Science.gov

Sample records for altered nanotube dimension

  1. Collective diffusion in carbon nanotubes: Crossover between one dimension and three dimensions

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Rong; Xu, Zhi-Cheng; Gu, Yu; Zhong, Wei-Rong

    2016-08-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we study the collective diffusion of helium in carbon nanotubes. The results show that the collective diffusion coefficient (CDC) increases with the dimension of the channel. The collective diffusion coefficient has a linear relationship with the temperature and the concentration. There exist a ballistic transport in short carbon nanotubes and a diffusive transport in long carbon nanotubes. Fick’s law has an invalid region in the nanoscale channel. Project supported by the National Natural Science Foundation of China (Grant Nos. 11004082 and 11291240477), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030313367), and the Fundamental Research Funds for the Central Universities, Jinan University (Grant No. 11614341).

  2. Collective diffusion in carbon nanotubes: Crossover between one dimension and three dimensions

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Rong; Xu, Zhi-Cheng; Gu, Yu; Zhong, Wei-Rong

    2016-08-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we study the collective diffusion of helium in carbon nanotubes. The results show that the collective diffusion coefficient (CDC) increases with the dimension of the channel. The collective diffusion coefficient has a linear relationship with the temperature and the concentration. There exist a ballistic transport in short carbon nanotubes and a diffusive transport in long carbon nanotubes. Fick’s law has an invalid region in the nanoscale channel. Project supported by the National Natural Science Foundation of China (Grant Nos. 11004082 and 11291240477), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030313367), and the Fundamental Research Funds for the Central Universities, Jinan University (Grant No. 11614341).

  3. Controlling nanotube dimensions: correlation between composition, diameter, and internal energy of single-walled mixed oxide nanotubes.

    PubMed

    Konduri, Suchitra; Mukherjee, Sanjoy; Nair, Sankar

    2007-12-01

    Control over the diameter of nanotubes is of significance in manipulating their properties, which depend on their dimensions in addition to their structure and composition. This aspect has remained a challenge in both carbon and inorganic nanotubes, since there is no obvious aspect of the formation mechanism that allows facile control over nanotube curvature. Here we develop and analyze a quantitative correlation between the composition, diameter, and internal energy of a class of single-walled mixed oxide aluminosilicogermanate (AlSiGeOH) nanotubes. A series of synthetic AlSiGeOH nanotubes with varying Si/Ge ratio are characterized by X-ray photoelectron spectroscopy, vibrational spectroscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction to relate their compositions and diameters. We then study these nanotubes computationally by first parametrizing and validating a suitable interatomic potential model, and then using this potential model to investigate the internal energy of the nanotube as a function of diameter and composition via molecular dynamics simulations. There are minima in the internal energy as a function of diameter which progressively shift to larger nanotube diameters with increasing Ge content. An approximate analytical theory of nanotube diameter control, which contains a small number of physically significant fitted parameters, well describes the computational data by relating the composition and geometry to the strain energy of bending into a nanotube. The predicted composition-dependent shift in the energetically favored diameter follows the experimental trends. We suggest related methods of controlling nanotube energetics and their role in engineering nanotubes of controlled dimensions by liquid-phase chemistry.

  4. The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites.

    PubMed

    Zhang, W; Picu, R C; Koratkar, N

    2008-07-16

    Fatigue is one of the primary reasons for failure in structural materials. It has been demonstrated that carbon nanotubes can suppress fatigue in polymer composites via crack-bridging and a frictional pull-out mechanism. However, a detailed study of the effects of nanotube dimensions and dispersion on the fatigue behavior of nanocomposites has not been performed. In this work, we show the strong effect of carbon nanotube dimensions (i.e. length, diameter) and dispersion quality on fatigue crack growth suppression in epoxy nanocomposites. We observe that the fatigue crack growth rates can be significantly reduced by (1) reducing the nanotube diameter, (2) increasing the nanotube length and (3) improving the nanotube dispersion. We qualitatively explain these observations by using a fracture mechanics model based on crack-bridging and pull-out of the nanotubes. By optimizing the above parameters (tube length, diameter and dispersion) we demonstrate an over 20-fold reduction in the fatigue crack propagation rate for the nanocomposite epoxy compared to the baseline (unfilled) epoxy.

  5. Dimension and morphology controlled fabrication of TiO{sub 2} nanotubes by electrochemical anodization method

    SciTech Connect

    Tamilselvan, A.; Balakumar, S.

    2015-06-24

    We report the fabrication of titanium dioxide (TiO{sub 2}) nanotubes by electrochemical anodization of titanium foils using fluoride-based electrolytes such as ethylene glycol, diethylene glycol and glycerol. The effects of anodization voltage, time and electrolytes on the morphology and dimensions (length and pore diameter) of the tubes were investigated by scanning electron microscope (SEM). On increasing anodization voltage and time, the tube length and pore diameter were varied. In addition to this, various tubes morphologies such as circular and hexagonal structures were obtained under different electrolytic conditions. The Raman spectroscopy studies revealed the anatase phase of TiO{sub 2} nanotubes.

  6. Memory generalization is selectively altered in the psychosis dimension.

    PubMed

    Ivleva, Elena I; Shohamy, Daphna; Mihalakos, Perry; Morris, David W; Carmody, Thomas; Tamminga, Carol A

    2012-06-01

    Global deficits in declarative memory are commonly reported in individuals with schizophrenia and psychotic bipolar disorder, and in their biological relatives. However, it remains unclear whether there are specific components within the global declarative memory dysfunction that are unique to schizophrenia and bipolar disorder, or whether these impairments overlap the two psychoses. This study sought to characterize differential components of learning and memory in individuals within the psychosis dimension: probands with schizophrenia (SZP, n=33), probands with psychotic bipolar I disorder (BDP, n=20), and biological relatives of SZP (SZR, n=21), contrasted with healthy controls (HC, n=26). A computerized cognitive paradigm, the Acquired Equivalence test, with probes for associative learning, memory for learned associations, and memory generalization was administered, along with standardized neuropsychological measures of declarative memory. All study groups were able to learn and remember the associations, although SZP were slower than HC in the initial learning stages. Both SZP (significantly) and BDP (at a trend level) showed altered memory generalization compared to HC (SZP vs. HC, p=.038, d=.8; BDP vs. HC, p=.069, d=.95). SZR showed memory generalization intermediate between SZP and HC, although their performance did not differ significantly from either group. These findings indicate that probands with schizophrenia and bipolar psychoses have similar alteration in the ability to flexibly generalize learned knowledge when probed with novel stimuli, despite overall sufficient associative learning and memory for what they learned. These results suggest that the two disorders present a clinical continuum with overlapping hippocampus-mediated memory generalization dysfunction underlying the psychosis phenotype.

  7. Fermionic condensate and Casimir densities in the presence of compact dimensions with applications to nanotubes

    SciTech Connect

    Elizalde, E.; Odintsov, S. D.; Saharian, A. A.

    2011-05-15

    We investigate the fermionic condensate and the vacuum expectation value of the energy-momentum tensor for a massive fermionic field in the geometry of two parallel plates on the background of Minkowski spacetime with an arbitrary number of toroidally compactified spatial dimensions, in the presence of a constant gauge field. Bag boundary conditions are imposed on the plates and periodicity conditions with arbitrary phases are considered along the compact dimensions. The nontrivial topology of the background spacetime leads to an Aharonov-Bohm effect for the vacuum expectation values induced by the gauge field. The fermionic condensate and the expectation value of the energy-momentum tensor are periodic functions of the magnetic flux with period equal to the flux quantum. The boundary induced parts in the fermionic condensate and the vacuum energy density are negative, with independence of the phases in the periodicity conditions and of the value of the gauge potential. Interaction forces between the plates are thus always attractive. However, in physical situations where the quantum field is confined to the region between the plates, the pure topological part contributes as well, and then the resulting force can be either attractive or repulsive, depending on the specific phases encoded in the periodicity conditions along the compact dimensions, and on the gauge potential, too. Applications of the general formulas to cylindrical carbon nanotubes are considered, within the framework of a Dirac-like theory for the electronic states in graphene. In the absence of a magnetic flux, the energy density for semiconducting nanotubes is always negative. For metallic nanotubes the energy density is positive for long tubes and negative for short ones. The resulting Casimir forces acting on the edges of the nanotube are attractive for short tubes with independence of the tube chirality. The sign of the force for long nanotubes can be controlled by tuning the magnetic flux

  8. Alterations of papilla dimensions after orthodontic closure of the maxillary midline diastema: a retrospective longitudinal study

    PubMed Central

    2016-01-01

    Purpose The aim of this study was to evaluate alterations of papilla dimensions after orthodontic closure of the diastema between maxillary central incisors. Methods Sixty patients who had a visible diastema between maxillary central incisors that had been closed by orthodontic approximation were selected for this study. Various papilla dimensions were assessed on clinical photographs and study models before the orthodontic treatment and at the follow-up examination after closure of the diastema. Influences of the variables assessed before orthodontic treatment on the alterations of papilla height (PH) and papilla base thickness (PBT) were evaluated by univariate regression analysis. To analyze potential influences of the 3-dimensional papilla dimensions before orthodontic treatment on the alterations of PH and PBT, a multiple regression model was formulated including the 3-dimensional papilla dimensions as predictor variables. Results On average, PH decreased by 0.80 mm and PBT increased after orthodontic closure of the diastema (P<0.01). Univariate regression analysis revealed that the PH (P=0.002) and PBT (P=0.047) before orthodontic treatment influenced the alteration of PH. With respect to the alteration of PBT, the diastema width (P=0.045) and PBT (P=0.000) were found to be influential factors. PBT before the orthodontic treatment significantly influenced the alteration of PBT in the multiple regression model. Conclusions PH decreased but PBT increased after orthodontic closure of the diastema. The papilla dimensions before orthodontic treatment influenced the alterations of PH and PBT after closure of the diastema. The PBT increased more when the diastema width before the orthodontic treatment was larger. PMID:27382507

  9. Association between post-orthodontic treatment gingival margin alterations and symphysis dimensions.

    PubMed

    Closs, Luciane Q; Bortolini, Leonardo F; dos Santos-Pinto, Ary; Rösing, Cassiano K

    2014-01-01

    Orthodontic therapy is known to be associated with the development of gingival recession. Several factors may be involved in the causal chain of this outcome, including anatomical and behavioral aspects. Among the anatomical aspects, the dimensions of the mandibular symphysis could play a predisposing role. This study evaluated the relationship between the mandibular symphysis dimensions prior to orthodontic therapy and the development of gingival recessions on the lower incisors and cuspids. Records from 189 orthodontically treated adolescents were evaluated, including radiographs, casts and intra-oral photographs. Symphysis dimensions were assessed by cephalograms. Gingival margin alterations were determined in photographs and cast models. Association between gingival margin alterations and symphysis dimensions was tested by chi-square (α=0.05). Occurrence of gingival recession increased after orthodontic therapy. No association was observed on average of symphysis dimensions and the occurrence of gingival recessions. It may be concluded that pretreatment symphysis dimensions may not be used as predictors of gingival recession after orthodontic therapy. PMID:25560691

  10. Study of modification methods of probes for critical-dimension atomic-force microscopy by the deposition of carbon nanotubes

    SciTech Connect

    Ageev, O. A.; Bykov, Al. V.; Kolomiitsev, A. S.; Konoplev, B. G.; Rubashkina, M. V.; Smirnov, V. A.; Tsukanova, O. G.

    2015-12-15

    The results of an experimental study of the modification of probes for critical-dimension atomicforce microscopy (CD-AFM) by the deposition of carbon nanotubes (CNTs) to improve the accuracy with which the surface roughness of vertical walls is determined in submicrometer structures are presented. Methods of the deposition of an individual CNT onto the tip of an AFM probe via mechanical and electrostatic interaction between the probe and an array of vertically aligned carbon nanotubes (VACNTs) are studied. It is shown that, when the distance between the AFM tip and a VACNT array is 1 nm and the applied voltage is within the range 20–30 V, an individual carbon nanotube is deposited onto the tip. On the basis of the results obtained in the study, a probe with a carbon nanotube on its tip (CNT probe) with a radius of 7 nm and an aspect ratio of 1:15 is formed. Analysis of the CNT probe demonstrates that its use improves the resolution and accuracy of AFM measurements, compared with the commercial probe, and also makes it possible to determine the roughness of the vertical walls of high-aspect structures by CD-AFM. The results obtained can be used to develop technological processes for the fabrication and reconditioning of special AFM probes, including those for CD-AFM, and procedures for the interoperational express monitoring of technological process parameters in the manufacturing of elements for micro- and nanoelectronics and micro- and nanosystem engineering.

  11. Dependence of the degree of reinforcement of polymer/carbon nanotubes nanocomposites on the nanofiller dimension

    NASA Astrophysics Data System (ADS)

    Mikitaev, A. K.; Kozlov, G. V.

    2015-05-01

    The dependence of the degree of reinforcement of polymethylmethacrylate/carbon nanotubes on the nanofiller content at ultrasmall concentrations of the latter is investigated. It is shown that the extreme character of this dependence is determined by the structural features of the nanofiller. Functionalization of carbon nanotubes gives a positive effect only below their percolation threshold.

  12. The Dimension of Titania Nanotubes Influences Implant Success for Osteoclastogenesis and Osteogenesis Patients.

    PubMed

    Li, Yong; Li, Feng; Zhang, Chengcheng; Gao, Biao; Tan, Peng; Mi, Baoguo; Zhang, Yong; Cheng, Hao; Liao, Hui; Huo, Kaifu; Xiong, Wei

    2015-06-01

    Implants that can inhibit osteoclastogenesis and enhance osteogenesis are desirable for osteoporosis patients. In this study, titania nanotube (Ti-NT) materials, having nanotube diameters of 30, 80, and 120 nm, were produced separately by anodization at 10, 40, and 60 V, respectively. The introduction of Ti-NTs to titanium substrates significantly reduced the formation and activity of osteoclasts on samples. With the enlargement of the nanotube diameter, the osteoclasts number, tartrate-resistant acid phosphatase staining and activity, and related gene expressions of osteoclasts were further reduced. Osteogenic ability was enhanced by increasing the nanotube diameter. Thus, larger-diameter nanotube implants, such as NT60, were better able to inhibit bone absorption and enhance bone formation to prevent implant loss and failure, especially for osteoporosis patients.

  13. Does altering the occlusal vertical dimension produce temporomandibular disorders? A literature review.

    PubMed

    Moreno-Hay, I; Okeson, J P

    2015-11-01

    The purpose of this review was to present a comprehensive review of the scientific evidence available in the literature regarding the effect of altering the occlusal vertical dimens-ion (OVD) on producing temporomandibular disorders. The authors conducted a PubMed search with the following search terms 'temporoman-dibular disorders', 'occlusal vertical dimension', 'stomatognatic system', 'masticatory muscles' and 'skeletal muscle'. Bibliographies of all retrieved articles were consulted for additional publications. Hand-searched publications from 1938 were included. The literature review revealed a lack of well-designed studies. Traditional beliefs have been based on case reports and anecdotal opinions rather than on well-controlled clinical trials. The available evidence is weak and seems to indicate that the stomatognathic system has the ability to adapt rapidly to moderate changes in occlusal vertical dimension (OVD). Nevertheless, it should be taken into consideration that in some patients mild transient symptoms may occur, but they are most often self-limiting and without major consequence. In conclusion, there is no indication that permanent alteration in the OVD will produce long-lasting TMD symptoms. However, additional studies are needed.

  14. Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly.

    PubMed

    Adler-Abramovich, Lihi; Marco, Pini; Arnon, Zohar A; Creasey, Rhiannon C G; Michaels, Thomas C T; Levin, Aviad; Scurr, David J; Roberts, Clive J; Knowles, Tuomas P J; Tendler, Saul J B; Gazit, Ehud

    2016-08-23

    Molecular self-assembly of peptides into ordered nanotubes is highly important for various technological applications. Very short peptide building blocks, as short as dipeptides, can form assemblies with unique mechanical, optical, piezoelectric, and semiconductive properties. Yet, the control over nanotube length in solution has remained challenging, due to the inherent sequential self-assembly mechanism. Here, in line with polymer chemistry paradigms, we applied a supramolecular polymer coassembly methodology to modulate peptide nanotube elongation. Utilizing this approach, we achieved a narrow, controllable nanotube length distribution by adjusting the molecular ratio of the diphenylalanine assembly unit and its end-capped analogue. Kinetic analysis suggested a slower coassembly organization process as compared to the self-assembly dynamics of each of the building blocks separately. This is consistent with a hierarchal arrangement of the peptide moieties within the coassemblies. Mass spectrometry analysis demonstrated the bimolecular composition of the coassembled nanostructures. Moreover, the peptide nanotubes' length distribution, as determined by electron microscopy, was shown to fit a fragmentation kinetics model. Our results reveal a simple and efficient mechanism for the control of nanotube sizes through the coassembly of peptide entities at various ratios, allowing for the desired end-product formation. This dynamic size control offers tools for molecular engineering at the nanoscale exploiting the advantages of molecular coassembly. PMID:27351519

  15. Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly.

