

    2017-08-01

    Skeletal muscle tissue is mechanosensitive, as it is able to sense mechanical impacts and to translate these into biochemical signals making the tissue adapt. Among its mechanosensitive nature, skeletal muscle tissue is the largest metabolic organ of the human body. Disturbances in skeletal muscle mechanosensing and metabolism cause and contribute to many diseases, i.e. muscular dystrophies/myopathies, cardiovascular diseases, COPD or diabetes mellitus type 2. A less commonly focused muscle-related disorder is clinically known as muscle contractures that derive from cerebral palsy (CP) conditions in young and adults. Muscle contractures are characterized by gradually increasing passive muscle stiffness resulting in complete fixation of joints. Different mechanisms have been identified in CP-related contractures, i.e. altered calcium handling, altered metabolism or altered titin regulation. The muscle-related extracellular matrix (ECM), specifically collagens, plays a role in CP-related contractures. Herein, we focus on mechanically sensitive complexes, known as costameres (Cstms), and discuss their potential role in CP-related contractures. We extend our discussion to the ECM due to the limited knowledge of its role in CP-related contractures. The aims of this review are (1) to summarize CP-related contracture mechanisms, (2) to raise novel hypotheses on the genesis of contractures with a focus on Cstms, and (3) to stimulate novel approaches to study CP-related contractures.

  13. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy*

    PubMed Central

    Woodall, Benjamin P.; Woodall, Meryl C.; Luongo, Timothy S.; Grisanti, Laurel A.; Tilley, Douglas G.; Elrod, John W.; Koch, Walter J.

    2016-01-01

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2fl/fl) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β2-adrenergic receptor (β2AR) agonist, was significantly enhanced in MLC-Cre:GRK2fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β2AR-induced hypertrophy. PMID:27566547

  14. Altered EMG patterns in diabetic neuropathic and not neuropathic patients during step ascending and descending.

    PubMed

    Spolaor, Fabiola; Sawacha, Zimi; Guarneri, Gabriella; Del Din, Silvia; Avogaro, Angelo; Cobelli, Claudio

    2016-12-01

    Diabetic peripheral neuropathy (DPN) causes motor control alterations during daily life activities. Tripping during walking or stair climbing is the predominant cause of falls in the elderly subjects with DPN and without (NoDPN). Surface Electromyography (sEMG) has been shown to be a valid tool for detecting alterations of motor functions in subjects with DPN. This study aims at investigating the presence of functional alterations in diabetic subjects during stair climbing and at exploring the relationship between altered muscle activation and temporal parameter. Lower limb muscle activities, temporal parameters and speed were evaluated in 50 subjects (10 controls, 20 with DPN, 20 without DPN), while climbing up and down a stair, using sEMG, three-dimentional motion capture and force plates. Magnitude and timing of sEMG linear envelopes peaks were extracted. Level walking was used as reference condition for the comparison with step negotiation. sEMG, speed and temporal parameters revealed significant differences among all groups of patients. Results showed an association between earlier activation of lower limb muscles and reduced speed in subjects with DPN. Speed and temporal parameters significantly correlated with sEMG (p<0.05). The findings of this study are encouraging and could be used to improve rehabilitation programs aiming at reducing falls risk in diabetic subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles.

    PubMed

    Dufresne, Sébastien S; Dumont, Nicolas A; Boulanger-Piette, Antoine; Fajardo, Val A; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M; Pape, Paul C; Tupling, A Russell; Frenette, Jérôme

    2016-04-15

    Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca(2+)sensor, and altered activity of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) modulating Ca(2+)storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca(2+)storage and SERCA activity, ultimately affecting denervated skeletal muscle function. Copyright © 2016 the American Physiological Society.

  16. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles

    PubMed Central

    Dufresne, Sébastien S.; Dumont, Nicolas A.; Boulanger-Piette, Antoine; Fajardo, Val A.; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M.; Pape, Paul C.; Tupling, A. Russell

    2016-01-01

    Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca2+ sensor, and altered activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) modulating Ca2+ storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca2+ storage and SERCA activity, ultimately affecting denervated skeletal muscle function. PMID:26825123

  17. Diabetes and Stem Cell Function

    PubMed Central

    Fujimaki, Shin; Wakabayashi, Tamami; Takemasa, Tohru; Asashima, Makoto; Kuwabara, Tomoko

    2015-01-01

    Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer's disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment. PMID:26075247

  18. Bion 11 Spaceflight Project: Effect of Weightlessness on Single Muscle Fiber Function in Rhesus Monkeys

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.; Romatowski, Janell G.; Widrick, Jeffrey J.; DeLaCruz, Lourdes

    1999-01-01

    Although it is well known that microgravity induces considerable limb muscle atrophy, little is known about how weightlessness alters cell function. In this study, we investigated how weightlessness altered the functional properties of single fast and slow striated muscle fibers. Physiological studies were carried out to test the hypothesis that microgravity causes fiber atrophy, a decreased peak force (Newtons), tension (Newtons/cross-sectional area) and power, an elevated peak rate of tension development (dp/dt), and an increased maximal shortening velocity (V(sub o)) in the slow type I fiber, while changes in the fast-twitch fiber are restricted to atrophy and a reduced peak force. For each fiber, we determined the peak force (P(sub o)), V(sub o), dp/dt, the force-velocity relationship, peak power, the power-force relationship, the force-pCa relationship, and fiber stiffness. Biochemical studies were carried out to assess the effects of weightlessness on the enzyme and substrate profile of the fast- and slow-twitch fibers. We predicted that microgravity would increase resting muscle glycogen and glycolytic metabolism in the slow fiber type, while the fast-twitch fiber enzyme profile would be unaltered. The increased muscle glycogen would in part result from an elevated hexokinase and glycogen synthase. The enzymes selected for study represent markers for mitochondrial function (citrate synthase and 0-hydroxyacyl-CoA dehydrogenase), glycolysis (Phosphofructokinase and lactate dehydrogenase), and fatty acid transport (Carnitine acetyl transferase). The substrates analyzed will include glycogen, lactate, adenosine triphosphate, and phosphocreatine.

  19. High resolution three-dimensional reconstruction of fibrotic skeletal muscle extracellular matrix.

    PubMed

    Gillies, Allison R; Chapman, Mark A; Bushong, Eric A; Deerinck, Thomas J; Ellisman, Mark H; Lieber, Richard L

    2017-02-15

    Fibrosis occurs secondary to many skeletal muscle diseases and injuries, and can alter muscle function. It is unknown how collagen, the most abundant extracellular structural protein, alters its organization during fibrosis. Quantitative and qualitative high-magnification electron microscopy shows that collagen is organized into perimysial cables which increase in number in a model of fibrosis, and cables have unique interactions with collagen-producing cells. Fibrotic muscles are stiffer and have a higher concentration of collagen-producing cells. These results improve our understanding of the organization of fibrotic skeletal muscle extracellular matrix and identify novel structures that might be targeted by antifibrotic therapy. Skeletal muscle extracellular matrix (ECM) structure and organization are not well understood, yet the ECM plays an important role in normal tissue homeostasis and disease processes. Fibrosis is common to many muscle diseases and is typically quantified based on an increase in ECM collagen. Through the use of multiple imaging modalities and quantitative stereology, we describe the structure and composition of wild-type and fibrotic ECM, we show that collagen in the ECM is organized into large bundles of fibrils, or collagen cables, and the number of these cables (but not their size) increases in desmin knockout muscle (a fibrosis model). The increase in cable number is accompanied by increased muscle stiffness and an increase in the number of collagen producing cells. Unique interactions between ECM cells and collagen cables were also observed and reconstructed by serial block face scanning electron microscopy. These results demonstrate that the muscle ECM is more highly organized than previously reported. Therapeutic strategies for skeletal muscle fibrosis should consider the organization of the ECM to target the structures and cells contributing to fibrotic muscle function. © 2016 Rehabilitation Institute of Chicago. The Journal of Physiology © 2016 The Physiological Society.

  20. High resolution three‐dimensional reconstruction of fibrotic skeletal muscle extracellular matrix

    PubMed Central

    Gillies, Allison R.; Chapman, Mark A.; Bushong, Eric A.; Deerinck, Thomas J.; Ellisman, Mark H.

    2016-01-01

    Key points Fibrosis occurs secondary to many skeletal muscle diseases and injuries, and can alter muscle function.It is unknown how collagen, the most abundant extracellular structural protein, alters its organization during fibrosis.Quantitative and qualitative high‐magnification electron microscopy shows that collagen is organized into perimysial cables which increase in number in a model of fibrosis, and cables have unique interactions with collagen‐producing cells.Fibrotic muscles are stiffer and have a higher concentration of collagen‐producing cells.These results improve our understanding of the organization of fibrotic skeletal muscle extracellular matrix and identify novel structures that might be targeted by antifibrotic therapy. Abstract Skeletal muscle extracellular matrix (ECM) structure and organization are not well understood, yet the ECM plays an important role in normal tissue homeostasis and disease processes. Fibrosis is common to many muscle diseases and is typically quantified based on an increase in ECM collagen. Through the use of multiple imaging modalities and quantitative stereology, we describe the structure and composition of wild‐type and fibrotic ECM, we show that collagen in the ECM is organized into large bundles of fibrils, or collagen cables, and the number of these cables (but not their size) increases in desmin knockout muscle (a fibrosis model). The increase in cable number is accompanied by increased muscle stiffness and an increase in the number of collagen producing cells. Unique interactions between ECM cells and collagen cables were also observed and reconstructed by serial block face scanning electron microscopy. These results demonstrate that the muscle ECM is more highly organized than previously reported. Therapeutic strategies for skeletal muscle fibrosis should consider the organization of the ECM to target the structures and cells contributing to fibrotic muscle function. PMID:27859324

  1. Dystroglycan and Protein O-Mannosyltransferases 1 and 2 Are Required to Maintain Integrity of Drosophila Larval Muscles

    PubMed Central

    Seabrooke, Sara; Stewart, Bryan A.

    2007-01-01

    In vertebrates, mutations in Protein O-mannosyltransferase1 (POMT1) or POMT2 are associated with muscular dystrophy due to a requirement for O-linked mannose glycans on the Dystroglycan (Dg) protein. In this study we examine larval body wall muscles of Drosophila mutant for Dg, or RNA interference knockdown for Dg and find defects in muscle attachment, altered muscle contraction, and a change in muscle membrane resistance. To determine if POMTs are required for Dg function in Drosophila, we examine larvae mutant for genes encoding POMT1 or POMT2. Larvae mutant for either POMT, or doubly mutant for both, show muscle attachment and muscle contraction phenotypes identical to those associated with reduced Dg function, consistent with a requirement for O-linked mannose on Drosophila Dg. Together these data establish a central role for Dg in maintaining integrity in Drosophila larval muscles and demonstrate the importance of glycosylation to Dg function in Drosophila. This study opens the possibility of using Drosophila to investigate muscular dystrophy. PMID:17881734

  2. Lumbar muscle dysfunction during remission of unilateral recurrent nonspecific low-back pain: evaluation with muscle functional MRI.

    PubMed

    D'hooge, Roseline; Cagnie, Barbara; Crombez, Geert; Vanderstraeten, Guy; Achten, Eric; Danneels, Lieven

    2013-03-01

    After cessation of a low-back pain (LBP) episode, alterations in trunk muscle behavior, despite recovery from pain, have been hypothesized to play a pathogenic role in the recurrence of LBP. This study aimed to identify the presence of lumbar muscle dysfunction during the remission of recurrent LBP, while performing a low-load trunk-extension movement. Thirteen participants with unilateral recurrent LBP were tested at least 1 month after cessation of the previous LBP episode and were compared with a healthy control group without any history of LBP (n=13). Also, differences between previously painful and nonpainful sides were examined. Muscle functional magnetic resonance imaging, based on quantitative T2-imaging, was used to examine muscle tissue characteristics (T2 rest) and muscle recruitment (T2 shift) during prone trunk extension. The lumbar multifidus, erector spinae, quadratus lumborum, and psoas were bilaterally visualized on 2 lumbar levels using a T2-weighted (spin-echo multicontrast) magnetic resonance imaging sequence. Linear mixed model analysis revealed a significantly lower T2 rest (P=0.044) and a significantly higher T2 shift (P=0.034) solely for the multifidus in the LBP group compared with the control group. No significant differences between pain sides were found. Lower T2-rest values have been suggested to correlate with a conversion of the multifidus' fiber typing toward the glycolytic muscle spectrum. Elevated T2 shifts correspond with increased levels of metabolic activity in the multifidus in the LBP group, for which several hypotheses can be put forward. Taken together, these findings provide evidence of concurrent alterations in the multifidus structure and activity in individuals with unilateral recurrent LBP, despite being pain free and functionally recovered.

  3. Alterations in Intestinal Contractility during Inflammation Are Caused by Both Smooth Muscle Damage and Specific Receptor-mediated Mechanisms

    PubMed Central

    Tanović, Adnan; Fernández, Ester; Jiménez, Marcel

    2006-01-01

    Aim To evaluate motoric intestinal disturbances during inflammation with Trichinella spiralis in rats as an experimental model. Methods We examined the changes in worm-positive (jejunum) and worm-free (ileum) intestinal segments of rats infected with T. spiralis. To investigate the relationship between structural and functional changes in smooth muscle, we measured the thickness of the muscle layers of rat jejunum and ileum. Mechanical responses to KCl 30 mmol/L, acetylcholine (ACh) 10−8-10−4 mol/L, substance P (SP) 10−9-10−5 mol/L, and to electrical field stimulation of longitudinal muscle strips in the jejunum and ileum were studied in muscle bath as controls (day 0) and on day 2, 6, 14, 23, and 72 after infection. Results After T. spiralis infestation, an inflammation of the mucosal and submucosal layers of jejunum was observed, whereas in the worm-free ileum there was not any inflammatory infiltrate. Increase in the smooth muscle thickness of both jejunum and ileum were correlated with increased responses to depolarizing agent KCl and to ACh. However, responses to SP were decreased on day 14-23 after infection in jejunum and from day 6-14 after infection in ileum. Electric field stimulation-induced contractions were transiently decreased in the jejunum (day 2 after infection) but in the ileum the contractile responses were decreased until the end of the study period. Conclusions Alterations in intestinal smooth muscle function do not require the presence of the parasite and the absence of histopathological signs of inflammation do not warrant intact motor function. Changes in motor responses after T. spiralis infection are not only due to smooth muscle damage but also to disturbances in specific receptor-mediated mechanisms. PMID:16625700

  4. Alterations in intestinal contractility during inflammation are caused by both smooth muscle damage and specific receptor-mediated mechanisms.

    PubMed

    Tanović, Adnan; Fernández, Ester; Jiménez, Marcel

    2006-04-01

    To evaluate motoric intestinal disturbances during inflammation with Trichinella spiralis in rats as an experimental model. We examined the changes in worm-positive (jejunum) and worm-free (ileum) intestinal segments of rats infected with T. spiralis. To investigate the relationship between structural and functional changes in smooth muscle, we measured the thickness of the muscle layers of rat jejunum and ileum. Mechanical responses to KCl 30 mmol/L, acetylcholine (ACh) 10(-8)-10(-4) mol/L, substance P (SP) 10(-9)-10(-5) mol/L, and to electrical field stimulation of longitudinal muscle strips in the jejunum and ileum were studied in muscle bath as controls (day 0) and on day 2, 6, 14, 23, and 72 after infection. After T. spiralis infestation, an inflammation of the mucosal and submucosal layers of jejunum was observed, whereas in the worm-free ileum there was not any inflammatory infiltrate. Increase in the smooth muscle thickness of both jejunum and ileum were correlated with increased responses to depolarizing agent KCl and to ACh. However, responses to SP were decreased on day 14-23 after infection in jejunum and from day 6-14 after infection in ileum. Electric field stimulation-induced contractions were transiently decreased in the jejunum (day 2 after infection) but in the ileum the contractile responses were decreased until the end of the study period. Alterations in intestinal smooth muscle function do not require the presence of the parasite and the absence of histopathological signs of inflammation do not warrant intact motor function. Changes in motor responses after T. spiralis infection are not only due to smooth muscle damage but also to disturbances in specific receptor-mediated mechanisms.

  5. Baclofen in the Therapeutic of Sequele of Traumatic Brain Injury: Spasticity

    PubMed Central

    Pérez-Arredondo, Adán; Cázares-Ramírez, Eduardo; Carrillo-Mora, Paul; Martínez-Vargas, Marina; Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Alemón-Medina, Radamés; Sampieri, Aristides; Navarro, Luz; Carmona-Aparicio, Liliana

    2016-01-01

    Abstract Traumatic brain injury (TBI) is an alteration in brain function, caused by an external force, which may be a hit on the skull, rapid acceleration or deceleration, penetration of an object, or shock waves from an explosion. Traumatic brain injury is a major cause of morbidity and mortality worldwide, with a high prevalence rate in pediatric patients, in which treatment options are still limited, not available at present neuroprotective drugs. Although the therapeutic management of these patients is varied and dependent on the severity of the injury, general techniques of drug types are handled, as well as physical and surgical. Baclofen is a muscle relaxant used to treat spasticity and improve mobility in patients with spinal cord injuries, relieving pain and muscle stiffness. Pharmacological support with baclofen is contradictory, because disruption of its oral administration may cause increased muscle tone syndrome and muscle spasm, prolonged seizures, hyperthermia, dysesthesia, hallucinations, or even multisystem organ failure. Combined treatments must consider the pathophysiology of broader alterations than only excitation/inhibition context, allowing the patient's reintegration with the greatest functionality. PMID:27563745

  6. Divergent Mechanisms Leading to Signaling Dysfunction in Embryonic Muscle by Bisphenol A and Tetrabromobisphenol A

    PubMed Central

    Pessah, Isaac N.

    2017-01-01

    Bisphenol A (BPA) and its brominated derivative tetrabromobisphenol A (TBBPA) are high production volume chemicals used in the manufacture of various consumer products. Although regarded as endocrine disruptors, these chemicals are suspected to exert nongenomic actions on muscle function that are not well understood. Using skeletal muscle microsomes, we examined the effects of BPA and TBBPA on ryanodine receptor type 1 (RyR1), dihydropyridine receptor (DHPR), and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA). We assessed the impact of these chemicals on Ca2+ dynamics and signaling in embryonic skeletal myotubes through fluorescent Ca2+ imaging and measurement of resting membrane potential (Vm). TBBPA activated RyR1 and inhibited DHPR and SERCA, inducing a net efflux of Ca2+ from loaded microsomes, whereas BPA exhibited little or no activity at these targets. Regardless, both compounds disrupted the function of intact myotubes. TBBPA diminished and eventually abrogated Ca2+ transients, altered intracellular Ca2+ equilibrium, and caused Vm depolarization. For some cells, BPA caused rapid Ca2+ transient loss without marked changes in cytosolic and sarcoplasmic reticulum Ca2+ levels, likely owing to altered cellular excitability as a result of BPA-induced Vm hyperpolarization. BPA and TBBPA both interfere with skeletal muscle function through divergent mechanisms that impair excitation-contraction coupling and may be exemplary of their adverse outcomes in other muscle types. PMID:28143888

  7. Therapeutic effects of anti-gravity treadmill (AlterG) training on reflex hyper-excitability, corticospinal tract activities, and muscle stiffness in children with cerebral palsy.

    PubMed

    Parvin, Sh; Taghiloo, A; Irani, A; Mirbagheri, M Mehdi

    2017-07-01

    We aimed to study therapeutic effects of antigravity treadmill (AlterG) training on reflex hyper-excitability, muscle stiffness, and corticospinal tract (CST) function in children with spastic hemiplegic cerebral palsy (CP). Three children received AlterG training 3 days per week for 8 weeks as experimental group. Each session lasted 45 minutes. One child as control group received typical occupational therapy for the same amount of time. We evaluated hyper-excitability of lower limb muscles by H-reflex response. We quantified muscle stiffness by sonoelastography images of the affected muscles. We quantified CST activity by transcranial magnetic stimulation (TMS). We performed the evaluations before and after training for both groups. H response latency and maximum M-wave amplitude were improved in experimental group after training compared to control group. Two children of experimental group had TMS response. Major parameters of TMS (i.e. peak-to-peak amplitude of motor evoked potential (MEP), latency of MEP, cortical silent period, and intensity of pulse) improved for both of them. Three parameters of texture analysis of sonoelastography images were improved for experimental group (i.e. contrast, entropy, and shear wave velocity). These findings indicate that AlterG training can improve reflexes, muscle stiffness, and CST activity in children with spastic hemiplegic CP and can be considered as a therapeutic tool to improve neuromuscular abnormalities occurring secondary to CP.

  8. Bioenergetics mechanisms regulating muscle stem cell self-renewal commitment and function.

    PubMed

    Abreu, Phablo

    2018-04-16

    Muscle stem cells or satellite cells are crucial for muscle maintenance and repair. These cells are mitotically quiescent and uniformly express the transcription factor Pax7, intermittently entering the cell cycle to give rise to daughter myogenic precursors cells and fuse with neighboring myofibers or self-renew, replenishing the stem cell pool in adult skeletal muscle. Pivotal roles of muscle stem cells in muscle repair have been uncovered, but it still remains unclear how muscle stem cell self-renewal is molecularly regulated and how muscle stem cells maintain muscle tissue homeostasis. Defects in muscle stem cell regulation to maintain/return to quiescence and self-renew are observed in degenerative conditions such as aging and neuromuscular disease. Recent works has suggested the existence of metabolic regulation and mitochondrial alterations in muscle stem cells, influencing the self-renewal commitment and function. Here I present a brief overview of recent understanding of how metabolic reprogramming governs self-renewal commitment, which is essential for conservation of muscle satellite cell pools throughout life, as well as the implications for regenerative medicine. Copyright © 2018. Published by Elsevier Masson SAS.

  9. In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen

    2006-02-01

    Skeletal muscle fibers are a known source of form birefringence in biological tissue. The birefringence present in skeletal muscle is associated with the ultrastructure of individual sarcomeres, specifically the arrangement of A-bands corresponding to the thick myosin filaments. Certain structural proteins that prevent damage and maintain the structural and functional health of the muscle fiber preserve the organization of the Abands in skeletal muscle. Therefore, the level of birefringence detected can estimate the health of the muscle as well as the damage incurred during exercise. Murine skeletal muscle from both genetically-altered (mdx) and normal (wild-type) specimens were imaged in vivo with a fiber-based PSOCT imaging system to quantitatively determine the level of birefringence present in the tissue before and after exercise. The mdx muscle lacks dystrophin, a structural protein that is mutated in Duchenne muscular dystrophy in humans. Muscle from these mdx mice exhibited a marked decrease in birefringence after exercise, whereas the wild-type muscle was highly birefringent before and after exercise. The quantitative results from this tissue optics study suggest for the first time that there is a distinct relationship between the degree of birefringence detected using PS-OCT and the sarcomeric ultrastructure present within skeletal muscle.

  10. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    PubMed Central

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  11. Neck movement and muscle activity characteristics in female office workers with neck pain.

    PubMed

    Johnston, V; Jull, G; Souvlis, T; Jimmieson, N L

    2008-03-01

    Cross-sectional study. To explore aspects of cervical musculoskeletal function in female office workers with neck pain. Evidence of physical characteristics that differentiate computer workers with and without neck pain is sparse. Patients with chronic neck pain demonstrate reduced motion and altered patterns of muscle control in the cervical flexor and upper trapezius (UT) muscles during specific tasks. Understanding cervical musculoskeletal function in office workers will better direct intervention and prevention strategies. Measures included neck range of motion; superficial neck flexor muscle activity during a clinical test, the craniocervical flexion test; and a motor task, a unilateral muscle coordination task, to assess the activity of both the anterior and posterior neck muscles. Office workers with and without neck pain were formed into 3 groups based on their scores on the Neck Disability Index. Nonworking women without neck pain formed the control group. Surface electromyographic activity was recorded bilaterally from the sternocleidomastoid, anterior scalene (AS), cervical extensor (CE) and UT muscles. Workers with neck pain had reduced rotation range and increased activity of the superficial cervical flexors during the craniocervical flexion test. During the coordination task, workers with pain demonstrated greater activity in the CE muscles bilaterally. On completion of the task, the UT and dominant CE and AS muscles demonstrated an inability to relax in workers with pain. In general, there was a linear relationship between the workers' self-reported levels of pain and disability and the movement and muscle changes. These results are consistent with those found in other cervical musculoskeletal disorders and may represent an altered muscle recruitment strategy to stabilize the head and neck. An exercise program including motor reeducation may assist in the management of neck pain in office workers.

  12. Respiratory muscle strength is not decreased in patients undergoing cardiac surgery.

    PubMed

    Urell, Charlotte; Emtner, Margareta; Hedenstrom, Hans; Westerdahl, Elisabeth

    2016-03-31

    Postoperative pulmonary impairments are significant complications after cardiac surgery. Decreased respiratory muscle strength could be one reason for impaired lung function in the postoperative period. The primary aim of this study was to describe respiratory muscle strength before and two months after cardiac surgery. A secondary aim was to describe possible associations between respiratory muscle strength and lung function. In this prospective observational study 36 adult cardiac surgery patients (67 ± 10 years) were studied. Respiratory muscle strength and lung function were measured before and two months after surgery. Pre- and postoperative respiratory muscle strength was in accordance with predicted values; MIP was 78 ± 24 cmH2O preoperatively and 73 ± 22 cmH2O at two months follow-up (p = 0.19). MEP was 122 ± 33 cmH2O preoperatively and 115 ± 38 cmH2O at two months follow-up (p = 0.18). Preoperative lung function was in accordance with predicted values, but was significantly decreased postoperatively. At two-months follow-up there was a moderate correlation between MIP and FEV1 (r = 0.43, p = 0.009). Respiratory muscle strength was not impaired, either before or two months after cardiac surgery. The reason for postoperative lung function alteration is not yet known. Interventions aimed at restore an optimal postoperative lung function should focus on other interventions then respiratory muscle strength training.

  13. Neuromuscular dysfunction in type 2 diabetes: underlying mechanisms and effect of resistance training.

    PubMed

    Orlando, Giorgio; Balducci, Stefano; Bazzucchi, Ilenia; Pugliese, Giuseppe; Sacchetti, Massimo

    2016-01-01

    Diabetic patients are at higher risk of developing physical disabilities than non-diabetic subjects. Physical disability appears to be related, at least in part, to muscle dysfunction. Several studies have reported reduced muscle strength and power under dynamic and static conditions in both the upper and lower limbs of patients with type 2 diabetes. Additional effects of diabetes include a reduction in muscle mass, quality, endurance and an alteration in muscle fibre composition, though the available data on these parameters are conflicting. The impact of diabetes on neuromuscular function has been related to the co-existence of long-term complications. Peripheral neuropathy has been shown to affect muscle by impairing motor nerve conduction. Also, vascular complications may contribute to the decline in muscle strength. However, muscle dysfunction occurs early in the course of diabetes and affects also the upper limbs, thus suggesting that it may develop independently of micro and macrovascular disease. A growing body of evidence indicates that hyperglycaemia may cause an alteration of the intrinsic properties of the muscle to generate force, via several mechanisms. Recently, resistance exercise has been shown to be an effective strategy to counteract the deterioration of muscular performance. High-intensity exercise seems to provide greater benefits than moderate-intensity training, whereas the effect of a power training is yet unknown. This article reviews the available literature on the impairment of muscle function induced by diabetes, the underlying mechanisms, and the effect of resistance training on this defect. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Research on the adaptation of skeletal muscle to hypogravity: Past and future directions

    NASA Astrophysics Data System (ADS)

    Riley, D. A.; Ellis, S.

    Our current understanding of hypogravity-induced atrophy of skeletal muscles is based primarily on studies comparing pre- and post-flight properties of muscles. Interpretations are necessarily qualified by the assumption that the stress of reentry and readjustment to terrestrial gravity do not alter the parameters being analyzed. The neuromuscular system is highly responsive to changes in functional demands and capable of rapid adaptation, making this assumption questionable. A reexamination of the changes in the connective tissue and synaptic terminals of soleus muscles from rats orbited in biosatellites and sampled postflight indicates that these structural alterations represent adaptative responses of the atrophic muscles to the increased workload of returning to 1 G, rather than hypogravity per se. The atrophy of weightlessness is postulated to result because muscles are both underloaded and used less often. Proper testing of this hypothesis requires quantitation of muscle function by monitoring electromyography, force output and length changes during the flight. Experiments conducted in space laboratories, like those being developed for the Space Shuttle, will avoid the complications of reentry before tissue sampling and allow time course studies of the rate of development of adaptive changes to zero gravity. Another area of great importance for future studies of muscle atrophy is inflight measurement of plasma levels of hormones and tissue receptor levels. Glucocorticoids, thyroid hormone and insulin exert dramatic regulatory influences on muscle structure. Prevention of neuromuscular atrophy becomes increasingly more important as spaceflights increase in duration. Definition of the atrophic mechanism is essential to developing means of preventing neuromuscular atrophy.

  15. Altered Splicing of the BIN1 Muscle-Specific Exon in Humans and Dogs with Highly Progressive Centronuclear Myopathy

    PubMed Central

    Böhm, Johann; Vasli, Nasim; Maurer, Marie; Cowling, Belinda; Shelton, G. Diane; Kress, Wolfram; Toussaint, Anne; Prokic, Ivana; Schara, Ulrike; Anderson, Thomas James; Weis, Joachim; Tiret, Laurent; Laporte, Jocelyn

    2013-01-01

    Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies. PMID:23754947

  16. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  17. The relationship of choline acetyltransferase activity at the neuromuscular junction to changes in muscle mass and function

    PubMed Central

    Diamond, Ivan; Franklin, Gary M.; Milfay, Dale

    1974-01-01

    1. The role of muscle mass and function in the regulation of choline acetyltransferase activity at the neuromuscular junction has been investigated in the rat. 2. Choline acetyltransferase (ChAc) is located in presynaptic nerve terminals and is a specific enzymatic marker of cholinergic innervation in muscle. 3. ChAc activity increased co-ordinately with developmental growth of the soleus muscle. However, another form of muscle growth, work hypertrophy, did not produce an increase in ChAc. 4. Growth arrest of muscle by hypophysectomy did not alter the normal development of ChAc activity, and cortisone-induced muscle atrophy did not reduce ChAc activity in the soleus or plantaris. 5. Tenotomy-induced muscle atrophy provoked a significant fall in ChAc in the soleus and plantaris. 6. The tonic soleus had significantly greater ChAc activity than the phasic plantaris. 7. These observations suggest that muscle mass per se does not influence the development and regulation of ChAc in muscle but that the quality of muscle contraction may modulate enzyme activity. PMID:4818500

  18. Resveratrol improves exercise performance and skeletal muscle oxidative capacity in heart failure.

    PubMed

    Sung, Miranda M; Byrne, Nikole J; Robertson, Ian M; Kim, Ty T; Samokhvalov, Victor; Levasseur, Jody; Soltys, Carrie-Lynn; Fung, David; Tyreman, Neil; Denou, Emmanuel; Jones, Kelvin E; Seubert, John M; Schertzer, Jonathan D; Dyck, Jason R B

    2017-04-01

    We investigated whether treatment of mice with established pressure overload-induced heart failure (HF) with the naturally occurring polyphenol resveratrol could improve functional symptoms of clinical HF such as fatigue and exercise intolerance. C57Bl/6N mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Three weeks postsurgery, a cohort of mice with established HF (%ejection fraction <45) was administered resveratrol (~450 mg·kg -1 ·day -1 ) or vehicle for 2 wk. Although the percent ejection fraction was similar between both groups of HF mice, those mice treated with resveratrol had increased total physical activity levels and exercise capacity. Resveratrol treatment was associated with altered gut microbiota composition, increased skeletal muscle insulin sensitivity, a switch toward greater whole body glucose utilization, and increased basal metabolic rates. Although muscle mass and strength were not different between groups, mice with HF had significant declines in basal and ADP-stimulated O 2 consumption in isolated skeletal muscle fibers compared with sham mice, which was completely normalized by resveratrol treatment. Overall, resveratrol treatment of mice with established HF enhances exercise performance, which is associated with alterations in whole body and skeletal muscle energy metabolism. Thus, our preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in HF patients. NEW & NOTEWORTHY Resveratrol treatment of mice with heart failure leads to enhanced exercise performance that is associated with altered gut microbiota composition, increased whole body glucose utilization, and enhanced skeletal muscle metabolism and function. Together, these preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in heart failure via these mechanisms. Copyright © 2017 the American Physiological Society.

  19. Physical activity as a metabolic stressor.

    PubMed

    Coyle, E F

    2000-08-01

    Both physical activity and diet stimulate processes that, over time, alter the morphologic composition and biochemical function of the body. Physical activity provides stimuli that promote very specific and varied adaptations according to the type, intensity, and duration of exercise performed. There is further interest in the extent to which diet or supplementation can enhance the positive stimuli. Prolonged walking at low intensity presents little metabolic, hormonal, or cardiovascular stress, and the greatest perturbation from rest appears to be from increased fat oxidation and plasma free fatty acid mobilization resulting from a combination of increased lipolysis and decreased reesterification. More intense jogging or running largely stimulates increased oxidation of glycogen and triacylglycerol, both of which are stored directly within the muscle fibers. Furthermore, these intramuscular stores of carbohydrate and fat appear to be the primary substrates for the enhanced oxidative and performance ability derived from endurance training-induced increases in muscle mitochondrial density. Weightlifting that produces fatigue in brief periods (ie, in 15-90 s and after 15 repetitive contractions) elicits a high degree of motor unit recruitment and muscle fiber stimulation. This is a remarkably potent stimulus for altering protein synthesis in muscle and increasing neuromuscular function. The metabolic stress of physical activity can be measured by substrate turnover and depletion, cardiovascular response, hormonal perturbation, accumulation of metabolites, or even the extent to which the synthesis and degradation of specific proteins are altered, either acutely or by chronic exercise training.

  20. ALS-related misfolded protein management in motor neurons and muscle cells.

    PubMed

    Galbiati, Mariarita; Crippa, Valeria; Rusmini, Paola; Cristofani, Riccardo; Cicardi, Maria Elena; Giorgetti, Elisa; Onesto, Elisa; Messi, Elio; Poletti, Angelo

    2014-12-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common form of adult-onset motor neuron disease. It is now considered a multi-factorial and multi-systemic disorder in which alterations of the crosstalk between neuronal and non-neuronal cell types might influence the course of the disease. In this review, we will provide evidence that dysfunctions of affected muscle cells are not only a marginal consequence of denervation associated to motor neurons loss, but a direct consequence of cell muscle toxicity of mutant SOD1. In muscle, the misfolded state of mutant SOD1 protein, unlike in motor neurons, does not appear to have direct effects on protein aggregation and mitochondrial functionality. Muscle cells are, in fact, more capable than motor neurons to handle misfolded proteins, suggesting that mutant SOD1 toxicity in muscle is not mediated by classical mechanisms of intracellular misfolded proteins accumulation. Several recent works indicate that a higher activation of molecular chaperones and degradative systems is present in muscle cells, which for this reason are possibly able to better manage misfolded mutant SOD1. However, several alterations in gene expression and regenerative potential of skeletal muscles have also been reported as a consequence of the expression of mutant SOD1 in muscle. Whether these changes in muscle cells are causative of ALS or a consequence of motor neuron alterations is not yet clear, but their elucidation is very important, since the understanding of the mechanisms involved in mutant SOD1 toxicity in muscle may facilitate the design of treatments directed toward this specific tissue to treat ALS or at least to delay disease progression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Methods for the assessment of peripheral muscle fatigue and its energy and metabolic determinants in COPD.

    PubMed

    Rondelli, Rafaella Rezende; Dal Corso, Simone; Simões, Alexandre; Malaguti, Carla

    2009-11-01

    It has been well established that, in addition to the pulmonary involvement, COPD has systemic consequences that can lead to peripheral muscle dysfunction, with greater muscle fatigue, lower exercise tolerance and lower survival in these patients. In view of the negative repercussions of early muscle fatigue in COPD, the objective of this review was to discuss the principal findings in the literature on the metabolic and bioenergy determinants of muscle fatigue, its functional repercussions, as well as the methods for its identification and quantification. The anatomical and functional substrate of higher muscle fatigue in COPD appears to include lower levels of high-energy phosphates, lower mitochondrial density, early lactacidemia, higher serum ammonia and reduced muscle perfusion. These alterations can be revealed by contraction failure, decreased firing rates of motor units and increased recruitment of motor units in a given activity, which can be functionally detected by a reduction in muscle strength, power and endurance. This review article also shows that various types of muscle contraction regimens and protocols have been used in order to detect muscle fatigue in this population. With this understanding, rehabilitation strategies can be developed in order to improve the resistance to muscle fatigue in this population.

  2. Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials

    PubMed Central

    Marzetti, Emanuele; Calvani, Riccardo; Cesari, Matteo; Buford, Thomas W.; Lorenzi, Maria; Behnke, Bradley J.; Leeuwenburgh, Christiaan

    2013-01-01

    Sarcopenia, the age-related loss of muscle mass and function, imposes a dramatic burden on individuals and society. The development of preventive and therapeutic strategies against sarcopenia is therefore perceived as an urgent need by health professionals and has instigated intensive research on the pathophysiology of this syndrome. The pathogenesis of sarcopenia is multifaceted and encompasses lifestyle habits, systemic factors (e.g., chronic inflammation and hormonal alterations), local environment perturbations (e.g., vascular dysfunction), and intramuscular specific processes. In this scenario, derangements in skeletal myocyte mitochondrial function are recognized as major factors contributing to the age-dependent muscle degeneration. In this review, we summarize prominent findings and controversial issues on the contribution of specific mitochondrial processes – including oxidative stress, quality control mechanisms and apoptotic signaling – on the development of sarcopenia. Extramuscular alterations accompanying the aging process with a potential impact on myocyte mitochondrial function are also discussed. We conclude with presenting methodological and safety considerations for the design of clinical trials targeting mitochondrial dysfunction to treat sarcopenia. Special emphasis is placed on the importance of monitoring the effects of an intervention on muscle mitochondrial function and identifying the optimal target population for the trial. PMID:23845738

  3. Age-related changes in trunk neuromuscular activation patterns during a controlled functional transfer task include amplitude and temporal synergies.

    PubMed

    Quirk, D Adam; Hubley-Kozey, Cheryl L

    2014-12-01

    While healthy aging is associated with physiological changes that can impair control of trunk motion, few studies examine how spinal muscle responses change with increasing age. This study examined whether older (over 65 years) compared to younger (20-45 years) adults had higher overall amplitude and altered temporal recruitment patterns of trunk musculature when performing a functional transfer task. Surface electromyograms from twelve bilateral trunk muscle (24) sites were analyzed using principal component analysis, extracting amplitude and temporal features (PCs) from electromyographic waveforms. Two PCs explained 96% of the waveform variance. Three factor ANOVA models tested main effects (group, muscle and reach) and interactions for PC scores. Significant (p<.0125) group interactions were found for all PC scores. Post hoc analysis revealed that relative to younger adults, older adults recruited higher agonist and antagonistic activity, demonstrated continuous activation levels in specific muscle sites despite changing external moments, and had altered temporal synergies within abdominal and back musculature. In summary both older and younger adults recruit highly organized activation patterns in response to changing external moments. Differences in temporal trunk musculature recruitment patterns suggest that older adults experience different dynamic spinal stiffness and loading compared to younger adults during a functional lifting task. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Distinct roles for Ste20-like kinase SLK in muscle function and regeneration

    PubMed Central

    2013-01-01

    Background Cell growth and terminal differentiation are controlled by complex signaling systems that regulate the tissue-specific expression of genes controlling cell fate and morphogenesis. We have previously reported that the Ste20-like kinase SLK is expressed in muscle tissue and is required for cell motility. However, the specific function of SLK in muscle tissue is still poorly understood. Methods To gain further insights into the role of SLK in differentiated muscles, we expressed a kinase-inactive SLK from the human skeletal muscle actin promoter. Transgenic muscles were surveyed for potential defects. Standard histological procedures and cardiotoxin-induced regeneration assays we used to investigate the role of SLK in myogenesis and muscle repair. Results High levels of kinase-inactive SLK in muscle tissue produced an overall decrease in SLK activity in muscle tissue, resulting in altered muscle organization, reduced litter sizes, and reduced breeding capacity. The transgenic mice did not show any differences in fiber-type distribution but displayed enhanced regeneration capacity in vivo and more robust differentiation in vitro. Conclusions Our results show that SLK activity is required for optimal muscle development in the embryo and muscle physiology in the adult. However, reduced kinase activity during muscle repair enhances regeneration and differentiation. Together, these results suggest complex and distinct roles for SLK in muscle development and function. PMID:23815977

  5. Neck muscle function in violinists/violists with and without neck pain.

    PubMed

    Steinmetz, Anke; Claus, Andrew; Hodges, Paul W; Jull, Gwendolen A

    2016-04-01

    Neck pain is associated with changes in neuromuscular control of cervical muscles. Violin and viola playing requires good function of the flexor muscles to stabilize the instrument. This study investigated the flexor muscle behaviour in violin/viola players with and without neck pain using the craniocervical flexion test (CCFT). In total, 12 violin/viola players with neck pain, 21 violin/viola players without neck pain in the preceding 12 weeks and 21 pain-free non-musicians were included. Activity of the sternocleidomastoid muscles (SCM) was measured with surface electromyography (EMG) during the CCFT. Violin/viola players with neck pain displayed greater normalised SCM EMG amplitudes during CCFT than the pain-free musicians and non-musicians (P < 0.05). Playing-related neck pain in violinists/violists is associated with altered behaviour of the superficial neck flexor muscles consistent with neck pain, despite the specific use of the deep and superficial neck flexors during violin playing.

  6. Satellite Cell Functional Alterations Following Cutaneous Burn in rats Include an Increase in Their Osteogenic Potential

    DTIC Science & Technology

    2013-10-07

    response to local injury [3]. They have also been recognized as having a role in diseases, including cachexia and sarcopenia, where muscle mass may be...1961;9:493. [4] Dasarathy S. Consilience in sarcopenia of cirrhosis. J Cachexia Sarcopenia Muscle 2012;3:225. [5] Glass DJ. Signaling pathways that mediate

  7. Effect of spaceflight on the isotonic contractile properties of single skeletal muscle fibers in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Romatowski, J. G.; Blaser, C.; De La Cruz, L.; Gettelman, G. J.; Widrick, J. J.

    2000-01-01

    Experiments from both Cosmos and Space Shuttle missions have shown weightlessness to result in a rapid decline in the mass and force of rat hindlimb extensor muscles. Additionally, despite an increased maximal shortening velocity, peak power was reduced in rat soleus muscle post-flight. In humans, declines in voluntary peak isometric ankle extensor torque ranging from 15-40% have been reported following long- and short-term spaceflight and prolonged bed rest. Complete understanding of the cellular events responsible for the fiber atrophy and the decline in force, as well as the development of effective countermeasures, will require detailed knowledge of how the physiological and biochemical processes of muscle function are altered by spaceflight. The specific purpose of this investigation was to determine the extent to which the isotonic contractile properties of the slow- and fast-twitch fiber types of the soleus and gastrocnemius muscles of rhesus monkeys (Macaca mulatta) were altered by a 14-day spaceflight.

  8. Interjoint coupling effects on muscle contributions to endpoint force and acceleration in a musculoskeletal model of the cat hindlimb

    PubMed Central

    van Antwerp, Keith W.; Burkholder, Thomas J.

    2015-01-01

    The biomechanical principles underlying the organization of muscle activation patterns during standing balance are poorly understood. The goal of this study was to understand the influence of biomechanical inter-joint coupling on endpoint forces and accelerations induced by the activation of individual muscles during postural tasks. We calculated induced endpoint forces and accelerations of 31 muscles in a 7 degree-of-freedom, 3-dimensional model of the cat hindlimb. To test the effects of inter-joint coupling, we systematically immobilized the joints (excluded kinematic degrees-of-freedom) and evaluated how the endpoint force and acceleration directions changed for each muscle in seven different conditions. We hypothesized that altered inter-joint coupling due to joint immobilization of remote joints would substantially change the induced directions of endpoint force and acceleration of individual muscles. Our results show that for most muscles crossing the knee or the hip, joint immobilization altered the endpoint force or acceleration direction by more than 90° in the dorsal and sagittal planes. Induced endpoint forces were typically consistent with behaviorally-observed forces only when the ankle was immobilized. We then activated a proximal muscle simultaneous with an ankle torque of varying magnitude, which demonstrated that the resulting endpoint force or acceleration direction is modulated by the magnitude of the ankle torque. We argue that this simple manipulation can lend insight into the functional effects of co-activating muscles. We conclude that inter-joint coupling may be an essential biomechanical principle underlying the coordination of proximal and distal muscles to produce functional endpoint actions during motor tasks. PMID:17640652

  9. Mitochondrial-related proteomic changes during obesity and fasting in mice are greater in the liver than skeletal muscles.

    PubMed

    Nesteruk, Monika; Hennig, Ewa E; Mikula, Michal; Karczmarski, Jakub; Dzwonek, Artur; Goryca, Krzysztof; Rubel, Tymon; Paziewska, Agnieszka; Woszczynski, Marek; Ledwon, Joanna; Dabrowska, Michalina; Dadlez, Michal; Ostrowski, Jerzy

    2014-03-01

    Although mitochondrial dysfunction is implicated in the pathogenesis of obesity, the molecular mechanisms underlying obesity-related metabolic abnormalities are not well established. We performed mitochondrial quantitative proteomic and whole transcriptome analysis followed by functional annotations within liver and skeletal muscles, using fasted and non-fasted 16- and 48-week-old high-fat diet (HFD)-fed and normal diet-fed (control group) wild-type C56BL/6J mice, and hyperphagic ob/ob and db/db obese mice. Our study identified 1,675 and 704 mitochondria-associated proteins with at least two peptides in liver and muscle, respectively. Of these, 221 liver and 44 muscle proteins were differentially expressed (adjusted p values ≤ 0.05) between control and all obese mice, while overnight fasting altered expression of 107 liver and 35 muscle proteins. In the liver, we distinguished a network of 27 proteins exhibiting opposite direction of expression changes in HFD-fed and hyperphagic mice when compared to control. The network centered on cytochromes P450 3a11 (Cyp3a11) and 4a14 (Cyp4a14), and fructose-bisphosphate aldolase B (Aldob) proteins which bridged proteins cluster involved in Metabolism of xenobiotics with proteins engaged in Fatty acid metabolism and PPAR signaling pathways. Functional annotations revealed that most of the hepatic molecular alterations, which characterized both obesity and fasting, related to different aspects of energy metabolism (such as Fatty acid metabolism, Peroxisome, and PPAR signaling); however, only a limited number of functional annotations could be selected from skeletal muscle data sets. Thus, our comprehensive molecular overview revealed that both obesity and fasting states induce more pronounced mitochondrial proteome changes in the liver than in the muscles.

  10. 17-(allylamino)-17-demethoxygeldanamycin drives Hsp70 expression but fails to improve morphological or functional recovery in injured skeletal muscle.

    PubMed

    Baumann, Cory W; Otis, Jeffrey S

    2015-12-01

    The stress inducible 70 kDa heat shock protein (Hsp70) is instrumental to efficient morphological and functional recovery following skeletal muscle injury because of its roles in protein quality control and molecular signalling. Therefore, in attempt to improve recovery, Hsp70 expression was increased with 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) prior to and following an intramuscular injection of barium chloride (BaCl2) into the tibialis anterior (TA) of healthy young mice. To assess recovery, regenerating fibre cross-sectional area (CSA) of the TA and in vivo peak isometric torque produced by the anterior crural muscles (TA, extensor digitorum longus and extensor hallucis muscles) were analyzed for up to 3 weeks after the injury. Because treatment of 17-AAG and Hsp70 are known to influence inflammatory and myogenic signalling, tumor necrosis factor-α (TNF-α) and myogenin content were also assessed. This study reports that 17-AAG was effective at up-regulating Hsp70 expression, increasing content fivefold in the uninjured muscle. However, this significant increase in Hsp70 content did not enhance morphological or functional recovery following the injury, as the return of regenerating fibre CSA and in vivo peak isometric torque did not differ compared to that of the injured muscle from the vehicle treated mice. Treatment with 17-AAG also altered TNF-α and myogenin content, increasing both to a greater extent after the injury. Together, these findings demonstrate that although 17-AAG may alter molecular makers of regeneration, it does not improve recovery following BaCl2-induced skeletal muscle injury in healthy young mice. © 2015 Wiley Publishing Asia Pty Ltd.

  11. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.

    PubMed

    Divet, Alexandra; Huchet-Cadiou, Corinne

    2002-08-01

    The aim of the present study was to establish whether alterations in sarcoplasmic reticulum function are involved in the abnormal Ca(2+) homeostasis of skeletal muscle in mice with muscular dystrophy ( mdx). The properties of the sarcoplasmic reticulum and contractile proteins of fast- and slow-twitch muscles were therefore investigated in chemically skinned fibres isolated from the extensor digitorum longus (EDL) and soleus muscles of normal (C57BL/10) and mdx mice at 4 and 11 weeks of development. Sarcoplasmic reticulum Ca(2+) uptake, estimated by the Ca(2+) release following exposure to caffeine, was significantly slower in mdx mice, while the maximal Ca(2+) quantity did not differ in either type of skeletal muscle at either stage of development. In 4-week-old mice spontaneous sarcoplasmic reticulum Ca(2+) leakage was observed in EDL and soleus fibres and this was more pronounced in mdx mice. In addition, the maximal Ca(2+)-activated tension was smaller in mdx than in normal fibres, while the Ca(2+) sensitivity of the contractile apparatus was not significantly different. These results indicate that mdx hindlimb muscles are affected differently by the disease process and suggest that a reduced ability of the Ca(2+)-ATPase to load Ca(2+) and a leaky sarcoplasmic reticulum membrane may be involved in the altered intracellular Ca(2+) homeostasis.

  12. Afferent control mechanisms involved in the development of soleus fiber alterations in simulated hypogravity

    NASA Astrophysics Data System (ADS)

    Shenkman, B. S.; Nemirovskaya, T. L.; Shapovalova, K. B.; Podlubnaya, Z. A.; Vikhliantsev, I. M.; Moukhina, A. M.; Kozlovskaya, I. B.

    2007-02-01

    It was recently established that support withdrawal (withdrawal of support reaction force) in microgravity provokes a sequence of functional shifts in the activity of motor units (inactivation of slow ones) and peripheral muscle apparatus which lead to the decline of postural muscle contractility and alterations in fiber characteristics. However, mechanisms involved in inactivation of the slow motor units and appropriate slow-twitch muscle fiber disuse under the supportless conditions remained unknown. We show here that artificial inactivation of muscles-antagonists (which are known to be hyperactive during unloading) counteracts some of the unloading-induced events in the rat soleus (fiber size reduction, slow-to-fast fiber-type transition and decline of titin and nebulin content). It was also demonstrated that direct activation of the muscarinic receptors of the neostriatum neurons prevented slow-to-fast fiber-type transformation in soleus of hindlimb suspended rats.

  13. High Throughput Screening for Compounds That Alter Muscle Cell Glycosylation Identifies New Role for N-Glycans in Regulating Sarcolemmal Protein Abundance and Laminin Binding*

    PubMed Central

    Cabrera, Paula V.; Pang, Mabel; Marshall, Jamie L.; Kung, Raymond; Nelson, Stanley F.; Stalnaker, Stephanie H.; Wells, Lance; Crosbie-Watson, Rachelle H.; Baum, Linda G.

    2012-01-01

    Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function. PMID:22570487

  14. Muscle Expression of SOD1G93A Triggers the Dismantlement of Neuromuscular Junction via PKC-Theta.

    PubMed

    Dobrowolny, Gabriella; Martini, Martina; Scicchitano, Bianca Maria; Romanello, Vanina; Boncompagni, Simona; Nicoletti, Carmine; Pietrangelo, Laura; De Panfilis, Simone; Catizone, Angela; Bouchè, Marina; Sandri, Marco; Rudolf, Rüdiger; Protasi, Feliciano; Musarò, Antonio

    2018-04-20

    Neuromuscular junction (NMJ) represents the morphofunctional interface between muscle and nerve. Several chronic pathologies such as aging and neurodegenerative diseases, including muscular dystrophy and amyotrophic lateral sclerosis, display altered NMJ and functional denervation. However, the triggers and the molecular mechanisms underlying the dismantlement of NMJ remain unclear. Here we provide evidence that perturbation in redox signaling cascades, induced by muscle-specific accumulation of mutant SOD1 G93A in transgenic MLC/SOD1 G93A mice, is causally linked to morphological alterations of the neuromuscular presynaptic terminals, high turnover rate of acetylcholine receptor, and NMJ dismantlement. The analysis of potential molecular mechanisms that mediate the toxic activity of SOD1 G93A revealed a causal link between protein kinase Cθ (PKCθ) activation and NMJ disintegration. The study discloses the molecular mechanism that triggers functional denervation associated with the toxic activity of muscle SOD1 G93A expression and suggests the possibility of developing a new strategy to counteract age- and pathology-associated denervation based on pharmacological inhibition of PKCθ activity. Collectively, these data indicate that muscle-specific accumulation of oxidative damage can affect neuromuscular communication and induce NMJ dismantlement through a PKCθ-dependent mechanism. Antioxid. Redox Signal. 28, 1105-1119.

  15. Interpreting Musculoskeletal Models and Dynamic Simulations: Causes and Effects of Differences Between Models.

    PubMed

    Roelker, Sarah A; Caruthers, Elena J; Baker, Rachel K; Pelz, Nicholas C; Chaudhari, Ajit M W; Siston, Robert A

    2017-11-01

    With more than 29,000 OpenSim users, several musculoskeletal models with varying levels of complexity are available to study human gait. However, how different model parameters affect estimated joint and muscle function between models is not fully understood. The purpose of this study is to determine the effects of four OpenSim models (Gait2392, Lower Limb Model 2010, Full-Body OpenSim Model, and Full Body Model 2016) on gait mechanics and estimates of muscle forces and activations. Using OpenSim 3.1 and the same experimental data for all models, six young adults were scaled in each model, gait kinematics were reproduced, and static optimization estimated muscle function. Simulated measures differed between models by up to 6.5° knee range of motion, 0.012 Nm/Nm peak knee flexion moment, 0.49 peak rectus femoris activation, and 462 N peak rectus femoris force. Differences in coordinate system definitions between models altered joint kinematics, influencing joint moments. Muscle parameter and joint moment discrepancies altered muscle activations and forces. Additional model complexity yielded greater error between experimental and simulated measures; therefore, this study suggests Gait2392 is a sufficient model for studying walking in healthy young adults. Future research is needed to determine which model(s) is best for tasks with more complex motion.

  16. Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia

    PubMed Central

    Roberts, Edward W.; Deonarine, Andrew; Jones, James O.; Denton, Alice E.; Feig, Christine; Lyons, Scott K.; Espeli, Marion; Kraman, Matthew; McKenna, Brendan; Wells, Richard J.B.; Zhao, Qi; Caballero, Otavia L.; Larder, Rachel; Coll, Anthony P.; O’Rahilly, Stephen; Brindle, Kevin M.; Teichmann, Sarah A.; Tuveson, David A.

    2013-01-01

    Fibroblast activation protein-α (FAP) identifies stromal cells of mesenchymal origin in human cancers and chronic inflammatory lesions. In mouse models of cancer, they have been shown to be immune suppressive, but studies of their occurrence and function in normal tissues have been limited. With a transgenic mouse line permitting the bioluminescent imaging of FAP+ cells, we find that they reside in most tissues of the adult mouse. FAP+ cells from three sites, skeletal muscle, adipose tissue, and pancreas, have highly similar transcriptomes, suggesting a shared lineage. FAP+ cells of skeletal muscle are the major local source of follistatin, and in bone marrow they express Cxcl12 and KitL. Experimental ablation of these cells causes loss of muscle mass and a reduction of B-lymphopoiesis and erythropoiesis, revealing their essential functions in maintaining normal muscle mass and hematopoiesis, respectively. Remarkably, these cells are altered at these sites in transplantable and spontaneous mouse models of cancer-induced cachexia and anemia. Thus, the FAP+ stromal cell may have roles in two adverse consequences of cancer: their acquisition by tumors may cause failure of immunosurveillance, and their alteration in normal tissues contributes to the paraneoplastic syndromes of cachexia and anemia. PMID:23712428

  17. Electromiography comparison of distal and proximal lower limb muscle activity patterns during external perturbation in subjects with and without functional ankle instability.

    PubMed

    Kazemi, Khadijeh; Arab, Amir Massoud; Abdollahi, Iraj; López-López, Daniel; Calvo-Lobo, César

    2017-10-01

    Ankle sprain is one of the most common injuries among athletes and the general population. Most ankle injuries commonly affect the lateral ligament complex. Changes in postural sway and hip abductor muscle strength may be generated after inversion ankle sprain. Therefore, the consequences of ankle injury may affect proximal structures of the lower limb. The aim is to describe and compare the activity patterns of distal and proximal lower limb muscles following external perturbation in individuals with and without functional ankle instability. The sample consisted of 16 women with functional ankle instability and 18 healthy women were recruited to participate in this research. The external perturbation via body jacket using surface electromyography, amplitude and onset of muscle activity of gluteus maximums, gluteus medius, tibialis anterior, and peroneus longus was recorded and analyzed during external perturbation. There were differences between the onset of muscles activity due to perturbation direction in the two groups (healthy and functional ankle instability). In the healthy group, there were statistically significant differences in amplitude of proximal muscle activity with distal muscle activity during front perturbation with eyes open and closed. In the functional ankle instability group; there were statistically significant differences in amplitude of proximal muscle activity with distal muscle activity during perturbation of the front and back with eyes open. There were statistically significant differences in the onset of muscle activity and amplitude of muscle activity, with-in and between groups (P<0.05). Therefore, in the presence of functional ankle instability, activation patterns of the lower limb proximal muscles may be altered. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The mechanisms of cachexia underlying muscle dysfunction in COPD.

    PubMed

    Remels, A H V; Gosker, H R; Langen, R C J; Schols, A M W J

    2013-05-01

    Pulmonary cachexia is a prevalent, debilitating, and well-recognized feature of COPD associated with increased mortality and loss of peripheral and respiratory muscle function. The exact cause and underlying mechanisms of cachexia in COPD are still poorly understood. Increasing evidence, however, shows that pathological changes in intracellular mechanisms of muscle mass maintenance (i.e., protein turnover and myonuclear turnover) are likely involved. Potential factors triggering alterations in these mechanisms in COPD include oxidative stress, myostatin, and inflammation. In addition to muscle wasting, peripheral muscle in COPD is characterized by a fiber-type shift toward a more type II, glycolytic phenotype and an impaired oxidative capacity (collectively referred to as an impaired oxidative phenotype). Atrophied diaphragm muscle in COPD, however, displays an enhanced oxidative phenotype. Interestingly, intrinsic abnormalities in (lower limb) peripheral muscle seem more pronounced in either cachectic patients or weight loss-susceptible emphysema patients, suggesting that muscle wasting and intrinsic changes in peripheral muscle's oxidative phenotype are somehow intertwined. In this manuscript, we will review alterations in mechanisms of muscle mass maintenance in COPD and discuss the involvement of oxidative stress, inflammation, and myostatin as potential triggers of cachexia. Moreover, we postulate that an impaired muscle oxidative phenotype in COPD can accelerate the process of cachexia, as it renders muscle in COPD less energy efficient, thereby contributing to an energy deficit and weight loss when not dietary compensated. Furthermore, loss of peripheral muscle oxidative phenotype may increase the muscle's susceptibility to inflammation- and oxidative stress-induced muscle damage and wasting.

  19. Cachexia and sarcopenia: mechanisms and potential targets for intervention.

    PubMed

    Argilés, Josep M; Busquets, Silvia; Stemmler, Britta; López-Soriano, Francisco J

    2015-06-01

    Cachexia is a multi-organ syndrome associated with cancer and other chronic diseases, characterized by body weight loss, muscle and adipose tissue wasting and inflammation, being often associated with anorexia. Skeletal muscle tissue represents more than 40% of body weight and seems to be one of the main tissues involved in the wasting that occurs during cachexia. Sarcopenia is a degenerative loss of skeletal muscle mass, quality, and strength associated with healthy ageing. The molecular mechanisms behind cachexia and sarcopenia share some common trends. Muscle wasting is the result of a combination of an imbalance between synthetic and degradative protein pathways together with increased myocyte apoptosis and decreased regenerative capacity. Oxidative pathways are also altered in skeletal muscle during muscle wasting and this seems to be a consequence of mitochondrial abnormalities that include altered morphology and function, decreased ATP synthesis and uncoupling. The aim of the present review is to analyse common molecular pathways between cachexia and sarcopenia in order to put forward potential targets for intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. α-Actinin-3 deficiency alters muscle adaptation in response to denervation and immobilization.

    PubMed

    Garton, F C; Seto, J T; Quinlan, K G R; Yang, N; Houweling, P J; North, K N

    2014-04-01

    Homozygosity for a common null polymorphism (R577X) in the ACTN3 gene results in the absence of the fast fibre-specific protein, α-actinin-3 in ∼16% of humans worldwide. α-Actinin-3 deficiency is detrimental to optimal sprint performance and benefits endurance performance in elite athletes. In the general population, α-actinin-3 deficiency is associated with reduced muscle mass, strength and fast muscle fibre area, and poorer muscle function with age. The Actn3 knock-out (KO) mouse model mimics the human phenotype, with fast fibres showing a shift towards slow/oxidative metabolism without a change in myosin heavy chain (MyHC) isoform. We have recently shown that these changes are attributable to increased activity of the calcineurin-dependent signalling pathway in α-actinin-3 deficient muscle, resulting in enhanced response to exercise training. This led us to hypothesize that the Actn3 genotype influences muscle adaptation to disuse, irrespective of neural innervation. Separate cohorts of KO and wild-type mice underwent 2 weeks immobilization and 2 and 8 weeks of denervation. Absence of α-actinin-3 resulted in reduced atrophic response and altered adaptation to disuse, as measured by a change in MyHC isoform. KO mice had a lower threshold to switch from the predominantly fast to a slower muscle phenotype (in response to immobilization) and a higher threshold to switch to a faster muscle phenotype (in response to denervation). We propose that this change is mediated through baseline alterations in the calcineurin signalling pathway of Actn3 KO muscle. Our findings have important implications for understanding individual responses to muscle disuse/disease and training in the general population.

  1. Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis.

    PubMed

    Romero-Suarez, Sandra; Shen, Jinhua; Brotto, Leticia; Hall, Todd; Mo, Chenglin; Valdivia, Héctor H; Andresen, Jon; Wacker, Michael; Nosek, Thomas M; Qu, Cheng-Kui; Brotto, Marco

    2010-08-01

    We have recently reported that a novel muscle-specific inositide phosphatase (MIP/MTMR14) plays a critical role in [Ca2+]i homeostasis through dephosphorylation of sn-1-stearoyl-2-arachidonoyl phosphatidylinositol (3,5) bisphosphate (PI(3,5)P2). Loss of function mutations in MIP have been identified in human centronuclear myopathy. We developed a MIP knockout (MIPKO) animal model and found that MIPKO mice were more susceptible to exercise-induced muscle damage, a trademark of muscle functional changes in older subjects. We used wild-type (Wt) mice and MIPKO mice to elucidate the roles of MIP in muscle function during aging. We found MIP mRNA expression, MIP protein levels, and MIP phosphatase activity significantly decreased in old Wt mice. The mature MIPKO mice displayed phenotypes that closely resembled those seen in old Wt mice: i) decreased walking speed, ii) decreased treadmill activity, iii) decreased contractile force, and iv) decreased power generation, classical features of sarcopenia in rodents and humans. Defective Ca2+ homeostasis is also present in mature MIPKO and old Wt mice, suggesting a putative role of MIP in the decline of muscle function during aging. Our studies offer a new avenue for the investigation of MIP roles in skeletal muscle function and as a potential therapeutic target to treat aging sarcopenia.

  2. Functional Consequences of Sarcopenia and Dynapenia in the Elderly

    PubMed Central

    Clark, Brian C.; Manini, Todd M.

    2010-01-01

    Purpose of review The economic burden due to the sequela of sarcopenia (muscle wasting in the elderly) are staggering and rank similarly to the costs associated with osteoporotic fractures. In this article we discuss the societal burden and determinants of the loss of physical function with advancing age, the physiologic mechanisms underlying dynapenia (muscle weakness in the elderly), and provide perspectives on related critical issues to be addressed. Recent findings Recent epidemiological findings from longitudinal aging studies suggest that dynapenia is highly associated with both mortality and physical disability even when adjusting for sarcopenia, indicating that sarcopenia may be secondary to the effects of dynapenia. These findings are consistent with the physiologic underpinnings of muscle strength, as recent evidence demonstrates that alterations in muscle quantity, contractile quality and neural activation all collectively contribute to dynapenia. Summary While muscle mass is essential for regulation of whole body metabolic balance, overall neuromuscular function seems to be a critical factor for maintaining muscle strength and physical independence in the elderly. The relative contribution of physiologic factors contributing to muscle weakness are not fully understood, and further research is needed to better elucidate these mechanisms between muscle groups and across populations. PMID:20154609

  3. Functional consequences of sarcopenia and dynapenia in the elderly.

    PubMed

    Clark, Brian C; Manini, Todd M

    2010-05-01

    The economic burden due to the sequela of sarcopenia (muscle wasting in the elderly) are staggering and rank similarly to the costs associated with osteoporotic fractures. In this article, we discuss the societal burden and determinants of the loss of physical function with advancing age, the physiologic mechanisms underlying dynapenia (muscle weakness in the elderly), and provide perspectives on related critical issues to be addressed. Recent epidemiological findings from longitudinal aging studies suggest that dynapenia is highly associated with both mortality and physical disability even when adjusting for sarcopenia indicating that sarcopenia may be secondary to the effects of dynapenia. These findings are consistent with the physiologic underpinnings of muscle strength, as recent evidence demonstrates that alterations in muscle quantity, contractile quality and neural activation all collectively contribute to dynapenia. Although muscle mass is essential for regulation of whole body metabolic balance, overall neuromuscular function seems to be a critical factor for maintaining muscle strength and physical independence in the elderly. The relative contribution of physiologic factors contributing to muscle weakness are not fully understood and further research is needed to better elucidate these mechanisms between muscle groups and across populations.

  4. The effect of low back pain on trunk muscle size/function and hip strength in elite football (soccer) players.

    PubMed

    Hides, Julie A; Oostenbroek, Tim; Franettovich Smith, Melinda M; Mendis, M Dilani

    2016-12-01

    Low back pain (LBP) is a common problem in football (soccer) players. The effect of LBP on the trunk and hip muscles in this group is unknown. The relationship between LBP and trunk muscle size and function in football players across the preseason was examined. A secondary aim was to assess hip muscle strength. Twenty-five elite soccer players participated in the study, with assessments conducted on 23 players at both the start and end of the preseason. LBP was assessed with questionnaires and ultrasound imaging was used to assess size and function of trunk muscles at the start and end of preseason. Dynamometry was used to assess hip muscle strength at the start of the preseason. At the start of the preseason, 28% of players reported the presence of LBP and this was associated with reduced size of the multifidus, increased contraction of the transversus abdominis and multifidus muscles. LBP decreased across the preseason, and size of the multifidus muscle improved over the preseason. Ability to contract the abdominal and multifidus muscles did not alter across the preseason. Asymmetry in hip adductor and abductor muscle strength was found between players with and without LBP. Identifying modifiable factors in players with LBP may allow development of more targeted preseason rehabilitation programmes.

  5. Role of the medial medullary reticular formation in relaying vestibular signals to the diaphragm and abdominal muscles

    NASA Technical Reports Server (NTRS)

    Mori, R. L.; Bergsman, A. E.; Holmes, M. J.; Yates, B. J.

    2001-01-01

    Changes in posture can affect the resting length of respiratory muscles, requiring alterations in the activity of these muscles if ventilation is to be unaffected. Recent studies have shown that the vestibular system contributes to altering respiratory muscle activity during movement and changes in posture. Furthermore, anatomical studies have demonstrated that many bulbospinal neurons in the medial medullary reticular formation (MRF) provide inputs to phrenic and abdominal motoneurons; because this region of the reticular formation receives substantial vestibular and other movement-related input, it seems likely that medial medullary reticulospinal neurons could adjust the activity of respiratory motoneurons during postural alterations. The objective of the present study was to determine whether functional lesions of the MRF affect inspiratory and expiratory muscle responses to activation of the vestibular system. Lidocaine or muscimol injections into the MRF produced a large increase in diaphragm and abdominal muscle responses to vestibular stimulation. These vestibulo-respiratory responses were eliminated following subsequent chemical blockade of descending pathways in the lateral medulla. However, inactivation of pathways coursing through the lateral medulla eliminated excitatory, but not inhibitory, components of vestibulo-respiratory responses. The simplest explanation for these data is that MRF neurons that receive input from the vestibular nuclei make inhibitory connections with diaphragm and abdominal motoneurons, whereas a pathway that courses laterally in the caudal medulla provides excitatory vestibular inputs to these motoneurons.

  6. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy.

    PubMed

    Woodall, Benjamin P; Woodall, Meryl C; Luongo, Timothy S; Grisanti, Laurel A; Tilley, Douglas G; Elrod, John W; Koch, Walter J

    2016-10-14

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2 fl/fl ) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2 fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β 2 -adrenergic receptor (β 2 AR) agonist, was significantly enhanced in MLC-Cre:GRK2 fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β 2 AR-induced hypertrophy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Depressed tetanic contactile function cannot be compensated by increasing stimulating frequency in unloaded soleus muscle

    NASA Astrophysics Data System (ADS)

    Gao, Fang; Yu, Zhi-Bin

    2005-08-01

    The weightlessness-induced muscle atrophy is associated with a reduced force and power and with an increased fatigability [1]. In prolonged manned space missions, these alterations in skeletal muscles could limit the crew's ability to work in space and to rapidly egress in an emergency on return to Earth. In order to elucidate the underlying mechanisms of the increased fatigability in the atrophic skeletal muscle, we isolated the typically fast and slow muscle, extensor digitorum longus (EDL) and soleus (SOL), to observe the changes in maximal contraction tension, optimal stimulating frequency, and recovery features after fatigue in the intermittent tetanic contraction.

  8. The Pivotal Role of Airway Smooth Muscle in Asthma Pathophysiology

    PubMed Central

    Ozier, Annaïg; Allard, Benoit; Bara, Imane; Girodet, Pierre-Olivier; Trian, Thomas; Marthan, Roger; Berger, Patrick

    2011-01-01

    Asthma is characterized by the association of airway hyperresponsiveness (AHR), inflammation, and remodelling. The aim of the present article is to review the pivotal role of airway smooth muscle (ASM) in the pathophysiology of asthma. ASM is the main effector of AHR. The mechanisms of AHR in asthma may involve a larger release of contractile mediators and/or a lower release of relaxant mediators, an improved ASM cell excitation/contraction coupling, and/or an alteration in the contraction/load coupling. Beyond its contractile function, ASM is also involved in bronchial inflammation and remodelling. Whereas ASM is a target of the inflammatory process, it can also display proinflammatory and immunomodulatory functions, through its synthetic properties and the expression of a wide range of cell surface molecules. ASM remodelling represents a key feature of asthmatic bronchial remodelling. ASM also plays a role in promoting complementary airway structural alterations, in particular by its synthetic function. PMID:22220184

  9. Contributions of rapid neuromuscular transmission to the fine control of acoustic parameters of birdsong.

    PubMed

    Mencio, Caitlin; Kuberan, Balagurunathan; Goller, Franz

    2017-02-01

    Neural control of complex vocal behaviors, such as birdsong and speech, requires integration of biomechanical nonlinearities through muscular output. Although control of airflow and tension of vibrating tissues are known functions of vocal muscles, it remains unclear how specific muscle characteristics contribute to specific acoustic parameters. To address this gap, we removed heparan sulfate chains using heparitinases to perturb neuromuscular transmission subtly in the syrinx of adult male zebra finches (Taeniopygia guttata). Infusion of heparitinases into ventral syringeal muscles altered their excitation threshold and reduced neuromuscular transmission changing their ability to modulate airflow. The changes in muscle activation dynamics caused a reduction in frequency modulation rates and elimination of many high-frequency syllables but did not alter the fundamental frequency of syllables. Sound amplitude was reduced and sound onset pressure was increased, suggesting a role of muscles in the induction of self-sustained oscillations under low-airflow conditions, thus enhancing vocal efficiency. These changes were reversed to preinfusion levels by 7 days after infusion. These results illustrate complex interactions between the control of airflow and tension and further define the importance of syringeal muscle in the control of a variety of acoustic song characteristics. In summary, the findings reported here show that altering neuromuscular transmission can lead to reversible changes to the acoustic structure of song. Understanding the full extent of muscle involvement in song production is critical in decoding the motor program for the production of complex vocal behavior, including our search for parallels between birdsong and human speech motor control. It is largely unknown how fine motor control of acoustic parameters is achieved in vocal organs. Subtle manipulation of syringeal muscle function was used to test how active motor control influences acoustic parameters. Slowed activation kinetics of muscles reduced frequency modulation and, unexpectedly, caused a distinct decrease in sound amplitude and increase in phonation onset pressure. These results show that active control enhances the efficiency of energy conversion in the syrinx. Copyright © 2017 the American Physiological Society.