    PubMed

    Adler-Abramovich, Lihi; Marco, Pini; Arnon, Zohar A; Creasey, Rhiannon C G; Michaels, Thomas C T; Levin, Aviad; Scurr, David J; Roberts, Clive J; Knowles, Tuomas P J; Tendler, Saul J B; Gazit, Ehud

    2016-08-23

    Molecular self-assembly of peptides into ordered nanotubes is highly important for various technological applications. Very short peptide building blocks, as short as dipeptides, can form assemblies with unique mechanical, optical, piezoelectric, and semiconductive properties. Yet, the control over nanotube length in solution has remained challenging, due to the inherent sequential self-assembly mechanism. Here, in line with polymer chemistry paradigms, we applied a supramolecular polymer coassembly methodology to modulate peptide nanotube elongation. Utilizing this approach, we achieved a narrow, controllable nanotube length distribution by adjusting the molecular ratio of the diphenylalanine assembly unit and its end-capped analogue. Kinetic analysis suggested a slower coassembly organization process as compared to the self-assembly dynamics of each of the building blocks separately. This is consistent with a hierarchal arrangement of the peptide moieties within the coassemblies. Mass spectrometry analysis demonstrated the bimolecular composition of the coassembled nanostructures. Moreover, the peptide nanotubes' length distribution, as determined by electron microscopy, was shown to fit a fragmentation kinetics model. Our results reveal a simple and efficient mechanism for the control of nanotube sizes through the coassembly of peptide entities at various ratios, allowing for the desired end-product formation. This dynamic size control offers tools for molecular engineering at the nanoscale exploiting the advantages of molecular coassembly.

  16. Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes.

    PubMed

    Campos-Garcia, Janaína; Martinez, Diego Stéfani Teodoro; Rezende, Karina Fernandes Oliveira; da Silva, José Roberto Machado Cunha; Alves, Oswaldo Luiz; Barbieri, Edison

    2016-11-01

    Carbofuran is a nematicide insecticide with a broad spectrum of action. Carbofuran has noxious effects in several species and has been banned in the USA and Europe; however, it is still used in Brazil. Aquatic organisms are not only exposed to pesticides but also to manufactured nanoparticles, and the potential interaction of these compounds therefore requires investigation. The aim of this study was to examine the histopathological alterations in the gills of Nile tilapia (Oreochromis niloticus) to determine possible effects of exposure to carbofuran, nitric acid-treated multiwalled carbon nanotubes (HNO3-MWCNTs) and the combination of carbofuran with nanotubes. Juvenile fish were exposed to different concentrations of carbofuran (0.1, 0.5, 2.0, 4.0 and 8.0mg/L), different concentrations of HNO3-MWCNTs (0.5, 1.0 and 2.0mg/L) or different concentrations of carbofuran (0.1, 0.5, 2.0, 4.0 and 8.0mg/L) with 1.0mg/L of HNO3-MWCNTs. After 24h of exposure, the animals were removed from the aquarium, the spinal cord was transversely sectioned, and the second gill arch was removed for histological evaluation. Common histological changes included dislocation of the epithelial cells, hyperplasia of the epithelial cells along the secondary lamellae, aneurism, and dilation and disarrangement of the capillaries. All the groups exposed to carbofuran demonstrated a dose-dependent correlation in the Histological Alteration Index; the values found for carbofuran and carbon nanotubes were up to 25% greater than for carbofuran alone. This result indicates an interaction between these toxicants, with enhanced ecotoxic effects. This work contributes to the understanding of the environmental impacts of nanomaterials on aquatic organisms, which is necessary for the sustainable development of nanotechnologies.

  17. Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes.

    PubMed

    Campos-Garcia, Janaína; Martinez, Diego Stéfani Teodoro; Rezende, Karina Fernandes Oliveira; da Silva, José Roberto Machado Cunha; Alves, Oswaldo Luiz; Barbieri, Edison

    2016-11-01

    Carbofuran is a nematicide insecticide with a broad spectrum of action. Carbofuran has noxious effects in several species and has been banned in the USA and Europe; however, it is still used in Brazil. Aquatic organisms are not only exposed to pesticides but also to manufactured nanoparticles, and the potential interaction of these compounds therefore requires investigation. The aim of this study was to examine the histopathological alterations in the gills of Nile tilapia (Oreochromis niloticus) to determine possible effects of exposure to carbofuran, nitric acid-treated multiwalled carbon nanotubes (HNO3-MWCNTs) and the combination of carbofuran with nanotubes. Juvenile fish were exposed to different concentrations of carbofuran (0.1, 0.5, 2.0, 4.0 and 8.0mg/L), different concentrations of HNO3-MWCNTs (0.5, 1.0 and 2.0mg/L) or different concentrations of carbofuran (0.1, 0.5, 2.0, 4.0 and 8.0mg/L) with 1.0mg/L of HNO3-MWCNTs. After 24h of exposure, the animals were removed from the aquarium, the spinal cord was transversely sectioned, and the second gill arch was removed for histological evaluation. Common histological changes included dislocation of the epithelial cells, hyperplasia of the epithelial cells along the secondary lamellae, aneurism, and dilation and disarrangement of the capillaries. All the groups exposed to carbofuran demonstrated a dose-dependent correlation in the Histological Alteration Index; the values found for carbofuran and carbon nanotubes were up to 25% greater than for carbofuran alone. This result indicates an interaction between these toxicants, with enhanced ecotoxic effects. This work contributes to the understanding of the environmental impacts of nanomaterials on aquatic organisms, which is necessary for the sustainable development of nanotechnologies. PMID:27543744

  18. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    PubMed Central

    Holt, Brian D.; Shams, Hengameh; Horst, Travis A.; Basu, Saurav; Rape, Andrew D.; Wang, Yu-Li; Rohde, Gustavo K.; Mofrad, Mohammad R. K.; Islam, Mohammad F.; Dahl, Kris Noel

    2012-01-01

    With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs) are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics. PMID:24955540

  19. Transparent, well-aligned TiO(2) nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications.

    PubMed

    Tan, Lee Kheng; Kumar, Manippady K; An, Wen Wen; Gao, Han

    2010-02-01

    Transparent, well-aligned TiO(2) nanotube arrays (NTAs) with controllable dimensions are grown on glass substrates via atomic layer deposition (ALD) of TiO(2) onto free-standing porous anodic alumina (PAA) templates. Photodegradation of aqueous methylene blue (MB) solution and solid stearic acid (SA) film using TiO(2) NTAs of various wall thicknesses are investigated. The Pd functionalized TiO(2) NTAs, with a wall thickness of 15 nm and height of 200 nm, has the highest photodegradation efficiency at 76% after 4 h of UV irradiation. These functionalized NTAs are able to photodegrade MB molecules completely as no obvious demethylated byproducts are observed during the process. It also demonstrates excellent photocatalytic activity for solid contaminants such as SA film. By using the ALD technique, the nanotube wall thickness can be precisely controlled so that it is sufficiently thin to be transparent while sufficiently thick for excellent photocatalytic performances. The transparent TiO(2) NTAs on glass substrates with excellent photocatalytic properties might have potential applications in self-cleaning coating, transparent electronics, and solar cells.

  20. Nanotube

    2007-09-13

    This is a source code to calculate the current-voltage characteristics, the charge distribution and the electrostatic potential in carbon nanotube devices. The code utilizes the non-equilibrium Green's function method, implemented in a tight-binding scheme, to calculate the charge distribution and the energy-dependent transmission function, from which the current or the conductance are obtained. The electrostatic potential is obtained by solving Poisson's equation on a grid with boundary conditions on the electrodes, and at other interfaces.more » Self-consistency between the charge and the electrostatic potential is achieved using a linear mixing method. Different versions of the code allow the modeling of different types of nanotube devices: Version 1.0: Modeling of carbon nanotube electronic devices with cylindrical symmetry Version 1.1: Modeling of planar carbon nanotube electronic devices Version 1.2: Modeling of photocurrent in carbon nanotube devices« less

  1. A meta-analysis of carbon nanotube pulmonary toxicity studies--how physical dimensions and impurities affect the toxicity of carbon nanotubes.

    PubMed

    Gernand, Jeremy M; Casman, Elizabeth A

    2014-03-01

    This article presents a regression-tree-based meta-analysis of rodent pulmonary toxicity studies of uncoated, nonfunctionalized carbon nanotube (CNT) exposure. The resulting analysis provides quantitative estimates of the contribution of CNT attributes (impurities, physical dimensions, and aggregation) to pulmonary toxicity indicators in bronchoalveolar lavage fluid: neutrophil and macrophage count, and lactate dehydrogenase and total protein concentrations. The method employs classification and regression tree (CART) models, techniques that are relatively insensitive to data defects that impair other types of regression analysis: high dimensionality, nonlinearity, correlated variables, and significant quantities of missing values. Three types of analysis are presented: the RT, the random forest (RF), and a random-forest-based dose-response model. The RT shows the best single model supported by all the data and typically contains a small number of variables. The RF shows how much variance reduction is associated with every variable in the data set. The dose-response model is used to isolate the effects of CNT attributes from the CNT dose, showing the shift in the dose-response caused by the attribute across the measured range of CNT doses. It was found that the CNT attributes that contribute the most to pulmonary toxicity were metallic impurities (cobalt significantly increased observed toxicity, while other impurities had mixed effects), CNT length (negatively correlated with most toxicity indicators), CNT diameter (significantly positively associated with toxicity), and aggregate size (negatively correlated with cell damage indicators and positively correlated with immune response indicators). Increasing CNT N2 -BET-specific surface area decreased toxicity indicators.

  2. Evaluation of dynamically dimensioned search algorithm for optimizing SWAT by altering sampling distributions and searching range

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary advantage of Dynamically Dimensioned Search algorithm (DDS) is that it outperforms many other optimization techniques in both convergence speed and the ability in searching for parameter sets that satisfy statistical guidelines while requiring only one algorithm parameter (perturbation f...

  3. Systemic distribution of single-walled carbon nanotubes in a novel model: alteration of biochemical parameters, metabolic functions, liver accumulation, and inflammation in vivo.

    PubMed

    Principi, Elisa; Girardello, Rossana; Bruno, Antonino; Manni, Isabella; Gini, Elisabetta; Pagani, Arianna; Grimaldi, Annalisa; Ivaldi, Federico; Congiu, Terenzio; De Stefano, Daniela; Piaggio, Giulia; de Eguileor, Magda; Noonan, Douglas M; Albini, Adriana

    2016-01-01

    The increasing use of carbon nanotubes (CNTs) in several industrial applications raises concerns on their potential toxicity due to factors such as tissue penetrance, small dimensions, and biopersistence. Using an in vivo model for CNT environmental exposure, mimicking CNT exposition at the workplace, we previously found that CNTs rapidly enter and disseminate in the organism, initially accumulating in the lungs and brain and later reaching the liver and kidneys via the bloodstream in CD1 mice. Here, we monitored and traced the accumulation of single-walled CNTs (SWCNTs), administered systemically in mice, in different organs and the subsequent biological responses. Using the novel in vivo model, MITO-Luc bioluminescence reporter mice, we found that SWCNTs induce systemic cell proliferation, indicating a dynamic response of cells of both bone marrow and the immune system. We then examined metabolic (water/food consumption and dejections), functional (serum enzymes), and morphological (organs and tissues) alterations in CD1 mice treated with SWCNTs, using metabolic cages, performing serum analyses, and applying histological, immunohistochemical, and ultrastructural (transmission electron microscopy) methods. We observed a transient accumulation of SWCNTs in the lungs, spleen, and kidneys of CD1 mice exposed to SWCNTs. A dose- and time-dependent accumulation was found in the liver, associated with increases in levels of aspartate aminotransferase, alanine aminotransferase and bilirubinemia, which are metabolic markers associated with liver damage. Our data suggest that hepatic accumulation of SWCNTs associated with liver damage results in an M1 macrophage-driven inflammation. PMID:27621623

  4. Systemic distribution of single-walled carbon nanotubes in a novel model: alteration of biochemical parameters, metabolic functions, liver accumulation, and inflammation in vivo

    PubMed Central

    Principi, Elisa; Girardello, Rossana; Bruno, Antonino; Manni, Isabella; Gini, Elisabetta; Pagani, Arianna; Grimaldi, Annalisa; Ivaldi, Federico; Congiu, Terenzio; De Stefano, Daniela; Piaggio, Giulia; de Eguileor, Magda; Noonan, Douglas M; Albini, Adriana

    2016-01-01

    The increasing use of carbon nanotubes (CNTs) in several industrial applications raises concerns on their potential toxicity due to factors such as tissue penetrance, small dimensions, and biopersistence. Using an in vivo model for CNT environmental exposure, mimicking CNT exposition at the workplace, we previously found that CNTs rapidly enter and disseminate in the organism, initially accumulating in the lungs and brain and later reaching the liver and kidneys via the bloodstream in CD1 mice. Here, we monitored and traced the accumulation of single-walled CNTs (SWCNTs), administered systemically in mice, in different organs and the subsequent biological responses. Using the novel in vivo model, MITO-Luc bioluminescence reporter mice, we found that SWCNTs induce systemic cell proliferation, indicating a dynamic response of cells of both bone marrow and the immune system. We then examined metabolic (water/food consumption and dejections), functional (serum enzymes), and morphological (organs and tissues) alterations in CD1 mice treated with SWCNTs, using metabolic cages, performing serum analyses, and applying histological, immunohistochemical, and ultrastructural (transmission electron microscopy) methods. We observed a transient accumulation of SWCNTs in the lungs, spleen, and kidneys of CD1 mice exposed to SWCNTs. A dose- and time-dependent accumulation was found in the liver, associated with increases in levels of aspartate aminotransferase, alanine aminotransferase and bilirubinemia, which are metabolic markers associated with liver damage. Our data suggest that hepatic accumulation of SWCNTs associated with liver damage results in an M1 macrophage-driven inflammation.

  5. Systemic distribution of single-walled carbon nanotubes in a novel model: alteration of biochemical parameters, metabolic functions, liver accumulation, and inflammation in vivo

    PubMed Central

    Principi, Elisa; Girardello, Rossana; Bruno, Antonino; Manni, Isabella; Gini, Elisabetta; Pagani, Arianna; Grimaldi, Annalisa; Ivaldi, Federico; Congiu, Terenzio; De Stefano, Daniela; Piaggio, Giulia; de Eguileor, Magda; Noonan, Douglas M; Albini, Adriana

    2016-01-01

    The increasing use of carbon nanotubes (CNTs) in several industrial applications raises concerns on their potential toxicity due to factors such as tissue penetrance, small dimensions, and biopersistence. Using an in vivo model for CNT environmental exposure, mimicking CNT exposition at the workplace, we previously found that CNTs rapidly enter and disseminate in the organism, initially accumulating in the lungs and brain and later reaching the liver and kidneys via the bloodstream in CD1 mice. Here, we monitored and traced the accumulation of single-walled CNTs (SWCNTs), administered systemically in mice, in different organs and the subsequent biological responses. Using the novel in vivo model, MITO-Luc bioluminescence reporter mice, we found that SWCNTs induce systemic cell proliferation, indicating a dynamic response of cells of both bone marrow and the immune system. We then examined metabolic (water/food consumption and dejections), functional (serum enzymes), and morphological (organs and tissues) alterations in CD1 mice treated with SWCNTs, using metabolic cages, performing serum analyses, and applying histological, immunohistochemical, and ultrastructural (transmission electron microscopy) methods. We observed a transient accumulation of SWCNTs in the lungs, spleen, and kidneys of CD1 mice exposed to SWCNTs. A dose- and time-dependent accumulation was found in the liver, associated with increases in levels of aspartate aminotransferase, alanine aminotransferase and bilirubinemia, which are metabolic markers associated with liver damage. Our data suggest that hepatic accumulation of SWCNTs associated with liver damage results in an M1 macrophage-driven inflammation. PMID:27621623

  6. Scavenger Species-typical Alteration to Bone: Using Bite Mark Dimensions to Identify Scavengers.

    PubMed

    Young, Alexandria; Stillman, Richard; Smith, Martin J; Korstjens, Amanda H

    2015-11-01

    Scavenger-induced alteration to bone occurs while scavengers access soft tissue and during the scattering and re-scavenging of skeletal remains. Using bite mark, dimensional data to assist in the more accurate identification of a scavenger can improve interpretations of trauma and enhance search and recovery methods. This study analyzed bite marks produced on both dry and fresh surface deposited remains by wild and captive red fox (Vulpes vulpes) and Eurasian badger (Meles meles), as well as domestic dog (Canis familiaris). The bite marks produced by foxes were distinguishable from those made by badgers and dogs based on ranges of mean length and breadth of pits. The dimensional data of bite marks produced by badgers and dogs were less discernible. Bone modifications vary due to a variety of factors which must be considered, such as scavenger species-typical scavenging behavior, scavenger species' dentition, condition and deposition of remains, and environmental factors.