  10. Sarcopenia in patients with advanced liver disease.

    PubMed

    Ponziani, Francesca Romana; Gasbarrini, Antonio

    2017-04-28

    Sarcopenia is the loss of muscle mass and function, affecting up to 70% of patients with advanced liver disease. Liver cirrhosis is characterized by an altered glucose metabolism, lipid oxidation, ketogenesis and protein catabolism, leading to the loss of adipose and muscle tissue. The gastrointestinal dysfunction of cirrhotic patients results in inadequate nutrients intake and is responsible for muscle weakness thus limiting physical exercise and perpetuating the reduction of muscle mass. Recently, alterations of hormonal pathways involved in muscle growth, increased intestinal permeability and changes in the gut microbiota composition have been reported in cirrhotic patients. Interestingly, a role of intestinal bacteria in maintaining muscle health has been hypothesized through the translocation of bacteria and bacterial products into the bloodstream triggering the production of muscle wasting-associated cytokines. Sarcopenia is associated with severe outcomes in patients with liver cirrhosis, mostly due to the incidence of disease complications. Furthermore, sarcopenia may represent an important prognostic factor for patients with hepatocellular carcinoma and for those undergoing liver transplantation and can be considered a useful additional tool in the global assessment of patients with advanced liver disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Altered Energetics of Exercise Explain Risk of Rhabdomyolysis in Very Long-Chain Acyl-CoA Dehydrogenase Deficiency

    PubMed Central

    Diekman, E. F.; Visser, G.; Schmitz, J. P. J.; Nievelstein, R. A. J.; de Sain-van der Velden, M.; Wardrop, M.; Van der Pol, W. L.; Houten, S. M.; van Riel, N. A. W.; Takken, T.; Jeneson, J. A. L.

    2016-01-01

    Rhabdomyolysis is common in very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and other metabolic myopathies, but its pathogenic basis is poorly understood. Here, we show that prolonged bicycling exercise against a standardized moderate workload in VLCADD patients is associated with threefold bigger changes in phosphocreatine (PCr) and inorganic phosphate (Pi) concentrations in quadriceps muscle and twofold lower changes in plasma acetyl-carnitine levels than in healthy subjects. This result is consistent with the hypothesis that muscle ATP homeostasis during exercise is compromised in VLCADD. However, the measured rates of PCr and Pi recovery post-exercise showed that the mitochondrial capacity for ATP synthesis in VLCADD muscle was normal. Mathematical modeling of oxidative ATP metabolism in muscle composed of three different fiber types indicated that the observed altered energy balance during submaximal exercise in VLCADD patients may be explained by a slow-to-fast shift in quadriceps fiber-type composition corresponding to 30% of the slow-twitch fiber-type pool in healthy quadriceps muscle. This study demonstrates for the first time that quadriceps energy balance during exercise in VLCADD patients is altered but not because of failing mitochondrial function. Our findings provide new clues to understanding the risk of rhabdomyolysis following exercise in human VLCADD. PMID:26881790

  12. Tempol Supplementation Restores Diaphragm Force and Metabolic Enzyme Activities in mdx Mice

    PubMed Central

    Burns, David P.; Ali, Izza; Rieux, Clement; Healy, James; Jasionek, Greg; O’Halloran, Ken D.

    2017-01-01

    Duchenne muscular dystrophy (DMD) is characterized by striated muscle weakness, cardiomyopathy, and respiratory failure. Since oxidative stress is recognized as a secondary pathology in DMD, the efficacy of antioxidant intervention, using the superoxide scavenger tempol, was examined on functional and biochemical status of dystrophin-deficient diaphragm muscle. Diaphragm muscle function was assessed, ex vivo, in adult male wild-type and dystrophin-deficient mdx mice, with and without a 14-day antioxidant intervention. The enzymatic activities of muscle citrate synthase, phosphofructokinase, and lactate dehydrogenase were assessed using spectrophotometric assays. Dystrophic diaphragm displayed mechanical dysfunction and altered biochemical status. Chronic tempol supplementation in the drinking water increased diaphragm functional capacity and citrate synthase and lactate dehydrogenase enzymatic activities, restoring all values to wild-type levels. Chronic supplementation with tempol recovers force-generating capacity and metabolic enzyme activity in mdx diaphragm. These findings may have relevance in the search for therapeutic strategies in neuromuscular disease. PMID:29210997

  13. Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangho; Kim, Minjung; Lim, Wonchung

    Strenuous exercise is known to cause excessive ROS generation and inflammation. However, the mechanisms responsible for the regulation of mitochondrial integrity in the senescent muscle during high-intensity exercise (HE) are not well studied. Here, we show that HE suppresses up-regulation of mitochondrial function despite increase in mitochondrial copy number, following excessive ROS production, proinflammatory cytokines and NFκB activation. Moreover, HE in the old group resulted in the decreasing of both fusion (Mfn2) and fission (Drp1) proteins that may contribute to alteration of mitochondrial morphology. This study suggests that strenuous exercise does not reverse age-related mitochondrial damage and dysfunction by themore » increased ROS and inflammation. - Highlights: • Effect of exercise on mitochondrial function of aged skeletal muscles was studied. • Strenuous exercise triggered excessive ROS production and inflammatory cytokines. • Strenuous exercise suppressed mitochondrial function in senescent muscle.« less

  14. Effects of subacute pyridostigmine administration on mammalian skeletal muscle function. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, M.; Deshpande, S.S.; Foster, R.E.

    1992-12-31

    The subacute effects of pyridostigmine bromide were investigated on the contractile properties of rat extensor digitorum longus (EDL) and diaphragm muscles. The cholinesterase inhibitor was delivered via subcutaneously implanted osmotic minipumps (Alzet) at 9 microns g h-1 (low dose) or 60 micro g h-1 (high dose). Animals receiving high-dose pyridostigmine pumps exhibited marked alterations in muscle properties within the first day of exposure that persisted for the remaining 13 days. With 0.1 Hz stimulation, EDL twitch tensions of treated animals were elevated relative to control. Repetitive stimulation at frequencies > 1 Hz led a use-dependent depression in the amplitude ofmore » successive twitches during the train. Recovery from pyridostigmine was essentially complete by 1 day of withdrawal. Rats implanted with low-dose pyridostigmine pumps showed little or no alteration of in vivo twitch tensions during the entire 14 days of treatment. Diaphragm and EDL muscles excised from pyridostigmine-treated rats and tested in vitro showed no significant alterations in twitch and tetanic tensions and displayed the same sensitivity as muscles of control animals to subsequent pyridostigmine exposures. In the presence of atropine, subacutely administered pyridostigmine protected rats from two LD5O doses of the irreversible cholinesterase inhibitor, soman. In the absence of atropine, the LD50 of soman was not altered by subacute pyridostigmine treatment. Extensor digitorum longus; diaphragm; twitch tension; ACh release; subacute; Alzet pumps; tolerance; anticholinesterase; pyridostigmine; soman.« less

  15. Changes in skeletal muscle gene expression consequent to altered weight bearing

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Kirby, C. R.

    1992-01-01

    Skeletal muscle is a dynamic organ that adapts to alterations in weight bearing. This brief review examines changes in muscle gene expression resulting from the removal of weight bearing by hindlimb suspension and from increased weight bearing due to eccentric exercise. Acute (less than or equal to 2 days) non-weight bearing of adult rat soleus muscle alters only the translational control of muscle gene expression, while chronic (greater than or equal to 7 days) removal of weight bearing appears to influence pretranslational, translational, and posttranslational mechanisms of control. Acute and chronic eccentric exercise are associated with alterations of translational and posttranslational control, while chronic eccentric training also alters the pretranslational control of muscle gene expression. Thus alterations in weight bearing influence multiple sites of gene regulation.

  16. Non-Targeted Metabolomics Analysis of Golden Retriever Muscular Dystrophy-Affected Muscles Reveals Alterations in Arginine and Proline Metabolism, and Elevations in Glutamic and Oleic Acid In Vivo.

    PubMed

    Abdullah, Muhammad; Kornegay, Joe N; Honcoop, Aubree; Parry, Traci L; Balog-Alvarez, Cynthia J; O'Neal, Sara K; Bain, James R; Muehlbauer, Michael J; Newgard, Christopher B; Patterson, Cam; Willis, Monte S

    2017-07-29

    Like Duchenne muscular dystrophy (DMD), the Golden Retriever Muscular Dystrophy (GRMD) dog model of DMD is characterized by muscle necrosis, progressive paralysis, and pseudohypertrophy in specific skeletal muscles. This severe GRMD phenotype includes moderate atrophy of the biceps femoris (BF) as compared to unaffected normal dogs, while the long digital extensor (LDE), which functions to flex the tibiotarsal joint and serves as a digital extensor, undergoes the most pronounced atrophy. A recent microarray analysis of GRMD identified alterations in genes associated with lipid metabolism and energy production. We, therefore, undertook a non-targeted metabolomics analysis of the milder/earlier stage disease GRMD BF muscle versus the more severe/chronic LDE using GC-MS to identify underlying metabolic defects specific for affected GRMD skeletal muscle. Untargeted metabolomics analysis of moderately-affected GRMD muscle (BF) identified eight significantly altered metabolites, including significantly decreased stearamide (0.23-fold of controls, p = 2.89 × 10 -3 ), carnosine (0.40-fold of controls, p = 1.88 × 10 -2 ), fumaric acid (0.40-fold of controls, p = 7.40 × 10 -4 ), lactamide (0.33-fold of controls, p = 4.84 × 10 -2 ), myoinositol-2-phosphate (0.45-fold of controls, p = 3.66 × 10 -2 ), and significantly increased oleic acid (1.77-fold of controls, p = 9.27 × 10 -2 ), glutamic acid (2.48-fold of controls, p = 2.63 × 10 -2 ), and proline (1.73-fold of controls, p = 3.01 × 10 -2 ). Pathway enrichment analysis identified significant enrichment for arginine/proline metabolism (p = 5.88 × 10 -4 , FDR 4.7 × 10 -2 ), where alterations in L-glutamic acid, proline, and carnosine were found. Additionally, multiple Krebs cycle intermediates were significantly decreased (e.g., malic acid, fumaric acid, citric/isocitric acid, and succinic acid), suggesting that altered energy metabolism may be underlying the observed GRMD BF muscle dysfunction. In contrast, two pathways, inosine-5'-monophosphate (VIP Score 3.91) and 3-phosphoglyceric acid (VIP Score 3.08) mainly contributed to the LDE signature, with two metabolites (phosphoglyceric acid and inosine-5'-monophosphate) being significantly decreased. When the BF and LDE were compared, the most significant metabolite was phosphoric acid, which was significantly less in the GRMD BF compared to control and GRMD LDE groups. The identification of elevated BF oleic acid (a long-chain fatty acid) is consistent with recent microarray studies identifying altered lipid metabolism genes, while alterations in arginine and proline metabolism are consistent with recent studies identifying elevated L-arginine in DMD patient sera as a biomarker of disease. Together, these studies demonstrate muscle-specific alterations in GRMD-affected muscle, which illustrate previously unidentified metabolic changes.

  17. Label-free Quantitative Protein Profiling of vastus lateralis Muscle During Human Aging*

    PubMed Central

    Théron, Laëtitia; Gueugneau, Marine; Coudy, Cécile; Viala, Didier; Bijlsma, Astrid; Butler-Browne, Gillian; Maier, Andrea; Béchet, Daniel; Chambon, Christophe

    2014-01-01

    Sarcopenia corresponds to the loss of muscle mass occurring during aging, and is associated with a loss of muscle functionality. Proteomic links the muscle functional changes with protein expression pattern. To better understand the mechanisms involved in muscle aging, we performed a proteomic analysis of Vastus lateralis muscle in mature and older women. For this, a shotgun proteomic method was applied to identify soluble proteins in muscle, using a combination of high performance liquid chromatography and mass spectrometry. A label-free protein profiling was then conducted to quantify proteins and compare profiles from mature and older women. This analysis showed that 35 of the 366 identified proteins were linked to aging in muscle. Most of the proteins were under-represented in older compared with mature women. We built a functional interaction network linking the proteins differentially expressed between mature and older women. The results revealed that the main differences between mature and older women were defined by proteins involved in energy metabolism and proteins from the myofilament and cytoskeleton. This is the first time that label-free quantitative proteomics has been applied to study of aging mechanisms in human skeletal muscle. This approach highlights new elements for elucidating the alterations observed during aging and may lead to novel sarcopenia biomarkers. PMID:24217021

  18. Label-free quantitative protein profiling of vastus lateralis muscle during human aging.

    PubMed

    Théron, Laëtitia; Gueugneau, Marine; Coudy, Cécile; Viala, Didier; Bijlsma, Astrid; Butler-Browne, Gillian; Maier, Andrea; Béchet, Daniel; Chambon, Christophe

    2014-01-01

    Sarcopenia corresponds to the loss of muscle mass occurring during aging, and is associated with a loss of muscle functionality. Proteomic links the muscle functional changes with protein expression pattern. To better understand the mechanisms involved in muscle aging, we performed a proteomic analysis of Vastus lateralis muscle in mature and older women. For this, a shotgun proteomic method was applied to identify soluble proteins in muscle, using a combination of high performance liquid chromatography and mass spectrometry. A label-free protein profiling was then conducted to quantify proteins and compare profiles from mature and older women. This analysis showed that 35 of the 366 identified proteins were linked to aging in muscle. Most of the proteins were under-represented in older compared with mature women. We built a functional interaction network linking the proteins differentially expressed between mature and older women. The results revealed that the main differences between mature and older women were defined by proteins involved in energy metabolism and proteins from the myofilament and cytoskeleton. This is the first time that label-free quantitative proteomics has been applied to study of aging mechanisms in human skeletal muscle. This approach highlights new elements for elucidating the alterations observed during aging and may lead to novel sarcopenia biomarkers.

  19. Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal

    PubMed Central

    Vermillion, Katie L.; Anderson, Kyle J.; Hampton, Marshall

    2015-01-01

    Throughout the hibernation season, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) experiences extreme fluctuations in heart rate, metabolism, oxygen consumption, and body temperature, along with prolonged fasting and immobility. These conditions necessitate different functional requirements for the heart, which maintains contractile function throughout hibernation, and the skeletal muscle, which remains largely inactive. The adaptations used to maintain these contractile organs under such variable conditions serves as a natural model to study a variety of medically relevant conditions including heart failure and disuse atrophy. To better understand how two different muscle tissues maintain function throughout the extreme fluctuations of hibernation we performed Illumina HiSeq 2000 sequencing of cDNAs to compare the transcriptome of heart and skeletal muscle across the circannual cycle. This analysis resulted in the identification of 1,076 and 1,466 differentially expressed genes in heart and skeletal muscle, respectively. In both heart and skeletal muscle we identified a distinct cold-tolerant mechanism utilizing peroxisomal metabolism to make use of elevated levels of unsaturated depot fats. The skeletal muscle transcriptome also shows an early increase in oxidative capacity necessary for the altered fuel utilization and increased oxygen demand of shivering. Expression of the fetal gene expression profile is used to maintain cardiac tissue, either through increasing myocyte size or proliferation of resident cardiomyocytes, while skeletal muscle function and mass are protected through transcriptional regulation of pathways involved in protein turnover. This study provides insight into how two functionally distinct muscles maintain function under the extreme conditions of mammalian hibernation. PMID:25572546

  20. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration.

    PubMed

    Gregorevic, Paul; Plant, David R; Stupka, Nicole; Lynch, Gordon S

    2004-07-15

    Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca(2+)- and Sr(2+)-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had approximately 10% of the maximal force producing capacity (P(o)) of control (uninjured) fibres, and an altered sensitivity to Ca(2+) and Sr(2+) at 7 days post-injury. Increased force production and a shift in Ca(2+) sensitivity consistent with fibre maturation were observed during regeneration such that P(o) was restored to 36-45% of that in control fibres by 21 days, and sensitivity to Ca(2+) and Sr(2+) was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed.

  1. Impact of angiotensin II on skeletal muscle metabolism and function in mice: contribution of IGF-1, Sirtuin-1 and PGC-1α.

    PubMed

    Kackstein, Katharina; Teren, Andrej; Matsumoto, Yasuharu; Mangner, Norman; Möbius-Winkler, Sven; Linke, Axel; Schuler, Gerhard; Punkt, Karla; Adams, Volker

    2013-05-01

    Activation of the renin-angiotensin-aldosterone system and increased levels of angiotensin II (Ang-II) occurs in numerous cardiovascular diseases such as chronic heart failure (CHF). Another hallmark in CHF is a reduced exercise tolerance with impaired skeletal muscle function. The aim of this study was to investigate in an animal model the impact of Ang-II on skeletal muscle function and concomitant molecular alterations. Mice were infused with Ang-II for 4 weeks. Subsequently, skeletal muscle function of the soleus muscle was assessed. Expression of selected proteins was quantified by qRT-PCR and Western blot. Infusion of Ang-II resulted in a 33% reduction of contractile force, despite a lack of changes in muscle weight. At the molecular level an increased expression of NAD(P)H oxidase and a reduced expression of Sirt1, PGC-1α and IGF-1 were noticed. No change was evident for the ubiquitin E3-ligases MuRF1 and MafBx and α-sarcomeric actin expression. Cytophotometrical analysis of the soleus muscle revealed a metabolic shift toward a glycolytic profile. This study provides direct evidence of Ang-II-mediated, metabolic deterioration of skeletal muscle function despite preserved muscle mass. One may speculate that the Ang-II-mediated loss of muscle force is due to an activation of NAD(P)H oxidase expression and a subsequent ROS-induced down regulation of IGF-1, PGC-1α and Sirt1. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. Disruption of both nesprin 1 and desmin results in nuclear anchorage defects and fibrosis in skeletal muscle

    PubMed Central

    Chapman, Mark A.; Zhang, Jianlin; Banerjee, Indroneal; Guo, Ling T.; Zhang, Zhiwei; Shelton, G. Diane; Ouyang, Kunfu; Lieber, Richard L.; Chen, Ju

    2014-01-01

    Proper localization and anchorage of nuclei within skeletal muscle is critical for cellular function. Alterations in nuclear anchoring proteins modify a number of cellular functions including mechanotransduction, nuclear localization, chromatin positioning/compaction and overall organ function. In skeletal muscle, nesprin 1 and desmin are thought to link the nucleus to the cytoskeletal network. Thus, we hypothesize that both of these factors play a key role in skeletal muscle function. To examine this question, we utilized global ablation murine models of nesprin 1, desmin or both nesprin 1 and desmin. Herein, we have created the nesprin-desmin double-knockout (DKO) mouse, eliminating a major fraction of nuclear-cytoskeletal connections and enabling understanding of the importance of nuclear anchorage in skeletal muscle. Globally, DKO mice are marked by decreased lifespan, body weight and muscle strength. With regard to skeletal muscle, DKO myonuclear anchorage was dramatically decreased compared with wild-type, nesprin 1−/− and desmin−/− mice. Additionally, nuclear-cytoskeletal strain transmission was decreased in DKO skeletal muscle. Finally, loss of nuclear anchorage in DKO mice coincided with a fibrotic response as indicated by increased collagen and extracellular matrix deposition and increased passive mechanical properties of muscle bundles. Overall, our data demonstrate that nesprin 1 and desmin serve redundant roles in nuclear anchorage and that the loss of nuclear anchorage in skeletal muscle results in a pathological response characterized by increased tissue fibrosis and mechanical stiffness. PMID:24943590

  3. Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility

    PubMed Central

    Cook, Daniel P.; Rector, Michael V.; Bouzek, Drake C.; Michalski, Andrew S.; Gansemer, Nicholas D.; Reznikov, Leah R.; Li, Xiaopeng; Stroik, Mallory R.; Ostedgaard, Lynda S.; Abou Alaiwa, Mahmoud H.; Thompson, Michael A.; Prakash, Y. S.; Krishnan, Ramaswamy; Meyerholz, David K.; Seow, Chun Y.

    2016-01-01

    Rationale: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. Objectives: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. Methods: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. Measurements and Main Results: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. Conclusions: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing. PMID:26488271

  4. Impaired quality of life in growth hormone-deficient adults is independent of the altered skeletal muscle oxidative metabolism found in conditions with peripheral fatigue.

    PubMed

    Sinha, Akash; Hollingsworth, Kieren G; Ball, Steve; Cheetham, Tim

    2014-01-01

    Growth hormone-deficient (GHD) adults often report impaired quality of life (QoL) - with fatigue, a key element. This deficit can improve following GH replacement. The basis of this response is unclear. Perturbations in skeletal muscle metabolism have been demonstrated in several conditions in which fatigue is a prominent symptom. We wished to define the role of skeletal muscle metabolism in the impaired QoL observed in patients with GHD. To compare in vivo skeletal muscle mitochondrial oxidative phosphorylation using phosphorus-31 magnetic resonance spectroscopy in matched untreated GHD adults, treated GHD adults and healthy volunteers. Twenty-two untreated GHD adults, 23 treated GHD adults and 20 healthy volunteers were recruited at a regional centre. All patients underwent assessment of muscle mitochondrial function (τ₁/₂ PCr) and proton handling using spectroscopy. Fasting biochemical analyses and anthropometric measurement were obtained. All patients completed the QoL-AGHDA and physical activity assessment (IPAQ) questionnaires. Untreated and treated GHD adults complained of significantly increased fatigue and an impaired QoL (P = 0·002) when compared to healthy controls. There was no difference in maximal mitochondrial function (P = 0·53) nor pH recovery (P = 0·38) of skeletal muscle between the three groups. Untreated GHD patients had significantly lower IGF-1 than both treated GHD and healthy volunteers (P < 0·001), but there was no association between τ₁/₂ PCr and serum IGF-1 (r = -0·13, P = 0·32). The impaired QoL seen in GHD adults is not associated with the skeletal muscle spectroscopic 'footprint' of altered mitochondrial oxidative function, anaerobic glycolysis or proton clearance that are a feature of several conditions in which fatigue is a prominent feature. These data suggest that the pathophysiology of fatigue and impaired QoL in GHD may have a significant central rather than peripheral (skeletal muscle) component. © 2013 John Wiley & Sons Ltd.

  5. Voluntary run training but not estradiol deficiency alters the tibial bone-soleus muscle functional relationship in mice.

    PubMed

    Warren, Gordon L; Moran, Amy L; Hogan, Harry A; Lin, Angela S; Guldberg, Robert E; Lowe, Dawn A

    2007-11-01

    The study's objective was to investigate how estrogen deficiency and run training affect the tibial bone-soleus muscle functional relationship in mice. Female mice were assigned into one of two surgical conditions, ovariectomy (OVX) or sham ovariectomy (sham), and one of two activity conditions, voluntary wheel running (Run) or sedentary (Sed). To determine whether differences observed between OVX and sham conditions could be attributed to estradiol (E(2)), additional OVX mice were supplemented with E(2). Tibial bones were analyzed for their functional capacities, ultimate load, and stiffness. Soleus muscles were analyzed for their functional capacities, maximal isometric tetanic force (P(o)), and peak eccentric force. The ratios of bone functional capacities to those of muscle were calculated. The bone functional capacities were affected by both surgical condition and activity but more strongly by surgical condition. Ultimate load and stiffness for the sham group were 7-12% greater than those for OVX animals (P = 0.002), whereas only stiffness was greater for Run than for Sed animals (9%; P = 0.015). The muscle functional capacities were affected by both surgical condition and activity; however, in contrast to the bone, the muscle was more affected by activity. P(o) and peak eccentric force were 10-21% greater for Run than for Sed animals (P < or = 0.016), whereas only P(o) was greater in sham than in OVX animals (9%; P = 0.011). The bone-to-muscle ratios of functional capacities were affected by activity but not by surgical condition or E(2) supplementation. Thus a mismatch of bone-muscle function occurred in mice that voluntarily ran on wheels, irrespective of estrogen status.

  6. Muscle coordination is habitual rather than optimal.

    PubMed

    de Rugy, Aymar; Loeb, Gerald E; Carroll, Timothy J

    2012-05-23

    When sharing load among multiple muscles, humans appear to select an optimal pattern of activation that minimizes costs such as the effort or variability of movement. How the nervous system achieves this behavior, however, is unknown. Here we show that contrary to predictions from optimal control theory, habitual muscle activation patterns are surprisingly robust to changes in limb biomechanics. We first developed a method to simulate joint forces in real time from electromyographic recordings of the wrist muscles. When the model was altered to simulate the effects of paralyzing a muscle, the subjects simply increased the recruitment of all muscles to accomplish the task, rather than recruiting only the useful muscles. When the model was altered to make the force output of one muscle unusually noisy, the subjects again persisted in recruiting all muscles rather than eliminating the noisy one. Such habitual coordination patterns were also unaffected by real modifications of biomechanics produced by selectively damaging a muscle without affecting sensory feedback. Subjects naturally use different patterns of muscle contraction to produce the same forces in different pronation-supination postures, but when the simulation was based on a posture different from the actual posture, the recruitment patterns tended to agree with the actual rather than the simulated posture. The results appear inconsistent with computation of motor programs by an optimal controller in the brain. Rather, the brain may learn and recall command programs that result in muscle coordination patterns generated by lower sensorimotor circuitry that are functionally "good-enough."

  7. Laminin-111 improves skeletal muscle stem cell quantity and function following eccentric exercise.

    PubMed

    Zou, Kai; De Lisio, Michael; Huntsman, Heather D; Pincu, Yair; Mahmassani, Ziad; Miller, Matthew; Olatunbosun, Dami; Jensen, Tor; Boppart, Marni D

    2014-09-01

    Laminin-111 (α1, β1, γ1; LM-111) is an important component of the extracellular matrix that is required for formation of skeletal muscle during embryonic development. Recent studies suggest that LM-111 supplementation can enhance satellite cell proliferation and muscle function in mouse models of muscular dystrophy. The purpose of this study was to determine the extent to which LM-111 can alter satellite and nonsatellite stem cell quantity following eccentric exercise-induced damage in young adult, healthy mice. One week following injection of LM-111 or saline, mice either remained sedentary or were subjected to a single bout of downhill running (EX). While one muscle was preserved for evaluation of satellite cell number, the other muscle was processed for isolation of mesenchymal stem cells (MSCs; Sca-1+CD45-) via FACS at 24 hours postexercise. Satellite cell number was approximately twofold higher in LM-111/EX compared with all other groups (p<.05), and the number of satellite cells expressing the proliferation marker Ki67 was 50% to threefold higher in LM-111/EX compared with all other groups (p<.05). LM-111 also increased the quantity of embryonic myosin heavy chain-positive (eMHC+) fibers in young mice after eccentric exercise (p<.05). Although MSC percentage and number were not altered, MSC proinflammatory gene expression was decreased, and hepatocyte growth factor gene expression was increased in the presence of LM-111 (p<.05). Together, these data suggest that LM-111 supplementation provides a viable solution for increasing skeletal muscle stem cell number and/or function, ultimately allowing for improvements in the regenerative response to eccentric exercise. ©AlphaMed Press.

  8. Low Intensity, High Frequency Vibration Training to Improve Musculoskeletal Function in a Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Novotny, Susan A.; Mader, Tara L.; Greising, Angela G.; Lin, Angela S.; Guldberg, Robert E.; Warren, Gordon L.; Lowe, Dawn A.

    2014-01-01

    The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26) and mdx mice (n = 22) were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk) groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P≥0.34). Vibration did not alter any measure of muscle contractile function (P≥0.12); however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03) and higher intramuscular triglyceride concentrations (P = 0.03). These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice. PMID:25121503

  9. Non-Lethal Weapons The Use Radiofrequency/Microwave Energy for Stunning/Immobilization

    DTIC Science & Technology

    2008-11-26

    0.75 to 1 GHz RF fields on skeletal muscle contraction using fixed frequencies and just recently implementing frequency sweep paradigms; 4) initiation...This basic research initiative is geared ultimately toward developing effective and safe non-lethal technologies that alter skeletal muscle ... contraction and/or neural functioning via radiofrequency (RF)/microwave (MW) electromagnetic radiation. Major accomplishments included 1) near completion of

  10. Non-Lethal Weapons for Use Rediofrequency/Microwave Energy for Stunning/Immobilization

    DTIC Science & Technology

    2008-11-14

    of 0.75 to 1 GHz RF fields on skeletal muscle contraction using fixed frequencies and just recently implementing frequency sweep paradigms; (4...This basic research initiative is geared ultimately toward developing effective and safe non-lethal technologies that alter skeletal muscle ... contraction and/or neural functioning via radiofrequency (RF)/microwave (MW) electromagnetic radiation. Major accomplishments included: (1) near completion of

  11. Alterations in intrinsic mitochondrial function with aging are fiber type-specific and do not explain differential atrophy between muscles.

    PubMed

    Picard, Martin; Ritchie, Darmyn; Thomas, Melissa M; Wright, Kathryn J; Hepple, Russell T

    2011-12-01

    To determine whether mitochondrial dysfunction is causally related to muscle atrophy with aging, we examined respiratory capacity, H(2) O(2) emission, and function of the mitochondrial permeability transition pore (mPTP) in permeabilized myofibers prepared from four rat muscles that span a range of fiber type and degree of age-related atrophy. Muscle atrophy with aging was greatest in fast-twitch gastrocnemius (Gas) muscle (-38%), intermediate in both the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (Sol) muscles (-21%), and non-existent in adductor longus (AL) muscle (+47%). In contrast, indices of mitochondrial dysfunction did not correspond to this differential degree of atrophy. Specifically, despite higher protein expression for oxidative phosphorylation (oxphos) system in fast Gas and EDL, state III respiratory capacity per myofiber wet weight was unchanged with aging, whereas the slow Sol showed proportional decreases in oxphos protein, citrate synthase activity, and state III respiration. Free radical leak (H(2) O(2) emission per O(2) flux) under state III respiration was higher with aging in the fast Gas, whereas state II free radical leak was higher in the slow AL. Only the fast muscles had impaired mPTP function with aging, with lower mitochondrial calcium retention capacity in EDL and shorter time to mPTP opening in Gas and EDL. Collectively, our results underscore that the age-related changes in muscle mitochondrial function depend largely upon fiber type and are unrelated to the severity of muscle atrophy, suggesting that intrinsic changes in mitochondrial function are unlikely to be causally involved in aging muscle atrophy. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  12. Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle

    PubMed Central

    Quattrocelli, Mattia; Swinnen, Melissa; Giacomazzi, Giorgia; Camps, Jordi; Barthélemy, Ines; Ceccarelli, Gabriele; Caluwé, Ellen; Grosemans, Hanne; Thorrez, Lieven; Pelizzo, Gloria; Muijtjens, Manja; Verfaillie, Catherine M.; Blot, Stephane; Janssens, Stefan; Sampaolesi, Maurilio

    2015-01-01

    Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles. PMID:26571398

  13. Recovery in skeletal muscle contractile function after prolonged hindlimb immobilization

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Brimmer, C. J.

    1985-01-01

    The effect of three-month hindlimb immobilization (IM) in rats on contractile properties of slow-twitch soleus (SOL), fast-twitch extensor digitorum longus, and fast-twitch superficial region of the vastus lateralis were measured after 0, 14, 28, 60, and 90 days of recovery on excized, horizontally suspended muscles stimulated electrically to maximal twitch tension. IM caused decreases in muscle-to-body weight ratios for all muscles, with no complete recovery even after 90 days. The contractile properties of the fast-twitch muscles were less affected by IM than those of the slow-twitch SOL. The SOL isometric twitch duration was shortened, due to reduced contraction and half-relaxation time, both of which returned to control levels after 14 days of recovery. The peak tetanic tension, P(O), g/sq cm,, decreased with IM by 46 percent in the SOL, but recovered by the 28th day. The maximum shortening velocity was not altered by IM in any of the muscles. Thus, normal contractile function could recover after prolonged limb IM.

  14. Muscle dependency of corticomuscular coherence in upper and lower limb muscles and training-related alterations in ballet dancers and weightlifters.

    PubMed

    Ushiyama, Junichi; Takahashi, Yuji; Ushiba, Junichi

    2010-10-01

    It has been well documented that the 15- to 35-Hz oscillatory activity of the sensorimotor cortex shows coherence with the muscle activity during weak to moderate steady contraction. To investigate the muscle dependency of the corticomuscular coherence and its training-related alterations, we quantified the coherence between electroencephalogram (EEG) from the sensorimotor cortex and rectified electromyogram (EMG) from five upper limb (first dorsal interosseous, flexor carpi radialis, extensor carpi radialis, biceps brachii, triceps brachii) and four lower limb muscles (soleus, tibialis anterior, biceps femoris, rectus femoris), while maintaining a constant force level at 30% of maximal voluntary contraction of each muscle, in 24 untrained, 12 skill-trained (ballet dancers), and 10 strength-trained (weightlifters) individuals. Data from untrained subjects demonstrated the muscle dependency of corticomuscular coherence. The magnitude of the EEG-EMG coherence was significantly greater in the distally located lower limb muscles, such as the soleus and tibialis anterior, than in the upper or other lower limb muscles in untrained subjects (P < 0.05). These results imply that oscillatory coupling between the sensorimotor cortex and spinal motoneurons during steady contraction differs among muscles, according to the functional role of each muscle. In addition, the ballet dancers and weightlifters showed smaller EEG-EMG coherences than the untrained subjects, especially in the lower limb muscles (P < 0.05). These results indicate that oscillatory interaction between the sensorimotor cortex and spinal motoneurons can be changed by long-term specialized use of the muscles and that this neural adaptation may lead to finer control of muscle force during steady contraction.

  15. Airway structure and function in Eisenmenger's syndrome.

    PubMed

    McKay, K O; Johnson, P R; Black, J L; Glanville, A R; Armour, C L

    1998-10-01

    The responsiveness of airways from patients with Eisenmenger's syndrome (n = 5) was compared with that in airways from organ donors (n = 10). Enhanced contractile responses to cholinergic stimulation were found in airways from patients with Eisenmenger's syndrome. The maximal responses to acetylcholine, carbachol, and parasympathetic nerve stimulation in airway tissue from these patients were 221%, 139%, and 152%, respectively, of the maximal responses obtained in donor tissue. Further, relaxation responses to isoproterenol and levocromakalim were absent (n = 2) or markedly impaired (n = 3) in airways from patients with Eisenmenger's syndrome. This attenuated relaxation response was nonspecific in that it was also absent after vasoactive intestinal peptide, sodium nitroprusside, papaverine, and electrical field application. These observations can most likely be explained by a decrease in intrinsic smooth muscle tone, as precontraction of airways revealed relaxation responses that were equivalent to those obtained in donor tissues. Morphometric analysis of tissues used for the functional studies revealed no differences in the airway dimensions (internal perimeter) or airway wall components (e.g., smooth muscle, cartilage) or total area to explain these observations. Although the mechanism for this observed decrease in intrinsic airway smooth muscle tone is not certain, it may be due to alteration in the substructure of the airway wall or, alternatively, may result from the continued release of depressant factors in the vicinity of the smooth muscle which permanently alters smooth muscle responsiveness.

  16. Altered S-nitrosylation of p53 is responsible for impaired antioxidant response in skeletal muscle during aging.

    PubMed

    Baldelli, Sara; Ciriolo, Maria Rosa

    2016-12-20

    p53 transcriptional activity has been proposed to regulate both homeostasis and sarcopenia of skeletal muscle during aging. However, the exact molecular function of p53 remains to be clearly defined. We demonstrated a requirement of nuclear p53 S-nitrosylation in inducing a nitric oxide/PGC-1α-mediated antioxidant pathway in skeletal muscle. Importantly, mutant form of p53-DNA binding domain (C124S) did not undergo nuclear S-nitrosylation and failed in inducing the expression of antioxidant genes (i.e. SOD2 and GCLC). Moreover, we found that during aging the nuclear S-nitrosylation of p53 significantly declines in gastrocnemius/soleus leading to an impairment of redox homeostasis of skeletal muscle. We suggested that decreased level of nuclear neuronal nitric oxide synthase (nNOS)/Syntrophin complex, which we observed during aging, could be responsible for impaired nuclear S-nitrosylation. Taken together, our data indicate that altered S-nitrosylation of p53 during aging could be a contributing factor of sarcopenia condition and of other skeletal muscle pathologies associated with oxidative/nitrosative stress.

  17. Effect of acetylcysteine on adaptation of intestinal smooth muscle after small bowel bypass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbrodt, N.W.; Belloso, R.M.; Biskin, L.C.

    1986-03-05

    The authors have postulated that the adaptive changes in function and structure of bypassed segments of small bowel are due in part to the change in intestinal contents following operation. The purpose of these experiments was to determine if a mucolytic agent could alter the adaptation. Rats were anesthetized and a 70% jejunoileal bypass was performed. The bypassed segments then were perfused with either saline or acetylcysteine for 3-12 days. Then, either intestinal transit was determined using Cr-51, or segments were taken for morphometric analysis. Transit, as assessed by the geometric center, was increased 32% by acetylcysteine treatment. Treatment alsomore » caused a decrease in hypertrophy of the muscularis. Muscle wet weight, muscle cross-sectional area, and muscle layer thickness all were significantly less in those animals infused with acetyl-cysteine. No decreases in hypertrophy were seen in the in-continuity segments. These data indicate that alterations in intestinal content can affect the course of adaptation of intestinal muscle in response to small bowel bypass.« less

  18. Altered S-nitrosylation of p53 is responsible for impaired antioxidant response in skeletal muscle during aging

    PubMed Central

    Baldelli, Sara; Ciriolo, Maria Rosa

    2016-01-01

    p53 transcriptional activity has been proposed to regulate both homeostasis and sarcopenia of skeletal muscle during aging. However, the exact molecular function of p53 remains to be clearly defined. We demonstrated a requirement of nuclear p53 S-nitrosylation in inducing a nitric oxide/PGC-1α-mediated antioxidant pathway in skeletal muscle. Importantly, mutant form of p53-DNA binding domain (C124S) did not undergo nuclear S-nitrosylation and failed in inducing the expression of antioxidant genes (i.e. SOD2 and GCLC). Moreover, we found that during aging the nuclear S-nitrosylation of p53 significantly declines in gastrocnemius/soleus leading to an impairment of redox homeostasis of skeletal muscle. We suggested that decreased level of nuclear neuronal nitric oxide synthase (nNOS)/Syntrophin complex, which we observed during aging, could be responsible for impaired nuclear S-nitrosylation. Taken together, our data indicate that altered S-nitrosylation of p53 during aging could be a contributing factor of sarcopenia condition and of other skeletal muscle pathologies associated with oxidative/nitrosative stress. PMID:28025407

  19. Relationship between physical function and biomechanical gait patterns in boys with haemophilia.

    PubMed

    Stephensen, D; Taylor, S; Bladen, M; Drechsler, W I

    2016-11-01

    The World Federation of Haemophilia recommends joint and muscle health is evaluated using X-ray and magnetic resonance imaging, together with clinical examination scores. To date, inclusion of performance-based functional activities to monitor children with the condition has received little attention. To evaluate test-retest repeatability of physical function tests and quantify relationships between physical function, lower limb muscle strength and gait patterns in young boys with haemophilia. Timed 6-minute walk, timed up and down stairs, timed single leg stance, muscle strength of the knee extensors, ankle dorsi and plantar flexors, together with joint biomechanics during level walking were collected from 21 boys aged 6-12 years with severe haemophilia. Measures of physical function and recording of muscle strength with a hand-held myometer were repeatable (ICC > 0.78). Distances walked in six minutes, time taken to go up and down a flight of stairs and lower limb muscle strength correlated closely with ankle range of motion, together with peak knee flexion and ankle dorsi and plantarflexion moments during walking (P < 0.05). Alterations in gait patterns of boys with haemophilia appear to be associated with changes in performance of physical function and performance seems to depend on their muscle strength. Timed 6-minute walk test, timed up and down steps test and muscle strength of the knee extensors showed the strongest correlation with biomechanical joint function, and hence might serve as a basis for the clinical monitoring of physical function outcomes in children with haemophilia. © 2016 John Wiley & Sons Ltd.

  20. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia.

    PubMed

    Conte, Elena; Camerino, Giulia Maria; Mele, Antonietta; De Bellis, Michela; Pierno, Sabata; Rana, Francesco; Fonzino, Adriano; Caloiero, Roberta; Rizzi, Laura; Bresciani, Elena; Ben Haj Salah, Khoubaib; Fehrentz, Jean-Alain; Martinez, Jean; Giustino, Arcangela; Mariggiò, Maria Addolorata; Coluccia, Mauro; Tricarico, Domenico; Lograno, Marcello Diego; De Luca, Annamaria; Torsello, Antonio; Conte, Diana; Liantonio, Antonella

    2017-06-01

    Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose-limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium-dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS-R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast-twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin-induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. Cisplatin-treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up-regulation of atrogin1/Murf-1 genes and a down-regulation of Pgc1-a gene, all indexes of muscle atrophy, and by a two-fold increase in resting intracellular calcium, [Ca 2+ ] i , compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store-operated calcium entry were ~50% significantly reduced in cisplatin-treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo (excitability and resting macroscopic conductance) and in vivo (forelimb force and muscle volume) outcomes in cachectic animals. Administration of hexarelin or JMV2894 markedly reduced the cisplatin-induced alteration of calcium homeostasis by both common as well as drug-specific mechanisms of action. This effect correlated with muscle function preservation as well as amelioration of various atrophic indexes, thus supporting the functional impact of GHS activity on calcium homeostasis. Our findings provide a direct evidence that a dysregulation of calcium homeostasis plays a key role in cisplatin-induced model of cachexia gaining insight into the etiopathogenesis of this form of muscle wasting. Furthermore, our demonstration that GHS administration efficaciously prevents cisplatin-induced calcium homeostasis alteration contributes to elucidate the mechanism of action through which GHS could potentially ameliorate chemotherapy-associated cachexia. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  1. A novel quantitative morphometry approach to assess regeneration in dystrophic skeletal muscle.

    PubMed

    Buttgereit, Andreas; Weber, Cornelia; Friedrich, Oliver

    2014-07-01

    Duchenne muscular dystrophy is an inherited degenerative muscle disease with progressive weakness of skeletal and cardiac muscle. Disturbed calcium homeostasis and signalling pathways result in degeneration/regeneration cycles with fibrotic remodelling of muscle tissue, sustained by chronic inflammation. In addition to altered microarchitecture, regeneration in dystrophic muscle fibres is often only classified by centrally located nuclei but correlation of the regeneration process to nuclear volumes, myosin amounts, architecture and functional quality are missing, in particular in old muscles where the regenerative capacity is exhausted. Such information could yield novel regeneration-to-function biomarkers. Here we used second harmonic generation and multi photon fluorescence microscopy in intact single muscle fibres from wild-type, dystrophic mdx and transgenic mdx mice expressing an Δex 17-48 mini-dystrophin to determine the percentage of centronucleated fibres and nucleus-to-myosin volume ratio as a function of age. Based on this ratio we define a 'biomotoric efficiency' as an optical measure for fibre maturation, which is close to unity in adult wild-type and mini-dystrophin fibres, but smaller in very young and old mdx mice as a result of ongoing cell maturation (young) and regeneration (aged). With these parameters it is possible to provide a quantitative measure about muscle fibre regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisele, Petra Sabine; Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich; Furrer, Regula

    The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is abundantly expressed in trained muscles and regulates muscle adaptation to endurance exercise. Inversely, mice lacking a functional PGC-1α allele in muscle exhibit reduced muscle functionality and increased inflammation. In isolated muscle cells, PGC-1α and the related PGC-1β counteract the induction of inflammation by reducing the activity of the nuclear factor κB (NFκB). We now tested the effects of these metabolic regulators on inflammatory reactions in muscle tissue of control and muscle-specific PGC-1α/-1β transgenic mice in vivo in the basal state as well as after an acute inflammatory insult. Surprisingly, we observed amore » PGC-1-dependent alteration of the cytokine profile characterized by an increase in anti-inflammatory factors and a strong suppression of the pro-inflammatory interleukin 12 (IL-12). In conclusion, the anti-inflammatory environment in muscle that is promoted by the PGC-1s might contribute to the beneficial effects of these coactivators on muscle function and provides a molecular link underlying the tight mutual regulation of metabolism and inflammation. - Highlights: • Muscle PGC-1s are insufficient to prevent acute systemic inflammation. • The muscle PGC-1s however promote a local anti-inflammatory environment. • This anti-inflammatory environment could contribute to the therapeutic effect of the PGC-1s.« less

  3. Experiment K-7-29: Connective Tissue Studies. Part 3; Rodent Tissue Repair: Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Stauber, W.; Fritz, V. K.; Burkovskaya, T. E.; Ilyina-Kakueva, E. I.

    1994-01-01

    Myofiber injury-repair was studied in the rat gastrocnemius following a crush injury to the lower leg prior to flight in order to understand if the regenerative responses of muscles are altered by the lack of gravitational forces during Cosmos 2044 flight. After 14 days of flight, the gastrocnemius muscle was removed from the 5 injured flight rodents and various Earth-based treatment groups for comparison. The Earth-based animals consisted of three groups of five rats with injured muscles from a simulated, tail-suspended, and vivarium as well as an uninjured basal group. The gastrocnemius muscle from each was evaluated by histochemical and immunohistochemical techniques to document myofiber, vascular, and connective tissue alterations following injury. In general the repair process was somewhat similar in all injured muscle samples with regard to extracellular matrix organization and myofiber regeneration. Small and large myofibers were present with a newly organized extracellular matrix indicative of myogenesis and muscle regeneration. In the tail-suspended animals, a more complete repair was observed with no enlarged area of non-muscle cells or matrix material visible. In contrast, the muscle samples from the flight animals were less well differentiated with more macrophages and blood vessels in the repair region but small myofibers and proteoglycans, nevertheless, were in their usual configuration. Thus, myofiber repair did vary in muscles from the different groups, but for the most part, resulted in functional muscle tissue.

  4. Induction of cortical plasticity for reciprocal muscles by paired associative stimulation

    PubMed Central

    Suzuki, Makoto; Kirimoto, Hikari; Sugawara, Kazuhiro; Watanabe, Makoto; Shimizu, Shinobu; Ishizaka, Ikuyo; Yamada, Sumio; Matsunaga, Atsuhiko; Fukuda, Michinari; Onishi, Hideaki

    2014-01-01

    Background Paired associative stimulation (PAS) is widely used to induce plasticity in the human motor cortex. Although reciprocal inhibition of antagonist muscles plays a fundamental role in human movements, change in cortical circuits for reciprocal muscles by PAS is unknown. Methods We investigated change in cortical plasticity for reciprocal muscles during PAS. PAS consisted of 200 pairs of peripheral electric stimulation of the right median nerve at the wrist at a frequency of 0.25 Hz followed by transcranial magnetic stimulation of the left M1 at the midpoint between the center of gravities of the flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles. Measures of motor cortical excitability included resting motor threshold (RMT), GABAA-mediated short-interval intracortical inhibition (SICI), and GABAB-mediated long-interval intracortical inhibition (LICI). Results Motor evoked potential amplitude-conditioned LICI for the FCR muscle was significantly decreased after PAS (P = 0.020), whereas that for the ECR muscle was significantly increased (P = 0.033). Changes in RMT and SICI for the FCR and ECR muscles were not significantly different before and after PAS. Corticospinal excitability for both reciprocal muscles was increased during PAS, but GABAB-mediated cortical inhibitory functions for the agonist and antagonist muscles were reciprocally altered after PAS. Conclusion These results implied that the cortical excitability for reciprocal muscles including GABAB-ergic inhibitory systems within human M1 could be differently altered by PAS. PMID:25365805

  5. Muscle mass, structural and functional investigations of senescence-accelerated mouse P8 (SAMP8)

    PubMed Central

    Guo, An Yun; Leung, Kwok Sui; Siu, Parco Ming Fai; Qin, Jiang Hui; Chow, Simon Kwoon Ho; Qin, Ling; Li, Chi Yu; Cheung, Wing Hoi

    2015-01-01

    Sarcopenia is an age-related systemic syndrome with progressive deterioration in skeletal muscle functions and loss in mass. Although the senescence-accelerated mouse P8 (SAMP8) was reported valid for muscular ageing research, there was no report on the details such as sarcopenia onset time. Therefore, this study was to investigate the change of muscle mass, structure and functions during the development of sarcopenia. Besides the average life span, muscle mass, structural and functional measurements were also studied. Male SAMP8 animals were examined at month 6, 7, 8, 9, and 10, in which the right gastrocnemius was isolated and tested for ex vivo contractile properties and fatigability while the contralateral one was harvested for muscle fiber cross-sectional area (FCSA) and typing assessments. Results showed that the peak of muscle mass appeared at month 7 and the onset of contractility decline was observed from month 8. Compared with month 8, most of the functional parameters at month 10 decreased significantly. Structurally, muscle fiber type IIA made up the largest proportion of the gastrocnemius, and the fiber size was found to peak at month 8. Based on the altered muscle mass, structural and functional outcomes, it was concluded that the onset of sarcopenia in SAMP8 animals was at month 8. SAMP8 animals at month 8 should be at pre-sarcopenia stage while month 10 at sarcopenia stage. It is confirmed that SAMP8 mouse can be used in sarcopenia research with established time line in this study. PMID:26193895

  6. Abdicating power for control: a precision timing strategy to modulate function of flight power muscles.

    PubMed

    Sponberg, S; Daniel, T L

    2012-10-07

    Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power-phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left-right pairs of flight muscles normally fire precisely, within 0.5-0.6 ms of each other; (ii) during a yawing optomotor response, left-right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left-right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left-right timing differences. Because many organisms also have muscles operating with high power-phase gains (Δ(power)/Δ(phase)), this motor control strategy may be ubiquitous in locomotor systems.

  7. Abdicating power for control: a precision timing strategy to modulate function of flight power muscles

    PubMed Central

    Sponberg, S.; Daniel, T. L.

    2012-01-01

    Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power–phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left–right pairs of flight muscles normally fire precisely, within 0.5–0.6 ms of each other; (ii) during a yawing optomotor response, left—right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left–right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left—right timing differences. Because many organisms also have muscles operating with high power–phase gains (Δpower/Δphase), this motor control strategy may be ubiquitous in locomotor systems. PMID:22833272

  8. Mechanical interaction between neighboring muscles in human upper limb: Evidence for epimuscular myofascial force transmission in humans.

    PubMed

    Yoshitake, Yasuhide; Uchida, Daiki; Hirata, Kosuke; Mayfield, Dean L; Kanehisa, Hiroaki

    2018-06-06

    To confirm the existence of epimuscular myofascial force transmission in humans, this study examined if manipulating joint angle to stretch the muscle can alter the shear modulus of a resting adjacent muscle, and whether there are regional differences in this response. The biceps brachii (BB: manipulated muscle) and the brachialis (BRA: resting adjacent muscle) were deemed suitable for this study because they are neighboring, yet have independent tendons that insert onto different bones. In order to manipulate the muscle length of BB only, the forearm was passively set at supination, neutral, and pronation positions. For thirteen healthy young adult men, the shear modulus of BB and BRA was measured with shear-wave elastography at proximal and distal muscle regions for each forearm position and with the elbow joint angle at either 100° or 160°. At both muscle regions and both elbow positions, BB shear modulus increased as the forearm was rotated from a supinated to pronated position. Conversely, BRA shear modulus decreased as function of forearm position. The effect of forearm position on shear modulus was most pronounced in the distal muscle region when the elbow was at 160°. The observed alteration of shear modulus of the resting adjacent muscle indicates that epimuscular myofascial force transmission is present in the human upper limb. Consistent with this assertion, we found that the effect of muscle length on shear modulus in both muscles was region-dependent. Our results also suggest that epimuscular myofascial force transmission may be facilitated at stretched muscle lengths. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Contributions of Altered Stretch Reflex Coordination to Arm Impairments Following Stroke

    PubMed Central

    Ravichandran, Vengateswaran J.; Krutky, Matthew A.; Perreault, Eric J.

    2010-01-01

    Patterns of stereotyped muscle coactivation, clinically referred to as synergies, emerge following stroke and impair arm function. Although researchers have focused on cortical contributions, there is growing evidence that altered stretch reflex pathways may also contribute to impairment. However, most previous reflex studies have focused on passive, single-joint movements without regard to their coordination during volitional actions. The purpose of this study was to examine the effects of stroke on coordinated activity of stretch reflexes elicited in multiple arm muscles following multijoint perturbations. We hypothesized that cortical injury results in increased stretch reflexes of muscles characteristic of the abnormal flexor synergy during active arm conditions. To test this hypothesis, we used a robot to apply position perturbations to impaired arms of 10 stroke survivors and dominant arms of 8 healthy age-matched controls. Corresponding reflexes were assessed during volitional contractions simulating different levels of gravitational support, as well as during voluntary flexion and extension of the elbow and shoulder. Reflexes were quantified by average rectified surface electromyogram, recorded from eight muscles spanning the elbow and shoulder. Reflex coordination was quantified using an independent components analysis. We found stretch reflexes elicited in the stroke group were significantly less sensitive to changes in background muscle activation compared with those in the control group (P < 0.05). We also observed significantly increased reflex coupling between elbow flexor and shoulder abductor–extensor muscles in stroke subjects relative to that in control subjects. This increased coupling was present only during volitional tasks that required elbow flexion (P < 0.001), shoulder extension (P < 0.01), and gravity opposition (P < 0.01), but not during the “no load” condition. During volitional contractions, reflex amplitudes scaled with the level of impairment, as assessed by Fugl-Meyer scores (r2 = 0.63; P < 0.05). We conclude that altered reflex coordination is indicative of motor impairment level and may contribute to impaired arm function following stroke. PMID:20962072

  10. Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese macaques

    PubMed Central

    McCurdy, Carrie E.; Hetrick, Byron; Houck, Julie; Drew, Brian G.; Kaye, Spencer; Lashbrook, Melanie; Bergman, Bryan C.; Takahashi, Diana L.; Dean, Tyler A.; Gertsman, Ilya; Hansen, Kirk C.; Philp, Andrew; Hevener, Andrea L.; Chicco, Adam J.; Aagaard, Kjersti M.; Grove, Kevin L.; Friedman, Jacob E.

    2016-01-01

    Maternal obesity is proposed to alter the programming of metabolic systems in the offspring, increasing the risk for developing metabolic diseases; however, the cellular mechanisms remain poorly understood. Here, we used a nonhuman primate model to examine the impact of a maternal Western-style diet (WSD) alone, or in combination with obesity (Ob/WSD), on fetal skeletal muscle metabolism studied in the early third trimester. We find that fetal muscle responds to Ob/WSD by upregulating fatty acid metabolism, mitochondrial complex activity, and metabolic switches (CPT-1, PDK4) that promote lipid utilization over glucose oxidation. Ob/WSD fetuses also had reduced mitochondrial content, diminished oxidative capacity, and lower mitochondrial efficiency in muscle. The decrease in oxidative capacity and glucose metabolism was persistent in primary myotubes from Ob/WSD fetuses despite no additional lipid-induced stress. Switching obese mothers to a healthy diet prior to pregnancy did not improve fetal muscle mitochondrial function. Lastly, while maternal WSD alone led only to intermediary changes in fetal muscle metabolism, it was sufficient to increase oxidative damage and cellular stress. Our findings suggest that maternal obesity or WSD, alone or in combination, leads to programmed decreases in oxidative metabolism in offspring muscle. These alterations may have important implications for future health. PMID:27734025

  11. Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging

    PubMed Central

    2014-01-01

    The molecular mechanisms underlying skeletal muscle aging and associated sarcopenia have been linked to an altered oxidative status of redox-sensitive proteins. Reactive oxygen and reactive nitrogen species (ROS/RNS) generated by contracting skeletal muscle are necessary for optimal protein function, signaling, and adaptation. To investigate the redox proteome of aging gastrocnemius muscles from adult and old male mice, we developed a label-free quantitative proteomic approach that includes a differential cysteine labeling step. The approach allows simultaneous identification of up- and downregulated proteins between samples in addition to the identification and relative quantification of the reversible oxidation state of susceptible redox cysteine residues. Results from muscles of adult and old mice indicate significant changes in the content of chaperone, glucose metabolism, and cytoskeletal regulatory proteins, including Protein DJ-1, cAMP-dependent protein kinase type II, 78 kDa glucose regulated protein, and a reduction in the number of redox-responsive proteins identified in muscle of old mice. Results demonstrate skeletal muscle aging causes a reduction in redox-sensitive proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response. Data is available via ProteomeXchange with identifier PXD001054. PMID:25181601

  12. Exercise in muscle glycogen storage diseases.

    PubMed

    Preisler, Nicolai; Haller, Ronald G; Vissing, John

    2015-05-01

    Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase in glycogen storage that disrupts contractile function and/or 2) a reduced substrate turnover below the block, which inhibits skeletal muscle ATP production. Immobility is associated with metabolic alterations in muscle leading to an increased dependence on glycogen use and a reduced capacity for fatty acid oxidation. Such changes may be detrimental for persons with GSD from a metabolic perspective. However, exercise may alter skeletal muscle substrate metabolism in ways that are beneficial for patients with GSD, such as improving exercise tolerance and increasing fatty acid oxidation. In addition, a regular exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.

  13. Disruption of both nesprin 1 and desmin results in nuclear anchorage defects and fibrosis in skeletal muscle.

    PubMed

    Chapman, Mark A; Zhang, Jianlin; Banerjee, Indroneal; Guo, Ling T; Zhang, Zhiwei; Shelton, G Diane; Ouyang, Kunfu; Lieber, Richard L; Chen, Ju

    2014-11-15

    Proper localization and anchorage of nuclei within skeletal muscle is critical for cellular function. Alterations in nuclear anchoring proteins modify a number of cellular functions including mechanotransduction, nuclear localization, chromatin positioning/compaction and overall organ function. In skeletal muscle, nesprin 1 and desmin are thought to link the nucleus to the cytoskeletal network. Thus, we hypothesize that both of these factors play a key role in skeletal muscle function. To examine this question, we utilized global ablation murine models of nesprin 1, desmin or both nesprin 1 and desmin. Herein, we have created the nesprin-desmin double-knockout (DKO) mouse, eliminating a major fraction of nuclear-cytoskeletal connections and enabling understanding of the importance of nuclear anchorage in skeletal muscle. Globally, DKO mice are marked by decreased lifespan, body weight and muscle strength. With regard to skeletal muscle, DKO myonuclear anchorage was dramatically decreased compared with wild-type, nesprin 1(-/-) and desmin(-/-) mice. Additionally, nuclear-cytoskeletal strain transmission was decreased in DKO skeletal muscle. Finally, loss of nuclear anchorage in DKO mice coincided with a fibrotic response as indicated by increased collagen and extracellular matrix deposition and increased passive mechanical properties of muscle bundles. Overall, our data demonstrate that nesprin 1 and desmin serve redundant roles in nuclear anchorage and that the loss of nuclear anchorage in skeletal muscle results in a pathological response characterized by increased tissue fibrosis and mechanical stiffness. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin‐induced cachexia

    PubMed Central

    Conte, Elena; Camerino, Giulia Maria; Mele, Antonietta; De Bellis, Michela; Pierno, Sabata; Rana, Francesco; Fonzino, Adriano; Caloiero, Roberta; Rizzi, Laura; Bresciani, Elena; Ben Haj Salah, Khoubaib; Fehrentz, Jean‐Alain; Martinez, Jean; Giustino, Arcangela; Mariggiò, Maria Addolorata; Coluccia, Mauro; Tricarico, Domenico; Lograno, Marcello Diego; De Luca, Annamaria; Torsello, Antonio; Conte, Diana

    2017-01-01

    Abstract Background Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose‐limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium‐dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS‐R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. Methods By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast‐twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin‐induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. Results Cisplatin‐treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up‐regulation of atrogin1/Murf‐1 genes and a down‐regulation of Pgc1‐a gene, all indexes of muscle atrophy, and by a two‐fold increase in resting intracellular calcium, [Ca2+]i, compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store‐operated calcium entry were ~50% significantly reduced in cisplatin‐treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo (excitability and resting macroscopic conductance) and in vivo (forelimb force and muscle volume) outcomes in cachectic animals. Administration of hexarelin or JMV2894 markedly reduced the cisplatin‐induced alteration of calcium homeostasis by both common as well as drug‐specific mechanisms of action. This effect correlated with muscle function preservation as well as amelioration of various atrophic indexes, thus supporting the functional impact of GHS activity on calcium homeostasis. Conclusions Our findings provide a direct evidence that a dysregulation of calcium homeostasis plays a key role in cisplatin‐induced model of cachexia gaining insight into the etiopathogenesis of this form of muscle wasting. Furthermore, our demonstration that GHS administration efficaciously prevents cisplatin‐induced calcium homeostasis alteration contributes to elucidate the mechanism of action through which GHS could potentially ameliorate chemotherapy‐associated cachexia. PMID:28294567

  15. Maternal deprivation affects the neuromuscular protein profile of the rat colon in response to an acute stressor later in life.

    PubMed

    Lopes, Luísa V; Marvin-Guy, Laure F; Fuerholz, Andreas; Affolter, Michael; Ramadan, Ziad; Kussmann, Martin; Fay, Laurent B; Bergonzelli, Gabriela E

    2008-04-30

    Early life stress as neonatal maternal deprivation (MD) predisposes rats to alter gut functions in response to acute psychological stressors in adulthood, mimicking features of irritable bowel syndrome (IBS). We applied proteomics to investigate whether MD permanently changes the protein profile of the external colonic neuromuscular layer that may condition the molecular response to an acute stressor later in life. Male rat pups were separated 3 h/day from their mothers during the perinatal period and further submitted to water avoidance (WA) stress during adulthood. Proteins were extracted from the myenteric plexus-longitudinal muscle of control (C), WA and MD+WA rat colon, separated on 2D gels, and identified by mass spectrometry. MD amplified the WA-induced protein changes involved in muscle contractile function, suggesting that stress accumulation along life imbalances the muscle tone towards hypercontractility. Our results also propose a stress dependent regulation of gluconeogenesis. Secretogranin II - the secretoneurin precursor - was induced by MD. The presence of secretoneurin in myenteric ganglia may partially explain the stress-mediated modulation of gastrointestinal motility and/or mucosal inflammation previously described in MD rats. In conclusion, our findings suggest that neonatal stress alters the responses to acute stress in adulthood in intestinal smooth muscle and enteric neurons.

  16. Non-Targeted Metabolomics Analysis of Golden Retriever Muscular Dystrophy-Affected Muscles Reveals Alterations in Arginine and Proline Metabolism, and Elevations in Glutamic and Oleic Acid In Vivo

    PubMed Central

    Abdullah, Muhammad; Kornegay, Joe N.; Honcoop, Aubree; Parry, Traci L.; Balog-Alvarez, Cynthia J.; Muehlbauer, Michael J.; Newgard, Christopher B.; Patterson, Cam

    2017-01-01

    Background: Like Duchenne muscular dystrophy (DMD), the Golden Retriever Muscular Dystrophy (GRMD) dog model of DMD is characterized by muscle necrosis, progressive paralysis, and pseudohypertrophy in specific skeletal muscles. This severe GRMD phenotype includes moderate atrophy of the biceps femoris (BF) as compared to unaffected normal dogs, while the long digital extensor (LDE), which functions to flex the tibiotarsal joint and serves as a digital extensor, undergoes the most pronounced atrophy. A recent microarray analysis of GRMD identified alterations in genes associated with lipid metabolism and energy production. Methods: We, therefore, undertook a non-targeted metabolomics analysis of the milder/earlier stage disease GRMD BF muscle versus the more severe/chronic LDE using GC-MS to identify underlying metabolic defects specific for affected GRMD skeletal muscle. Results: Untargeted metabolomics analysis of moderately-affected GRMD muscle (BF) identified eight significantly altered metabolites, including significantly decreased stearamide (0.23-fold of controls, p = 2.89 × 10−3), carnosine (0.40-fold of controls, p = 1.88 × 10−2), fumaric acid (0.40-fold of controls, p = 7.40 × 10−4), lactamide (0.33-fold of controls, p = 4.84 × 10−2), myoinositol-2-phosphate (0.45-fold of controls, p = 3.66 × 10−2), and significantly increased oleic acid (1.77-fold of controls, p = 9.27 × 10−2), glutamic acid (2.48-fold of controls, p = 2.63 × 10−2), and proline (1.73-fold of controls, p = 3.01 × 10−2). Pathway enrichment analysis identified significant enrichment for arginine/proline metabolism (p = 5.88 × 10−4, FDR 4.7 × 10−2), where alterations in L-glutamic acid, proline, and carnosine were found. Additionally, multiple Krebs cycle intermediates were significantly decreased (e.g., malic acid, fumaric acid, citric/isocitric acid, and succinic acid), suggesting that altered energy metabolism may be underlying the observed GRMD BF muscle dysfunction. In contrast, two pathways, inosine-5′-monophosphate (VIP Score 3.91) and 3-phosphoglyceric acid (VIP Score 3.08) mainly contributed to the LDE signature, with two metabolites (phosphoglyceric acid and inosine-5′-monophosphate) being significantly decreased. When the BF and LDE were compared, the most significant metabolite was phosphoric acid, which was significantly less in the GRMD BF compared to control and GRMD LDE groups. Conclusions: The identification of elevated BF oleic acid (a long-chain fatty acid) is consistent with recent microarray studies identifying altered lipid metabolism genes, while alterations in arginine and proline metabolism are consistent with recent studies identifying elevated L-arginine in DMD patient sera as a biomarker of disease. Together, these studies demonstrate muscle-specific alterations in GRMD-affected muscle, which illustrate previously unidentified metabolic changes. PMID:28758940

  17. Proteomic Changes in Rat Thyroarytenoid Muscle Induced by Botulinum Neurotoxin Injection

    PubMed Central

    Welham, Nathan V.; Marriott, Gerard; Tateya, Ichiro; Bless, Diane M.

    2009-01-01

    Botulinum neurotoxin (BoNT) injection into the thyroarytenoid (TA) muscle is a commonly performed medical intervention for adductor spasmodic dysphonia. The mechanism of action of BoNT at the neuromuscular junction is well understood, however, aside from reports focused on myosin heavy chain isoform abundance, there is a paucity of data addressing the effects of therapeutic BoNT injection on the TA muscle proteome. In this study, 12 adult Sprague Dawley rats underwent unilateral TA muscle BoNT serotype A injection followed by tissue harvest at 72 hrs, 7 days, 14 days, and 56 days post-injection. Three additional rats were reserved as controls. Proteomic analysis was performed using 2D SDS-PAGE followed by MALDI-MS. Vocal fold movement was significantly reduced by 72 hrs, with complete return of function by 56 days. Twenty-five protein spots demonstrated significant protein abundance changes following BoNT injection, and were associated with alterations in energy metabolism, muscle contractile function, cellular stress response, transcription, translation, and cell proliferation. A number of protein abundance changes persisted beyond the return of gross physiologic TA function. These findings represent the first report of BoNT induced changes in any skeletal muscle proteome, and reinforce the utility of applying proteomic tools to the study of system-wide biological processes in normal and perturbed TA muscle function. PMID:18442174

  18. Impact of Aging and Exercise on Mitochondrial Quality Control in Skeletal Muscle

    PubMed Central

    Kim, Yuho; Triolo, Matthew

    2017-01-01

    Mitochondria are characterized by its pivotal roles in managing energy production, reactive oxygen species, and calcium, whose aging-related structural and functional deteriorations are observed in aging muscle. Although it is still unclear how aging alters mitochondrial quality and quantity in skeletal muscle, dysregulation of mitochondrial biogenesis and dynamic controls has been suggested as key players for that. In this paper, we summarize current understandings on how aging regulates muscle mitochondrial biogenesis, while focusing on transcriptional regulations including PGC-1α, AMPK, p53, mtDNA, and Tfam. Further, we review current findings on the muscle mitochondrial dynamic systems in aging muscle: fusion/fission, autophagy/mitophagy, and protein import. Next, we also discuss how endurance and resistance exercises impact on the mitochondrial quality controls in aging muscle, suggesting possible effective exercise strategies to improve/maintain mitochondrial health. PMID:28656072

  19. Effects of the space flight environment on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.

    2003-01-01

    Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.

  20. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury.

    PubMed

    Takeoka, Aya; Vollenweider, Isabel; Courtine, Grégoire; Arber, Silvia

    2014-12-18

    Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. The Measurement of Reversible Redox Dependent Post-translational Modifications and Their Regulation of Mitochondrial and Skeletal Muscle Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Philip A.; Duan, Jicheng; Qian, Wei-Jun

    Mitochondrial oxidative stress is a common feature of skeletal myopathies across multiple conditions; however, the mechanism by which it contributes to skeletal muscle dysfunction remains controversial. Oxidative damage to proteins, lipids, and DNA has received the most attention, yet an important role for reversible redox post-translational modifications (PTMs) in pathophysiology is emerging. The possibility that these PTMs can exert dynamic control of muscle function implicates them as a mechanism contributing to skeletal muscle dysfunction in chronic disease. Herein, we discuss the significance of thiol-based redox dependent modifications to mitochondrial, myofibrillar and excitation-contraction (EC) coupling proteins with an emphasis on howmore » these changes could alter skeletal muscle performance under chronically stressed conditions. A major barrier to a better mechanistic understanding of the role of reversible redox PTMs in muscle function is the technical challenges associated with accurately measuring the changes of site-specific redox PTMs. Here we will critically review current approaches with an emphasis on sample preparation artifacts, quantitation, and specificity. Despite these challenges, the ability to accurately quantify reversible redox PTMs is critical to understanding the mechanisms by which mitochondrial oxidative stress contributes to skeletal muscle dysfunction in chronic diseases.« less

  2. Neuropathic Pain-like Alterations in Muscle Nociceptor Function Associated with Vibration-induced Muscle Pain

    PubMed Central

    Chen, Xiaojie; Green, Paul G.; Levine, Jon D.

    2010-01-01

    We recently developed a rodent model of the painful muscle disorders induced by occupational exposure to vibration. In the present study we used this model to evaluate the function of sensory neurons innervating the vibration-exposed gastrocnemius muscle. Activity of 74 vibration-exposed and 40 control nociceptors, with mechanical receptive fields in the gastrocnemius muscle, were recorded. In vibration-exposed rats ~15% of nociceptors demonstrated an intense and long-lasting barrage of action potentials in response to sustained suprathreshold mechanical stimulation (average of 2635 action potentials with frequency of ~44 Hz during a 1 minute suprathreshold stimulus) much greater than has been reported to be produced even by potent inflammatory mediators. While these high-firing nociceptors had lower mechanical thresholds than the remaining nociceptors, exposure to vibration had no effect on conduction velocity and did not induce spontaneous activity. Hyperactivity was not observed in any of 19 neurons from vibration exposed rats pretreated with intrathecal antisense for the IL-6 receptor subunit gp130. Since vibration can injure peripheral nerves, and IL-6 has been implicated in painful peripheral neuropathies, we suggest that the dramatic change in sensory neuron function and development of muscles pain, induced by exposure to vibration, reflects a neuropathic muscle pain syndrome. PMID:20800357

  3. Intramuscular pressures for monitoring different tasks and muscle conditions

    NASA Technical Reports Server (NTRS)

    Sejersted, O. M.; Hargens, A. R.