  7. Scavenger Species-typical Alteration to Bone: Using Bite Mark Dimensions to Identify Scavengers.

    PubMed

    Young, Alexandria; Stillman, Richard; Smith, Martin J; Korstjens, Amanda H

    2015-11-01

    Scavenger-induced alteration to bone occurs while scavengers access soft tissue and during the scattering and re-scavenging of skeletal remains. Using bite mark, dimensional data to assist in the more accurate identification of a scavenger can improve interpretations of trauma and enhance search and recovery methods. This study analyzed bite marks produced on both dry and fresh surface deposited remains by wild and captive red fox (Vulpes vulpes) and Eurasian badger (Meles meles), as well as domestic dog (Canis familiaris). The bite marks produced by foxes were distinguishable from those made by badgers and dogs based on ranges of mean length and breadth of pits. The dimensional data of bite marks produced by badgers and dogs were less discernible. Bone modifications vary due to a variety of factors which must be considered, such as scavenger species-typical scavenging behavior, scavenger species' dentition, condition and deposition of remains, and environmental factors. PMID:26249734

  8. A mutualistic endophyte alters the niche dimensions of its host plant.

    PubMed

    Kazenel, Melanie R; Debban, Catherine L; Ranelli, Luciana; Hendricks, Will Q; Chung, Y Anny; Pendergast, Thomas H; Charlton, Nikki D; Young, Carolyn A; Rudgers, Jennifer A

    2015-01-01

    Mutualisms can play important roles in influencing species coexistence and determining community composition. However, few studies have tested whether such interactions can affect species distributions by altering the niches of partner species. In subalpine meadows of the Rocky Mountains, USA, we explored whether the presence of a fungal endophyte (genus Epichloë) may shift the niche of its partner plant, marsh bluegrass (Poa leptocoma) relative to a closely related but endophyte-free grass species, nodding bluegrass (Poa reflexa). Using observations and a 3-year field experiment, we tested two questions: (i) Do P. leptocoma and P. reflexa occupy different ecological niches? and (ii) Does endophyte presence affect the relative fitness of P. leptocoma versus P. reflexa in the putative niches of these grass species? The two species were less likely to co-occur than expected by chance. Specifically, P. leptocoma grew closer to water sources and in wetter soils than P. reflexa, and also had higher root colonization by mycorrhizal fungi. Endophyte-symbiotic P. leptocoma seeds germinated with greater frequency in P. leptocoma niches relative to P. reflexa niches, whereas neither endophyte-free (experimentally removed) P. leptocoma seeds nor P. reflexa seeds showed differential germination between the two niche types. Thus, endophyte presence constrained the germination and early survival of host plants to microsites occupied by P. leptocoma. However, endophyte-symbiotic P. leptocoma ultimately showed greater growth than endophyte-free plants across all microsites, indicating a net benefit of the symbiosis at this life history stage. Differential effects of endophyte symbiosis on different host life history stages may thus contribute to niche partitioning between the two congeneric plant species. Our study therefore identifies a symbiotic relationship as a potential mechanism facilitating the coexistence of two species, suggesting that symbiont effects on host niche may

  9. Inorganic nanotube nanofluidics

    NASA Astrophysics Data System (ADS)

    Fan, Rong

    The ability to manipulate charge carriers (electrons and holes) in metal-oxide semiconductor field effect transistors (MOSFETs) has revolutionized how information is processed and stored, and created the modern digital age. Introducing direct field effect modulation in fluidic systems would enable the manipulation of ionic and molecular species at a similar level and even logic operation. Due to strong Debye screening in aqueous solutions, field effect manipulation of ion transport arises only in systems whose dimensions are comparable to the critical Debye Length, i.e. in nanofluidic systems. Nanofluidics has already been explored in various cases, e.g. biological channel proteins and artificial solid-state nanopores. All these two terminal systems usually transport the ions the same way as passive electron conduction in a resistor. My work is aimed at developing nanotube nanofluidic units with a third terminal that can electrically turn on/off and control ion and biomolecule transport. Moreover, the systematic study on "doping" and transient phenomena can provide rich information to assess the electrokinetics theory and fluidic physics in nanoscale. Silica nanotubes were synthesized by oxidation/etching approach using vertical silicon nanowires as templates. A single nanotube was integrated into a metal-oxide-solution field effect transistor (MOSolFET) by interfacing with two microfluidic channels and a metallic gate electrode. Concentration dependence of ionic conductance through single nanotubes revealed the emergence of unipolar environment at low ionic strength regime. In this case, ionic conductance is only associated with majority ions and governed by surface potentials and charge densities. By applying a gate voltage, the ionic conductance can be quickly modulated. The gate voltages alter the surface potential of the silica nanotubes via capacitive coupling through the nanotube wall and the electrical double layer. In a negatively charged silica nanotube

  10. Confinement by carbon nanotubes drastically alters the boiling and critical behavior of water droplets.

    PubMed

    Chaban, Vitaly V; Prezhdo, Victor V; Prezhdo, Oleg V

    2012-03-27

    Vapor pressure grows rapidly above the boiling temperature, and past the critical point liquid droplets disintegrate. Our atomistic simulations show that this sequence of events is reversed inside carbon nanotubes (CNT). Droplets disintegrate first and at low temperature, while pressure remains low. The droplet disintegration temperature is independent of the CNT diameter. In contrast, depending on CNT diameter, a temperature that is much higher than the bulk boiling temperature is required to raise the internal pressure. The control over pressure by CNT size can be useful for therapeutic drug delivery.

  11. Large-Scale Fabrication of Carbon Nanotube Probe Tips For Atomic Force Microscopy Critical Dimension Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi Laura; Cassell, Alan M.; Stevens, Ramsey M.; Meyyappan, Meyya; Li, Jun; Han, Jie; Liu, Hongbing; Chao, Gordon

    2004-01-01

    Carbon nanotube (CNT) probe tips for atomic force microscopy (AFM) offer several advantages over Si/Si3N4 probe tips, including improved resolution, shape, and mechanical properties. This viewgraph presentation discusses these advantages, and the drawbacks of existing methods for fabricating CNT probe tips for AFM. The presentation introduces a bottom up wafer scale fabrication method for CNT probe tips which integrates catalyst nanopatterning and nanomaterials synthesis with traditional silicon cantilever microfabrication technology. This method makes mass production of CNT AFM probe tips feasible, and can be applied to the fabrication of other nanodevices with CNT elements.

  12. Multiwalled carbon nanotubes induce altered morphology and loss of barrier function in human bronchial epithelium at noncytotoxic doses.

    PubMed

    Snyder, Ryan J; Hussain, Salik; Rice, Annette B; Garantziotis, Stavros

    2014-01-01

    Multiwalled carbon nanotubes (MWCNTs) have seen increasing application in consumer products over the past decade, resulting in an increasing risk of human exposure. While numerous toxicological studies have been performed using acute high doses of various carbonaceous nanomaterials, the effects of longer-term, low doses of MWCNTs remain relatively unexplored. This study examined bronchoscopy-derived healthy human bronchial epithelial cells exposed in submerged culture to noncytotoxic doses of MWCNTs over 7 days. Under these conditions, doses as low as 3 μg/mL caused altered cell morphology, superficially resembling fibroblasts. Electrical impedance of the epithelial monolayer was greatly reduced following MWCNT exposure. However, Western blot and polymerase chain reaction showed no elevated expression of the fibroblast markers, vimentin, α-smooth muscle actin, or fibronectin, indicating that a mechanism other than epithelial-mesenchymal transition may be responsible for the changes. Phalloidin and tubulin immunostaining showed disruption of the cytoskeleton, and confocal imaging showed a reduction of the tight junction proteins, zona occludens 1 and occludin. We propose that MWCNTs interfere with the cytoskeleton of the lung epithelium, which can result in a harmful reduction in barrier function over time, even at noncytotoxic doses.

  13. Applications of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ajayan, Pulickel M.; Zhou, Otto Z.

    Carbon nanotubes have attracted the fancy of many scientists worldwide. The small dimensions, strength and the remarkable physical properties of these structures make them a very unique material with a whole range of promising applications. In this review we describe some of the important materials science applications of carbon nanotubes. Specifically we discuss the electronic and electrochemical applications of nanotubes, nanotubes as mechanical reinforcements in high performance composites, nanotube-based field emitters, and their use as nanoprobes in metrology and biological and chemical investigations, and as templates for the creation of other nanostructures. Electronic properties and device applications of nanotubes are treated elsewhere in the book. The challenges that ensue in realizing some of these applications are also discussed from the point of view of manufacturing, processing, and cost considerations.

  14. Nitrogen doping in carbon nanotubes.

    PubMed

    Ewels, C P; Glerup, M

    2005-09-01

    Nitrogen doping of single and multi-walled carbon nanotubes is of great interest both fundamentally, to explore the effect of dopants on quasi-1D electrical conductors, and for applications such as field emission tips, lithium storage, composites and nanoelectronic devices. We present an extensive review of the current state of the art in nitrogen doping of carbon nanotubes, including synthesis techniques, and comparison with nitrogen doped carbon thin films and azofullerenes. Nitrogen doping significantly alters nanotube morphology, leading to compartmentalised 'bamboo' nanotube structures. We review spectroscopic studies of nitrogen dopants using techniques such as X-ray photoemission spectroscopy, electron energy loss spectroscopy and Raman studies, and associated theoretical models. We discuss the role of nanotube curvature and chirality (notably whether the nanotubes are metallic or semiconducting), and the effect of doping on nanotube surface chemistry. Finally we review the effect of nitrogen on the transport properties of carbon nanotubes, notably its ability to induce negative differential resistance in semiconducting tubes.

  15. PEGylated Carbon Nanotubes Impair Retrieval of Contextual Fear Memory and Alter Oxidative Stress Parameters in the Rat Hippocampus

    PubMed Central

    Dal Bosco, Lidiane; Weber, Gisele E. B.; Parfitt, Gustavo M.; Paese, Karina; Gonçalves, Carla O. F.; Serodre, Tiago M.; Furtado, Clascídia A.; Santos, Adelina P.; Monserrat, José M.; Barros, Daniela M.

    2015-01-01

    Carbon nanotubes (CNT) are promising materials for biomedical applications, especially in the field of neuroscience; therefore, it is essential to evaluate the neurotoxicity of these nanomaterials. The present work assessed the effects of single-walled CNT functionalized with polyethylene glycol (SWCNT-PEG) on the consolidation and retrieval of contextual fear memory in rats and on oxidative stress parameters in the hippocampus. SWCNT-PEG were dispersed in water at concentrations of 0.5, 1.0, and 2.1 mg/mL and infused into the rat hippocampus. The infusion was completed immediately after training and 30 min before testing of a contextual fear conditioning task, resulting in exposure times of 24 h and 30 min, respectively. The results showed that a short exposure to SWCNT-PEG impaired fear memory retrieval and caused lipid peroxidation in the hippocampus. This response was transient and overcome by the mobilization of antioxidant defenses at 24 h. These effects occurred at low and intermediate but not high concentration of SWCNT-PEG, suggesting that the observed biological response may be related to the concentration-dependent increase in particle size in SWCNT-PEG dispersions. PMID:25738149

  16. Influence of the Surface Functional Group Density on the Carbon-Nanotube-Induced α-Chymotrypsin Structure and Activity Alterations.

    PubMed

    Zhao, Xingchen; Hao, Fang; Lu, Dawei; Liu, Wei; Zhou, Qunfang; Jiang, Guibin

    2015-08-26

    Because of the special properties of carbon nanotubes (CNTs), their applications have been introduced to many fields. The biosafety of these emerging materials is of high concern concomitantly. Because CNTs may initially bind with proteins in biofluids before they exert biological effects, it is of great importance to understand how the target proteins interact with these exogenous nanomaterials. Here we investigated the interaction between α-chymotrypsin (α-ChT) and carboxylized multiwalled CNTs in a simulated biophysical environment utilizing the techniques of fluorescence, UV-vis, circular dichroism spectroscopy, ζ potential, atomic force microscopy, and bicinchoninic acid analysis. It was demonstrated that CNTs interacted with α-ChT through electrostatic forces, causing a decrement in the α-helix and an increment in the β-sheet content of the protein. The protein fluorescence was quenched in a static mode. The increase in the surface modification density of CNTs enhanced the protein absorption and decreased the enzymatic activity correspondingly. α-ChT activity inhibition induced by CNTs with low surface modification density exhibited noncompetitive characteristics; however, a competitive feature was observed when CNTs with high surface modification density interacted with the protein. An increase of the ionic strength in the reaction buffer may help to reduce the interaction between CNTs and α-ChT because the high ionic strength may favor the release of the protein from binding on a CNT surface modified with functional groups. Accordingly, the functionalization density on the CNT surface plays an important role in the regulation of their biological effects and is worthy of concern when new modified CNTs are developed.

  17. Supported lipid bilayer/carbon nanotube hybrids

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose M.; Craighead, Harold G.; McEuen, Paul L.

    2007-03-01

    Carbon nanotube transistors combine molecular-scale dimensions with excellent electronic properties, offering unique opportunities for chemical and biological sensing. Here, we form supported lipid bilayers over single-walled carbon nanotube transistors. We first study the physical properties of the nanotube/supported lipid bilayer structure using fluorescence techniques. Whereas lipid molecules can diffuse freely across the nanotube, a membrane-bound protein (tetanus toxin) sees the nanotube as a barrier. Moreover, the size of the barrier depends on the diameter of the nanotube-with larger nanotubes presenting bigger obstacles to diffusion. We then demonstrate detection of protein binding (streptavidin) to the supported lipid bilayer using the nanotube transistor as a charge sensor. This system can be used as a platform to examine the interactions of single molecules with carbon nanotubes and has many potential applications for the study of molecular recognition and other biological processes occurring at cell membranes.

  18. Altering the catalytic activity of thin metal catalyst films for controlled growth of chemical vapor deposited vertically aligned carbon nanotube arrays

    SciTech Connect

    Rouleau, Christopher M; Christen, Hans M; Cui, Hongtao; Eres, Gyula; Puretzky, Alexander A; Geohegan, David B

    2008-01-01

    The growth rate and terminal length of vertically-aligned carbon nanotube arrays (VANTAs) grown by chemical vapor deposition have been dramatically improved through pulsed KrF-excimer laser pretreatments of multilayer metal catalyst films. Silicon wafers coated with Al, Mo, and Fe layers were laser processed in air with single laser shots of varying fluence through circular apertures, then heated to ~750C and exposed to acetylene and ferrocene-containing gas mixtures typically used to grow vertically-aligned nanotube arrays. In situ videography was used to record the growth kinetics of the nanotube arrays in both patterned and unpatterned regions to understand changes in catalytic activity, growth rates, and termination of growth. The height of the patterned regions varied with fluence, with the most successful treatment resulting in 1.4 cm-tall posts of nanotubes embedded in a 0.4 cm-tall nanotube carpet. High-resolution transmission electron microscopy images from the nanotubes in the posts revealed fewer walls, smaller diameters, and a much narrower distribution of diameters compared to nanotubes grown in the carpet. This information, along with data obtained from weighing the material from each region, suggests that pulsed laser processing can also significantly increase the areal density of VANTAs.

  19. Magnetic nanotubes

    DOEpatents

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  20. Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks.

    PubMed

    Agnati, Luigi F; Fuxe, Kjell

    2014-09-26

    Two major types of intercellular communication are found in the central nervous system (CNS), namely wiring transmission (WT; point-to-point communication via private channels, e.g. synaptic transmission) and volume transmission (VT; communication in the extracellular fluid and in the cerebrospinal fluid). Volume and synaptic transmission become integrated because their chemical signals activate different types of interacting receptors in heteroreceptor complexes located synaptically and extrasynaptically in the plasma membrane. In VT, we focus on the role of the extracellular-vesicle type of VT, and in WT, on the potential role of the tunnelling-nanotube (TNT) type of WT. The so-called exosomes appear to be the major vesicular carrier for intercellular communication but the larger microvesicles also participate. Extracellular vesicles are released from cultured cortical neurons and different types of glial cells and modulate the signalling of the neuronal-glial networks of the CNS. This type of VT has pathological relevance, and epigenetic mechanisms may participate in the modulation of extracellular-vesicle-mediated VT. Gerdes and co-workers proposed the existence of a novel type of WT based on TNTs, which are straight transcellular channels leading to the formation in vitro of syncytial cellular networks found also in neuronal and glial cultures. PMID:25135966

  1. Carbon nanotube filters

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  2. Control of growth mode of multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Quang, Nguyen Hong; Kim, Do-Hyung

    2009-09-01

    We have conducted an experimental study to investigate the synthesis of multi-walled carbon nanotubes (CNTs) by a dc plasma-enhanced chemical vapour deposition (PECVD) technique. The synthesis of base and tip-type of CNTs was selectively controlled by changing the catalyst size, catalyst film thickness correlated with altering the NH3 pretreatment plasma current. These types of CNT showed distinctive properties in nanotube structure, growth rate and vertical alignment, which were confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and in situ optical interference measurement. The vertically aligned behaviour of CNT was systematically studied by using a fine-patterned catalyst layer with diverse critical dimensions. Freestanding single CNT was successfully realized by optimum tip-type CNT growth, conventional photolithography and wet-etch process.

  3. Multiscale Modeling with Carbon Nanotubes

    SciTech Connect

    Maiti, A

    2006-02-21

    Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.

  4. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon; Zettl, Alexander Karlwalte

    2004-12-28

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  5. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  6. All About Chlorinated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Erbahar, Dogan; Berber, Savas

    2011-03-01

    The halogens are viable alternatives to harsher chemicals in the post-process of purification of carbon nanotube production. However the chlorine is known to bind less agresively to carbon nanotubes than fluorine and hydrogen. Therefore, in principle the residual Cl left after the halogen gas treatment of the nanotubes can be removed without damaging the nanotube walls easier. We report ab initio density functional calculation results about pure and defective carbon nanotubes of various diameters interacting with single and multiple chlorine atoms. We first focus on pure nanotubes and investigate the adsorption of additional Cl atoms near the first adsorbtion site, investigate the clustering tendency and most favourable configurations. We report the energetics results as well as the alteration of electronic properties. We then focus on monovacancy and divacancy defects on carbon nanotubes. It is a known fact that the defective site to be more active in this case. We apply the same procedure as in the pure nanotubes but also investigate the effect of chlorination on reconstruction process and also electronic transport properties. Supported by TUBITAK Grant No 108T740.

  7. Modelling encapsulation of gold and silver nanoparticles inside lipid nanotubes

    NASA Astrophysics Data System (ADS)

    Baowan, Duangkamon; Thamwattana, Ngamta

    2014-02-01

    Lipid nanotubes are of particular interest for use as a template to create various one-dimensional nanostructures and as a carrier for drug and gene delivery. Understanding the encapsulation process is therefore crucial for such development. This paper models the interactions between lipid nanotubes and spheres of gold and silver nanoparticles and determines the critical dimension of lipid nanotubes that maximises the interaction with the nanoparticles. Our results confirm the acceptance of gold and silver nanoparticles inside lipid nanotubes. Further, we find that the lipid nanotube of radius approximately 10.23 nm is most favourable to encapsulate both types of nanoparticles.