    1995-01-01

    Intramuscular fluid pressure (IMP) can easily be measured in man and animals. It follows the law of Laplace which means that it is determined by the tension of the muscle fibers, the recording depth and by fiber geometry (fiber curvature or pennation angle). Thick, bulging muscles create high IMPs (up to 1000 mmHg) and force transmission to tendons becomes inefficient. High resting or postexercise IMPs are indicative of a compartment syndrome due to muscle swelling within a low-compliance osseofascial boundary. IMP increases linearly with force (torque) independent of the mode or speed of contraction (isometric, eccentric, concentric). IMP is also a much better predictor of muscle force than the EMG signal. During prolonged low-force isometric contractions, cyclic variations in IMP are seen. Since IMP influences muscle blood flow through the muscle pump, autoregulating vascular elements, and compression of the intramuscular vasculature, alterations in IMP have important implications for muscle function.

  4. Alterations of intrinsic tongue muscle properties with aging.

    PubMed

    Cullins, Miranda J; Connor, Nadine P

    2017-12-01

    Age-related decline in the intrinsic lingual musculature could contribute to swallowing disorders, yet the effects of age on these muscles is unknown. We hypothesized there is reduced muscle fiber size and shifts to slower myosin heavy chain (MyHC) fiber types with age. Intrinsic lingual muscles were sampled from 8 young adult (9 months) and 8 old (32 months) Fischer 344/Brown Norway rats. Fiber size and MyHC were determined by fluorescent immunohistochemistry. Age was associated with a reduced number of rapidly contracting muscle fibers, and more slowly contracting fibers. Decreased fiber size was found only in the transverse and verticalis muscles. Shifts in muscle composition from faster to slower MyHC fiber types may contribute to age-related changes in swallowing duration. Decreasing muscle fiber size in the protrusive transverse and verticalis muscles may contribute to reductions in maximum isometric tongue pressure found with age. Differences among regions and muscles may be associated with different functional demands. Muscle Nerve 56: E119-E125, 2017. © 2017 Wiley Periodicals, Inc.

  5. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline.

    PubMed

    Ro, J Y; Capra, N F

    2001-05-01

    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  6. Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle.

    PubMed

    Hotta, Kazuki; Behnke, Bradley J; Arjmandi, Bahram; Ghosh, Payal; Chen, Bei; Brooks, Rachael; Maraj, Joshua J; Elam, Marcus L; Maher, Patrick; Kurien, Daniel; Churchill, Alexandra; Sepulveda, Jaime L; Kabolowsky, Max B; Christou, Demetra D; Muller-Delp, Judy M

    2018-05-15

    In aged rats, daily muscle stretching increases blood flow to skeletal muscle during exercise. Daily muscle stretching enhanced endothelium-dependent vasodilatation of skeletal muscle resistance arterioles of aged rats. Angiogenic markers and capillarity increased in response to daily stretching in muscles of aged rats. Muscle stretching performed with a splint could provide a feasible means of improving muscle blood flow and function in elderly patients who cannot perform regular aerobic exercise. Mechanical stretch stimuli alter the morphology and function of cultured endothelial cells; however, little is known about the effects of daily muscle stretching on adaptations of endothelial function and muscle blood flow. The present study aimed to determine the effects of daily muscle stretching on endothelium-dependent vasodilatation and muscle blood flow in aged rats. The lower hindlimb muscles of aged Fischer rats were passively stretched by placing an ankle dorsiflexion splint for 30 min day -1 , 5 days week -1 , for 4 weeks. Blood flow to the stretched limb and the non-stretched contralateral limb was determined at rest and during treadmill exercise. Endothelium-dependent/independent vasodilatation was evaluated in soleus muscle arterioles. Levels of hypoxia-induced factor-1α, vascular endothelial growth factor A and neuronal nitric oxide synthase were determined in soleus muscle fibres. Levels of endothelial nitric oxide synthase and superoxide dismutase were determined in soleus muscle arterioles, and microvascular volume and capillarity were evaluated by microcomputed tomography and lectin staining, respectively. During exercise, blood flow to plantar flexor muscles was significantly higher in the stretched limb. Endothelium-dependent vasodilatation was enhanced in arterioles from the soleus muscle from the stretched limb. Microvascular volume, number of capillaries per muscle fibre, and levels of hypoxia-induced factor-1α, vascular endothelial growth factor and endothelial nitric oxide synthase were significantly higher in the stretched limb. These results indicate that daily passive stretching of muscle enhances endothelium-dependent vasodilatation and induces angiogenesis. These microvascular adaptations may contribute to increased muscle blood flow during exercise in muscles that have undergone daily passive stretch. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  7. Contractile properties of rat fast-twitch skeletal muscle during reinnervation - Effects of testosterone and castration

    NASA Technical Reports Server (NTRS)

    Yeagle, S. P.; Mayer, R. F.; Max, S. R.

    1983-01-01

    The peroneal nerve of subject rats were crushed 1 cm from the muscle in order to examine the isometric contractile properties of skeletal muscle in the recovery sequency during reinnervation of normal, castrated, and testosterone-treated rats. The particular muscle studied was the extensor digitorum longus, with functional reinnervation first observed 8-9 days after nerve crush. No evidence was found that either castration or testosterone injections altered the process of reinnervation after the nerve crush, with the conclusion being valid at the 0.05 p level. The most reliable index of reinnervation was found to be the twitch:tetanus ratio, a factor of use in future studies of the reinnervation of skeletal muscle.

  8. Graded effects of unregulated smooth muscle myosin on intestinal architecture, intestinal motility and vascular function in zebrafish.

    PubMed

    Abrams, Joshua; Einhorn, Zev; Seiler, Christoph; Zong, Alan B; Sweeney, H Lee; Pack, Michael

    2016-05-01

    Smooth muscle contraction is controlled by the regulated activity of the myosin heavy chain ATPase (Myh11). Myh11 mutations have diverse effects in the cardiovascular, digestive and genitourinary systems in humans and animal models. We previously reported a recessive missense mutation, meltdown (mlt), which converts a highly conserved tryptophan to arginine (W512R) in the rigid relay loop of zebrafish Myh11. The mlt mutation disrupts myosin regulation and non-autonomously induces invasive expansion of the intestinal epithelium. Here, we report two newly identified missense mutations in the switch-1 (S237Y) and coil-coiled (L1287M) domains of Myh11 that fail to complement mlt Cell invasion was not detected in either homozygous mutant but could be induced by oxidative stress and activation of oncogenic signaling pathways. The smooth muscle defect imparted by the mlt and S237Y mutations also delayed intestinal transit, and altered vascular function, as measured by blood flow in the dorsal aorta. The cell-invasion phenotype induced by the three myh11 mutants correlated with the degree of myosin deregulation. These findings suggest that the vertebrate intestinal epithelium is tuned to the physical state of the surrounding stroma, which, in turn, governs its response to physiologic and pathologic stimuli. Genetic variants that alter the regulation of smooth muscle myosin might be risk factors for diseases affecting the intestine, vasculature, and other tissues that contain smooth muscle or contractile cells that express smooth muscle proteins, particularly in the setting of redox stress. © 2016. Published by The Company of Biologists Ltd.

  9. Compromised store-operated Ca2+ entry in aged skeletal muscle.

    PubMed

    Zhao, Xiaoli; Weisleder, Noah; Thornton, Angela; Oppong, Yaa; Campbell, Rachel; Ma, Jianjie; Brotto, Marco

    2008-08-01

    In aged skeletal muscle, changes to the composition and function of the contractile machinery cannot fully explain the observed decrease in the specific force produced by the contractile machinery that characterizes muscle weakness during aging. Since modification in extracellular Ca(2+) entry in aged nonexcitable and excitable cells has been recently identified, we evaluated the functional status of store-operated Ca(2+) entry (SOCE) in aged mouse skeletal muscle. Using Mn(2+) quenching of Fura-2 fluorescence and confocal-microscopic imaging of Ca(2+) movement from the transverse tubules, we determined that SOCE was severely compromised in muscle fibers isolated from aged mice (26-27 months) as compared with those from young (2-5 months) mice. While reduced SOCE in aged skeletal muscle does not appear to result from altered expression levels of STIM1 or reduced expression of mRNA for Orai, this reduction in SOCE is mirrored in fibers isolated from young mice null for mitsugumin-29, a synaptophysin-related protein that displays decreased expression in aged skeletal muscle. Our data suggest that decreased mitsugumin-29 expression and reduced SOCE may contribute to the diminished intracellular Ca(2+) homeostatic capacity generally associated with muscle aging.

  10. Compromised store-operated Ca2+ entry in aged skeletal muscle

    PubMed Central

    Zhao, Xiaoli; Weisleder, Noah; Thornton, Angela; Oppong, Yaa; Campbell, Rachel; Ma, Jianjie; Brotto, Marco

    2010-01-01

    Summary In aged skeletal muscle, changes to the composition and function of the contractile machinery cannot fully explain the observed decrease in the specific force produced by the contractile machinery that characterizes muscle weakness during aging. Since modification in extracellular Ca2+ entry in aged nonexcitable and excitable cells has been recently identified, we evaluated the functional status of store-operated Ca2+ entry (SOCE) in aged mouse skeletal muscle. Using Mn2+ quenching of Fura-2 fluorescence and confocal-microscopic imaging of Ca2+ movement from the transverse tubules, we determined that SOCE was severely compromised in muscle fibers isolated from aged mice (26–27 months) as compared with those from young (2–5 months) mice. While reduced SOCE in aged skeletal muscle does not appear to result from altered expression levels of STIM1 or reduced expression of mRNA for Orai, this reduction in SOCE is mirrored in fibers isolated from young mice null for mitsugumin-29, a synaptophysin-related protein that displays decreased expression in aged skeletal muscle. Our data suggest that decreased mitsugumin-29 expression and reduced SOCE may contribute to the diminished intracellular Ca2+ homeostatic capacity generally associated with muscle aging. PMID:18505477

  11. Role of Protein Carbonylation in Skeletal Muscle Mass Loss Associated with Chronic Conditions

    PubMed Central

    Barreiro, Esther

    2016-01-01

    Muscle dysfunction, characterized by a reductive remodeling of muscle fibers, is a common systemic manifestation in highly prevalent conditions such as chronic heart failure (CHF), chronic obstructive pulmonary disease (COPD), cancer cachexia, and critically ill patients. Skeletal muscle dysfunction and impaired muscle mass may predict morbidity and mortality in patients with chronic diseases, regardless of the underlying condition. High levels of oxidants may alter function and structure of key cellular molecules such as proteins, DNA, and lipids, leading to cellular injury and death. Protein oxidation including protein carbonylation was demonstrated to modify enzyme activity and DNA binding of transcription factors, while also rendering proteins more prone to proteolytic degradation. Given the relevance of protein oxidation in the pathophysiology of many chronic conditions and their comorbidities, the current review focuses on the analysis of different studies in which the biological and clinical significance of the modifications induced by reactive carbonyls on proteins have been explored so far in skeletal muscles of patients and animal models of chronic conditions such as COPD, disuse muscle atrophy, cancer cachexia, sepsis, and physiological aging. Future research will elucidate the specific impact and sites of reactive carbonyls on muscle protein content and function in human conditions. PMID:28248228

  12. S6K1 Is Required for Increasing Skeletal Muscle Force during Hypertrophy.

    PubMed

    Marabita, Manuela; Baraldo, Martina; Solagna, Francesca; Ceelen, Judith Johanna Maria; Sartori, Roberta; Nolte, Hendrik; Nemazanyy, Ivan; Pyronnet, Stéphane; Kruger, Marcus; Pende, Mario; Blaauw, Bert

    2016-10-04

    Loss of skeletal muscle mass and force aggravates age-related sarcopenia and numerous pathologies, such as cancer and diabetes. The AKT-mTORC1 pathway plays a major role in stimulating adult muscle growth; however, the functional role of its downstream mediators in vivo is unknown. Here, we show that simultaneous inhibition of mTOR signaling to both S6K1 and 4E-BP1 is sufficient to reduce AKT-induced muscle growth and render it insensitive to the mTORC1-inhibitor rapamycin. Surprisingly, lack of mTOR signaling to 4E-BP1 only, or deletion of S6K1 alone, is not sufficient to reduce muscle hypertrophy or alter its sensitivity to rapamycin. However, we report that, while not required for muscle growth, S6K1 is essential for maintaining muscle structure and force production. Hypertrophy in the absence of S6K1 is characterized by compromised ribosome biogenesis and the formation of p62-positive protein aggregates. These findings identify S6K1 as a crucial player for maintaining muscle function during hypertrophy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Liver overload in Brazilian triathletes after half-ironman competition is related muscle fatigue.

    PubMed

    Bürger-Mendonça, Marcos; Bielavsky, Monica; Barbosa, Fernanda C R

    2008-01-01

    Triathlon competition is dependent on the athletes' ability to perform each discipline at optimal time, without excessive fatigue influencing the next one. Determine the effects of a long distance triathlon on biochemistry parameters related to liver function. Blood samples from six athletes were collected before (T = 0) and immediately after the triathlon competition (T = 1). AST, ALT and alkaline phosphatase (ALP) values were assessed. Significant changes after triathlon competition were found for AST and ALP and no significant changes were found for ALT over time. A series of metabolically alterations, mainly related to energy production and also to muscle and skeletal adaptations occurs during and after strenuous exercise. The altered status of those metabolical changes cannot directly reflect the intensity of any possible muscular or hepatic damage or overload and elevated AST/ALT ratio is better associated to skeletal muscle lesion during competition.

  14. Changes in interhemispheric motor connectivity after muscle fatigue

    NASA Astrophysics Data System (ADS)

    Peltier, Scott; LaConte, Stephen M.; Niyazov, Dmitriy; Liu, Jing; Sahgal, Vinod; Yue, Guang; Hu, Xiaoping

    2005-04-01

    Synchronized oscillations in resting state timecourses have been detected in recent fMRI studies. These oscillations are low frequency in nature (< 0.08 Hz), and seem to be a property of symmetric cortices. These fluctuations are important as a potential signal of interest, which could indicate connectivity between functionally related areas of the brain. It has also been shown that the synchronized oscillations decrease in some spontaneous pathological states. Thus, detection of these functional connectivity patterns may help to serve as a gauge of normal brain activity. The cognitive effects of muscle fatigue are not well characterized. Sustained fatigue has the potential to dynamically alter activity in brain networks. In this work, we examined the interhemispheric correlations in the left and right primary motor cortices and how they change with muscle fatigue. Resting-state functional MRI imaging was done before and after a repetitive unilateral fatigue task. We find that the number of significant correlations in the bilateral motor network decreases with fatigue. These results suggest that resting-state interhemispheric motor cortex functional connectivity is affected by muscle fatigue.

  15. Omega-3 Fatty Acids and Skeletal Muscle Health

    PubMed Central

    Jeromson, Stewart; Gallagher, Iain J.; Galloway, Stuart D. R.; Hamilton, D. Lee

    2015-01-01

    Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle. PMID:26610527

  16. Correlation between thoracolumbar curvatures and respiratory function in older adults.

    PubMed

    Rahman, Nor Najwatul Akmal Ab; Singh, Devinder Kaur Ajit; Lee, Raymond

    2017-01-01

    Aging is associated with alterations in thoracolumbar curvatures and respiratory function. Research information regarding the correlation between thoracolumbar curvatures and a comprehensive examination of respiratory function parameters in older adults is limited. The aim of the present study was to examine the correlation between thoracolumbar curvatures and respiratory function in community-dwelling older adults. Thoracolumbar curvatures (thoracic and lumbar) were measured using a motion tracker. Respiratory function parameters such as lung function, respiratory rate, respiratory muscle strength and respiratory muscle thickness (diaphragm and intercostal) were measured using a spirometer, triaxial accelerometer, respiratory pressure meter and ultrasound imaging, respectively. Sixty-eight community-dwelling older males and females from Kuala Lumpur, Malaysia, with mean (standard deviation) age of 66.63 (5.16) years participated in this cross-sectional study. The results showed that mean (standard deviation) thoracic curvature angle and lumbar curvature angles were -46.30° (14.66°) and 14.10° (10.58°), respectively. There was a significant negative correlation between thoracic curvature angle and lung function (forced expiratory volume in 1 second: r =-0.23, P <0.05; forced vital capacity: r =-0.32, P <0.05), quiet expiration intercostal thickness ( r =-0.22, P <0.05) and deep expiration diaphragm muscle thickness ( r =-0.21, P <0.05). The lumbar curvature angle had a significant negative correlation with respiratory muscle strength ( r =-0.29, P <0.05) and diaphragm muscle thickness at deep inspiration ( r =-0.22, P <0.05). However, respiratory rate was correlated neither with thoracic nor with lumbar curvatures. The findings of this study suggest that increase in both thoracic and lumbar curvatures is correlated with decrease in respiratory muscle strength, respiratory muscle thickness and some parameters of lung function. Clinically, both thoracic and lumbar curvatures, respiratory muscles and lung function should be taken into consideration in the holistic management of respiratory function among older adults.

  17. Mitochondrial function is altered in horse atypical myopathy.

    PubMed

    Lemieux, Hélène; Boemer, François; van Galen, Gaby; Serteyn, Didier; Amory, Hélène; Baise, Etienne; Cassart, Dominique; van Loon, Gunther; Marcillaud-Pitel, Christel; Votion, Dominique-M

    2016-09-01

    Equine atypical myopathy in Europe is a fatal rhabdomyolysis syndrome that results from the ingestion of hypoglycin A contained in seeds and seedlings of Acer pseudoplatanus (sycamore maple). Acylcarnitine concentrations in serum and muscle OXPHOS capacity were determined in 15 atypical myopathy cases. All but one acylcarnitine were out of reference range and mitochondrial respiratory capacity was severely decreased up to 49% as compared to 10 healthy controls. The hallmark of atypical myopathy thus consists of a severe alteration in the energy metabolism including a severe impairment in muscle mitochondrial respiration that could contribute to its high death rate. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  18. Do receptors get pregnant too? Adrenergic receptor alterations in human pregnancy.

    PubMed

    Smiley, R M; Finster, M

    1996-01-01

    In this review we discuss adrenergic receptor number and function during pregnancy, with emphasis on evidence that pregnancy results in specific receptor alterations from the nonpregnant state. Changes in adrenergic receptor function or distribution in vascular smooth muscle may be in part responsible for the decreased vascular responsiveness seen in human pregnancy, and the lack of the normal alterations may be a part of the syndromes of gestational hypertension, including preeclampsia-eclampsia. The onset of labor may be influenced by adrenergic modulation, and receptor or postreceptor level molecular alterations may trigger or facilitate normal or preterm labor. Human studies are emphasized when possible to assess the role of adrenergic signal transduction regulation in the physiology and pathophysiology of normal and complicated human pregnancy.

  19. Can Quantitative Muscle Strength and Functional Motor Ability Differentiate the Influence of Age and Corticosteroids in Ambulatory Boys with Duchenne Muscular Dystrophy?

    PubMed

    Buckon, Cathleen; Sienko, Susan; Bagley, Anita; Sison-Williamson, Mitell; Fowler, Eileen; Staudt, Loretta; Heberer, Kent; McDonald, Craig M; Sussman, Michael

    2016-07-08

    In the absence of a curative treatment for Duchenne Muscular Dystrophy (DMD), corticosteroid therapy (prednisone, deflazacort) has been adopted as the standard of care, as it slows the progression of muscle weakness and enables longer retention of functional mobility. The ongoing development of novel pharmacological agents that target the genetic defect underlying DMD offer hope for a significant alteration in disease progression; however, substantiation of therapeutic efficacy has proved challenging. Identifying functional outcomes sensitive to the early, subtle changes in muscle function has confounded clinical trials. Additionally, the alterations in disease progression secondary to corticosteroid therapy are not well described making it difficult to ascertain the benefits of novel agents, often taken concurrently with corticosteroids. The purpose of this study was to examine outcome responsiveness to corticosteroid therapy and age at the onset of a natural history study of ambulatory boys with DMD. Eighty-five ambulatory boys with DMD (mean age 93 mo, range 49 to 180 mo) were recruited into this study. Fifty participants were on corticosteroid therapy, while 33 were corticosteroid naïve at the baseline assessment. Within each treatment group boys were divided in two age groups, 4 to 7 years and 8 and greater years of age. The Biodex System 3 Pro isokinetic dynamometer was used to assess muscle strength. Motor skills were assessed using the upper two dimensions (standing/walking, running & jumping) of the Gross Motor Function Measure (GMFM 88) and Timed Motor Tests (TMTs) (10-meter run, sit to stand, supine to stand, climb 4-stairs). Two way analysis of variance and Pearson correlations were used for analysis. A main effect for age was seen in select lower extremity muscle groups (hip flexors, knee extensors and ankle dorsiflexors), standing dimension skills, and all TMTs with significantly greater weakness and loss of motor skill ability seen in the older age group regardless of treatment group. Interaction effects were seen for the walking, running, and jumping dimension of the GMFM with the naïve boys scoring higher in the younger group and boys on corticosteroid therapy scoring higher in the older group. The TMT of climb 4-stairs demonstrated a significant treatment effect with the boys on corticosteroid therapy climbing stairs faster than those who were naïve, regardless of age. Examination of individual items within the upper level GMFM dimensions revealed select motor skills are more informative of disease progression than others; indicating their potential to be sensitive indicators of alterations in disease progression and intervention efficacy. Analysis of the relationship between muscle group strength and motor skill performance revealed differences in use patterns in the corticosteroid versus naïve boys. Significant muscle weakness is apparent in young boys with DMD regardless of corticosteroid treatment; however, older boys on corticosteroid therapy tend to have greater retention of muscle strength and motor skill ability than those who are naive. Quantification of muscle strength via isokinetic dynamometry is feasible and sensitive to the variable rates of disease progression in lower extremity muscle groups, but possibly most informative are the subtle changes in the performance characteristics of select motor skills. Further analysis of longitudinal data from this study will explore the influence of corticosteroid therapy on muscle strength and further clarify its impact on motor performance.

  20. Muscle force modification strategies are not consistent for gait retraining to reduce the knee adduction moment in individuals with knee osteoarthritis.

    PubMed

    Shull, Peter B; Huang, Yangjian; Schlotman, Taylor; Reinbolt, Jeffrey A

    2015-09-18

    While gait retraining paradigms that alter knee loads typically focus on modifying kinematics, the underlying muscle force modifications responsible for these kinematic changes remain largely unknown. As humans are generally thought to select uniform gait muscle patterns such as strategies based on fatigue cost functions or energy minimization, we hypothesized that a kinematic gait change known to reduce the knee adduction moment (i.e. toe-in gait) would be accompanied by a uniform muscle force modification strategy for individuals with symptomatic knee osteoarthritis. Ten subjects with self-reported knee pain and radiographic evidence of medial compartment knee osteoarthritis performed normal gait and toe-in gait modification walking trials. Two hundred muscle-actuated dynamic simulations (10 steps for normal gait and 10 steps from toe-in gait for each subject) were performed to determine muscle forces for each gait. Results showed that subjects internally rotated their feet during toe-in gait, which decreased the foot progression angle by 7° (p<0.01) and reduced the first peak knee adduction moment by 20% (p<0.01). While significant muscle force modifications were evidenced within individuals, there were no consistent muscle force modifications across all subjects. It may be that self-selected muscle pattern changes are not uniform for gait modification particularly for individuals with knee pain. Future studies focused on altering knee loads should not assume consistent muscle force modifications for a given kinematic gait change across subjects and should consider muscle forces in addition to kinematics in gait retraining paradigms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Regulation of Muscle Stem Cell Functions: A Focus on the p38 MAPK Signaling Pathway

    PubMed Central

    Segalés, Jessica; Perdiguero, Eusebio; Muñoz-Cánoves, Pura

    2016-01-01

    Formation of skeletal muscle fibers (myogenesis) during development and after tissue injury in the adult constitutes an excellent paradigm to investigate the mechanisms whereby environmental cues control gene expression programs in muscle stem cells (satellite cells) by acting on transcriptional and epigenetic effectors. Here we will review the molecular mechanisms implicated in the transition of satellite cells throughout the distinct myogenic stages (i.e., activation from quiescence, proliferation, differentiation, and self-renewal). We will also discuss recent findings on the causes underlying satellite cell functional decline with aging. In particular, our review will focus on the epigenetic changes underlying fate decisions and on how the p38 MAPK signaling pathway integrates the environmental signals at the chromatin to build up satellite cell adaptive responses during the process of muscle regeneration, and how these responses are altered in aging. A better comprehension of the signaling pathways connecting external and intrinsic factors will illuminate the path for improving muscle regeneration in the aged. PMID:27626031

  2. Myostatin deficiency but not anti-myostatin blockade induces marked proteomic changes in mouse skeletal muscle.

    PubMed

    Salzler, Robert R; Shah, Darshit; Doré, Anthony; Bauerlein, Roy; Miloscio, Lawrence; Latres, Esther; Papadopoulos, Nicholas J; Olson, William C; MacDonald, Douglas; Duan, Xunbao

    2016-07-01

    Pharmacologic blockade of the myostatin (Mstn)/activin receptor pathway is being pursued as a potential therapy for several muscle wasting disorders. The functional benefits of blocking this pathway are under investigation, in particular given the findings that greater muscle hypertrophy results from Mstn deficiency arising from genetic ablation compared to post-developmental Mstn blockade. Using high-resolution MS coupled with SILAC mouse technology, we quantitated the relative proteomic changes in gastrocnemius muscle from Mstn knockout (Mstn(-/-) ) and mice treated for 2-weeks with REGN1033, an anti-Mstn antibody. Relative to wild-type animals, Mstn(-/-) mice had a two-fold greater muscle mass and a >1.5-fold change in expression of 12.0% of 1137 quantified muscle proteins. In contrast, mice treated with REGN1033 had minimal changes in muscle proteome (0.7% of 1510 proteins >1.5-fold change, similar to biological difference 0.5% of 1310) even though the treatment induced significant 20% muscle mass increase. Functional annotation of the altered proteins in Mstn(-/-) mice corroborates the mutiple physiological changes including slow-to-fast fiber type switch. Thus, the proteome-wide protein expression differs between Mstn(-/-) mice and mice subjected to specific Mstn blockade post-developmentally, providing molecular-level insights to inform mechanistic hypotheses to explain the observed functional differences. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Core stability training for injury prevention.

    PubMed

    Huxel Bliven, Kellie C; Anderson, Barton E

    2013-11-01

    Enhancing core stability through exercise is common to musculoskeletal injury prevention programs. Definitive evidence demonstrating an association between core instability and injury is lacking; however, multifaceted prevention programs including core stabilization exercises appear to be effective at reducing lower extremity injury rates. PUBMED WAS SEARCHED FOR EPIDEMIOLOGIC, BIOMECHANIC, AND CLINICAL STUDIES OF CORE STABILITY FOR INJURY PREVENTION (KEYWORDS: "core OR trunk" AND "training OR prevention OR exercise OR rehabilitation" AND "risk OR prevalence") published between January 1980 and October 2012. Articles with relevance to core stability risk factors, assessment, and training were reviewed. Relevant sources from articles were also retrieved and reviewed. Stabilizer, mobilizer, and load transfer core muscles assist in understanding injury risk, assessing core muscle function, and developing injury prevention programs. Moderate evidence of alterations in core muscle recruitment and injury risk exists. Assessment tools to identify deficits in volitional muscle contraction, isometric muscle endurance, stabilization, and movement patterns are available. Exercise programs to improve core stability should focus on muscle activation, neuromuscular control, static stabilization, and dynamic stability. Core stabilization relies on instantaneous integration among passive, active, and neural control subsystems. Core muscles are often categorized functionally on the basis of stabilizing or mobilizing roles. Neuromuscular control is critical in coordinating this complex system for dynamic stabilization. Comprehensive assessment and training require a multifaceted approach to address core muscle strength, endurance, and recruitment requirements for functional demands associated with daily activities, exercise, and sport.

  4. SMN is required for sensory-motor circuit function in Drosophila

    PubMed Central

    Imlach, Wendy L.; Beck, Erin S.; Choi, Ben Jiwon; Lotti, Francesco; Pellizzoni, Livio; McCabe, Brian D.

    2012-01-01

    Summary Spinal muscular atrophy (SMA) is a lethal human disease characterized by motor neuron dysfunction and muscle deterioration due to depletion of the ubiquitous Survival Motor Neuron (SMN) protein. Drosophila SMN mutants have reduced muscle size and defective locomotion, motor rhythm and motor neuron neurotransmission. Unexpectedly, restoration of SMN in either muscles or motor neurons did not alter these phenotypes. Instead, SMN must be expressed in proprioceptive neurons and interneurons in the motor circuit to non-autonomously correct defects in motor neurons and muscles. SMN depletion disrupts the motor system subsequent to circuit development and can be mimicked by the inhibition of motor network function. Furthermore, increasing motor circuit excitability by genetic or pharmacological inhibition of K+ channels can correct SMN-dependent phenotypes. These results establish sensory-motor circuit dysfunction as the origin of motor system deficits in this SMA model and suggest that enhancement of motor neural network activity could ameliorate the disease. PMID:23063130

  5. Morphologic Characteristics and Strength of the Hamstring Muscles Remain Altered at 2 Years After Use of a Hamstring Tendon Graft in Anterior Cruciate Ligament Reconstruction.

    PubMed

    Konrath, Jason M; Vertullo, Christopher J; Kennedy, Ben A; Bush, Hamish S; Barrett, Rod S; Lloyd, David G

    2016-10-01

    The hamstring tendon graft used in anterior cruciate ligament (ACL) reconstruction has been shown to lead to changes to the semitendinosus and gracilis musculature. We hypothesized that (1) loss of donor muscle size would significantly correlate with knee muscle strength deficits, (2) loss of donor muscle size would be greater for muscles that do not experience tendon regeneration, and (3) morphological adaptations would also be evident in nondonor knee muscles. Cross-sectional study; Level of evidence, 3. Twenty participants (14 men and 6 women, mean age 29 ± 7 years, mean body mass 82 ± 15 kg) who had undergone an ACL reconstruction with a hamstring tendon graft at least 2 years previously underwent bilateral magnetic resonance imaging and subsequent strength testing. Muscle and tendon volumes, peak cross-sectional areas (CSAs), and lengths were determined for 12 muscles and 6 functional muscle groups of the surgical and contralateral limbs. Peak isokinetic concentric strength was measured in knee flexion/extension and internal/external tibial rotation. Only 35% of the patients showed regeneration of both the semitendinosus and gracilis tendons. The regenerated tendons were longer with larger volume and CSA compared with the contralateral side. Deficits in semitendinosus and gracilis muscle size were greater for muscles in which tendons did not regenerate. In addition, combined hamstring muscles (semitendinosus, semimembranosus, and biceps femoris) and combined medial knee muscles (semitendinosus, semimembranosus, gracilis, vastus medialis, medial gastrocnemius, and sartorius) on the surgical side were reduced in volume by 12% and 10%, respectively. A 7% larger volume was observed in the surgical limb for the biceps femoris muscle and corresponded with a lower internal/external tibial rotation strength ratio. The difference in volume, peak CSA, and length of the semitendinosus and gracilis correlated significantly with the deficit in knee flexion strength, with Pearson correlations of 0.51, 0.57, and 0.61, respectively. The muscle-tendon properties of the semitendinosus and gracilis are substantially altered after harvesting, and these alterations may contribute to knee flexor weakness in the surgical limb. These deficits are more pronounced in knees with tendons that do not regenerate and are only partially offset by compensatory hypertrophy of other hamstring muscles. © 2016 The Author(s).

  6. Disturbance of mitochondrial functions provoked by the major long-chain 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies in skeletal muscle.

    PubMed

    Cecatto, Cristiane; Godoy, Kálita Dos Santos; da Silva, Janaína Camacho; Amaral, Alexandre Umpierrez; Wajner, Moacir

    2016-10-01

    The pathogenesis of the muscular symptoms and recurrent rhabdomyolysis that are commonly manifested in patients with mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) deficiencies is still unknown. In this study we investigated the effects of the major long-chain monocarboxylic 3-hydroxylated fatty acids (LCHFA) accumulating in these disorders, namely 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, on important mitochondrial functions in rat skeletal muscle mitochondria. 3HTA and 3HPA markedly increased resting (state 4) and decreased ADP-stimulated (state 3) and CCCP-stimulated (uncoupled) respiration. 3HPA provoked similar effects in permeabilized skeletal muscle fibers, validating the results obtained in purified mitochondria. Furthermore, 3HTA and 3HPA markedly diminished mitochondrial membrane potential, NAD(P)H content and Ca(2+) retention capacity in Ca(2+)-loaded mitochondria. Mitochondrial permeability transition (mPT) induction probably underlie these effects since they were totally prevented by cyclosporin A and ADP. In contrast, the dicarboxylic analogue of 3HTA did not alter the tested parameters. Our data strongly indicate that 3HTA and 3HPA behave as metabolic inhibitors, uncouplers of oxidative phosphorylation and mPT inducers in skeletal muscle. It is proposed that these pathomechanisms disrupting mitochondrial homeostasis may be involved in the muscle alterations characteristic of MTP and LCHAD deficiencies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Functional and Neuromuscular Changes in the Hamstrings After Drop Jumps and Leg Curls

    PubMed Central

    Sarabon, Nejc; Panjan, Andrej; Rosker, Jernej; Fonda, Borut

    2013-01-01

    The purpose of this study was to use a holistic approach to investigate changes in jumping performance, kinaesthesia, static balance, isometric strength and fast stepping on spot during a 5-day recovery period, following an acute bout of damaging exercise consisted of drop jumps and leg curls, where specific emphasis was given on the hamstring muscles. Eleven young healthy subjects completed a series of highly intensive damaging exercises for their hamstring muscles. Prior to the exercise, and during the 5-day recovery period, the subjects were tested for biochemical markers (creatine kinase, aspartate aminotransferase, and lactate dehydrogenase), perceived pain sensation, physical performance (squat jump, counter movement jump, maximal frequency leg stamping, maximal isometric torque production and maximally explosive isometric torque production), kinaesthesia (active torque tracking) and static balance. We observed significant decreases in maximal isometric knee flexion torque production, the rate of torque production, and majority of the parameters for vertical jump performance. No alterations were found in kinaesthesia, static balance and fast stepping on spot. The highest drop in performance and increase in perceived pain sensation generally occurred 24 or 48 hours after the exercise. Damaging exercise substantially alters the neuromuscular functions of the hamstring muscles, which is specifically relevant for sports and rehabilitation experts, as the hamstrings are often stretched to significant lengths, in particular when the knee is extended and hip flexed. These findings are practically important for recovery after high-intensity trainings for hamstring muscles. Key Points Hamstring function is significantly reduced following specifically damaging exercise. It fully recovers 120 hours after the exercise. Prevention of exercise-induced muscle damage is cruicial for maintaining normal training regime. PMID:24149148

  8. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study.

    PubMed

    Miao, Wen; Man, Fengyuan; Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A; He, Huiguang; Jiao, Yonghong

    2015-01-01

    To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender-matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1.

  9. Cytoskeletal tropomyosin Tm5NM1 is required for normal excitation-contraction coupling in skeletal muscle.

    PubMed

    Vlahovich, Nicole; Kee, Anthony J; Van der Poel, Chris; Kettle, Emma; Hernandez-Deviez, Delia; Lucas, Christine; Lynch, Gordon S; Parton, Robert G; Gunning, Peter W; Hardeman, Edna C

    2009-01-01

    The functional diversity of the actin microfilaments relies in part on the actin binding protein tropomyosin (Tm). The muscle-specific Tms regulate actin-myosin interactions and hence contraction. However, there is less known about the roles of the numerous cytoskeletal isoforms. We have shown previously that a cytoskeletal Tm, Tm5NM1, defines a Z-line adjacent cytoskeleton in skeletal muscle. Recently, we identified a second cytoskeletal Tm in this region, Tm4. Here we show that Tm4 and Tm5NM1 define separate actin filaments; the former associated with the terminal sarcoplasmic reticulum (SR) and other tubulovesicular structures. In skeletal muscles of Tm5NM1 knockout (KO) mice, Tm4 localization was unchanged, demonstrating the specificity of the membrane association. Tm5NM1 KO muscles exhibit potentiation of T-system depolarization and decreased force rundown with repeated T-tubule depolarizations consistent with altered T-tubule function. These results indicate that a Tm5NM1-defined actin cytoskeleton is required for the normal excitation-contraction coupling in skeletal muscle.

  10. Cytoskeletal Tropomyosin Tm5NM1 Is Required for Normal Excitation–Contraction Coupling in Skeletal Muscle

    PubMed Central

    Vlahovich, Nicole; Kee, Anthony J.; Van der Poel, Chris; Kettle, Emma; Hernandez-Deviez, Delia; Lucas, Christine; Lynch, Gordon S.; Parton, Robert G.; Gunning, Peter W.

    2009-01-01

    The functional diversity of the actin microfilaments relies in part on the actin binding protein tropomyosin (Tm). The muscle-specific Tms regulate actin-myosin interactions and hence contraction. However, there is less known about the roles of the numerous cytoskeletal isoforms. We have shown previously that a cytoskeletal Tm, Tm5NM1, defines a Z-line adjacent cytoskeleton in skeletal muscle. Recently, we identified a second cytoskeletal Tm in this region, Tm4. Here we show that Tm4 and Tm5NM1 define separate actin filaments; the former associated with the terminal sarcoplasmic reticulum (SR) and other tubulovesicular structures. In skeletal muscles of Tm5NM1 knockout (KO) mice, Tm4 localization was unchanged, demonstrating the specificity of the membrane association. Tm5NM1 KO muscles exhibit potentiation of T-system depolarization and decreased force rundown with repeated T-tubule depolarizations consistent with altered T-tubule function. These results indicate that a Tm5NM1-defined actin cytoskeleton is required for the normal excitation–contraction coupling in skeletal muscle. PMID:19005216

  11. Fukutin-related protein localizes to the Golgi apparatus and mutations lead to mislocalization in muscle in vivo.

    PubMed

    Keramaris-Vrantsis, Elizabeth; Lu, Pei J; Doran, Timothy; Zillmer, Allen; Ashar, Jignya; Esapa, Christopher T; Benson, Matthew A; Blake, Derek J; Rosenfeld, Jeffrey; Lu, Qi L

    2007-10-01

    Mutations in the fukutin-related protein gene (FKRP) are associated with a spectrum of diseases from mild limb-girdle muscular dystrophy type 2I to severe congenital muscular dystrophy type 1C, muscle-eye-brain disease (MEB), and Walker-Warburg syndrome (WWS). The effect of mutations on the transportation of the mutant proteins may constitute the underlying mechanisms for the pathogenesis of these diseases. Here we examined the subcellular localization of mouse and human normal and mutant FKRP proteins in cells and in muscle in vivo. Both normal human and mouse FKRPs localize in part of the Golgi apparatus in muscle fibers. Mutations in the FKRP gene invariably altered the localization of the protein, leading to endoplasmic reticulum retention within cells and diminished Golgi localization in muscle fibers. Our results therefore suggest that an individual missense point mutation can confer at least two independent effects on the protein, causing (1) reduction or loss of the presumed glycosyltransferase activity directly and (2) mislocalization that could further alter the function of the protein. The complexity of the effect of individual missense point mutations may partly explain the wide variation of the FKRP-related myopathies.

  12. Effects of a multichannel dynamic functional electrical stimulation system on hemiplegic gait and muscle forces

    PubMed Central

    Qian, Jing-guang; Rong, Ke; Qian, Zhenyun; Wen, Chen; Zhang, Songning

    2015-01-01

    [Purpose] The purpose of the study was to design and implement a multichannel dynamic functional electrical stimulation system and investigate acute effects of functional electrical stimulation of the tibialis anterior and rectus femoris on ankle and knee sagittal-plane kinematics and related muscle forces of hemiplegic gait. [Subjects and Methods] A multichannel dynamic electrical stimulation system was developed with 8-channel low frequency current generators. Eight male hemiplegic patients were trained for 4 weeks with electric stimulation of the tibia anterior and rectus femoris muscles during walking, which was coupled with active contraction. Kinematic data were collected, and muscle forces of the tibialis anterior and rectus femoris of the affected limbs were analyzed using a musculoskelatal modeling approach before and after training. A paired sample t-test was used to detect the differences between before and after training. [Results] The step length of the affected limb significantly increased after the stimulation was applied. The maximum dorsiflexion angle and maximum knee flexion angle of the affected limb were both increased significantly during stimulation. The maximum muscle forces of both the tibia anterior and rectus femoris increased significantly during stimulation compared with before functional electrical stimulation was applied. [Conclusion] This study established a functional electrical stimulation strategy based on hemiplegic gait analysis and musculoskeletal modeling. The multichannel functional electrical stimulation system successfully corrected foot drop and altered circumduction hemiplegic gait pattern. PMID:26696734

  13. Reduced Radial Displacement of the Gastrocnemius Medialis Muscle After Electrically Elicited Fatigue.

    PubMed

    Macgregor, Lewis J; Ditroilo, Massimiliano; Smith, Iain J; Fairweather, Malcolm M; Hunter, Angus M

    2016-08-01

    Assessments of skeletal-muscle functional capacity often necessitate maximal contractile effort, which exacerbates muscle fatigue or injury. Tensiomyography (TMG) has been investigated as a means to assess muscle contractile function after fatigue; however, observations have not been contextualized by concurrent physiological measures. To measure peripheral-fatigue-induced alterations in mechanical and contractile properties of the plantar-flexor muscles through noninvasive TMG concurrently with maximal voluntary contraction (MVC) and passive muscle tension (PMT) to validate TMG as a gauge of peripheral fatigue. Pre- and posttest intervention with control. University laboratory. 21 healthy male volunteers. Subjects' plantar flexors were tested for TMG parameters, along with MVC and PMT, before and after either a 5-min rest period (control) or a 5-min electrical-stimulation intervention (fatigue). Temporal (contraction velocity) and spatial (radial displacement) contractile parameters of the gastrocnemius medialis were recorded through TMG. MVC was measured as an indicator of muscle fatigue, and PMT was measured to assess muscle stiffness. Radial displacement demonstrated a fatigue-associated reduction (3.3 ± 1.2 vs 4.0 ± 1.4 mm, P = .031), while contraction velocity remained unaltered. In addition, MVC significantly declined by 122.6 ± 104 N (P < .001) after stimulation (fatigue). PMT was significantly increased after fatigue (139.8 ± 54.3 vs 111.3 ± 44.6 N, P = .007). TMG successfully detected fatigue, evident from reduced MVC, by displaying impaired muscle displacement accompanied by elevated PMT. TMG could be useful in establishing skeletal-muscle fatigue status without exacerbating the functional decrement of the muscle.

  14. Modification of the kinetic parameters of aldolase on binding to the actin-containing filaments of skeletal muscle.

    PubMed Central

    Walsh, T P; Clarke, F M; Masters, C J

    1977-01-01

    The kinetic parameters of fructose bisphosphate aldolase (EC 4.1.2.13) were shown to be modified on binding of the enzyme to the actin-containing filaments of skeletal muscle. Although binding to F-actin or F-actin-tropomyosin filaments results in relative minor changes in kinetic properties, binding to F-actin-tropomyosin-troponin filaments produces major alterations in the kinetic parameters, and, in addition, renders them Ca2+-sensitive. These observations may be relevant to an understanding of the function of this enzyme within the muscle fibre. PMID:889571

  15. Physiological pump loading of isolated cardiac muscle.

    PubMed

    Paulus, W J; Claes, V A; Brutsaert, D L

    1976-05-01

    Cat papillary muscles were subjected to a continuously changing load, resulting from an analysis of the left ventricle as a muscle pump system. The papillary muscle was assumed to be part of a circumferential bundle of muscle fibers of a simplified ejecting ventricle. The load included the pressure--stress relationship of this ventricle and the peripheral vascular load with its inertial, resistive and capacitive components. When this loading function was imposed on a shortening muscle through an electronic feedback circuit, the time course of force development and the velocity versus force plots closely resembled data obtained in the intact heart. Analysis of mechanical work (delta 1 X f) and power (V X f) and their respective time course permitted distinction between changes of contractile performance due to (1) positive or negative inotropic interventions, (2) altered hypothetical ventricular dimensions and changed preload, and (3) the long-term load-dependent memory of cardiac muscle.

  16. The regulation of skeletal muscle fiber-type composition by betaine is associated with NFATc1/MyoD.

    PubMed

    Du, Jingjing; Shen, Linyuan; Zhang, Peiwen; Tan, Zhendong; Cheng, Xiao; Luo, Jia; Zhao, Xue; Yang, Qiong; Gu, Hao; Jiang, An'an; Ma, Jideng; Tang, Qianzi; Jin, Long; Shuai, Surong; Li, Mingzhou; Jiang, Yanzhi; Tang, Guoqing; Bai, Lin; Li, Xuewei; Wang, Jinyong; Zhang, Shunhua; Zhu, Li

    2018-06-06

    Increasing evidence indicates that muscular dysfunction or alterations in skeletal muscle fiber-type composition not only are involved in muscle metabolism and function but also can limit functional capacity. Therefore, understanding the mechanisms regulating key events during skeletal myogenesis is necessary. Betaine is a naturally occurring component of commonly eaten foods. Here, we showed that 10 mM betaine supplementation in vitro significantly repressed myoblast proliferation and enhanced myoblast differentiation. This effect can be mediated by regulation of miR-29b-3p. Further analysis showed that betaine supplementation in vitro regulated skeletal muscle fiber-type composition through the induction of NFATc1 and the negative regulation of MyoD expression. Furthermore, mice fed with 10 mM betaine in water for 133 days showed no impairment in overall health. Consistently, betaine supplementation increased muscle mass, promoted muscle formation, and modulated the ratio of fiber types in skeletal muscle in vivo. These findings shed light on the diverse biological functions of betaine and indicate that betaine supplementation may lead to new therapies for diseases such as muscular dystrophy or other diseases related to muscle dysfunction. Betaine supplementation inhibits proliferation and promotes differentiation of C2C12 myoblasts. Betaine supplementation regulates fast to slow muscle fiber-type conversion and is associated with NFATc1/MyoD. Betaine supplementation enhances skeletal myogenesis in vivo. Betaine supplementation does not impair health of mice.

  17. Gait deficiencies associated with peripheral artery disease are different than chronic obstructive pulmonary disease.

    PubMed

    McCamley, John D; Pisciotta, Eric J; Yentes, Jennifer M; Wurdeman, Shane R; Rennard, Stephen I; Pipinos, Iraklis I; Johanning, Jason M; Myers, Sara A

    2017-09-01

    Previous studies have indicated that patients with peripheral artery disease (PAD), display significant differences in their kinetic and kinematic gait characteristics when compared to healthy, aged-matched controls. The ability of patients with chronic obstructive pulmonary disease (COPD) to ambulate is also limited. These limitations are likely due to pathology-driven muscle morphology and physiology alterations establish in PAD and COP, respectively. Gait changes in PAD were compared to gait changes due to COPD to further understand how altered limb muscle due to disease can alter walking patterns. Both groups were independently compared to healthy controls. It was hypothesized that both patients with PAD and COPD would demonstrate similar differences in gait when compared to healthy controls. Patients with PAD (n=25), patients with COPD (n=16), and healthy older control subjects (n=25) performed five walking trials at self-selected speeds. Sagittal plane joint kinematic and kinetic group means were compared. Peak values for hip flexion angle, braking impulse, and propulsive impulse were significantly reduced in patients with symptomatic PAD compared to patients with COPD. After adjusting for walking velocity, significant reductions (p<0.05) in the peak values for hip flexion angle, dorsiflexor moment, ankle power generation, propulsion force, braking impulse, and propulsive impulse were found in patients with PAD compared to healthy controls. No significant differences were observed between patients with COPD and controls. The results of this study demonstrate that while gait patterns are impaired for patients with PAD, this is not apparent for patients with COPD (without PAD). PAD (without COPD) causes changes to the muscle function of the lower limbs that affects gait even when subjects walk from a fully rested state. Altered muscle function in patients with COPD does not have a similar effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Gentamicin treatment in exercised mdx mice: Identification of dystrophin-sensitive pathways and evaluation of efficacy in work-loaded dystrophic muscle.

    PubMed

    De Luca, Annamaria; Nico, Beatrice; Rolland, Jean-François; Cozzoli, Anna; Burdi, Rosa; Mangieri, Domenica; Giannuzzi, Viviana; Liantonio, Antonella; Cippone, Valentina; De Bellis, Michela; Nicchia, Grazia Paola; Camerino, Giulia Maria; Frigeri, Antonio; Svelto, Maria; Camerino, Diana Conte

    2008-11-01

    Aminoglycosides force read through of premature stop codon mutations and introduce new mutation-specific gene-corrective strategies in Duchenne muscular dystrophy. A chronic treatment with gentamicin (32 mg/kg/daily i.p., 8-12 weeks) was performed in exercised mdx mice with the dual aim to clarify the dependence on dystrophin of the functional, biochemical and histological alterations present in dystrophic muscle and to verify the long term efficiency of small molecule gene-corrective strategies in work-loaded dystrophic muscle. The treatment counteracted the exercise-induced impairment of in vivo forelimb strength after 6-8 weeks. We observed an increase in dystrophin expression level in all the fibers, although lower than that observed in normal fibers, and found a concomitant recovery of aquaporin-4 at sarcolemma. A significant reduction in centronucleated fibers, in the area of necrosis and in the percentage of nuclear factor-kB-positive nuclei was observed in gastrocnemious muscle of treated animals. Plasma creatine kinase was reduced by 70%. Ex vivo, gentamicin restored membrane ionic conductance in mdx diaphragm and limb muscle fibers. No effects were observed on the altered calcium homeostasis and sarcolemmal calcium permeability, detected by electrophysiological and microspectrofluorimetric approaches. Thus, the maintenance of a partial level of dystrophin is sufficient to reinforce sarcolemmal stability, reducing leakiness, inflammation and fiber damage, while correction of altered calcium homeostasis needs greater expression of dystrophin or direct interventions on the channels involved.

  19. Cardiac myofilaments: mechanics and regulation

    NASA Technical Reports Server (NTRS)

    de Tombe, Pieter P.; Bers, D. M. (Principal Investigator)

    2003-01-01

    The mechanical properties of the cardiac myofilament are an important determinant of pump function of the heart. This report is focused on the regulation of myofilament function in cardiac muscle. Calcium ions form the trigger that induces activation of the thin filament which, in turn, allows for cross-bridge formation, ATP hydrolysis, and force development. The structure and protein-protein interactions of the cardiac sarcomere that are responsible for these processes will be reviewed. The molecular mechanism that underlies myofilament activation is incompletely understood. Recent experimental approaches have been employed to unravel the mechanism and regulation of myofilament mechanics and energetics by activator calcium and sarcomere length, as well as contractile protein phosphorylation mediated by protein kinase A. Central to these studies is the question whether such factors impact on muscle function simply by altering thin filament activation state, or whether modulation of cross-bridge cycling also plays a part in the responses of muscle to these stimuli.

  20. [Structure and function of suburothelial myofibroblasts in the human urinary bladder under normal and pathological conditions].

    PubMed

    Neuhaus, J; Heinrich, M; Schlichting, N; Oberbach, A; Fitzl, G; Schwalenberg, T; Horn, L-C; Stolzenburg, J-U

    2007-09-01

    Myofibroblasts play a pivotal role in numerous pathological alterations. Clarification of the structure and function and of the cellular plasticity of this cell type in the bladder may lead to new insights into the pathogenesis of lower urinary tract disorders. Bladder biopsies from patients with bladder carcinoma and interstitial cystitis were used to analyse the morphology and receptor expression using confocal immunofluorescence and electron microscopy. Cytokine effects and coupling behavior were tested in cultured myofibroblasts and detrusor smooth muscle cells. Myofibroblasts are in close contact with the suburothelial capillary network. They express Cx43 and form functional syncytia. The expression of muscarinic and purinergic receptors is highly variable. Dye coupling experiments showed differences to detrusor myocytes. Upregulation of smooth muscle cell alpha-actin and/or transdifferentiation into smooth muscle cells may contribute to the etiology of urge incontinence. A multi-step model is presented as a working hypothesis.

  1. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy

    PubMed Central

    Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.

    2011-01-01

    SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257

  2. Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Haddad, F.

    2001-01-01

    The goal of this mini-review is to summarize findings concerning the role that different models of muscular activity and inactivity play in altering gene expression of the myosin heavy chain (MHC) family of motor proteins in mammalian cardiac and skeletal muscle. This was done in the context of examining parallel findings concerning the role that thyroid hormone (T(3), 3,5,3'-triiodothyronine) plays in MHC expression. Findings show that both cardiac and skeletal muscles of experimental animals are initially undifferentiated at birth and then undergo a marked level of growth and differentiation in attaining the adult MHC phenotype in a T(3)/activity level-dependent fashion. Cardiac MHC expression in small mammals is highly sensitive to thyroid deficiency, diabetes, energy deprivation, and hypertension; each of these interventions induces upregulation of the beta-MHC isoform, which functions to economize circulatory function in the face of altered energy demand. In skeletal muscle, hyperthyroidism, as well as interventions that unload or reduce the weight-bearing activity of the muscle, causes slow to fast MHC conversions. Fast to slow conversions, however, are seen under hypothyroidism or when the muscles either become chronically overloaded or subjected to intermittent loading as occurs during resistance training and endurance exercise. The regulation of MHC gene expression by T(3) or mechanical stimuli appears to be strongly regulated by transcriptional events, based on recent findings on transgenic models and animals transfected with promoter-reporter constructs. However, the mechanisms by which T(3) and mechanical stimuli exert their control on transcriptional processes appear to be different. Additional findings show that individual skeletal muscle fibers have the genetic machinery to express simultaneously all of the adult MHCs, e.g., slow type I and fast IIa, IIx, and IIb, in unique combinations under certain experimental conditions. This degree of heterogeneity among the individual fibers would ensure a large functional diversity in performing complex movement patterns. Future studies must now focus on 1) the signaling pathways and the underlying mechanisms governing the transcriptional/translational machinery that control this marked degree of plasticity and 2) the morphological organization and functional implications of the muscle fiber's capacity to express such a diversity of motor proteins.

  3. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans.

    PubMed

    Newsom, Sean A; Brozinick, Joseph T; Kiseljak-Vassiliades, Katja; Strauss, Allison N; Bacon, Samantha D; Kerege, Anna A; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C; Perreault, Leigh; Bergman, Bryan C

    2016-06-01

    Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P < 0.05), with total PC and PE positively relating to insulin sensitivity (both P < 0.05). Skeletal muscle PC:PE ratio was elevated in T2D compared with OB and ATH (P < 0.05), tended to be elevated in OB vs. ATH (P = 0.07), and was inversely related to insulin sensitivity among the entire cohort (r = -0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. Copyright © 2016 the American Physiological Society.

  4. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans

    PubMed Central

    Newsom, Sean A.; Brozinick, Joseph T.; Kiseljak-Vassiliades, Katja; Strauss, Allison N.; Bacon, Samantha D.; Kerege, Anna A.; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C.; Perreault, Leigh

    2016-01-01

    Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P < 0.05), with total PC and PE positively relating to insulin sensitivity (both P < 0.05). Skeletal muscle PC:PE ratio was elevated in T2D compared with OB and ATH (P < 0.05), tended to be elevated in OB vs. ATH (P = 0.07), and was inversely related to insulin sensitivity among the entire cohort (r = −0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. PMID:27032901

  5. Quadriceps exercise intolerance in patients with chronic obstructive pulmonary disease: the potential role of altered skeletal muscle mitochondrial respiration.

    PubMed

    Gifford, Jayson R; Trinity, Joel D; Layec, Gwenael; Garten, Ryan S; Park, Song-Young; Rossman, Matthew J; Larsen, Steen; Dela, Flemming; Richardson, Russell S

    2015-10-15

    This study sought to determine if qualitative alterations in skeletal muscle mitochondrial respiration, associated with decreased mitochondrial efficiency, contribute to exercise intolerance in patients with chronic obstructive pulmonary disease (COPD). Using permeabilized muscle fibers from the vastus lateralis of 13 patients with COPD and 12 healthy controls, complex I (CI) and complex II (CII)-driven State 3 mitochondrial respiration were measured separately (State 3:CI and State 3:CII) and in combination (State 3:CI+CII). State 2 respiration was also measured. Exercise tolerance was assessed by knee extensor exercise (KE) time to fatigue. Per milligram of muscle, State 3:CI+CII and State 3:CI were reduced in COPD (P < 0.05), while State 3:CII and State 2 were not different between groups. To determine if this altered pattern of respiration represented qualitative changes in mitochondrial function, respiration states were examined as percentages of peak respiration (State 3:CI+CII), which revealed altered contributions from State 3:CI (Con 83.7 ± 3.4, COPD 72.1 ± 2.4%Peak, P < 0.05) and State 3:CII (Con 64.9 ± 3.2, COPD 79.5 ± 3.0%Peak, P < 0.05) respiration, but not State 2 respiration in COPD. Importantly, a diminished contribution of CI-driven respiration relative to the metabolically less-efficient CII-driven respiration (CI/CII) was also observed in COPD (Con 1.28 ± 0.09, COPD 0.81 ± 0.05, P < 0.05), which was related to exercise tolerance of the patients (r = 0.64, P < 0.05). Overall, this study indicates that COPD is associated with qualitative alterations in skeletal muscle mitochondria that affect the contribution of CI and CII-driven respiration, which potentially contributes to the exercise intolerance associated with this disease.

  6. Changes in Dorsal Neck Muscle Function in Individuals with Chronic Whiplash-Associated Disorders: A Real-Time Ultrasound Case-Control Study.

    PubMed

    Peterson, Gunnel; Nilsson, David; Peterson, Simon; Dedering, Åsa; Trygg, Johan; Wallman, Thorne; Peolsson, Anneli

    2016-05-01

    Impaired neck muscle function leads to disability in individuals with chronic whiplash-associated disorder (WAD), but diagnostic tools are lacking. In this study, deformations and deformation rates were investigated in five dorsal neck muscles during 10 arm elevations by ultrasonography with speckle tracking analyses. Forty individuals with chronic WAD (28 women and 12 men, mean age = 37 y) and 40 healthy controls matched for age and sex were included. The WAD group had higher deformation rates in the multifidus muscle during the first (p < 0.04) and 10th (only women, p < 0.01) arm elevations compared with the control group. Linear relationships between the neck muscles for deformation rate (controls: R(2) = 0.24-0.82, WAD: R(2) = 0.05-0.74) and deformation of the deepest muscles (controls: R(2) = 0.61-0.32, WAD: R(2) = 0.15-0.01) were stronger for women in the control group versus women with WAD, indicating there is altered interplay between dorsal neck muscles in chronic WAD. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Alterations in the small intestinal wall and motor function after repeated cisplatin in rat.

    PubMed

    Uranga, J A; García-Martínez, J M; García-Jiménez, C; Vera, G; Martín-Fontelles, M I; Abalo, R

    2017-07-01

    Gastrointestinal adverse effects occurring during cancer chemotherapy are well known and feared; those persisting once treatment has finished are relatively unknown. We characterized the alterations occurring in the rat small intestine, after repeated treatment with cisplatin. Male Wistar rats received saline or cisplatin (2 mg kg -1  week -1 , for 5 weeks, ip). Gastric motor function was studied non-invasively throughout treatment (W1-W5) and 1 week after treatment finalization (W6). During W6, upper gastrointestinal motility was also invasively studied and small intestinal samples were collected for histopathological and molecular studies. Structural alterations in the small intestinal wall, mucosa, submucosa, muscle layers, and lymphocytic nodules were histologically studied. Periodic acid-Schiff staining and immunohistochemistry for Ki-67, chromogranin A, and neuronal-specific enolase were used to detect secretory, proliferating, endocrine and neural cells, respectively. The expression of different markers in the tunica muscularis was analyzed by RT/qPCR. Repeated cisplatin induced motility alterations during and after treatment. After treatment (W6), the small intestinal wall showed histopathological alterations in most parameters measured, including a reduction in the thickness of circular and longitudinal muscle layers. Expression of c-KIT (for interstitial cells of Cajal), nNOS (for inhibitory motor neurons), pChAT, and cChAT (for excitatory motor neurons) increased significantly (although both ChATs to a lesser extent). Repeated cisplatin induces relatively long-lasting gut dysmotility in rat associated with important histopathological and molecular alterations in the small intestinal wall. In cancer survivors, the possible chemotherapy-induced histopathological, molecular, and functional intestinal sequelae should be evaluated. © 2017 John Wiley & Sons Ltd.

  8. Diabetes-Induced Dysfunction of Mitochondria and Stem Cells in Skeletal Muscle and the Nervous System

    PubMed Central

    Fujimaki, Shin; Kuwabara, Tomoko

    2017-01-01

    Diabetes mellitus is one of the most common metabolic diseases spread all over the world, which results in hyperglycemia caused by the breakdown of insulin secretion or insulin action or both. Diabetes has been reported to disrupt the functions and dynamics of mitochondria, which play a fundamental role in regulating metabolic pathways and are crucial to maintain appropriate energy balance. Similar to mitochondria, the functions and the abilities of stem cells are attenuated under diabetic condition in several tissues. In recent years, several studies have suggested that the regulation of mitochondria functions and dynamics is critical for the precise differentiation of stem cells. Importantly, physical exercise is very useful for preventing the diabetic alteration by improving the functions of both mitochondria and stem cells. In the present review, we provide an overview of the diabetic alterations of mitochondria and stem cells and the preventive effects of physical exercise on diabetes, focused on skeletal muscle and the nervous system. We propose physical exercise as a countermeasure for the dysfunction of mitochondria and stem cells in several target tissues under diabetes complication and to improve the physiological function of patients with diabetes, resulting in their quality of life being maintained. PMID:29036909

  9. Diabetes-Induced Dysfunction of Mitochondria and Stem Cells in Skeletal Muscle and the Nervous System.

    PubMed

    Fujimaki, Shin; Kuwabara, Tomoko

    2017-10-14

    Diabetes mellitus is one of the most common metabolic diseases spread all over the world, which results in hyperglycemia caused by the breakdown of insulin secretion or insulin action or both. Diabetes has been reported to disrupt the functions and dynamics of mitochondria, which play a fundamental role in regulating metabolic pathways and are crucial to maintain appropriate energy balance. Similar to mitochondria, the functions and the abilities of stem cells are attenuated under diabetic condition in several tissues. In recent years, several studies have suggested that the regulation of mitochondria functions and dynamics is critical for the precise differentiation of stem cells. Importantly, physical exercise is very useful for preventing the diabetic alteration by improving the functions of both mitochondria and stem cells. In the present review, we provide an overview of the diabetic alterations of mitochondria and stem cells and the preventive effects of physical exercise on diabetes, focused on skeletal muscle and the nervous system. We propose physical exercise as a countermeasure for the dysfunction of mitochondria and stem cells in several target tissues under diabetes complication and to improve the physiological function of patients with diabetes, resulting in their quality of life being maintained.

  10. The alteration of extraocular muscle arc after hang-back recession in animal experiments.

    PubMed

    Lee, J; Kim, S

    1996-01-01

    We did an animal experimental study to investigate the extraocular muscle arc after hang-back recession on horizontal rectus muscles of five dogs. Two tiny sutures using 8-0 nylon were made on the sclera 8-10 mm posterior to the muscle insertion along the upper and lower margins of the right lateral rectus and left medial rectus to compare the altered muscle arc with the original muscle arc. Hang-back recession was performed on the horizontal rectus muscles and three months later we investigated the change in the muscle arc. Four of the 10 muscles operated showed no change, four were displaced upward (mean +/- SD; 1.00 +/- 0.16 mm) and two were displaced downward (1.00 +/- 0.00 mm). The average displacement was 0.60 +/- 0.52 mm. The alteration of muscle arc after hang-back recession thus seems insignificant.

  11. Dysfunction of NaV1.4, a skeletal muscle voltage-gated sodium channel, in sudden infant death syndrome: a case-control study.

    PubMed

    Männikkö, Roope; Wong, Leonie; Tester, David J; Thor, Michael G; Sud, Richa; Kullmann, Dimitri M; Sweeney, Mary G; Leu, Costin; Sisodiya, Sanjay M; FitzPatrick, David R; Evans, Margaret J; Jeffrey, Iona J M; Tfelt-Hansen, Jacob; Cohen, Marta C; Fleming, Peter J; Jaye, Amie; Simpson, Michael A; Ackerman, Michael J; Hanna, Michael G; Behr, Elijah R; Matthews, Emma

    2018-04-14

    Sudden infant death syndrome (SIDS) is the leading cause of post-neonatal infant death in high-income countries. Central respiratory system dysfunction seems to contribute to these deaths. Excitation that drives contraction of skeletal respiratory muscles is controlled by the sodium channel NaV1.4, which is encoded by the gene SCN4A. Variants in NaV1.4 that directly alter skeletal muscle excitability can cause myotonia, periodic paralysis, congenital myopathy, and myasthenic syndrome. SCN4A variants have also been found in infants with life-threatening apnoea and laryngospasm. We therefore hypothesised that rare, functionally disruptive SCN4A variants might be over-represented in infants who died from SIDS. We did a case-control study, including two consecutive cohorts that included 278 SIDS cases of European ancestry and 729 ethnically matched controls without a history of cardiovascular, respiratory, or neurological disease. We compared the frequency of rare variants in SCN4A between groups (minor allele frequency <0·00005 in the Exome Aggregation Consortium). We assessed biophysical characterisation of the variant channels using a heterologous expression system. Four (1·4%) of the 278 infants in the SIDS cohort had a rare functionally disruptive SCN4A variant compared with none (0%) of 729 ethnically matched controls (p=0·0057). Rare SCN4A variants that directly alter NaV1.4 function occur in infants who had died from SIDS. These variants are predicted to significantly alter muscle membrane excitability and compromise respiratory and laryngeal function. These findings indicate that dysfunction of muscle sodium channels is a potentially modifiable risk factor in a subset of infant sudden deaths. UK Medical Research Council, the Wellcome Trust, National Institute for Health Research, the British Heart Foundation, Biotronik, Cardiac Risk in the Young, Higher Education Funding Council for England, Dravet Syndrome UK, the Epilepsy Society, the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health, and the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  12. Characterization and utilization of the flexor digitorum brevis for assessing skeletal muscle function.

    PubMed

    Tarpey, Michael D; Amorese, Adam J; Balestrieri, Nicholas P; Ryan, Terence E; Schmidt, Cameron A; McClung, Joseph M; Spangenburg, Espen E

    2018-04-17

    The ability to assess skeletal muscle function and delineate regulatory mechanisms is essential to uncovering therapeutic approaches that preserve functional independence in a disease state. Skeletal muscle provides distinct experimental challenges due to inherent differences across muscle groups, including fiber type and size that may limit experimental approaches. The flexor digitorum brevis (FDB) possesses numerous properties that offer the investigator a high degree of experimental flexibility to address specific hypotheses. To date, surprisingly few studies have taken advantage of the FDB to investigate mechanisms regulating skeletal muscle function. The purpose of this study was to characterize and experimentally demonstrate the value of the FDB muscle for scientific investigations. First, we characterized the FDB phenotype and provide reference comparisons to skeletal muscles commonly used in the field. We developed approaches allowing for experimental assessment of force production, in vitro and in vivo microscopy, and mitochondrial respiration to demonstrate the versatility of the FDB. As proof-of principle, we performed experiments to alter force production or mitochondrial respiration to validate the flexibility the FDB affords the investigator. The FDB is made up of small predominantly type IIa and IIx fibers that collectively produce less peak isometric force than the extensor digitorum longus (EDL) or soleus muscles, but demonstrates a greater fatigue resistance than the EDL. Unlike the other muscles, inherent properties of the FDB muscle make it amenable to multiple in vitro- and in vivo-based microscopy methods. Due to its anatomical location, the FDB can be used in cardiotoxin-induced muscle injury protocols and is amenable to electroporation of cDNA with a high degree of efficiency allowing for an effective means of genetic manipulation. Using a novel approach, we also demonstrate methods for assessing mitochondrial respiration in the FDB, which are comparable to the commonly used gastrocnemius muscle. As proof of principle, short-term overexpression of Pgc1α in the FDB increased mitochondrial respiration rates. The results highlight the experimental flexibility afforded the investigator by using the FDB muscle to assess mechanisms that regulate skeletal muscle function.

  13. Shoes alter the spring-like function of the human foot during running

    PubMed Central

    Kelly, Luke A.; Lichtwark, Glen A.; Farris, Dominic J.; Cresswell, Andrew

    2016-01-01

    The capacity to store and return energy in legs and feet that behave like springs is crucial to human running economy. Recent comparisons of shod and barefoot running have led to suggestions that modern running shoes may actually impede leg and foot-spring function by reducing the contributions from the leg and foot musculature. Here we examined the effect of running shoes on foot longitudinal arch (LA) motion and activation of the intrinsic foot muscles. Participants ran on a force-instrumented treadmill with and without running shoes. We recorded foot kinematics and muscle activation of the intrinsic foot muscles using intramuscular electromyography. In contrast to previous assertions, we observed an increase in both the peak (flexor digitorum brevis +60%) and total stance muscle activation (flexor digitorum brevis +70% and abductor hallucis +53%) of the intrinsic foot muscles when running with shoes. Increased intrinsic muscle activation corresponded with a reduction in LA compression (−25%). We confirm that running shoes do indeed influence the mechanical function of the foot. However, our findings suggest that these mechanical adjustments are likely to have occurred as a result of increased neuromuscular output, rather than impaired control as previously speculated. We propose a theoretical model for foot–shoe interaction to explain these novel findings. PMID:27307512

  14. Shoes alter the spring-like function of the human foot during running.

    PubMed

    Kelly, Luke A; Lichtwark, Glen A; Farris, Dominic J; Cresswell, Andrew

    2016-06-01

    The capacity to store and return energy in legs and feet that behave like springs is crucial to human running economy. Recent comparisons of shod and barefoot running have led to suggestions that modern running shoes may actually impede leg and foot-spring function by reducing the contributions from the leg and foot musculature. Here we examined the effect of running shoes on foot longitudinal arch (LA) motion and activation of the intrinsic foot muscles. Participants ran on a force-instrumented treadmill with and without running shoes. We recorded foot kinematics and muscle activation of the intrinsic foot muscles using intramuscular electromyography. In contrast to previous assertions, we observed an increase in both the peak (flexor digitorum brevis +60%) and total stance muscle activation (flexor digitorum brevis +70% and abductor hallucis +53%) of the intrinsic foot muscles when running with shoes. Increased intrinsic muscle activation corresponded with a reduction in LA compression (-25%). We confirm that running shoes do indeed influence the mechanical function of the foot. However, our findings suggest that these mechanical adjustments are likely to have occurred as a result of increased neuromuscular output, rather than impaired control as previously speculated. We propose a theoretical model for foot-shoe interaction to explain these novel findings. © 2016 The Author(s).

  15. Targeted Deletion of the Muscular Dystrophy Gene myotilin Does Not Perturb Muscle Structure or Function in Mice▿

    PubMed Central

    Moza, Monica; Mologni, Luca; Trokovic, Ras; Faulkner, Georgine; Partanen, Juha; Carpén, Olli

    2007-01-01

    Myotilin, palladin, and myopalladin form a novel small subfamily of cytoskeletal proteins that contain immunoglobulin-like domains. Myotilin is a thin filament-associated protein localized at the Z-disk of skeletal and cardiac muscle cells. The direct binding to F-actin, efficient cross-linking of actin filaments, and prevention of induced disassembly of filaments are key roles of myotilin that are thought to be involved in structural maintenance and function of the sarcomere. Missense mutations in the myotilin-encoding gene cause dominant limb girdle muscular dystrophy type 1A and spheroid body myopathy and are the molecular defect that can cause myofibrillar myopathy. Here we describe the generation and analysis of mice that lack myotilin, myo−/− mice. Surprisingly, myo−/− mice maintain normal muscle sarcomeric and sarcolemmal integrity. Also, loss of myotilin does not cause alterations in the heart or other organs of newborn or adult myo−/− mice. The mice develop normally and have a normal life span, and their muscle capacity does not significantly differ from wild-type mice even after prolonged physical stress. The results suggest that either myotilin does not participate in muscle development and basal function maintenance or other proteins serve as structural and functional compensatory molecules when myotilin is absent. PMID:17074808

  16. The effects of age and muscle contraction on AMPK activity and heterotrimer composition.

    PubMed

    Hardman, Shalene E; Hall, Derrick E; Cabrera, Alyssa J; Hancock, Chad R; Thomson, David M

    2014-07-01

    Sarcopenia is characterized by increased skeletal muscle atrophy due in part to alterations in muscle metabolism. AMP-activated protein kinase (AMPK) is a master regulator of skeletal muscle metabolic pathways which regulate many cellular processes that are disrupted in old-age. Functional AMPK is a heterotrimer composed of α, β and γ subunits, and each subunit can be represented in the heterotrimer by one of two (α1/α2, β1/β2) or three (γ1/γ2/γ3) isoforms. Altered isoform composition affects AMPK localization and function. Previous work has shown that overall AMPK activation with endurance-type exercise is blunted in old vs. young skeletal muscle. However, details regarding the activation of the specific isoforms of AMPK, as well as the heterotrimeric composition of AMPK in old skeletal muscle, are unknown. Our purpose here, therefore, was to determine the effect of old-age on 1) the activation of the α1 and α2 catalytic subunits of AMPK in skeletal muscle by a continuous contraction bout, and 2) the heterotrimeric composition of skeletal muscle AMPK. We studied gastrocnemius (GAST) and tibialis anterior (TA) muscles from young adult (YA; 8months old) and old (O; 30months old) male Fischer344×Brown Norway F1 hybrid rats after an in situ bout of endurance-type contractions produced via electrical stimulation of the sciatic nerve (STIM). AMPKα phosphorylation and AMPKα1 and α2 activities were unaffected by age at rest. However, AMPKα phosphorylation and AMPKα2 protein content and activity were lower in O vs. YA after STIM. Conversely, AMPKα1 content was greater in O vs. YA muscle, and α1 activity increased with STIM in O but not YA muscles. AMPKγ3 overall concentration and its association with AMPKα1 and α2 were lower in O vs. YA GAST. We conclude that activation of AMPKα1 is enhanced, while activation of α2 is suppressed immediately after repeated skeletal muscle contractions in O vs. YA skeletal muscle. These changes are associated with changes in the AMPK heterotrimer composition. Given the known roles of AMPK α1, α2 and γ3, this may contribute to sarcopenia and associated muscle metabolic dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Motor nerve transplantation.