  8. Heteroporphyrin nanotubes and composites

    DOEpatents

    Shelnutt, John A.; Medforth, Craig J.; Wang, Zhongchun

    2006-11-07

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  9. Heteroporphyrin nanotubes and composites

    DOEpatents

    Shelnutt, John A.; Medforth, Craig J.; Wang, Zhongchun

    2007-05-29

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  10. Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by altering cellular internalization of nanoparticle

    PubMed Central

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Huang, Haining; Li, Xu

    2016-01-01

    Denitrification is an important pathway for nitrate transformation in marine sediments, and this process has been observed to be negatively affected by engineered nanomaterials. However, previous studies only focused on the potential effect of a certain type of nanomaterial on microbial denitrification. Here we show that the toxicity of CuO nanoparticles (NPs) to denitrification in marine sediments is highly affected by the presence of carbon nanotubes (CNTs). It was found that the removal efficiency of total NOX−-N (NO3−-N and NO2−-N) in the presence of CuO NPs was only 62.3%, but it increased to 81.1% when CNTs appeared in this circumstance. Our data revealed that CuO NPs were more easily attached to CNTs rather than cell surface because of the lower energy barrier (3.5 versus 36.2 kT). Further studies confirmed that the presence of CNTs caused the formation of large, incompact, non-uniform dispersed, and more negatively charged CuO-CNTs heteroaggregates, and thus reduced the nanoparticle internalization by cells, leading to less toxicity to metabolism of carbon source, generation of reduction equivalent, and activities of nitrate reductase and nitrite reductase. These results indicate that assessing nanomaterial-induced risks in real circumstances needs to consider the “mixed” effects of nanomaterials. PMID:27279546

  11. Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by altering cellular internalization of nanoparticle

    NASA Astrophysics Data System (ADS)

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Huang, Haining; Li, Xu

    2016-06-01

    Denitrification is an important pathway for nitrate transformation in marine sediments, and this process has been observed to be negatively affected by engineered nanomaterials. However, previous studies only focused on the potential effect of a certain type of nanomaterial on microbial denitrification. Here we show that the toxicity of CuO nanoparticles (NPs) to denitrification in marine sediments is highly affected by the presence of carbon nanotubes (CNTs). It was found that the removal efficiency of total NOX‑-N (NO3‑-N and NO2‑-N) in the presence of CuO NPs was only 62.3%, but it increased to 81.1% when CNTs appeared in this circumstance. Our data revealed that CuO NPs were more easily attached to CNTs rather than cell surface because of the lower energy barrier (3.5 versus 36.2 kT). Further studies confirmed that the presence of CNTs caused the formation of large, incompact, non-uniform dispersed, and more negatively charged CuO-CNTs heteroaggregates, and thus reduced the nanoparticle internalization by cells, leading to less toxicity to metabolism of carbon source, generation of reduction equivalent, and activities of nitrate reductase and nitrite reductase. These results indicate that assessing nanomaterial-induced risks in real circumstances needs to consider the “mixed” effects of nanomaterials.

  12. Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by altering cellular internalization of nanoparticle.

    PubMed

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Huang, Haining; Li, Xu

    2016-06-09

    Denitrification is an important pathway for nitrate transformation in marine sediments, and this process has been observed to be negatively affected by engineered nanomaterials. However, previous studies only focused on the potential effect of a certain type of nanomaterial on microbial denitrification. Here we show that the toxicity of CuO nanoparticles (NPs) to denitrification in marine sediments is highly affected by the presence of carbon nanotubes (CNTs). It was found that the removal efficiency of total NOX(-)-N (NO3(-)-N and NO2(-)-N) in the presence of CuO NPs was only 62.3%, but it increased to 81.1% when CNTs appeared in this circumstance. Our data revealed that CuO NPs were more easily attached to CNTs rather than cell surface because of the lower energy barrier (3.5 versus 36.2 kT). Further studies confirmed that the presence of CNTs caused the formation of large, incompact, non-uniform dispersed, and more negatively charged CuO-CNTs heteroaggregates, and thus reduced the nanoparticle internalization by cells, leading to less toxicity to metabolism of carbon source, generation of reduction equivalent, and activities of nitrate reductase and nitrite reductase. These results indicate that assessing nanomaterial-induced risks in real circumstances needs to consider the "mixed" effects of nanomaterials.

  13. Carbon Nanotubes and Human Cells?

    ERIC Educational Resources Information Center

    King, G. Angela

    2005-01-01

    Single-walled carbon nanotubes that were chemically altered to be water soluble are shown to enter fibroblasts, T cells, and HL60 cells. Nanoparticles adversely affect immortalized HaCaT human keratinocyte cultures, indicating that they may enter cells.

  14. Dimension stone

    USGS Publications Warehouse

    Dolley, T.P.

    2003-01-01

    Dimension stone can be defined as natural rock material quarried to obtain blocks or slabs that meet specifications as to size (width, length and thickness) and shape for architectural or engineering purposes. Color, grain texture and pattern, and surface finish of the stone are also normal requirements. Other important selection criteria are durability (based on mineral composition, hardness and past performance), strength and the ability of the stone to take a polish.

  15. Polymer Self-assembly on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Giulianini, Michele; Motta, Nunzio

    This chapter analyses the poly(3-hexylthiophene) self-assembly on carbon nanotubes and the interaction between the two materials forming a new hybrid nanostructure. The chapter starts with a review of the several studies investigating polymers and biomolecules self-assembled on nanotubes. Then conducting polymers and polythiophenes are briefly introduced. Accordingly, carbon nanotube structure and properties are reported in Sect. 3. The experimental section starts with the bulk characterisation of polymer thin films with the inclusion of uniformly distributed carbon nanotubes. By using volume film analysis techniques (AFM, TEM, UV-Vis and Raman), we show how the polymer's higher degree of order is a direct consequence of interaction with carbon nanotubes. Nevertheless, it is through the use of nanoscale analysis and molecular dynamic simulations that the self-assembly of the polymer on the nanotube surface can be clearly evidenced and characterised. In Sect. 6, the effect of the carbon templating structure on the P3HT organisation on the surface is investigated, showing the chirality-driven polymer assembly on the carbon nanotube surface. The interaction between P3HT and CNTs brings also to charge transfer, with the modification of physical properties for both species. In particular, the alteration of the polymer electronic properties and the modification of the nanotube mechanical structure are a direct consequence of the P3HT π-π stacking on the nanotube surface. Finally, some considerations based on molecular dynamics studies are reported in order to confirm and support the experimental results discussed.

  16. Quantum transport in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.; Grove-Rasmussen, Kasper; Nygârd, Jesper; Flensberg, Karsten; Kouwenhoven, Leo P.

    2015-07-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike in conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and valley freedom. The interplay between the two is the focus of this review. The energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are explained, together with their consequences for transport measurements through nanotube quantum dots. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behavior. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, open questions for the field are also clearly stated. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a low level.

  17. Nanotube cathodes.

    SciTech Connect

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  18. Synthesis, Characterization, and Modeling of Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Herzog, M. N.; Odegard, G. M.; Gates, T. S.; Fay, C. C.

    2004-01-01

    Synthesis, mechanical testing, and modeling have been performed for carbon nanotube based materials. Tests using nanoindentation indicated a six-fold enhancement in the storage modulus when comparing the base material (no nanotubes) to the composite that contained 5.3 wt% of nanotubes. To understand how crosslinking the nanotubes may further alter the stiffness, a model of the system was constructed using nanotubes crosslinked with a variable stiffness tether (VST). The model predicted that for a composite with 5 wt% nanotubes at random orientations, crosslinked with the VST, the bulk Young's modulus was reduced by 30% compared to the noncrosslinked equivalent.

  19. Nanotube phonon waveguide

    DOEpatents

    Chang, Chih-Wei; Zettl, Alexander K.

    2013-10-29

    Disclosed are methods and devices in which certain types of nanotubes (e.g., carbon nanotubes and boron nitride nanotubes conduct heat with high efficiency and are therefore useful in electronic-type devices.

  20. Arrays of Bundles of Carbon Nanotubes as Field Emitters

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Bronkowski, Michael

    2007-01-01

    Experiments have shown that with suitable choices of critical dimensions, planar arrays of bundles of carbon nanotubes (see figure) can serve as high-current-density field emitter (cold-cathode) electron sources. Whereas some hot-cathode electron sources must be operated at supply potentials of thousands of volts, these cold-cathode sources generate comparable current densities when operated at tens of volts. Consequently, arrays of bundles of carbon nanotubes might prove useful as cold-cathode sources in miniature, lightweight electron-beam devices (e.g., nanoklystrons) soon to be developed. Prior to the experiments, all reported efforts to develop carbon-nanotube-based field-emission sources had yielded low current densities from a few hundred microamperes to a few hundred milliamperes per square centimeter. An electrostatic screening effect, in which taller nanotubes screen the shorter ones from participating in field emission, was conjectured to be what restricts the emission of electrons to such low levels. It was further conjectured that the screening effect could be reduced and thus emission levels increased by increasing the spacing between nanotubes to at least by a factor of one to two times the height of the nanotubes. While this change might increase the emission from individual nanotubes, it would decrease the number of nanotubes per unit area and thereby reduce the total possible emission current. Therefore, to maximize the area-averaged current density, it would be necessary to find an optimum combination of nanotube spacing and nanotube height. The present concept of using an array of bundles of nanotubes arises partly from the concept of optimizing the spacing and height of field emitters. It also arises partly from the idea that single nanotubes may have short lifetimes as field emitters, whereas bundles of nanotubes could afford redundancy so that the loss of a single nanotube would not significantly reduce the overall field emission.

  1. Nanotube News

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 2005

    2005-01-01

    Smaller, faster computers, bullet-proof t-shirts, and itty-bitty robots--such are the promises of nanotechnology and the cylinder-shaped collection of carbon molecules known as nanotubes. But for these exciting ideas to become realities, scientists must understand how these miracle molecules perform under all sorts of conditions. This brief…

  2. Peptide nanotubes.

    PubMed

    Hamley, Ian W

    2014-07-01

    The self-assembly of different classes of peptide, including cyclic peptides, amyloid peptides and surfactant-like peptides into nanotube structures is reviewed. The modes of self-assembly are discussed. Additionally, applications in bionanotechnology and synthetic materials science are summarized.

  3. Membrane Nanotubes

    NASA Astrophysics Data System (ADS)

    Derényi, I.; Koster, G.; van Duijn, M. M.; Czövek, A.; Dogterom, M.; Prost, J.

    There is a growing pool of evidence showing the biological importance of membrane nanotubes (with diameter of a few tens of nanometers and length upto tens of microns) in various intra- and intercellular transport processes. These ubiquitous structures are often formed from flat membranes by highly localized forces generated by either the pulling of motor proteins or the pushing of polymerizing cytoskeletal filaments. In this chapter we give an overview of the theory of membrane nanotubes, their biological relevance, and the most recent experiments designed for the study of their formation and dynamics. We also discuss the effect of membrane proteins or lipid composition on the shape of the tubes, and the effect of antagonistic motor proteins on tube formation.

  4. Carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  5. Membrane-targeted self-assembling cyclic peptide nanotubes.

    PubMed

    Rodríguez-Vázquez, Nuria; Ozores, H Lionel; Guerra, Arcadio; González-Freire, Eva; Fuertes, Alberto; Panciera, Michele; Priegue, Juan M; Outeiral, Juan; Montenegro, Javier; Garcia-Fandino, Rebeca; Amorin, Manuel; Granja, Juan R

    2014-01-01

    Peptide nanotubes are novel supramolecular nanobiomaterials that have a tubular structure. The stacking of cyclic components is one of the most promising strategies amongst the methods described in recent years for the preparation of nanotubes. This strategy allows precise control of the nanotube surface properties and the dimensions of the tube diameter. In addition, the incorporation of 3- aminocycloalkanecarboxylic acid residues in the nanotube-forming peptides allows control of the internal properties of the supramolecular tube. The research aimed at the application of membrane-interacting self-assembled cyclic peptide nanotubes (SCPNs) is summarized in this review. The cyclic peptides are designed to interact with phospholipid bilayers to induce nanotube formation. The properties and orientation of the nanotube can be tuned by tailoring the peptide sequence. Hydrophobic peptides form transmembrane pores with a hydrophilic orifice, the nature of which has been exploited to transport ions and small molecules efficiently. These synthetic ion channels are selective for alkali metal ions (Na(+), K(+) or Cs(+)) over divalent cations (Ca(2+)) or anions (Cl(-)). Unfortunately, selectivity was not achieved within the series of alkali metal ions, for which ion transport rates followed the diffusion rates in water. Amphipathic peptides form nanotubes that lie parallel to the membrane. Interestingly, nanotube formation takes place preferentially on the surface of bacterial membranes, thus making these materials suitable for the development of new antimicrobial agents. PMID:25515753

  6. Membrane-targeted self-assembling cyclic peptide nanotubes.

    PubMed

    Rodríguez-Vázquez, Nuria; Ozores, H Lionel; Guerra, Arcadio; González-Freire, Eva; Fuertes, Alberto; Panciera, Michele; Priegue, Juan M; Outeiral, Juan; Montenegro, Javier; Garcia-Fandino, Rebeca; Amorin, Manuel; Granja, Juan R

    2014-01-01

    Peptide nanotubes are novel supramolecular nanobiomaterials that have a tubular structure. The stacking of cyclic components is one of the most promising strategies amongst the methods described in recent years for the preparation of nanotubes. This strategy allows precise control of the nanotube surface properties and the dimensions of the tube diameter. In addition, the incorporation of 3- aminocycloalkanecarboxylic acid residues in the nanotube-forming peptides allows control of the internal properties of the supramolecular tube. The research aimed at the application of membrane-interacting self-assembled cyclic peptide nanotubes (SCPNs) is summarized in this review. The cyclic peptides are designed to interact with phospholipid bilayers to induce nanotube formation. The properties and orientation of the nanotube can be tuned by tailoring the peptide sequence. Hydrophobic peptides form transmembrane pores with a hydrophilic orifice, the nature of which has been exploited to transport ions and small molecules efficiently. These synthetic ion channels are selective for alkali metal ions (Na(+), K(+) or Cs(+)) over divalent cations (Ca(2+)) or anions (Cl(-)). Unfortunately, selectivity was not achieved within the series of alkali metal ions, for which ion transport rates followed the diffusion rates in water. Amphipathic peptides form nanotubes that lie parallel to the membrane. Interestingly, nanotube formation takes place preferentially on the surface of bacterial membranes, thus making these materials suitable for the development of new antimicrobial agents.

  7. Combined electron microscopy and spectroscopy characterization of as-received, acid purified, and oxidized HiPCO single-wall carbon nanotubes

    SciTech Connect

    Rosario-Castro, Belinda I.; Contes, Enid J.; Lebron-Colon, Marisabel; Meador, Michael A.; Sanchez-Pomales, Germarie; Cabrera, Carlos R.

    2009-12-15

    Single-wall carbon nanotubes (SWCNTs) are very important materials due to their combination of unique structure, dimension, strength, chemical stability, and electronic properties. Nevertheless, SWCNTs from commercial sources usually contain several impurities, which are usually removed by a purification process that includes reflux in acids and strong oxidation. This strong chemical procedure may alter the nanotube properties and it is thus important to control the extent of functionalization and oxidation during the purification procedure. In this report, we provide a comprehensive study of the structure and physical composition of SWCNTs during each step of the purification process. Techniques such as Raman spectroscopy, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and Infrared spectroscopy were used to track the SWCNTs structure, in terms of length and diameter distribution, and surface chemical modifications during each purification stage.

  8. TOPICAL REVIEW: Carbon nanotubes for biological and biomedical applications

    NASA Astrophysics Data System (ADS)

    Yang, Wenrong; Thordarson, Pall; Gooding, J. Justin; Ringer, Simon P.; Braet, Filip

    2007-10-01

    Ever since the discovery of carbon nanotubes, researchers have been exploring their potential in biological and biomedical applications. The recent expansion and availability of chemical modification and bio-functionalization methods have made it possible to generate a new class of bioactive carbon nanotubes which are conjugated with proteins, carbohydrates, or nucleic acids. The modification of a carbon nanotube on a molecular level using biological molecules is essentially an example of the 'bottom-up' fabrication principle of bionanotechnology. The availability of these biomodified carbon nanotube constructs opens up an entire new and exciting research direction in the field of chemical biology, finally aiming to target and to alter the cell's behaviour at the subcellular or molecular level. This review covers the latest advances of bio-functionalized carbon nanotubes with an emphasis on the development of functional biological nano-interfaces. Topics that are discussed herewith include methods for biomodification of carbon nanotubes, the development of hybrid systems of carbon nanotubes and biomolecules for bioelectronics, and carbon nanotubes as transporters for a specific delivery of peptides and/or genetic material to cells. All of these current research topics aim at translating these biotechnology modified nanotubes into potential novel therapeutic approaches.

  9. Three-dimensional nanotub submicrometer diffraction gratings for solar cells.

    PubMed

    Ho, Cyrus; McKeon, Josephine; Macdonald, Daniel; Catchpole, Kylie R

    2014-10-10

    Diffraction gratings are a promising approach for reducing reflection and achieving light-trapping in solar cells. Using square lattices as a base structure, we investigate a novel bi-periodic nanotub three-dimensional grating structure and compare it with established textured structures for thin-film and wafer applications. For wafer application, simulations show that optimal AR coated nanotubs demonstrated solar weighted reflectance (SWR) of 2% compared to AR coated square pyramids with values 1.9%. Nanotubs also show SWR below 8% for polar angles to 60°. Simulated short-circuit current thin-film cells with nanotubs using smaller dimensions show higher yields (3-6  mA/cm2 average) compared to square pyramids. For periods greater than 700 nm at aspect ratios of 0.7 and greater, nanotubs have reduced current attributed to the increased planar surface area of the nanotub base, and evident in increased SWR. A simple nanoimprint lithography process was employed in experiments to define a square array of circular holes, utilizing a polydimethylsiloxane (PDMS) stamp applied onto a sol-gel imprint resist. The underlying silicon was then wet etched to produce the nanotub textures of 200 nm height and 513 nm period. AR coated nanotub wafers were produced via plasma enhanced chemical vapor deposition (PECVD), with an experimental and theoretical SWR of 6.4% and 5.4%, respectively.

  10. Carbon nanotube nanoelectrode arrays

    DOEpatents

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  11. Tunneling nanotubes

    PubMed Central

    Austefjord, Magnus Wiger; Gerdes, Hans-Hermann; Wang, Xiang

    2014-01-01

    Tunneling nanotubes (TNTs) are recently discovered thin membranous tubes that interconnect cells. During the last decade, research has shown TNTs to be diverse in morphology and composition, varying between and within cell systems. In addition, the discovery of TNT-like extracellular protrusions, as well as observations of TNTs in vivo, has further enriched our knowledge on the diversity of TNT-like structures. Considering the complex molecular mechanisms underlying the formation of TNTs, as well as their different functions in intercellular communication, it is important to decipher how heterogeneity of TNTs is established, and to address what roles the compositional elements have in the execution of various functions. Here, we review the current knowledge on the morphological and structural diversity of TNTs, and address the relation between the formation, the structure, and the function of TNTs. PMID:24778759

  12. Biomimetic Nanotubes Based on Cyclodextrins for Ion-Channel Applications.

    PubMed

    Mamad-Hemouch, Hajar; Ramoul, Hassen; Abou Taha, Mohammad; Bacri, Laurent; Huin, Cécile; Przybylski, Cédric; Oukhaled, Abdelghani; Thiébot, Bénédicte; Patriarche, Gilles; Jarroux, Nathalie; Pelta, Juan

    2015-11-11

    Biomimetic membrane channels offer a great potential for fundamental studies and applications. Here, we report the fabrication and characterization of short cyclodextrin nanotubes, their insertion into membranes, and cytotoxicity assay. Mass spectrometry and high-resolution transmission electron microscopy were used to confirm the synthesis pathway leading to the formation of short nanotubes and to describe their structural parameters in terms of length, diameter, and number of cyclodextrins. Our results show the control of the number of cyclodextrins threaded on the polyrotaxane leading to nanotube synthesis. Structural parameters obtained by electron microscopy are consistent with the distribution of the number of cyclodextrins evaluated by mass spectrometry from the initial polymer distribution. An electrophysiological study at single molecule level demonstrates the ion channel formation into lipid bilayers, and the energy penalty for the entry of ions into the confined nanotube. In the presence of nanotubes, the cell physiology is not altered.

  13. Dimension of chaotic attractors

    SciTech Connect

    Farmer, J.D.; Ott, E.; Yorke, J.A.

    1982-09-01

    Dimension is perhaps the most basic property of an attractor. In this paper we discuss a variety of different definitions of dimension, compute their values for a typical example, and review previous work on the dimension of chaotic attractors. The relevant definitions of dimension are of two general types, those that depend only on metric properties, and those that depend on probabilistic properties (that is, they depend on the frequency with which a typical trajectory visits different regions of the attractor). Both our example and the previous work that we review support the conclusion that all of the probabilistic dimensions take on the same value, which we call the dimension of the natural measure, and all of the metric dimensions take on a common value, which we call the fractal dimension. Furthermore, the dimension of the natural measure is typically equal to the Lyapunov dimension, which is defined in terms of Lyapunov numbers, and thus is usually far easier to calculate than any other definition. Because it is computable and more physically relevant, we feel that the dimension of the natural measure is more important than the fractal dimension.

  14. Nonmagnetic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lipert, Kamil; Kretzschmar, Florian; Ritschel, Manfred; Leonhardt, Albrecht; Klingeler, Rüdiger; Büchner, Bernd

    2009-03-01

    We have synthesized by chemical vapor deposition (CVD) single-, double-, and multiwalled carbon nanotubes without magnetic impurities. In particular, we have applied a rhenium-based CVD technique yielding nonmagnetic carbon nanotubes with diamagnetic Re particles. In addition, carbon nanotubes prepared with iron as catalyst particles are annealed at very high temperatures in which the catalyst material is completely vaporized, while the carbon nanotubes are structurally preserved. Detailed magnetic studies show for both approaches a clear diamagnetic behavior typical for pure carbon nanotubes but no indication of ferromagnetic or paramagnetic material.

  15. Structure of boron nitride nanotubes

    SciTech Connect

    Buranova, Yu. S. Kulnitskiy, B. A.; Perezhogin, I. A.; Blank, V. D.

    2015-01-15

    The crystallographic structure of boron nitride nanotubes has been investigated. Various defects that may arise during nanotube synthesis are revealed by electron microscopy. Nanotubes with different numbers of walls and different diameters are modeled by molecular dynamics methods. Structural features of single-wall nanotubes are demonstrated. The causes of certain defects in multiwall nanotubes are indicated.

  16. Functionalized Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Lebron, Marisabel; Mintz, Eric; Meador, Michael A.; Hull, David R.; Scheiman, Daniel A.; Willis, Peter; Smalley, Richard E.

    2001-01-01

    Carbon nanotubes have created a great deal of excitement in the Materials Science community because of their outstanding mechanical, electrical, and thermal properties. Use of carbon nanotubes as reinforcements for polymers could lead to a new class of composite materials with properties, durability, and performance far exceeding that of conventional fiber reinforced composites. Organized arrays of carbon nanotubes, e.g., nanotube monolayers, could find applications as thermal management materials, light emitting devices, and sensor arrays. Carbon nanotubes could also be used as templates upon which nanotubes from other materials could be constructed. Successful use of carbon nanotubes in any of these potential applications requires the ability to control the interactions of nanotubes with each other and with other materials, e.g., a polymer matrix. One approach to achieving this control is to attach certain chemical groups to the ends and/or side-walls of the nanotubes. The nature of these chemical groups can be varied to achieve the desired result, such as better adhesion between the nanotubes and a polymer. Under a joint program between NASA Glenn, Clark Atlanta University, and Rice University researchers are working on developing a chemistry "tool-kit" that will enable the functionalization of carbon nanotubes with a variety of chemical groups. Recent results of this effort will be discussed.

  17. High frequency nanotube oscillator

    DOEpatents

    Peng, Haibing; Zettl, Alexander K.

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  18. Water desalination using carbon-nanotube-enhanced membrane distillation.

    PubMed

    Gethard, Ken; Sae-Khow, Ornthida; Mitra, Somenath

    2011-02-01

    Carbon nanotube (CNT) enhanced membrane distillation is presented for water desalination. It is demonstrated that the immobilization of the CNTs in the pores of a hydrophobic membrane favorably alters the water-membrane interactions to promote vapor permeability while preventing liquid penetration into the membrane pores. For a salt concentration of 34 000 mg L(-1) and at 80 °C, the nanotube incorporation led to 1.85 and 15 times increase in flux and salt reduction, respectively. PMID:21188976

  19. Water desalination using carbon-nanotube-enhanced membrane distillation.

    PubMed

    Gethard, Ken; Sae-Khow, Ornthida; Mitra, Somenath

    2011-02-01

    Carbon nanotube (CNT) enhanced membrane distillation is presented for water desalination. It is demonstrated that the immobilization of the CNTs in the pores of a hydrophobic membrane favorably alters the water-membrane interactions to promote vapor permeability while preventing liquid penetration into the membrane pores. For a salt concentration of 34 000 mg L(-1) and at 80 °C, the nanotube incorporation led to 1.85 and 15 times increase in flux and salt reduction, respectively.

  20. Chemical reactions confined within carbon nanotubes.

    PubMed

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  1. Carbon-nanotube based nano-electro-mechanical oscillators

    NASA Astrophysics Data System (ADS)

    Papadakis, S. J.; Hall, A. R.; Spivak, D. M.; Falvo, M. R.; Superfine, R.; Washburn, S.

    2004-03-01

    We report on the fabrication and performance of nanometer-scale electromechanical oscillators which use multi-walled carbon nanotubes as torsional springs. Carbon nanotube devices may offer high quality factors due to the inert surface of the torsional member, and high sensitivity due to their nanoscale dimensions. They also provide a means to study the effects of torsion on nanotube transport. The devices have a paddle-oscillator geometry and are driven electrostatically. In previous work we manipulated these devices directly with a scanning probe to measure the torsional properties of the nanotube, its shear modulus, and its subsequent stiffening under repeated strain [1]. Here we use both optical and electron-beam techniques to measure the response of the devices to applied voltages. We demonstrate both quasi-static and on-resonance performance characteristics. 1. P. A. Williams, S. J. Papadakis, A. M. Patel, M. R. Falvo, S. Washburn, and R. Superfine, Phys. Rev. Lett. 89, 255502 (2002).

  2. Titania nanotube arrays: Interfaces for implantable devices

    NASA Astrophysics Data System (ADS)

    Smith, Barbara Symie

    For the 8--10% of Americans (20--25 million people) that have implanted biomedical devices, biomaterial failure and the need for revision surgery are critical concerns. The major causes for failure in implantable biomedical devices promoting a need for re-implantation and revision surgery include thrombosis, post-operative infection, immune driven fibrosis and biomechanical failure. The successful integration of long-term implantable devices is highly dependent on the early events of tissue/biomaterial interaction, promoting either implant rejection or a wound healing response (extracellular matrix production and vasculature). Favorable interactions between the implant surface and the respective tissue are critical for the long-term success of any implantable device. Recent studies have shown that material surfaces which mimic the natural physiological hierarchy of in vivo tissue may provide a possible solution for enhancing biomaterial integration, thus preventing infection and biomaterial rejection. Titania nanotube arrays, fabricated using a simple anodization technique, provide a template capable of promoting altered cellular functionality at a hierarchy similar to that of natural tissue. This work focuses on the fabrication of immobilized, vertically oriented and highly uniform titania nanotube arrays to determine how this specific nano-architecture affects skin cell functionality, hemocompatibility, thrombogenicity and the immune response. The results in this work identify enhanced dermal matrix production, altered hemocompatibility, reduced thrombogenicity and a deterred immune response on titania nanotube arrays. This evidences promising implications with respect to the use of titania nanotube arrays as beneficial interfaces for the successful implantation of biomedical devices.

  3. Serpentine Nanotubes in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Zega, Thomas J.; Garvie, Laurence A. J.; Dodony, Istvan; Buseck, Peter R.

    2004-01-01

    The CM chondrites are primitive meteorites that formed during the early solar system. Although they retain much of their original physical character, their matrices and fine-grained rims (FGRs) sustained aqueous alteration early in their histories [1- 3]. Serpentine-group minerals are abundant products of such alteration, and information regarding their structures, compositions, and spatial relationships is important for determining the reactions that produced them and the conditions under which they formed. Our recent work on FGRs and matrices of the CM chondrites has revealed new information on the structures and compositions of serpentine-group minerals [4,5] and has provided insights into the evolution of these primitive meteorites. Here we report on serpentine nanotubes from the Mighei and Murchison CM chondrites [6].

  4. Gallium nitride nanotube lasers

    SciTech Connect

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; Wright, Jeremy Benjamin; Xu, Huiwen; Luk, Ting Shan; Figiel, Jeffrey J.; Brener, Igal; Brueck, Steven R. J.; Wang, George T.

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  5. Reinforced Carbon Nanotubes.

    SciTech Connect

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  6. Formation and growth mechanisms of single-walled metal oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Yucelen, Gulfem Ipek

    In this thesis, main objectives are to discover the first molecular-level mechanistic framework governing the formation and growth of single-walled metal-oxide nanotubes, apply this framework to demonstrate the engineering of nanotubular materials of controlled dimensions, and to progress towards a quantitative multiscale understanding of nanotube formation. In Chapter 2, the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature, in the formation of single-walled aluminosilicate nanotubes is reported. The structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm, are characterized by electrospray ionization (ESI) mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. DFT calculations revealed the intrinsic curvature of nanoscale intermediates with bonding environments similar to the structure of the final nanotube product. It is shown that curved nano-intermediates form in aqueous synthesis solutions immediately after initial hydrolysis of reactants at 25 °C, disappear from the solution upon heating to 95 °C due to condensation, and finally rearrange to form ordered single-walled aluminosilicate nanotubes. Integration of all results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles. Then, in Chapter 3, new molecular-level concepts for constructing nanoscopic metal oxide objects are demonstrated. The diameters of metal oxide nanotubes are shaped with Angstrom-level precision by controlling the shape of nanometer-scale precursors. The subtle relationships between precursor shape and structure and final nanotube curvature are measured (at the molecular level). Anionic ligands (both organic and inorganic) are used to exert fine control over precursor

  7. Pure carbon nanoscale devices: Nanotube heterojunctions

    SciTech Connect

    Chico, L.; Crespi, V.H.; Benedict, L.X.; Louie, S.G.; Cohen, M.L. |

    1996-02-01

    Introduction of pentagon-heptagon pair defects into the hexagonal network of a single carbon nanotube can change the helicity of the tube and alter its electronic structure. Using a tight-binding method to calculate the electronic structure of such systems we show that they behave as nanoscale metal/semiconductor or semiconductor/semiconductor junctions. These junctions could be the building blocks of nanoscale electronic devices made entirely of carbon. {copyright} {ital 1996 The American Physical Society.}

  8. Navigating between the Dimensions

    ERIC Educational Resources Information Center

    Fleron, Julian F.; Ecke, Volker

    2011-01-01

    Generations have been inspired by Edwin A. Abbott's profound tour of the dimensions in his novella "Flatland: A Romance of Many Dimensions" (1884). This well-known satire is the story of a flat land inhabited by geometric shapes trying to navigate the subtleties of their geometric, social, and political positions. In this article, the authors…

  9. Air-gating and chemical-gating in transistors and sensing devices made from hollow TiO2 semiconductor nanotubes.

    PubMed

    Alivov, Yahya; Funke, Hans; Nagpal, Prashant

    2015-07-24

    Rapid miniaturization of electronic devices down to the nanoscale, according to Moore's law, has led to some undesirable effects like high leakage current in transistors, which can offset additional benefits from scaling down. Development of three-dimensional transistors, by spatial extension in the third dimension, has allowed higher contact area with a gate electrode and better control over conductivity in the semiconductor channel. However, these devices do not utilize the large surface area and interfaces for new electronic functionality. Here, we demonstrate air gating and chemical gating in hollow semiconductor nanotube devices and highlight the potential for development of novel transistors that can be modulated using channel bias, gate voltage, chemical composition, and concentration. Using chemical gating, we reversibly altered the conductivity of nanoscaled semiconductor nanotubes (10-500 nm TiO2 nanotubes) by six orders of magnitude, with a tunable rectification factor (ON/OFF ratio) ranging from 1-10(6). While demonstrated air- and chemical-gating speeds were slow here (∼seconds) due to the mechanical-evacuation rate and size of our chamber, the small nanoscale volume of these hollow semiconductors can enable much higher switching speeds, limited by the rate of adsorption/desorption of molecules at semiconductor interfaces. These chemical-gating effects are completely reversible, additive between different chemical compositions, and can enable semiconductor nanoelectronic devices for 'chemical transistors', 'chemical diodes', and very high-efficiency sensing applications.

  10. Air-gating and chemical-gating in transistors and sensing devices made from hollow TiO2 semiconductor nanotubes

    NASA Astrophysics Data System (ADS)

    Alivov, Yahya; Funke, Hans; Nagpal, Prashant

    2015-07-01

    Rapid miniaturization of electronic devices down to the nanoscale, according to Moore’s law, has led to some undesirable effects like high leakage current in transistors, which can offset additional benefits from scaling down. Development of three-dimensional transistors, by spatial extension in the third dimension, has allowed higher contact area with a gate electrode and better control over conductivity in the semiconductor channel. However, these devices do not utilize the large surface area and interfaces for new electronic functionality. Here, we demonstrate air gating and chemical gating in hollow semiconductor nanotube devices and highlight the potential for development of novel transistors that can be modulated using channel bias, gate voltage, chemical composition, and concentration. Using chemical gating, we reversibly altered the conductivity of nanoscaled semiconductor nanotubes (10-500 nm TiO2 nanotubes) by six orders of magnitude, with a tunable rectification factor (ON/OFF ratio) ranging from 1-106. While demonstrated air- and chemical-gating speeds were slow here (˜seconds) due to the mechanical-evacuation rate and size of our chamber, the small nanoscale volume of these hollow semiconductors can enable much higher switching speeds, limited by the rate of adsorption/desorption of molecules at semiconductor interfaces. These chemical-gating effects are completely reversible, additive between different chemical compositions, and can enable semiconductor nanoelectronic devices for ‘chemical transistors’, ‘chemical diodes’, and very high-efficiency sensing applications.

  11. Anomalously soft dynamics of water in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kolesnikov, A. I.; Loong, C.-K.; de Souza, N. R.; Burnham, C. J.; Moravsky, A. P.