    PubMed

    Gray, W P; Keohane, C; Kirwan, W O

    1997-10-01

    The motor nerve transplantation (MNT) technique is used to transfer an intact nerve into a denervated muscle by harvesting a neurovascular pedicle of muscle containing motor endplates from the motor endplate zone of a donor muscle and implanting it into a denervated muscle. Thirty-six adult New Zealand White rabbits underwent reinnervation of the left long peroneal (LP) muscle (fast twitch) with a motor nerve graft from the soleus muscle (slow twitch). The right LP muscle served as a control. Reinnervation was assessed using microstimulatory single-fiber electromyography (SFEMG), alterations in muscle fiber typing and grouping, and isometric response curves. Neurofilament antibody was used for axon staining. The neurofilament studies provided direct evidence of nerve growth from the motor nerve graft into the adjacent denervated muscle. Median motor endplate jitter was 13 microsec preoperatively, and 26 microsec at 2 months, 29.5 microsec at 4 months, and 14 microsec at 6 months postoperatively (p < 0.001). Isometric tetanic tension studies showed a progressive functional recovery in the reinnervated muscle over 6 months. There was no histological evidence of aberrant reinnervation from any source outside the nerve pedicle. Isometric twitch responses and adenosine triphosphatase studies confirmed the conversion of the reinnervated LP muscle to a slow-type muscle. Acetylcholinesterase studies confirmed the presence of functioning motor endplates beneath the insertion of the motor nerve graft. It is concluded that the MNT technique achieves motor reinnervation by growth of new nerve fibers across the pedicle graft into the recipient muscle.

  18. Human spinal cord injury: motor unit properties and behaviour.

    PubMed

    Thomas, C K; Bakels, R; Klein, C S; Zijdewind, I

    2014-01-01

    Spinal cord injury (SCI) results in widespread variation in muscle function. Review of motor unit data shows that changes in the amount and balance of excitatory and inhibitory inputs after SCI alter management of motoneurons. Not only are units recruited up to higher than usual relative forces when SCI leaves few units under voluntary control, the force contribution from recruitment increases due to elevation of twitch/tetanic force ratios. Force gradation and precision are also coarser with reduced unit numbers. Maximal unit firing rates are low in hand muscles, limiting voluntary strength, but are low, normal or high in limb muscles. Unit firing rates during spasms can exceed voluntary rates, emphasizing that deficits in descending drive limit force production. SCI also changes muscle properties. Motor unit weakness and fatigability seem universal across muscles and species, increasing the muscle weakness that arises from paralysis of units, motoneuron death and sensory impairment. Motor axon conduction velocity decreases after human SCI. Muscle contractile speed is also reduced, which lowers the stimulation frequencies needed to grade force when paralysed muscles are activated with patterned electrical stimulation. This slowing does not necessarily occur in hind limb muscles after cord transection in cats and rats. The nature, duration and level of SCI underlie some of these species differences, as do variations in muscle function, daily usage, tract control and fibre-type composition. Exploring this diversity is important to promote recovery of the hand, bowel, bladder and locomotor function most wanted by people with SCI. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  19. The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts

    PubMed Central

    Lindholm, Maléne E; Giacomello, Stefania; Werne Solnestam, Beata; Kjellqvist, Sanela

    2016-01-01

    Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity. PMID:27657503

  20. Endoplasmic Reticulum Stress, Calcium Dysregulation and Altered Protein Translation: Intersection of Processes That Contribute to Cancer Cachexia Induced Skeletal Muscle Wasting.

    PubMed

    Isaac, Stephanie T; Tan, Timothy C; Polly, Patsie

    2016-01-01

    Cancer cachexia is a debilitating paraneoplastic wasting syndrome characterized by skeletal muscle depletion and unintentional weight loss. It affects up to 50-80% of patients with cancer and directly accounts for one-quarter of cancer-related deaths due to cardio-respiratory failure. Muscle weakness, one of the hallmarks of this syndrome, has been postulated to be due to a combination of muscle breakdown, dysfunction and decrease in the ability to repair, with effective treatment strategies presently limited. Excessive inflammatory cytokine levels due to the host-tumor interaction, such as Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α, are hypothesised to drive this pathological process but the specific mechanisms by which these cytokines produce skeletal muscle dysfunction in cancer cachexia remain undefined. Endoplasmic Reticulum (ER) stress and the associated disruptions in calcium signaling have been implicated in cytokine-mediated disruptions in skeletal muscle and function. Disrupted ER stress-related processes such as the Unfolded Protein Response (UPR), calcium homeostasis and altered muscle protein synthesis have been reported in clinical and experimental cachexia and other inflammation-driven muscle diseases such as myositis, potentially suggesting a link between increased IL-6 and TNF-α and ER stress in skeletal muscle cells. As the concept of upregulated ER stress in skeletal muscle cells due to elevated cytokines is novel and potentially very relevant to our understanding of cancer cachexia, this review aims to examine the potential relationship between inflammatory cytokine mediated muscle breakdown and ER stress, in the context of cancer cachexia, and to discuss the molecular signaling pathways underpinning this pathology.

  1. Pulsed low-level infrared laser alters mRNA levels from muscle repair genes dependent on power output in Wistar rats

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Trajano, E. T. L.; Thomé, A. M. C.; Sergio, L. P. S.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2017-10-01

    Satellite cells are present in skeletal muscle functioning in the repair and regeneration of muscle injury. Activation of these cells depends on the expression of myogenic factor 5 (Myf5), myogenic determination factor 1(MyoD), myogenic regulatory factor 4 (MRF4), myogenin (MyoG), paired box transcription factors 3 (Pax3), and 7 (Pax7). Low-level laser irradiation accelerates the repair of muscle injuries. However, data from the expression of myogenic factors have been controversial. Furthermore, the effects of different laser beam powers on the repair of muscle injuries have been not evaluated. The aim of this study was to evaluate the effects of low-level infrared laser at different powers and in pulsed emission mode on the expression of myogenic regulatory factors and on Pax3 and Pax7 in injured skeletal muscle from Wistar rats. Animals that underwent cryoinjury were divided into three groups: injury, injury laser 25 Mw, and injury laser 75 mW. Low-level infrared laser irradiation (904 nm, 3 J cm-2, 5 kHz) was carried out at 25 and 75 mW. After euthanasia, skeletal muscle samples were withdrawn and the total RNA was extracted for the evaluation of mRNA levels from the MyoD, MyoG, MRF4, Myf5, Pax3, and Pax7 gene. Pax 7 mRNA levels did not alter, but Pax3 mRNA levels increased in the injured and laser-irradiated group at 25 mW. MyoD, MyoG, and MYf5 mRNA levels increased in the injured and laser-irradiated animals at both powers, and MRF4 mRNA levels decreased in the injured and laser-irradiated group at 75 mW. In conclusion, exposure to pulsed low-level infrared laser, by power-dependent effect, could accelerate the muscle repair process altering mRNA levels from paired box transcription factors and myogenic regulatory factors.

  2. Changes in photoperiod alter Glut4 expression in skeletal muscle of C57BL/6J mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tashiro, Ayako; Shibata, Satomi; Takai, Yusuke

    Seasonal changes in photoperiod influence body weight and metabolism in mice. Here, we examined the effect of changes in photoperiod on the expression of glucose transporter genes in the skeletal muscle and adipose tissue of C57BL/6J mice. Glut4 expression was lower in the gastrocnemius muscle of mice exposed to a short-duration day (SD) than those to a long-duration day (LD), with accompanying changes in GLUT4 protein levels. Although Glut4 expression in the mouse soleus muscle was higher under SD than under LD, GLUT4 protein levels remained unchanged. To confirm the functional significance of photoperiod-induced changes in Glut4 expression, we checkedmore » for variations in insulin sensitivity. Blood glucose levels after insulin injection remained high under SD, suggesting that the mice exposed to SD showed lower sensitivity to insulin than those exposed to LD. We also attempted to clarify the relationship between Glut4 expression and physical activity in the mice following changes in photoperiod. Locomotor activity, as detected via infrared beam sensor, was lower under SD than under LD. However, when we facilitated voluntary activity by using running wheels, the rotation of wheels was similar for both groups of mice. Although physical activity levels were enhanced due to running wheels, Glut4 expression in the gastrocnemius muscle remained unchanged. Thus, variations in photoperiod altered Glut4 expression in the mouse skeletal muscle, with subsequent changes in GLUT4 protein levels and insulin sensitivity; these effects might be independent of physical activity. - Highlights: • Glut4 expression in the gastrocnemius muscle was lowered under short photoperiod. • Insulin sensitivity was lowered under short photoperiod. • Access to running wheels did not alter Glut4 expression in the gastrocnemius muscle. • Photoperiodic changes in Glut4 expression may be independent of physical activity.« less

  3. Restricting calcium currents is required for correct fiber type specification in skeletal muscle

    PubMed Central

    Sultana, Nasreen; Dienes, Beatrix; Benedetti, Ariane; Tuluc, Petronel; Szentesi, Peter; Sztretye, Monika; Rainer, Johannes; Hess, Michael W.; Schwarzer, Christoph; Obermair, Gerald J.; Csernoch, Laszlo

    2016-01-01

    ABSTRACT Skeletal muscle excitation-contraction (EC) coupling is independent of calcium influx. In fact, alternative splicing of the voltage-gated calcium channel CaV1.1 actively suppresses calcium currents in mature muscle. Whether this is necessary for normal development and function of muscle is not known. However, splicing defects that cause aberrant expression of the calcium-conducting developmental CaV1.1e splice variant correlate with muscle weakness in myotonic dystrophy. Here, we deleted CaV1.1 (Cacna1s) exon 29 in mice. These mice displayed normal overall motor performance, although grip force and voluntary running were reduced. Continued expression of the developmental CaV1.1e splice variant in adult mice caused increased calcium influx during EC coupling, altered calcium homeostasis, and spontaneous calcium sparklets in isolated muscle fibers. Contractile force was reduced and endurance enhanced. Key regulators of fiber type specification were dysregulated and the fiber type composition was shifted toward slower fibers. However, oxidative enzyme activity and mitochondrial content declined. These findings indicate that limiting calcium influx during skeletal muscle EC coupling is important for the secondary function of the calcium signal in the activity-dependent regulation of fiber type composition and to prevent muscle disease. PMID:26965373

  4. Local Muscle Fatigue and 3D Kinematics of the Cervical Spine in Healthy Subjects.

    PubMed

    Niederer, Daniel; Vogt, Lutz; Pippig, Torsten; Wall, Rudolf; Banzer, Winfried

    2016-01-01

    The authors aimed to further explore the effects of local muscle fatigue on cervical 3D kinematics and the interrelationship between these kinematic characteristics and local muscle endurance capacity in the unimpaired cervical spine. Twenty healthy subjects (38 ± 10 years; 5 women) performed 2 × 10 maximal cervical flexion-extension movements. Isometric muscle endurance tests (prone/supine lying) were applied between sets to induce local muscle fatigue quantified by Borg scale rates of perceived exertion (RPE) and slope in mean power frequency (MPF; surface electromyography; m. sternocleidomastoideus, m. splenius capitis). Cervical motion characteristics (maximal range of motion [ROM], coefficient of variation of the 10 repetitive movements, mean angular velocity, conjunct movements in transversal and frontal plane) were calculated from raw 3D ultrasonic movement data. Average isometric strength testing duration for flexion and extension correlated to the cervical ROM (r = .49/r = .48; p < .05). However, Student's t test demonstrated no significant alterations in any kinematic parameter following local muscle fatigue (p > .05). Although subjects' cervical muscle endurance capacity and motor output seems to be conjugated, no impact of local cervical muscle fatigue on motor function was shown. These findings underline the importance of complementary measures to address muscular performance and kinematic characteristics in outcome assessment and functional rehabilitation of the cervical spine.

  5. Aging Gut Microbiota at the Cross-Road between Nutrition, Physical Frailty, and Sarcopenia: Is There a Gut–Muscle Axis?

    PubMed Central

    Ticinesi, Andrea; Lauretani, Fulvio; Milani, Christian; Tana, Claudio; Maggio, Marcello; Ventura, Marco; Meschi, Tiziana

    2017-01-01

    Inadequate nutrition and physical inactivity are the mainstays of primary sarcopenia–physiopathology in older individuals. Gut microbiota composition is strongly dependent on both of these elements, and conversely, can also influence the host physiology by modulating systemic inflammation, anabolism, insulin sensitivity, and energy production. The bacterial metabolism of nutrients theoretically influences skeletal muscle cell functionality through producing mediators that drive all of these systemic effects. In this study, we review the scientific literature supporting the concept of the involvement of gut microbiota in primary sarcopenia physiopathology. First, we examine studies associating fecal microbiota alterations with physical frailty, i.e., the loss of muscle performance and normal muscle mass. Then, we consider studies exploring the effects of exercise on gut microbiota composition. Finally, we examine studies demonstrating the possible effects of mediators produced by gut microbiota on skeletal muscle, and intervention studies considering the effects of prebiotic or probiotic administration on muscle function. Even if there is no evidence of a distinct gut microbiota composition in older sarcopenic patients, we conclude that the literature supports the possible presence of a “gut–muscle axis”, whereby gut microbiota may act as the mediator of the effects of nutrition on muscle cells. PMID:29189738

  6. Prophylactic knee bracing alters lower-limb muscle forces during a double-leg drop landing.

    PubMed

    Ewing, Katie A; Fernandez, Justin W; Begg, Rezaul K; Galea, Mary P; Lee, Peter V S

    2016-10-03

    Anterior cruciate ligament (ACL) injury can be a painful, debilitating and costly consequence of participating in sporting activities. Prophylactic knee bracing aims to reduce the number and severity of ACL injury, which commonly occurs during landing maneuvers and is more prevalent in female athletes, but a consensus on the effectiveness of prophylactic knee braces has not been established. The lower-limb muscles are believed to play an important role in stabilizing the knee joint. The purpose of this study was to investigate the changes in lower-limb muscle function with prophylactic knee bracing in male and female athletes during landing. Fifteen recreational athletes performed double-leg drop landing tasks from 0.30m and 0.60m with and without a prophylactic knee brace. Motion analysis data were used to create subject-specific musculoskeletal models in OpenSim. Static optimization was performed to calculate the lower-limb muscle forces. A linear mixed model determined that the hamstrings and vasti muscles produced significantly greater flexion and extension torques, respectively, and greater peak muscle forces with bracing. No differences in the timings of peak muscle forces were observed. These findings suggest that prophylactic knee bracing may help to provide stability to the knee joint by increasing the active stiffness of the hamstrings and vasti muscles later in the landing phase rather than by altering the timing of muscle forces. Further studies are necessary to quantify whether prophylactic knee bracing can reduce the load placed on the ACL during intense dynamic movements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Differential alterations in gene expression profiles contribute to time-dependent effects of nandrolone to prevent denervation atrophy

    PubMed Central

    2010-01-01

    Background Anabolic steroids, such as nandrolone, slow muscle atrophy, but the mechanisms responsible for this effect are largely unknown. Their effects on muscle size and gene expression depend upon time, and the cause of muscle atrophy. Administration of nandrolone for 7 days beginning either concomitantly with sciatic nerve transection (7 days) or 29 days later (35 days) attenuated denervation atrophy at 35 but not 7 days. We reasoned that this model could be used to identify genes that are regulated by nandrolone and slow denervation atrophy, as well as genes that might explain the time-dependence of nandrolone effects on such atrophy. Affymetrix microarrays were used to profile gene expression changes due to nandrolone at 7 and 35 days and to identify major gene expression changes in denervated muscle between 7 and 35 days. Results Nandrolone selectively altered expression of 124 genes at 7 days and 122 genes at 35 days, with only 20 genes being regulated at both time points. Marked differences in biological function of genes regulated by nandrolone at 7 and 35 days were observed. At 35, but not 7 days, nandrolone reduced mRNA and protein levels for FOXO1, the mTOR inhibitor REDD2, and the calcineurin inhibitor RCAN2 and increased those for ApoD. At 35 days, correlations between mRNA levels and the size of denervated muscle were negative for RCAN2, and positive for ApoD. Nandrolone also regulated genes for Wnt signaling molecules. Comparison of gene expression at 7 and 35 days after denervation revealed marked alterations in the expression of 9 transcriptional coregulators, including Ankrd1 and 2, and many transcription factors and kinases. Conclusions Genes regulated in denervated muscle after 7 days administration of nandrolone are almost entirely different at 7 versus 35 days. Alterations in levels of FOXO1, and of genes involved in signaling through calcineurin, mTOR and Wnt may be linked to the favorable action of nandrolone on denervated muscle. Marked changes in the expression of genes regulating transcription and intracellular signaling may contribute to the time-dependent effects of nandrolone on gene expression. PMID:20969782

  8. Differential alterations in gene expression profiles contribute to time-dependent effects of nandrolone to prevent denervation atrophy.

    PubMed

    Qin, Weiping; Pan, Jiangping; Bauman, William A; Cardozo, Christopher P

    2010-10-22

    Anabolic steroids, such as nandrolone, slow muscle atrophy, but the mechanisms responsible for this effect are largely unknown. Their effects on muscle size and gene expression depend upon time, and the cause of muscle atrophy. Administration of nandrolone for 7 days beginning either concomitantly with sciatic nerve transection (7 days) or 29 days later (35 days) attenuated denervation atrophy at 35 but not 7 days. We reasoned that this model could be used to identify genes that are regulated by nandrolone and slow denervation atrophy, as well as genes that might explain the time-dependence of nandrolone effects on such atrophy. Affymetrix microarrays were used to profile gene expression changes due to nandrolone at 7 and 35 days and to identify major gene expression changes in denervated muscle between 7 and 35 days. Nandrolone selectively altered expression of 124 genes at 7 days and 122 genes at 35 days, with only 20 genes being regulated at both time points. Marked differences in biological function of genes regulated by nandrolone at 7 and 35 days were observed. At 35, but not 7 days, nandrolone reduced mRNA and protein levels for FOXO1, the mTOR inhibitor REDD2, and the calcineurin inhibitor RCAN2 and increased those for ApoD. At 35 days, correlations between mRNA levels and the size of denervated muscle were negative for RCAN2, and positive for ApoD. Nandrolone also regulated genes for Wnt signaling molecules. Comparison of gene expression at 7 and 35 days after denervation revealed marked alterations in the expression of 9 transcriptional coregulators, including Ankrd1 and 2, and many transcription factors and kinases. Genes regulated in denervated muscle after 7 days administration of nandrolone are almost entirely different at 7 versus 35 days. Alterations in levels of FOXO1, and of genes involved in signaling through calcineurin, mTOR and Wnt may be linked to the favorable action of nandrolone on denervated muscle. Marked changes in the expression of genes regulating transcription and intracellular signaling may contribute to the time-dependent effects of nandrolone on gene expression.

  9. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle.

    PubMed

    Lee, Yang; Fluckey, James D; Chakraborty, Sanjukta; Muthuchamy, Mariappan

    2017-07-01

    Insulin resistance is a well-known risk factor for obesity, metabolic syndrome (MetSyn) and associated cardiovascular diseases, but its mechanisms are undefined in the lymphatics. Mesenteric lymphatic vessels from MetSyn or LPS-injected rats exhibited impaired intrinsic contractile activity and associated inflammatory changes. Hence, we hypothesized that insulin resistance in lymphatic muscle cells (LMCs) affects cell bioenergetics and signaling pathways that consequently alter contractility. LMCs were treated with different concentrations of insulin or glucose or both at various time points to determine insulin resistance. Onset of insulin resistance significantly impaired glucose uptake, mitochondrial function, oxygen consumption rates, glycolysis, lactic acid, and ATP production in LMCs. Hyperglycemia and hyperinsulinemia also impaired the PI3K/Akt while enhancing the ERK/p38MAPK/JNK pathways in LMCs. Increased NF-κB nuclear translocation and macrophage chemoattractant protein-1 and VCAM-1 levels in insulin-resistant LMCs indicated activation of inflammatory mechanisms. In addition, increased phosphorylation of myosin light chain-20, a key regulator of lymphatic muscle contraction, was observed in insulin-resistant LMCs. Therefore, our data elucidate the mechanisms of insulin resistance in LMCs and provide the first evidence that hyperglycemia and hyperinsulinemia promote insulin resistance and impair lymphatic contractile status by reducing glucose uptake, altering cellular metabolic pathways, and activating inflammatory signaling cascades.-Lee, Y., Fluckey, J. D., Chakraborty, S., Muthuchamy, M. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle. © FASEB.

  10. The molecular signature of muscle stem cells is driven by nutrient availability and innate cell metabolism.

    PubMed

    Ryall, James G; Lynch, Gordon S

    2018-07-01

    To discuss how innate muscle stem-cell metabolism and nutrient availability can provide temporal regulation of chromatin accessibility and transcription. Fluorescence-activated cell sorting coupled with whole transcriptome sequencing revealed for the first time that quiescent and proliferating skeletal muscle stem cells exhibit a process of metabolic reprogramming, from fatty-acid oxidation during quiescence to glycolysis during proliferation. Using a combination of immunofluorescence and chromatin immunoprecipitation sequencing, this shift in metabolism has been linked to altered availability of key metabolites essential for histone (de)acetylation and (de)methylation, including acetyl-CoA, s-adenosylmethionine and α-ketoglutarate. Importantly, these changes in metabolite availability have been linked to muscle stem-cell function. Together, these results provide greater insight into how muscle stem cells interact with their local environment, with important implications for metabolic diseases, skeletal muscle regeneration and cell-transplantation therapies.

  11. Myoneural necrosis following high-frequency electrical stimulation of the cast-immobilized rabbit hindlimb

    NASA Technical Reports Server (NTRS)

    Friden, J.; Lieber, R. L.; Myers, R. R.; Powell, H. C.; Hargens, A. R.

    1989-01-01

    The morphological and physiological effects of 4 weeks of high-frequency electrical stimulation (1 h/day, 5 days/week) on cast-immobilized rabbit hindlimbs were investigated in the tibialis anterior muscle and peroneal nerve. In 2 out of 6 animals, high-frequency stimulation with immobilization caused muscle fiber death, internalization of muscle fiber nuclei, connective tissue proliferation, inflammatory response, altered fiber size distribution and variable staining intensities. The fast-twitch fibers were predominantly affected. Two of six peripheral nerves subjected to immobilization and stimulation showed severe damage. Tetanic forces were significantly reduced in the affected muscles. Therefore, the immobilization and high-frequency stimulation may be detrimental to myoneural structure and function and, thus, this combination of therapies should be applied conservatively.

  12. Aging of the endocrine system and its potential impact on sarcopenia.

    PubMed

    Vitale, Giovanni; Cesari, Matteo; Mari, Daniela

    2016-11-01

    Sarcopenia, occurring as a primary consequence of aging, is a progressive generalized decline of skeletal muscle mass, strength and function. The pathophysiology of sarcopenia is complex and multifactorial. One major cause of muscle mass and strength loss with aging appears to be the alteration in hormonal networks involved in the inflammatory processes, muscle regeneration and protein synthesis. This review describes the recent findings concerning the role of the aging on the endocrine system in the development of sarcopenia. We also report the benefits and safety of hormone replacement therapy in elderly subjects and discuss future perspectives in the therapy and prevention of skeletal muscle aging. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  13. Effect of a high dose of simvastatin on muscle mitochondrial metabolism and calcium signaling in healthy volunteers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galtier, F., E-mail: f-galtier@chu-montpellier.fr; INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5; CPID, Faculté de Pharmacie, 15 Av. Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, Montpellier

    Statin use may be limited by muscle side effects. Although incompletely understood to date, their pathophysiology may involve oxidative stress and impairments of mitochondrial function and of muscle Ca{sup 2+} homeostasis. In order to simultaneously assess these mechanisms, 24 male healthy volunteers were randomized to receive either simvastatin for 80 mg daily or placebo for 8 weeks. Blood and urine samples and a stress test were performed at baseline and at follow-up, and mitochondrial respiration and Ca{sup 2+} spark properties were evaluated on a muscle biopsy 4 days before the second stress test. Simvastatin-treated subjects were separated according to theirmore » median creatine kinase (CK) increase. Simvastatin treatment induced a significant elevation of aspartate amino transferase (3.38 ± 5.68 vs − 1.15 ± 4.32 UI/L, P < 0.001) and CK (− 24.3 ± 99.1 ± 189.3vs 48.3 UI/L, P = 0.01) and a trend to an elevation of isoprostanes (193 ± 408 vs12 ± 53 pmol/mmol creatinine, P = 0.09) with no global change in mitochondrial respiration, lactate/pyruvate ratio or Ca{sup 2+} sparks. However, among statin-treated subjects, those with the highest CK increase displayed a significantly lower Vmax rotenone succinate and an increase in Ca{sup 2+} spark amplitude vs both subjects with the lowest CK increase and placebo-treated subjects. Moreover, Ca{sup 2+} spark amplitude was positively correlated with treatment-induced CK increase in the whole group (r = 0.71, P = 0.0045). In conclusion, this study further supports that statin induced muscular toxicity may be related to alterations in mitochondrial respiration and muscle calcium homeostasis independently of underlying disease or concomitant medication. -- Highlights: ► Statin use may be limited by side effects, particularly myopathy. ► Statins might impair mitochondrial function and muscle Ca2+ signaling in muscle. ► This was tested among healthy volunteers receiving simvastatin 80 mg daily for 8 weeks. ► CK increase was associated with alterations in Ca2+ sparks and mitochondrial function.« less

  14. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study

    PubMed Central

    Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A.; He, Huiguang; Jiao, Yonghong

    2015-01-01

    Purpose To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. Methods T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender- matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Results Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. Conclusions CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1. PMID:26186732

  15. Study of adaptation to altered gravity through systems analysis of motor control.

    PubMed

    Fox, R A; Daunton, N G; Corcoran, M L

    1998-01-01

    Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.

  16. Study of adaptation to altered gravity through systems analysis of motor control

    NASA Astrophysics Data System (ADS)

    Fox, R. A.; Daunton, N. G.; Corcoran, M. L.

    Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.

  17. Mechanical principles of effects of botulinum toxin on muscle length-force characteristics: an assessment by finite element modeling.

    PubMed

    Turkoglu, Ahu N; Huijing, Peter A; Yucesoy, Can A

    2014-05-07

    Recent experiments involving muscle force measurements over a range of muscle lengths show that effects of botulinum toxin (BTX) are complex e.g., force reduction varies as a function of muscle length. We hypothesized that altered conditions of sarcomeres within active parts of partially paralyzed muscle is responsible for this effect. Using finite element modeling, the aim was to test this hypothesis and to study principles of how partial activation as a consequence of BTX affects muscle mechanics. In order to model the paralyzing effect of BTX, only 50% of the fascicles (most proximal, or middle, or most distal) of the modeled muscle were activated. For all muscle lengths, a vast majority of sarcomeres of these BTX-cases were at higher lengths than identical sarcomeres of the BTX-free muscle. Due to such "longer sarcomere effect", activated muscle parts show an enhanced potential of active force exertion (up to 14.5%). Therefore, a muscle force reduction originating exclusively from the paralyzed muscle fiber populations, is compromised by the changes of active sarcomeres leading to a smaller net force reduction. Moreover, such "compromise to force reduction" varies as a function of muscle length and is a key determinant of muscle length dependence of force reduction caused by BTX. Due to longer sarcomere effect, muscle optimum length tends to shift to a lower muscle length. Muscle fiber-extracellular matrix interactions occurring via their mutual connections along full peripheral fiber lengths (i.e., myofascial force transmission) are central to these effects. Our results may help improving our understanding of mechanisms of how the toxin secondarily affects the muscle mechanically. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Apoptosis in capillary endothelial cells in ageing skeletal muscle

    PubMed Central

    Wang, Huijuan; Listrat, Anne; Meunier, Bruno; Gueugneau, Marine; Coudy-Gandilhon, Cécile; Combaret, Lydie; Taillandier, Daniel; Polge, Cécile; Attaix, Didier; Lethias, Claire; Lee, Kijoon; Goh, Kheng Lim; Béchet, Daniel

    2014-01-01

    The age-related loss of skeletal muscle mass and function (sarcopenia) is a consistent hallmark of ageing. Apoptosis plays an important role in muscle atrophy, and the intent of this study was to specify whether apoptosis is restricted to myofibre nuclei (myonuclei) or occurs in satellite cells or stromal cells of extracellular matrix (ECM). Sarcopenia in mouse gastrocnemius muscle was characterized by myofibre atrophy, oxidative type grouping, delocalization of myonuclei and ECM fibrosis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) indicated a sharp rise in apoptosis during ageing. TUNEL coupled with immunostaining for dystrophin, paired box protein-7 (Pax7) or laminin-2α, respectively, was used to identify apoptosis in myonuclei, satellite cells and stromal cells. In adult muscle, apoptosis was not detected in myofibres, but was restricted to stromal cells. Moreover, the age-related rise in apoptotic nuclei was essentially due to stromal cells. Myofibre-associated apoptosis nevertheless occurred in old muscle, but represented < 20% of the total muscle apoptosis. Specifically, apoptosis in old muscle affected a small proportion (0.8%) of the myonuclei, but a large part (46%) of the Pax7+ satellite cells. TUNEL coupled with CD31 immunostaining further attributed stromal apoptosis to capillary endothelial cells. Age-dependent rise in apoptotic capillary endothelial cells was concomitant with altered levels of key angiogenic regulators, perlecan and a perlecan domain V (endorepellin) proteolytic product. Collectively, our results indicate that sarcopenia is associated with apoptosis of satellite cells and impairment of capillary functions, which is likely to contribute to the decline in muscle mass and functionality during ageing. PMID:24245531

  19. How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis.

    PubMed

    McCuaig, Sarah; Martin, James G

    2013-04-01

    Among patients with cystic fibrosis there is a high prevalence (40-70%) of asthma signs and symptoms such as cough and wheezing and airway hyper-responsiveness to inhaled histamine or methacholine. Whether these abnormal airway responses are due to a primary deficiency in the cystic fibrosis transmembrane conductance regulator (CFTR) or are secondary to the inflammatory environment in the cystic fibrosis lungs is not clear. A role for the CFTR in smooth muscle function is emerging, and alterations in contractile signalling have been reported in CFTR-deficient airway smooth muscle. Persistent bacterial infection, especially with Pseudomonas aeruginosa, stimulates interleukin-8 release from the airway epithelium, resulting in neutrophilic inflammation. Increased neutrophilia and skewing of CFTR-deficient T-helper cells to type 2 helper T cells creates an inflammatory environment characterised by high concentrations of tumour necrosis factor α, interleukin-8, and interleukin-13, which might all contribute to increased contractility of airway smooth muscle in cystic fibrosis. An emerging role of interleukin-17, which is raised in patients with cystic fibrosis, in airway smooth muscle proliferation and hyper-responsiveness is apparent. Increased understanding of the molecular mechanisms responsible for the altered smooth muscle physiology in patients with cystic fibrosis might provide insight into airway dysfunction in this disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Monitoring muscle optical scattering properties during rigor mortis

    NASA Astrophysics Data System (ADS)

    Xia, J.; Ranasinghesagara, J.; Ku, C. W.; Yao, G.

    2007-09-01

    Sarcomere is the fundamental functional unit in skeletal muscle for force generation. In addition, sarcomere structure is also an important factor that affects the eating quality of muscle food, the meat. The sarcomere structure is altered significantly during rigor mortis, which is the critical stage involved in transforming muscle to meat. In this paper, we investigated optical scattering changes during the rigor process in Sternomandibularis muscles. The measured optical scattering parameters were analyzed along with the simultaneously measured passive tension, pH value, and histology analysis. We found that the temporal changes of optical scattering, passive tension, pH value and fiber microstructures were closely correlated during the rigor process. These results suggested that sarcomere structure changes during rigor mortis can be monitored and characterized by optical scattering, which may find practical applications in predicting meat quality.

  1. Disrupted Skeletal Muscle Mitochondrial Dynamics, Mitophagy, and Biogenesis during Cancer Cachexia: A Role for Inflammation

    PubMed Central

    VanderVeen, Brandon N.; Fix, Dennis K.

    2017-01-01

    Chronic inflammation is a hallmark of cancer cachexia in both patients and preclinical models. Cachexia is prevalent in roughly 80% of cancer patients and accounts for up to 20% of all cancer-related deaths. Proinflammatory cytokines IL-6, TNF-α, and TGF-β have been widely examined for their regulation of cancer cachexia. An established characteristic of cachectic skeletal muscle is a disrupted capacity for oxidative metabolism, which is thought to contribute to cancer patient fatigue, diminished metabolic function, and muscle mass loss. This review's primary objective is to highlight emerging evidence linking cancer-induced inflammation to the dysfunctional regulation of mitochondrial dynamics, mitophagy, and biogenesis in cachectic muscle. The potential for either muscle inactivity or exercise to alter mitochondrial dysfunction during cancer cachexia will also be discussed. PMID:28785374

  2. Critical role of intestinal epithelial cell-derived IL-25 in enteric nematode infection-induced changes in intestinal function

    USDA-ARS?s Scientific Manuscript database

    The current study investigated the mechanism of immune regulation of IL-25 and the contribution of IL-25 to nematode infection-induced alterations in intestinal smooth muscle and epithelial cell function. Mice were infected with an enteric nematode or injected with IL-25 or IL-13. In vitro smooth m...

  3. Anorectal function and morphology in patients with sporadic proctalgia fugax.

    PubMed

    Eckardt, V F; Dodt, O; Kanzler, G; Bernhard, G

    1996-07-01

    The pathophysiology of sporadic proctalgia fugax remains unknown. This study investigates whether patients with this syndrome exhibit alterations in anal function and morphology. Eighteen patients with sporadic proctalgia fugax and 18 sex-matched and age-matched healthy controls were studied. Manometric studies investigated anal resting and squeeze pressures, the rectoanal inhibitory reflex, rectal compliance, and smooth muscle response to edrophonium chloride administration. External and internal sphincter thickness was measured endosonographically. Patients had slightly higher (P = 0.0291) anal resting pressures (65.5 +/- 11.4 mmHg) than controls (56 +/- 9.9 mmHg). However, anal squeeze pressure, sphincter relaxation during rectal distention, and rectal compliance were similar in both groups, and no alterations were detected in external and internal anal sphincter thickness. Edrophonium chloride administration was followed by sharp postrelaxation contractions in two patients, whereas anal function remained unaltered in controls. Acute episodes of proctalgia, which occurred in two patients while under study, were associated with a rise in anal resting tone and an increase in slow wave amplitude. In the resting state, patients with proctalgia fugax have normal anorectal function and morphology. However, they may exhibit a motor abnormality of the anal smooth muscle during an acute attack.

  4. Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells.

    PubMed

    Fletcher, Rachel S; Ratajczak, Joanna; Doig, Craig L; Oakey, Lucy A; Callingham, Rebecca; Da Silva Xavier, Gabriella; Garten, Antje; Elhassan, Yasir S; Redpath, Philip; Migaud, Marie E; Philp, Andrew; Brenner, Charles; Canto, Carles; Lavery, Gareth G

    2017-08-01

    Augmenting nicotinamide adenine dinucleotide (NAD + ) availability may protect skeletal muscle from age-related metabolic decline. Dietary supplementation of NAD + precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) appear efficacious in elevating muscle NAD + . Here we sought to identify the pathways skeletal muscle cells utilize to synthesize NAD + from NMN and NR and provide insight into mechanisms of muscle metabolic homeostasis. We exploited expression profiling of muscle NAD + biosynthetic pathways, single and double nicotinamide riboside kinase 1/2 (NRK1/2) loss-of-function mice, and pharmacological inhibition of muscle NAD + recycling to evaluate NMN and NR utilization. Skeletal muscle cells primarily rely on nicotinamide phosphoribosyltransferase (NAMPT), NRK1, and NRK2 for salvage biosynthesis of NAD + . NAMPT inhibition depletes muscle NAD + availability and can be rescued by NR and NMN as the preferred precursors for elevating muscle cell NAD + in a pathway that depends on NRK1 and NRK2. Nrk2 knockout mice develop normally and show subtle alterations to their NAD+ metabolome and expression of related genes. NRK1, NRK2, and double KO myotubes revealed redundancy in the NRK dependent metabolism of NR to NAD + . Significantly, these models revealed that NMN supplementation is also dependent upon NRK activity to enhance NAD + availability. These results identify skeletal muscle cells as requiring NAMPT to maintain NAD + availability and reveal that NRK1 and 2 display overlapping function in salvage of exogenous NR and NMN to augment intracellular NAD + availability.

  5. EFFECTS OF AGE AND ACUTE MUSCLE FATIGUE ON REACTIVE POSTURAL CONTROL IN HEALTHY ADULTS

    PubMed Central

    Papa, Evan V.; Foreman, K. Bo; Dibble, Lee E.

    2015-01-01

    BACKGROUND Falls can cause moderate to severe injuries such as hip fractures and head trauma in older adults. While declines in muscle strength and sensory function contribute to increased falls in older adults, skeletal muscle fatigue is often overlooked as an additional contributor to fall risk. The purpose of this investigation was to examine the effects of acute lower extremity muscle fatigue and age on reactive postural control in healthy adults. METHODS A sample of 16 individuals participated in this study (8 healthy older adults and 8 healthy young persons). Whole body kinematic and kinetic data were collected during anterior and posterior reproducible fall tests before (T0) and immediately after (T1) eccentric muscle fatiguing exercise, as well as after 15-minutes (T15) and 30-minutes (T30) of rest. FINDINGS Lower extremity joint kinematics of the stepping limb during the support (landing) phase of the anterior fall were significantly altered by the presence of acute muscle fatigue. Step velocity was significantly decreased during the anterior falls. Statistically significant main effects of age were found for step length in both fall directions. Effect sizes for all outcomes were small. No statistically significant interaction effects were found. INTERPRETATION Muscle fatigue has a measurable effect on lower extremity joint kinematics during simulated falls. These alterations appear to resolve within 15 minutes of recovery. The above deficits, coupled with a reduced step length, may help explain the increased fall risk in older adults. PMID:26351001

  6. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms.

    PubMed

    Conti, Valentina; Gandaglia, Anna; Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions.

  7. Effects of age and acute muscle fatigue on reactive postural control in healthy adults.

    PubMed

    Papa, Evan V; Foreman, K Bo; Dibble, Leland E

    2015-12-01

    Falls can cause moderate to severe injuries such as hip fractures and head trauma in older adults. While declines in muscle strength and sensory function contribute to increased falls in older adults, skeletal muscle fatigue is often overlooked as an additional contributor to fall risk. The purpose of this investigation was to examine the effects of acute lower extremity muscle fatigue and age on reactive postural control in healthy adults. A sample of 16 individuals participated in this study (8 healthy older adults and 8 healthy young persons). Whole body kinematic and kinetic data were collected during anterior and posterior reproducible fall tests before (T0) and immediately after (T1) eccentric muscle fatiguing exercise, as well as after 15-min (T15) and 30-min (T30) of rest. Lower extremity joint kinematics of the stepping limb during the support (landing) phase of the anterior fall were significantly altered by the presence of acute muscle fatigue. Step velocity was significantly decreased during the anterior falls. Statistically significant main effects of age were found for step length in both fall directions. Effect sizes for all outcomes were small. No statistically significant interaction effects were found. Muscle fatigue has a measurable effect on lower extremity joint kinematics during simulated falls. These alterations appear to resolve within 15 min of recovery. The above deficits, coupled with a reduced step length, may help explain the increased fall risk in older adults. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Tibial and fibular nerves evaluation using intraoperative electromyography in rats.

    PubMed

    Nepomuceno, André Coelho; Politani, Elisa Landucci; Silva, Eduardo Guandelini da; Salomone, Raquel; Longo, Marco Vinicius Losso; Salles, Alessandra Grassi; Faria, José Carlos Marques de; Gemperli, Rolf

    2016-08-01

    To evaluate a new model of intraoperative electromyographic (EMG) assessment of the tibial and fibular nerves, and its respectives motor units in rats. Eight Wistar rats underwent intraoperative EMG on both hind limbs at two different moments: week 0 and week 12. Supramaximal electrical stimulation applied on sciatic nerve, and compound muscle action potential recorded on the gastrocnemius muscle (GM) and the extensor digitorum longus muscle (EDLM) through electrodes at specifics points. Motor function assessment was performaced through Walking Track Test. Exposing the muscles and nerves for examination did not alter tibial (p=0.918) or fibular (p=0.877) function between the evaluation moments. Electromyography of the GM, innervated by the tibial nerve, revealed similar amplitude (p=0.069) and latency (p=0.256) at week 0 and at 12 weeks, creating a standard of normality. Meanwhile, electromyography of the EDLM, innervated by the fibular nerve, showed significant differences between the amplitudes (p=0.003) and latencies (p=0.021) at the two different moments of observation. Intraoperative electromyography determined and quantified gastrocnemius muscle motor unit integrity, innervated by tibial nerve. Although this study was not useful to, objectively, assess extensor digitorum longus muscle motor unit, innervated by fibular nerve.

  9. Redox homeostasis and age‐related deficits in neuromuscular integrity and function

    PubMed Central

    Lightfoot, Adam P.; Earl, Kate E.; Stofanko, Martin; McDonagh, Brian

    2017-01-01

    Abstract Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age‐related muscle atrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributor to morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population (estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associated with neuromuscular ageing, will inevitably increase. Despite the importance of this ‘epidemic’ problem, the primary biochemical and molecular mechanisms underlying age‐related deficits in neuromuscular integrity and function have not been fully determined. Skeletal muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources, and age‐associated oxidative damage has been suggested to be a major factor contributing to the initiation and progression of muscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, and disruption of these events over time due to altered redox control has been proposed as an underlying mechanism of ageing. The role of oxidants in ageing has been extensively examined in different model organisms that have undergone genetic manipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function of RONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redox homeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken in murine models to examine the role of redox regulation in age‐related muscle atrophy and weakness. PMID:28744984

  10. Hypertrophic gene expression induced by chronic stretch of excised mouse heart muscle.

    PubMed

    Raskin, Anna M; Hoshijima, Masahiko; Swanson, Eric; McCulloch, Andrew D; Omens, Jeffrey H

    2009-09-01

    Altered mechanical stress and strain in cardiac myocytes induce modifications in gene expression that affects cardiac remodeling and myocyte contractile function. To study the mechanisms of mechanotransduction in cardiomyocytes, probing alterations in mechanics and gene expression has been an effective strategy. However, previous studies are self-limited due to the general use of isolated neonatal rodent myocytes or intact animals. The main goal of this study was to develop a novel tissue culture chamber system for mouse myocardium that facilitates loading of cardiac tissue, while measuring tissue stress and deformation within a physiological environment. Intact mouse right ventricular papillary muscles were cultured in controlled conditions with superfusate at 95% O2/ 5% CO2, and 34 degrees C, such that cell to extracellular matrix adhesions as well as cell to cell adhesions were undisturbed and both passive and active mechanical properties were maintained without significant changes. The system was able to measure the induction of hypertrophic markers (BNP, ANP) in tissue after 2 hrs and 5 hrs of stretch. ANP induction was highly correlated with the diastolic load of the muscle but not with developed systolic load. Load induced ANP expression was blunted in muscles from muscle-LIM protein knockout mice, in which defective mechanotransduction pathways have been predicted.

  11. Myosin Transducer Mutations Differentially Affect Motor Function, Myofibril Structure, and the Performance of Skeletal and Cardiac Muscles

    PubMed Central

    Cammarato, Anthony; Dambacher, Corey M.; Knowles, Aileen F.; Kronert, William A.; Bodmer, Rolf

    2008-01-01

    Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc5 affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc5 (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc5 myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc5 mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders. PMID:18045988

  12. Protective role of Parkin in skeletal muscle contractile and mitochondrial function.

    PubMed

    Gouspillou, Gilles; Godin, Richard; Piquereau, Jérome; Picard, Martin; Mofarrahi, Mahroo; Mathew, Jasmin; Purves-Smith, Fennigje M; Sgarioto, Nicolas; Hepple, Russell T; Burelle, Yan; Hussain, Sabah N A

    2018-04-22

    Parkin, an E3 ubiquitin ligase encoded by the Park2 gene, has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are degraded. The exact physiological significance of Parkin in regulating mitochondrial function and contractility in skeletal muscle remains largely unexplored. Using Park2 -/- mice, we show that Parkin ablation causes a decrease in muscle specific force, a severe decrease in mitochondrial respiration, mitochondrial uncoupling and an increased susceptibility to opening of the permeability transition pore. These results demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in skeletal muscles. Parkin is an E3 ubiquitin ligase encoded by the Park2 gene. Parkin has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are sequestered in autophagosomes and delivered to lysosomes for degradation. Although Parkin has been mainly studied for its implication in neuronal degeneration in Parkinson disease, its role in other tissues remains largely unknown. In the present study, we investigated the skeletal muscles of Park2 knockout (Park2 -/- ) mice to test the hypothesis that Parkin plays a physiological role in mitochondrial quality control in normal skeletal muscle, a tissue highly reliant on mitochondrial content and function. We first show that the tibialis anterior (TA) of Park2 -/- mice display a slight but significant decrease in its specific force. Park2 -/ - muscles also show a trend for type IIB fibre hypertrophy without alteration in muscle fibre type proportion. Compared to Park2 +/+ muscles, the mitochondrial function of Park2 -/- skeletal muscles was significantly impaired, as indicated by the significant decrease in ADP-stimulated mitochondrial respiratory rates, uncoupling, reduced activities of respiratory chain complexes containing mitochondrial DNA (mtDNA)-encoded subunits and increased susceptibility to opening of the permeability transition pore. Muscles of Park2 -/- mice also displayed a decrease in the content of the mitochondrial pro-fusion protein Mfn2 and an increase in the pro-fission protein Drp1 suggesting an increase in mitochondrial fragmentation. Finally, Park2 ablation resulted in an increase in basal autophagic flux in skeletal muscles. Overall, the results of the present study demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in normal skeletal muscles. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  13. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis.

    PubMed

    Brown, William M

    2015-12-01

    Epigenetics is the study of processes--beyond DNA sequence alteration--producing heritable characteristics. For example, DNA methylation modifies gene expression without altering the nucleotide sequence. A well-studied DNA methylation-based phenomenon is genomic imprinting (ie, genotype-independent parent-of-origin effects). We aimed to elucidate: (1) the effect of exercise on DNA methylation and (2) the role of imprinted genes in skeletal muscle gene networks (ie, gene group functional profiling analyses). Gene ontology (ie, gene product elucidation)/meta-analysis. 26 skeletal muscle and 86 imprinted genes were subjected to g:Profiler ontology analysis. Meta-analysis assessed exercise-associated DNA methylation change. g:Profiler found four muscle gene networks with imprinted loci. Meta-analysis identified 16 articles (387 genes/1580 individuals) associated with exercise. Age, method, sample size, sex and tissue variation could elevate effect size bias. Only skeletal muscle gene networks including imprinted genes were reported. Exercise-associated effect sizes were calculated by gene. Age, method, sample size, sex and tissue variation were moderators. Six imprinted loci (RB1, MEG3, UBE3A, PLAGL1, SGCE, INS) were important for muscle gene networks, while meta-analysis uncovered five exercise-associated imprinted loci (KCNQ1, MEG3, GRB10, L3MBTL1, PLAGL1). DNA methylation decreased with exercise (60% of loci). Exercise-associated DNA methylation change was stronger among older people (ie, age accounted for 30% of the variation). Among older people, genes exhibiting DNA methylation decreases were part of a microRNA-regulated gene network functioning to suppress cancer. Imprinted genes were identified in skeletal muscle gene networks and exercise-associated DNA methylation change. Exercise-associated DNA methylation modification could rewind the 'epigenetic clock' as we age. CRD42014009800. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Adaptations of mouse skeletal muscle to low intensity vibration training

    PubMed Central

    McKeehen, James N.; Novotny, Susan A.; Baltgalvis, Kristen A.; Call, Jarrod A.; Nuckley, David J.; Lowe, Dawn A.

    2013-01-01

    Purpose We tested the hypothesis that low intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. Methods We subjected C57BL/6J mice to 6 wk, 5 d·wk−1, 15 min·d−1 of sham or low intensity vibration (45 Hz, 1.0 g) while housed in traditional cages (Sham-Active, n=8; Vibrated-Active, n=10) or in small cages to restrict physical activity (Sham-Restricted, n=8; Vibrated-Restricted, n=8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine effects of vibration and physical inactivity. Results Vibration training resulted in a 10% increase in maximal isometric torque (P=0.038) and 16% faster maximal rate of relaxation (P=0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, with the exception of greater rates of contraction in Vibrated-Restricted mice compared to Vibrated-Active and Sham-Restricted mice (P=0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P=0.057) and maximal relaxation was 20% faster (P=0.005) in Vibrated compared to Sham mice. Restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not impact muscle fatigability or any indicator of cellular adaptation investigated (P≥0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. Conclusion Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations. PMID:23274599

  15. Increased mitochondrial matrix directed superoxide production by fatty acid hydroperoxides in skeletal muscle mitochondria

    PubMed Central

    Bhattacharya, Arunabh; Lustgarten, Michael; Shi, Yun; Liu, Yuhong; Jang, Youngmok C; Pulliam, Daniel; Jernigan, Amanda L; Van Remmen, Holly

    2013-01-01

    Previous studies have shown that muscle atrophy is associated with mitochondrial dysfunction and an increased rate of mitochondrial reactive oxygen species production. We recently demonstrated that fatty acid hydroperoxides (FA-OOH) are significantly elevated in mitochondria isolated from atrophied muscles. The purpose of the current study is to determine whether FA-OOH can alter skeletal muscle mitochondrial function. We found that FA-OOH (at low micromolar concentrations) induces mitochondrial dysfunction assessed by decrease in the rate of ATP production, oxygen consumption and activity of respiratory chain complexes I and III. Using methods to distinguish superoxide release towards the matrix and inter-membrane space, we demonstrate that FA-OOH significantly elevates oxidative stress in the mitochondrial matrix (and not the inter-membrane space) with complex I as the major site of superoxide production (most likely from a site upstream of the ubiquinone binding site but downstream from the flavin binding site-the iron sulfur clusters). Our results are the first to indicate that FA-OOH’s are important modulators of mitochondrial function and oxidative stress in skeletal muscle mitochondria and may play an important role in muscle atrophies that are associated with increased generation of FA-OOH’s, e.g., denervation-induced muscle atrophy. PMID:21172427

  16. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy

    PubMed Central

    Rocheteau, P.; Chatre, L.; Briand, D.; Mebarki, M.; Jouvion, G.; Bardon, J.; Crochemore, C.; Serrani, P.; Lecci, P. P.; Latil, M.; Matot, B.; Carlier, P. G.; Latronico, N.; Huchet, C.; Lafoux, A.; Sharshar, T.; Ricchetti, M.; Chrétien, F.

    2015-01-01

    Sepsis, or systemic inflammatory response syndrome, is the major cause of critical illness resulting in admission to intensive care units. Sepsis is caused by severe infection and is associated with mortality in 60% of cases. Morbidity due to sepsis is complicated by neuromyopathy, and patients face long-term disability due to muscle weakness, energetic dysfunction, proteolysis and muscle wasting. These processes are triggered by pro-inflammatory cytokines and metabolic imbalances and are aggravated by malnutrition and drugs. Skeletal muscle regeneration depends on stem (satellite) cells. Herein we show that mitochondrial and metabolic alterations underlie the sepsis-induced long-term impairment of satellite cells and lead to inefficient muscle regeneration. Engrafting mesenchymal stem cells improves the septic status by decreasing cytokine levels, restoring mitochondrial and metabolic function in satellite cells, and improving muscle strength. These findings indicate that sepsis affects quiescent muscle stem cells and that mesenchymal stem cells might act as a preventive therapeutic approach for sepsis-related morbidity. PMID:26666572

  17. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy.

    PubMed

    Rocheteau, P; Chatre, L; Briand, D; Mebarki, M; Jouvion, G; Bardon, J; Crochemore, C; Serrani, P; Lecci, P P; Latil, M; Matot, B; Carlier, P G; Latronico, N; Huchet, C; Lafoux, A; Sharshar, T; Ricchetti, M; Chrétien, F

    2015-12-15

    Sepsis, or systemic inflammatory response syndrome, is the major cause of critical illness resulting in admission to intensive care units. Sepsis is caused by severe infection and is associated with mortality in 60% of cases. Morbidity due to sepsis is complicated by neuromyopathy, and patients face long-term disability due to muscle weakness, energetic dysfunction, proteolysis and muscle wasting. These processes are triggered by pro-inflammatory cytokines and metabolic imbalances and are aggravated by malnutrition and drugs. Skeletal muscle regeneration depends on stem (satellite) cells. Herein we show that mitochondrial and metabolic alterations underlie the sepsis-induced long-term impairment of satellite cells and lead to inefficient muscle regeneration. Engrafting mesenchymal stem cells improves the septic status by decreasing cytokine levels, restoring mitochondrial and metabolic function in satellite cells, and improving muscle strength. These findings indicate that sepsis affects quiescent muscle stem cells and that mesenchymal stem cells might act as a preventive therapeutic approach for sepsis-related morbidity.

  18. Neuronal Nitric Oxide Synthase Is Dislocated in Type I Fibers of Myalgic Muscle but Can Recover with Physical Exercise Training

    PubMed Central

    Jensen, L.; Andersen, L. L.; Schrøder, H. D.; Frandsen, U.; Sjøgaard, G.

    2015-01-01

    Trapezius myalgia is the most common type of chronic neck pain. While physical exercise reduces pain and improves muscle function, the underlying mechanisms remain unclear. Nitric oxide (NO) signaling is important in modulating cellular function, and a dysfunctional neuronal NO synthase (nNOS) may contribute to an ineffective muscle function. This study investigated nNOS expression and localization in chronically painful muscle. Forty-one women clinically diagnosed with trapezius myalgia (MYA) and 18 healthy controls (CON) were included in the case-control study. Subsequently, MYA were randomly assigned to either 10 weeks of specific strength training (SST, n = 18), general fitness training (GFT, n = 15), or health information (REF, n = 8). Distribution of fiber type, cross-sectional area, and sarcolemmal nNOS expression did not differ between MYA and CON. However, MYA showed increased sarcoplasmic nNOS localization (18.8 ± 12 versus 12.8 ± 8%, P = 0.049) compared with CON. SST resulted in a decrease of sarcoplasm-localized nNOS following training (before 18.1 ± 12 versus after 12.0 ± 12%; P = 0,027). We demonstrate that myalgic muscle displays altered nNOS localization and that 10 weeks of strength training normalize these disruptions, which supports previous findings of impaired muscle oxygenation during work tasks and reduced pain following exercise. PMID:25853139

  19. Genetic silencing of Nrf2 enhances X-ROS in dysferlin-deficient muscle

    PubMed Central

    Kombairaju, Ponvijay; Kerr, Jaclyn P.; Roche, Joseph A.; Pratt, Stephen J. P.; Lovering, Richard M.; Sussan, Thomas E.; Kim, Jung-Hyun; Shi, Guoli; Biswal, Shyam; Ward, Christopher W.

    2014-01-01

    Oxidative stress is a critical disease modifier in the muscular dystrophies. Recently, we discovered a pathway by which mechanical stretch activates NADPH Oxidase 2 (Nox2) dependent ROS generation (X-ROS). Our work in dystrophic skeletal muscle revealed that X-ROS is excessive in dystrophin-deficient (mdx) skeletal muscle and contributes to muscle injury susceptibility, a hallmark of the dystrophic process. We also observed widespread alterations in the expression of genes associated with the X-ROS pathway and redox homeostasis in muscles from both Duchenne muscular dystrophy patients and mdx mice. As nuclear factor erythroid 2-related factor 2 (Nrf2) plays an essential role in the transcriptional regulation of genes involved in redox homeostasis, we hypothesized that Nrf2 deficiency may contribute to enhanced X-ROS signaling by reducing redox buffering. To directly test the effect of diminished Nrf2 activity, Nrf2 was genetically silenced in the A/J model of dysferlinopathy—a model with a mild histopathologic and functional phenotype. Nrf2-deficient A/J mice exhibited significant muscle-specific functional deficits, histopathologic abnormalities, and dramatically enhanced X-ROS compared to control A/J and WT mice, both with functional Nrf2. Having identified that reduced Nrf2 activity is a negative disease modifier, we propose that strategies targeting Nrf2 activation may address the generalized reduction in redox homeostasis to halt or slow dystrophic progression. PMID:24600403

  20. Loss of MyoD and Myf5 in Skeletal Muscle Stem Cells Results in Altered Myogenic Programming and Failed Regeneration.

    PubMed

    Yamamoto, Masakazu; Legendre, Nicholas P; Biswas, Arpita A; Lawton, Alexander; Yamamoto, Shoko; Tajbakhsh, Shahragim; Kardon, Gabrielle; Goldhamer, David J

    2018-03-13

    MyoD and Myf5 are fundamental regulators of skeletal muscle lineage determination in the embryo, and their expression is induced in satellite cells following muscle injury. MyoD and Myf5 are also expressed by satellite cell precursors developmentally, although the relative contribution of historical and injury-induced expression to satellite cell function is unknown. We show that satellite cells lacking both MyoD and Myf5 (double knockout [dKO]) are maintained with aging in uninjured muscle. However, injured muscle fails to regenerate and dKO satellite cell progeny accumulate in damaged muscle but do not undergo muscle differentiation. dKO satellite cell progeny continue to express markers of myoblast identity, although their myogenic programming is labile, as demonstrated by dramatic morphological changes and increased propensity for non-myogenic differentiation. These data demonstrate an absolute requirement for either MyoD or Myf5 in muscle regeneration and indicate that their expression after injury stabilizes myogenic identity and confers the capacity for muscle differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype

    PubMed Central

    Capote, Joana; Martinez, Leonel; Vetrone, Sylvia; Barton, Elisabeth R.; Sweeney, H. Lee; Miceli, M. Carrie

    2016-01-01

    In the degenerative disease Duchenne muscular dystrophy, inflammatory cells enter muscles in response to repetitive muscle damage. Immune factors are required for muscle regeneration, but chronic inflammation creates a profibrotic milieu that exacerbates disease progression. Osteopontin (OPN) is an immunomodulator highly expressed in dystrophic muscles. Ablation of OPN correlates with reduced fibrosis and improved muscle strength as well as reduced natural killer T (NKT) cell counts. Here, we demonstrate that the improved dystrophic phenotype observed with OPN ablation does not result from reductions in NKT cells. OPN ablation skews macrophage polarization toward a pro-regenerative phenotype by reducing M1 and M2a and increasing M2c subsets. These changes are associated with increased expression of pro-regenerative factors insulin-like growth factor 1, leukemia inhibitory factor, and urokinase-type plasminogen activator. Furthermore, altered macrophage polarization correlated with increases in muscle weight and muscle fiber diameter, resulting in long-term improvements in muscle strength and function in mdx mice. These findings suggest that OPN ablation promotes muscle repair via macrophage secretion of pro-myogenic growth factors. PMID:27091452

  2. Comparative Proteomic and Transcriptomic Analysis of Follistatin-Induced Skeletal Muscle Hypertrophy.

    PubMed

    Barbé, Caroline; Bray, Fabrice; Gueugneau, Marine; Devassine, Stéphanie; Lause, Pascale; Tokarski, Caroline; Rolando, Christian; Thissen, Jean-Paul

    2017-10-06

    Skeletal muscle, the most abundant body tissue, plays vital roles in locomotion and metabolism. Myostatin is a negative regulator of skeletal muscle mass. In addition to increasing muscle mass, Myostatin inhibition impacts muscle contractility and energy metabolism. To decipher the mechanisms of action of the Myostatin inhibitors, we used proteomic and transcriptomic approaches to investigate the changes induced in skeletal muscles of transgenic mice overexpressing Follistatin, a physiological Myostatin inhibitor. Our proteomic workflow included a fractionation step to identify weakly expressed proteins and a comparison of fast versus slow muscles. Functional annotation of altered proteins supports the phenotypic changes induced by Myostatin inhibition, including modifications in energy metabolism, fiber type, insulin and calcium signaling, as well as membrane repair and regeneration. Less than 10% of the differentially expressed proteins were found to be also regulated at the mRNA level but the Biological Process annotation, and the KEGG pathways analysis of transcriptomic results shows a great concordance with the proteomic data. Thus this study describes the most extensive omics analysis of muscle overexpressing Follistatin, providing molecular-level insights to explain the observed muscle phenotypic changes.

  3. A defect in early myogenesis causes Otitis media in two mouse models of 22q11.2 Deletion Syndrome

    PubMed Central

    Fuchs, Jennifer C.; Linden, Jennifer F.; Baldini, Antonio; Tucker, Abigail S.

    2015-01-01

    Otitis media (OM), the inflammation of the middle ear, is the most common disease and cause for surgery in infants worldwide. Chronic Otitis media with effusion (OME) often leads to conductive hearing loss and is a common feature of a number of craniofacial syndromes, such as 22q11.2 Deletion Syndrome (22q11.2DS). OM is more common in children because the more horizontal position of the Eustachian tube (ET) in infants limits or delays clearance of middle ear effusions. Some mouse models with OM have shown alterations in the morphology and angle of the ET. Here, we present a novel mechanism in which OM is caused not by a defect in the ET itself but in the muscles that control its function. Our results show that in two mouse models of 22q11.2DS (Df1/+ and Tbx1+/−) presenting with bi- or unilateral OME, the fourth pharyngeal arch-derived levator veli palatini muscles were hypoplastic, which was associated with an earlier altered pattern of MyoD expression. Importantly, in mice with unilateral OME, the side with the inflammation was associated with significantly smaller muscles than the contralateral unaffected ear. Functional tests examining ET patency confirmed a reduced clearing ability in the heterozygous mice. Our findings are also of clinical relevance as targeting hypoplastic muscles might present a novel preventative measure for reducing the high rates of OM in 22q11.2DS patients. PMID:25452432

  4. Different Stimulation Frequencies Alter Synchronous Fluctuations in Motor Evoked Potential Amplitude of Intrinsic Hand Muscles—a TMS Study

    PubMed Central

    Sale, Martin V.; Rogasch, Nigel C.; Nordstrom, Michael A.

    2016-01-01

    The amplitude of motor-evoked potentials (MEPs) elicited with transcranial magnetic stimulation (TMS) varies from trial-to-trial. Synchronous oscillations in cortical neuronal excitability contribute to this variability, however it is not known how different frequencies of stimulation influence MEP variability, and whether these oscillations are rhythmic or aperiodic. We stimulated the motor cortex with TMS at different regular (i.e., rhythmic) rates, and compared this with pseudo-random (aperiodic) timing. In 18 subjects, TMS was applied at three regular frequencies (0.05 Hz, 0.2 Hz, 1 Hz) and one aperiodic frequency (mean 0.2 Hz). MEPs (n = 50) were recorded from three intrinsic hand muscles of the left hand with different functional and anatomical relations. MEP amplitude correlation was highest for the functionally related muscle pair, less for the anatomically related muscle pair and least for the functionally- and anatomically-unrelated muscle pair. MEP correlations were greatest with 1 Hz, and least for stimulation at 0.05 Hz. Corticospinal neuron synchrony is higher with shorter TMS intervals. Further, corticospinal neuron synchrony is similar irrespective of whether the stimulation is periodic or aperiodic. These findings suggest TMS frequency is a crucial consideration for studies using TMS to probe correlated activity between muscle pairs. PMID:27014031

  5. Altered spinal kinematics and muscle recruitment pattern of the cervical and thoracic spine in people with chronic neck pain during functional task.

    PubMed

    Tsang, Sharon M H; Szeto, Grace P Y; Lee, Raymond Y W

    2014-02-01

    Knowledge on the spinal kinematics and muscle activation of the cervical and thoracic spine during functional task would add to our understanding of the performance and interplay of these spinal regions during dynamic condition. The purpose of this study was to examine the influence of chronic neck pain on the three-dimensional kinematics and muscle recruitment pattern of the cervical and thoracic spine during an overhead reaching task involving a light weight transfer by the upper limb. Synchronized measurements of the three-dimensional spinal kinematics and electromyographic activities of cervical and thoracic spine were acquired in thirty individuals with chronic neck pain and thirty age- and gender-matched asymptomatic controls. Neck pain group showed a significantly decreased cervical velocity and acceleration while performing the task. They also displayed with a predominantly prolonged coactivation of cervical and thoracic muscles throughout the task cycle. The current findings highlighted the importance to examine differential kinematic variables of the spine which are associated with changes in the muscle recruitment in people with chronic neck pain. The results also provide an insight to the appropriate clinical intervention to promote the recovery of the functional disability commonly reported in patients with neck pain disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Differential acute and chronic effects of burn trauma on murine skeletal muscle bioenergetics

    PubMed Central

    Porter, Craig; Herndon, David N.; Bhattarai, Nisha; Ogunbileje, John O.; Szczesny, Bartosz; Szabo, Csaba; Toliver-Kinsky, Tracy; Sidossis, Labros S.

    2015-01-01

    Altered skeletal muscle mitochondrial function contributes to the pathophysiological stress response to burns. However, the acute and chronic impact of burn trauma on skeletal muscle bioenergetics remains poorly understood. Here, we determined the temporal relationship between burn trauma and mitochondrial function in murine skeletal muscle local to and distal from burn wounds. Male BALB/c mice (8–10 weeks old) were burned by submersion of the dorsum in water (~95°C) to create a full thickness burn on ~30% of the body. Skeletal muscle was harvested from spinotrapezius underneath burn wounds (local) and the quadriceps (distal) of sham and burn treated mice at 3h, 24h, 4d and 10d post-injury. Mitochondrial respiration was determined in permeabilized myofiber bundles by high-resolution respirometry. Caspase 9 and caspase 3 protein concentration were determined by western blot. In muscle local to burn wounds, respiration coupled to ATP production was significantly diminished at 3h and 24h post-injury (P<0.001), as was mitochondrial coupling control (P<0.001). There was a 5- (P<0.05) and 8-fold (P<0.001) increase in respiration in response to cytochrome at 3h and 24h post burn, indicating damage to the outer mitochondrial membranes. Moreover, we also observed greater active caspase 9 and caspase 3 in muscle local to burn wounds, indicating the induction of apoptosis. Distal muscle mitochondrial function was unaltered by burn trauma until 10d post burn, where both respiratory capacity (P<0.05) and coupling control (P<0.05) was significantly lower than sham. These data highlight a differential response in muscle mitochondrial function to burn trauma, where the timing, degree and mode of dysfunction are dependent on whether the muscle is local or distal to the burn wound. PMID:26615714

  7. Does neuromuscular electrical stimulation training of the lower limb have functional effects on the elderly?: A systematic review.

    PubMed

    Langeard, Antoine; Bigot, Lucile; Chastan, Nathalie; Gauthier, Antoine

    2017-05-01

    The lower limb muscle functions of the elderly are known to be preferentially altered by ageing. Traditional training effectively counteracts some of these functional declines but is not always accessible due to its cost and to the accessibility of the training centers and to the incapacities of some seniors to practice some exercises. Neuromuscular electrical stimulation (NMES) could provide an interesting alternative muscle training technique because it is inexpensive and transportable. The aim of this systematic review was to summarize the current evidence on the effect of the use of lower limb NMES as a training technique for healthy elderly rehabilitation. Electronic databases were searched for trials occurring between 1971 (first occurrence of NMES training) and November 2016. Ten published articles were retrieved. Training programs either used NMES alone, or NMES associated with voluntary muscle contraction (NMES+). They either targeted calves or thigh muscles and their training length and intensity were heterogeneous but all studies noted positive effects of NMES on the elderly's functional status. Indeed, NMES efficiently improved functional and molecular muscle physiology, and, depending on the studies, could lead to better gait and balance performances especially among less active elderly. Given the association between gait, balance and the risk of falls among the elderly, future research should focus on the efficiency of NMES to reduce the high fall rate among this population. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Unilateral nasal obstruction affects motor representation development within the face primary motor cortex in growing rats.

    PubMed

    Abe, Yasunori; Kato, Chiho; Uchima Koecklin, Karin Harumi; Okihara, Hidemasa; Ishida, Takayoshi; Fujita, Koichi; Yabushita, Tadachika; Kokai, Satoshi; Ono, Takashi

    2017-06-01

    Postnatal growth is influenced by genetic and environmental factors. Nasal obstruction during growth alters the electromyographic activity of orofacial muscles. The facial primary motor area represents muscles of the tongue and jaw, which are essential in regulating orofacial motor functions, including chewing and jaw opening. This study aimed to evaluate the effect of chronic unilateral nasal obstruction during growth on the motor representations within the face primary motor cortex (M1). Seventy-two 6-day-old male Wistar rats were randomly divided into control ( n = 36) and experimental ( n = 36) groups. Rats in the experimental group underwent unilateral nasal obstruction after cauterization of the external nostril at 8 days of age. Intracortical microstimulation (ICMS) mapping was performed when the rats were 5, 7, 9, and 11 wk old in control and experimental groups ( n = 9 per group per time point). Repeated-measures multivariate ANOVA was used for intergroup and intragroup statistical comparisons. In the control and experimental groups, the total number of positive ICMS sites for the genioglossus and anterior digastric muscles was significantly higher at 5, 7, and 9 wk, but there was no significant difference between 9 and 11 wk of age. Moreover, the total number of positive ICMS sites was significantly smaller in the experimental group than in the control at each age. It is possible that nasal obstruction induced the initial changes in orofacial motor behavior in response to the altered respiratory pattern, which eventually contributed to face-M1 neuroplasticity. NEW & NOTEWORTHY Unilateral nasal obstruction in rats during growth periods induced changes in arterial oxygen saturation (SpO 2 ) and altered development of the motor representation within the face primary cortex. Unilateral nasal obstruction occurring during growth periods may greatly affect not only respiratory function but also craniofacial function in rats. Nasal obstruction should be treated as soon as possible to avoid adverse effects on normal growth, development, and physiological functions. Copyright © 2017 the American Physiological Society.

  9. Interleukin 1 and Tumor Necrosis Factor Inhibit Cardiac Myocyte β -adrenergic Responsiveness

    NASA Astrophysics Data System (ADS)

    Gulick, Tod; Chung, Mina K.; Pieper, Stephen J.; Lange, Louis G.; Schreiner, George F.