    2006-11-01

    The structure and dynamics of water confined to the one-dimensional nanotube interior are found to be drastically altered with respect to bulk water. Neutron diffraction, inelastic and quasielastic neutron scattering measurements in parallel with MD simulations have clearly shown the entry of water into open-ended single-wall carbon nanotubes and identified an ice-shell plus central water-chain structure. The observed extremely soft dynamics of nanotube-water arises mainly from a qualitatively large reduction in the hydrogen-bond connectivity of the water chain. Anomalously enhanced thermal motions in the water chain, modeled by a low-barrier, flattened, highly anharmonic potential well, explain the large mean-square displacement of hydrogen and the fluid-like behavior of nanotube-water at temperatures far below the nominal freezing point.

  12. Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity

    SciTech Connect

    Heben, M.; Dillon, A. C.; Engtrakul, C.; Lee, S.-H.; Kelley, R. D.; Kini, A. M.

    2007-05-01

    Carbon SWNTs are attractive materials for supporting electrocatalysts. The properties of SWNTs are highly tunable and controlled by the nanotube's circumferential periodicity and their surface chemistry. These unique characteristics suggest that architectures constructed from these types of carbon support materials would exhibit interesting and useful properties. Here, we expect that the structure of the carbon nanotube support will play a major role in stabilizing metal electrocatalysts under extreme operating conditions and suppress both catalyst and support degradation. Furthermore, the chemical modification of the carbon nanotube surfaces can be expected to alter the interface between the catalyst and support, thus, enhancing the activity and utilization of the electrocatalysts. We plan to incorporate discrete reaction sites into the carbon nanotube lattice to create intimate electrical contacts with the catalyst particles to increase the metal catalyst activity and utilization. The work involves materials synthesis, design of electrode architectures on the nanoscale, control of the electronic, ionic, and mass fluxes, and use of advanced optical spectroscopy techniques.

  13. Dimension control of Superradiance

    NASA Astrophysics Data System (ADS)

    Hill, Tyler; Hui Deng Collaboration; Barry C. Sanders Collaboration

    2016-05-01

    We develop a theory for quantum dipole-dipole coupling when the electromagnetic fields are confined to an open line, open plane, or open space, commensurate with experimental capability for collective atomic effects subject to dimensional confinement. Our mathematical model naturally interpolates for all real dimension between one dimension for the line to three dimensions for open space. We show how superradiant emission can be controlled by dimensional confinement, including near-field and dipole-orientation effects, and we propose a two-dimensional confinement experiment to test our theory's efficacy. University of Michigan.

  14. Carbon nanotube materials for hydrogen storage

    SciTech Connect

    Dillon, A.C.; Jones, K.M.; Heben, M.J.

    1996-10-01

    Hydrogen burns pollution-free and may be produced from renewable energy resources. It is therefore an ideal candidate to replace fossil fuels as an energy carrier. However, the lack of a convenient and cost-effective hydrogen storage system greatly impedes the wide-scale use of hydrogen in both domestic and international markets. Although several hydrogen storage options exist, no approach satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. A material consisting exclusively of micropores with molecular dimensions could simultaneously meet all of the requirements for transportation use if the interaction energy for hydrogen was sufficiently strong to cause hydrogen adsorption at ambient temperatures. Small diameter ({approx}1 mm) carbon single-wall nanotubes (SWNTs) are elongated micropores of molecular dimensions, and materials composed predominantly of SWNTs may prove to be the ideal adsorbent for ambient temperature storage of hydrogen. Last year the authors reported that hydrogen could be adsorbed on arc-generated soots containing 12{Angstrom} diameter nanotubes at temperatures in excess of 285K. In this past year they have learned that such adsorption does not occur on activated carbon materials, and that the cobalt nanoparticles present in their arc-generated soots are not responsible for the hydrogen which is stable at 285 K. These results indicate that enhanced adsorption forces within the internal cavities of the SWNTs are active in stabilizing hydrogen at elevated temperatures. This enhanced stability could lead to effective hydrogen storage under ambient temperature conditions. In the past year the authors have also demonstrated that single-wall carbon nanotubes in arc-generated soots may be selectively opened by oxidation in H{sub 2}O resulting in improved hydrogen adsorption, and they have estimated experimentally that the amount of hydrogen stored is {approximately}10% of the nanotube weight.

  15. Fluidic nanotubes and devices

    DOEpatents

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yiying; Li, Deyu; Majumdar, Arun

    2008-04-08

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  16. Fluidic nanotubes and devices

    DOEpatents

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yiying; Li, Deyu; Majumdar, Arun

    2010-01-10

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  17. Hemotoxicity of carbon nanotubes.

    PubMed

    Bussy, Cyrill; Methven, Laura; Kostarelos, Kostas

    2013-12-01

    Carbon nanotubes may enter into the bloodstream and interact with blood components indirectly via translocation following unintended exposure or directly after an intended administration for biomedical purposes. Once introduced into systemic circulation, nanotubes will encounter various proteins, biomolecules or cells which have specific roles in the homeostasis of the circulatory system. It is therefore essential to determine whether those interactions will lead to adverse effects or not. Advances in the understanding of how carbon nanotubes interact with blood proteins, the complement system, red blood cells and the hemostatic system are reviewed in this article. While many studies on carbon nanotube health risk assessment and their biomedical applications have appeared in the last few years, reports on the hemocompatibility of these nanomaterials remain surprisingly limited. Yet, defining the hemotoxicological profile is a mandatory step toward the development of clinically-relevant medications or contrast agents based on carbon nanotubes.

  18. Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls

    PubMed Central

    Filippin, A. Nicolas; Macias-Montero, Manuel; Saghi, Zineb; Idígoras, Jesús; Burdet, Pierre; Barranco, Angel; Midgley, Paul; Anta, Juan A.; Borras, Ana

    2016-01-01

    A three-step vacuum procedure for the fabrication of vertical TiO2 and ZnO nanotubes with three dimensional walls is presented. The method combines physical vapor deposition of small-molecules, plasma enhanced chemical vapor deposition of inorganic functional thin films and layers and a post-annealing process in vacuum in order to remove the organic template. As a result, an ample variety of inorganic nanotubes are made with tunable length, hole dimensions and shapes and tailored wall composition, microstructure, porosity and structure. The fabrication of multishell nanotubes combining different semiconducting oxides and metal nanoparticles is as well explored. This method provides a feasible and reproducible route for the fabrication of high density arrays of vertically alligned nanotubes on processable substrates. The emptying mechanism and microstructure of the nanotubes have been elucidated through SEM, STEM, HAADF-STEM tomography and energy dispersive X-ray spectroscopy. In this article, as a proof of concept, it is presented the straightforward integration of ZnO nanotubes as photoanode in a photovoltaic cell and as a photonic oxygen gas sensor. PMID:26860367

  19. Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls.

    PubMed

    Filippin, A Nicolas; Macias-Montero, Manuel; Saghi, Zineb; Idígoras, Jesús; Burdet, Pierre; Barranco, Angel; Midgley, Paul; Anta, Juan A; Borras, Ana

    2016-02-10

    A three-step vacuum procedure for the fabrication of vertical TiO2 and ZnO nanotubes with three dimensional walls is presented. The method combines physical vapor deposition of small-molecules, plasma enhanced chemical vapor deposition of inorganic functional thin films and layers and a post-annealing process in vacuum in order to remove the organic template. As a result, an ample variety of inorganic nanotubes are made with tunable length, hole dimensions and shapes and tailored wall composition, microstructure, porosity and structure. The fabrication of multishell nanotubes combining different semiconducting oxides and metal nanoparticles is as well explored. This method provides a feasible and reproducible route for the fabrication of high density arrays of vertically alligned nanotubes on processable substrates. The emptying mechanism and microstructure of the nanotubes have been elucidated through SEM, STEM, HAADF-STEM tomography and energy dispersive X-ray spectroscopy. In this article, as a proof of concept, it is presented the straightforward integration of ZnO nanotubes as photoanode in a photovoltaic cell and as a photonic oxygen gas sensor.

  20. Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls

    NASA Astrophysics Data System (ADS)

    Filippin, A. Nicolas; Macias-Montero, Manuel; Saghi, Zineb; Idígoras, Jesús; Burdet, Pierre; Barranco, Angel; Midgley, Paul; Anta, Juan A.; Borras, Ana

    2016-02-01

    A three-step vacuum procedure for the fabrication of vertical TiO2 and ZnO nanotubes with three dimensional walls is presented. The method combines physical vapor deposition of small-molecules, plasma enhanced chemical vapor deposition of inorganic functional thin films and layers and a post-annealing process in vacuum in order to remove the organic template. As a result, an ample variety of inorganic nanotubes are made with tunable length, hole dimensions and shapes and tailored wall composition, microstructure, porosity and structure. The fabrication of multishell nanotubes combining different semiconducting oxides and metal nanoparticles is as well explored. This method provides a feasible and reproducible route for the fabrication of high density arrays of vertically alligned nanotubes on processable substrates. The emptying mechanism and microstructure of the nanotubes have been elucidated through SEM, STEM, HAADF-STEM tomography and energy dispersive X-ray spectroscopy. In this article, as a proof of concept, it is presented the straightforward integration of ZnO nanotubes as photoanode in a photovoltaic cell and as a photonic oxygen gas sensor.

  1. Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls.

    PubMed

    Filippin, A Nicolas; Macias-Montero, Manuel; Saghi, Zineb; Idígoras, Jesús; Burdet, Pierre; Barranco, Angel; Midgley, Paul; Anta, Juan A; Borras, Ana

    2016-01-01

    A three-step vacuum procedure for the fabrication of vertical TiO2 and ZnO nanotubes with three dimensional walls is presented. The method combines physical vapor deposition of small-molecules, plasma enhanced chemical vapor deposition of inorganic functional thin films and layers and a post-annealing process in vacuum in order to remove the organic template. As a result, an ample variety of inorganic nanotubes are made with tunable length, hole dimensions and shapes and tailored wall composition, microstructure, porosity and structure. The fabrication of multishell nanotubes combining different semiconducting oxides and metal nanoparticles is as well explored. This method provides a feasible and reproducible route for the fabrication of high density arrays of vertically alligned nanotubes on processable substrates. The emptying mechanism and microstructure of the nanotubes have been elucidated through SEM, STEM, HAADF-STEM tomography and energy dispersive X-ray spectroscopy. In this article, as a proof of concept, it is presented the straightforward integration of ZnO nanotubes as photoanode in a photovoltaic cell and as a photonic oxygen gas sensor. PMID:26860367

  2. Carbon nanotube materials for hydrogen storage

    SciTech Connect

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J.

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  3. Dimensions of Aesthetic Perception.

    ERIC Educational Resources Information Center

    Biaggio, Mary Kay; Supplee, Katherine A.

    1983-01-01

    Examines the validity of three dimensions of aesthetic perception: hedonic value, arousal, and uncertainty. Hedonic interest and arousal factors were found to differ from factors previously reported, while the uncertainty factor paralleled that previously reported. (Author/RH)

  4. Biochips Containing Arrays of Carbon-Nanotube Electrodes

    NASA Technical Reports Server (NTRS)

    Li, Jun; Meyyappan, M.; Koehne, Jessica; Cassell, Alan; Chen, Hua

    2008-01-01

    Biochips containing arrays of nanoelectrodes based on multiwalled carbon nanotubes (MWCNTs) are being developed as means of ultrasensitive electrochemical detection of specific deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) biomarkers for purposes of medical diagnosis and bioenvironmental monitoring. In mass production, these biochips could be relatively inexpensive (hence, disposable). These biochips would be integrated with computer-controlled microfluidic and microelectronic devices in automated hand-held and bench-top instruments that could be used to perform rapid in vitro genetic analyses with simplified preparation of samples. Carbon nanotubes are attractive for use as nanoelectrodes for detection of biomolecules because of their nanoscale dimensions and their chemical properties.

  5. Synthesis of Platinum Nanotubes and Nanorings via Simultaneous Metal Alloying and Etching.

    PubMed

    Huang, Zhiqi; Raciti, David; Yu, Shengnan; Zhang, Lei; Deng, Lin; He, Jie; Liu, Yijing; Khashab, Niveeen M; Wang, Chao; Gong, Jinlong; Nie, Zhihong

    2016-05-25

    Metallic nanotubes represent a class of hollow nanostructures with unique catalytic properties. However, the wet-chemical synthesis of metallic nanotubes remains a substantial challenge, especially for those with dimensions below 50 nm. This communication describes a simultaneous alloying-etching strategy for the synthesis of Pt nanotubes with open ends by selective etching Au core from coaxial Au/Pt nanorods. This approach can be extended for the preparation of Pt nanorings when Saturn-like Au core/Pt shell nanoparticles are used. The diameter and wall thickness of both nanotubes and nanorings can be readily controlled in the range of 14-37 nm and 2-32 nm, respectively. We further demonstrated that the nanotubes with ultrathin side walls showed superior catalytic performance in oxygen reduction reaction. PMID:27090384

  6. Functionalized carbon nanotubes: biomedical applications

    PubMed Central

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity. PMID:23091380

  7. Nanotube composite carbon fibers

    NASA Astrophysics Data System (ADS)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  8. Nanotube resonator devices

    DOEpatents

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A

    2014-05-06

    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  9. Naturally produced carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Velasco-Santos, C.; Martínez-Hernández, A. L.; Consultchi, A.; Rodríguez, R.; Castaño, V. M.

    2003-05-01

    Carbon nanotubes represent an impressive kind of materials with diverse unexpected properties, and different methods to artificially produce them have been developed. Recently, they have also been synthesized at low temperatures, demonstrating that these materials might exist in fluids or carbon rocks of the Earth's crust. A new type of natural encapsulated carbon nanotubes found in a coal-petroleum mix is presented. These findings show that all allotropic carbon forms known up to date can be produced in Nature, where pressure, catalysts particles, shear stress and parameters other than exclusively very high temperature, seem to play an important role for producing nanotubes.

  10. Tunable multiwalled nanotube resonator

    SciTech Connect

    Zettl, Alex K.; Jensen, Kenneth J.; Girit, Caglar; Mickelson, William E.; Grossman, Jeffrey C.

    2011-03-29

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  11. Tunable multiwalled nanotube resonator

    SciTech Connect

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  12. Flame Synthesis Used to Create Metal-Catalyzed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.

    2001-01-01

    Metal-catalyzed carbon nanotubes are highly ordered carbon structures of nanoscale dimensions. They may be thought of as hollow cylinders whose walls are formed by single atomic layers of graphite. Such cylinders may be composed of many nested, concentric atomic layers of carbon or only a single layer, the latter forming a single-walled carbon nanotube. This article reports unique results using a flame for their synthesis. Only recently were carbon nanotubes discovered within an arc discharge and recognized as fullerene derivatives. Today metal-catalyzed carbon nanotubes are of great interest for many reasons. They can be used as supports for the metal catalysts like those found in catalytic converters. Open-ended nanotubes are highly desirable because they can be filled by other elements, metals or gases, for battery and fuel cell applications. Because of their highly crystalline structure, they are significantly stronger than the commercial carbon fibers that are currently available (10 times as strong as steel but possessing one-sixth of the weight). This property makes them highly desirable for strengthening polymer and ceramic composite materials. Current methods of synthesizing carbon nanotubes include thermal pyrolysis of organometallics, laser ablation of metal targets within hydrocarbon atmospheres at high temperatures, and arc discharges. Each of these methods is costly, and it is unclear if they can be scaled for the commercial synthesis of carbon nanotubes. In contrast, flame synthesis is an economical means of bulk synthesis of a variety of aerosol materials such as carbon black. Flame synthesis of carbon nanotubes could potentially realize an economy of scale that would enable their use in common structural materials such as car-body panels. The top figure is a transmission electron micrograph of a multiwalled carbon nanotube. The image shows a cross section of the atomic structure of the nanotube. The dark lines are individual atomic layer planes of

  13. Storage of Hydrogen in Single-Walled Carbon Nanotubes

    SciTech Connect

    Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J.

    1997-03-27

    Pores of molecular dimensions can adsorb large quantities of gases owing to the enhanced density of the adsorbed material inside the pores, a consequence of the attractive potential of the pore walls. Pederson and Broughton have suggested that carbon nanotubes, which have diameters of typically a few nanometres, should be able to draw up liquids by capillarity, and this effect has been seen for low-surface-tension liquids in large-diameter, multi-walled nanotubes. Here we show that a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs). Temperature-programmed desorption spectroscopy shows that hydrogen will condense inside SWNTs under conditions that do not induce adsorption within a standard mesoporous activated carbon. The very high hydrogen uptake in these materials suggests that they might be effective as a hydrogen-storage material for fuel-cell electric vehicles.

  14. Selective Attention to Perceptual Dimensions and Switching between Dimensions

    ERIC Educational Resources Information Center

    Meiran, Nachshon; Dimov, Eduard; Ganel, Tzvi

    2013-01-01

    In the present experiments, the question being addressed was whether switching attention between perceptual dimensions and selective attention to dimensions are processes that compete over a common resource? Attention to perceptual dimensions is usually studied by requiring participants to ignore a never-relevant dimension. Selection failure…

  15. Carbon Nanotube Memory Elements

    SciTech Connect

    Meunier, Vincent; Sumpter, Bobby G

    2010-01-01

    Carbon nanotubes are among the most cited prototypical materials for nanoelectronics and information storage devices, a dominant position that originates from their intrinsic structural and electronic properties. In this chapter we review the developments in memory elements that directly exploit the unique properties of carbon nanotubes. Fundamental operational principles and characteristics are examined for the different types of carbon nanotube-based memory devices along with the current status of experimental fabrication and scalability. These include memory elements based on carbon nanotube field-effect transistors (CNFET), nanoelectromechanical systems (NEMS), and electromigration. Many of these devices show tremendous promise for providing enhanced densities, lower power requirements, more efficient read/write processes, and non-volatility of data.

  16. Transport in Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Datta, S.; Xue, Yong-Qinag; Anantram, M. P.; Saini, Subhash (Technical Monitor)

    1999-01-01

    This presentation discusses coupling between carbon nanotubes (CNT), simple metals (FEG) and a graphene sheet. The graphene sheet did not couple well with FEG, but the combination of a graphene strip and CNT did couple well with most simple metals.

  17. Carbon nanotubes: Fibrillar pharmacology

    NASA Astrophysics Data System (ADS)

    Kostarelos, Kostas

    2010-10-01

    The mechanisms by which chemically functionalized carbon nanotubes flow in blood and are excreted through the kidneys illustrate the unconventional behaviour of these fibrillar nanostructures, and the opportunities they offer as components for the design of advanced delivery vehicles.

  18. Polymer composites containing nanotubes

    NASA Technical Reports Server (NTRS)

    Bley, Richard A. (Inventor)

    2008-01-01

    The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.

  19. Composition based strategies for controlling radii in lipid nanotubes.

    PubMed

    Kurczy, Michael E; Mellander, Lisa J; Najafinobar, Neda; Cans, Ann-Sofie

    2014-01-01

    Nature routinely carries out small-scale chemistry within lipid bound cells and organelles. Liposome-lipid nanotube networks are being developed by many researchers in attempt to imitate these membrane enclosed environments, with the goal to perform small-scale chemical studies. These systems are well characterized in terms of the diameter of the giant unilamellar vesicles they are constructed from and the length of the nanotubes connecting them. Here we evaluate two methods based on intrinsic curvature for adjusting the diameter of the nanotube, an aspect of the network that has not previously been controllable. This was done by altering the lipid composition of the network membrane with two different approaches. In the first, the composition of the membrane was altered via lipid incubation of exogenous lipids; either with the addition of the low intrinsic curvature lipid soy phosphatidylcholine (soy-PC) or the high intrinsic curvature lipid soy phosphatidylethanolamine (soy-PE). In the second approach, exogenous lipids were added to the total lipid composition during liposome formation. Here we show that for both lipid augmentation methods, we observed a decrease in nanotube diameter following soy-PE additions but no significant change in size following the addition of soy-PC. Our results demonstrate that the effect of soy-PE on nanotube diameter is independent of the method of addition and suggests that high curvature soy-PE molecules facilitate tube membrane curvature.

  20. Low Genetic Quality Alters Key Dimensions of the Mutational Spectrum.

    PubMed

    Sharp, Nathaniel P; Agrawal, Aneil F

    2016-03-01

    Mutations affect individual health, population persistence, adaptation, diversification, and genome evolution. There is evidence that the mutation rate varies among genotypes, but the causes of this variation are poorly understood. Here, we link differences in genetic quality with variation in spontaneous mutation in a Drosophila mutation accumulation experiment. We find that chromosomes maintained in low-quality genetic backgrounds experience a higher rate of indel mutation and a lower rate of gene conversion in a manner consistent with condition-based differences in the mechanisms used to repair DNA double strand breaks. These aspects of the mutational spectrum were also associated with body mass, suggesting that the effect of genetic quality on DNA repair was mediated by overall condition, and providing a mechanistic explanation for the differences in mutational fitness decline among these genotypes. The rate and spectrum of substitutions was unaffected by genetic quality, but we find variation in the probability of substitutions and indels with respect to several aspects of local sequence context, particularly GC content, with implications for models of molecular evolution and genome scans for signs of selection. Our finding that the chances of mutation depend on genetic context and overall condition has important implications for how sequences evolve, the risk of extinction, and human health.

  1. Low Genetic Quality Alters Key Dimensions of the Mutational Spectrum

    PubMed Central

    Sharp, Nathaniel P.; Agrawal, Aneil F.

    2016-01-01

    Mutations affect individual health, population persistence, adaptation, diversification, and genome evolution. There is evidence that the mutation rate varies among genotypes, but the causes of this variation are poorly understood. Here, we link differences in genetic quality with variation in spontaneous mutation in a Drosophila mutation accumulation experiment. We find that chromosomes maintained in low-quality genetic backgrounds experience a higher rate of indel mutation and a lower rate of gene conversion in a manner consistent with condition-based differences in the mechanisms used to repair DNA double strand breaks. These aspects of the mutational spectrum were also associated with body mass, suggesting that the effect of genetic quality on DNA repair was mediated by overall condition, and providing a mechanistic explanation for the differences in mutational fitness decline among these genotypes. The rate and spectrum of substitutions was unaffected by genetic quality, but we find variation in the probability of substitutions and indels with respect to several aspects of local sequence context, particularly GC content, with implications for models of molecular evolution and genome scans for signs of selection. Our finding that the chances of mutation depend on genetic context and overall condition has important implications for how sequences evolve, the risk of extinction, and human health. PMID:27015430

  2. Low Genetic Quality Alters Key Dimensions of the Mutational Spectrum.

    PubMed

    Sharp, Nathaniel P; Agrawal, Aneil F

    2016-03-01

    Mutations affect individual health, population persistence, adaptation, diversification, and genome evolution. There is evidence that the mutation rate varies among genotypes, but the causes of this variation are poorly understood. Here, we link differences in genetic quality with variation in spontaneous mutation in a Drosophila mutation accumulation experiment. We find that chromosomes maintained in low-quality genetic backgrounds experience a higher rate of indel mutation and a lower rate of gene conversion in a manner consistent with condition-based differences in the mechanisms used to repair DNA double strand breaks. These aspects of the mutational spectrum were also associated with body mass, suggesting that the effect of genetic quality on DNA repair was mediated by overall condition, and providing a mechanistic explanation for the differences in mutational fitness decline among these genotypes. The rate and spectrum of substitutions was unaffected by genetic quality, but we find variation in the probability of substitutions and indels with respect to several aspects of local sequence context, particularly GC content, with implications for models of molecular evolution and genome scans for signs of selection. Our finding that the chances of mutation depend on genetic context and overall condition has important implications for how sequences evolve, the risk of extinction, and human health. PMID:27015430

  3. Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  4. Boron nitride nanotubes

    DOEpatents

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  5. Nanotube attachment for prevention of interfacial delamination

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sharmila M.; Karumuri, Anil K.

    2010-09-01

    A new approach to suppressing interfacial delamination in composites has been investigated. It involves growing strongly attached nanotubes on the surface of the core phase prior to matrix infiltration. Unusually durable interfaces between epoxy and graphite have been demonstrated using this technique. Two types of graphitic core materials have been studied: complex cellular foams having open-interconnected porosity and highly oriented pyrolitic graphite (HOPG) providing a model flat interface. When untreated foam is infiltrated with epoxy, the resulting composite is brittle, and shatters before 10% compression. However, when carbon nanotubes (CNTs) are grown on the foam prior to epoxy infiltration, the specimen becomes pliable, and visibly flattens out rather than fracturing. Model studies on a flat graphite-epoxy interface were performed by joining two HOPG specimens with a thin layer of epoxy, and testing the flexural response of the 'seam' using the three-point bend test. The untreated HOPG sandwich fails easily, whereas nanotube-attached HOPG sandwich shows an over three times increase in flexural load-carrying capacity, close to that of seamless monolithic graphite having identical dimensions. Microscopic evaluations of fractured interfaces indicate that, in all geometries, CNT grafting prevents delamination at the graphite-epoxy interface, and forces any crack(s) to propagate through the graphitic phase. This added inter-laminar strength and toughness can be related to the hierarchical morphology of the interface created by CNT attachment, and unprecedented composite structures can be envisioned.

  6. Cutting and sharpening carbon nanotubes using a carbon nanotube 'nanoknife'

    NASA Astrophysics Data System (ADS)

    Wei, Xian Long; Chen, Qing; Liu, Yang; Mao Peng, Lian

    2007-05-01

    A new method has been developed to precisely cut and to sharpen carbon nanotubes using a 'nanoknife', which is a short carbon nanotube adhered to a metal tip. The mechanism for the cutting and the sharpening was proposed to be local vaporization of carbon caused by Joule heating. The 'nanoknife' was also found useful to cut other nanotubes and nanowires. The cutting process was also found useful to construct complex carbon nanotube structures.

  7. Extra Dimensions of Space

    ERIC Educational Resources Information Center

    Lincoln, Don

    2013-01-01

    They say that there is no such thing as a stupid question. In a pedagogically pure sense, that's probably true. But some questions do seem to flirt dangerously close to being really quite ridiculous. One such question might well be, "How many dimensions of space are there?" I mean, it's pretty obvious that there are three:…

  8. Dimensions of Delinquency.

    ERIC Educational Resources Information Center

    Wunderlich, Richard A.

    1985-01-01

    In response to research questioning the utility of the Jesness Inventory in predicting and differentiating delinquency, this study isolated the personality dimensions of 422 adjudicated, noninstitutionalized adolescents by item level factor analysis. The resulting three factors--Mistrust, Social Pessimism, and Hypersensitivity--were compared with…

  9. Moving between Dimensions

    ERIC Educational Resources Information Center

    Stephenson, Paul

    2012-01-01

    The first word of this item is "imagine". This instruction has the potential to signal a journey through a world of geometry that might leave you spellbound. On the other hand, it could be the start of a roller-coaster ride through three dimensions that will tax both your imagination, and your powers of visualisation. It is likely that you will…

  10. Big Mysteries: Extra Dimensions

    SciTech Connect

    Lincoln, Don

    2014-06-10

    The weakness of gravity compared to the other subatomic forces is a real mystery. While nobody knows the answer, one credible solution is that gravity has access to more spatial dimensions than the other three known forces. In this video, Fermilab's Dr. Don Lincoln describes this idea, with the help of some very urbane characters.

  11. Dimensions of Nonverbal Communication.

    ERIC Educational Resources Information Center

    Overmier, Mary; And Others

    After a brief description of the dimensions of nonverbal communication, this booklet presents 21 activities that deal with nonverbal communication. Activities in the booklet involve body movements (kinesics), facial expressions, eye movements, perception and use of space (proxemics), haptics (touch), paralinguistics (vocal elements that accompany…

  12. Big Mysteries: Extra Dimensions

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The weakness of gravity compared to the other subatomic forces is a real mystery. While nobody knows the answer, one credible solution is that gravity has access to more spatial dimensions than the other three known forces. In this video, Fermilab's Dr. Don Lincoln describes this idea, with the help of some very urbane characters.

  13. Physics in One Dimension

    ERIC Educational Resources Information Center

    Bertel, Erminald

    2013-01-01

    Due to progress in nanotechnology high-quality quantum wires can nowadays be fabricated. The behavior of particles in one dimension differs significantly from that in three-dimensional (3D) systems, yet the physics of such low-dimensional systems is generally not very well represented in standard undergraduate or graduate curricula. For instance,…

  14. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  15. Templated Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  16. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.

    2009-06-09

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  17. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.

    2010-06-29

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  18. Application of nanotubes and nanofibres in nerve repair. A review.

    PubMed

    Olakowska, Edyta; Woszczycka-Korczyńska, Izabella; Jędrzejowska-Szypułka, Halina; Lewin-Kowalik, Joanna

    2010-01-01

    Nanoscience is the science of small particles of materials on a nanometre scale in at least one dimension. Nanomaterials can interact with tissues at the molecular level with a very high degree of functional specificity and control. A large group of nanomaterials includes nanotubes, nanofibres, liposomes, nanoparticles, polymeric micelles, nanogels and dendrimers. Such materials can be tailored to react with specific biological systems at a molecular or even supra-molecular level and respond to the cell environment while minimizing undesired side effects. Neuron injuries lead to complex cellular and molecular interactions at the lesion site in an effort to repair the damaged tissue and to regenerate the axon for reconnection with its target organ. Strategies to enhance and stimulate regeneration use various nerve conduits and synthetic guidance devices. A promising strategy for treatment of neuronal injuries is to support and promote axonal growth by means of nanotubes and nanofibres. Nanotubes can be produced from various materials, such as carbon, synthetic polymers, DNA, proteins, lipids, silicon and glass. Carbon nanotubes are not biodegradable and can be used as implants. Moreover, they serve as an extracellular scaffold to guide directed axonal growth. In the review we summarize the results of nanotube and nanofibre application in nerve repair after injury.

  19. Synthesis, characterization, and growth mechanism of single-walled metal oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sanjoy

    This work is focused on obtaining a qualitative and quantitative understanding of the mechanism of formation of aluminosilicate and aluminogermanate nanotubes. Understanding of the self-assembly, nucleation and growth of such a model system would enable precise predictive control of synthesis parameters for a wider range of nanoscale materials. This work is also focused on precise control of nanotube dimensions (length and diameter). In order to achieve this overall objective, this thesis consists of the following aspects: I. A systematic phenomenological study of the growth and structural properties of aluminosilicate and aluminogermanate nanotubes. The evolution of the aqueous-phase nanotube synthesis process over a period of 5 days, was carefully analyzed by a number of qualitative and quantitative characterization tools. In particular, the time-dependence of the nanotube size, structure, and solid-state packing was followed using electron microscopy, electron diffraction, X-ray diffraction, and dynamic light scattering. The essentially constant size and structure of the nanotubes over their entire synthesis time, the increasing nanotube concentration over the synthesis time, and the absence of significant polydispersity, strongly suggest that these nanotubular inorganic macromolecules are assembled through a thermodynamically controlled self-assembly process, rather than a kinetically controlled growth/polymerization process. II. Investigation of the mechanism of formation of single-walled aluminogermanate nanotubes and development of key insights into the process of hydrolysis and self-assembly of metal oxides in mildly acidic aqueous solutions. Here we employ solution-phase and solid-state characterization tools to elucidate such a mechanism, particularly that governing the formation of short (20 nm), ordered, monodisperse (3.3 nm diameter), aluminum-germanium-hydroxide ('aluminogermanate') nanotubes in aqueous solution. The central phenomena underlying this

  20. Growth of aligned carbon nanotubes on carbon microfibers by dc plasma-enhanced chemical vapor deposition

    SciTech Connect

    Chen, L H.; AuBuchon, J F.; Chen, I C.; Daraio, C; Ye, X R.; Gapin, A; Jin, Sungho; Wang, Chong M.

    2006-01-16

    It is shown that unidirectionally aligned carbon nanotubes can be grown on electrically conductive network of carbon microfibers via control of buffer layer material and applied electric field during dc plasma chemical vapor deposition growth. Ni catalyst deposition on carbon microfiber produces relatively poorly aligned nanotubes with significantly varying diameters and lengths obtained. The insertion of Ti 5 nm thick underlayer between Ni catalyst layer and C microfiber substrate significantly alters the morphology of nanotubes, resulting in much better aligned, finer diameter, and longer array of nanotubes. This beneficial effect is attributed to the reduced reaction between Ni and carbon paper, as well as prevention of plasma etching of carbon paper by inserting a Ti buffer layer. Such a unidirectionally aligned nanotube structure on an open-pore conductive substrate structure may conveniently be utilized as a high-surface-area base electrodes for fuel cells, batteries, and other electrochemical and catalytic reactions.

  1. Synthesis of carbon nanotubes and nanotube forests on copper catalyst

    NASA Astrophysics Data System (ADS)

    Kruszka, Bartosz; Terzyk, Artur P.; Wiśniewski, Marek; Gauden, Piotr A.; Szybowicz, Mirosław

    2014-09-01

    The growth of carbon nanotubes on bulk copper is studied. We show for the first time, that super growth chemical vapor deposition method can be successfully applied for preparation of nanotubes on copper catalyst, and the presence of hydrogen is necessary. Next, different methods of copper surface activation are studied, to improve catalyst efficiency. Among them, applied for the first time for copper catalyst in nanotubes synthesis, sulfuric acid activation is the most promising. Among tested samples the surface modified for 10 min is the most active, causing the growth of vertically aligned carbon nanotube forests. Obtained results have potential importance in application of nanotubes and copper in electronic chips and nanodevices.

  2. Tensor sufficient dimension reduction

    PubMed Central

    Zhong, Wenxuan; Xing, Xin; Suslick, Kenneth

    2015-01-01

    Tensor is a multiway array. With the rapid development of science and technology in the past decades, large amount of tensor observations are routinely collected, processed, and stored in many scientific researches and commercial activities nowadays. The colorimetric sensor array (CSA) data is such an example. Driven by the need to address data analysis challenges that arise in CSA data, we propose a tensor dimension reduction model, a model assuming the nonlinear dependence between a response and a projection of all the tensor predictors. The tensor dimension reduction models are estimated in a sequential iterative fashion. The proposed method is applied to a CSA data collected for 150 pathogenic bacteria coming from 10 bacterial species and 14 bacteria from one control species. Empirical performance demonstrates that our proposed method can greatly improve the sensitivity and specificity of the CSA technique. PMID:26594304

  3. Cultural dimensions of learning

    NASA Astrophysics Data System (ADS)

    Eyford, Glen A.

    1990-06-01

    How, what, when and where we learn is frequently discussed, as are content versus process, or right brain versus left brain learning. What is usually missing is the cultural dimension. This is not an easy concept to define, but various aspects can be identified. The World Decade for Cultural Development emphasizes the need for a counterbalance to a quantitative, economic approach. In the last century poets also warned against brutalizing materialism, and Sorokin and others have described culture more recently in terms of cohesive basic values expressed through aesthetics and institutions. Bloom's taxonomy incorporates the category of affective learning, which internalizes values. If cultural learning goes beyond knowledge acquisition, perhaps the surest way of understanding the cultural dimension of learning is to examine the aesthetic experience. This can use myths, metaphors and symbols, and to teach and learn by using these can help to unlock the human potential for vision and creativity.