    1989-09-01

    Reversible congestive heart failure can accompany cardiac allograft rejection and inflammatory myocarditis, conditions associated with an immune cell infiltrate of the myocardium. To determine whether immune cell secretory products alter cardiac muscle metabolism without cytotoxicity, we cultured cardiac myocytes in the presence of culture supernatants from activated immune cells. We observed that these culture supernatants inhibit β -adrenergic agonist-mediated increases in cultured cardiac myocyte contractility and intracellular cAMP accumulation. The myocyte contractile response to increased extracellular Ca2+ concentration is unaltered by prior exposure to these culture supernatants, as is the increase in myocyte intracellular cAMP concentration in response to stimulation with forskolin, a direct adenyl cyclase activator. Inhibition occurs in the absence of alteration in β -adrenergic receptor density or ligand binding affinity. Suppressive activity is attributable to the macrophage-derived cytokines interleukin 1 and tumor necrosis factor. Thus, these observations describe a role for defined cytokines in regulating the hormonal responsiveness and function of contractile cells. The effects of interleukin 1 and tumor necrosis factor on intracellular cAMP accumulation may be a model for immune modulation of other cellular functions dependent upon cyclic nucleotide metabolism. The uncoupling of agonist-occupied receptors from adenyl cyclase suggests that β -receptor or guanine nucleotide binding protein function is altered by the direct or indirect action of cytokines on cardiac muscle cells.

  10. Coronary endothelial function and vascular smooth muscle proliferation are programmed by early-gestation dexamethasone exposure in sheep

    PubMed Central

    Volk, Kenneth A.; Roghair, Robert D.; Jung, Felicia; Scholz, Thomas D.; Lamb, Fred S.

    2010-01-01

    Exposure of the early-gestation ovine fetus to exogenous glucocorticoids induces changes in postnatal cardiovascular physiology. We sought to characterize coronary artery vascular function in this model by elucidating the contribution of nitric oxide and reactive oxygen species to altered coronary vascular reactivity and examining the proliferative potential of coronary artery vascular smooth muscle cells. Dexamethasone (dex, 0.28 mg·kg−1·day−1 for 48 h) was administered to pregnant ewes at 27–28-day gestation (term 145 days). Coronary arteries were isolated from 1- to 2-wk-old dex-exposed offspring and aged-matched controls. Compared with controls, coronary arteries from dex-exposed lambs demonstrated enhanced vasoconstriction to endothelin-1 and ACh that was abolished by endothelial removal or preincubation with the nitric oxide synthase inhibitor l-NNA, membrane-permeable superoxide dismutase + catalase, or apamin + charybdotoxin, but not indomethacin. The rate of coronary vascular smooth muscle cell (VSMC) proliferation was also significantly greater in dex-exposed lambs. Protein levels of the proliferating cell nuclear antigen were increased and α-smooth muscle actin decreased in dex-exposed coronary VSMC, consistent with a proliferative state. Finally, expression of the NADPH oxidase Nox 4, but not Nox 1, mRNA was also decreased in coronary VSMC from dex-exposed lambs. These findings suggest an important interaction exists between early-gestation glucocorticoid exposure and reactive oxygen species that is associated with alterations in endothelial function and coronary VSMC proliferation. These changes in coronary physiology are consistent with those associated with the development of atherosclerosis and may provide an important link between an adverse intrauterine environment and increased risk for coronary artery disease. PMID:20335378

  11. Voluntary physical activity protects from susceptibility to skeletal muscle contraction-induced injury but worsens heart function in mdx mice.

    PubMed

    Hourdé, Christophe; Joanne, Pierre; Medja, Fadia; Mougenot, Nathalie; Jacquet, Adeline; Mouisel, Etienne; Pannerec, Alice; Hatem, Stéphane; Butler-Browne, Gillian; Agbulut, Onnik; Ferry, Arnaud

    2013-05-01

    It is well known that inactivity/activity influences skeletal muscle physiological characteristics. However, the effects of inactivity/activity on muscle weakness and increased susceptibility to muscle contraction-induced injury have not been extensively studied in mdx mice, a murine model of Duchenne muscular dystrophy with dystrophin deficiency. In the present study, we demonstrate that inactivity (ie, leg immobilization) worsened the muscle weakness and the susceptibility to contraction-induced injury in mdx mice. Inactivity also mimicked these two dystrophic features in wild-type mice. In contrast, we demonstrate that these parameters can be improved by activity (ie, voluntary wheel running) in mdx mice. Biochemical analyses indicate that the changes induced by inactivity/activity were not related to fiber-type transition but were associated with altered expression of different genes involved in fiber growth (GDF8), structure (Actg1), and calcium homeostasis (Stim1 and Jph1). However, activity reduced left ventricular function (ie, ejection and shortening fractions) in mdx, but not C57, mice. Altogether, our study suggests that muscle weakness and susceptibility to contraction-induced injury in dystrophic muscle could be attributable, at least in part, to inactivity. It also suggests that activity exerts a beneficial effect on dystrophic skeletal muscle but not on the heart. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Muscle wasting in cancer cachexia: clinical implications, diagnosis, and emerging treatment strategies.

    PubMed

    Dodson, Shontelle; Baracos, Vickie E; Jatoi, Aminah; Evans, William J; Cella, David; Dalton, James T; Steiner, Mitchell S

    2011-01-01

    Cancer cachexia is a complex metabolic condition characterized by loss of skeletal muscle. Common clinical manifestations include muscle wasting, anemia, reduced caloric intake, and altered immune function, which contribute to increased disability, fatigue, diminished quality of life, and reduced survival. The prevalence of cachexia and the impact of this disorder on the patient and family underscore the need for effective management strategies. Dietary supplementation and appetite stimulation alone are inadequate to reverse the underlying metabolic abnormalities of cancer cachexia and have limited long-term impact on patient quality of life and survival. Therapies that can increase muscle mass and physical performance may be a promising option; however, there are currently no drugs approved for the prevention or treatment of cancer cachexia. Several agents are in clinical development, including anabolic agents, such as selective androgen receptor modulators and drugs targeting inflammatory cytokines that promote skeletal muscle catabolism.

  13. Altered expression pattern of molecular factors involved in colonic smooth muscle functions: an immunohistochemical study in patients with diverticular disease.

    PubMed

    Mattii, Letizia; Ippolito, Chiara; Segnani, Cristina; Battolla, Barbara; Colucci, Rocchina; Dolfi, Amelio; Bassotti, Gabrio; Blandizzi, Corrado; Bernardini, Nunzia

    2013-01-01

    The pathogenesis of diverticular disease (DD) is thought to result from complex interactions among dietary habits, genetic factors and coexistence of other bowel abnormalities. These conditions lead to alterations in colonic pressure and motility, facilitating the formation of diverticula. Although electrophysiological studies on smooth muscle cells (SMCs) have investigated colonic motor dysfunctions, scarce attention has been paid to their molecular abnormalities, and data on SMCs in DD are lacking. Accordingly, the main purpose of this study was to evaluate the expression patterns of molecular factors involved in the contractile functions of SMCs in the tunica muscularis of colonic specimens from patients with DD. By means of immunohistochemistry and image analysis, we examined the expression of Cx26 and Cx43, which are prominent components of gap junctions in human colonic SMCs, as well as pS368-Cx43, PKCps, RhoA and αSMA, all known to regulate the functions of gap junctions and the contractile activity of SMCs. The immunohistochemical analysis revealed significant abnormalities in DD samples, concerning both the expression and distribution patterns of most of the investigated molecular factors. This study demonstrates, for the first time, that an altered pattern of factors involved in SMC contractility is present at level of the tunica muscularis of DD patients. Moreover, considering that our analysis was conducted on colonic tissues not directly affected by diverticular lesions or inflammatory reactions, it is conceivable that these molecular alterations may precede and predispose to the formation of diverticula, rather than being mere consequences of the disease.

  14. The effects of aging on hypoglossal motoneurons in rats.

    PubMed

    Schwarz, Emilie C; Thompson, Jodi M; Connor, Nadine P; Behan, Mary

    2009-03-01

    Aging can result in a loss of neuronal cell bodies and a decrease in neuronal size in some regions of the brain and spinal cord. Motoneuron loss in the spinal cord is thought to contribute to the progressive decline in muscle mass and strength that occurs with age (sarcopenia). Swallowing disorders represent a large clinical problem in elderly persons; however, age-related alterations in cranial motoneurons that innervate muscles involved in swallowing have been understudied. We aimed to determine if age-related alterations occurred in the hypoglossal nucleus in the brainstem. If present, these changes might help explain alterations at the neuromuscular junction and changes in the contractile properties of tongue muscle that have been reported in older rats. We hypothesized that with increasing age there would be a loss of motoneurons and a reduction in neuronal size and the number of primary dendrites associated with each hypoglossal motoneuron. Neurons in the hypoglossal nucleus were visualized with the neuronal marker NeuN in young (9-10 months), middle-aged (24-25 months), and old (32-33 months) male F344/BN rats. Hypoglossal motoneurons were retrograde-labeled with injections of Cholera Toxin beta into the genioglossus muscle of the tongue and visualized using immunocytochemistry. Results indicated that the number of primary dendrites of hypoglossal motoneurons decreased significantly with age, while no age-associated changes were found in the number or size of hypoglossal motoneurons. Loss of primary dendrites could reduce the number of synaptic inputs and thereby impair function.

  15. The Effects of Aging on Hypoglossal Motoneurons in Rats

    PubMed Central

    Schwarz, Emilie C.; Thompson, Jodi M.; Connor, Nadine P.; Behan, Mary

    2008-01-01

    Aging can result in a loss of neuronal cell bodies and a decrease in neuronal size in some regions of the brain and spinal cord. Motoneuron loss in the spinal cord is thought to contribute to the progressive decline in muscle mass and strength that occurs with age (sarcopenia). Swallowing disorders represent a large clinical problem in elderly persons; however, age-related alterations in cranial motoneurons that innervate muscles involved in swallowing have been understudied. We aimed to determine if age-related alterations occurred in the hypoglossal nucleus in the brainstem. If present, these changes might help explain alterations at the neuromuscular junction and changes in the contractile properties of tongue muscle that have been reported in older rats. We hypothesized that with increasing age, there would be a loss of motoneurons and a reduction in neuronal size and the number of primary dendrites associated with each hypoglossal motoneuron. Neurons in the hypoglossal nucleus were visualized with the neuronal marker NeuN in young (9–10 months), middle-aged (24–25 months), and old (32–33 months) male F344/BN rats. Hypoglossal motoneurons were retrograde labeled with injections of Cholera Toxin β into the genioglossus muscle of the tongue and visualized using immunocytochemistry. Results indicated that the number of primary dendrites of hypoglossal motoneurons decreased significantly with age, while no age-associated changes were found in the number or size of hypoglossal motoneurons. Loss of primary dendrites could reduce the number of synaptic inputs and thereby impair function. PMID:18716837

  16. Arsenic Promotes NF-Kb-Mediated Fibroblast Dysfunction and Matrix Remodeling to Impair Muscle Stem Cell Function

    PubMed Central

    Zhang, Changqing; Ferrari, Ricardo; Beezhold, Kevin; Stearns-Reider, Kristen; D’Amore, Antonio; Haschak, Martin; Stolz, Donna; Robbins, Paul D.; Barchowsky, Aaron; Ambrosio, Fabrisia

    2016-01-01

    Arsenic is a global health hazard that impacts over 140 million individuals worldwide. Epidemiological studies reveal prominent muscle dysfunction and mobility declines following arsenic exposure; yet, mechanisms underlying such declines are unknown. The objective of this study was to test the novel hypothesis that arsenic drives a maladaptive fibroblast phenotype to promote pathogenic myomatrix remodeling and compromise the muscle stem (satellite) cell (MuSC) niche. Mice were exposed to environmentally relevant levels of arsenic in drinking water before receiving a local muscle injury. Arsenic-exposed muscles displayed pathogenic matrix remodeling, defective myofiber regeneration and impaired functional recovery, relative to controls. When naïve human MuSCs were seeded onto three-dimensional decellularized muscle constructs derived from arsenic-exposed muscles, cells displayed an increased fibrogenic conversion and decreased myogenicity, compared with cells seeded onto control constructs. Consistent with myomatrix alterations, fibroblasts isolated from arsenic-exposed muscle displayed sustained expression of matrix remodeling genes, the majority of which were mediated by NF-κB. Inhibition of NF-κB during arsenic exposure preserved normal myofiber structure and functional recovery after injury, suggesting that NF-κB signaling serves as an important mechanism of action for the deleterious effects of arsenic on tissue healing. Taken together, the results from this study implicate myomatrix biophysical and/or biochemical characteristics as culprits in arsenic-induced MuSC dysfunction and impaired muscle regeneration. It is anticipated that these findings may aid in the development of strategies to prevent or revert the effects of arsenic on tissue healing and, more broadly, provide insight into the influence of the native myomatrix on stem cell behavior. PMID:26537186

  17. Differences in feedforward trunk muscle activity in subgroups of patients with mechanical low back pain.

    PubMed

    Silfies, Sheri P; Mehta, Rupal; Smith, Sue S; Karduna, Andrew R

    2009-07-01

    To investigate alterations in trunk muscle timing patterns in subgroups of patients with mechanical low back pain (MLBP). Our hypothesis was that subjects with MLBP would demonstrate delayed muscle onset and have fewer muscles functioning in a feedforward manner than the control group. We further hypothesized that we would find differences between subgroups of our patients with MLBP, grouped according to diagnosis (segmental instability and noninstability). Case-control. Laboratory. Forty-three patients with chronic MLBP (25 instability, 18 noninstability) and 39 asymptomatic controls. Not applicable. Surface electromyography was used to measure onset time of 10 trunk muscles during a self-perturbation task. Trunk muscle onset latency relative to the anterior deltoid was calculated and the number of muscles functioning in feedforward determined. Activation timing patterns (P<.01; eta=.50; 1-beta=.99) and number of muscles functioning in feedforward (P=.02; eta=.30; 1-beta=.83) were statistically different between patients with MLBP and controls. The control group activated the external oblique, lumbar multifidus, and erector spinae muscles in a feedforward manner. The heterogeneous MLBP group did not activate the trunk musculature in feedforward, but responded with significantly delayed activations. MLBP subgroups demonstrated significantly different timing patterns. The noninstability MLBP subgroup activated trunk extensors in a feedforward manner, similar to the control group, but significantly earlier than the instability subgroup. Lack of feedforward activation of selected trunk musculature in patients with MLBP may result in a period of inefficient muscular stabilization. Activation timing was more impaired in the instability than the noninstability MLBP subgroup. Training specifically for recruitment timing may be an important component of the rehabilitation program.

  18. A Peculiar Formula of Essential Amino Acids Prevents Rosuvastatin Myopathy in Mice

    PubMed Central

    D'Antona, Giuseppe; Tedesco, Laura; Ruocco, Chiara; Corsetti, Giovanni; Ragni, Maurizio; Fossati, Andrea; Saba, Elisa; Fenaroli, Francesca; Montinaro, Mery; Carruba, Michele O.; Valerio, Alessandra

    2016-01-01

    Abstract Aims: Myopathy, characterized by mitochondrial oxidative stress, occurs in ∼10% of statin-treated patients, and a major risk exists with potent statins such as rosuvastatin (Rvs). We sought to determine whether a peculiar branched-chain amino acid-enriched mixture (BCAAem), found to improve mitochondrial function and reduce oxidative stress in muscle of middle-aged mice, was able to prevent Rvs myopathy. Results: Dietary supplementation of BCAAem was able to prevent the structural and functional alterations of muscle induced by Rvs in young mice. Rvs-increased plasma 3-methylhistidine (a marker of muscular protein degradation) was prevented by BCAAem. This was obtained without changes of Rvs ability to reduce cholesterol and triglyceride levels in blood. Rather, BCAAem promotes de novo protein synthesis and reduces proteolysis in cultured myotubes. Morphological alterations of C2C12 cells induced by statin were counteracted by amino acids, as were the Rvs-increased atrogin-1 mRNA and protein levels. Moreover, BCAAem maintained mitochondrial mass and density and citrate synthase activity in skeletal muscle of Rvs-treated mice beside oxygen consumption and ATP levels in C2C12 cells exposed to statin. Notably, BCAAem assisted Rvs to reduce oxidative stress and to increase the anti-reactive oxygen species (ROS) defense system in skeletal muscle. Innovation and Conclusions: The complex interplay between proteostasis and antioxidant properties may underlie the mechanism by which a specific amino acid formula preserves mitochondrial efficiency and muscle health in Rvs-treated mice. Strategies aimed at promoting protein balance and controlling mitochondrial ROS level may be used as therapeutics for the treatment of muscular diseases involving mitochondrial dysfunction, such as statin myopathy. Antioxid. Redox Signal. 25, 595–608. PMID:27245589

  19. Short-term pyrrolidine dithiocarbamate administration attenuates cachexia-induced alterations to muscle and liver in ApcMin/+ mice.

    PubMed

    Narsale, Aditi A; Puppa, Melissa J; Hardee, Justin P; VanderVeen, Brandon N; Enos, Reilly T; Murphy, E Angela; Carson, James A

    2016-09-13

    Cancer cachexia is a complex wasting condition characterized by chronic inflammation, disrupted energy metabolism, and severe muscle wasting. While evidence in pre-clinical cancer cachexia models have determined that different systemic inflammatory inhibitors can attenuate several characteristics of cachexia, there is a limited understanding of their effects after cachexia has developed, and whether short-term administration is sufficient to reverse cachexia-induced signaling in distinctive target tissues. Pyrrolidine dithiocarbamate (PDTC) is a thiol compound having anti-inflammatory and antioxidant properties which can inhibit STAT3 and nuclear factor κB (NF-κB) signaling in mice. This study examined the effect of short-term PDTC administration to ApcMin/+ mice on cachexia-induced disruption of skeletal muscle protein turnover and liver metabolic function. At 16 weeks of age ApcMin/+ mice initiating cachexia (7% BW loss) were administered PDTC (10mg/kg bw/d) for 2 weeks. Control ApcMin/+ mice continued to lose body weight during the treatment period, while mice receiving PDTC had no further body weight decrease. PDTC had no effect on either intestinal tumor burden or circulating IL-6. In muscle, PDTC rescued signaling disrupting protein turnover regulation. PDTC suppressed the cachexia induction of STAT3, increased mTORC1 signaling and protein synthesis, and suppressed the induction of Atrogin-1 protein expression. Related to cachectic liver metabolic function, PDTC treatment attenuated glycogen and lipid content depletion independent to the activation of STAT3 and mTORC1 signaling. Overall, these results demonstrate short-term PDTC treatment to cachectic mice attenuated cancer-induced disruptions to muscle and liver signaling, and these changes were independent to altered tumor burden and circulating IL-6.

  20. Short-term pyrrolidine dithiocarbamate administration attenuates cachexia-induced alterations to muscle and liver in ApcMin/+ mice

    PubMed Central

    VanderVeen, Brandon N.; Enos, Reilly T.; Murphy, E. Angela; Carson, James A.

    2016-01-01

    Cancer cachexia is a complex wasting condition characterized by chronic inflammation, disrupted energy metabolism, and severe muscle wasting. While evidence in pre-clinical cancer cachexia models have determined that different systemic inflammatory inhibitors can attenuate several characteristics of cachexia, there is a limited understanding of their effects after cachexia has developed, and whether short-term administration is sufficient to reverse cachexia-induced signaling in distinctive target tissues. Pyrrolidine dithiocarbamate (PDTC) is a thiol compound having anti-inflammatory and antioxidant properties which can inhibit STAT3 and nuclear factor κB (NF-κB) signaling in mice. This study examined the effect of short-term PDTC administration to ApcMin/+ mice on cachexia-induced disruption of skeletal muscle protein turnover and liver metabolic function. At 16 weeks of age ApcMin/+ mice initiating cachexia (7% BW loss) were administered PDTC (10mg/kg bw/d) for 2 weeks. Control ApcMin/+ mice continued to lose body weight during the treatment period, while mice receiving PDTC had no further body weight decrease. PDTC had no effect on either intestinal tumor burden or circulating IL-6. In muscle, PDTC rescued signaling disrupting protein turnover regulation. PDTC suppressed the cachexia induction of STAT3, increased mTORC1 signaling and protein synthesis, and suppressed the induction of Atrogin-1 protein expression. Related to cachectic liver metabolic function, PDTC treatment attenuated glycogen and lipid content depletion independent to the activation of STAT3 and mTORC1 signaling. Overall, these results demonstrate short-term PDTC treatment to cachectic mice attenuated cancer-induced disruptions to muscle and liver signaling, and these changes were independent to altered tumor burden and circulating IL-6. PMID:27449092

  1. Motor plan differs for young and older adults during similar movements.

    PubMed

    Casamento-Moran, Agostina; Chen, Yen-Ting; Lodha, Neha; Yacoubi, Basma; Christou, Evangelos A

    2017-04-01

    Older adults exhibit altered activation of the agonist and antagonist muscles during goal-directed movements compared with young adults. However, it remains unclear whether the differential activation of the antagonistic muscles in older adults results from an impaired motor plan or an altered ability of the muscle to contract. The purpose of this study, therefore, was to determine whether the motor plan differs for young and older adults. Ten young (26.1 ± 4.3 yr, 4 women) and 16 older adults (71.9 ± 6.9 yr, 9 women) participated in the study. Participants performed 100 trials of fast goal directed movements with ankle dorsiflexion while we recorded the electromyographic activity of the primary agonist (tibialis anterior; TA) and antagonist (soleus; SOL) muscles. From those 100 trials we selected 5 trials in each of 3 movement end-point categories (fast, accurate, and slow). We investigated age-associated differences in the motor plan by quantifying the individual activity and coordination of the agonist and antagonist muscles. During similar movement end points, older adults exhibited similar activation of the agonist (TA) and antagonist (SOL) muscles compared with young adults. In addition, the coordination of the agonist and antagonist muscles (TA and SOL) was different between the two age groups. Specifically, older adults exhibited lower TA-SOL overlap ( F 1,23 = 41.2, P < 0.001) and greater TA-SOL peak EMG delay ( F 1,25 = 35.5, P < 0.001). This finding suggests that although subjects in both age groups displayed similar movement end points, they exhibited a different motor plan, as demonstrated by altered coordination between the agonist and antagonist muscles. NEW & NOTEWORTHY We aimed to determine whether the altered activation of muscles in older adults compared with young adults during fast goal-directed movements is related to an altered motor plan. For matched movements, there were differences in the coordination of antagonistic muscles but no differences in the individual activation of muscles. We provide novel evidence that the differential activation of muscles in older adults is related to an altered motor plan. Copyright © 2017 the American Physiological Society.

  2. Pulmonary functions in patients with subclinical hypothyroidism.

    PubMed

    Cakmak, Gulfidan; Saler, Tayyibe; Saglam, Zuhal Aydan; Yenigun, Mustafa; Ataoglu, Esra; Demir, Tuncalp; Temiz, Levent Umit

    2011-10-01

    To determine whether alterations in pulmonary function takes place in subclinical hypothyroidism by examining the diffusion lung capacity and muscle strength of such patients. This is a descriptive study conducted in 2009 at Haseki Training and Research Hospital, Istanbul, Turkey. Hundred and twenty-six patients with subclinical hypothyroidism and 58 age and sex matched individuals were recruited. Simple spirometry tests were performed, and pulmonary diffusion capacity (DLco) and muscle strength were measured. ScH patients showed a significant reduciton of the following pulmonary function tests (% predicted value) as compared with control subjects: FVC, FEV1, FEV1%, FEF25-75, FEF25-75%, DLco, DLco/VA, Pimax, Pimax% and Pemax%. These data indicate that pulmonary functions are effected in subclinical hypothyrodism. Therefore patients with or who are at high risk of having subclinical hypothyroidism, should be subjected to evaluation of pulmonary functions with simple spirometry.

  3. Dystrophin restoration therapy improves both the reduced excitability and the force drop induced by lengthening contractions in dystrophic mdx skeletal muscle.

    PubMed

    Roy, Pauline; Rau, Fredérique; Ochala, Julien; Messéant, Julien; Fraysse, Bodvael; Lainé, Jeanne; Agbulut, Onnik; Butler-Browne, Gillian; Furling, Denis; Ferry, Arnaud

    2016-01-01

    The greater susceptibility to contraction-induced skeletal muscle injury (fragility) is an important dystrophic feature and tool for testing preclinic dystrophin-based therapies for Duchenne muscular dystrophy. However, how these therapies reduce the muscle fragility is not clear. To address this question, we first determined the event(s) of the excitation-contraction cycle which is/are altered following lengthening (eccentric) contractions in the mdx muscle. We found that the immediate force drop following lengthening contractions, a widely used measure of muscle fragility, was associated with reduced muscle excitability. Moreover, the force drop can be mimicked by an experimental reduction in muscle excitation of uninjured muscle. Furthermore, the force drop was not related to major neuromuscular transmission failure, excitation-contraction uncoupling, and myofibrillar impairment. Secondly, and importantly, the re-expression of functional truncated dystrophin in the muscle of mdx mice using an exon skipping strategy partially prevented the reductions in both force drop and muscle excitability following lengthening contractions. We demonstrated for the first time that (i) the increased susceptibility to contraction-induced muscle injury in mdx mice is mainly attributable to reduced muscle excitability; (ii) dystrophin-based therapy improves fragility of the dystrophic skeletal muscle by preventing reduction in muscle excitability.

  4. [Sarcopenia in elderly : benefice of physical exercices].

    PubMed

    Laszlo, André

    2016-11-09

    From the age of fifty onwards a progressive loss of muscle mass may be observed, it often leads to real sarcopenia. Sedentary life style and unbalanced feeding habits represent major risk factors. The decrease in muscle tone leads to a loss of function and an altered quality of life, not to mention socioeconomic factors. The molecular mechanisms of sarcopenia are complex but our understanding of them is increasing. There is no pharmaceutical treatment of sarcopenia of use in current practice. Regular, several times a week, practice of a combination of adapted muscle building physical and endurance exercises, associated with protein intake have shown there use. These exercises must be followed on the long term.

  5. Functional studies of RYR1 mutations in the skeletal muscle ryanodine receptor using human RYR1 complementary DNA.

    PubMed

    Sato, Keisaku; Pollock, Neil; Stowell, Kathryn M

    2010-06-01

    Malignant hyperthermia is associated with mutations within the gene encoding the skeletal muscle ryanodine receptor, the calcium channel that releases Ca from sarcoplasmic reticulum stores triggering muscle contraction, and other metabolic activities. More than 200 variants have been identified in the ryanodine receptor, but only some of these have been shown to functionally affect the calcium channel. To implement genetic testing for malignant hyperthermia, variants must be shown to alter the function of the channel. A number of different ex vivo methods can be used to demonstrate functionality, as long as cells from human patients can be obtained and cultured from at least two unrelated families. Because malignant hyperthermia is an uncommon disorder and many variants seem to be private, including the newly identified H4833Y mutation, these approaches are limited. The authors cloned the human skeletal muscle ryanodine receptor complementary DNA and expressed both normal and mutated forms in HEK-293 cells and carried out functional analysis using ryanodine binding assays in the presence of a specific agonist, 4-chloro-m-cresol, and the antagonist Mg. Transiently expressed human ryanodine receptor proteins colocalized with an endoplasmic reticulum marker in HEK-293 cells. Ryanodine binding assays confirmed that mutations causing malignant hyperthermia resulted in a hypersensitive channel, while those causing central core disease resulted in a hyposensitive channel. The functional assays validate recombinant human skeletal muscle ryanodine receptor for analysis of variants and add an additional mutation (H4833Y) to the repertoire of mutations that can be used for the genetic diagnosis of malignant hyperthermia.

  6. A theoretical framework for understanding neuromuscular response to lower extremity joint injury.

    PubMed

    Pietrosimone, Brian G; McLeod, Michelle M; Lepley, Adam S

    2012-01-01

    Neuromuscular alterations are common following lower extremity joint injury and often lead to decreased function and disability. These neuromuscular alterations manifest in inhibition or abnormal facilitation of the uninjured musculature surrounding an injured joint. Unfortunately, these neural alterations are poorly understood, which may affect clinical recognition and treatment of these injuries. Understanding how these neural alterations affect physical function may be important for proper clinical management of lower extremity joint injuries. Pertinent articles focusing on neuromuscular consequences and treatment of knee and ankle injuries were collected from peer-reviewed sources available on the Web of Science and Medline databases from 1975 through 2010. A theoretical model to illustrate potential relationships between neural alterations and clinical impairments was constructed from the current literature. Lower extremity joint injury affects upstream cortical and spinal reflexive excitability pathways as well as downstream muscle function and overall physical performance. Treatment targeting the central nervous system provides an alternate means of treating joint injury that may be effective for patients with neuromuscular alterations. Disability is common following joint injury. There is mounting evidence that alterations in the central nervous system may relate to clinical changes in biomechanics that may predispose patients to further injury, and novel clinical interventions that target neural alterations may improve therapeutic outcomes.

  7. A Theoretical Framework for Understanding Neuromuscular Response to Lower Extremity Joint Injury

    PubMed Central

    Pietrosimone, Brian G.; McLeod, Michelle M.; Lepley, Adam S.

    2012-01-01

    Background: Neuromuscular alterations are common following lower extremity joint injury and often lead to decreased function and disability. These neuromuscular alterations manifest in inhibition or abnormal facilitation of the uninjured musculature surrounding an injured joint. Unfortunately, these neural alterations are poorly understood, which may affect clinical recognition and treatment of these injuries. Understanding how these neural alterations affect physical function may be important for proper clinical management of lower extremity joint injuries. Methods: Pertinent articles focusing on neuromuscular consequences and treatment of knee and ankle injuries were collected from peer-reviewed sources available on the Web of Science and Medline databases from 1975 through 2010. A theoretical model to illustrate potential relationships between neural alterations and clinical impairments was constructed from the current literature. Results: Lower extremity joint injury affects upstream cortical and spinal reflexive excitability pathways as well as downstream muscle function and overall physical performance. Treatment targeting the central nervous system provides an alternate means of treating joint injury that may be effective for patients with neuromuscular alterations. Conclusions: Disability is common following joint injury. There is mounting evidence that alterations in the central nervous system may relate to clinical changes in biomechanics that may predispose patients to further injury, and novel clinical interventions that target neural alterations may improve therapeutic outcomes. PMID:23016066

  8. Meat Science and Muscle Biology Symposium: manipulating meat tenderness by increasing the turnover of intramuscular connective tissue.

    PubMed

    Purslow, P P; Archile-Contreras, A C; Cha, M C

    2012-03-01

    Controlled reduction of the connective tissue contribution to cooked meat toughness is an objective that would have considerable financial impact in terms of added product value. The amount of intramuscular connective tissue in a muscle appears connected to its in vivo function, so reduction of the overall connective tissue content is not thought to be a viable target. However, manipulation of the state of maturity of the collagenous component is a biologically viable target; by increasing connective tissue turnover, less mature structures can be produced that are functional in vivo but more easily broken down on cooking at temperatures above 60°C, thus improving cooked meat tenderness. Recent work using cell culture models of fibroblasts derived from muscle and myoblasts has identified a range of factors that alter the activity of the principal enzymes responsible for connective tissue turnover, the matrix metalloproteinases (MMP). Fibroblasts cultured from 3 different skeletal muscles from the same animal show different cell proliferation and MMP activity, which may relate to the different connective tissue content and architecture in functionally different muscles. Expression of MMP by fibroblasts is increased by vitamins that can counter the negative effects of oxidative stress on new collagen synthesis. Preliminary work using in situ zymography of myotubes in culture also indicates increased MMP activity in the presence of epinephrine and reactive oxidative species. Comparison of the relative changes in MMP expression from muscle cells vs. fibroblasts shows that myoblasts are more responsive to a range of stimuli. Muscle cells are likely to produce more of the total MMP in muscle tissue as a whole, and the expression of latent forms of the enzymes (i.e., pro-MMP) may vary between oxidative and glycolytic muscle fibers within the same muscle. The implication is that the different muscle fiber composition of different muscles eaten as meat may influence the potential for manipulation of their connective tissue turnover.

  9. Near-infrared spectroscopy and skeletal muscle oxidative function in vivo in health and disease: a review from an exercise physiology perspective

    NASA Astrophysics Data System (ADS)

    Grassi, Bruno; Quaresima, Valentina

    2016-09-01

    In most daily activities related to work or leisure, the energy for muscle work substantially comes from oxidative metabolism. Functional limitations or impairments of this metabolism can significantly affect exercise tolerance and performance. As a method for the functional evaluation of skeletal muscle oxidative metabolism, near-infrared spectroscopy (NIRS) has important strengths but also several limitations, some of which have been overcome by recent technological developments. Skeletal muscle fractional O2 extraction, the main variable which can be noninvasively evaluated by NIRS, is the result of the dynamic balance between O2 utilization and O2 delivery; it can yield relevant information on key physiological and pathophysiological mechanisms, relevant in the evaluation of exercise performance and exercise tolerance in healthy subjects (in normal and in altered environmental conditions) and in patients. In the right hands, NIRS can offer insights into the physiological and pathophysiological adaptations to conditions of increased O2 needs that involve, in an integrated manner, different organs and systems of the body. In terms of patient evaluation, NIRS allows determination of the evolution of the functional impairments, to identify their correlations with clinical symptoms, to evaluate the effects of therapeutic or rehabilitative interventions, and to gain pathophysiological and diagnostic insights.

  10. Near-infrared spectroscopy and skeletal muscle oxidative function in vivo in health and disease: a review from an exercise physiology perspective.

    PubMed

    Grassi, Bruno; Quaresima, Valentina

    2016-09-01

    In most daily activities related to work or leisure, the energy for muscle work substantially comes from oxidative metabolism. Functional limitations or impairments of this metabolism can significantly affect exercise tolerance and performance. As a method for the functional evaluation of skeletal muscle oxidative metabolism, near-infrared spectroscopy (NIRS) has important strengths but also several limitations, some of which have been overcome by recent technological developments. Skeletal muscle fractional O2 extraction, the main variable which can be noninvasively evaluated by NIRS, is the result of the dynamic balance between O2 utilization and O2 delivery; it can yield relevant information on key physiological and pathophysiological mechanisms, relevant in the evaluation of exercise performance and exercise tolerance in healthy subjects (in normal and in altered environmental conditions) and in patients. In the right hands, NIRS can offer insights into the physiological and pathophysiological adaptations to conditions of increased O2 needs that involve, in an integrated manner, different organs and systems of the body. In terms of patient evaluation, NIRS allows determination of the evolution of the functional impairments, to identify their correlations with clinical symptoms, to evaluate the effects of therapeutic or rehabilitative interventions, and to gain pathophysiological and diagnostic insights.

  11. Are chronic neck pain, scapular dyskinesis and altered scapulothoracic muscle activity interrelated?: A case-control study with surface and fine-wire EMG.

    PubMed

    Castelein, Birgit; Cools, Ann; Parlevliet, Thierry; Cagnie, Barbara

    2016-12-01

    The function of the scapula is important in normal neck function and might be disturbed in patients with neck pain. The surrounding muscular system is important for the function of the scapula. To date, it is not clear if patients with idiopathic neck pain show altered activity of these scapulothoracic muscles. Therefore, the objective of this study was to investigate differences in deeper and superficial lying scapulothoracic muscle activity between patients with idiopathic neck pain and healthy controls during arm elevation, and to identify the influence of scapular dyskinesis on muscle activity. Scapular dyskinesis was rated with the yes/no method. The deeper lying (Levator Scapulae, Pectoralis Minor (Pm) and Rhomboid major) and superficial lying (Trapezius and Serratus Anterior) scapulothoracic muscles' activity was investigated with fine-wire and surface EMG, respectively, in 19 female subjects with idiopathic neck pain (age 28.3±10.1years, average duration of neck pain 45.6±36.3months) and 19 female healthy control subjects (age 29.3±11.7years) while performing scaption and towel wall slide. Possible interactions or differences between subject groups, scapular dyskinesis groups or phases of the task were studied with a linear mixed model. Higher Pm activity during the towel wallslide (p=0.024, mean difference 8.8±3.3% MVIC) was shown in patients with idiopathic neck pain in comparison with healthy controls. For the MT, a significant group∗dyskinesis interaction effect was found during scaption which revealed that patients with neck pain and scapular dyskinesis showed lower Middle Trapezius (MT) activity in comparison with healthy controls with scapular dyskinesis (p=0.029, mean difference 5.1±2.2% MVIC). In the presence of idiopathic neck pain, higher Pm activity during the towel wallslide was found. Patients with neck pain and scapular dyskinesis showed lower MT activity in comparison with healthy controls with scapular dyskinesis during scaption. Scapular dyskinesis did not have a significant influence on scapulothoracic muscle activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Persistent gut motor dysfunction in a murine model of T-cell-induced enteropathy.

    PubMed

    Mizutani, T; Akiho, H; Khan, W I; Murao, H; Ogino, H; Kanayama, K; Nakamura, K; Takayanagi, R

    2010-02-01

    Inflammatory bowel disease (IBD) patients in remission often experience irritable bowel syndrome (IBS)-like symptoms. We investigated the mechanism for intestinal muscle hypercontractility seen in T-cell-induced enteropathy in recovery phase. BALB/c mice were treated with an anti-CD3 antibody (100 microg per mouse) and euthanized at varying days post-treatment to investigate the histological changes, longitudinal smooth muscle cell contraction, cytokines (Th1, Th2 cytokines, TNF-alpha) and serotonin (5-HT)-expressing enterochromaffin cell numbers in the small intestine. The role of 5-HT in anti-CD3 antibody-induced intestinal muscle function in recovery phase was assessed by inhibiting 5-HT synthesis using 4-chloro-DL-phenylalanine (PCPA). Small intestinal tissue damage was observed from 24 h after the anti-CD3 antibody injection, but had resolved by day 5. Carbachol-induced smooth muscle cell contractility was significantly increased from 4 h after injection, and this muscle hypercontractility was evident in recovery phase (at day 7). Th2 cytokines (IL-4, IL-13) were significantly increased from 4 h to day 7. 5-HT-expressing cells in the intestine were increased from day 1 to day 7. The 5-HT synthesis inhibitor PCPA decreased the anti-CD3 antibody-induced muscle hypercontractility in recovery phase. Intestinal muscle hypercontractility in remission is maintained at the smooth muscle cell level. Th2 cytokines and 5-HT in the small intestine contribute to the maintenance of the altered muscle function in recovery phase.

  13. Analysis by two-dimensional Blue Native/SDS-PAGE of membrane protein alterations in rat soleus muscle after hindlimb unloading.

    PubMed

    Basco, Davide; Nicchia, Grazia Paola; Desaphy, Jean-François; Camerino, Diana Conte; Frigeri, Antonio; Svelto, Maria

    2010-12-01

    Muscle atrophy occurring in several pathophysiological conditions determines decreases in muscle protein synthesis, increases in the rate of proteolysis and changes in muscle fiber composition. To determine the effect of muscle atrophy induced by hindlimb unloading (HU) on membrane proteins from rat soleus, a proteomic approach based on two-dimensional Blue Native/SDS-PAGE was performed. Proteomic analysis of normal and HU soleus muscle demonstrates statistically significant changes in the relative level of 36 proteins. Among the proteins identified by mass spectrometry, most are involved in pathways associated with muscle fuel utilization, indicating a shift in metabolism from oxidative to glycolytic. Moreover, immunoblotting analysis revealed an increase in aquaporin-4 (AQP4) water channel and an alteration of proteins belonging to the dystrophin-glycoprotein complex (DGC). AQP4 and DGC are regulated in soleus muscle subjected to simulated microgravity in response to compensatory mechanisms induced by muscle atrophy, and they parallel the slow-to-fast twitch conversion that occurs in soleus fibers during HU. In conclusion, the alterations of soleus muscle membrane proteome may play a pivotal role in the mechanisms involved in disuse-induced muscle atrophy.

  14. Chronic exposure to pollutants in Madín Reservoir (Mexico) alters oxidative stress status and flesh quality in the common carp Cyprinus carpio.

    PubMed

    Morachis-Valdez, Gabriela; Dublán-García, Octavio; López-Martínez, Leticia Xochitl; Galar-Martínez, Marcela; Saucedo-Vence, Karinne; Gómez-Oliván, Leobardo Manuel

    2015-06-01

    Madín Reservoir (MR) is located on the Río Tlalnepantla in Mexico. Previous studies seeking to identify pollutants at this site evidence that MR water contains a considerable metal load as well as nonsteroidal anti-inflammatory drugs (NSAIDs) at concentrations above those determined suitable for aquatic life. This study aimed to evaluate whether chronic exposure to pollutants in MR alters oxidative stress status and flesh quality in muscle of the common carp Cyprinus carpio. The following biomarkers were evaluated in muscle of carp caught in the general area of discharge from the town of Viejo Madín: hydroperoxide content (HPC), lipid peroxidation (LPX), protein carbonyl content (PCC), and activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Physicochemical and textural properties of muscle were also evaluated. Results show that the metals Al and Fe were accumulated in muscle of C. carpio at levels of 21.3 and 29.6 μg L(-1), respectively, and the NSAIDs diclofenac, ibuprofen, and naproxen at levels from 0.08 to 0.21 ng L(-1). Fish exposed to discharge from the town of Viejo Madín showed significant increases in HPC (9.77 %), LPX (69.33 %), and PCC (220 %) with respect to control specimens (p < 0.05). Similarly, enzyme activity increased significantly: SOD (80.82 %), CAT (98.03 %), and GPx (49.76 %). In muscle, physicochemical properties evidenced mainly significant reductions compared to control values while textural properties showed significant increases. Thus, water in this reservoir is contaminated with xenobiotics that alter some biological functions in C. carpio, a fish species consumed by the local human population.

  15. Cyclooxygenase-dependent alterations in substance P-mediated contractility and tachykinin NK1 receptor expression in the colonic circular muscle of patients with slow transit constipation.

    PubMed

    Liu, Lu; Shang, Fei; Morgan, Matthew J; King, Denis W; Lubowski, David Z; Burcher, Elizabeth

    2009-04-01

    Tachykinins are important neurotransmitters regulating intestinal motility. Slow transit constipation (STC) represents an extreme colonic dysmotility with unknown etiology that predominantly affects women. We examined whether the tachykinin system is involved in the pathogenesis of STC. Isolated sigmoid colon circular muscle from female STC and control patients was studied using functional and quantitative reverse transcriptase-polymerase chain reaction methods. A possible alteration of neurotransmission was investigated by electrical field stimulation (EFS) and ganglionic stimulation by dimethylphenylpiperazinium (DMPP). Substance P (SP)-mediated contractions in circular muscle strips were significantly diminished in STC compared with age-matched control (P < 0.001). In contrast, contractile responses to neurokinin A, the selective tachykinin NK(2) receptor agonist, [Lys(5),MeLeu(9),Nle(10)]NKA(4-10), and acetylcholine were unaltered in STC. The reduced responses to SP in STC were fully restored by indomethacin, partially reversed by tetrodotoxin (TTX), but unaffected by atropine or hexamethonium. The restoration by indomethacin was blocked by the NK(1) receptor antagonist CP99994 [(2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine] and TTX. In STC colonic muscle, there was a significant increase of NK(1) receptor mRNA expression, but no difference in NK(2) mRNA level. DMPP generated biphasic responses, relaxation at lower and contraction at higher concentrations. Although the responses to DMPP were similar in STC and control, an altered contractile pattern in response to EFS was observed in STC circular muscle. In conclusion, we postulate that the diminished contractile response to SP in STC is due to an increased release of inhibitory prostaglandins through activation of up-regulated NK(1) receptors. Our results also indicate some malfunction of the enteric nervous system in STC.

  16. Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthu, Priya; Wang, Li; Yuan, Chen-Ching

    2012-04-02

    The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-{Delta}43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing ({approx} 1.5 nm) and no alterations in cross-bridgemore » mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I{sub 1,1}/I{sub 1,0}, indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-{Delta}43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-{Delta}43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.« less

  17. The efficacy of modified direct lateral versus posterior approach on gait function and hip muscle strength after primary total hip arthroplasty at 12months follow-up. An explorative randomised controlled trial.

    PubMed

    Rosenlund, Signe; Broeng, Leif; Overgaard, Søren; Jensen, Carsten; Holsgaard-Larsen, Anders

    2016-11-01

    The lateral and the posterior approach are the most commonly used procedures for total hip arthroplasty. Due to the detachment of the hip abductors, lateral approach is claimed to cause reduced hip muscle strength and altered gait pattern. However, this has not been investigated in a randomised controlled trial. The aim was to compare the efficacy of total hip arthroplasty performed by lateral or posterior approach on gait function and hip muscle strength up to 12months post-operatively. We hypothesised that posterior approach would be superior to lateral approach. Forty-seven patients with primary hip osteoarthritis were randomised to total hip arthroplasty with either posterior or lateral approach and evaluated pre-operatively, 3 and 12months post-operatively using 3-dimensional gait analyses as objective measures of gait function, including Gait Deviation Index, temporo-spatial parameters and range of motion. Isometric maximal hip muscle strength in abduction, flexion and extension was also tested. Post-operatively, no between-group difference in gait function was observed. However, both hip abductor and flexor muscle strength improved more in the posterior approach group: -0.20(Nm/kg)[95%CI:-0.4 to 0.0] and -0.20(Nm/kg)[95%CI:-0.4 to 0.0], respectively. Contrary to our first hypothesis, the overall gait function in the posterior approach group did not improve more than in the lateral approach group. However, in agreement with our second hypothesis, patients in the posterior approach group improved more in hip abductor and flexor muscle strength at 12months. Further investigation of the effect of reduced maximal hip muscle strength on functional capacity is needed. ClinicalTrials.gov. No.: NCT01616667. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Altered ventral neck muscle deformation for individuals with whiplash associated disorder compared to healthy controls - a case-control ultrasound study.

    PubMed

    Peterson, Gunnel; Dedering, Åsa; Andersson, Erika; Nilsson, David; Trygg, Johan; Peolsson, Michael; Wallman, Thorne; Peolsson, Anneli

    2015-04-01

    Previous studies have shown altered neck muscle function in individuals with chronic whiplash associated disorder (WAD). However, we lack real-time investigations with non-invasive methods that can distinguish between the different ventral neck muscle layers. This study investigated deformations and deformation rates in the sternocleidomastoid (SCM), longus capitis (Lcap), and longus colli (Lco) muscles with real-time ultrasonography. Twenty-six individuals with WAD were compared with 26 controls, matched for age and sex. Ultrasound imaging of the SCM, Lcap, and Lco were recorded during 10 repetitive arm elevations. The first and tenth arm elevations were post-process analyzed with speckle tracking. There were few significant differences in the deformations or deformation rates in the SCM, Lcap, and Lco between the WAD and control group. In controls, deformations and deformation rates showed linear positive relationships between SCM/Lcap, SCM/Lco, and Lcap/Lco which increased from the first arm elevation (R(2) = 0.14-0.70); to the tenth arm elevation (R(2) = 0.51-0.71). The WAD group showed similar or weaker linear relationship (R(2) < 0.19) during the tenth compared to the first (R(2) < 0.44) arm elevation except for deformations in Lcap/Lco (R(2) = 0.13-0.57). This result indicated that deformations and deformation rates in one muscle were correlated by similar deformations and deformation rates in other neck muscles in the control group, but this interplay between muscles was not found in the WAD group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. MRI-based registration of pelvic alignment affected by altered pelvic floor muscle characteristics.

    PubMed

    Bendová, Petra; Růzicka, Pavel; Peterová, Vera; Fricová, Martina; Springrová, Ingrid

    2007-11-01

    Pelvic floor muscles have potential to influence relative pelvic alignment. Side asymmetry in pelvic floor muscle tension is claimed to induce pelvic malalignment. However, its nature and amplitude are not clear. There is a need for non-invasive and reliable assessment method. An intervention experiment of unilateral pelvic floor muscle activation on healthy females was performed using image data for intra-subject comparison of normal and altered configuration of bony pelvis. Sequent magnetic resonance imaging of 14 females in supine position was performed with 1.5 T static body coil in coronal orientation. The intervention, surface functional electrostimulation, was applied to activate pelvic floor muscles on the right side. Spatial coordinates of 23 pelvic landmarks were localized in each subject and registered by specially designed magnetic resonance image data processing tool (MPT2006), where individual error calculation; data registration, analysis and 3D visualization were interfaced. The effect of intervention was large (Cohen's d=1.34). We found significant differences in quantity (P<0.01) and quality (P=0.02) of normal and induced pelvic displacements. After pelvic floor muscle activation on the right side, pelvic structures shifted most frequently to the right side in ventro-caudal direction. The right femoral head, the right innominate and the coccyx showed the largest displacements. The consequences arising from the capacity of pelvic floor muscles to displace pelvic bony structures are important to consider not only in management of malalignment syndrome but also in treatment of incontinence. The study has demonstrated benefits associated with processing of magnetic resonance image data within pelvic region with high localization and registration reliability.

  20. Acute resistance exercise modulates microRNA expression profiles: Combined tissue and circulatory targeted analyses.

    PubMed

    D'Souza, Randall F; Markworth, James F; Aasen, Kirsten M M; Zeng, Nina; Cameron-Smith, David; Mitchell, Cameron J

    2017-01-01

    A subset of short non-coding RNAs, microRNAs (miRs), have been identified in the regulation of skeletal muscle hypertrophy and atrophy. Expressed within cells, miRs are also present in circulation (c-miR) and have a putative role in cross-tissue signalling. The aim of this study was to examine the impact of a single bout of high intensity resistance exercise (RE) on skeletal muscle and circulatory miRs harvested simultaneously. Resistance trained males (n = 9, 24.6 ± 4.9 years) undertook a single bout of high volume RE with venous blood and muscle biopsies collected before, 2 and 4hr post-exercise. Real time polymerase chain reaction (Rt-PCR) analyses was performed on 30 miRs that have previously been shown to be required for skeletal muscle function. Of these, 6 miRs were significantly altered within muscle following exercise; miR-23a, -133a, -146a, -206, -378b and 486. Analysis of these same miRs in circulation demonstrated minimal alterations with exercise, although c-miR-133a (~4 fold, p = 0.049) and c-miR-149 (~2.4 fold; p = 0.006) were increased 4hr post-exercise. Thus a single bout of RE results in the increased abundance of a subset of miRs within the skeletal muscle, which was not evident in plasma. The lack a qualitative agreement in the response pattern of intramuscular and circulating miR expression suggests the analysis of circulatory miRs is not reflective of the miR responses within skeletal muscle after exercise.

  1. Effects of the beta2 agonist formoterol on atrophy signaling, autophagy, and muscle phenotype in respiratory and limb muscles of rats with cancer-induced cachexia.

    PubMed

    Salazar-Degracia, Anna; Busquets, Sílvia; Argilés, Josep M; Bargalló-Gispert, Núria; López-Soriano, Francisco J; Barreiro, Esther

    2018-06-01

    Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Beta-adrenoceptors attenuate muscle wasting. We hypothesized that specific muscle atrophy signaling pathways and altered metabolism may be attenuated in cancer cachectic animals receiving treatment with the beta 2 agonist formoterol. In diaphragm and gastrocnemius of tumor-bearing rats (intraperitoneal inoculum, 10 8 AH-130 Yoshida ascites hepatoma cells, 7-day study period) with and without treatment with formoterol (0.3 mg/kg body weight/day/7days, subcutaneous), atrophy signaling pathways (NF-κB, MAPK, FoxO), proteolytic markers (ligases, proteasome, ubiquitination), autophagy markers (p62, beclin-1, LC3), myostatin, apoptosis, muscle metabolism markers, and muscle structure features were analyzed (immunoblotting, immunohistochemistry). In diaphragm and gastrocnemius of cancer cachectic rats, fiber sizes were reduced, levels of structural alterations, atrophy signaling pathways, proteasome content, protein ubiquitination, autophagy, and myostatin were increased, while those of regenerative and metabolic markers (myoD, mTOR, AKT, and PGC-1alpha) were decreased. Formoterol treatment attenuated such alterations in both muscles. Muscle wasting in this rat model of cancer-induced cachexia was characterized by induction of significant structural alterations, atrophy signaling pathways, proteasome activity, apoptotic and autophagy markers, and myostatin, along with a significant decline in the expression of muscle regenerative and metabolic markers. Treatment of the cachectic rats with formoterol partly attenuated the structural alterations and atrophy signaling, while improving other molecular perturbations similarly in both respiratory and limb muscles. The results reported in this study have relevant therapeutic implications as they showed beneficial effects of the beta 2 agonist formoterol in the cachectic muscles through several key biological pathways. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. On the Origin of Muscle Synergies: Invariant Balance in the Co-activation of Agonist and Antagonist Muscle Pairs

    PubMed Central

    Hirai, Hiroaki; Miyazaki, Fumio; Naritomi, Hiroaki; Koba, Keitaro; Oku, Takanori; Uno, Kanna; Uemura, Mitsunori; Nishi, Tomoki; Kageyama, Masayuki; Krebs, Hermano Igo

    2015-01-01

    Investigation of neural representation of movement planning has attracted the attention of neuroscientists, as it may reveal the sensorimotor transformation essential to motor control. The analysis of muscle synergies based on the activity of agonist–antagonist (AA) muscle pairs may provide insight into such transformations, especially for a reference frame in the muscle space. In this study, we examined the AA concept using the following explanatory variables: the AA ratio, which is related to the equilibrium-joint angle, and the AA sum, which is associated with joint stiffness. We formulated muscle synergies as a function of AA sums, positing that muscle synergies are composite units of mechanical impedance. The AA concept can be regarded as another form of the equilibrium-point (EP) hypothesis, and it can be extended to the concept of EP-based synergies. We introduce, here, a novel tool for analyzing the neurological and motor functions underlying human movements and review some initial insights from our results about the relationships between muscle synergies, endpoint stiffness, and virtual trajectories (time series of EP). Our results suggest that (1) muscle synergies reflect an invariant balance in the co-activation of AA muscle pairs; (2) each synergy represents the basis for the radial, tangential, and null movements of the virtual trajectory in the polar coordinates centered on the specific joint at the base of the body; and (3) the alteration of muscle synergies (for example, due to spasticity or rigidity following neurological injury) results in significant distortion of endpoint stiffness and concomitant virtual trajectories. These results indicate that muscle synergies (i.e., the balance of muscle mechanical impedance) are essential for motor control. PMID:26636079

  3. On the Origin of Muscle Synergies: Invariant Balance in the Co-activation of Agonist and Antagonist Muscle Pairs.

    PubMed

    Hirai, Hiroaki; Miyazaki, Fumio; Naritomi, Hiroaki; Koba, Keitaro; Oku, Takanori; Uno, Kanna; Uemura, Mitsunori; Nishi, Tomoki; Kageyama, Masayuki; Krebs, Hermano Igo

    2015-01-01

    Investigation of neural representation of movement planning has attracted the attention of neuroscientists, as it may reveal the sensorimotor transformation essential to motor control. The analysis of muscle synergies based on the activity of agonist-antagonist (AA) muscle pairs may provide insight into such transformations, especially for a reference frame in the muscle space. In this study, we examined the AA concept using the following explanatory variables: the AA ratio, which is related to the equilibrium-joint angle, and the AA sum, which is associated with joint stiffness. We formulated muscle synergies as a function of AA sums, positing that muscle synergies are composite units of mechanical impedance. The AA concept can be regarded as another form of the equilibrium-point (EP) hypothesis, and it can be extended to the concept of EP-based synergies. We introduce, here, a novel tool for analyzing the neurological and motor functions underlying human movements and review some initial insights from our results about the relationships between muscle synergies, endpoint stiffness, and virtual trajectories (time series of EP). Our results suggest that (1) muscle synergies reflect an invariant balance in the co-activation of AA muscle pairs; (2) each synergy represents the basis for the radial, tangential, and null movements of the virtual trajectory in the polar coordinates centered on the specific joint at the base of the body; and (3) the alteration of muscle synergies (for example, due to spasticity or rigidity following neurological injury) results in significant distortion of endpoint stiffness and concomitant virtual trajectories. These results indicate that muscle synergies (i.e., the balance of muscle mechanical impedance) are essential for motor control.

  4. Sex Differences in Muscle Wasting.

    PubMed

    Anderson, Lindsey J; Liu, Haiming; Garcia, Jose M

    2017-01-01

    With aging and other muscle wasting diseases, men and women undergo similar pathological changes in skeletal muscle: increased inflammation, enhanced oxidative stress, mitochondrial dysfunction, satellite cell senescence, elevated apoptosis and proteasome activity, and suppressed protein synthesis and myocyte regeneration. Decreased food intake and physical activity also indirectly contribute to muscle wasting. Sex hormones also play important roles in maintaining skeletal muscle homeostasis. Testosterone is a potent anabolic factor promoting muscle protein synthesis and muscular regeneration. Estrogens have a protective effect on skeletal muscle by attenuating inflammation; however, the mechanisms of estrogen action in skeletal muscle are less well characterized than those of testosterone. Age- and/or disease-induced alterations in sex hormones are major contributors to muscle wasting. Hence, men and women may respond differently to catabolic conditions because of their hormonal profiles. Here we review the similarities and differences between men and women with common wasting conditions including sarcopenia and cachexia due to cancer, end-stage renal disease/chronic kidney disease, liver disease, chronic heart failure, and chronic obstructive pulmonary disease based on the literature in clinical studies. In addition, the responses in men and women to the commonly used therapeutic agents and their efficacy to improve muscle mass and function are also reviewed.

  5. Muscle torque of healthy individuals and individuals with spastic hemiparesis after passive static streching.

    PubMed

    Tatsukawa DE Freitas, Sérgio Takeshi; DE Carvalho Abreu, Elizângela Márcia; Dos Reis, Mariane Cecilia; DE Souza Cunha, Bruna; Souza Moreira Prianti, Tamires; Pupio Silva Lima, Fernanda; Oliveira Lima, Mário

    2016-01-01

    Spasticity is one of the main causes of contracture, muscle weakness and subsequent functional incapacity. The passive static stretching can be included as having the purpose of increasing musculoskeletal flexibility, however, it also can influence the muscle torque. The objective is to verify the immediate effect of passive static stretching in the muscle strength of healthy and those who present spastic hemiparesis. There were assessed 20 subjects, 10 spastic hemiparetic (EG) and 10 healthy individuals (CG), including both sexes, aged between 22 and 78 years. The torque of extensor muscles of the knee was analyzed using isokinetic dynamometer. Results have shown that EG has less muscle torque compared to CG ( p < 0.01). In addition, EG presented a decrease in significance of muscle torque after stretching ( p < 0.05), however, it has not shown significant alteration in muscle torque of CG after performing the program that was prescribed. Immediately after the passive stretch, a significant torque decrease can be seen in hypertonic muscle; it is believed that this reduction may be associated with the physiological overlap between actin and myosin filaments and so preventing the muscle to develop a maximum contraction.

  6. Hindlimb Skeletal Muscle Function and Skeletal Quality and Strength in +/G610C Mice With and Without Weight-Bearing Exercise.

    PubMed

    Jeong, Youngjae; Carleton, Stephanie M; Gentry, Bettina A; Yao, Xiaomei; Ferreira, J Andries; Salamango, Daniel J; Weis, MaryAnn; Oestreich, Arin K; Williams, Ashlee M; McCray, Marcus G; Eyre, David R; Brown, Marybeth; Wang, Yong; Phillips, Charlotte L

    2015-10-01

    Osteogenesis imperfecta (OI) is a heterogeneous heritable connective tissue disorder associated with reduced bone mineral density and skeletal fragility. Bone is inherently mechanosensitive, with bone strength being proportional to muscle mass and strength. Physically active healthy children accrue more bone than inactive children. Children with type I OI exhibit decreased exercise capacity and muscle strength compared with healthy peers. It is unknown whether this muscle weakness reflects decreased physical activity or a muscle pathology. In this study, we used heterozygous G610C OI model mice (+/G610C), which model both the genotype and phenotype of a large Amish OI kindred, to evaluate hindlimb muscle function and physical activity levels before evaluating the ability of +/G610C mice to undergo a treadmill exercise regimen. We found +/G610C mice hindlimb muscles do not exhibit compromised muscle function, and their activity levels were not reduced relative to wild-type mice. The +/G610C mice were also able to complete an 8-week treadmill regimen. Biomechanical integrity of control and exercised wild-type and +/G610C femora were analyzed by torsional loading to failure. The greatest skeletal gains in response to exercise were observed in stiffness and the shear modulus of elasticity with alterations in collagen content. Analysis of tibial cortical bone by Raman spectroscopy demonstrated similar crystallinity and mineral/matrix ratios regardless of sex, exercise, and genotype. Together, these findings demonstrate +/G610C OI mice have equivalent muscle function, activity levels, and ability to complete a weight-bearing exercise regimen as wild-type mice. The +/G610C mice exhibited increased femoral stiffness and decreased hydroxyproline with exercise, whereas other biomechanical parameters remain unaffected, suggesting a more rigorous exercise regimen or another exercise modality may be required to improve bone quality of OI mice. © 2015 American Society for Bone and Mineral Research.

  7. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy.

    PubMed

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-05-28

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1.

  8. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy

    PubMed Central

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S.; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-01-01

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1. PMID:26018658

  9. Comparison of the sonographic features of the abdominal wall muscles and connective tissues in individuals with and without lumbopelvic pain.

    PubMed

    Whittaker, Jackie L; Warner, Martin B; Stokes, Maria

    2013-01-01

    Cross-sectional, case-control study. To measure and compare the resting thickness of the 4 abdominal wall muscles, their associated perimuscular connective tissue (PMCT), and interrecti distance (IRD) in persons with and without lumbopelvic pain (LPP), using ultrasound imaging. The muscles and PMCT of the abdominal wall assist in controlling the spine. Functional deficits of the abdominal wall muscles have been detected in populations with LPP. Investigations of the abdominal wall in those with LPP are primarily concerned with muscle, most commonly the transversus abdominis (TrA) and internal oblique (IO). Because the abdominal wall functions as a unit, all 4 abdominal muscles and their associated connective tissues should be considered concurrently. B-mode ultrasound imaging was used to measure the resting thickness of the rectus abdominis (RA), external oblique, IO, and TrA muscles; the PMCT planes; and IRD in 50 male and female subjects, 25 with and 25 without LPP (mean ± SD age, 36.3 ± 9.4 and 46.6 ± 8.0 years, respectively). Univariate correlation analysis was used to identify covariates. Analyses of covariance (ANCOVAs) and the Kruskal-Wallis test (IRD) were used to compare cohorts (α = .05). The LPP cohort had less total abdominal muscle thickness (LPP mean ± SD, 18.9 ± 3.0 mm; control, 20.3 ± 3.0 mm; ANCOVA adjusted for body mass index, P = .03), thicker PMCT (LPP, 5.5 ± 0.2 mm; control, 4.3 ± 0.2 mm; ANCOVA adjusted for body mass index, P = .007), and wider IRD (LPP, 11.5 ± 2.0 mm; control, 8.4 ± 1.8 mm; Kruskal-Wallis, P = .005). Analysis of individual muscle thickness revealed no difference in the external oblique, IO, and TrA, but a thinner RA in the LPP cohort (LPP mean ± SD, 7.8 ± 1.5 mm; control, 9.1 ± 1.2 mm; ANCOVA adjusted for body mass index, P<.001). To our knowledge, this is the first study to investigate the morphological characteristics of all 4 abdominal muscles and PMCT in individuals with LPP. The results suggest that there may be altered loading of the PMCT and linea alba secondary to an altered motor control strategy involving a reduced contribution of the RA. Further, the change in RA and connective tissue morphology may be more evident than changes in external oblique, IO, and TrA thickness in persons with LPP. The causes and functional implications of these changes warrant further investigation, as does the role of the RA muscle in the development and persistence of LPP.

  10. Effect of altering starting length and activation timing of muscle on fiber strain and muscle damage.

    PubMed

    Butterfield, Timothy A; Herzog, Walter

    2006-05-01

    Muscle strain injuries are some of the most frequent injuries in sports and command a great deal of attention in an effort to understand their etiology. These injuries may be the culmination of a series of subcellular events accumulated through repetitive lengthening (eccentric) contractions during exercise, and they may be influenced by a variety of variables including fiber strain magnitude, peak joint torque, and starting muscle length. To assess the influence of these variables on muscle injury magnitude in vivo, we measured fiber dynamics and joint torque production during repeated stretch-shortening cycles in the rabbit tibialis anterior muscle, at short and long muscle lengths, while varying the timing of activation before muscle stretch. We found that a muscle subjected to repeated stretch-shortening cycles of constant muscle-tendon unit excursion exhibits significantly different joint torque and fiber strains when the timing of activation or starting muscle length is changed. In particular, measures of fiber strain and muscle injury were significantly increased by altering activation timing and increasing the starting length of the muscle. However, we observed differential effects on peak joint torque during the cyclic stretch-shortening exercise, as increasing the starting length of the muscle did not increase torque production. We conclude that altering activation timing and muscle length before stretch may influence muscle injury by significantly increasing fiber strain magnitude and that fiber dynamics is a more important variable than muscle-tendon unit dynamics and torque production in influencing the magnitude of muscle injury.

  11. Homeostatic effects of exercise and sleep on metabolic processes in mice with an overexpressed skeletal muscle clock.

    PubMed

    Brager, Allison J; Heemstra, Lydia; Bhambra, Raman; Ehlen, J Christopher; Esser, Karyn A; Paul, Ketema N; Novak, Colleen M

    2017-01-01

    Brain and muscle-ARNT-like factor (Bmal1/BMAL1) is an essential transcriptional/translational factor of circadian clocks. Loss of function of Bmal1/BMAL1 is highly disruptive to physiological and behavioral processes. In light of these previous findings, we examined if transgenic overexpression of Bmal1/BMAL1 in skeletal muscle could alter metabolic processes. First, we characterized in vivo and ex vivo metabolic phenotypes of muscle overexpressed mice (male and female) compared to wild-type littermates (WT). Second, we examined in vivo and ex vivo metabolic processes in the presence of positive and negative homeostatic challenges: high-intensity treadmill running (positive) and acute sleep deprivation (negative). In vivo measures of metabolic processes included body composition, respiratory exchange ratio (RER; VCO 2 /VO 2 ), energy expenditure, total activity counts, and food intake collected from small animal indirect calorimetry. Ex vivo measure of insulin sensitivity in skeletal muscle was determined from radioassays. RER was lower for muscle overexpressed females compared to female WTs. There were no genotype-dependent differences in metabolic phenotypes for males. With homeostatic challenges, muscle overexpressed mice had lower energy expenditure after high-intensity treadmill running. Acute sleep deprivation reduced insulin sensitivity in skeletal muscle in overexpressed male mice, but not male WTs. The present study contributes to a body of evidence showing pleiotropic, non-circadian, and homeostatic effects of altered Bmal1/BMAL1 expression on metabolic processes, demonstrating a critical need to further investigate the broad and complex actions of Bmal1/BMAL1 on physiology and behavior. Published by Elsevier B.V.

  12. Experimental models of developmental hypothyroidism.

    PubMed

    Argumedo, G S; Sanz, C R; Olguín, H J

    2012-02-01

    Hypothyroidism is a systemic disease resulting from either thyroid gland's anatomical and functional absence or lack of hypophyseal stimulation, both of which can lead to deficiency in thyroid hormone (TH) production. TH is essential for human and animal development, growth, and function of multiple organs. Children with deficient TH can develop alterations in central nervous system (CNS), striated muscle, bone tissue, liver, bone marrow, and cardiorespiratory system. Among the clinical outlook are signs like breathing difficulty, cardiac insufficiency, dysphagia, and repeated bronchial aspiration, constipation, muscle weakness, cognitive alterations, cochlear dysfunction, reduced height, defects in temperature regulation, anaemia, jaundice, susceptibility to infection, and others. Experimental and clinical studies have shown that TH is very essential for normal brain development. Other research work based on mice pointed out that a reduced level of TH in pregnant mother leads to congenital hypothyroidism in animal models and it is associated with mental retardation, deep neurologic deficiency that impacts on cognitive, learning, and memory functions. The principal experimental model studies that have focused on hypothyroidism are reviewed in this study. This is important on considering the fact that almost all animal species require thyroid hormones for their metabolism. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Metabolic alterations induced in cultured skeletal muscle by stretch-relaxation activity

    NASA Technical Reports Server (NTRS)

    Hatfaludy, Sophia; Shansky, Janet; Vandenburgh, Herman H.

    1989-01-01

    Muscle cells differentiated in vitro are repetitively stretched and relaxed in order to determine the presence of short- and long-term alterations occurring in glucose uptake and lactate efflux that are similar to the metabolic alterations occurring in stimulated organ-cultured muscle and in vivo skeletal muscle during the active state. It is observed that whereas mechanical stimulation increases these metabolic parameters within 4-6 h of starting activity, unstimulated basal rates in control cultures also increase during this period of time, and by 8 h, their rates have reached or exceeded the rates in continuously stimulated cells. Measurements of these parameters in media of different compositions show that activity-induced long-term alterations in the parameters occur independently of growth factors in serium and embryo extracts.

  14. Function and structure of the deep cervical extensor muscles in patients with neck pain.

    PubMed

    Schomacher, Jochen; Falla, Deborah

    2013-10-01

    The deep cervical extensors are anatomically able to control segmental movements of the cervical spine in concert with the deep cervical flexors. Several investigations have confirmed changes in cervical flexor muscle control in patients with neck pain and as a result, effective evidence-based therapeutic exercises have been developed to address such dysfunctions. However, knowledge on how the deep extensor muscles behave in patients with neck pain disorders is scare. Structural changes such as higher concentration of fat within the muscle, variable cross-sectional area and higher proportions of type II fibres have been observed in the deep cervical extensors of patients with neck pain compared to healthy controls. These findings suggest that the behaviour of the deep extensors may be altered in patients with neck pain. Consistent with this hypothesis, a recent series of studies confirm that patients display reduced activation of the deep cervical extensors as well as less defined activation patterns. This article provides an overview of the various different structural and functional changes in the deep neck extensor muscles documented in patients with neck pain. Relevant recommendations for the management of muscle dysfunction in patients with neck pain are presented. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Knockdown of desmin in zebrafish larvae affects interfilament spacing and mechanical properties of skeletal muscle.

    PubMed

    Li, Mei; Andersson-Lendahl, Monika; Sejersen, Thomas; Arner, Anders

    2013-03-01

    Skeletal muscle was examined in zebrafish larvae in order to address questions related to the function of the intermediate filament protein desmin and its role in the pathogenesis of human desminopathy. A novel approach including mechanical and structural studies of 4-6-d-old larvae was applied. Morpholino antisense oligonucleotides were used to knock down desmin. Expression was assessed using messenger RNA and protein analyses. Histology and synchrotron light-based small angle x-ray diffraction were applied. Functional properties were analyzed with in vivo studies of swimming behavior and with in vitro mechanical examinations of muscle. The two desmin genes normally expressed in zebrafish could be knocked down by ~50%. This resulted in a phenotype with disorganized muscles with altered attachments to the myosepta. The knockdown larvae were smaller and had diminished swimming activity. Active tension was lowered and muscles were less vulnerable to acute stretch-induced injury. X-ray diffraction revealed wider interfilament spacing. In conclusion, desmin intermediate filaments are required for normal active force generation and affect vulnerability during eccentric work. This is related to the role of desmin in anchoring sarcomeres for optimal force transmission. The results also show that a partial lack of desmin, without protein aggregates, is sufficient to cause muscle pathology resembling that in human desminopathy.

  16. Migratory preparation associated alterations in pectoralis muscle biochemistry and proteome in Palearctic-Indian emberizid migratory finch, red-headed bunting, Emberiza bruniceps.

    PubMed

    Banerjee, Somanshu; Chaturvedi, Chandra Mohini

    2016-03-01

    Avian migration is an exceptionally high-energy-demanding process, which is met by the accumulation and utilization of fuel stores as well as the alterations in muscle physiology prior to their flight. Pre-migratory fattening coupled with changes in flight muscle metabolic enzymes and proteome is required to provide the necessary fuel and muscle performance required for migration. We studied how the serum metabolites (urea, uric acid, and creatinine), pectoralis muscle metabolites (glycogen, glucose, and cholesterol), muscle metabolic enzymes (CPT, HOAD, CS, MDH, CCO, CK, LDH, PFK, MLPL, and PK), liver lipogenic enzyme (FAS), and pectoralis muscle proteins get altered in pre-migratory and non-migratory buntings. Significantly increased pectoralis muscle fatty acid oxidation (CPT and HOAD activity), aerobic/anaerobic capacity (CS, CCO, and MDH activity), glycolytic capacity (PFK and PK activity), lipolysis (muscle LPL), and burst power (CK activity) were observed prior to the spring migration in pre-migratory buntings, whereas significantly increased pectoralis muscle anaerobic capacity (LDH activity) was observed in non-migratory buntings. Significant increase in the liver FAS showed profound lipogenesis prior to the spring migration. In this study, we have also investigated whether muscle has differential protein content during the pre-migratory and non-migratory phases of the annual migratory cycle. Twenty-nine proteins are identified and well characterized varying in expression significantly during the pre-migratory and non-migratory phases. These findings indicate that significant pre-migratory fattening and alterations in flight (pectoralis) muscle biochemistry and proteome in between the non- and pre-migratory phases may play a significant role in pre-migratory flight muscle preparation in these long-route migrants. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill

    PubMed Central

    Friedrich, O.; Reid, M. B.; Van den Berghe, G.; Vanhorebeek, I.; Hermans, G.; Rich, M. M.; Larsson, L.

    2015-01-01

    Critical illness polyneuropathies (CIP) and myopathies (CIM) are common complications of critical illness. Several weakness syndromes are summarized under the term intensive care unit-acquired weakness (ICUAW). We propose a classification of different ICUAW forms (CIM, CIP, sepsis-induced, steroid-denervation myopathy) and pathophysiological mechanisms from clinical and animal model data. Triggers include sepsis, mechanical ventilation, muscle unloading, steroid treatment, or denervation. Some ICUAW forms require stringent diagnostic features; CIM is marked by membrane hypoexcitability, severe atrophy, preferential myosin loss, ultrastructural alterations, and inadequate autophagy activation while myopathies in pure sepsis do not reproduce marked myosin loss. Reduced membrane excitability results from depolarization and ion channel dysfunction. Mitochondrial dysfunction contributes to energy-dependent processes. Ubiquitin proteasome and calpain activation trigger muscle proteolysis and atrophy while protein synthesis is impaired. Myosin loss is more pronounced than actin loss in CIM. Protein quality control is altered by inadequate autophagy. Ca2+ dysregulation is present through altered Ca2+ homeostasis. We highlight clinical hallmarks, trigger factors, and potential mechanisms from human studies and animal models that allow separation of risk factors that may trigger distinct mechanisms contributing to weakness. During critical illness, altered inflammatory (cytokines) and metabolic pathways deteriorate muscle function. ICUAW prevention/treatment is limited, e.g., tight glycemic control, delaying nutrition, and early mobilization. Future challenges include identification of primary/secondary events during the time course of critical illness, the interplay between membrane excitability, bioenergetic failure and differential proteolysis, and finding new therapeutic targets by help of tailored animal models. PMID:26133937

  18. Differential Tissue-specific and Pathway-specific Anti-obesity Effects of Green Tea and Taeumjowitang, a Traditional Korean Medicine, in Mice.

    PubMed

    Kim, Junil; Park, Sujin; An, Haein; Choi, Ji-Young; Choi, Myung-Sook; Choi, Sang-Woon; Kim, Seong-Jin

    2017-09-01

    Traditional medicines have been leveraged for the treatment and prevention of obesity, one of the fastest growing diseases in the world. However, the exact mechanisms underlying the effects of traditional medicine on obesity are not yet fully understood. We produced the transcriptomes of epididymal white adipose tissue (eWAT), liver, muscle, and hypothalamus harvested from mice fed a normal diet, high-fat-diet alone, high-fat-diet together with green tea, or a high-fat-diet together with Taeumjowitang, a traditional Korean medicine. We found tissue-specific gene expression patterns as follows: (i) the eWAT transcriptome was more significantly altered by Taeumjowitang than by green tea, (ii) the liver transcriptome was similarly altered by Taeumjowitang and green tea, and (iii) both the muscle and hypothalamus transcriptomes were more significantly altered by green tea than Taeumjowitang. We then applied integrated network analyses, which revealed that functional networks associated with lymphocyte activation were more effectively regulated by Taeumjowitang than by green tea in the eWAT. In contrast, green tea was a more effective regulator of functional networks associated with glucose metabolic processes in the eWAT. Taeumjowitang and green tea have a differential tissue-specific and pathway-specific therapeutic effect on obesity.

  19. Differential Tissue-specific and Pathway-specific Anti-obesity Effects of Green Tea and Taeumjowitang, a Traditional Korean Medicine, in Mice

    PubMed Central

    Kim, Junil; Park, Sujin; An, Haein; Choi, Ji-Young; Choi, Myung-Sook; Choi, Sang-Woon; Kim, Seong-Jin

    2017-01-01

    Background Traditional medicines have been leveraged for the treatment and prevention of obesity, one of the fastest growing diseases in the world. However, the exact mechanisms underlying the effects of traditional medicine on obesity are not yet fully understood. Methods We produced the transcriptomes of epididymal white adipose tissue (eWAT), liver, muscle, and hypothalamus harvested from mice fed a normal diet, high-fat-diet alone, high-fat-diet together with green tea, or a high-fat-diet together with Taeumjowitang, a traditional Korean medicine. Results We found tissue-specific gene expression patterns as follows: (i) the eWAT transcriptome was more significantly altered by Taeumjowitang than by green tea, (ii) the liver transcriptome was similarly altered by Taeumjowitang and green tea, and (iii) both the muscle and hypothalamus transcriptomes were more significantly altered by green tea than Taeumjowitang. We then applied integrated network analyses, which revealed that functional networks associated with lymphocyte activation were more effectively regulated by Taeumjowitang than by green tea in the eWAT. In contrast, green tea was a more effective regulator of functional networks associated with glucose metabolic processes in the eWAT. Conclusions Taeumjowitang and green tea have a differential tissue-specific and pathway-specific therapeutic effect on obesity. PMID:29018779

  20. Long-term wheel running compromises diaphragm function but improves cardiac and plantarflexor function in the mdx mouse

    PubMed Central

    Acosta, Pedro; Sleeper, Meg M.; Barton, Elisabeth R.; Sweeney, H. Lee

    2013-01-01

    Dystrophin-deficient muscles suffer from free radical injury, mitochondrial dysfunction, apoptosis, and inflammation, among other pathologies that contribute to muscle fiber injury and loss, leading to wheelchair confinement and death in the patient. For some time, it has been appreciated that endurance training has the potential to counter many of these contributing factors. Correspondingly, numerous investigations have shown improvements in limb muscle function following endurance training in mdx mice. However, the effect of long-term volitional wheel running on diaphragm and cardiac function is largely unknown. Our purpose was to determine the extent to which long-term endurance exercise affected dystrophic limb, diaphragm, and cardiac function. Diaphragm specific tension was reduced by 60% (P < 0.05) in mice that performed 1 yr of volitional wheel running compared with sedentary mdx mice. Dorsiflexor mass (extensor digitorum longus and tibialis anterior) and function (extensor digitorum longus) were not altered by endurance training. In mice that performed 1 yr of volitional wheel running, plantarflexor mass (soleus and gastrocnemius) was increased and soleus tetanic force was increased 36%, while specific tension was similar in wheel-running and sedentary groups. Cardiac mass was increased 15%, left ventricle chamber size was increased 20% (diastole) and 18% (systole), and stroke volume was increased twofold in wheel-running compared with sedentary mdx mice. These data suggest that the dystrophic heart may undergo positive exercise-induced remodeling and that limb muscle function is largely unaffected. Most importantly, however, as the diaphragm most closely recapitulates the human disease, these data raise the possibility of exercise-mediated injury in dystrophic skeletal muscle. PMID:23823150

  1. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice.

    PubMed

    Lee, Dustin M; Battson, Micah L; Jarrell, Dillon K; Hou, Shuofei; Ecton, Kayl E; Weir, Tiffany L; Gentile, Christopher L

    2018-04-27

    Type 2 diabetes (T2D) is associated with generalized vascular dysfunction characterized by increases in large artery stiffness, endothelial dysfunction, and vascular smooth muscle dysfunction. Sodium glucose cotransporter 2 inhibitors (SGLT2i) represent the most recently approved class of oral medications for the treatment of T2D, and have been shown to reduce cardiovascular and overall mortality. Although it is currently unclear how SGLT2i decrease cardiovascular risk, an improvement in vascular function is one potential mechanism. The aim of the current study was to examine if dapagliflozin, a widely prescribed STLT2i, improves generalized vascular dysfunction in type 2 diabetic mice. In light of several studies demonstrating a bi-directional relation between orally ingested medications and the gut microbiota, a secondary aim was to determine the effects of dapagliflozin on the gut microbiota. Male diabetic mice (Db, n = 24) and control littermates (Con; n = 23) were randomized to receive either a standard diet or a standard diet containing dapagliflozin (60 mg dapagliflozin/kg diet; 0.006%) for 8 weeks. Arterial stiffness was assessed by aortic pulse wave velocity; endothelial function and vascular smooth muscle dysfunction were assessed by dilatory responses to acetylcholine and sodium nitroprusside, respectively. Compared to untreated diabetic mice, diabetic mice treated with dapagliflozin displayed significantly lower arterial stiffness (Db = 469 cm/s vs. Db + dapa = 435 cm/s, p < 0.05), and improvements in endothelial dysfunction (area under the curve [AUC] Db = 57.2 vs. Db + dapa = 117.0, p < 0.05) and vascular smooth muscle dysfunction (AUC, Db = 201.7 vs. Db + dapa = 285.5, p < 0.05). These vascular improvements were accompanied by reductions in hyperglycemia and circulating markers of inflammation. The microbiota of Db and Con mice were distinctly different, and dapagliflozin treatment was associated with minor alterations in gut microbiota composition, particularly in Db mice, although these effects did not conclusively mediate the improvements in vascular function. Dapagliflozin treatment improves arterial stiffness, endothelial dysfunction and vascular smooth muscle dysfunction, and subtly alters microbiota composition in type 2 diabetic mice. Collectively, the improvements in generalized vascular function may represent an important mechanism underlying the cardiovascular benefits of SGLT2i treatment.

  2. Neurophysiological Aspects and their relationship to clinical and functional impairment in patients with Chronic Obstructive Pulmonary Disease

    PubMed Central

    de Miranda Rocco, Carolina Chiusoli; Sampaio, Luciana Maria Malosá; Stirbulov, Roberto; Corrêa, João Carlos Ferrari

    2011-01-01

    OBJECTIVE: The purpose was to assess functional (balance L–L and A–P displacement, sit‐to‐stand test (SST) and Tinetti scale – balance and gait) and neurophysiological aspects (patellar and Achilles reflex and strength) relating these responses to the BODE Index. INTRODUCTION: The neurophysiological alterations found in patients with chronic obstructive pulmonary disease (COPD) are associated with the severity of the disease. There is also involvement of peripheral muscle which, in combination with neurophysiological impairment, may further compromise the functional activity of these patients. METHODS: A cross‐sectional study design was used. Twenty‐two patients with moderate to very severe COPD (>60 years) and 16 age‐matched healthy volunteers served as the control group (CG). The subjects performed spirometry and several measures of static and dynamic balance, monosynaptic reflexes, peripheral muscle strength, SST and the 6‐minute walk test. RESULTS: The individuals with COPD had a reduced reflex response, 36.77±3.23 (p<0.05) and 43.54±6.60 (p<0.05), achieved a lower number repetitions on the SST 19.27±3.88 (p<0.05), exhibited lesser peripheral muscle strength on the femoral quadriceps muscle, 24.98±6.88 (p<0.05) and exhibited deficits in functional balance and gait on the Tinetti scale, 26.86±1.69 (p<0.05), compared with the CG. The BODE Index demonstrated correlations with balance assessment (determined by the Tinetti scale), r = 0.59 (p<0.05) and the sit‐to‐stand test, r = 0.78 (p<0.05). CONCLUSIONS: The individuals with COPD had functional and neurophysiological alterations in comparison with the control group. The BODE Index was correlated with the Tinetti scale and the SST. Both are functional tests, easy to administer, low cost and feasible, especially the SST. These results suggest a worse prognosis; however, more studies are needed to identify the causes of these changes and the repercussions that could result in their activities of daily living. PMID:21437448

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamrick, Mark W., E-mail: mhamrick@mail.mcg.edu; Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA; Herberg, Samuel

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice andmore » elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient-related hormones such as leptin may be able to reverse muscle atrophy and alter the expression of atrophy-related miRNAs in aging skeletal muscle.« less

  4. Increased Muscle Stress-Sensitivity Induced by Selenoprotein N Inactivation in Mouse: A Mammalian Model for SEPN1-Related Myopathy

    PubMed Central

    Arbogast, Sandrine; Lainé, Jeanne; Vassilopoulos, Stéphane; Beuvin, Maud; Dubourg, Odile; Vignaud, Alban; Ferry, Arnaud; Krol, Alain; Allamand, Valérie; Guicheney, Pascale; Ferreiro, Ana; Lescure, Alain

    2011-01-01

    Selenium is an essential trace element and selenoprotein N (SelN) was the first selenium-containing protein shown to be directly involved in human inherited diseases. Mutations in the SEPN1 gene, encoding SelN, cause a group of muscular disorders characterized by predominant affection of axial muscles. SelN has been shown to participate in calcium and redox homeostasis, but its pathophysiological role in skeletal muscle remains largely unknown. To address SelN function in vivo, we generated a Sepn1-null mouse model by gene targeting. The Sepn1−/− mice had normal growth and lifespan, and were macroscopically indistinguishable from wild-type littermates. Only minor defects were observed in muscle morphology and contractile properties in SelN-deficient mice in basal conditions. However, when subjected to challenging physical exercise and stress conditions (forced swimming test), Sepn1−/− mice developed an obvious phenotype, characterized by limited motility and body rigidity during the swimming session, as well as a progressive curvature of the spine and predominant alteration of paravertebral muscles. This induced phenotype recapitulates the distribution of muscle involvement in patients with SEPN1-Related Myopathy, hence positioning this new animal model as a valuable tool to dissect the role of SelN in muscle function and to characterize the pathophysiological process. PMID:21858002

  5. Regulation of Skeletal Muscle Plasticity by Protein Arginine Methyltransferases and Their Potential Roles in Neuromuscular Disorders

    PubMed Central

    Stouth, Derek W.; vanLieshout, Tiffany L.; Shen, Nicole Y.; Ljubicic, Vladimir

    2017-01-01

    Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins, thereby mediating a diverse set of intracellular functions that are indispensable for survival. Indeed, full-body knockouts of specific PRMTs are lethal and PRMT dysregulation has been implicated in the most prevalent chronic disorders, such as cancers and cardiovascular disease (CVD). PRMTs are now emerging as important mediators of skeletal muscle phenotype and plasticity. Since their first description in muscle in 2002, a number of studies employing wide varieties of experimental models support the hypothesis that PRMTs regulate multiple aspects of skeletal muscle biology, including development and regeneration, glucose metabolism, as well as oxidative metabolism. Furthermore, investigations in non-muscle cell types strongly suggest that proteins, such as peroxisome proliferator-activated receptor-γ coactivator-1α, E2F transcription factor 1, receptor interacting protein 140, and the tumor suppressor protein p53, are putative downstream targets of PRMTs that regulate muscle phenotype determination and remodeling. Recent studies demonstrating that PRMT function is dysregulated in Duchenne muscular dystrophy (DMD), spinal muscular atrophy (SMA), and amyotrophic lateral sclerosis (ALS) suggests that altering PRMT expression and/or activity may have therapeutic value for neuromuscular disorders (NMDs). This review summarizes our understanding of PRMT biology in skeletal muscle, and identifies uncharted areas that warrant further investigation in this rapidly expanding field of research. PMID:29163212

  6. Muscle force compensation among synergistic muscles after fatigue of a single muscle.

    PubMed

    Stutzig, Norman; Siebert, Tobias

    2015-08-01

    The aim of this study was to examine control strategies among synergistic muscles after fatigue of a single muscle. It was hypothesized that the compensating mechanism is specific for each fatigued muscle. The soleus (SOL), gastrocnemius lateralis (GL) and medialis (GM) were fatigued in separate sessions on different days. In each experiment, subjects (n = 11) performed maximal voluntary contractions prior to and after fatiguing a single muscle (SOL, GL or GM) while the voluntary muscle activity and torque were measured. Additionally, the maximal single twitch torque of the plantarflexors and the maximal spinal reflex activity (H-reflex) of the SOL, GL and GM were determined. Fatigue was evoked using neuromuscular stimulation. Following fatigue the single twitch torque decreased by -20.1%, -19.5%, and -23.0% when the SOL, GL, or GM, have been fatigued. The maximal voluntary torque did not decrease in any session but the synergistic voluntary muscle activity increased significantly. Moreover, we found no alterations in spinal reflex activity. It is concluded that synergistic muscles compensate each other. Furthermore, it seems that self-compensating mechanism of the fatigued muscles occurred additionally. The force compensation does not depend on the function of the fatigued muscle. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Hexosamine Biosynthetic Pathway Mutations Cause Neuromuscular Transmission Defect

    PubMed Central

    Senderek, Jan; Müller, Juliane S.; Dusl, Marina; Strom, Tim M.; Guergueltcheva, Velina; Diepolder, Irmgard; Laval, Steven H.; Maxwell, Susan; Cossins, Judy; Krause, Sabine; Muelas, Nuria; Vilchez, Juan J.; Colomer, Jaume; Mallebrera, Cecilia Jimenez; Nascimento, Andres; Nafissi, Shahriar; Kariminejad, Ariana; Nilipour, Yalda; Bozorgmehr, Bita; Najmabadi, Hossein; Rodolico, Carmelo; Sieb, Jörn P.; Steinlein, Ortrud K.; Schlotter, Beate; Schoser, Benedikt; Kirschner, Janbernd; Herrmann, Ralf; Voit, Thomas; Oldfors, Anders; Lindbergh, Christopher; Urtizberea, Andoni; von der Hagen, Maja; Hübner, Angela; Palace, Jacqueline; Bushby, Kate; Straub, Volker; Beeson, David; Abicht, Angela; Lochmüller, Hanns

    2011-01-01

    Neuromuscular junctions (NMJs) are synapses that transmit impulses from motor neurons to skeletal muscle fibers leading to muscle contraction. Study of hereditary disorders of neuromuscular transmission, termed congenital myasthenic syndromes (CMS), has helped elucidate fundamental processes influencing development and function of the nerve-muscle synapse. Using genetic linkage, we find 18 different biallelic mutations in the gene encoding glutamine-fructose-6-phosphate transaminase 1 (GFPT1) in 13 unrelated families with an autosomal recessive CMS. Consistent with these data, downregulation of the GFPT1 ortholog gfpt1 in zebrafish embryos altered muscle fiber morphology and impaired neuromuscular junction development. GFPT1 is the key enzyme of the hexosamine pathway yielding the amino sugar UDP-N-acetylglucosamine, an essential substrate for protein glycosylation. Our findings provide further impetus to study the glycobiology of NMJ and synapses in general. PMID:21310273

  8. Daikenchuto ameliorates muscle hypercontractility in a murine T-cell-mediated persistent gut motor dysfunction model.

    PubMed

    Akiho, Hirotada; Nakamura, Kazuhiko

    2011-01-01

    Low-grade inflammation and immunological alterations are evident in functional gastrointestinal disorders such as irritable bowel syndrome (IBS). We evaluated the effects of daikenchuto (DKT), a pharmaceutical grade Japanese herbal medicine, on the hypercontractility of intestinal smooth muscle persisting after acute inflammation induced by a T-cell-activating anti-CD3 antibody (αCD3). BALB/c mice were injected with αCD3 (12.5 μg, i.p.), and DKT (2.7 g/kg) was administered orally once daily for 1 week. The contraction of isolated small intestinal muscle strips and muscle cells was examined on day 7 after αCD3 injection. The gene and protein expressions in the small intestines were evaluated by real-time PCR and multiplex immunoassays, respectively, on days 1, 3 and 7 after αCD3 injection. αCD3 injection resulted in significant increases in carbachol-evoked contractility in the muscle strips and isolated smooth muscle cells on day 7. DKT ameliorated the αCD3-induced muscle hypercontractility on day 7 in both the muscle strips and smooth muscle cells. αCD3 injection rapidly up- and downregulated the mRNA and protein expressions of pro- and anti-inflammatory cytokines, respectively. Although the influence of DKT on the mRNA expressions was moderate, the protein expressions of IL-13 and IL-17 were significantly decreased. We observed changes in the intestinal muscle contractility in muscle strips and muscle cells following resolution of inflammation in a T-cell-mediated model of enteropathy. The observed modulation of cytokine expression and function by DKT may lead to the development of new pharmacotherapeutic strategies aimed at a wide variety of gut motor dysfunction disorders. Copyright © 2011 S. Karger AG, Basel.

  9. Estrogen Maintains Skeletal Muscle in Septic Rats Associated with Altering Hypothalamic Inflammation and Neuropeptides.

    PubMed

    Zhao, Chenyan; Li, Jun; Cheng, Minhua; Shi, Jialing; Shen, Juanhong; Gao, Tao; Xi, Fengchan; Yu, Wenkui

    2017-03-01

    Muscle wasting is one of the main contributors to the worse outcomes in sepsis. Whether estrogen could alleviate muscle wasting induced by sepsis remains unclear. This study was designed to test the effect of estrogen on muscle wasting and its relationship with central alteration in sepsis. Thirty Sprague-Dawley rats were divided into 3 groups: control group, sepsis group, and estrogen treated sepsis group. Animals were intraperitoneally injected with lipopolysaccharide (10 mg/kg) or saline, followed by subcutaneous injection of 17β-estradiol (1 mg/kg) or saline. Twenty-four hours later, all animals were killed and their hypothalamus and skeletal muscles were harvested for analysis. Muscle wasting markers, hypothalamic neuropeptides, and hypothalamic inflammatory markers were measured. As a result, lipopolysaccharide administration caused a significant increase in muscle wasting, hypothalamic inflammation, and anorexigenic neuropeptides (POMC and CART) gene expression, and a significant decrease in orexigenic neuropeptides (AgRP and NPY) gene expression. Administration of estrogen signifcantl attenuated lipopolysaccharide-induced muscle wasting (body weight and extensor digitorum longus loss [52 and 62 %], tyrosine and 3-methylhistidine release [17 and 22 %], muscle ring fnger 1 [MuRF-1; 65 %], and muscle atrophy F-box [MAFbx] gene expression), hypothalamic inflammation (Tumor necrosis factor-α and interlukin-1β [69 and 70%]) as well as alteration of POMC, CART and AgRP (61, 37, and 1008 %) expression.In conclusion, estrogen could alleviate sepsis-induced muscle wasting and it was associated with reducing hypothalamic inflammation and alteration of hypothalamic neuropeptides. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Effects of space radiation and microgravity on miRNA expression profile in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Xu, Dan; Sun, Yeqing; Lei, Huang; Gao, Ying

    2012-07-01

    Living organisms experience a shock and subsequent adaption when they are subjected to space radiation and microgravity during spaceflight. Such changes have been already documented for some biological consequences including skeletal muscle alterations, reduced immune function and bone loss. Recent advancement in the field of molecular biology has demonstrated that small non-coding microRNA (miRNA) can have a broad effect on gene expression networks, and play a key role in cellular response to environmental stresses. However, little is known about how radiation exposure and altered gravity affect miRNA expression. In the present study, we explored the changes in expression of miRNA and related genes from Caenorhabditis elegans (C.elegans) flown on spaceflight. We used wild-type (N2) and dys-1 mutant (deletion of dys-1) stains of C.elegans, which were cultured to Dauer stage and transferred to special SIMbox in the experiment container. These worms taken by Shenzhou VIII spacecraft experienced the 16.5-day shuttle spaceflight. During spaceflight, they suffered space radiation and underwent static zero gravity (microgravity) or imitated earth gravity (1g) in the rotating condition. In contrast, these worms live under static earth gravity (1g) in ground-based controls. To evaluate the effects of space radiation and microgravity on miRNA expression profile, we performed miRNA microarray expression analysis and found that a set of miRNAs in N2 groups were significantly upregulated or downregualted in radiation and microgravity conditions. Among these altered miRNAs, there are two up-regulated and four down-regulated miRNAs in space radiation conditions; one down-regulated miRNAs in microgravity condition. Expression of several miRNAs in N2 groups was only changed significantly in the imitated earth gravity (1g) conditions, presenting these altered miRNAs were affected by radiation exposure alone. Notably, dys-1 mutant is not sensitive to altered gravity due to muscle protein dystrophin deletion. Compared with those miRNAs in N2 groups, altered miRNAs in dys-1 mutant groups may play a role in the general class of myopathies. To confirm whether these altered miRNA expression correlates with gene expression and functional changes of C.elegans, we performed DNA microarray and found that expression of some muscle-related proteins and age-related factors were altered in radiation and microgravity conditions, accompanied with changes in biological processes such as oxidation, and signaling pathways. Our study suggested that molecular changes at the gene and miRNA levels might compromise the functional changes of C.elegans in response to radiation and microgravity.

  11. Maternal nutrient restriction in mid-to-late gestation influences fetal mRNA expression in muscle tissues in beef cattle.

    PubMed

    Paradis, Francois; Wood, Katie M; Swanson, Kendall C; Miller, Stephen P; McBride, Brian W; Fitzsimmons, Carolyn

    2017-08-18

    Manipulating maternal nutrition during specific periods of gestation can result in re-programming of fetal and post-natal development. In this experiment we investigated how a feed restriction of 85% compared with 140% of total metabolizable energy requirements, fed to cows during mid-to-late gestation, influences phenotypic development of fetuses and mRNA expression of growth (Insulin-Like Growth Factor family and Insulin Receptor (INSR)), myogenic (Myogenic Differentiation 1 (MYOD1), Myogenin (MYOG), Myocyte Enhancer Factor 2A (MEF2A), Serum Response Factor (SRF)) and adipogenic (Peroxisome Proliferator Activated Receptor Gamma (PPARG)) genes in fetal longissimus dorsi (LD) and semitendinosus (ST) muscle. DNA methylation of imprinted genes, Insulin Like Growth Factor 2 (IGF2) and Insulin Like Growth Factor 2 Receptor (IGF2R), and micro RNA (miRNA) expression, were also examined as potential consequences of poor maternal nutrition, but also potential regulators of altered gene expression patterns. While the nutrient restriction impacted dam body weight, no differences were observed in phenotypic fetal measurements (weight, crown-rump length, or thorax circumference). Interestingly, LD and ST muscles responded differently to the differential pre-natal nutrient levels. While LD muscle of restricted fetal calves had greater mRNA abundances for Insulin Like Growth Factor 1 and its receptor (IGF1 and IGF1R), IGF2R, INSR, MYOD1, MYOG, and PPARG, no significant differences were observed for gene expression in ST muscle. Similarly, feed restriction had a greater impact on the methylation level of IGF2 Differentially Methylated Region 2 (DMR2) in LD muscle as compared to ST muscle between treatment groups. A negative correlation existed between IGF2 mRNA expression and IGF2 DMR2 methylation level in both LD and ST muscles. Differential expression of miRNAs 1 and 133a were also detected in LD muscle. Our data suggests that a nutrient restriction of 85% as compared to 140% of total metabolizable energy requirements during the 2nd half of gestation can alter the expression of growth, myogenic and adipogenic genes in fetal muscle without apparent differences in fetal phenotype. It also appears that the impact of feed restriction varies between muscles suggesting a priority for nutrient partitioning depending on muscle function and/or fiber composition. Differences in the methylation level in IGF2, a well-known imprinted gene, as well as differences in miRNA expression, may be functional mechanisms that precede the differences in gene expression observed, and could lead to trans-generational epigenetic programming.

  12. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    PubMed

    Bárez-López, Soledad; Bosch-García, Daniel; Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  13. Comparison between neurectomy and botulinum toxin A injection for denervated skeletal muscle.

    PubMed

    Tsai, Feng-Chou; Hsieh, Ming-Shium; Chou, Chih-Ming

    2010-08-01

    Neurectomy and botulinum toxin A (BoNT-A) injection cause denervated muscle atrophy, but questions remain about their clinical utility. We investigated time-series alterations of rat muscle weight, functional deficits, signaling pathways, and microscopic structures, to gain an understanding of the clinical implications. Between 2008 and 2009, the maximal calf circumference of patients for calf reduction either by neurectomy or BoNT-A injections were recorded for study. A rat skeletal muscle model was established through repeated or dose-adjusted BoNT-A injections and neurectomy. The survival, apoptosis pathways, functional deficits, and microscopic structures were investigated using Western blot, sciatic functional index (SFI), and transmission electron microscopy (TEM), respectively. The rat muscle weight ratio of the BoNT-A group had recovered to 89.3 +/- 3.8% by week 58, but it never recovered in the neurectomy group. Muscle weight reduction by BoNT-A not only depended on the dose, but additive effects were also obtained through repeated injections. Rat SFI demonstrated rapid recovery in both groups. Molecular expressions showed a coherent and biphasic pattern. p-Akt and apoptosis-inducing factor (AIF) were upregulated significantly, with a peak at 8 weeks in the neurectomy group (p < 0.01), but cleaved caspase-9 and caspase-3 showed no significant changes in either group. TEM findings showed irreversible and reversible inner-structure disruption and sarcomere discontinuity in the neurectomy and BoNT-A groups, respectively. We demonstrated that denervation induced lasting muscle weight and structural changes of different degrees. Muscle weight reduction by BoNT-A was related to frequency and dose. AIF-mediated caspase-independent apoptosis was significantly different for neurectomy and BoNT-A injection.

  14. Aging, metabolism and stem cells: Spotlight on muscle stem cells.

    PubMed

    García-Prat, Laura; Muñoz-Cánoves, Pura

    2017-04-15

    All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. A POGLUT1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss.

    PubMed

    Servián-Morilla, Emilia; Takeuchi, Hideyuki; Lee, Tom V; Clarimon, Jordi; Mavillard, Fabiola; Area-Gómez, Estela; Rivas, Eloy; Nieto-González, Jose L; Rivero, Maria C; Cabrera-Serrano, Macarena; Gómez-Sánchez, Leonardo; Martínez-López, Jose A; Estrada, Beatriz; Márquez, Celedonio; Morgado, Yolanda; Suárez-Calvet, Xavier; Pita, Guillermo; Bigot, Anne; Gallardo, Eduard; Fernández-Chacón, Rafael; Hirano, Michio; Haltiwanger, Robert S; Jafar-Nejad, Hamed; Paradas, Carmen

    2016-11-01

    Skeletal muscle regeneration by muscle satellite cells is a physiological mechanism activated upon muscle damage and regulated by Notch signaling. In a family with autosomal recessive limb-girdle muscular dystrophy, we identified a missense mutation in POGLUT1 (protein O-glucosyltransferase 1), an enzyme involved in Notch posttranslational modification and function. In vitro and in vivo experiments demonstrated that the mutation reduces O-glucosyltransferase activity on Notch and impairs muscle development. Muscles from patients revealed decreased Notch signaling, dramatic reduction in satellite cell pool and a muscle-specific α-dystroglycan hypoglycosylation not present in patients' fibroblasts. Primary myoblasts from patients showed slow proliferation, facilitated differentiation, and a decreased pool of quiescent PAX7 + cells. A robust rescue of the myogenesis was demonstrated by increasing Notch signaling. None of these alterations were found in muscles from secondary dystroglycanopathy patients. These data suggest that a key pathomechanism for this novel form of muscular dystrophy is Notch-dependent loss of satellite cells. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  16. Sex Differences in Human Fatigability: Mechanisms and Insight to Physiological Responses

    PubMed Central

    Hunter, Sandra K.

    2014-01-01

    Sex-related differences in physiology and anatomy are responsible for profound differences in neuromuscular performance and fatigability between men and women. Women are usually less fatigable than men for similar intensity isometric fatiguing contractions. This sex difference in fatigability, however, is task specific because different neuromuscular sites will be stressed when the requirements of the task are altered, and the stress on these sites can differ for men and women. Task variables that can alter the sex difference in fatigue include the type, intensity and speed of contraction, the muscle group assessed, and the environmental conditions. Physiological mechanisms that are responsible for sex-based differences in fatigability may include activation of the motor neuron pool from cortical and subcortical regions, synaptic inputs to the motor neuron pool via activation of metabolically-sensitive small afferent fibres in the muscle, muscle perfusion, and skeletal muscle metabolism and fibre type properties. Non-physiological factors such as the sex bias of studying more males than females in human and animal experiments can also mask a true understanding of the magnitude and mechanisms of sex-based differences in physiology and fatigability. Despite recent developments, there is a tremendous lack of understanding of sex differences in neuromuscular function and fatigability, the prevailing mechanisms and the functional consequences. This review emphasises the need to understand sex-based differences in fatigability in order to shed light on the benefits and limitations that fatigability can exert for men and women during daily tasks, exercise performance, training and rehabilitation in both health and disease. PMID:24433272

  17. Alteration of human umbilical vein endothelial cell gene expression in different biomechanical environments.

    PubMed

    Shoajei, Shahrokh; Tafazzoli-Shahdpour, Mohammad; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin

    2014-05-01

    Biomechanical environments affect the function of cells. In this study we analysed the effects of five mechanical stimuli on the gene expression of human umbilical vein endothelial cells (HUVECs) in mRNA level using real-time PCR. The following loading regimes were applied on HUVECs for 48 h: intermittent (0-5 dyn/cm(2) , 1 Hz) and uniform (5 dyn/cm(2) ) shear stresses concomitant by 10% intermittent equiaxial stretch (1 Hz), uniform shear stress alone (5 dyn/cm(2) ), and intermittent uniaxial and equiaxial stretches (10%, 1 Hz). A new bioreactor was made to apply uniform/cyclic shear and tensile loadings. Three endothelial suggestive specific genes (vascular endothelial growth factor receptor-2 (VEGFR-2, also known as FLK-1), von Willebrand Factor (vWF) and vascular endothelial-cadherin (VE-cadherin)), and two smooth muscle genes (α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SMMHC)) were chosen for assessment of alteration in gene expression of endothelial cells and transdifferentiation toward smooth cells following load applications. Shear stress alone enhanced the endothelial gene expression significantly, while stretching alone was identified as a transdifferentiating factor. Cyclic equiaxial stretch contributed less to elevation of smooth muscle genes compared to uniaxial stretch. Cyclic shear stress in comparison to uniform shear stress concurrent with cyclic stretch was more influential on promotion of endothelial genes expression. Influence of different mechanical stimuli on gene expression may open a wider horizon to regulate functions of cell for tissue engineering purposes. © 2013 International Federation for Cell Biology.

  18. Influence of chronic back pain on kinematic reactions to unpredictable arm pulls.

    PubMed

    Götze, Martin; Ernst, Michael; Koch, Markus; Blickhan, Reinhard

    2015-03-01

    There is evidence that muscle reflexes are delayed in patients with chronic low back pain in response to perturbations. It is still unrevealed whether these delays accompanied by an altered kinematic or compensated by adaption of other muscle parameters. The aim of this study was to investigate whether chronic low back pain patients show an altered kinematic reaction and if such data are reliable for the classification of chronic low back pain. In an experiment involving 30 females, sudden lateral perturbations were applied to the arm of a subject in an upright, standing position. Kinematics was used to distinguish between chronic low back pain patients and healthy controls. A calculated model of a stepwise discriminant function analysis correctly predicted 100% of patients and 80% of healthy controls. The estimation of the classification error revealed a constant rate for the classification of the healthy controls and a slightly decreased rate for the patients. Observed reflex delays and identified kinematic differences inside and outside the region of pain during impaired movement indicated that chronic low back pain patients have an altered motor control that is not restricted to the lumbo-pelvic region. This applied paradigm of external perturbations can be used to detect chronic low back pain patients and also persons without chronic low back pain but with an altered motor control. Further investigations are essential to reveal whether healthy persons with changes in motor function have an increased potential to develop chronic back pain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of prostaglandin F2alpha and latanoprost on phosphoinositide turnover, myosin light chain phosphorylation and contraction in cat iris sphincter.

    PubMed

    Ansari, Habib R; Davis, Angela M; Kaddour-Djebbar, Ismail; Abdel-Latif, Ata A

    2003-06-01

    The effects of the ocular hypotensive agents prostaglandin F(2alpha) (PGF(2alpha)) and its analog latanoprost on intraocular pressure (IOP) in both animals and human have been investigated extensively in the last two decades. While there is general agreement that application of these PGs to the eye alters IOP by altering the aqueous humor outflow of the eye via the uveoscleral and trabecular meshwork pathways, the mechanism of action of these agents on IOP lowering remains unclear. There is evidence which suggests that myosin light kinase (MLC kinase) may be involved in the IOP-lowering effects of these agents. Thus, the purpose of the present work was to investigate in cat iris sphincter the effects of these PGs on the MLC kinase signaling pathway, inositol phosphates production, MLC phosphorylation and contraction, in order to gain more information about the mechanism through which these agents modulate smooth muscle function and lower IOP. [(3)H]myo-inositol phosphates production was measured by ion-exchange chromatography, MLC kinase activity was measured by incorporation of (32)Pi into MLC, and changes in muscle tension were recorded isometrically. PGF(2alpha) and latanoprost induced contraction in a concentration-dependent manner with EC(50) values of 18.6 and 29.9 nM, respectively, and increased inositol phosphates production in a concentration-dependent manner. At 1 microM, PGF(2alpha) and latanoprost increased inositol phosphates formation by 125 and 102% over basal, respectively. PGF(2alpha) and latanoprost increased MLC phosphorylation in a concentration- and time-dependent manner, at 1 microM and 5 min incubation, the PGs increased the MLC response by 181 and 176% over basal, respectively. In general, PGF(2alpha) was slightly more potent in inducing the biochemical and pharmacological responses. Wortmannin, ML-7 and ML-9, selective inhibitors of MLC kinase, inhibited significantly PGF(2alpha)- and latanoprost-induced MLC phosphorylation and contraction. These results demonstrate for the first time involvement of the MLC kinase pathway in the FP receptor function of this ocular tissue. Contraction-relaxation of smooth muscle alters the shape and stiffness of smooth muscle cells and MLC kinase, through myosin phosphorylation and dephosphorylation, has been shown to be involved in cytoskeletal remodeling, cytoskeletal alterations, and IOP lowering. In light of these reports and the findings presented here we suggest that alterations in the MLC kinase signaling pathway and its derived second messengers, which leads to changes in contraction-relaxation of the smooth muscles of the anterior segment, could facilitate aqueous humor outflow and thus contribute to the IOP-lowering effects of the FP-class PGs.

  20. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting

    PubMed Central

    Breitbart, Astrid; Auger-Messier, Mannix; Molkentin, Jeffery D.

    2011-01-01

    A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future. PMID:21421824

  1. Corticomotor excitability of arm muscles modulates according to static position and orientation of the upper limb.

    PubMed

    Mogk, Jeremy P M; Rogers, Lynn M; Murray, Wendy M; Perreault, Eric J; Stinear, James W

    2014-10-01

    We investigated how multi-joint changes in static upper limb posture impact the corticomotor excitability of the posterior deltoid (PD) and biceps brachii (BIC), and evaluated whether postural variations in excitability related directly to changes in target muscle length. The amplitude of individual motor evoked potentials (MEPs) was evaluated in each of thirteen different static postures. Four functional postures were investigated that varied in shoulder and elbow angle, while the forearm was positioned in each of three orientations. Posture-related changes in muscle lengths were assessed using a biomechanical arm model. Additionally, M-waves were evoked in the BIC in each of three forearm orientations to assess the impact of posture on recorded signal characteristics. BIC-MEP amplitudes were altered by shoulder and elbow posture, and demonstrated robust changes according to forearm orientation. Observed changes in BIC-MEP amplitudes exceeded those of the M-waves. PD-MEP amplitudes changed predominantly with shoulder posture, but were not completely independent of influence from forearm orientation. Results provide evidence that overall corticomotor excitability can be modulated according to multi-joint upper limb posture. The ability to alter motor pathway excitability using static limb posture suggests the importance of posture selection during rehabilitation aimed at retraining individual muscle recruitment and/or overall coordination patterns. Published by Elsevier Ireland Ltd.

  2. Can a knee brace reduce the strain in the anterior cruciate ligament? A study using combined in vivo/in vitro method.

    PubMed

    Hangalur, Gajendra; Brenneman, Elora; Nicholls, Micah; Bakker, Ryan; Laing, Andrew; Chandrashekar, Naveen

    2016-06-01

    It is unknown whether prophylactic knee braces can reduce the strain in the anterior cruciate ligament during dynamic activities. An athlete, who had characteristics of high anterior cruciate ligament injury risk, was chosen. A motion capture system (Optotrak Certus; Northern Digital, Waterloo, ON, Canada) was used to record dynamic trials during drop-landing activity of this subject with and without the knee brace being worn. A musculoskeletal model was used to estimate the muscle forces during this activity. A dynamic knee simulator then applied kinematics and muscle forces on a cadaver knee with and without the brace mounted on it. The anterior cruciate ligament strain was measured. The peak strain in the anterior cruciate ligament was substantially lower for the braced (7%) versus unbraced (20%) conditions. Functional knee braces could decrease the strain in the anterior cruciate ligament during dynamic activities in a high-risk subject. However, the reduction seems to be a result of altered muscle firing pattern due to the brace. Prophylactic knee brace could reduce the strain in the anterior cruciate ligament of high-risk subjects during drop-landing through altered muscle firing pattern associated with brace wear. This could help reduce the anterior cruciate ligament injury risk. © The International Society for Prosthetics and Orthotics 2015.

  3. Does induced masseter muscle pain affect integrated jaw-neck movements similarly in men and women?

    PubMed

    Wiesinger, Birgitta; Häggman-Henrikson, Birgitta; Hellström, Fredrik; Englund, Erling; Wänman, Anders

    2016-12-01

    Normal jaw opening-closing involves simultaneous jaw and head-neck movements. We previously showed that, in men, integrated jaw-neck movements during jaw function are altered by induced masseter muscle pain. The aim of this study was to investigate possible sex-related differences in integrated jaw-neck movements following experimental masseter muscle pain. We evaluated head-neck and jaw movements in 22 healthy women and 16 healthy men in a jaw opening-closing task. The participants performed one control trial and one trial with masseter muscle pain induced by injection of hypertonic saline. Jaw and head movements were registered using a three-dimensional optoelectronic recording system. There were no significant sex-related differences in jaw and head movement amplitudes. Head movement amplitudes were significantly greater in the pain trials for both men and women. The proportional involvement of the neck motor system during jaw movements increased in pain trials for 13 of 16 men and for 18 of 22 women. Thus, acute pain may alter integrated jaw-neck movements, although, given the similarities between men and women, this interaction between acute pain and motor behaviour does not explain sex differences in musculoskeletal pain in the jaw and neck regions. © 2016 Eur J Oral Sci.

  4. Altered response of the anterolateral abdominal muscles to simulated weight-bearing in subjects with low back pain.

    PubMed

    Hides, Julie A; Belavý, Daniel L; Cassar, Lana; Williams, Michelle; Wilson, Stephen J; Richardson, Carolyn A

    2009-03-01

    An important aspect of neuromuscular control at the lumbo-pelvic region is stabilization. Subjects with low back pain (LBP) have been shown to exhibit impairments in motor control of key muscles which contribute to stabilization of the lumbo-pelvic region. However, a test of automatic recruitment that relates to function has been lacking. A previous study used ultrasound imaging to show that healthy subjects automatically recruited the transversus abdominis (TrA) and internal oblique (IO) muscles in response to a simulated weight-bearing task. This task has not been investigated in subjects with LBP. The aim of this study was to compare the automatic recruitment of the abdominal muscles among subjects with and without LBP in response to the simulated weight-bearing task. Twenty subjects with and without LBP were tested. Real-time ultrasound imaging was used to assess changes in thickness of the TrA and internal oblique IO muscles as well as lateral movement ("slide") of the anterior fascial insertion of the TrA muscle. Results showed that subjects with LBP showed significantly less shortening of the TrA muscle (P < 0.0001) and greater increases in thickness of the IO muscle (P = 0.002) with the simulated weight-bearing task. There was no significant difference between groups for changes in TrA muscle thickness (P = 0.055). This study provides evidence of changes in motor control of the abdominal muscles in subjects with LBP. This test may provide a functionally relevant and non-invasive method to investigate the automatic recruitment of the abdominal muscles in people with and without LBP.

  5. Thermal acclimation to cold alters myosin content and contractile properties of rainbow smelt, Osmerus mordax, red muscle.

    PubMed

    Coughlin, David J; Shiels, Lisa P; Nuthakki, Seshuvardhan; Shuman, Jacie L

    2016-06-01

    Rainbow smelt (Osmerus mordax), a eurythermal fish, live in environments from -1.8 to 20°C, with some populations facing substantial annual variation in environmental temperature. These different temperature regimes pose distinct challenges to locomotion by smelt. Steady swimming performance, red muscle function and muscle myosin content were examined to assess the prediction that cold acclimation by smelt will lead to improved steady swimming performance and that any performance shift will be associated with changes in red muscle function and in its myosin heavy chain composition. Cold acclimated (4°C) smelt had a faster maximum steady swimming speed and swam with a higher tailbeat frequency than warm acclimated (10°C) smelt when tested at the same temperature (10°C). Muscle mechanics experiments demonstrated faster contractile properties in the cold acclimated fish when tested at 10°C. The red muscle of cold acclimated smelt had a shorter twitch times, a shorter relaxation times and a higher maximum shortening velocity. In addition, red muscle from cold acclimated fish displayed reduced thermal sensitivity to cold, maintaining higher force levels at 4°C compared to red muscle from warm acclimated fish. Immunohistochemistry suggests shifts in muscle myosin composition and a decrease in muscle cross-sectional area with cold acclimation. Dot blot analysis confirmed a shift in myosin content. Rainbow smelt do show a significant thermal acclimation response to cold. An examination of published values of maximum muscle shortening velocity in fishes suggests that smelt are particularly well suited to high levels of activity in very cold water. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Muscle atrophy, voluntary activation disturbances, and low serum concentrations of IGF-1 and IGFBP-3 are associated with weakness in people with chronic stroke.

    PubMed

    Silva-Couto, Marcela de Abreu; Prado-Medeiros, Christiane Lanatovitz; Oliveira, Ana Beatriz; Alcântara, Carolina Carmona; Guimarães, Araci Teixeira; Salvini, Tania de Fatima; Mattioli, Rosana; de Russo, Thiago Luiz

    2014-07-01

    The muscle weakness that is exhibited poststroke is due to a multifactorial etiology involving the central nervous system and skeletal muscle changes. Insulinlike growth factor 1 (IGF-1) and IGF binding protein 3 (IGFBP-3) have been described as biomarkers of neuromuscular performance in many conditions. However, no information about these biomarkers is available for people with chronic hemiparesis. The purpose of this study was to investigate possible factors involved in muscle weakness, such as IGF-1 and IGFBP-3 serum concentrations, muscle volume, and neuromuscular performance of the knee flexors and extensors, in people with chronic hemiparesis poststroke. This was a cross-sectional study. A cross-sectional study was performed on 14 individuals poststroke who were paired with healthy controls. Mobility, function, balance, and quality of life were recorded as outcome measures. Knee flexor and extensor muscle volumes and neuromuscular performance were measured using nuclear magnetic resonance imaging, dynamometry, and electromyography. The serum concentrations of IGF-1 and IGFBP-3 were quantified by enzyme-linked immunosorbent assay (ELISA). The hemiparetic group had low serum concentrations of IGF-1 (25%) and IGFBP-3 (40%); reduced muscle volume in the vastus medialis (32%), vastus intermedius (29%), biceps femoris (16%), and semitendinosus and semimembranosus (12%) muscles; reduced peak torque, power, and work of the knee flexors and extensors; and altered agonist and antagonist muscle activation compared with controls. Low serum concentrations of IGF-1 and IGFBP-3, deficits in neuromuscular performance, selective muscle atrophy, and decreased agonist muscle activation were found in the group with chronic hemiparesis poststroke. Both hemorrhagic and ischemic stroke were considered, and the data reflect a chronic poststroke population with good function. © 2014 American Physical Therapy Association.

  7. Sumoylation of the Basic Helix-Loop-Helix Transcription Factor Sharp-1 Regulates Recruitment of the Histone Methyltransferase G9a and Function in Myogenesis*

    PubMed Central

    Wang, Yaju; Shankar, Shilpa Rani; Kher, Devaki; Ling, Belinda Mei Tze; Taneja, Reshma

    2013-01-01

    Sumoylation is an important post-translational modification that alters the activity of many transcription factors. However, the mechanisms that link sumoylation to alterations in chromatin structure, which culminate in tissue specific gene expression, are not fully understood. In this study, we demonstrate that SUMO modification of the transcription factor Sharp-1 is required for its full transcriptional repression activity and function as an inhibitor of skeletal muscle differentiation. Sharp-1 is modified by sumoylation at two conserved lysine residues 240 and 255. Mutation of these SUMO acceptor sites in Sharp-1 does not impact its subcellular localization but attenuates its ability to act as a transcriptional repressor and inhibit myogenic differentiation. Consistently, co-expression of the SUMO protease SENP1 with wild type Sharp-1 abrogates Sharp-1-dependent inhibition of myogenesis. Interestingly, sumoylation acts as a signal for recruitment of the co-repressor G9a. Thus, enrichment of G9a, and histone H3 lysine 9 dimethylation (H3K9me2), a signature of G9a activity, is dramatically reduced at muscle promoters in cells expressing sumoylation-defective Sharp-1. Our findings demonstrate how sumoylation of Sharp-1 exerts an impact on chromatin structure and transcriptional repression of muscle gene expression through recruitment of G9a. PMID:23637228

  8. Impedance Alterations in Healthy and Diseased Mice During Electrically Induced Muscle Contraction.

    PubMed

    Sanchez, Benjamin; Li, Jia; Geisbush, Tom; Bardia, Ramon Bragos; Rutkove, Seward B

    2016-08-01

    Alterations in the health of muscles can be evaluated through the use of electrical impedance myography (EIM). To date, however, nearly all work in this field has relied upon the measurement of muscle at rest. To provide an insight into the contractile mechanisms of healthy and disease muscle, we evaluated the alterations in the spectroscopic impedance behavior of muscle during the active process of muscle contraction. The gastrocnemii from a total of 13 mice were studied (five wild type, four muscular dystrophy animals, and four amyotrophic lateral sclerosis animals). Muscle contraction was induced via monophasic current pulse stimulation of the sciatic nerve. Simultaneously, multisine EIM (1 kHz to 1 MHz) and force measurements of the muscle were performed. Stimulation was applied at three different rates to produce mild, moderate, and strong contractions. We identified changes in both single and multifrequency data, as assessed by the Cole impedance model parameters. The processes of contraction and relaxation were clearly identified in the impedance spectra and quantified via derivative plots. Reductions in the center frequency fc were observed during the contraction consistent with the increasing muscle fiber diameter. Different EIM stimulation rate-dependencies were also detected across the three groups of animals.

  9. Loss of Notch3 Signaling in Vascular Smooth Muscle Cells Promotes Severe Heart Failure Upon Hypertension.

    PubMed

    Ragot, Hélène; Monfort, Astrid; Baudet, Mathilde; Azibani, Fériel; Fazal, Loubina; Merval, Régine; Polidano, Evelyne; Cohen-Solal, Alain; Delcayre, Claude; Vodovar, Nicolas; Chatziantoniou, Christos; Samuel, Jane-Lise

    2016-08-01

    Hypertension, which is a risk factor of heart failure, provokes adaptive changes at the vasculature and cardiac levels. Notch3 signaling plays an important role in resistance arteries by controlling the maturation of vascular smooth muscle cells. Notch3 deletion is protective in pulmonary hypertension while deleterious in arterial hypertension. Although this latter phenotype was attributed to renal and cardiac alterations, the underlying mechanisms remained unknown. To investigate the role of Notch3 signaling in the cardiac adaptation to hypertension, we used mice with either constitutive Notch3 or smooth muscle cell-specific conditional RBPJκ knockout. At baseline, both genotypes exhibited a cardiac arteriolar rarefaction associated with oxidative stress. In response to angiotensin II-induced hypertension, the heart of Notch3 knockout and SM-RBPJκ knockout mice did not adapt to pressure overload and developed heart failure, which could lead to an early and fatal acute decompensation of heart failure. This cardiac maladaptation was characterized by an absence of media hypertrophy of the media arteries, the transition of smooth muscle cells toward a synthetic phenotype, and an alteration of angiogenic pathways. A subset of mice exhibited an early fatal acute decompensated heart failure, in which the same alterations were observed, although in a more rapid timeframe. Altogether, these observations indicate that Notch3 plays a major role in coronary adaptation to pressure overload. These data also show that the hypertrophy of coronary arterial media on pressure overload is mandatory to initially maintain a normal cardiac function and is regulated by the Notch3/RBPJκ pathway. © 2016 American Heart Association, Inc.

  10. Pelvic floor morphometry and function in women with and without puborectalis avulsion in the early postpartum period.

    PubMed

    Cyr, Marie-Pierre; Kruger, Jennifer; Wong, Vivien; Dumoulin, Chantale; Girard, Isabelle; Morin, Mélanie

    2017-03-01

    Pelvic floor muscles are subject to considerable stretching during vaginal birth. In 13-36% of women, stretching results in avulsion injury whereby the puborectalis muscle disconnects from its insertion points on the pubis bone. Until now, few studies have investigated the effect of this lesion on pelvic floor muscles in the early postpartum period. The primary aim of this study was to compare pelvic floor muscle morphometry and function in primiparous women with and without puborectalis avulsion in the early postpartum period. Our secondary objective was to compare the 2 groups for pelvic floor disorders and impact on quality of life. In all, 52 primiparous women diagnosed with (n = 22) or without (n = 30) puborectalis avulsion injury were assessed at 3 months postpartum. Pelvic floor muscle morphometry was evaluated with 3-/4-dimensional transperineal ultrasound at rest, maximal contraction, and Valsalva maneuver. Different parameters were measured in the midsagittal and axial planes: bladder neck position, levator plate angle, anorectal angle, and levator hiatus dimensions. The dynamometric speculum was used to assess pelvic floor muscle function including: passive properties (passive forces and stiffness) during dynamic stretches, maximal strength, speed of contraction, and endurance. Pelvic floor disorder-related symptoms (eg, urinary incontinence, vaginal and bowel symptoms) and impact on quality of life were evaluated with the International Consultation on Incontinence Questionnaire and the Pelvic Floor Impact Questionnaire-Short Form. Pelvic Organ Prolapse Quantification was also assessed. In comparison to women without avulsion, women with avulsion presented an enlarged hiatus area at rest, maximal contraction, and Valsalva maneuver (P ≤ .013) and all other ultrasound parameters were found to be significantly altered during maximal contraction (P ≤ .014). They showed lower passive forces at maximal and 20-mm vaginal apertures as well as lower stiffness at 20-mm aperture (P ≤ .048). Significantly lower strength, speed of contraction, and endurance were also found in women with avulsion (P ≤ .005). They also presented more urinary incontinence symptoms (P = .040) whereas vaginal and bowel symptoms were found to be similar in the 2 groups. Pelvic Organ Prolapse Quantification revealed greater anterior compartment descent in women with avulsion (P ≤ .010). The impact of pelvic floor disorders on quality of life was found to be significantly higher in women with avulsion (P = .038). This study confirms that pelvic floor muscle morphometry and function are impaired in primiparous women with puborectalis avulsion in the early postpartum period. Moreover, it highlights specific muscle parameters that are altered such as passive properties, strength, speed of contraction, and endurance. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Mutations in the Drosophila neuroglian cell adhesion molecule affect motor neuron pathfinding and peripheral nervous system patterning.

    PubMed

    Hall, S G; Bieber, A J

    1997-03-01

    We have identified and characterized three embryonic lethal mutations that alter or abolish expression of Drosophila Neuroglian and have used these mutations to analyze Neuroglian function during development. Neuroglian is a member of the immunoglobulin superfamily. It is expressed by a variety of cell types during embryonic development, including expression on motoneurons and the muscle cells that they innervate. Examination of the nervous systems of neuroglian mutant embryos reveals that motoneurons have altered pathfinding trajectories. Additionally, the sensory cell bodies of the peripheral nervous system display altered morphology and patterning. Using a temperature-sensitive mutation, the phenocritical period for Neuroglian function was determined to occur during late embryogenesis, an interval which coincides with the period during which neuromuscular connections and the peripheral nervous system pattern are established.

  12. Skeletal Muscle, but not Cardiovascular Function, Is Altered in a Mouse Model of Autosomal Recessive Hypophosphatemic Rickets.

    PubMed

    Wacker, Michael J; Touchberry, Chad D; Silswal, Neerupma; Brotto, Leticia; Elmore, Chris J; Bonewald, Lynda F; Andresen, Jon; Brotto, Marco

    2016-01-01

    Autosomal recessive hypophosphatemic rickets (ARHR) is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well-characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand in order to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL-fast-twitch muscle), soleus (SOL-slow-twitch muscle), heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum) which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2α or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In summary, these results indicate that there are deficiencies in both fast twitch and slow twitch muscle fiber type contractions in this model of ARHR, while there was less of a phenotype observed in cardiac muscle, and no differences observed in aortic function. These results may help explain skeletal muscle weakness reported by some patients with osteomalacia and need to be further investigated.

  13. Skeletal Muscle, but not Cardiovascular Function, Is Altered in a Mouse Model of Autosomal Recessive Hypophosphatemic Rickets

    PubMed Central

    Wacker, Michael J.; Touchberry, Chad D.; Silswal, Neerupma; Brotto, Leticia; Elmore, Chris J.; Bonewald, Lynda F.; Andresen, Jon; Brotto, Marco

    2016-01-01

    Autosomal recessive hypophosphatemic rickets (ARHR) is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well-characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand in order to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL-fast-twitch muscle), soleus (SOL–slow-twitch muscle), heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum) which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2α or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In summary, these results indicate that there are deficiencies in both fast twitch and slow twitch muscle fiber type contractions in this model of ARHR, while there was less of a phenotype observed in cardiac muscle, and no differences observed in aortic function. These results may help explain skeletal muscle weakness reported by some patients with osteomalacia and need to be further investigated. PMID:27242547

  14. Nutritional status, functional capacity and exercise rehabilitation in end-stage renal disease.

    PubMed

    Mercer, T H; Koufaki, P; Naish, P F

    2004-05-01

    A significant percentage of patients with end-stage renal disease are malnourished and/or muscle wasted. Uremia is associated with decreased protein synthesis and increased protein degradation. Fortunately, nutritional status has been shown to be a modifiable risk factor in the dialysis population. It has long been proposed that exercise could positively alter the protein synthesis-degradation balance. Resistance training had been considered as the only form of exercise likely to induce anabolism in renal failure patients. However, a small, but growing, body of evidence indicates that for some dialysis patients, favourable improvements in muscle atrophy and fibre hypertrophy can be achieved via predominantly aerobic exercise training. Moreover, some studies tentatively suggest that nutritional status, as measured by SGA, can also be modestly improved by modes and patterns of exercise training that have been shown to also increase muscle fibre cross-sectional area and improve functional capacity. Functional capacity tests can augment the information content of basic nutritional status assessments of dialysis patients and as such are recommended for routine inclusion as a feature of all nutritional status assessments.

  15. A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle.

    PubMed

    James, Rob S

    2013-08-01

    Environmental temperature varies spatially and temporally, affecting many aspects of an organism's biology. In ectotherms, variation in environmental temperature can cause parallel changes in skeletal muscle temperature, potentially leading to significant alterations in muscle performance. Endotherms can also undergo meaningful changes in skeletal muscle temperature that can affect muscle performance. Alterations in skeletal muscle temperature can affect contractile performance in both endotherms and ectotherms, changing the rates of force generation and relaxation, shortening velocity, and consequently mechanical power. Such alterations in the mechanical performance of skeletal muscle can in turn affect locomotory performance and behaviour. For instance, as temperature increases, a consequent improvement in limb muscle performance causes some lizard species to be more likely to flee from a potential predator. However, at lower temperatures, they are much more likely to stand their ground, show threatening displays and even bite. There is no consistent pattern in reported effects of temperature on skeletal muscle fatigue resistance. This review focuses on the effects of temperature variation on skeletal muscle performance in vertebrates, and investigates the thermal sensitivity of different mechanical measures of skeletal muscle performance. The plasticity of thermal sensitivity in skeletal muscle performance has been reviewed to investigate the extent to which individuals can acclimate to chronic changes in their thermal environment. The effects of thermal sensitivity of muscle performance are placed in a wider context by relating thermal sensitivity of skeletal muscle performance to aspects of vertebrate species distribution.

  16. Embryonic-only arsenic exposure in killifish (Fundulus heteroclitus) reduces growth and alters muscle IGF levels one year later.

    PubMed

    Szymkowicz, Dana B; Sims, Kaleigh C; Castro, Noemi M; Bridges, William C; Bain, Lisa J

    2017-05-01

    Arsenic is a contaminant of drinking water and crops in many parts of the world. Epidemiological studies have shown that arsenic exposure is linked to decreased birth weight, weight gain, and proper skeletal muscle function. The goal of this study was to use killifish (Fundulus heteroclitus) as a model to determine the long-term effects of embryonic-only arsenic exposure on muscle growth and the insulin-like growth factor (IGF) pathway. Killifish embryos were exposed to 0, 50, 200 or 800ppb As III from fertilization until hatching. Juvenile fish were reared in clean water and muscle samples were collected at 16, 28, 40 and 52 weeks of age. There were significant reductions in condition factors, ranging from 12 to 17%, in the fish exposed to arsenic at 16, 28 and 40 weeks of age. However, by 52 weeks, no significant changes in condition factors were seen. Alterations in IGF-1R and IGF-1 levels were assessed as a potential mechanism by which growth was reduced. While there no changes in hepatic IGF-1 transcripts, skeletal muscle cells can also produce their own IGF-1 and/or alter IGF-1 receptor levels to help enhance growth. After a 200 and 800ppb embryonic exposure, fish grown in clean water for 16 weeks had IGF-1R transcripts that were 2.8-fold and 2-fold greater, respectively, than unexposed fish. Through 40 weeks of age, IGF1-R remained elevated in the 200ppb and 800ppb embryonic exposure groups by 1.8-3.9-fold, while at 52 weeks of age, IGF-1R levels were still significantly increased in the 800ppb exposure group. Skeletal muscle IGF-1 transcripts were also significantly increased by 1.9-5.1 fold through the 52 weeks of grow-out in clean by water in the 800ppb embryonic exposure group. Based on these results, embryonic arsenic exposure has long-term effects in that it reduces growth and increases both IGF-1 and IGF-1R levels in skeletal muscle even 1year after the exposure has ended. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cardiovascular Responses to Skeletal Muscle Stretching: "Stretching" the Truth or a New Exercise Paradigm for Cardiovascular Medicine?

    PubMed

    Kruse, Nicholas T; Scheuermann, Barry W

    2017-12-01

    Stretching is commonly prescribed with the intended purpose of increasing range of motion, enhancing muscular coordination, and preventing prolonged immobilization induced by aging or a sedentary lifestyle. Emerging evidence suggests that acute or long-term stretching exercise may modulate a variety of cardiovascular responses. Specifically, at the onset of stretch, the mechanical deformation of the vascular bed coupled with stimulation of group III muscle afferent fibers initiates a cascade of events resulting in both peripheral vasodilation and a heart rate-driven increase in cardiac output, blood pressure, and muscle blood flow. This potential to increase shear stress and blood flow without the use of excessive muscle energy expenditure may hold important implications for future therapeutic vascular medicine and cardiac health. However, the idea that a cardiovascular component may be involved in human skeletal muscle stretching is relatively new. Therefore, the primary intent of this review is to highlight topics related to skeletal muscle stretching and cardiovascular regulation and function. The current evidence suggests that acute stretching causes a significant macro- and microcirculatory event that alters blood flow and the relationship between oxygen availability and oxygen utilization. These acute vascular changes if performed chronically may result in improved endothelial function, improved arterial blood vessel stiffness, and/or reduced blood pressure. Although several mechanisms have been postulated, an increased nitric oxide bioavailability has been highlighted as one promising candidate for the improvement in vessel function with stretching. Collectively, the evidence provided in this review suggests that stretching acutely or long term may serve as a novel and alternative low intensity therapeutic intervention capable of improving several parameters of vascular function.

  18. Characterization of Esophageal Physiology Using Mechanical State Analysis.

    PubMed

    Leibbrandt, Richard E; Dinning, Phil G; Costa, Marcello; Cock, Charles; Wiklendt, Lukasz; Wang, Guangsong; Tack, Jan; van Beckevoort, Dirk; Rommel, Nathalie; Omari, Taher I

    2016-01-01

    The esophagus functions to transport swallowed fluids and food from the pharynx to the stomach. The esophageal muscles governing bolus transport comprise circular striated muscle of the proximal esophagus and circular smooth muscle of the distal esophagus. Longitudinal smooth muscle contraction provides a mechanical advantage to bolus transit during circular smooth muscle contraction. Esophageal striated muscle is directly controlled by neural circuits originating in the central nervous system, resulting in coordinated contractions. In contrast, the esophageal smooth muscle is controlled by enteric circuits modulated by extrinsic central neural connections resulting in neural relaxation and contraction. The esophageal muscles are modulated by sensory information arising from within the lumen. Contraction or relaxation, which changes the diameter of the lumen, alters the intraluminal pressure and ultimately inhibits or promotes flow of content. This relationship that exists between the changes in diameter and concurrent changes in intraluminal pressure has been used previously to identify the "mechanical states" of the circular muscle; that is when the muscles are passively or actively, relaxing or contracting. Detecting these changes in the mechanical state of the muscle has been difficult and as the current interpretation of esophageal motility is based largely upon pressure measurement (manometry), subtle changes in the muscle function during peristalsis can be missed. We hypothesized that quantification of mechanical states of the esophageal circular muscles and the pressure-diameter properties that define them, would allow objective characterization of the mechanisms that govern esophageal peristalsis. To achieve this we analyzed barium swallows captured by simultaneous videofluoroscopy and pressure with impedance recording. From these data we demonstrated that intraluminal impedance measurements could be used to determine changes in the internal diameter of the lumen comparable with measurements from videofluoroscopy. Our data indicated that identification of mechanical state of esophageal muscle was simple to apply and revealed patterns consistent with the known neural inputs activating the different muscles during swallowing.

  19. Myofilament Calcium Sensitivity: Mechanistic Insight into TnI Ser-23/24 and Ser-150 Phosphorylation Integration

    PubMed Central

    Salhi, Hussam E.; Hassel, Nathan C.; Siddiqui, Jalal K.; Brundage, Elizabeth A.; Ziolo, Mark T.; Janssen, Paul M. L.; Davis, Jonathan P.; Biesiadecki, Brandon J.

    2016-01-01

    Troponin I (TnI) is a major regulator of cardiac muscle contraction and relaxation. During physiological and pathological stress, TnI is differentially phosphorylated at multiple residues through different signaling pathways to match cardiac function to demand. The combination of these TnI phosphorylations can exhibit an expected or unexpected functional integration, whereby the function of two phosphorylations are different than that predicted from the combined function of each individual phosphorylation alone. We have shown that TnI Ser-23/24 and Ser-150 phosphorylation exhibit functional integration and are simultaneously increased in response to cardiac stress. In the current study, we investigated the functional integration of TnI Ser-23/24 and Ser-150 to alter cardiac contraction. We hypothesized that Ser-23/24 and Ser-150 phosphorylation each utilize distinct molecular mechanisms to alter the TnI binding affinity within the thin filament. Mathematical modeling predicts that Ser-23/24 and Ser-150 phosphorylation affect different TnI affinities within the thin filament to distinctly alter the Ca2+-binding properties of troponin. Protein binding experiments validate this assertion by demonstrating pseudo-phosphorylated Ser-150 decreases the affinity of isolated TnI for actin, whereas Ser-23/24 pseudo-phosphorylation is not different from unphosphorylated. Thus, our data supports that TnI Ser-23/24 affects TnI-TnC binding, while Ser-150 phosphorylation alters TnI-actin binding. By measuring force development in troponin-exchanged skinned myocytes, we demonstrate that the Ca2+ sensitivity of force is directly related to the amount of phosphate present on TnI. Furthermore, we demonstrate that Ser-150 pseudo-phosphorylation blunts Ser-23/24-mediated decreased Ca2+-sensitive force development whether on the same or different TnI molecule. Therefore, TnI phosphorylations can integrate across troponins along the myofilament. These data demonstrate that TnI Ser-23/24 and Ser-150 phosphorylation regulates muscle contraction in part by modulating different TnI interactions in the thin filament and it is the combination of these differential mechanisms that provides understanding of their functional integration. PMID:28018230

  20. Proteomics Analysis of Human Skeletal Muscle Reveals Novel Abnormalities in Obesity and Type 2 Diabetes

    PubMed Central

    Hwang, Hyonson; Bowen, Benjamin P.; Lefort, Natalie; Flynn, Charles R.; De Filippis, Elena A.; Roberts, Christine; Smoke, Christopher C.; Meyer, Christian; Højlund, Kurt; Yi, Zhengping; Mandarino, Lawrence J.

    2010-01-01

    OBJECTIVE Insulin resistance in skeletal muscle is an early phenomenon in the pathogenesis of type 2 diabetes. Studies of insulin resistance usually are highly focused. However, approaches that give a more global picture of abnormalities in insulin resistance are useful in pointing out new directions for research. In previous studies, gene expression analyses show a coordinated pattern of reduction in nuclear-encoded mitochondrial gene expression in insulin resistance. However, changes in mRNA levels may not predict changes in protein abundance. An approach to identify global protein abundance changes involving the use of proteomics was used here. RESEARCH DESIGN AND METHODS Muscle biopsies were obtained basally from lean, obese, and type 2 diabetic volunteers (n = 8 each); glucose clamps were used to assess insulin sensitivity. Muscle protein was subjected to mass spectrometry–based quantification using normalized spectral abundance factors. RESULTS Of 1,218 proteins assigned, 400 were present in at least half of all subjects. Of these, 92 were altered by a factor of 2 in insulin resistance, and of those, 15 were significantly increased or decreased by ANOVA (P < 0.05). Analysis of protein sets revealed patterns of decreased abundance in mitochondrial proteins and altered abundance of proteins involved with cytoskeletal structure (desmin and alpha actinin-2 both decreased), chaperone function (TCP-1 subunits increased), and proteasome subunits (increased). CONCLUSIONS The results confirm the reduction in mitochondrial proteins in insulin-resistant muscle and suggest that changes in muscle structure, protein degradation, and folding also characterize insulin resistance. PMID:19833877

  1. CED-9 and mitochondrial homeostasis in C. elegans muscle

    PubMed Central

    Tan, Frederick J.; Husain, Michelle; Manlandro, Cara Marie; Koppenol, Marijke; Fire, Andrew Z.; Hill, R. Blake

    2009-01-01

    Summary Mitochondrial homeostasis reflects a dynamic balance between membrane fission and fusion events thought essential for mitochondrial function. We report here that altered expression of the C. elegans BCL2 homolog CED-9 affects both mitochondrial fission and fusion. Although striated muscle cells lacking CED-9 have no alteration in mitochondrial size or ultrastructure, these cells appear more sensitive to mitochondrial fragmentation. By contrast, increased CED-9 expression in these cells produces highly interconnected mitochondria. This mitochondrial phenotype is partially suppressed by increased expression of the dynamin-related GTPase DRP-1, with suppression dependent on the BH3 binding pocket of CED-9. This suppression suggests that CED-9 directly regulates DRP-1, a model supported by our finding that CED-9 activates the GTPase activity of human DRP1. Thus, CED-9 is capable of regulating the mitochondrial fission-fusion cycle but is not essential for either fission or fusion. PMID:18827010

  2. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning.

    PubMed

    Baldwin, K M; Caiozzo, V J; Haddad, F; Baker, M J; Herrick, R E

    1994-05-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  3. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Caiozzo, V. J.; Haddad, F.; Baker, M. J.; Herrick, R. E.

    1994-01-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  4. Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.

    2009-07-01

    The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifyingmore » this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.« less

  5. Autophagy is altered in skeletal and cardiac muscle of spontaneously hypertensive rats.

    PubMed

    Bloemberg, D; McDonald, E; Dulay, D; Quadrilatero, J

    2014-02-01

    Autophagy is a subcellular degradation mechanism important for muscle maintenance. Hypertension induces well-characterized pathological changes to the heart and is associated with impaired function and increased apoptotic signalling in skeletal muscle. We examined whether essential hypertension affects several autophagy markers in skeletal and cardiac muscle. Immunoblotting and qRT-PCR were used to measure autophagy-related proteins/mRNA in multiple skeletal muscles as well as left ventricle (LV) of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Skeletal muscles of hypertensive rats had decreased (P < 0.01) cross-sectional area of type I fibres (e.g. soleus WKY: 2952.9 ± 64.4 μm(2) vs. SHR: 2579.9 ± 85.8 μm(2)) and a fibre redistribution towards a 'fast' phenotype. Immunoblot analysis revealed that some SHR skeletal muscles displayed a decreased LC3II/I ratio (P < 0.05), but none showed differences in p62 protein. LC3 and LAMP2 mRNA levels were increased approx. 2-3-fold in all skeletal muscles (P < 0.05), while cathepsin activity, cathepsin L mRNA and Atg7 protein were increased 16-17% (P < 0.01), 2-3-fold (P < 0.05) and 29-49% (P < 0.01), respectively, in fast muscles of hypertensive animals. Finally, protein levels of BAG3, a marker of chaperone-assisted selective autophagy, were 18-25% lower (P < 0.05) in SHR skeletal muscles. In the LV of SHR, LC3I and p62 protein were elevated 34% (P < 0.05) and 47% (P < 0.01), respectively. Furthermore, p62 mRNA was 68% higher (P < 0.05), while LAMP2 mRNA was 45% lower (P < 0.05), in SHR cardiac muscle. There was no difference in Beclin1, Atg7, Bnip3 or BAG3 protein in the LV between strains. These results suggest that autophagy is altered in skeletal and cardiac muscle during hypertension. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  6. Alterations in zebrafish development induced by simvastatin: Comprehensive morphological and physiological study, focusing on muscle

    PubMed Central

    Campos, Laise M; Rios, Eduardo A; Guapyassu, Livia; Midlej, Victor; Atella, Georgia C; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia

    2016-01-01

    The cholesterol synthesis inhibitor simvastatin, which is used to treat cardiovascular diseases, has severe collateral effects. We decided to comprehensively study the effects of simvastatin in zebrafish development and in myogenesis, because zebrafish has been used as a model to human diseases, due to its handling easiness, the optical clarity of its embryos, and the availability of physiological and structural methodologies. Furthermore, muscle is an important target of the drug. We used several simvastatin concentrations at different zebrafish developmental stages and studied survival rate, morphology, and physiology of the embryos. Our results show that high levels of simvastatin induce structural damage whereas low doses induce minor structural changes, impaired movements, and reduced heart beating. Morphological alterations include changes in embryo and somite size and septa shape. Physiological changes include movement reduction and slower heartbeat. These effects could be reversed by the addition of exogenous cholesterol. Moreover, we quantified the total cell number during zebrafish development and demonstrated a large reduction in cell number after statin treatment. Since we could classify the alterations induced by simvastatin in three distinct phenotypes, we speculate that simvastatin acts through more than one mechanism and could affect both cell replication and/or cell death and muscle function. Our data can contribute to the understanding of the molecular and cellular basis of the mechanisms of action of simvastatin. PMID:27444151

  7. Alterations in zebrafish development induced by simvastatin: Comprehensive morphological and physiological study, focusing on muscle.

    PubMed

    Campos, Laise M; Rios, Eduardo A; Guapyassu, Livia; Midlej, Victor; Atella, Georgia C; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia; Costa, Manoel L

    2016-11-01

    The cholesterol synthesis inhibitor simvastatin, which is used to treat cardiovascular diseases, has severe collateral effects. We decided to comprehensively study the effects of simvastatin in zebrafish development and in myogenesis, because zebrafish has been used as a model to human diseases, due to its handling easiness, the optical clarity of its embryos, and the availability of physiological and structural methodologies. Furthermore, muscle is an important target of the drug. We used several simvastatin concentrations at different zebrafish developmental stages and studied survival rate, morphology, and physiology of the embryos. Our results show that high levels of simvastatin induce structural damage whereas low doses induce minor structural changes, impaired movements, and reduced heart beating. Morphological alterations include changes in embryo and somite size and septa shape. Physiological changes include movement reduction and slower heartbeat. These effects could be reversed by the addition of exogenous cholesterol. Moreover, we quantified the total cell number during zebrafish development and demonstrated a large reduction in cell number after statin treatment. Since we could classify the alterations induced by simvastatin in three distinct phenotypes, we speculate that simvastatin acts through more than one mechanism and could affect both cell replication and/or cell death and muscle function. Our data can contribute to the understanding of the molecular and cellular basis of the mechanisms of action of simvastatin. © 2016 by the Society for Experimental Biology and Medicine.

  8. Muscle Coordination and Locomotion in Humans.

    PubMed

    Sylos-Labini, Francesca; Zago, Myrka; Guertin, Pierre A; Lacquaniti, Francesco; Ivanenko, Yury P

    2017-01-01

    Locomotion is a semi-automatic daily task. Several studies show that muscle activity is fairly stereotyped during normal walking. Nevertheless, each human leg contains over 50 muscles and locomotion requires flexibility in order to adapt to different conditions as, for instance, different speeds, gaits, turning, obstacle avoidance, altered gravity levels, etc. Therefore, locomotor control has to deal with a certain level of flexibility and non-linearity. In this review, we describe and discuss different findings dealing with both simplicity and variability of the muscular control, as well as with its maturation during development. Despite complexity and redundancy, muscle activity patterns and spatiotemporal maps of spinal motoneuron output during human locomotion show both stereotypical features as well as functional re-organization. Flexibility and different solutions to adjust motor patterns should be considered when considering new rehabilitation strategies to treat disorders involving deficits in gait. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging.

    PubMed

    Staunton, Lisa; O'Connell, Kathleen; Ohlendieck, Kay

    2011-03-07

    Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.

  10. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment.

    PubMed

    Testoni, Giorgia; Duran, Jordi; García-Rocha, Mar; Vilaplana, Francisco; Serrano, Antonio L; Sebastián, David; López-Soldado, Iliana; Sullivan, Mitchell A; Slebe, Felipe; Vilaseca, Marta; Muñoz-Cánoves, Pura; Guinovart, Joan J

    2017-07-05

    Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Oligomeric status of the dihydropyridine receptor in aged skeletal muscle.

    PubMed

    Ryan, M; Carlson, B M; Ohlendieck, K

    2000-10-01

    A prominent feature of aging is represented by a decrease in muscle mass and strength. Abnormalities in Ca2+ -regulatory membrane complexes are involved in many muscular disorders. In analogy, we determined potential age-related changes in a key component of excitation-contraction coupling, the dihydropyridine receptor. Immunoblotting of the microsomal fraction from aged rabbit muscle revealed a drastic decline in the voltage-sensing alpha1-subunit of this transverse-tubular receptor, but only marginally altered expression of its auxiliary alpha(2)-subunit and the Na+/K+ -ATPase. A shift to slower fibre type characteristics was indicated by an age-related increase in the slow calsequestrin isoform. Chemical crosslinking analysis showed that the triad receptor complex has a comparable tendency of protein-protein interactions in young and aged muscles. Hence, a reduced expression and not modified oligomerization of the principal dihydropyridine receptor subunit might be involved in triggering impaired triadic signal transduction and abnormal Ca2+ -homeostasis resulting in a progressive functional decline of skeletal muscles. Copyright 2001 Academic Press.

  12. Alterations in neuromuscular function in girls with generalized joint hypermobility.

    PubMed

    Jensen, Bente Rona; Sandfeld, Jesper; Melcher, Pia Sandfeld; Johansen, Katrine Lyders; Hendriksen, Peter; Juul-Kristensen, Birgit

    2016-10-03

    Generalized Joint Hypermobility (GJH) is associated with increased risk of musculoskeletal joint pain. We investigated neuromuscular performance and muscle activation strategy. Girls with GJH and non-GJH (NGJH) performed isometric knee flexions (90°,110°,130°), and extensions (90°) at 20 % Maximum Voluntary Contraction, and explosive isometric knee flexions while sitting. EMG was recorded from knee flexor and extensor muscles. Early rate of torque development was 53 % faster for GJH. Reduced hamstring muscle activation in girls with GJH was found while knee extensor and calf muscle activation did not differ between groups. Flexion-extension and medial-lateral co-activation ratio during flexions were higher for girls with GJH than NGJH girls. Girls with GJH had higher capacity to rapidly generate force than NGJH girls which may reflect motor adaptation to compensate for hypermobility. Higher medial muscle activation indicated higher levels of medial knee joint compression in girls with GJH. Increased flexion-extension co-activation ratios in GJH were explained by decreased agonist drive to the hamstrings.

  13. Cell Calcium and the Control of Membrane Transport. Annual Symposium of the Society of General Physiologists (40th) Held in Woods Hole, Massachusetts on September 3-7, 1986.

    DTIC Science & Technology

    1986-01-01

    physiological functions: to alter the composition of the cell surface, for instance, by the insertion of receptors, channels, and pumps, and to release into the...localized alterations in lipid composition might serve to facilitate fusion under some circumstances, the involvement of proteins specialized for...594. Reuter. H., and N. Seitz. 1968. The dependence of Ca2* efllux from cardiac muscle on temperature and external ion composition . Journal o/Phywidoo

  14. Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs.

    PubMed

    Barreto, Rafael; Waning, David L; Gao, Hongyu; Liu, Yunlong; Zimmers, Teresa A; Bonetto, Andrea

    2016-07-12

    Cachexia affects the majority of cancer patients, with currently no effective treatments. Cachexia is defined by increased fatigue and loss of muscle function resulting from muscle and fat depletion. Previous studies suggest that chemotherapy may contribute to cachexia, although the causes responsible for this association are not clear. The purpose of this study was to investigate the mechanism(s) associated with chemotherapy-related effects on body composition and muscle function. Normal mice were administered chemotherapy regimens used for the treatment of colorectal cancer, such as Folfox (5-FU, leucovorin, oxaliplatin) or Folfiri (5-FU, leucovorin, irinotecan) for 5 weeks. The animals that received chemotherapy exhibited concurrent loss of muscle mass and muscle weakness. Consistently with previous findings, muscle wasting was associated with up-regulation of ERK1/2 and p38 MAPKs. No changes in ubiquitin-dependent proteolysis or in the expression of TGFβ-family members were detected. Further, marked decreases in mitochondrial content, associated with abnormalities at the sarcomeric level and with increase in the number of glycolytic fibers were observed in the muscle of mice receiving chemotherapy. Finally, ACVR2B/Fc or PD98059 prevented Folfiri-associated ERK1/2 activation and myofiber atrophy in C2C12 cultures. Our findings demonstrate that chemotherapy promotes MAPK-dependent muscle atrophy as well as mitochondrial depletion and alterations of the sarcomeric units. Therefore, these findings suggest that chemotherapy potentially plays a causative role in the occurrence of muscle loss and weakness. Moreover, the present observations provide a strong rationale for testing ACVR2B/Fc or MEK1 inhibitors in combination with anticancer drugs as novel strategies aimed at preventing chemotherapy-associated muscle atrophy.

  15. Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs

    PubMed Central

    Barreto, Rafael; Waning, David L.; Gao, Hongyu; Liu, Yunlong; Zimmers, Teresa A.; Bonetto, Andrea

    2016-01-01

    Cachexia affects the majority of cancer patients, with currently no effective treatments. Cachexia is defined by increased fatigue and loss of muscle function resulting from muscle and fat depletion. Previous studies suggest that chemotherapy may contribute to cachexia, although the causes responsible for this association are not clear. The purpose of this study was to investigate the mechanism(s) associated with chemotherapy-related effects on body composition and muscle function. Normal mice were administered chemotherapy regimens used for the treatment of colorectal cancer, such as Folfox (5-FU, leucovorin, oxaliplatin) or Folfiri (5-FU, leucovorin, irinotecan) for 5 weeks. The animals that received chemotherapy exhibited concurrent loss of muscle mass and muscle weakness. Consistently with previous findings, muscle wasting was associated with up-regulation of ERK1/2 and p38 MAPKs. No changes in ubiquitin-dependent proteolysis or in the expression of TGFβ-family members were detected. Further, marked decreases in mitochondrial content, associated with abnormalities at the sarcomeric level and with increase in the number of glycolytic fibers were observed in the muscle of mice receiving chemotherapy. Finally, ACVR2B/Fc or PD98059 prevented Folfiri-associated ERK1/2 activation and myofiber atrophy in C2C12 cultures. Our findings demonstrate that chemotherapy promotes MAPK-dependent muscle atrophy as well as mitochondrial depletion and alterations of the sarcomeric units. Therefore, these findings suggest that chemotherapy potentially plays a causative role in the occurrence of muscle loss and weakness. Moreover, the present observations provide a strong rationale for testing ACVR2B/Fc or MEK1 inhibitors in combination with anticancer drugs as novel strategies aimed at preventing chemotherapy-associated muscle atrophy. PMID:27259276

  16. Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice.

    PubMed

    Bal, Naresh C; Singh, Sushant; Reis, Felipe C G; Maurya, Santosh K; Pani, Sunil; Rowland, Leslie A; Periasamy, Muthu

    2017-10-06

    Thermogenesis is an important homeostatic mechanism essential for survival and normal physiological functions in mammals. Both brown adipose tissue (BAT) ( i.e. uncoupling protein 1 (UCP1)-based) and skeletal muscle ( i.e. sarcolipin (SLN)-based) thermogenesis processes play important roles in temperature homeostasis, but their relative contributions differ from small to large mammals. In this study, we investigated the functional interplay between skeletal muscle- and BAT-based thermogenesis under mild versus severe cold adaptation by employing UCP1 -/- and SLN -/- mice. Interestingly, adaptation of SLN -/- mice to mild cold conditions (16 °C) significantly increased UCP1 expression, suggesting increased reliance on BAT-based thermogenesis. This was also evident from structural alterations in BAT morphology, including mitochondrial architecture, increased expression of electron transport chain proteins, and depletion of fat droplets. Similarly, UCP1 -/- mice adapted to mild cold up-regulated muscle-based thermogenesis, indicated by increases in muscle succinate dehydrogenase activity, SLN expression, mitochondrial content, and neovascularization, compared with WT mice. These results further confirm that SLN-based thermogenesis is a key player in muscle non-shivering thermogenesis (NST) and can compensate for loss of BAT activity. We also present evidence that the increased reliance on BAT-based NST depends on increased autonomic input, as indicated by abundant levels of tyrosine hydroxylase and neuropeptide Y. Our findings demonstrate that both BAT and muscle-based NST are equally recruited during mild and severe cold adaptation and that loss of heat production from one thermogenic pathway leads to increased recruitment of the other, indicating a functional interplay between these two thermogenic processes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats.

    PubMed

    Coudray, Charles; Fouret, Gilles; Lambert, Karen; Ferreri, Carla; Rieusset, Jennifer; Blachnio-Zabielska, Agnieszka; Lecomte, Jérôme; Ebabe Elle, Raymond; Badia, Eric; Murphy, Michael P; Feillet-Coudray, Christine

    2016-04-14

    The prevalence of the metabolic syndrome components including abdominal obesity, dyslipidaemia and insulin resistance is increasing in both developed and developing countries. It is generally accepted that the development of these features is preceded by, or accompanied with, impaired mitochondrial function. The present study was designed to analyse the effects of a mitochondrial-targeted lipophilic ubiquinone (MitoQ) on muscle lipid profile modulation and mitochondrial function in obesogenic diet-fed rats. For this purpose, twenty-four young male Sprague-Dawley rats were divided into three groups and fed one of the following diets: (1) control, (2) high fat (HF) and (3) HF+MitoQ. After 8 weeks, mitochondrial function markers and lipid metabolism/profile modifications in skeletal muscle were measured. The HF diet was effective at inducing the major features of the metabolic syndrome--namely, obesity, hepatic enlargement and glucose intolerance. MitoQ intake prevented the increase in rat body weight, attenuated the increase in adipose tissue and liver weights and partially reversed glucose intolerance. At the muscle level, the HF diet induced moderate TAG accumulation associated with important modifications in the muscle phospholipid classes and in the fatty acid composition of total muscle lipid. These lipid modifications were accompanied with decrease in mitochondrial respiration. MitoQ intake corrected the lipid alterations and restored mitochondrial respiration. These results indicate that MitoQ protected obesogenic diet-fed rats from some features of the metabolic syndrome through its effects on muscle lipid metabolism and mitochondrial activity. These findings suggest that MitoQ is a promising candidate for future human trials in the metabolic syndrome prevention.

  18. Effects of simulated microgravity on microRNA and mRNA expression profile of rat soleus

    NASA Astrophysics Data System (ADS)

    Xu, Hongjie; Wu, Feng; Cao, Hongqing; Kan, Guanghan; Zhang, Hongyu; Yeung, Ella W.; Shang, Peng; Dai, Zhongquan; Li, Yinghui

    2015-02-01

    Spaceflight induces muscle atrophy but mechanism is not well understood. Here, we quantified microRNAs (miRNAs) and mRNA shifts of rat soleus in response to microgravity. MiRNAs and mRNA microarray of soleus after tail suspension (TS) for 7 and 14 days were performed followed by target gene and function annotation analysis and qRT-PCR. Relative muscle mass lost by 37.0% in TS-7 but less than 10% in the following three weeks. TS altered 23 miRNAs and 1313 mRNAs with at least 2-fold. QRT-PCR confirmed some of these changes. MiR-214, miR-486-5p and miR-221 continuously decreased. MiR-674 and Let-7e decreased only in TS-7, while miR-320b and miR-187 decreased only in TS-14. But there was no alteration of miR-320 and miR-206 in both time point. For mRNA detection, actn3 (5.1-fold and 13.8-fold) and myh4 (38-fold and 51.6-fold) increased abundantly and a3galt2 decreased. Predicted targeted genes (whyz, ywhaz and SFRP2) of altered miRNAs decreased. GO terms and cellular pathway of these alteration showed enrichment in regulation of muscle metabolism. Integration analysis of the miRNA and mRNA expression profiles confirmed that eleven genes were differently regulated by four miRNAs. This is the first study that showed expression pattern and synergistical regulation of miRNA and mRNA in rat soleus of TS for up to 14 days.

  19. Alterations in cervical muscle activity in functional and stressful tasks in female office workers with neck pain.

    PubMed

    Johnston, V; Jull, G; Darnell, R; Jimmieson, N L; Souvlis, T

    2008-06-01

    This study determined differences between computer workers with varying levels of neck pain in terms of work stressors, employee strain, electromyography (EMG) amplitude and heart rate response to various tasks. Participants included 85 workers (33, no pain; 38, mild pain; 14, moderate pain) and 22 non-working controls. Work stressors evaluated were job demands, decision authority, and social support. Heart rate was recorded during three tasks: copy-typing, typing with superimposed stress and a colour word task. Measures included electromyography signals from the sternocleidomastoid (SCM), anterior scalene (AS), cervical extensor (CE) and upper trapezius (UT) muscles bilaterally. Results showed no difference between groups in work stressors or employee strain measures. Workers with and without pain had higher measured levels of EMG amplitude in SCM, AS and CE muscles during the tasks than controls (all P < 0.02). In workers with neck pain, the UT had difficulty in switching off on completion of tasks compared with controls and workers without pain. There was an increase in heart rate, perceived tension and pain and decrease in accuracy for all groups during the stressful tasks with symptomatic workers producing more typing errors than controls and workers without pain. These findings suggest an altered muscle recruitment pattern in the neck flexor and extensor muscles. Whether this is a consequence or source of the musculoskeletal disorder cannot be determined from this study. It is possible that workers currently without symptoms may be at risk of developing a musculoskeletal disorder.

  20. Muscle-specific deletion of SOCS3 increases the early inflammatory response but does not affect regeneration after myotoxic injury.

    PubMed

    Swiderski, Kristy; Thakur, Savant S; Naim, Timur; Trieu, Jennifer; Chee, Annabel; Stapleton, David I; Koopman, René; Lynch, Gordon S

    2016-01-01

    Muscles of old animals are injured more easily and regenerate poorly, attributed in part to increased levels of circulating pro-inflammatory cytokines. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling cascade is a key mediator of inflammatory cytokine action, and signaling via this pathway is increased in muscles with aging. As a negative regulator of JAK/STAT signaling, a key mediator of myogenic proliferation and differentiation, altered expression of suppressor of cytokine signaling (SOCS3) is likely to have important consequences for muscle regeneration. To model this scenario, we investigated the effect of SOCS3 deletion within mature muscle fibers on injury and repair. We tested the hypothesis that reduced SOCS3 function would alter the inflammatory response and impair muscle regeneration after myotoxic injury. Mice with a specific deletion of SOCS3 within mature skeletal muscle fibers were used to assess the effect of SOCS3 deletion on muscle injury and repair. Twelve-week-old or 24-month-old SOCS3 muscle-specific knockout (SOCS3 MKO) mice and littermate controls were either left uninjured or injured with a single injection of notexin (10 μg/ml) into the right tibialis anterior (TA) muscle. At 1, 2, 3, 5, 7, or 14 days post-injury, the right TA muscle was excised and subjected to histological, western immunoblotting, and gene expression analyses. Force production and fatigue were assessed in uninjured muscles and at 7 days post-notexin injury. In uninjured muscles, SOCS3 deletion decreased force production during fatigue but had no effect on the gross or histological appearance of the TA muscles. After notexin injury, deletion of SOCS3 increased STAT3 phosphorylation at day 1 and increased the mRNA expression of the inflammatory cytokine TNF-α , and the inflammatory cell markers F4/80 and CD68 at day 2. Gene expression analysis of the regeneration markers Pax7 , MyoD , and Myogenin indicated SOCS3 deletion had no effect on the progression of muscle repair after notexin injury. Inflammation and regeneration were also unchanged in the muscles of 24-month-old SOCS3 MKO mice compared with control. Loss of SOCS3 expression in mature muscle fibers increased the inflammatory response to myotoxic injury but did not impair muscle regeneration in either adult or old mice. Therefore, reduced SOCS3 expression in muscle fibers is unlikely to underlie impaired muscle regeneration. Further investigation into the role of SOCS3 in other cell types involved in muscle repair is warranted.

  1. Neural Contributions to Muscle Fatigue: From the Brain to the Muscle and Back Again

    PubMed Central

    Taylor, Janet L.; Amann, Markus; Duchateau, Jacques; Meeusen, Romain; Rice, Charles L.

    2016-01-01

    During exercise, there is a progressive reduction in the ability to produce muscle forces. Processes within the nervous system, as well as within the muscles contribute to this fatigue. In addition to impaired function of the motor system, sensations associated with fatigue, and impairment of homeostasis can contribute to impairment of performance during exercise. This review discusses some of the neural changes that accompany exercise and the development of fatigue. The role of brain monoaminergic neurotransmitter systems in whole-body endurance performance is discussed, particularly with regard to exercise in hot environments. Next, fatigue-related alterations in the neuromuscular pathway are discussed in terms of changes in motor unit firing, motoneuron excitability and motor cortical excitability. These changes have mostly been investigated during single-limb isometric contractions. Finally, the small-diameter muscle afferents that increase firing with exercise and fatigue are discussed. These afferents have roles in cardiovascular and respiratory responses to exercise, and in impairment of exercise performance through interaction with the motor pathway, as well as providing sensations of muscle discomfort. Thus, changes at all levels of the nervous system including the brain, spinal cord, motor output, sensory input and autonomic function occur during exercise and fatigue. The mix of influences and the importance of their contribution varies with the type of exercise being performed. PMID:27003703

  2. Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats

    PubMed Central

    Baehr, Leslie M.; West, Daniel W. D.; Marshall, Andrea G.; Marcotte, George R.; Baar, Keith

    2017-01-01

    Disuse is a potent inducer of muscle atrophy, but the molecular mechanisms driving this loss of muscle mass are highly debated. In particular, the extent to which disuse triggers decreases in protein synthesis or increases in protein degradation, and whether these changes are uniform across muscles or influenced by age, is unclear. We aimed to determine the impact of disuse on protein synthesis and protein degradation in lower limb muscles of varied function and fiber type in adult and old rats. Alterations in protein synthesis and degradation were measured in the soleus, medial gastrocnemius, and tibialis anterior (TA) muscles of adult and old rats subjected to hindlimb unloading (HU) for 3, 7, or 14 days. Loss of muscle mass was progressive during the unloading period, but highly variable (−9 to −38%) across muscle types and between ages. Protein synthesis decreased significantly in all muscles, except for the old TA. Atrophy-associated gene expression was only loosely associated with protein degradation as muscle RING finger-1, muscle atrophy F-box (MAFbx), and Forkhead box O1 expression significantly increased in all muscles, but an increase in proteasome activity was only observed in the adult soleus. MAFbx protein levels were significantly higher in the old muscles compared with adult muscles, despite the old having higher expression of microRNA-23a. These results indicate that adult and old muscles respond similarly to HU, and the greatest loss in muscle mass occurs in predominantly slow-twitch extensor muscles due to a concomitant decrease in protein synthesis and increase in protein degradation. NEW & NOTEWORTHY In this study, we showed that age did not intensify the atrophy response to unloading in rats, but rather that the degree of atrophy was highly variable across muscles, indicating that changes in protein synthesis and protein degradation occur in a muscle-specific manner. Our data emphasize the importance of studying muscles of varying fiber-type and physiological function at multiple time points to fully understand the molecular mechanisms responsible for disuse atrophy. PMID:28336537

  3. Alterations in Skeletal Muscle With Disuse Atrophy: The Effects of Countermeasures

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.

    1996-01-01

    The specific aims of this project concerned three general areas: (1) studies on the contractile function of single skinned fibers designed to determine the time course and cellular basis of the Hindlimb Suspension (HS) induced increase in fiber Vo (maximal shortening velocity), and the decrease in peak tension (Po); (2) studies designed to understand the effect of HS on single fiber substrate utilization during contractile activity, and how if at all such changes contribute to the increased muscle fatigue associated with HS; and (3) studies evaluating the effectiveness of standing and ladder climbing as countermeasures to the deleterious effects of HS. We have constructed all of the necessary equipment, and are currently conducting preliminary studies on T-tubular charge movement. A list of publications from this contract is included at the end of this report. The three objectives are (1) Functional Studies on the Single Skinned Fiber; (2) Fiber Substrate Utilization and Muscle Fatugue with Contracting Activity and (3) Exercise Countermeasures.

  4. Effect of swim exercise training on human muscle fiber function

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Costill, D. L.; Gardetto, P. R.

    1989-01-01

    The effect of swim exercise training on the human muscle fiber function was investigated in swimmers trained in a typical collegiate swim-training program followed by an intensified 10-day training period. The measured parameters included the peak tension (P0), negative log molar Ca(2+) concentration (pCa)-force, and maximal shortening speed (Vmax) of the slow-twitch type I and fast-twitch type II fibers obtained by biopsy from the deltoid muscle. The P0 values were found to be not altered after either the training or the 10-day intensive program. The type I fibers from the trained swimmers showed pCa-force curves shifted to the right, such that higher free Ca(2+) levels were required to elicit a given percent of P0. The training program significantly increased the Vmax in the type I fibers and decreased that of the type II fibers, and the 10-day intensive training produced a further significant decrease of the type II fibers.

  5. Ultrasound evaluation of foot muscles and plantar fascia in pes planus.

    PubMed

    Angin, Salih; Crofts, Gillian; Mickle, Karen J; Nester, Christopher J

    2014-01-01

    Multiple intrinsic and extrinsic soft tissue structures that apply forces and support the medial longitudinal arch have been implicated in pes planus. These structures have common functions but their interaction in pes planus is not fully understood. The aim of this study was to compare the cross-sectional area (CSA) and thickness of the intrinsic and extrinsic foot muscles and plantar fascia thickness between normal and pes planus feet. Forty-nine adults with a normal foot posture and 49 individuals with pes planus feet were recruited from a university population. Images of the flexor digitorum longus (FDL), flexor hallucis longus (FHL), peroneus longus and brevis (PER), flexor hallucis brevis (FHB), flexor digitorum brevis (FDB) and abductor hallucis (AbH) muscles and the plantar fascia were obtained using a Venue 40 ultrasound system with a 5-13 MHz transducer. The CSA and thickness of AbH, FHB and PER muscles were significantly smaller (AbH -12.8% and -6.8%, FHB -8.9% and -7.6%, PER -14.7% and -10%), whilst FDL (28.3% and 15.2%) and FHL (24% and 9.8%) were significantly larger in the pes planus group. The middle (-10.6%) and anterior (-21.7%) portions of the plantar fascia were thinner in pes planus group. Greater CSA and thickness of the extrinsic muscles might reflect compensatory activity to support the MLA if the intrinsic foot muscle function has been compromised by altered foot structure. A thinner plantar fascia suggests reduced load bearing, and regional variations in structure and function in feet with pes planus. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Paracrine Effects of IGF-1 Overexpression on the Functional Decline Due to Skeletal Muscle Disuse: Molecular and Functional Evaluation in Hindlimb Unloaded MLC/mIgf-1 Transgenic Mice

    PubMed Central

    Cannone, Maria; Liantonio, Antonella; De Bellis, Michela; Digennaro, Claudio; Gramegna, Gianluca; De Luca, Annamaria; Germinario, Elena; Danieli-Betto, Daniela; Betto, Romeo; Dobrowolny, Gabriella; Rizzuto, Emanuele; Musarò, Antonio; Desaphy, Jean-François; Camerino, Diana Conte

    2013-01-01

    Slow-twitch muscles, devoted to postural maintenance, experience atrophy and weakness during muscle disuse due to bed-rest, aging or spaceflight. These conditions impair motion activities and can have survival implications. Human and animal studies demonstrate the anabolic role of IGF-1 on skeletal muscle suggesting its interest as a muscle disuse countermeasure. Thus, we tested the role of IGF-1 overexpression on skeletal muscle alteration due to hindlimb unloading (HU) by using MLC/mIgf-1 transgenic mice expressing IGF-1 under the transcriptional control of MLC promoter, selectively activated in skeletal muscle. HU produced atrophy in soleus muscle, in terms of muscle weight and fiber cross-sectional area (CSA) reduction, and up-regulation of atrophy gene MuRF1. In parallel, the disuse-induced slow-to-fast fiber transition was confirmed by an increase of the fast-type of the Myosin Heavy Chain (MHC), a decrease of PGC-1α expression and an increase of histone deacetylase-5 (HDAC5). Consistently, functional parameters such as the resting chloride conductance (gCl) together with ClC-1 chloride channel expression were increased and the contractile parameters were modified in soleus muscle of HU mice. Surprisingly, IGF-1 overexpression in HU mice was unable to counteract the loss of muscle weight and the decrease of fiber CSA. However, the expression of MuRF1 was recovered, suggesting early effects on muscle atrophy. Although the expression of PGC-1α and MHC were not improved in IGF-1-HU mice, the expression of HDAC5 was recovered. Importantly, the HU-induced increase of gCl was fully contrasted in IGF-1 transgenic mice, as well as the changes in contractile parameters. These results indicate that, even if local expression does not seem to attenuate HU-induced atrophy and slow-to-fast phenotype transition, it exerts early molecular effects on gene expression which can counteract the HU-induced modification of electrical and contractile properties. MuRF1 and HDAC5 can be attractive therapeutic targets for pharmacological countermeasures and then deserve further investigations. PMID:23755187

  7. Stair Descending Exercise Using a Novel Automatic Escalator: Effects on Muscle Performance and Health-Related Parameters

    PubMed Central

    Paschalis, Vassilis; Theodorou, Anastasios A.; Panayiotou, George; Kyparos, Antonios; Patikas, Dimitrios; Grivas, Gerasimos V.; Nikolaidis, Michalis G.; Vrabas, Ioannis S.

    2013-01-01

    A novel automatic escalator was designed, constructed and used in the present investigation. The aim of the present investigation was to compare the effect of two repeated sessions of stair descending versus stair ascending exercise on muscle performance and health-related parameters in young healthy men. Twenty males participated and were randomly divided into two equal-sized groups: a stair descending group (muscle-damaging group) and a stair ascending group (non-muscle-damaging group). Each group performed two sessions of stair descending or stair ascending exercise on the automatic escalator while a three week period was elapsed between the two exercise sessions. Indices of muscle function, insulin sensitivity, blood lipid profile and redox status were assessed before and immediately after, as well as at day 2 and day 4 after both exercise sessions. It was found that the first bout of stair descending exercise caused muscle damage, induced insulin resistance and oxidative stress as well as affected positively blood lipid profile. However, after the second bout of stair descending exercise the alterations in all parameters were diminished or abolished. On the other hand, the stair ascending exercise induced only minor effects on muscle function and health-related parameters after both exercise bouts. The results of the present investigation indicate that stair descending exercise seems to be a promising way of exercise that can provoke positive effects on blood lipid profile and antioxidant status. PMID:23437093

  8. Myosin Binding Protein-C Slow Phosphorylation is Altered in Duchenne Dystrophy and Arthrogryposis Myopathy in Fast-Twitch Skeletal Muscles.

    PubMed

    Ackermann, Maegen A; Ward, Christopher W; Gurnett, Christina; Kontrogianni-Konstantopoulos, Aikaterini

    2015-08-19

    Myosin Binding Protein-C slow (sMyBP-C), encoded by MYBPC1, comprises a family of regulatory proteins of skeletal muscles that are phosphorylated by PKA and PKC. MYBPC1 missense mutations are linked to the development of Distal Arthrogryposis-1 (DA-1). Although structure-function details for this myopathy are evolving, function is undoubtedly driven by sequence variations and post-translational modifications in sMyBP-C. Herein, we examined the phosphorylation profile of sMyBP-C in mouse and human fast-twitch skeletal muscles. We used Flexor Digitorum Brevis (FDB) isolated from young (~2-months old) and old (~14-months old) wild type and mdx mice, and human Abductor Hallucis (AH) and gastrocnemious muscles carrying the DA-1 mutations. Our results indicate both constitutive and differential phosphorylation of sMyBP-C in aged and diseased muscles. We report a 7-35% reduction in the phosphorylation levels of select sites in old wild type and young or old mdx FDB mouse muscles, compared to young wild type tissue. Similarly, we observe a 30-70% decrease in the phosphorylation levels of all PKA and PKC phospho-sites in the DA-1 AH, but not gastrocnemius, muscle. Overall, our studies show that the phosphorylation pattern of sMyBP-C is differentially regulated in response to age and disease, suggesting that phosphorylation plays important roles in these processes.

  9. Sparing of the Dystrophin-Deficient Cranial Sartorius Muscle Is Associated with Classical and Novel Hypertrophy Pathways in GRMD Dogs

    PubMed Central

    Nghiem, Peter P.; Hoffman, Eric P.; Mittal, Priya; Brown, Kristy J.; Schatzberg, Scott J.; Ghimbovschi, Svetlana; Wang, Zuyi; Kornegay, Joe N.

    2014-01-01

    Both Duchenne and golden retriever muscular dystrophy (GRMD) are caused by dystrophin deficiency. The Duchenne muscular dystrophy sartorius muscle and orthologous GRMD cranial sartorius (CS) are relatively spared/hypertrophied. We completed hierarchical clustering studies to define molecular mechanisms contributing to this differential involvement and their role in the GRMD phenotype. GRMD dogs with larger CS muscles had more severe deficits, suggesting that selective hypertrophy could be detrimental. Serial biopsies from the hypertrophied CS and other atrophied muscles were studied in a subset of these dogs. Myostatin showed an age-dependent decrease and an inverse correlation with the degree of GRMD CS hypertrophy. Regulators of myostatin at the protein (AKT1) and miRNA (miR-539 and miR-208b targeting myostatin mRNA) levels were altered in GRMD CS, consistent with down-regulation of myostatin signaling, CS hypertrophy, and functional rescue of this muscle. mRNA and proteomic profiling was used to identify additional candidate genes associated with CS hypertrophy. The top-ranked network included α-dystroglycan and like-acetylglucosaminyltransferase. Proteomics demonstrated increases in myotrophin and spectrin that could promote hypertrophy and cytoskeletal stability, respectively. Our results suggest that multiple pathways, including decreased myostatin and up-regulated miRNAs, α-dystroglycan/like-acetylglucosaminyltransferase, spectrin, and myotrophin, contribute to hypertrophy and functional sparing of the CS. These data also underscore the muscle-specific responses to dystrophin deficiency and the potential deleterious effects of differential muscle involvement. PMID:24160322

  10. Responses of skeletal muscle to unloading, a review

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.; Henriksen, E. J.; Jacob, S.

    1985-01-01

    Suspension models were used to study muscle response to reduced activity. During 6 days of tail casting, the soleus (SOL) atrophies while the extensor digitorum longus grows relatively normally. After discounting those changes in both muscles due primarily to increased secretion of adrenal hormones, the following conclusions regarding the specific responses of the SOL could be drawn: (1) Atrophy is probably due primarily to increased protein degradation; (2) Decreased synthesis of glutamine may result from reduced availability of ammonia due to diminished use of ATP; (3) Greater muscle glycogen seems to reflect an increased response to insulin of glucose uptake which leads to greater glucose metabolism; and (4) Faster catabolism of branched-chain amino acids can be attributed to enhanced flux through ketoacid dehydrogenase. Studies by others using tail casted suspended rats showed in the SOL: (1) a gradual switch from type 1 to type 2 fibers; (2) increased acid protease activity; and (3) altered muscle function and contractile duration. Using harness suspended rats, others showed in the SOL: (1) significant atrophy; (2) increased numbers of glucocorticoid receptors; and (3) no change in muscle fatigability.

  11. Changes in Muscle Metabolism are Associated with Phenotypic Variability in Golden Retriever Muscular Dystrophy




    PubMed Central

    Nghiem, Peter P.; Bello, Luca; Stoughton, William B.; López, Sara Mata; Vidal, Alexander H.; Hernandez, Briana V.; Hulbert, Katherine N.; Gourley, Taylor R.; Bettis, Amanda K.; Balog-Alvarez, Cynthia J.; Heath-Barnett, Heather; Kornegay, Joe N.

    2017-01-01

    Duchenne muscular dystrophy (DMD) is an X-chromosome-linked disorder and the most common monogenic disease in people. Affected boys are diagnosed at a young age, become non-ambulatory by their early teens, and succumb to cardiorespiratory failure by their thirties. Despite being a monogenic condition resulting from mutations in the DMD gene, affected boys have noteworthy phenotypic variability. Efforts have identified genetic modifiers that could modify disease progression and be pharmacologic targets. Dogs affected with golden retriever muscular dystrophy (GRMD) have absent dystrophin and demonstrate phenotypic variability at the functional, histopathological, and molecular level. Our laboratory is particularly interested in muscle metabolism changes in dystrophin-deficient muscle. We identified several metabolic alterations, including myofiber type switching from fast (type II) to slow (type I), reduced glycolytic enzyme expression, reduced and morphologically abnormal mitochondria, and differential AMP-kinase phosphorylation (activation) between hypertrophied and wasted muscle. We hypothesize that muscle metabolism changes are, in part, responsible for phenotypic variability in GRMD. Pharmacological therapies aimed at modulating muscle metabolism can be tested in GRMD dogs for efficacy. PMID:28955176

  12. Responses of skeletal muscle to unloading - A review

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.; Henriksen, E. J.; Jacob, S.

    1985-01-01

    Suspension models were used to study muscle response to reduced activity. During 6 days of tail casting, the soleus (SOL) atrophies while the extensor digitorum longus grows relatively normally. After discounting those changes in both muscles due primarily to increased secretion of adrenal hormones, the following conclusions regarding the specific responses of the SOL could be drawn: (1) Atrophy is probably due primarily to increased protein degradation; (2) Decreased synthesis of glutamine may result from reduced availability of ammonia due to diminished use of ATP; (3) Greater muscle glycogen seems to reflect an increased response to insulin of glucose uptake which leads to greater glucose metabolism; and (4) Faster catabolism of branched-chain amino acids can be attributed to enhanced flux through ketoacid dehydrogenase. Studies by others using tail casted suspended rats showed in the SOL: (1) a gradual switch from type 1 to type 2 fibers; (2) increased acid protease activity; and (3) altered muscle function and contractile duration. Using harness suspended rats, others showed in the SOL: (1) significant atrophy; (2) increased numbers of glucocorticoid receptors; and (3) no change in muscle fatigability.

  13. Effect of Levodopa + Carbidopa on the Laryngeal Electromyographic Pattern in Parkinson Disease.

    PubMed

    Noffs, Gustavo; de Campos Duprat, André; Zarzur, Ana Paula; Cury, Rubens Gisbert; Cataldo, Berenice Oliveira; Fonoff, Erich

    2017-05-01

    Vocal impairment is one of the main debilitating symptoms of Parkinson disease (PD). The effect of levodopa on vocal function remains unclear. This study aimed to determine the effect of levodopa on electromyographic patterns of the laryngeal muscle in patients with PD. This is a prospective interventional trial. Nineteen patients with PD-diagnosed by laryngeal electromyography-were enrolled. Cricothyroid and thyroarytenoid (TA) muscle activities were measured at rest and during muscle contraction (phonation), when participants were on and off medication (12 hours after the last levodopa dose). Prevalence of resting hypertonia in the cricothyroid muscle was similar in the off and on states (7 of 19, P = 1.00). Eight patients off medication and four patients on medication had hypertonic TA muscle at rest (P = 0.289). No electromyographic alterations were observed during phonation for either medication states. Despite a tendency for increased rest tracings in the TA muscle when participants were on medication, no association was found between laryngeal electromyography findings and levodopa + carbidopa administration. Copyright © 2017. Published by Elsevier Inc.

  14. Exercise performance and peripheral vascular insufficiency improve with AMPK activation in high-fat diet-fed mice.

    PubMed

    Baltgalvis, Kristen A; White, Kathy; Li, Wei; Claypool, Mark D; Lang, Wayne; Alcantara, Raniel; Singh, Baljit K; Friera, Annabelle M; McLaughlin, John; Hansen, Derek; McCaughey, Kelly; Nguyen, Henry; Smith, Ira J; Godinez, Guillermo; Shaw, Simon J; Goff, Dane; Singh, Rajinder; Markovtsov, Vadim; Sun, Tian-Qiang; Jenkins, Yonchu; Uy, Gerald; Li, Yingwu; Pan, Alison; Gururaja, Tarikere; Lau, David; Park, Gary; Hitoshi, Yasumichi; Payan, Donald G; Kinsella, Todd M

    2014-04-15

    Intermittent claudication is a form of exercise intolerance characterized by muscle pain during walking in patients with peripheral artery disease (PAD). Endothelial cell and muscle dysfunction are thought to be important contributors to the etiology of this disease, but a lack of preclinical models that incorporate these elements and measure exercise performance as a primary end point has slowed progress in finding new treatment options for these patients. We sought to develop an animal model of peripheral vascular insufficiency in which microvascular dysfunction and exercise intolerance were defining features. We further set out to determine if pharmacological activation of 5'-AMP-activated protein kinase (AMPK) might counteract any of these functional deficits. Mice aged on a high-fat diet demonstrate many functional and molecular characteristics of PAD, including the sequential development of peripheral vascular insufficiency, increased muscle fatigability, and progressive exercise intolerance. These changes occur gradually and are associated with alterations in nitric oxide bioavailability. Treatment of animals with an AMPK activator, R118, increased voluntary wheel running activity, decreased muscle fatigability, and prevented the progressive decrease in treadmill exercise capacity. These functional performance benefits were accompanied by improved mitochondrial function, the normalization of perfusion in exercising muscle, increased nitric oxide bioavailability, and decreased circulating levels of the endogenous endothelial nitric oxide synthase inhibitor asymmetric dimethylarginine. These data suggest that aged, obese mice represent a novel model for studying exercise intolerance associated with peripheral vascular insufficiency, and pharmacological activation of AMPK may be a suitable treatment for intermittent claudication associated with PAD.

  15. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy.

    PubMed

    Larcher, Thibaut; Lafoux, Aude; Tesson, Laurent; Remy, Séverine; Thepenier, Virginie; François, Virginie; Le Guiner, Caroline; Goubin, Helicia; Dutilleul, Maéva; Guigand, Lydie; Toumaniantz, Gilles; De Cian, Anne; Boix, Charlotte; Renaud, Jean-Baptiste; Cherel, Yan; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio; Huchet, Corinne

    2014-01-01

    A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.

  16. Muscle contributions to medial tibiofemoral compartment contact loading following ACL reconstruction using semitendinosus and gracilis tendon grafts.

    PubMed

    Konrath, Jason M; Saxby, David J; Killen, Bryce A; Pizzolato, Claudio; Vertullo, Christopher J; Barrett, Rod S; Lloyd, David G

    2017-01-01

    The muscle-tendon properties of the semitendinosus (ST) and gracilis (GR) are substantially altered following tendon harvest for the purpose of anterior cruciate ligament reconstruction (ACLR). This study adopted a musculoskeletal modelling approach to determine how the changes to the ST and GR muscle-tendon properties alter their contribution to medial compartment contact loading within the tibiofemoral joint in post ACLR patients, and the extent to which other muscles compensate under the same external loading conditions during walking, running and sidestep cutting. Motion capture and electromyography (EMG) data from 16 lower extremity muscles were acquired during walking, running and cutting in 25 participants that had undergone an ACLR using a quadruple (ST+GR) hamstring auto-graft. An EMG-driven musculoskeletal model was used to estimate the medial compartment contact loads during the stance phase of each gait task. An adjusted model was then created by altering muscle-tendon properties for the ST and GR to reflect their reported changes following ACLR. Parameters for the other muscles in the model were calibrated to match the experimental joint moments. The medial compartment contact loads for the standard and adjusted models were similar. The combined contributions of ST and GR to medial compartment contact load in the adjusted model were reduced by 26%, 17% and 17% during walking, running and cutting, respectively. These deficits were balanced by increases in the contribution made by the semimembranosus muscle of 33% and 22% during running and cutting, respectively. Alterations to the ST and GR muscle-tendon properties in ACLR patients resulted in reduced contribution to medial compartment contact loads during gait tasks, for which the semimembranosus muscle can compensate.

  17. Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance.

    PubMed

    Poole, David C; Hirai, Daniel M; Copp, Steven W; Musch, Timothy I

    2012-03-01

    The defining characteristic of chronic heart failure (CHF) is an exercise intolerance that is inextricably linked to structural and functional aberrations in the O(2) transport pathway. CHF reduces muscle O(2) supply while simultaneously increasing O(2) demands. CHF severity varies from moderate to severe and is assessed commonly in terms of the maximum O(2) uptake, which relates closely to patient morbidity and mortality in CHF and forms the basis for Weber and colleagues' (167) classifications of heart failure, speed of the O(2) uptake kinetics following exercise onset and during recovery, and the capacity to perform submaximal exercise. As the heart fails, cardiovascular regulation shifts from controlling cardiac output as a means for supplying the oxidative energetic needs of exercising skeletal muscle and other organs to preventing catastrophic swings in blood pressure. This shift is mediated by a complex array of events that include altered reflex and humoral control of the circulation, required to prevent the skeletal muscle "sleeping giant" from outstripping the pathologically limited cardiac output and secondarily impacts lung (and respiratory muscle), vascular, and locomotory muscle function. Recently, interest has also focused on the dysregulation of inflammatory mediators including tumor necrosis factor-α and interleukin-1β as well as reactive oxygen species as mediators of systemic and muscle dysfunction. This brief review focuses on skeletal muscle to address the mechanistic bases for the reduced maximum O(2) uptake, slowed O(2) uptake kinetics, and exercise intolerance in CHF. Experimental evidence in humans and animal models of CHF unveils the microvascular cause(s) and consequences of the O(2) supply (decreased)/O(2) demand (increased) imbalance emblematic of CHF. Therapeutic strategies to improve muscle microvascular and oxidative function (e.g., exercise training and anti-inflammatory, antioxidant strategies, in particular) and hence patient exercise tolerance and quality of life are presented within their appropriate context of the O(2) transport pathway.

  18. Impact of β-hydroxy β-methylbutyrate (HMB) on age-related functional deficits in mice.

    PubMed

    Munroe, Michael; Pincu, Yair; Merritt, Jennifer; Cobert, Adam; Brander, Ryan; Jensen, Tor; Rhodes, Justin; Boppart, Marni D

    2017-01-01

    β-Hydroxy β-methylbutyrate (HMB) is a metabolite of the essential amino acid leucine. Recent studies demonstrate a decline in plasma HMB concentrations in humans across the lifespan, and HMB supplementation may be able to preserve muscle mass and strength in older adults. However, the impact of HMB supplementation on hippocampal neurogenesis and cognition remains largely unexplored. The purpose of this study was to simultaneously evaluate the impact of HMB on muscle strength, neurogenesis and cognition in young and aged mice. In addition, we evaluated the influence of HMB on muscle-resident mesenchymal stem/stromal cell (Sca-1 + CD45 - ; mMSC) function to address these cells potential to regulate physiological outcomes. Three month-old (n=20) and 24 month-old (n=18) female C57BL/6 mice were provided with either Ca-HMB or Ca-Lactate in a sucrose solution twice per day for 5.5weeks at a dose of 450mg/kg body weight. Significant decreases in relative peak and mean force, balance, and neurogenesis were observed in aged mice compared to young (age main effects, p≤0.05). Short-term HMB supplementation did not alter activity, balance, neurogenesis, or cognitive function in young or aged mice, yet HMB preserved relative peak force in aged mice. mMSC gene expression was significantly reduced with age, but HMB supplementation was able to recover expression of select growth factors known to stimulate muscle repair (HGF, LIF). Overall, our findings demonstrate that while short-term HMB supplementation does not appear to affect neurogenesis or cognitive function in young or aged mice, HMB may maintain muscle strength in aged mice in a manner dependent on mMSC function. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    PubMed

    Guerron, Alfredo D; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P; Nagaraju, Kanneboyina

    2010-06-21

    The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.

  20. Functional and Molecular Effects of Arginine Butyrate and Prednisone on Muscle and Heart in the mdx Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Guerron, Alfredo D.; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F.; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S.; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M.; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2010-01-01

    Background The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. Methodology/Principal Findings In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. Conclusions/Significance These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity. PMID:20574530

  1. Transcriptional regulation of decreased protein synthesis during skeletal muscle unloading

    NASA Technical Reports Server (NTRS)

    Howard, G.; Steffen, J. M.; Geoghegan, T. E.

    1989-01-01

    The regulatory role of transcriptional alterations in unloaded skeletal muscles was investigated by determining levels of total muscle RNA and mRNA fractions in soleus, gastrocnemius, and extensor digitorum longus (EDL) of rats subjected to whole-body suspension for up to 7 days. After 7 days, total RNA and mRNA contents were lower in soleus and gastrocnemius, compared with controls, but the concentrations of both RNAs per g muscle were unaltered. Alpha-actin mRNA (assessed by dot hybridization) was significantly reduced in soleus after 1, 3, and 7 days of suspension and in gastrocnemius after 3 and 7 days, but was unchanged in EDL. Protein synthesis directed by RNA extracted from soleus and EDL indicated marked alteration in mRNAs coding for several small proteins. Results suggest that altered transcription and availability of specific mRNAs contribute significantly to the regulation of protein synthesis during skeletal muscle unloading.

  2. Chronic β2 -adrenoceptor agonist treatment alters muscle proteome and functional adaptations induced by high intensity training in young men.

    PubMed

    Hostrup, Morten; Onslev, Johan; Jacobson, Glenn A; Wilson, Richard; Bangsbo, Jens

    2018-01-15

    While several studies have investigated the effects of exercise training in human skeletal muscle and the chronic effect of β 2 -agonist treatment in rodent muscle, their effects on muscle proteome signature with related functional measures in humans are still incompletely understood. Herein we show that daily β 2 -agonist treatment attenuates training-induced enhancements in exercise performance and maximal oxygen consumption, and alters muscle proteome signature and phenotype in trained young men. Daily β 2 -agonist treatment abolished several of the training-induced enhancements in muscle oxidative capacity and caused a repression of muscle metabolic pathways; furthermore, β 2 -agonist treatment induced a slow-to-fast twitch muscle phenotype transition. The present study indicates that chronic β 2 -agonist treatment confounds the positive effect of high intensity training on exercise performance and oxidative capacity, which is of interest for the large proportion of persons using inhaled β 2 -agonists on a daily basis, including athletes. Although the effects of training have been studied for decades, data on muscle proteome signature remodelling induced by high intensity training in relation to functional changes in humans remains incomplete. Likewise, β 2 -agonists are frequently used to counteract exercise-induced bronchoconstriction, but the effects β 2 -agonist treatment on muscle remodelling and adaptations to training are unknown. In a placebo-controlled parallel study, we randomly assigned 21 trained men to 4 weeks of high intensity training with (HIT+β 2 A) or without (HIT) daily inhalation of β 2 -agonist (terbutaline, 4 mg dose -1 ). Of 486 proteins identified by mass-spectrometry proteomics of muscle biopsies sampled before and after the intervention, 32 and 85 were changing (false discovery rate (FDR) ≤5%) with the intervention in HIT and HIT+β 2 A, respectively. Proteome signature changes were different in HIT and HIT+β 2 A (P = 0.005), wherein β 2 -agonist caused a repression of 25 proteins in HIT+β 2 A compared to HIT, and an upregulation of 7 proteins compared to HIT. β 2 -Agonist repressed or even downregulated training-induced enrichment of pathways related to oxidative phosphorylation and glycogen metabolism, but upregulated pathways related to histone trimethylation and the nucleosome. Muscle contractile phenotype changed differently in HIT and HIT+β 2 A (P ≤ 0.001), with a fast-to-slow twitch transition in HIT and a slow-to-fast twitch transition in HIT+β 2 A. β 2 -Agonist attenuated training-induced enhancements in maximal oxygen consumption (P ≤ 0.01) and exercise performance (6.1 vs. 11.6%, P ≤ 0.05) in HIT+β 2 A compared to HIT. These findings indicate that daily β 2 -agonist treatment attenuates the beneficial effects of high intensity training on exercise performance and oxidative capacity, and causes remodelling of muscle proteome signature towards a fast-twitch phenotype. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  3. The effect of elbow flexor fatigue on spine kinematics and muscle activation in response to sudden loading at the hands.

    PubMed

    Zwambag, Derek P; Freeman, Nikole E; Brown, Stephen H M

    2015-04-01

    Sudden loads, originating at either the hands or the feet, can cause injury to spine structures. As muscles are primarily responsible for stabilization following a perturbation, the effect of spine muscle fatigue in this context has been well investigated. However, the effect of fatigue of arm muscles, which can help control perturbations originating at the hands, on the spine is unknown. The purpose of this study was to determine if the magnitude of spine flexion or the pre-activation, reflex amplitude, and reflex latency of spine muscles were altered by elbow flexor fatigue during a sudden loading (6.8 kg) perturbation at the hands. Elbow flexor fatigue was induced by an isometric 30% maximal elbow flexion moment until failure. Results demonstrate that spine kinematics were not altered in the presence of elbow flexor fatigue. Small magnitude differences in trunk muscle pre- and peak activation indicate that the presence of elbow flexor fatigue does not necessitate substantially greater spine muscle action under the tested conditions. Despite fatigued elbow flexors, the arm muscles were sufficiently able to control the perturbation. Interestingly, 5/14 participants demonstrated altered reflex latencies in all observed muscles that lasted up to 10 min after the fatiguing task. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Function of a large biarticular hip and knee extensor during walking and running in guinea fowl (Numida meleagris).

    PubMed

    Carr, Jennifer A; Ellerby, David J; Marsh, Richard L

    2011-10-15

    Physiological and anatomical evidence suggests that in birds the iliotibialis lateralis pars postacetabularis (ILPO) is functionally important for running. Incorporating regional information, we estimated the mean sarcomere strain trajectory and electromyographic (EMG) amplitude of the ILPO during level and incline walking and running. Using these data and data in the literature of muscle energy use, we examined three hypotheses: (1) active lengthening will occur on the ascending limb of the length-tension curve to avoid potential damage caused by stretch on the descending limb; (2) the active strain cycle will shift to favor active shortening when the birds run uphill and shortening will occur on the plateau and shallow ascending limb of the length-tension curve; and (3) measures of EMG intensity will correlate with energy use when the mechanical function of the muscle is similar. Supporting the first hypothesis, we found that the mean sarcomere lengths at the end of active lengthening during level locomotion were smaller than the predicted length at the start of the plateau of the length-tension curve. Supporting the second hypothesis, the magnitude of active lengthening decreased with increasing slope, whereas active shortening increased. In evaluating the relationship between EMG amplitude and energy use (hypothesis 3), we found that although increases in EMG intensity with speed, slope and loading were positively correlated with muscle energy use, the quantitative relationships between these variables differed greatly under different conditions. The relative changes in EMG intensity and energy use by the muscle probably varied because of changes in the mechanical function of the muscle that altered the ratio of muscle energy use to active muscle volume. Considering the overall function of the cycle of active lengthening and shortening of the fascicles of the ILPO, we conclude that the function of active lengthening is unlikely to be energy conservation and may instead be related to promoting stability at the knee. The work required to lengthen the ILPO during stance is provided by co-contracting knee flexors. We suggest that this potentially energetically expensive co-contraction serves to stabilize the knee in early stance by increasing the mechanical impedance of the joint.

  5. Quality of life, muscle strength, and fatigue perception in patients on suppressive therapy with levothyroxine for differentiated thyroid carcinoma.

    PubMed

    de Oliveira Chachamovitz, Dhiãnah Santini; dos Santos Vigário, Patrícia; Nogueira Cordeiro, Mônica Fabíola; de Castro, Carmen Lucia Natividade; Vaisman, Mário; dos Santos Teixeira, Patrícia de Fátima

    2013-08-01

    The aim of this study was to evaluate the fatigue perception, the muscle function, and the health-related quality of life (QoL) in subclinical hyperthyroidism (SCH) induced by levothyroxine in the treatment of differentiated thyroid carcinoma, in comparison with a group of euthyroid (EU) subjects. A cross-sectional study with 38 SCH individuals and 54 EU subjects was performed. They were submitted to Short Form-36 and Chalder questionnaires to evaluate QoL and fatigue, respectively. The tests performed to evaluate muscle function of upper and lower limbs were: maximum quadriceps isometric strength (QS); quadriceps fatigue resistance (T50% QS), QS at 30 seconds (QS30s); quadriceps functional capacity (QFC); maximum isometric handgrip strength (HS); fatigue handgrip resistance (T50% HS), HS at 30 seconds (HS30s); and functional capacity of the shoulder. The SCH patients had worse muscle function, regarding HS (25.19 ± 7.00 vs. 30.45 ± 9.98 kgf in EU, P = 0.009) and functional capacity of the shoulder (41.28 ± 48.36 vs. 56.68 ± 37.44 s in EU, P = 0.004). The self-perception of fatigue by Chalder questionnaire (23.91 ± 5.39 vs. 29.77 ± 7.03, P = 0.000) and the QoL in terms of functional capacity (70.20 ± 21.57 vs. 56.25 ± 28.79, P = 0.025), physical aspects (71.42 ± 36.44 vs. 45.83 ± 42.88, P = 0.004), pain (62.48 ± 22.20 vs. 50.05 ± 24.80, P = 0.035), and emotional aspects (70.74 ± 38.26 vs. 46.29 ± 44.56, P = 0.008) were also worse in SCH. In conclusion, the SCH was associated with alterations in the QoL, reduction in the muscle function of upper limbs, and higher degree of fatigue.

  6. Physiology of respiratory disturbances in muscular dystrophies

    PubMed Central

    Lo Mauro, Antonella

    2016-01-01

    Muscular dystrophy is a group of inherited myopathies characterised by progressive skeletal muscle wasting, including of the respiratory muscles. Respiratory failure, i.e. when the respiratory system fails in its gas exchange functions, is a common feature in muscular dystrophy, being the main cause of death, and it is a consequence of lung failure, pump failure or a combination of the two. The former is due to recurrent aspiration, the latter to progressive weakness of respiratory muscles and an increase in the load against which they must contract. In fact, both the resistive and elastic components of the work of breathing increase due to airway obstruction and chest wall and lung stiffening, respectively. The respiratory disturbances in muscular dystrophy are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing. They can be present at different rates according to the type of muscular dystrophy and its progression, leading to different onset of each symptom, prognosis and degree of respiratory involvement. Key points A common feature of muscular dystrophy is respiratory failure, i.e. the inability of the respiratory system to provide proper oxygenation and carbon dioxide elimination. In the lung, respiratory failure is caused by recurrent aspiration, and leads to hypoxaemia and hypercarbia. Ventilatory failure in muscular dystrophy is caused by increased respiratory load and respiratory muscles weakness. Respiratory load increases in muscular dystrophy because scoliosis makes chest wall compliance decrease, atelectasis and fibrosis make lung compliance decrease, and airway obstruction makes airway resistance increase. The consequences of respiratory pump failure are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing. Educational aims To understand the mechanisms leading to respiratory disturbances in patients with muscular dystrophy. To understand the impact of respiratory disturbances in patients with muscular dystrophy. To provide a brief description of the main forms of muscular dystrophy with their respiratory implications. PMID:28210319

  7. Physiology of respiratory disturbances in muscular dystrophies.

    PubMed

    Lo Mauro, Antonella; Aliverti, Andrea

    2016-12-01

    Muscular dystrophy is a group of inherited myopathies characterised by progressive skeletal muscle wasting, including of the respiratory muscles. Respiratory failure, i.e . when the respiratory system fails in its gas exchange functions, is a common feature in muscular dystrophy, being the main cause of death, and it is a consequence of lung failure, pump failure or a combination of the two. The former is due to recurrent aspiration, the latter to progressive weakness of respiratory muscles and an increase in the load against which they must contract. In fact, both the resistive and elastic components of the work of breathing increase due to airway obstruction and chest wall and lung stiffening, respectively. The respiratory disturbances in muscular dystrophy are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing. They can be present at different rates according to the type of muscular dystrophy and its progression, leading to different onset of each symptom, prognosis and degree of respiratory involvement. A common feature of muscular dystrophy is respiratory failure, i.e. the inability of the respiratory system to provide proper oxygenation and carbon dioxide elimination.In the lung, respiratory failure is caused by recurrent aspiration, and leads to hypoxaemia and hypercarbia.Ventilatory failure in muscular dystrophy is caused by increased respiratory load and respiratory muscles weakness.Respiratory load increases in muscular dystrophy because scoliosis makes chest wall compliance decrease, atelectasis and fibrosis make lung compliance decrease, and airway obstruction makes airway resistance increase.The consequences of respiratory pump failure are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing. To understand the mechanisms leading to respiratory disturbances in patients with muscular dystrophy.To understand the impact of respiratory disturbances in patients with muscular dystrophy.To provide a brief description of the main forms of muscular dystrophy with their respiratory implications.

  8. Ingestion of a Multi-Ingredient Supplement Does Not Alter Exercise-Induced Satellite Cell Responses in Older Men.

    PubMed

    Snijders, Tim; Bell, Kirsten E; Nederveen, Joshua P; Saddler, Nelson I; Mazara, Nicole; Kumbhare, Dinesh A; Phillips, Stuart M; Parise, Gianni

    2018-06-01

    Nutritional supplementation can have beneficial effects on body composition, strength, and function in older adults. However, whether the response of satellite cells can be altered by nutritional supplementation in older adults remains unknown. We assessed whether a multi-ingredient protein-based supplement taken over a prolonged period of time could alter the muscle satellite cell response after exercise in older men. Twenty-seven older men [mean ± SD age: 73 ± 1 y; mean ± SD body mass index (kg/m2): 28 ± 1] participated in a randomized double-blind experiment. Participants were randomly divided into an experimental (EXP) group (n = 13) who consumed a multi-ingredient protein-based supplement [30 g whey protein, 2.5 g creatine, 500 IU vitamin D, 400 mg Ca, and 1500 mg n-3 (ω-3) polyunsaturated fatty acids] 2 times/d for 7 wk or a control (CON; 22 g maltodextrin) group (n = 14). After 7 wk of supplementation, all participants performed a single resistance exercise session, and muscle biopsy samples were taken from the vastus lateralis before and 24 and 48 h after exercise. Immunohistochemistry was used to assess the change in type I and II muscle fiber satellite cell content and activation status of the cells. In addition, mRNA expression of the myogenic regulatory factors was determined by using reverse transcriptase-polymerase chain reaction. In response to the single bout of exercise, type I muscle fiber satellite cell content was significantly increased at 24 h (0.132 ± 0.015 and 0.131 ± 0.011 satellite cells/fiber in CON and EXP groups, respectively) and 48 h (0.126 ± 0.010 and 0.120 ± 0.012 satellite cells/fiber in CON and EXP groups, respectively) compared with pre-exercise (0.092 ± 0.007 and 0.118 ± 0.017 satellite cells/fiber in CON and EXP groups, respectively) muscle biopsy samples (P < 0.01), with no difference between the 2 groups. In both groups, we observed no significant changes in type II muscle fiber satellite cell content after exercise. Ingesting a multi-ingredient protein-based supplement for 7 wk did not alter the type I or II muscle fiber satellite cell response during postexercise recovery in older men. This trial was registered at www.clinicaltrials.gov as NCT02281331.

  9. Aging augments the impact of influenza respiratory tract infection on mobility impairments, muscle-localized inflammation, and muscle atrophy.

    PubMed

    Bartley, Jenna M; Pan, Sarah J; Keilich, Spencer R; Hopkins, Jacob W; Al-Naggar, Iman M; Kuchel, George A; Haynes, Laura

    2016-04-01

    Although the influenza virus only infects the respiratory system, myalgias are commonly experienced during infection. In addition to a greater risk of hospitalization and death, older adults are more likely to develop disability following influenza infection; however, this relationship is understudied. We hypothesized that upon challenge with influenza, aging would be associated with functional impairments, as well as upregulation of skeletal muscle inflammatory and atrophy genes. Infected young and aged mice demonstrated decreased mobility and altered gait kinetics. These declines were more prominent in hind limbs and in aged mice. Skeletal muscle expression of genes involved in inflammation, as well as muscle atrophy and proteolysis, increased during influenza infection with an elevated and prolonged peak in aged mice. Infection also decreased expression of positive regulators of muscle mass and myogenesis components to a greater degree in aged mice. Gene expression correlated to influenza-induced body mass loss, although evidence did not support direct muscle infection. Overall, influenza leads to mobility impairments with induction of inflammatory and muscle degradation genes and downregulation of positive regulators of muscle. These effects are augmented and prolonged with aging, providing a molecular link between influenza infection, decreased resilience and increased risk of disability in the elderly.

  10. Stiff muscle fibers in calf muscles of patients with cerebral palsy lead to high passive muscle stiffness.

    PubMed

    Mathewson, Margie A; Chambers, Henry G; Girard, Paul J; Tenenhaus, Mayer; Schwartz, Alexandra K; Lieber, Richard L

    2014-12-01

    Cerebral palsy (CP), caused by an injury to the developing brain, can lead to alterations in muscle function. Subsequently, increased muscle stiffness and decreased joint range of motion are often seen in patients with CP. We examined mechanical and biochemical properties of the gastrocnemius and soleus muscles, which are involved in equinus muscle contracture. Passive mechanical testing of single muscle fibers from gastrocnemius and soleus muscle of patients with CP undergoing surgery for equinus deformity showed a significant increase in fiber stiffness (p<0.01). Bundles of fibers that included their surrounding connective tissues showed no stiffness difference (p=0.28).). When in vivo sarcomere lengths were measured and fiber and bundle stiffness compared at these lengths, both fibers and bundles of patients with CP were predicted to be much stiffer in vivo compared to typically developing (TD) individuals. Interestingly, differences in fiber and bundle stiffness were not explained by typical biochemical measures such as titin molecular weight (a giant protein thought to impact fiber stiffness) or collagen content (a proxy for extracellular matrix amount). We suggest that the passive mechanical properties of fibers and bundles are thus poorly understood. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Aging augments the impact of influenza respiratory tract infection on mobility impairments, muscle-localized inflammation, and muscle atrophy

    PubMed Central

    Bartley, Jenna M.; Pan, Sarah J.; Keilich, Spencer R.; Hopkins, Jacob W.; Al-Naggar, Iman M.; Kuchel, George A.; Haynes, Laura

    2016-01-01

    Although the influenza virus only infects the respiratory system, myalgias are commonly experienced during infection. In addition to a greater risk of hospitalization and death, older adults are more likely to develop disability following influenza infection; however, this relationship is understudied. We hypothesized that upon challenge with influenza, aging would be associated with functional impairments, as well as upregulation of skeletal muscle inflammatory and atrophy genes. Infected young and aged mice demonstrated decreased mobility and altered gait kinetics. These declines were more prominent in hind limbs and in aged mice. Skeletal muscle expression of genes involved in inflammation, as well as muscle atrophy and proteolysis, increased during influenza infection with an elevated and prolonged peak in aged mice. Infection also decreased expression of positive regulators of muscle mass and myogenesis components to a greater degree in aged mice. Gene expression correlated to influenza-induced body mass loss, although evidence did not support direct muscle infection. Overall, influenza leads to mobility impairments with induction of inflammatory and muscle degradation genes and downregulation of positive regulators of muscle. These effects are augmented and prolonged with aging, providing a molecular link between influenza infection, decreased resilience and increased risk of disability in the elderly. PMID:26856410

  12. Space travel directly induces skeletal muscle atrophy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H.; Chromiak, J.; Shansky, J.; Del Tatto, M.; Lemaire, J.

    1999-01-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  13. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    PubMed Central

    Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal segments. PMID:26919645

  14. Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation.

    PubMed

    Goodman, Craig A; Horvath, Deanna; Stathis, Christos; Mori, Trevor; Croft, Kevin; Murphy, Robyn M; Hayes, Alan

    2009-07-01

    Recent studies report that depletion and repletion of muscle taurine (Tau) to endogenous levels affects skeletal muscle contractility in vitro. In this study, muscle Tau content was raised above endogenous levels by supplementing male Sprague-Dawley rats with 2.5% (wt/vol) Tau in drinking water for 2 wk, after which extensor digitorum longus (EDL) muscles were examined for in vitro contractile properties, fatigue resistance, and recovery from fatigue after two different high-frequency stimulation bouts. Tau supplementation increased muscle Tau content by approximately 40% and isometric twitch force by 19%, shifted the force-frequency relationship upward and to the left, increased specific force by 4.2%, and increased muscle calsequestrin protein content by 49%. Force at the end of a 10-s (100 Hz) continuous tetanic stimulation was 6% greater than controls, while force at the end of the 3-min intermittent high-frequency stimulation bout was significantly higher than controls, with a 12% greater area under the force curve. For 1 h after the 10-s continuous stimulation, tetanic force in Tau-supplemented muscles remained relatively stable while control muscle force gradually deteriorated. After the 3-min intermittent bout, tetanic force continued to slowly recover over the next 1 h, while control muscle force again began to decline. Tau supplementation attenuated F(2)-isoprostane production (a sensitive indicator of reactive oxygen species-induced lipid peroxidation) during the 3-min intermittent stimulation bout. Finally, Tau transporter protein expression was not altered by the Tau supplementation. Our results demonstrate that raising Tau content above endogenous levels increases twitch and subtetanic and specific force in rat fast-twitch skeletal muscle. Also, we demonstrate that raising Tau protects muscle function during high-frequency in vitro stimulation and the ensuing recovery period and helps reduce oxidative stress during prolonged stimulation.

  15. Muscle fatigue in frog semitendinosus: alterations in contractile function

    NASA Technical Reports Server (NTRS)

    Thompson, L. V.; Balog, E. M.; Riley, D. A.; Fitts, R. H.

    1992-01-01

    The purpose of this study was to characterize the contractile properties of the frog semitendinosus (ST) muscle before and during recovery from fatigue, to relate the observed functional changes to alterations in specific steps in the crossbridge model of muscle contraction, and to determine how fatigue affects the force-frequency relationship. The frog ST (22 degrees C) was fatigued by direct electrical stimulation with 100-ms 150-Hz trains at 1/s for 5 min. The fatigue protocol reduced peak twitch (Pt) and tetanic (Po) force to 32 and 8.5% of initial force, respectively. The decline in Pt was less than Po, in part due to a prolongation in the isometric contraction time (CT), which increased to 300% of the initial value. The isometric twitch duration was greatly prolonged as reflected by the lengthened CT and the 800% increase in the one-half relaxation time (1/2RT). Both Pt and Po showed a biphasic recovery, a rapid initial phase (2 min) followed by a slower (40 min) return to the prefatigue force. CT and 1/2RT also recovered in two phases, returning to 160 and 265% of control in the first 5 min. CT returned to the prefatigue value between 35 and 40 min, whereas even at 60 min 1/2RT was 133% of control. The maximal velocity of shortening, determined by the slack test, was significantly reduced [from 6.7 +/- 0.5 to 2.5 +/- 0.4 optimal muscle length/s] at fatigue. The force-frequency relationship was shifted to the left, so that optimal frequency for generating Po was reduced.(ABSTRACT TRUNCATED AT 250 WORDS).

  16. Long-term obesity promotes alterations in diastolic function induced by reduction of phospholamban phosphorylation at serine-16 without affecting calcium handling.

    PubMed

    Lima-Leopoldo, Ana Paula; Leopoldo, André S; da Silva, Danielle C T; do Nascimento, André F; de Campos, Dijon H S; Luvizotto, Renata A M; de Deus, Adriana F; Freire, Paula P; Medeiros, Alessandra; Okoshi, Katashi; Cicogna, Antonio C

    2014-09-15

    Few studies have evaluated the relationship between the duration of obesity, cardiac function, and the proteins involved in myocardial calcium (Ca(2+)) handling. We hypothesized that long-term obesity promotes cardiac dysfunction due to a reduction of expression and/or phosphorylation of myocardial Ca(2+)-handling proteins. Thirty-day-old male Wistar rats were distributed into two groups (n = 10 each): control (C; standard diet) and obese (Ob; high-fat diet) for 30 wk. Morphological and histological analyses were assessed. Left ventricular cardiac function was assessed in vivo by echocardiographic evaluation and in vitro by papillary muscle. Cardiac protein expression of sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a), calsequestrin, L-type Ca(2+) channel, and phospholamban (PLB), as well as PLB serine-16 phosphorylation (pPLB Ser(16)) and PLB threonine-17 phosphorylation (pPLB Thr(17)) were determined by Western blot. The adiposity index was higher (82%) in Ob rats than in C rats. Obesity promoted cardiac hypertrophy without alterations in interstitial collagen levels. Ob rats had increased endocardial and midwall fractional shortening, posterior wall shortening velocity, and A-wave compared with C rats. Cardiac index, early-to-late diastolic mitral inflow ratio, and isovolumetric relaxation time were lower in Ob than in C. The Ob muscles developed similar baseline data and myocardial responsiveness to increased extracellular Ca(2+). Obesity caused a reduction in cardiac pPLB Ser(16) and the pPLB Ser(16)/PLB ratio in Ob rats. Long-term obesity promotes alterations in diastolic function, most likely due to the reduction of pPLB Ser(16), but does not impair the myocardial Ca(2+) entry and recapture to SR. Copyright © 2014 the American Physiological Society.

  17. Integrating gastrocnemius force-length properties, in vivo activation and operating lengths reveals how Anolis deal with ecological challenges.

    PubMed

    Foster, Kathleen L; Higham, Timothy E

    2017-03-01

    A central question in biology is how animals successfully behave under complex natural conditions. Although changes in locomotor behaviour, motor control and force production in relation to incline are commonly examined, a wide range of other factors, including a range of perch diameters, pervades arboreal habitats. Moving on different substrate diameters requires considerable alteration of body and limb posture, probably causing significant shifts in the lengths of the muscle-tendon units powering locomotion. Thus, how substrate shape impacts in vivo muscle function remains an important but neglected question in ecophysiology. Here, we used high-speed videography, electromyography, in situ contractile experiments and morphology to examine gastrocnemius muscle function during arboreal locomotion in the Cuban knight anole, Anolis equestris The gastrocnemius contributes more to the propulsive effort on broad surfaces than on narrow surfaces. Surprisingly, substrate inclination affected the relationship between the maximum potential force and fibre recruitment; the trade-off that was present between these variables on horizontal surfaces became a positive relationship on inclined surfaces. Finally, the biarticular nature of the gastrocnemius allows it to generate force isometrically, regardless of substrate diameter and incline, despite the fact that the tendons are incapable of stretching during cyclical locomotion. Our results emphasize the importance of considering ecology and muscle function together, and the necessity of examining both mechanical and physiological properties of muscles to understand how animals move in their environment. © 2017. Published by The Company of Biologists Ltd.

  18. Dietary supplementation with a specific combination of high protein, leucine, and fish oil improves muscle function and daily activity in tumour-bearing cachectic mice

    PubMed Central

    van Norren, K; Kegler, D; Argilés, J M; Luiking, Y; Gorselink, M; Laviano, A; Arts, K; Faber, J; Jansen, H; van der Beek, E M; van Helvoort, A

    2009-01-01

    Cancer cachexia is characterised by metabolic alterations leading to loss of adipose tissue and lean body mass and directly compromises physical performance and the quality of life of cancer patients. In a murine cancer cachectic model, the effects of dietary supplementation with a specific combination of high protein, leucine and fish oil on weight loss, muscle function and physical activity were investigated. Male CD2F1 mice, 6–7 weeks old, were divided into body weight-matched groups: (1) control, (2) tumour-bearing, and (3) tumour-bearing receiving experimental diets. Tumours were induced by s.c. inoculation with murine colon adenocarcinoma (C26) cells. Food intake, body mass, tumour size and 24 h-activity were monitored. Then, 20 days after tumour/vehicle inoculation, the animals were killed and muscle function was tested ex vivo. Tumour-bearing mice showed reduced carcass, muscle and fat mass compared with controls. EDL muscle performance and total daily activity were impaired in the tumour-bearing mice. Addition of single nutrients resulted in no or modest effects. However, supplementation of the diet with the all-in combination of high protein, leucine and fish oil significantly reduced loss of carcass, muscle and fat mass (loss in mass 45, 52 and 65% of TB-con, respectively (P<0.02)) and improved muscle performance (loss of max force reduced to 55–64% of TB-con (P<0.05)). Moreover, total daily activity normalised after intervention with the specific nutritional combination (50% of the reduction in activity of TB-con (P<0.05)). In conclusion, a nutritional combination of high protein, leucine and fish oil reduced cachectic symptoms and improved functional performance in cancer cachectic mice. Comparison of the nutritional combination with its individual modules revealed additive effects of the single components provided. PMID:19259092

  19. Effects of extreme-duration heavy load carriage on neuromuscular function and locomotion: a military-based study.

    PubMed

    Grenier, Jordane G; Millet, Guillaume Y; Peyrot, Nicolas; Samozino, Pierre; Oullion, Roger; Messonnier, Laurent; Morin, Jean-Benoît

    2012-01-01

    Trekking and military missions generally consist of carrying heavy loads for extreme durations. These factors have been separately shown to be sources of neuromuscular (NM) fatigue and locomotor alterations. However, the question of their combined effects remains unresolved, and addressing this issue required a representative context. The aim was to investigate the effects of extreme-duration heavy load carriage on NM function and walking characteristics. Ten experienced infantrymen performed a 21-h simulated military mission (SMM) in a middle-mountain environment with equipment weighing ∼27 kg during battles and ∼43 kg during marches. NM function was evaluated for knee extensors (KE) and plantar flexors (PF) pre- and immediately post-SMM using isometric maximal voluntary contraction (MVC) measurement, neural electrical stimulation and surface EMG. The twitch-interpolation method was used to assess central fatigue. Peripheral changes were examined by stimulating the muscle in the relaxed state. The energy cost, mechanical work and spatio-temporal pattern of walking were also evaluated pre-/post-SMM on an instrumented treadmill in three equipment conditions: Sportswear, Battle and March. After the SMM, MVC declined by -10.2±3.6% for KE (P<0.01) and -10.7±16.1% for PF (P = 0.06). The origin of fatigue was essentially peripheral for both muscle groups. A trend toward low-frequency fatigue was detected for KE (5.5%, P = 0.08). These moderate NM alterations were concomitant with a large increase in perceived fatigue from pre- (rating of 8.3±2.2) to post-SMM (15.9±2.1, P<0.01). The SMM-related fatigue did not alter walking energetics or mechanics, and the different equipment carried on the treadmill did not interact with this fatigue either. this study reports the first data on physiological and biomechanical consequences of extreme-duration heavy load carriage. Unexpectedly, NM function alterations due to the 21-h SMM were moderate and did not alter walking characteristics. Name: Effect of prolonged military exercises with high load carriage on neuromuscular fatigue and physiological/biomechanical responses. Number: NCT01127191.

  20. Effects of Extreme-Duration Heavy Load Carriage on Neuromuscular Function and Locomotion: A Military-Based Study

    PubMed Central

    Grenier, Jordane G.; Millet, Guillaume Y.; Peyrot, Nicolas; Samozino, Pierre; Oullion, Roger; Messonnier, Laurent; Morin, Jean-Benoît

    2012-01-01

    Trekking and military missions generally consist of carrying heavy loads for extreme durations. These factors have been separately shown to be sources of neuromuscular (NM) fatigue and locomotor alterations. However, the question of their combined effects remains unresolved, and addressing this issue required a representative context. Purpose The aim was to investigate the effects of extreme-duration heavy load carriage on NM function and walking characteristics. Methods Ten experienced infantrymen performed a 21-h simulated military mission (SMM) in a middle-mountain environment with equipment weighing ∼27 kg during battles and ∼43 kg during marches. NM function was evaluated for knee extensors (KE) and plantar flexors (PF) pre- and immediately post-SMM using isometric maximal voluntary contraction (MVC) measurement, neural electrical stimulation and surface EMG. The twitch-interpolation method was used to assess central fatigue. Peripheral changes were examined by stimulating the muscle in the relaxed state. The energy cost, mechanical work and spatio-temporal pattern of walking were also evaluated pre−/post-SMM on an instrumented treadmill in three equipment conditions: Sportswear, Battle and March. Results After the SMM, MVC declined by −10.2±3.6% for KE (P<0.01) and −10.7±16.1% for PF (P = 0.06). The origin of fatigue was essentially peripheral for both muscle groups. A trend toward low-frequency fatigue was detected for KE (5.5%, P = 0.08). These moderate NM alterations were concomitant with a large increase in perceived fatigue from pre- (rating of 8.3±2.2) to post-SMM (15.9±2.1, P<0.01). The SMM-related fatigue did not alter walking energetics or mechanics, and the different equipment carried on the treadmill did not interact with this fatigue either. Conclusion this study reports the first data on physiological and biomechanical consequences of extreme-duration heavy load carriage. Unexpectedly, NM function alterations due to the 21-h SMM were moderate and did not alter walking characteristics. Clinical Trial Registration Name: Effect of prolonged military exercises with high load carriage on neuromuscular fatigue and physiological/biomechanical responses. Number: NCT01127191. PMID:22927995

  1. Implication of altered ubiquitin-proteasome system and ER stress in the muscle atrophy of diabetic rats.

    PubMed

    Reddy, S Sreenivasa; Shruthi, Karnam; Prabhakar, Y Konda; Sailaja, Gummadi; Reddy, G Bhanuprakash

    2018-02-01

    Skeletal muscle is adversely affected in type-1 diabetes, and excessively stimulated ubiquitin-proteasome system (UPS) was found to be a leading cause of muscle wasting or atrophy. The role of endoplasmic reticulum (ER) stress in muscle atrophy of type-1 diabetes is not known. Hence, we investigated the role of UPS and ER stress in the muscle atrophy of chronic diabetes rat model. Diabetes was induced with streptozotocin (STZ) in male Sprague-Dawley rats and were sacrificed 2- and 4-months thereafter to collect gastrocnemius muscle. In another experiment, 2-months post-STZ-injection diabetic rats were treated with MG132, a proteasome inhibitor, for the next 2-months and gastrocnemius muscle was collected. The muscle fiber cross-sectional area was diminished in diabetic rats. The expression of UPS components: E1, MURF1, TRIM72, UCHL1, UCHL5, ubiquitinated proteins, and proteasome activity were elevated in the diabetic rats indicating activated UPS. Altered expression of ER-associated degradation (ERAD) components and increased ER stress markers were detected in 4-months diabetic rats. Proteasome inhibition by MG132 alleviated alterations in the UPS and ER stress in diabetic rat muscle. Increased UPS activity and ER stress were implicated in the muscle atrophy of diabetic rats and proteasome inhibition exhibited beneficiary outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Chronic hypobaric hypoxia increases isolated rat fast-twitch and slow-twitch limb muscle force and fatigue.

    PubMed

    El-Khoury, R; Bradford, A; O'Halloran, K D

    2012-01-01

    Chronic hypoxia alters respiratory muscle force and fatigue, effects that could be attributed to hypoxia and/or increased activation due to hyperventilation. We hypothesized that chronic hypoxia is associated with phenotypic change in non-respiratory muscles and therefore we tested the hypothesis that chronic hypobaric hypoxia increases limb muscle force and fatigue. Adult male Wistar rats were exposed to normoxia or hypobaric hypoxia (PB=450 mm Hg) for 6 weeks. At the end of the treatment period, soleus (SOL) and extensor digitorum longus (EDL) muscles were removed under pentobarbitone anaesthesia and strips were mounted for isometric force determination in Krebs solution in standard water-jacketed organ baths at 25 °C. Isometric twitch and tetanic force, contractile kinetics, force-frequency relationship and fatigue characteristics were determined in response to electrical field stimulation. Chronic hypoxia increased specific force in SOL and EDL compared to age-matched normoxic controls. Furthermore, chronic hypoxia decreased endurance in both limb muscles. We conclude that hypoxia elicits functional plasticity in limb muscles perhaps due to oxidative stress. Our results may have implications for respiratory disorders that are characterized by prolonged hypoxia such as chronic obstructive pulmonary disease (COPD).

  3. Nerve Transfers to Restore Shoulder Function.

    PubMed

    Leechavengvongs, Somsak; Malungpaishorpe, Kanchai; Uerpairojkit, Chairoj; Ng, Chye Yew; Witoonchart, Kiat

    2016-05-01

    The restoration of shoulder function after brachial plexus injury represents a significant challenge facing the peripheral nerve surgeons. This is owing to a combination of the complex biomechanics of the shoulder girdle, the multitude of muscles and nerves that could be potentially injured, and a limited number of donor options. In general, nerve transfer is favored over tendon transfer, because the biomechanics of the musculotendinous units are not altered. This article summarizes the surgical techniques and clinical results of nerve transfers for restoration of shoulder function. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Anabolic Heterogeneity Following Resistance Training: A Role for Circadian Rhythm?

    PubMed

    Camera, Donny M

    2018-01-01

    It is now well established that resistance exercise stimulates muscle protein synthesis and promotes gains in muscle mass and strength. However, considerable variability exists following standardized resistance training programs in the magnitude of muscle cross-sectional area and strength responses from one individual to another. Several studies have recently posited that alterations in satellite cell population, myogenic gene expression and microRNAs may contribute to individual variability in anabolic adaptation. One emerging factor that may also explain the variability in responses to resistance exercise is circadian rhythms and underlying molecular clock signals. The molecular clock is found in most cells within the body, including skeletal muscle, and principally functions to optimize the timing of specific cellular events around a 24 h cycle. Accumulating evidence investigating the skeletal muscle molecular clock indicates that exercise-induced contraction and its timing may regulate gene expression and protein synthesis responses which, over time, can influence and modulate key physiological responses such as muscle hypertrophy and increased strength. Therefore, the circadian clock may play a key role in the heterogeneous anabolic responses with resistance exercise. The central aim of this Hypothesis and Theory is to discuss and propose the potential interplay between the circadian molecular clock and established molecular mechanisms mediating muscle anabolic responses with resistance training. This article begins with a current review of the mechanisms associated with the heterogeneity in muscle anabolism with resistance training before introducing the molecular pathways regulating circadian function in skeletal muscle. Recent work showing members of the core molecular clock system can regulate myogenic and translational signaling pathways is also discussed, forming the basis for a possible role of the circadian clock in the variable anabolic responses with resistance exercise.

  5. Neural and neuroendocrine adaptations to microgravity and ground-based models of microgravity.

    PubMed

    Edgerton, V R; Roy, R R; Recktenwald, M R; Hodgson, J A; Grindeland, R E; Kozlovskaya, I

    2000-12-01

    The functional properties of the motor system of humans and non-human primates are readily responsive to microgravity. There is a growing body of evidence that significant adaptations occur in the spinal cord and muscle in response to prolonged exposure to microgravity. Further, there is evidence that the processing of sensory information from the periphery, particularly that input associated with the function of muscle tendons and joints, is significantly altered as a result of prolonged microgravity. We present evidence that the fundamental neural mechanisms that control the relative activity of the motor pools of a slow and fast extensor muscle is changed such that a slow, postural muscle is less readily activated during locomotion following spaceflight. Another type of change observed in mammals exposed to spaceflight relates to the release of a growth factor, called bioassayable growth hormone, which is thought to be released from the pituitary. When an individual generates a series of isometric plantarflexor contractions, the plasma levels of bioassayable growth hormone increases significantly. This response is suppressed after several days of continuous bedrest or spaceflight. These results suggest a unique neuroendocrine control system and demonstrate its sensitivity to chronic patterns of proprioceptive input associated with load-bearing locomotion.

  6. STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function

    PubMed Central

    2011-01-01

    Stromal interaction molecules (STIM) were identified as the endoplasmic-reticulum (ER) Ca2+ sensor controlling store-operated Ca2+ entry (SOCE) and Ca2+-release-activated Ca2+ (CRAC) channels in non-excitable cells. STIM proteins target Orai1-3, tetrameric Ca2+-permeable channels in the plasma membrane. Structure-function analysis revealed the molecular determinants and the key steps in the activation process of Orai by STIM. Recently, STIM1 was found to be expressed at high levels in skeletal muscle controlling muscle function and properties. Novel STIM targets besides Orai channels are emerging. Here, we will focus on the role of STIM1 in skeletal-muscle structure, development and function. The molecular mechanism underpinning skeletal-muscle physiology points toward an essential role for STIM1-controlled SOCE to drive Ca2+/calcineurin/nuclear factor of activated T cells (NFAT)-dependent morphogenetic remodeling programs and to support adequate sarcoplasmic-reticulum (SR) Ca2+-store filling. Also in our hands, STIM1 is transiently up-regulated during the initial phase of in vitro myogenesis of C2C12 cells. The molecular targets of STIM1 in these cells likely involve Orai channels and canonical transient receptor potential (TRPC) channels TRPC1 and TRPC3. The fast kinetics of SOCE activation in skeletal muscle seem to depend on the triad-junction formation, favoring a pre-localization and/or pre-formation of STIM1-protein complexes with the plasma-membrane Ca2+-influx channels. Moreover, Orai1-mediated Ca2+ influx seems to be essential for controlling the resting Ca2+ concentration and for proper SR Ca2+ filling. Hence, Ca2+ influx through STIM1-dependent activation of SOCE from the T-tubule system may recycle extracellular Ca2+ losses during muscle stimulation, thereby maintaining proper filling of the SR Ca2+ stores and muscle function. Importantly, mouse models for dystrophic pathologies, like Duchenne muscular dystrophy, point towards an enhanced Ca2+ influx through Orai1 and/or TRPC channels, leading to Ca2+-dependent apoptosis and muscle degeneration. In addition, human myopathies have been associated with dysfunctional SOCE. Immunodeficient patients harboring loss-of-function Orai1 mutations develop myopathies, while patients suffering from Duchenne muscular dystrophy display alterations in their Ca2+-handling proteins, including STIM proteins. In any case, the molecular determinants responsible for SOCE in human skeletal muscle and for dysregulated SOCE in patients of muscular dystrophy require further examination. PMID:21798093

  7. Hypothyroid myopathy: A peculiar clinical presentation of thyroid failure. Review of the literature.

    PubMed

    Sindoni, Alessandro; Rodolico, Carmelo; Pappalardo, Maria Angela; Portaro, Simona; Benvenga, Salvatore

    2016-12-01

    Abnormalities in thyroid function are common endocrine disorders that affect 5-10 % of the general population, with hypothyroidism occurring more frequently than hyperthyroidism. Clinical symptoms and signs are often nonspecific, particularly in hypothyroidism. Muscular symptoms (stiffness, myalgias, cramps, easy fatigability) are mentioned by the majority of patients with frank hypothyroidism. Often underestimated is the fact that muscle symptoms may represent the predominant or the only clinical manifestation of hypothyroidism, raising the issue of a differential diagnosis with other causes of myopathy, which sometimes can be difficult. Elevated serum creatine kinase, which not necessarily correlates with the severity of the myopathic symptoms, is certainly suggestive of muscle impairment, though it does not explain the cause. Rare muscular manifestations, associated with hypothyroidism, are rhabdomyolysis, acute compartment syndrome, Hoffman's syndrome and Kocher-Debré-Sémélaigne syndrome. Though the pathogenesis of hypothyroid myopathy is not entirely known, proposed mechanisms include altered glycogenolytic and oxidative metabolism, altered expression of contractile proteins, and neuro-mediated damage. Correlation studies of haplotype, muscle gene expression and protein characterization, could help understanding the pathophysiological mechanisms of this myopathic presentation of hypothyroidism.

  8. Normal muscle oxygen consumption and fatigability in sickle cell patients despite reduced microvascular oxygenation and hemorheological abnormalities.

    PubMed

    Waltz, Xavier; Pichon, Aurélien; Lemonne, Nathalie; Mougenel, Danièle; Lalanne-Mistrih, Marie-Laure; Lamarre, Yann; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Hardy-Dessources, Marie-Dominique; Hue, Olivier; Connes, Philippe

    2012-01-01

    Although it has been hypothesized that muscle metabolism and fatigability could be impaired in sickle cell patients, no study has addressed this issue. We compared muscle metabolism and function (muscle microvascular oxygenation, microvascular blood flow, muscle oxygen consumption and muscle microvascular oxygenation variability, which reflects vasomotion activity, maximal muscle force and local muscle fatigability) and the hemorheological profile at rest between 16 healthy subjects (AA), 20 sickle cell-hemoglobin C disease (SC) patients and 16 sickle cell anemia (SS) patients. Muscle microvascular oxygenation was reduced in SS patients compared to the SC and AA groups and this reduction was not related to hemorhelogical abnormalities. No difference was observed between the three groups for oxygen consumption and vasomotion activity. Muscle microvascular blood flow was higher in SS patients compared to the AA group, and tended to be higher compared to the SC group. Multivariate analysis revealed that muscle oxygen consumption was independently associated with muscle microvascular blood flow in the two sickle cell groups (SC and SS). Finally, despite reduced muscle force in sickle cell patients, their local muscle fatigability was similar to that of the healthy subjects. Sickle cell patients have normal resting muscle oxygen consumption and fatigability despite hemorheological alterations and, for SS patients only, reduced muscle microvascular oxygenation and increased microvascular blood flow. Two alternative mechanisms can be proposed for SS patients: 1) the increased muscle microvascular blood flow is a way to compensate for the lower muscle microvascular oxygenation to maintain muscle oxygen consumption to normal values or 2) the reduced microvascular oxygenation coupled with a normal resting muscle oxygen consumption could indicate that there is slight hypoxia within the muscle which is not sufficient to limit mitochondrial respiration but increases muscle microvascular blood flow.

  9. Altered muscle recruitment during extension from trunk flexion in low back pain developers.

    PubMed

    Nelson-Wong, Erika; Alex, Brendan; Csepe, David; Lancaster, Denver; Callaghan, Jack P

    2012-12-01

    A functionally induced, transient low back pain model consisting of exposure to prolonged standing has been used to elucidate baseline neuromuscular differences between previously asymptomatic individuals classified as pain developers and non-pain developers based on their pain response during a standing exposure. Previous findings have included differences in frontal plane lumbopelvic control and altered movement strategies that are present prior to pain development. Control strategies during sagittal plane movement have not been previously investigated in this sample. The purpose of this research was to investigate neuromuscular control differences during the extension phase from trunk flexion between pain developers and non-pain developers. Continuous electromyography and kinematic data were collected during standing trunk flexion and extension on 43 participants (22 male) with an age range of 18-33 years, prior to entering into the prolonged standing exposure. Participants were classified as pain developer/non-pain developer by their pain response (≥ 10 mm increase on a 100 mm visual analog scale) during standing. Relative timing and sequencing data between muscle pairs were calculated through cross-correlation analyses, and evaluated by group and gender. Pain developers demonstrated a 'top-down' muscle recruitment strategy with lumbar extensors activated prior to gluteus maximus, while non-pain developers demonstrated a typical 'bottom-up' muscle recruitment strategy with gluteus maximus activated prior to lumbar extensors. Individuals predisposed to low back pain development during standing exhibited altered neuromuscular strategies prior to pain development. These findings may help to characterize biomechanical movement profiles that could be important for early identification of people at risk for low back pain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Changes in muscle protein composition induced by disuse atrophy - Analysis by two-dimensional electrophoresis

    NASA Technical Reports Server (NTRS)

    Ellis, S.; Giometti, C. S.; Riley, D. A.

    1985-01-01

    Using 320 g rats, a two-dimensional electrophoretic analysis of muscle proteins in the soleus and EDL muscles from hindlimbs maintained load-free for 10 days is performed. Statistical analysis of the two-dimensional patterns of control and suspended groups reveals more protein alteration in the soleus muscle, with 25 protein differences, than the EDL muscle, with 9 protein differences, as a result of atrophy. Most of the soleus differences reside in minor components. It is suggested that the EDL may also show alteration in its two-dimensional protein map, even though no significant atrophy occurred in muscle wet weight. It is cautioned that strict interpretation of data must take into account possible endocrine perturbations.

  11. Exercise in ZDF rats does not attenuate weight gain, but prevents hyperglycemia concurrent with modulation of amino acid metabolism and AKT/mTOR activation in skeletal muscle.

    PubMed

    Adegoke, Olasunkanmi A J; Bates, Holly E; Kiraly, Michael A; Vranic, Mladen; Riddell, Michael C; Marliss, Errol B

    2015-08-01

    Protein metabolism is altered in obesity, accompanied by elevated plasma amino acids (AA). Previously, we showed that exercise delayed progression to type 2 diabetes in obese ZDF rats with maintenance of β cell function and reduction in hyperglucocorticoidemia. We hypothesized that exercise would correct the abnormalities we found in circulating AA and other indices of skeletal muscle protein metabolism. Male obese prediabetic ZDF rats (7-10/group) were exercised (swimming) 1 h/day, 5 days/week from ages 6-19 weeks, and compared with age-matched obese sedentary and lean ZDF rats. Food intake and weight gain were unaffected. Protein metabolism was altered in obese rats as evidenced by increased plasma concentrations of essential AA, and increased muscle phosphorylation (ph) of Akt(ser473) (187%), mTOR(ser2448) (140%), eIF4E-binding protein 1 (4E-BP1) (111%), and decreased formation of 4E-BP1*eIF4E complex (75%, 0.01 ≤ p ≤ 0.05 for all measures) in obese relative to lean rats. Exercise attenuated the increase in plasma essential AA concentrations and muscle Akt and mTOR phosphorylation. Exercise did not modify phosphorylation of S6K1, S6, and 4E-BP1, nor the formation of 4E-BP1*eIF4E complex, mRNA levels of ubiquitin or the ubiquitin ligase MAFbx. Positive correlations were observed between ph-Akt and fed circulating branched-chain AA (r = 0.56, p = 0.008), postprandial glucose (r = 0.42, p = 0.04) and glucose AUC during an IPGTT (r = 0.44, p = 0.03). Swimming exercise-induced attenuation of hyperglycemia in ZDF rats is independent of changes in body weight and could result in part from modulation of muscle AKT activation acting via alterations of systemic AA metabolism.

  12. Head to Head Comparison of Short-Term Treatment with the NAD(+) Precursor Nicotinamide Mononucleotide (NMN) and 6 Weeks of Exercise in Obese Female Mice.

    PubMed

    Uddin, Golam M; Youngson, Neil A; Sinclair, David A; Morris, Margaret J

    2016-01-01

    Obesity is well known to be a major cause of several chronic metabolic diseases, which can be partially counteracted by exercise. This is due, in part, to an upregulation of mitochondrial activity through increased nicotinamide adenine dinucleotide (NAD(+)). Recent studies have shown that NAD(+) levels can be increased by using the NAD(+) precursor, nicotinamide mononucleotide (NMN) leading to the suggestion that NMN could be a useful intervention in diet related metabolic disorders. In this study we compared the metabolic, and especially mitochondrial-associated, effects of exercise and NMN in ameliorating the consequences of high-fat diet (HFD) induced obesity in mice. Sixty female 5 week old C57BL6/J mice were allocated across five groups: Chow sedentary: CS; Chow exercise: CEX; HFD sedentary: HS; HFD NMN: HNMN; HFD exercise: HEX (12/group). After 6 weeks of diet, exercise groups underwent treadmill exercise (15 m/min for 45 min), 6 days per week for 6 weeks. NMN or vehicle (500 mg/kg body weight) was injected (i.p.) daily for the last 17 days. No significant alteration in body weight was observed in response to exercise or NMN. The HFD significantly altered adiposity, glucose tolerance, plasma insulin, NADH levels and citrate synthase activity in muscle and liver. HEX and HNMN groups both showed significantly improved glucose tolerance compared to the HS group. NAD(+) levels were increased significantly both in muscle and liver by NMN whereas exercise increased NAD(+) only in muscle. Both NMN and exercise ameliorated the HFD-induced reduction in liver citrate synthase activity. However, exercise, but not NMN, ameliorated citrate synthase activity in muscle. Overall these data suggest that while exercise and NMN-supplementation can induce similar reversal of the glucose intolerance induced by obesity, they are associated with tissue-specific effects and differential alterations to mitochondrial function in muscle and liver.

  13. A report on alterations to the speaking and singing voices of four women following hormonal therapy with virilizing agents.

    PubMed

    Baker, J

    1999-12-01

    Four women aged between 27 and 58 years sought otolaryngological examination due to significant alterations to their voices, the primary concerns being hoarseness in vocal quality, lowering of habitual pitch, difficulty projecting their speaking voices, and loss of control over their singing voices. Otolaryngological examination with a mirror or flexible laryngoscope revealed no apparent abnormality of vocal fold structure or function, and the women were referred for speech pathology with diagnoses of functional dysphonia. Objective acoustic measures using the Kay Visipitch indicated significant lowering of the mean fundamental frequency for each woman, and perceptual analysis of the patients' voices during quiet speaking, projected voice use, and comprehensive singing activities revealed a constellation of features typically noted in the pubescent male. The original diagnoses of a functional dysphonia were queried, prompting further exploration of each woman's medical history, revealing in each case onset of vocal symptoms shortly after commencing treatment for conditions with medications containing virilizing agents (eg, Danocrine (danazol), Deca-Durabolin (nandrolene decanoate), and testosterone). Although some of the vocal symptoms decreased in severity with the influences from 6 months voice therapy and after withdrawal from the drugs, a number of symptoms remained permanent, suggesting each subject had suffered significant alterations in vocal physiology, including muscle tissue changes, muscle coordination dysfunction, and propioceptive dysfunction. This retrospective study is presented in order to illustrate that it was both the projected speaking voice and the singing voice that proved so highly sensitive to the virilization effects. The implications for future prospective research studies and responsible clinical practice are discussed.

  14. Temporal patterns of the trunk muscles remain altered in a low back-injured population despite subjective reports of recovery.

    PubMed

    Moreside, Janice M; Quirk, D Adam; Hubley-Kozey, Cheryl L

    2014-04-01

    To compare temporal activation patterns from 24 abdominal and lumbar muscles between healthy subjects and those who reported recovery from recent low back injury (LBI). Cross-sectional comparative study. University neuromuscular function laboratory. Healthy adult volunteers (N=81; 30 LBI, 51 asymptomatic subjects). Trunk muscle electromyographic activity was collected during 2 difficulty levels of a supine trunk stability test aimed at challenging lumbopelvic control. Principal component (PC) analysis was applied to determine differences in temporal and/or amplitude electromyographic patterns between groups. Mixed-model analyses of variance were performed on PC scores that explained more than 89% of the variance (α=.05). Four PCs explained 89% and 96% of the variance for the abdominal and back muscles, respectively, with both muscle groups having similar shapes in the first 3 PCs. Significant interactions or group main effects were found for all PC scores except PC4 for the back extensors. Overall activation amplitudes for both the abdominal and back muscles (PC1 scores) were significantly (P<.05) higher for the LBI group, with both abdominal and back muscles of the LBI group demonstrating an increased response to the leg-loading phase (PC2 scores) compared with the asymptomatic group. Differences were also found between groups in their preparatory activity (PC3 scores), with the LBI group having a higher early relative amplitude of abdominal and back extensor activity. Despite perceived readiness to return to work and low pain scores, muscle activation patterns remained altered in this LBI group, including reduced synergistic coactivation and increased overall amplitudes as well as greater relative amplitude differences during specific phases of the movement. Electromyographic measures provide objective information to help guide therapy and may assist with determining the level of healing and return-to-work readiness after an LBI. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle

    PubMed Central

    Caron, Guillaume; Marqueste, Tanguy; Decherchi, Patrick

    2015-01-01

    The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A) from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i) no recovery (B0), ii) 50% recovery (B50) and iii) full recovery (B100). Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl) and lactic acid injections and Electrically-Induced Fatigue (EIF), and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity. PMID:26485650

  16. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle.

    PubMed

    Caron, Guillaume; Marqueste, Tanguy; Decherchi, Patrick

    2015-01-01

    The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A) from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i) no recovery (B0), ii) 50% recovery (B50) and iii) full recovery (B100). Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl) and lactic acid injections and Electrically-Induced Fatigue (EIF), and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity.

  17. Alterations of the in vivo torque-velocity relationship of human skeletal muscle following 30 days exposure to simulated microgravity

    NASA Technical Reports Server (NTRS)

    Dudley, Gary A.; Duvoisin, Marc; Convertino, Victor A.; Buchanan, Paul

    1989-01-01

    The effect of a continuous 30-d-long 6-deg headdown bedrest (BR) on the force output ability of skeletal muscles was investigated in human subjects by measuring peak angle specific torque of the knee extensor (KE) and knee flexor (KF) muscle groups of both limbs during unilateral efforts at four speeds (0.52. 1.74, 2.97, and 4.19 rad/sec) during eccentric action. It was found that, for the KE muscle group, the headdown BR resulted in decreases, by 19 percent on the average, of peak angle specific torque; on the other hand, the strength of the KF muscles was not altered significantly. A post-BR recovery for 30 days was found to restore muscle strength of the KE muscle group to about 92 percent of the pre-BR values. Changes of strength were not affected by the type of speed of muscle action.

  18. Does an exercise aimed at improving swallow function have an effect on vocal function in the healthy elderly?

    PubMed

    Easterling, Caryn

    2008-09-01

    Age-related sarcopenia or muscle wasting contributes to changes in the ability to perform activities of daily living, changes in deglutition, and changes in vocal function. The Shaker Exercise, an isometric and isokinetic exercise, has been shown to strengthen suprahyoid muscles and increase deglutitive anteroposterior (AP) upper esophageal sphincter (UES) opening diameter. The aim of this study was to determine if this exercise has an effect on the age-related changes in vocal function and deglutition in healthy older adults. Eleven females and 10 males, aged 65-78 years (mean = 70 +/- 4 years) and with a negative history for dysphagia and voice disorders, participated by exercising three times per day for 6 weeks. Five age-matched controls did not perform the exercise. Acoustic analysis of voice and biomechanical analysis of deglutition were performed before and after 6 weeks of exercise. Controls participated in voice analysis only. Dysphonia Severity Index (DSI), a multivariate voice index, was used to compare voice production initially and after 6 weeks. Deglutitive biomechanical measures increased and DSI scores improved in 10 of 21 participants following 6 weeks of the exercise. DSI for controls did not change over the 6-week period. Ten of 21 exercise participants experienced improved deglutitive biomechanics and DSI scores. Accuracy of exercise performance, compliance, and/or disclosed alterations in health status may contribute to the lack of deglutitive and DSI change in the participants who did not experience change in function. A large randomized control study, including periodic monitoring of health status, exercise performance accuracy, and compliance, is warranted to evaluate the affect of this exercise on deglutition as well as voice. The Shaker Exercise could be recommended as a preventative measure to diminish the effect of sarcopenia on the muscles used in deglutition and voice and alter the progression of the characteristic senescent voice and swallow changes.

  19. Pelvic Floor Dynamics During High-Impact Athletic Activities: A Computational Modeling Study

    PubMed Central

    Dias, Nicholas; Peng, Yun; Khavari, Rose; Nakib, Nissrine A.; Sweet, Robert M.; Timm, Gerald W.; Erdman, Arthur G.; Boone, Timothy B.

    2017-01-01

    Background Stress urinary incontinence is a significant problem in young female athletes, but the pathophysiology remains unclear because of the limited knowledge of the pelvic floor support function and limited capability of currently available assessment tools. The aim of our study is to develop an advanced computer modeling tool to better understand the dynamics of the internal pelvic floor during highly transient athletic activities. Methods Apelvic model was developed based on high-resolution MRI scans of a healthy nulliparous young female. A jump-landing process was simulated using realistic boundary conditions captured from jumping experiments. Hypothesized alterations of the function of pelvic floor muscles were simulated by weakening or strengthening the levator ani muscle stiffness at different levels. Intra-abdominal pressures and corresponding deformations of pelvic floor structures were monitored at different levels of weakness or enhancement. Findings Results show that pelvic floor deformations generated during a jump-landing process differed greatly from those seen in a Valsalva maneuver which is commonly used for diagnosis in clinic. The urethral mobility was only slightly influenced by the alterations of the levator ani muscle stiffness. Implications for risk factors and treatment strategies were also discussed. Interpretation Results suggest that clinical diagnosis should make allowances for observed differences in pelvic floor deformations between a Valsalva maneuver and a jump-landing process to ensure accuracy. Urethral hypermobility may be a less contributing factor than the intrinsic sphincteric closure system to the incontinence of young female athletes. PMID:27886590

  20. Effects of photobiomodulation therapy and topical non-steroidal anti-inflammatory drug on skeletal muscle injury induced by contusion in rats-part 1: morphological and functional aspects.

    PubMed

    Tomazoni, Shaiane Silva; Frigo, Lúcio; Dos Reis Ferreira, Tereza Cristina; Casalechi, Heliodora Leão; Teixeira, Simone; de Almeida, Patrícia; Muscara, Marcelo Nicolas; Marcos, Rodrigo Labat; Serra, Andrey Jorge; de Carvalho, Paulo de Tarso Camillo; Leal-Junior, Ernesto Cesar Pinto

    2017-12-01

    Musculoskeletal injuries are very frequent and are responsible for causing pain and impairment of muscle function, as well as significant functional limitations. In the acute phase, the most prescribed treatment is with non-steroidal anti-inflammatory drugs (NSAIDs), despite their questionable effectiveness. However, the use of photobiomodulation therapy (PBMT) in musculoskeletal disorders has been increasing in the last few years, and this therapy appears to be an interesting alternative to the traditional drugs. The objective of the present study was to evaluate and compare the effects of PBMT, with different application doses, and topical NSAIDs, under morphological and functional parameters, during an acute inflammatory process triggered by a controlled model of musculoskeletal injury induced via contusion in rats. Muscle injury was induced by means of a single trauma to the animals' anterior tibialis muscle. After 1 h, the rats were treated with PBMT (830 nm; continuous mode, with a power output of 100 mW; 3.57 W/cm 2 ; 1 J-35.7 J/cm 2 , 3 J-107.1 J/cm 2 , and 9 J-321.4 J/cm 2 ; 10, 30, and 90 s) or diclofenac sodium for topical use (1 g). Morphological analysis (histology) and functional analysis (muscle work) were performed, 6, 12, and 24 h after induction of the injury. PBMT, with all doses tested, improved morphological changes caused by trauma; however, the 9 J (321.4 J/cm 2 ) dose was the most effective in organizing muscle fibers and cell nuclei. On the other hand, the use of diclofenac sodium produced only a slight improvement in morphological changes. Moreover, we observed a statistically significant increase of muscle work in the PBMT 3 J (107.1 J/cm 2 ) group in relation to the injury group and the diclofenac group (p < 0.05). The results of the present study indicate that PBMT, with a dose of 3 J (107.1 J/cm 2 ), is more effective than the other doses of PBMT tested and NSAIDs for topical use as a means to improve morphological and functional alterations due to muscle injury from contusion.

  1. Calorie restriction in mice overexpressing UCP3: evidence that prior mitochondrial uncoupling alters response.

    PubMed

    Estey, Carmen; Seifert, Erin L; Aguer, Céline; Moffat, Cynthia; Harper, Mary-Ellen

    2012-05-01

    Calorie restriction (CR) without malnutrition is the only intervention to consistently increase lifespan in all species tested, and lower age-related pathologies in mammals including humans. It has been suggested that uncoupling of mitochondrial oxidative phosphorylation, using chemical uncouplers, mimics CR, and that overlapping mechanisms underlie the phenotypic changes induced by uncoupling and CR. We aimed to critically assess this using a unique mouse model of skeletal muscle-targeted UCP3-induced uncoupling (UCP3Tg), and focused our studies mainly on skeletal muscle mitochondria. Compared to ad libitum fed Wt mice, skeletal muscle mitochondria from ad libitum fed UCP3Tg mice showed higher basal uncoupling and lower H(2)O(2) emission, with unchanged maximal oxidative phosphorylation, and mitochondrial content. UCP3Tg CR mice showed some tendency for differential adaptation to CR, with lowered H(+) leak conductance and evidence for higher H(2)O(2) emission from skeletal muscle mitochondria following 2 weeks CR, and failure to lower H(2)O(2) emission after 1 month CR. Differential adaptation was also apparent at the whole body level: while UCP3Tg CR mice lost as much weight as Wt CR mice, the proportion of muscle lost was higher in UCP3Tg mice. However, a striking outcome of our studies was the absence of change with CR in many of the parameters of mitochondrial function and content that we measured in mice of either genotype. Overall, our study raises the question of whether CR can consistently modify skeletal muscle mitochondria; alterations with CR may only be apparent under certain conditions such as during the 2 wk CR intervention in the UCP3Tg mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Calorie restriction in mice overexpressing UCP3: evidence that prior mitochondrial uncoupling alters response

    PubMed Central

    Estey, Carmen; Seifert, Erin L.; Aguer, Céline; Moffat, Cynthia; Harper, Mary-Ellen

    2012-01-01

    SUMMARY Calorie restriction (CR) without malnutrition is the only intervention to consistently increase lifespan in all species tested, and lower age-related pathologies in mammals including humans. It has been suggested that uncoupling of mitochondrial oxidative phosphorylation, using chemical uncouplers, mimics CR, and that overlapping mechanisms underlie the phenotypic changes induced by uncoupling and CR. We aimed to critically assess this using a unique mouse model of skeletal muscle-targeted UCP3-induced uncoupling (UCP3Tg), and focused our studies mainly on skeletal muscle mitochondria. Compared to ad libitum fed Wt mice, skeletal muscle mitochondria from ad libitum fed UCP3Tg mice showed higher basal uncoupling and lower H2O2 emission, with unchanged maximal oxidative phosphorylation, and mitochondrial content. UCP3Tg CR mice showed some tendency for differential adaptation to CR, with lowered H+ leak conductance and evidence for higher H2O2 emission from skeletal muscle mitochondria following 2 weeks CR, and failure to lower H2O2 emission after 1 month CR. Differential adaptation was also apparent at the whole body level: while UCP3Tg CR mice lost as much weight as Wt CR mice, the proportion of muscle lost was higher in UCP3Tg mice. However, a striking outcome of our studies was the absence of change with CR in many of the parameters of mitochondrial function and content that we measured in mice of either genotype. Overall, our study raises the question of whether CR can consistently modify skeletal muscle mitochondria; alterations with CR may only be apparent under certain conditions such as during the 2 wk CR intervention in the UCP3Tg mice. PMID:22406134

  3. Statin-induced myotoxicity is exacerbated by aging: A biophysical and molecular biology study in rats treated with atorvastatin.

    PubMed

    Camerino, Giulia Maria; De Bellis, Michela; Conte, Elena; Liantonio, Antonella; Musaraj, Kejla; Cannone, Maria; Fonzino, Adriano; Giustino, Arcangela; De Luca, Annamaria; Romano, Rossella; Camerino, Claudia; Laghezza, Antonio; Loiodice, Fulvio; Desaphy, Jean-Francois; Conte Camerino, Diana; Pierno, Sabata

    2016-09-01

    Statin-induced skeletal muscle damage in rats is associated to the reduction of the resting sarcolemmal chloride conductance (gCl) and ClC-1 chloride channel expression. These drugs also affect the ClC-1 regulation by increasing protein kinase C (PKC) activity, which phosphorylate and close the channel. Also the intracellular resting calcium (restCa) level is increased. Similar alterations are observed in skeletal muscles of aged rats, suggesting a higher risk of statin myotoxicity. To verify this hypothesis, we performed a 4-5-weeks atorvastatin treatment of 24-months-old rats to evaluate the ClC-1 channel function by the two-intracellular microelectrodes technique as well as transcript and protein expression of different genes sensitive to statins by quantitative real-time-PCR and western blot analysis. The restCa was measured using FURA-2 imaging, and histological analysis of muscle sections was performed. The results show a marked reduction of resting gCl, in agreement with the reduced ClC-1 mRNA and protein expression in atorvastatin-treated aged rats, with respect to treated adult animals. The observed changes in myocyte-enhancer factor-2 (MEF2) expression may be involved in ClC-1 expression changes. The activity of PKC was also increased and further modulate the gCl in treated aged rats. In parallel, a marked reduction of the expression of glycolytic and mitochondrial enzymes demonstrates an impairment of muscle metabolism. No worsening of restCa or histological features was found in statin-treated aged animals. These findings suggest that a strong reduction of gCl and alteration of muscle metabolism coupled to muscle atrophy may contribute to the increased risk of statin-induced myopathy in the elderly. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Exercise training alters the balance between vasoactive compounds in skeletal muscle of individuals with essential hypertension.

    PubMed

    Hansen, Ane H; Nyberg, Michael; Bangsbo, Jens; Saltin, Bengt; Hellsten, Ylva

    2011-11-01

    The effects of physical training on the formation of vasodilating and vasoconstricting compounds, as well as on related proteins important for vascular function, were examined in skeletal muscle of individuals with essential hypertension (n=10). Muscle microdialysis samples were obtained from subjects with hypertension before and after 16 weeks of physical training. Muscle dialysates were analyzed for thromboxane A(2), prostacyclin, nucleotides, and nitrite/nitrate. Protein levels of thromboxane synthase, prostacyclin synthase, cyclooxygenase 1 and 2, endothelial nitric oxide synthase (eNOS), cystathionine-γ-lyase, cytochrome P450 4A and 2C9, and the purinergic receptors P2X1 and P2Y2 were determined in skeletal muscle. The protein levels were compared with those of normotensive control subjects (n=12). Resting muscle dialysate thromboxane A(2) and prostacyclin concentrations were lower (P<0.05) after training compared with before training. Before training, dialysate thromboxane A(2) decreased with acute exercise, whereas after training, no changes were found. Before training, dialysate prostacyclin levels did not increase with acute exercise, whereas after training there was an 82% (P<0.05) increase from rest to exercise. The exercise-induced increase in ATP and ADP was markedly reduced after training (P<0.05). The amount of eNOS protein in the hypertensive subjects was 40% lower (P<0.05) than in the normotensive control subjects, whereas cystathionine-γ-lyase levels were 25% higher (P<0.05), potentially compensating for the lower eNOS level. We conclude that exercise training alters the balance between vasodilating and vasoconstricting compounds as evidenced by a decrease in the level of thromboxane, reduction in the exercise-induced increase in ATP and a greater exercise-induced increase in prostacyclin.

  5. The Human Pelvis: Variation in structure and function during gait

    PubMed Central

    Lewis, Cara L.; Laudicina, Natalie M.; Khuu, Anne; Loverro, Kari L.

    2017-01-01

    The shift to habitual bipedalism 4–6 million years ago in the hominin lineage created a morphologically and functionally different human pelvis compared to our closest living relatives, the chimpanzees. Evolutionary changes to the shape of the pelvis were necessary for the transition to habitual bipedalism in humans. These changes in the bony anatomy resulted in an altered role of muscle function, influencing bipedal gait. Additionally, there are normal sex-specific variations in the pelvis as well as abnormal variations in the acetabulum. During gait, the pelvis moves in the three planes to produce smooth and efficient motion. Subtle sex-specific differences in these motions may facilitate economical gait despite differences in pelvic structure. The motions of the pelvis and hip may also be altered in the presence of abnormal acetabular structure, especially with acetabular dysplasia. PMID:28297184

  6. Altered neuromuscular control and ankle joint kinematics during walking in subjects with functional instability of the ankle joint.

    PubMed

    Delahunt, Eamonn; Monaghan, Kenneth; Caulfield, Brian

    2006-12-01

    The ankle joint requires very precise neuromuscular control during the transition from terminal swing to the early stance phase of the gait cycle. Altered ankle joint arthrokinematics and muscular activity have been cited as potential factors that may lead to an inversion sprain during the aforementioned time periods. However, to date, no study has investigated patterns of muscle activity and 3D joint kinematics simultaneously in a group of subjects with functional instability compared with a noninjured control group during these phases of the gait cycle. To compare the patterns of lower limb 3D joint kinematics and electromyographic activity during treadmill walking in a group of subjects with functional instability with those observed in a control group. Controlled laboratory study. Three-dimensional angular velocities and displacements of the hip, knee, and ankle joints, as well as surface electromyography of the rectus femoris, peroneus longus, tibialis anterior, and soleus muscles, were recorded simultaneously while subjects walked on a treadmill at a velocity of 4 km/h. Before heel strike, subjects with functional instability exhibited a decrease in vertical foot-floor clearance (12.62 vs 22.84 mm; P < .05), as well as exhibiting a more inverted position of the ankle joint before, at, and immediately after heel strike (1.69 degrees , 2.10 degrees , and -0.09 degrees vs -1.43 degrees , -1.43 degrees , and -2.78 degrees , respectively [minus value = eversion]; P < .05) compared with controls. Subjects with functional instability were also observed to have an increase in peroneus longus integral electromyography during the post-heel strike time period (107.91%.millisecond vs 64.53%.millisecond; P < .01). The altered kinematics observed in this study could explain the reason subjects with functional instability experience repeated episodes of ankle inversion injury in situations with only slight or no external provocation. It is hypothesized that the observed increase in peroneus longus activity may be the result of a change in preprogrammed feed-forward motor control.

  7. The effects of cutting or of stretching skeletal muscle in vitro on the rates of protein synthesis and degradation

    NASA Technical Reports Server (NTRS)

    Seider, M. J.; Kapp, R.; Chen, C.-P.; Booth, F. W.

    1980-01-01

    Skeletal muscle preparations using cut muscle fibers have often been used in studies of protein metabolism. The present paper reports an investigation of the effect of muscle cutting or stretching in vitro on the rates of protein synthesis and/or degradation. Protein synthesis and content, and ATP and phosphocreatine levels were monitored in soleus and extensor digitorum longus muscles from the rat with various extents of muscle fiber cuts and following stretching to about 120% the resting length. Rates of protein synthesis are found to be significantly lower and protein degradation higher in the cut muscles than in uncut controls, while ATP and phosphocreatine concentrations decreased. Stretched intact muscles, on the other hand, are observed to have higher concentrations of high-energy phosphates than unstretched muscles, while rates of protein degradation were not affected. Results thus demonstrate that the cutting of skeletal muscle fibers alters many aspects of muscle metabolism, and that moderate decreases in ATP concentration do not alter rates of protein concentration in intact muscles in vitro.

  8. Altered Pharyngeal Muscles in Parkinson Disease

    PubMed Central

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Adler, Charles H.; Shill, Holly A.; Caviness, John N.; Samanta, Johan E.; Beach, Thomas G.

    2012-01-01

    Dysphagia (impaired swallowing) is common in Parkinson disease (PD) patients and is related to aspiration pneumonia, the primary cause of death in PD. Therapies that ameliorate the limb motor symptoms of PD are ineffective for dysphagia. This suggests that the pathophysiology of PD dysphagia may differ from that affecting limb muscles but little is known about potential neuromuscular abnormalities in the swallowing muscles in PD. This study examined the fiber histochemistry of pharyngeal constrictor (PC) and cricopharyngeal (CP) sphincter muscles in postmortem specimens from 8 PD and 4 age-matched control patients. Pharyngeal muscles in PD patients exhibited many atrophic fibers, fiber type grouping, and fast-to-slow myosin heavy chain transformation. These alterations indicate that the pharyngeal muscles experienced neural degeneration and regeneration over the course of PD. Notably, the PD patients with dysphagia had a higher percentage of atrophic myofibers vs. with those without dysphagia and controls. The fast-to-slow fiber type transition is consistent with abnormalities in swallowing, slow movement of food and increased tone in the CP sphincter in PD patients. The alterations in the pharyngeal muscles may play a pathogenic role in the development of dysphagia in PD patients. PMID:22588389

  9. Altered pharyngeal muscles in Parkinson disease.

    PubMed

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Adler, Charles H; Shill, Holly A; Caviness, John N; Samanta, Johan E; Beach, Thomas G

    2012-06-01

    Dysphagia (impaired swallowing) is common in patients with Parkinson disease (PD) and is related to aspiration pneumonia, the primary cause of death in PD. Therapies that ameliorate the limb motor symptoms of PD are ineffective for dysphagia. This suggests that the pathophysiology of PD dysphagia may differ from that affecting limb muscles, but little is known about potential neuromuscular abnormalities in the swallowing muscles in PD. This study examined the fiber histochemistry of pharyngeal constrictor and cricopharyngeal sphincter muscles in postmortem specimens from 8 subjects with PD and 4 age-matched control subjects. Pharyngeal muscles in subjects with PD exhibited many atrophic fibers, fiber type grouping, and fast-to-slow myosin heavy chain transformation. These alterations indicate that the pharyngeal muscles experienced neural degeneration and regeneration over the course of PD. Notably, subjects with PD with dysphagia had a higher percentage of atrophic myofibers versus with those without dysphagia and controls. The fast-to-slow fiber-type transition is consistent with abnormalities in swallowing, slow movement of food, and increased tone in the cricopharyngeal sphincter in subjects with PD. The alterations in the pharyngeal muscles may play a pathogenic role in the development of dysphagia in subjects with PD.

  10. Lack of phosphatidylethanolamine N-methyltransferase in mice does not promote fatty acid oxidation in skeletal muscle.

    PubMed

    Tasseva, Guergana; van der Veen, Jelske N; Lingrell, Susanne; Jacobs, René L; Vance, Dennis E; Vance, Jean E

    2016-02-01

    Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected from high-fat diet-induced obesity and insulin resistance, and exhibit increased whole-body energy expenditure and oxygen consumption. Since skeletal muscle is a major site of fatty acid oxidation and energy utilization, we determined if rates of fatty acid oxidation/oxygen consumption in muscle are higher in Pemt(-/-) mice than in Pemt(+/+) mice. Although PEMT is abundant in the liver, PEMT protein and activity were undetectable in four types of skeletal muscle. Moreover, amounts of PC and PE in the skeletal muscle were not altered by PEMT deficiency. Thus, we concluded that any influence of PEMT deficiency on skeletal muscle would be an indirect consequence of lack of PEMT in liver. Neither the in vivo rate of fatty acid uptake by muscle nor the rate of fatty acid oxidation in muscle explants and cultured myocytes depended upon Pemt genotype. Nor did PEMT deficiency increase oxygen consumption or respiratory function in skeletal muscle mitochondria. Thus, the increased whole body oxygen consumption in Pemt(-/-) mice, and resistance of these mice to diet-induced weight gain, are not primarily due to increased capacity of skeletal muscle for utilization of fatty acids as an energy source. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  11. A novel method for determining human ex vivo submaximal skeletal muscle mitochondrial function

    PubMed Central

    Hey-Mogensen, Martin; Gram, Martin; Jensen, Martin Borch; Lund, Michael Taulo; Hansen, Christina Neigaard; Scheibye-Knudsen, Morten; Bohr, Vilhelm A; Dela, Flemming

    2015-01-01

    Abstract Despite numerous studies, there is no consensus about whether mitochondrial function is altered with increased age. The novelty of the present study is the determination of mitochondrial function at submaximal activity rates, which is more physiologically relevant than the ex vivo functionality protocols used previously. Muscle biopsies were taken from 64 old or young male subjects (aged 60–70 or 20–30 years). Aged subjects were recruited as trained or untrained. Muscle biopsies were used for the isolation of mitochondria and subsequent measurements of DNA repair, anti-oxidant capacity and mitochondrial protein levels (complexes I–V). Mitochondrial function was determined by simultaneous measurement of oxygen consumption, membrane potential and hydrogen peroxide emission using pyruvate + malate (PM) or succinate + rotenone (SR) as substrates. Proton leak was lower in aged subjects when determined at the same membrane potential and was unaffected by training status. State 3 respiration was lower in aged untrained subjects. This effect, however, was alleviated in aged trained subjects. H2O2 emission with PM was higher in aged subjects, and was exacerbated by training, although it was not changed when using SR. However, with a higher manganese superoxide dismuthase content, the trained aged subjects may actually have lower or similar mitochondrial superoxide emission compared to the untrained subjects. We conclude that ageing and the physical activity level in aged subjects are both related to changes in the intrinsic functionality of the mitochondrion in skeletal muscle. Both of these changes could be important factors in determining the metabolic health of the aged skeletal muscle cell. Key points The present study utilized a novel method aiming to investigate mitochondrial function in human skeletal muscle at submaximal levels and at a predefined membrane potential. The effect of age and training status was investigated using a cross-sectional design. Ageing was found to be related to decreased leak regardless of training status. Increased training status was associated with increased mitochondrial hydrogen peroxide emission. PMID:26096709

  12. Orthodontic treatment-induced temporal alteration of jaw-opening reflex excitability.

    PubMed

    Sasaki, Au; Hasegawa, Naoya; Adachi, Kazunori; Sakagami, Hiroshi; Suda, Naoto

    2017-10-01

    The impairment of orofacial motor function during orthodontic treatment needs to be addressed, because most orthodontic patients experience pain and motor excitability would be affected by pain. In the present study, the temporal alteration of the jaw-opening reflex excitability was investigated to determine if orthodontic treatment affects orofacial motor function. The excitability of jaw-opening reflex evoked by electrical stimulation on the gingiva and recorded bilaterally in the anterior digastric muscles was evaluated at 1 (D1), 3 (D3), and 7 days (D7) after orthodontic force application to the teeth of right side; morphological features (e.g., osteoclast genesis and tooth movement) were also evaluated. To clarify the underlying mechanism of orthodontic treatment-induced alteration of orofacial motor excitability, analgesics were administrated for 1 day. At D1 and D3, orthodontic treatment significantly decreased the threshold for inducing the jaw-opening reflex but significantly increased the threshold at D7. Other parameters of the jaw-opening reflex were also evaluated (e.g., latency, duration and area under the curve of anterior digastric muscles activity), and only the latency of the D1 group was significantly different from that of the other groups. Temporal alteration of the jaw-opening reflex excitability was significantly correlated with changes in morphological features. Aspirin (300 mg·kg -1 ·day -1 ) significantly increased the threshold for inducing the jaw-opening reflex, whereas a lower dose (75-150 mg·kg -1 ·day -1 ) of aspirin or acetaminophen (300 mg·kg -1 ·day -1 ) failed to alter the jaw-opening reflex excitability. These results suggest that an increase of the jaw-opening reflex excitability can be induced acutely by orthodontic treatment, possibly through the cyclooxygenase activation. NEW & NOTEWORTHY It is well known that motor function is affected by pain, but the effect of orthodontic treatment-related pain on the trigeminal motor excitability has not been fully understood. We found that, during orthodontic treatment, trigeminal motor excitability is acutely increased and then decreased in a week. Because alteration of trigeminal motor function can be evaluated quantitatively by jaw-opening reflex excitability, the present animal model may be useful to search for alternative approaches to attenuate orthodontic pain. Copyright © 2017 the American Physiological Society.

  13. Abnormal Motor Phenotype at Adult Stages in Mice Lacking Type 2 Deiodinase

    PubMed Central

    Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Background Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3′-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. Aim This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Results Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. Conclusions The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders. PMID:25083788

  14. Sepsis-induced alterations in protein-protein interactions within mTOR complex 1 and the modulating effect of leucine on muscle protein synthesis.

    PubMed

    Kazi, Abid A; Pruznak, Anne M; Frost, Robert A; Lang, Charles H

    2011-02-01

    Sepsis-induced muscle atrophy is produced in part by decreased protein synthesis mediated by inhibition of mTOR (mammalian target of rapamycin). The present study tests the hypothesis that alteration of specific protein-protein interactions within the mTORC1 (mTOR complex 1) contributes to the decreased mTOR activity observed after cecal ligation and puncture in rats. Sepsis decreased in vivo translational efficiency in gastrocnemius and reduced the phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein (BP) 1, S6 kinase (S6K) 1, and mTOR, compared with time-matched pair-fed controls. Sepsis decreased T246-phosphorylated PRAS40 (proline-rich Akt substrate 40) and reciprocally increased S792-phosphorylated raptor (regulatory associated protein of mTOR). Despite these phosphorylation changes, sepsis did not alter PRAS40 binding to raptor. The amount of the mTOR-raptor complex did not differ between groups. In contrast, the binding and retention of both 4E-BP1 and S6K1 to raptor were increased, and, conversely, the binding of raptor with eIF3 was decreased in sepsis. These changes in mTORC1 in the basal state were associated with enhanced 5'-AMP activated kinase activity. Acute in vivo leucine stimulation increased muscle protein synthesis in control, but not septic rats. This muscle leucine resistance was associated with coordinated changes in raptor-eIF3 binding and 4E-BP1 phosphorylation. Overall, our data suggest the sepsis-induced decrease in muscle protein synthesis may be mediated by the inability of 4E-BP1 and S6K1 to be phosphorylated and released from mTORC1 as well as the decreased recruitment of eIF3 necessary for a functional 48S complex. These data provide additional mechanistic insight into the molecular mechanisms by which sepsis impairs both basal protein synthesis and the anabolic response to the nutrient signal leucine in skeletal muscle.

  15. Alterations of the Deltoid Muscle After Open Versus Arthroscopic Rotator Cuff Repair.

    PubMed

    Cho, Nam Su; Cha, Sang Won; Rhee, Yong Girl

    2015-12-01

    Open repair can be more useful than arthroscopic repair for immobile and severely retracted, large to massive rotator cuff tears. However, it is not known whether the deltoid muscle is altered after open repair or to what extent the deltoid origin remains detached after surgery. To compare postoperative alterations of the deltoid muscle in open versus arthroscopic repair for severely retracted, large to massive rotator cuff tears. Case-control study; Level of evidence, 3. Enrolled in this study were 135 patients who underwent surgical repair for severely retracted, large to massive rotator cuff tears and who had routine follow-up MRIs at least 6 months after surgery. Open repairs were performed in 56 cases and arthroscopic repairs in 79 cases. The detachment and thickness of the deltoid muscle at its proximal origin were recorded in 5 zones on MRI. The alterations of the deltoid muscle and postoperative integrity of the repaired rotator cuff were evaluated. Partial detachment of the deltoid occurred in 1 patient (1.8%) in the open group and in 2 patients (2.5%) in the arthroscopic group (P = .80). All the partial detachments occurred in zones 2 and 3. Attenuation of the proximal origin of the deltoid was found in 3 patients (5.4%) in the open group and in 4 patients (5.1%) in the arthroscopic group (P = .87). Atrophy of the deltoid muscle was shown in 3 patients (5.4%) in the open group and 4 patients (5.1%) in the arthroscopic group (P = .61). The retear rate of the repaired cuff was 30.4% (17/56) in the open group and 38.0% (30/79) in the arthroscopic group (P = .74). Between open and arthroscopic repair for severely retracted, large to massive rotator cuff tears, there was no significant difference in detachment of the deltoid origin and alterations of the deltoid muscle after repair. Postoperative alterations of the deltoid occurred in arthroscopic surgery as well as in open surgery. For immobile massive rotator cuff tear, open repair is an acceptable technique as long as the deltoid muscle is meticulously reattached after surgery. © 2015 The Author(s).

  16. Excitation-calcium release uncoupling in aged single human skeletal muscle fibers.

    PubMed

    Delbono, O; O'Rourke, K S; Ettinger, W H

    1995-12-01

    The biological mechanisms underlying decline in muscle power and fatigue with age are not completely understood. The contribution of alterations in the excitation-calcium release coupling in single muscle fibers was explored in this work. Single muscle fibers were voltage-clamped using the double Vaseline gap technique. The samples were obtained by needle biopsy of the vastus lateralis (quadriceps) from 9 young (25-35 years; 25.9 +/- 9.1; 5 female and 4 male) and 11 old subjects (65-75 years; 70.5 +/- 2.3; 6 f, 5 m). Data were obtained from 36 and 39 fibers from young and old subjects, respectively. Subjects included in this study had similar physical activity. Denervated and slow-twitch muscle fibers were excluded from this study. A significant reduction of maximum charge movement (Qmax) and DHP-sensitive Ca current were recorded in muscle fibers from the 65-75 group. Qmax values were 7.6 +/- 0.9 and 3.2 +/- 0.3 nC/muF for young and old muscle fibers, respectively (P < 0.01). No evidences of charge inactivation or interconversion (charge 1 to charge 2) were found. The peak Ca current was (-)4.7 +/- 0.08 and (-)2.15 +/- 0.11 muA/muF for young and old fibers, respectively (P < 0.01). The peak calcium transient studied with mag-fura-2 (400 microM) was 6.3 +/- 0.4 microM and 4.2 +/- 0.3 microM for young and old muscle fibers, respectively. Caffeine (0.5 mM) induced potentiation of the peak calcium transient in both groups. The decrease in the voltage-/Ca-dependent Ca release ratio in old fibers (0.18 +/- 0.02) compared to young fibers (0.47 +/- 0.03) (P < 0.01), was recorded in the absence of sarcoplasmic reticulum calcium depletion. These data support a significant reduction of the amount of Ca available for triggering mechanical responses in aged skeletal muscle and, the reduction of Ca release is due to DHPR-ryanodine receptor uncoupling in fast-twitch fibers. These alterations can account, at least partially for the skeletal muscle function impairment associated with aging.

  17. N-acetylcysteine inhibits muscle fatigue in humans.

    PubMed Central

    Reid, M B; Stokić, D S; Koch, S M; Khawli, F A; Leis, A A

    1994-01-01

    N-acetylcysteine (NAC) is a nonspecific antioxidant that selectively inhibits acute fatigue of rodent skeletal muscle stimulated at low (but not high) tetanic frequencies and that decreases contractile function of unfatigued muscle in a dose-dependent manner. The present experiments test the hypothesis that NAC pretreatment can inhibit acute muscular fatigue in humans. Healthy volunteers were studied on two occasions each. Subjects were pretreated with NAC 150 mg/kg or 5% dextrose in water by intravenous infusion. The subject then sat in a chair with surface electrodes positioned over the motor point of tibialis anterior, an ankle dorsiflexor of mixed-fiber composition. The muscle was stimulated to contract electrically (40-55 mA, 0.2-ms pulses) and force production was measured. Function of the unfatigued muscle was assessed by measuring the forces produced during maximal voluntary contractions (MVC) of ankle dorsiflexor muscle groups and during electrical stimulation of tibialis anterior at 1, 10, 20, 40, 80, and 120 Hz (protocol 1). Fatigue was produced using repetitive tetanic stimulations at 10 Hz (protocol 1) or 40 Hz (protocol 2); intermittent stimulations subsequently were used to monitor recovery from fatigue. The contralateral leg then was studied using the same protocol. Pretreatment with NAC did not alter the function of unfatigued muscle; MVC performance and the force-frequency relationship of tibialis anterior were unchanged. During fatiguing contractions stimulated at 10 Hz, NAC increased force output by approximately 15% (P < 0.0001), an effect that was evident after 3 min of repetitive contraction (P < 0.0125) and persisted throughout the 30-min protocol. NAC had no effect on fatigue induced using 40 Hz stimuli or on recovery from fatigue. N-acetylcysteine pretreatment can improve performance of human limb muscle during fatiguing exercise, suggesting that oxidative stress plays a causal role in the fatigue process and identifying antioxidant therapy as a novel intervention that may be useful clinically. PMID:7989604

  18. Muscle-specific deletion of exons 2 and 3 of the IL15RA gene in mice: effects on contractile properties of fast and slow muscles.

    PubMed

    O'Connell, Grant; Guo, Ge; Stricker, Janelle; Quinn, LeBris S; Ma, Averil; Pistilli, Emidio E

    2015-02-15

    Interleukin-15 (IL-15) is a putative myokine hypothesized to induce an oxidative skeletal muscle phenotype. The specific IL-15 receptor alpha subunit (IL-15Rα) has also been implicated in specifying this contractile phenotype. The purposes of this study were to determine the muscle-specific effects of IL-15Rα functional deficiency on skeletal muscle isometric contractile properties, fatigue characteristics, spontaneous cage activity, and circulating IL-15 levels in male and female mice. Muscle creatine kinase (MCK)-driven IL-15Rα knockout mice (mIl15ra(fl/fl)/Cre(+)) were generated using the Cre-loxP system. We tested the hypothesis that IL-15Rα functional deficiency in skeletal muscle would increase resistance to contraction-induced fatigue, cage activity, and circulating IL-15 levels. There was a significant effect of genotype on the fatigue curves obtained in extensor digitorum longus (EDL) muscles from female mIl15ra(fl/fl)/Cre(+) mice, such that force output was greater during the repeated contraction protocol compared with mIl15ra(fl/fl)/Cre(-) control mice. Muscles from female mIl15ra(fl/fl)/Cre(+) mice also had a twofold greater amount of the mitochondrial genome-specific COXII gene compared with muscles from mIl15ra(fl/fl)/Cre(-) control mice, indicating a greater mitochondrial density in these skeletal muscles. There was a significant effect of genotype on the twitch:tetanus ratio in EDL and soleus muscles from mIl15ra(fl/fl)/Cre(+) mice, such that the ratio was lower in these muscles compared with mIl15ra(fl/fl)/Cre(-) control mice, indicating a pro-oxidative shift in muscle phenotype. However, spontaneous cage activity was not different and IL-15 protein levels were lower in male and female mIl15ra(fl/fl)/Cre(+) mice compared with control. Collectively, these data support a direct effect of muscle IL-15Rα deficiency in altering contractile properties and fatigue characteristics in skeletal muscles.

  19. Obesity-related differences in neural correlates of force control.

    PubMed

    Mehta, Ranjana K; Shortz, Ashley E

    2014-01-01

    Greater body segment mass due to obesity has shown to impair gross and fine motor functions and reduce balance control. While recent studies suggest that obesity may be linked with altered brain functions involved in fine motor tasks, this association is not well investigated. The purpose of this study was to examine the neural correlates of motor performance in non-obese and obese adults during force control of two upper extremity muscles. Nine non-obese and eight obese young adults performed intermittent handgrip and elbow flexion exertions at 30% of their respective muscle strengths for 4 min. Functional near infrared spectroscopy was employed to measure neural activity in the prefrontal cortex bilaterally, joint steadiness was computed using force fluctuations, and ratings of perceived exertions (RPEs) were obtained to assess perceived effort. Obesity was associated with higher force fluctuations and lower prefrontal cortex activation during handgrip exertions, while RPE scores remained similar across both groups. No obesity-related differences in neural activity, force fluctuation, or RPE scores were observed during elbow flexion exertions. The study is one of the first to examine obesity-related differences on prefrontal cortex activation during force control of the upper extremity musculature. The study findings indicate that the neural correlates of motor activity in the obese may be muscle-specific. Future work is warranted to extend the investigation to monitoring multiple motor-function related cortical regions and examining obesity differences with different task parameters (e.g., longer duration, increased precision demands, larger muscles, etc.).

  20. Functional characterization of muscle fibres from patients with chronic fatigue syndrome: case-control study.

    PubMed

    Pietrangelo, T; Toniolo, L; Paoli, A; Fulle, S; Puglielli, C; Fanò, G; Reggiani, C

    2009-01-01

    Chronic fatigue syndrome (CFS) is a disabling condition characterized by unexplained chronic fatigue that impairs normal activities. Although immunological and psychological aspects are present, symptoms related to skeletal muscles, such as muscle soreness, fatigability and increased lactate accumulation, are prominent in CFS patients. In this case-control study, the phenotype of the same biopsy samples was analyzed by determining i) fibre-type proportion using myosin isoforms as fibre type molecular marker and gel electrophoresis as a tool to separate and quantify myosin isoforms, and ii) contractile properties of manually dissected, chemically made permeable and calcium-activated single muscle fibres. The results showed that fibre-type proportion was significantly altered in CSF samples, which showed a shift from the slow- to the fast-twitch phenotype. Cross sectional area, force, maximum shortening velocity and calcium sensitivity were not significantly changed in single muscle fibres from CSF samples. Thus, the contractile properties of muscle fibres were preserved but their proportion was changed, with an increase in the more fatigue-prone, energetically expensive fast fibre type. Taken together, these results support the view that muscle tissue is directly involved in the pathogenesis of CSF and it might contribute to the early onset of fatigue typical of the skeletal muscles of CFS patients.

Top