  4. Infinitely Large New Dimensions

    SciTech Connect

    Arkani-Hamed, Nima; Dimopoulos, Savas; Dvali, Gia; Kaloper, Nemanja

    1999-07-29

    We construct intersecting brane configurations in Anti-de-Sitter space localizing gravity to the intersection region, with any number n of extra dimensions. This allows us to construct two kinds of theories with infinitely large new dimensions, TeV scale quantum gravity and sub-millimeter deviations from Newton's Law. The effective 4D Planck scale M{sub Pl} is determined in terms of the fundamental Planck scale M{sub *} and the AdS radius of curvature L via the familiar relation M{sub Pl}{sup 2} {approx} M{sub *}{sup 2+n} L{sup n}; L acts as an effective radius of compactification for gravity on the intersection. Taking M{sub *} {approx} TeV and L {approx} sub-mm reproduces the phenomenology of theories with large extra dimensions. Alternately, taking M{sub *} {approx} L{sup -1} {approx} M{sub Pl}, and placing our 3-brane a distance {approx} 100M{sub Pl}{sup -1} away from the intersection gives us a theory with an exponential determination of the Weak/Planck hierarchy.

  5. Carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  6. Carbon Nanotube Purification and Functionalization

    NASA Technical Reports Server (NTRS)

    Lebron, Marisabel; Mintz, Eric; Smalley, Richard E.; Meador, Michael A.

    2003-01-01

    Carbon nanotubes have the potential to significantly enhance the mechanical, thermal, and electrical properties of polymers. However, dispersion of carbon nanotubes in a polymer matrix is hindered by the electrostatic forces that cause them to agglomerate. Chemical modification of the nanotubes is necessary to minimize these electrostatic forces and promote adhesion between the nanotubes and the polymer matrix. In a collaborative research program between Clark Atlanta University, Rice University, and NASA Glenn Research Center several approaches are being explored to chemically modify carbon nanotubes. The results of this research will be presented.

  7. Copper-philic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Belgamwar, Sachin U.; Sharma, Niti Nipun

    2016-04-01

    Carbon nanotube is having poor wet-ability with copper metal. Wet-ability of carbon nanotube was improved by exposing and creating more active sites on the surface of carbon nanotube. Carbon nanotubes were subjected to the prolong ultrasonication treatment of 20×103 Hz and 500W, which helped in disentanglement of carbon nanotube agglomerates and in breaking the weak bonds like pentagonal or heptagonal structure on the surface and on the CNT cap. Disentanglement of the carbon nanotube, resulted in exposing the defective sites on the surface and breaking of weak bonds, which assisted in creating the new defects on the surface. This process results in generates more active sites on the surface and it helps in improving the wet-ability of the carbon nanotube in copper.

  8. Brightening of the lowest exciton in carbon nanotubes via chemical functionalization.

    PubMed

    Kilina, Svetlana; Ramirez, Jessica; Tretiak, Sergei

    2012-05-01

    Using time-dependent density functional theory, we found that chemical functionalization at low concentrations of single-walled carbon nanotubes (SWNTs) locally alters the π-conjugated network of the nanotube surface and leads to a spatial confinement of the electronically excited wave functions. Depending on the adsorbant positions, the chemisorption significantly modifies the optical selection rules. Our modeling suggests that photoluminescent efficiency of semiconducting SWNT materials can be controlled by selective chemical functionalization. PMID:22494501

  9. Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak

    2003-01-01

    This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,

  10. Conductance of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Datta, Supriyo; Anatram, M. P.

    1998-01-01

    The recent report of quantized conductance in a 4 m long multiwalled nanotube (MWNT) raises the exciting possibility of ballistic transport at room temperature over relatively long distances. We argue that this is made possible by the special symmetry of the eigenstates of the lowest propagating modes in metallic nanotubes which suppresses backscattering. This unusual effect is absent for the higher propagating modes so that transport is not ballistic once the bias exceeds the cut-off energy for the higher modes, which is estimated to be approximately 75 meV for nanotubes of diameter approximately 15 nm. Also, we show that the symmetry of the eigenstates can significantly affect their coupling to the reservoir and hence the contact resistance. A simple model is presented that can be used to understand the observed conductance-voltage characteristics.

  11. Carbon Nanotubes for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Pan, Hui; Li, Jianyi; Feng, Yuan Ping

    2010-03-01

    As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs) and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  12. Carbon Nanotubes for Supercapacitor

    PubMed Central

    2010-01-01

    As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs) and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage. PMID:20672061

  13. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  14. Carbon nanotube actuators

    PubMed

    Baughman; Cui; Zakhidov; Iqbal; Barisci; Spinks; Wallace; Mazzoldi; De Rossi D; Rinzler; Jaschinski; Roth; Kertesz

    1999-05-21

    Electromechanical actuators based on sheets of single-walled carbon nanotubes were shown to generate higher stresses than natural muscle and higher strains than high-modulus ferroelectrics. Like natural muscles, the macroscopic actuators are assemblies of billions of individual nanoscale actuators. The actuation mechanism (quantum chemical-based expansion due to electrochemical double-layer charging) does not require ion intercalation, which limits the life and rate of faradaic conducting polymer actuators. Unlike conventional ferroelectric actuators, low operating voltages of a few volts generate large actuator strains. Predictions based on measurements suggest that actuators using optimized nanotube sheets may eventually provide substantially higher work densities per cycle than any previously known technology.

  15. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies.

  16. Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device.

    PubMed

    Hall, Adam R; Falvo, Michael R; Superfine, Richard; Washburn, Sean

    2007-07-01

    Nanoscale electronics seeks to decrease the critical dimension of devices in order to improve performance while reducing power consumption. Single-walled carbon nanotubes fit well with this strategy because, in addition to their molecular size, they demonstrate a number of unique electronic, mechanical and electromechanical properties. In particular, theory predicts that strain can have a large effect on the band structure of a nanotube, which, in turn, has an influence on its electron transport properties. This has been demonstrated in experiments where axial strain was applied by a scanning probe. Theory also predicts that torsional strain can influence transport properties, which was observed recently in multiwalled nanotubes. Here we present the first experimental evidence of an electromechanical effect from torsional strain in single-walled nanotubes, and also the first measurements of piezoresistive response in a self-contained nanotube-based nanoelectromechanical structure.

  17. Bond percolation in higher dimensions

    NASA Astrophysics Data System (ADS)

    Corwin, Eric I.; Stinchcombe, Robin; Thorpe, M. F.

    2013-07-01

    We collect results for bond percolation on various lattices from two to fourteen dimensions that, in the limit of large dimension d or number of neighbors z, smoothly approach a randomly diluted Erdős-Rényi graph. We include results on bond-diluted hypersphere packs in up to nine dimensions, which show the mean coordination, excess kurtosis, and skewness evolving smoothly with dimension towards the Erdős-Rényi limit.

  18. Non-covalent interactions between carbon nanotubes and conjugated polymers.

    PubMed

    Tuncel, Dönüs

    2011-09-01

    Carbon nanotubes (CNTs) are interest to many different disciplines including chemistry, physics, biology, material science and engineering because of their unique properties and potential applications in various areas spanning from optoelectronics to biotechnology. However, one of the drawbacks associated with these materials is their insolubility which limits their wide accessibility for many applications. Various approaches have been adopted to circumvent this problem including modification of carbon nanotube surfaces by non-covalent and covalent attachments of solubilizing groups. Covalent approach modification may alter the intrinsic properties of carbon nanotubes and, in turn make them undesirable for many applications. On the other hand, a non-covalent approach helps to improve the solubility of CNTs while preserving their intrinsic properties. Among many non-covalent modifiers of CNTs, conjugated polymers are receiving increasing attention and highly appealing because of a number of reasons. To this end, the aim of this feature article is to review the recent results on the conjugated polymer-based non-covalent functionalization of CNTs with an emphasis on the effect of conjugated polymers in the dispersibility/solubility, optical, thermal and mechanical properties of carbon nanotubes as well as their usage in the purification and isolation of a specific single-walled nanotube from the mixture of the various tubes.

  19. Dimensions of E-Learning.

    ERIC Educational Resources Information Center

    Khan, Badrul H.

    2002-01-01

    Considers factors that must be weighed in creating effective electronic learning environments and presents a basic framework for Web-based or electronic learning. Highlights include the institutional dimension; the pedagogical dimension; technological dimension; interface design; evaluation; management; resource support; and ethical…

  20. Flying in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Prakash, Manu; Bardon, Thibaut

    2012-11-01

    It has long been proposed that insect flight might have evolved on a fluid interface. Surface of a pond provides an ecological niche which is exploited by a large number of species capable of locomotion on a fluid interface. Here we describe the discovery of constrained flight in two dimensions as a novel mode of locomotion used by water lily beetles (genus Galerucella). Because water lily beetles are also capable of three-dimensional free flight, this novel two-dimensional locomotion provides us with a unique model system to explore both the transition between two and three dimensional flight and the associated energetics. Here we present a comparative analysis of this transition in terms of wing stroke angles associated with two and three dimensional flight, as well as modeling surface tension forces on both the horizontal and vertical axes. Special attention is paid to the dynamics and energetics of flight in two-dimensions, focusing on the interaction of the wing strokes with the fluid interface and the capillary-gravity wave drag associated with two-dimensional propulsion. Current Address: Ecole Polytechnique, France.

  1. Supergravity in twelve dimension

    NASA Astrophysics Data System (ADS)

    Choi, Kang-Sin

    2015-09-01

    We consider supergravity in twelve dimension, whose dimensional reduction yields eleven-dimensional, IIA, and IIB supergravities. This also provides the effective field theory of F-theory. We must take one direction as a compact circle, so that the Poincaré symmetry and the zero-mode field contents are identical to those of eleven-dimensional supergravity. We also have a tower of massive Kaluza-Klein states to be viewed as the wrapping modes of M2-branes. The twelfth dimension decompactifies only if other two directions are compactified on a torus, restoring different ten dimensional Poincaré symmetry of IIB supergravity, whose missing graviton is provided by components of the rank three tensor field. This condition prevents us from violating the condition on the maximal number of real supercharges, which should be thirty-two. The self-duality condition of the IIB four-form fields is understood from twelve-dimensional Hodge duality. In this framework T-duality is re-interpreted as taking different compactification routes.

  2. Infinitely Large New Dimensions

    SciTech Connect

    Arkani-Hamed, Nima; Dimopoulos, Savas; Dvali, Gia; Kaloper, Nemanja

    2000-01-24

    We construct intersecting brane configurations in anitde Sitter (AdS) space which localize gravity to the intersection region, generalizing the trapping of gravity to any number n of infinite extra dimensions. Since the 4D Planck scale M{sub Pl} is determined by the fundamental Planck scale M{sub *} and the AdS radius L via the familiar relation M{sup 2}{sub Pl}{approx}M{sup 2+n}{sub *}L{sup n} , we get two kinds of theories with TeV scale quantum gravity and submillimeter deviations from Newton's law. With M{sub *}{approx}TeV and L{approx}submillimeter , we recover the phenomenology of theories with large extra dimensions. Alternatively, if M{sub *}{approx}L{sup -1}{approx}M{sub Pl} , and our 3-brane is at a distance of {approx}100M{sup -1}{sub Pl} from the intersection, we obtain a theory with an exponential determination of the weak/Planck hierarchy. (c) 2000 The American Physical Society.

  3. Physico-chemical studies of amorphous carbon nanotubes synthesized at low temperature

    SciTech Connect

    Tan, Kim Han; Ahmad, Roslina; Leo, Bey Fen; Yew, Ming Chian; Ang, Bee Chin; Johan, Mohd Rafie

    2012-08-15

    Highlights: ► Amorphous carbon nanotubes are successfully produced via a simple method at low temperature. ► Nanotubes in straight morphologies with open ends. ► Acid treatment increases the extent of amorphous for nanotubes. ► Amorphous nanotubes exhibit phenomena of π plasmon absorbance and possess higher bandgap. -- Abstract: This work provides better understanding on the nature of amorphous carbon nanotubes, which are synthesized via a simple chemical route. Amorphous carbon nanotubes (α-CNTs) are successfully synthesized by heating a mixture of ferrocene and ammonium chloride at temperature as low as 200 °C and are treated with hydrochloric acid. Transmission and field emission scanning electron microscopy techniques are performed to examine the morphology and dimension of the samples. X-ray diffraction tests confirm the amorphous structure of the nanotubes. The Fourier transform infrared spectroscopy and Raman studies indicate that the treated α-CNTs consist of many defective walls and are more amorphous compared with the untreated α-CNTs. Ultraviolet–visible absorption studies reveal that the untreated and treated α-CNTs exhibit plasmon absorbance with high bandgaps of 4 eV and 4.35 eV, respectively.

  4. The Toxicology of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Donaldson, Ken; Poland, Craig; Duffin, Rodger; Bonner, James

    2012-06-01

    1. Carbon nanotube structure, synthesis and applications C. Singh and W. Song; 2. The aerodynamic behaviour and pulmonary deposition of carbon nanotubes A. Buckley, R. Smith and R Maynard; 3. Utilising the concept of the biologically effective dose to define the particle and fibre hazards of carbon nanotubes K. Donaldson, R. Duffin, F. Murphy and C. Poland; 4. CNT, biopersistence and the fibre paradigm D. Warheit and M. DeLorme; 5. Length-dependent retention of fibres in the pleural space C. Poland, F. Murphy and K. Donaldson; 6. Experimental carcinogenicity of carbon nanotubes in the context of other fibres K. Unfried; 7. Fate and effects of carbon nanotubes following inhalation J. Ryman-Rasmussen, M. Andersen and J. Bonner; 8. Responses to pulmonary exposure to carbon nanotubes V. Castranova and R. Mercer; 9. Genotoxicity of carbon nanotubes R. Schins, C. Albrecht, K. Gerloff and D. van Berlo; 10. Carbon nanotube-cellular interactions; macrophages, epithelial and mesothelial cells V. Stone, M. Boyles, A. Kermanizadeh, J. Varet and H. Johnston; 11. Systemic health effects of carbon nanotubes following inhalation J. McDonald; 12. Dosimetry and metrology of carbon nanotubes L. Tran, L. MacCalman and R. Aitken; Index.

  5. Carbon nanotubes for microelectronics?

    PubMed

    Graham, Andrew P; Duesberg, Georg S; Seidel, Robert V; Liebau, Maik; Unger, Eugen; Pamler, Werner; Kreupl, Franz; Hoenlein, Wolfgang

    2005-04-01

    Despite all prophecies of its end, silicon-based microelectronics still follows Moore's Law and continues to develop rapidly. However, the inherent physical limits will eventually be reached. Carbon nanotubes offer the potential for further miniaturization as long as it is possible to selectively deposit them with defined properties.

  6. Retinal Light Processing Using Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Loftus, David J. (Inventor); Leng, Theodore (Inventor); Fishman, Harvey (Inventor)

    2004-01-01

    Method and system for processing light signals received by the eye of a human or other animal, where the eye may be compromised or non-functioning. Incident light is received at first and second pixels in a photodetector array and provides a pixel electrical signal representing the received light. Each of an array of carbon nanotube (CNT) towers is connected to a pixel, has a first tower end penetrating a retinal active layer of the animal and has a second tower end positioned to receive to receive and transport the pixel electrical signal to the retinal active layer. The CNT tower may be coated with a biologically active substance or chemically modified to promote neurite connections with the tower. The photoreceptor array can be provide with a signal altering mechanism that alters at least one of light intensity and wavelength intensity sensed by a first pixel relative to a second pixel, to correct for one or more selected eye problems.

  7. Phenomenology of Extra Dimensions

    SciTech Connect

    Hewett, J.L.; /SLAC

    2006-11-07

    If the structure of spacetime is different than that readily observed, gravitational physics, particle physics and cosmology are all immediately affected. The physics of extra dimensions offers new insights and solutions to fundamental questions arising in these fields. Novel ideas and frameworks are continuously born and evolved. They make use of string theoretical features and tools and they may reveal if and how the 11-dimensional string theory is relevant to our four-dimensional world. We have outlined some of the experimental observations in particle and gravitational physics as well as astrophysical and cosmological considerations that can constrain or confirm these scenarios. These developing ideas and the wide interdisciplinary experimental program that is charted out to investigate them mark a renewed effort to describe the dynamics behind spacetime. We look forward to the discovery of a higher dimensional spacetime.

  8. Action languages: Dimensions, effects

    NASA Technical Reports Server (NTRS)

    Hayes, Daniel G.; Streeter, Gordon

    1989-01-01

    Dimensions of action languages are discussed for communication between humans and machines, and the message handling capabilities of object oriented programming systems are examined. Design of action languages is seen to be very contextual. Economical and effective design will depend on features of situations, the tasks intended to be accomplished, and the nature of the devices themselves. Current object oriented systems turn out to have fairly simple and straightforward message handling facilities, which in themselves do little to buffer action or even in some cases to handle competing messages. Even so, it is possible to program a certain amount of discretion about how they react to messages. Such thoughtfulness and perhaps relative autonomy of program modules seems prerequisite to future systems to handle complex interactions in changing situations.

  9. Dual-Responsive Lipid Nanotubes: Two-Way Morphology Control by pH and Redox Effects.

    PubMed

    Unsal, Hande; Schmidt, Judith; Talmon, Yeshayahu; Yildirim, Leyla Tatar; Aydogan, Nihal

    2016-05-31

    Lipid nanotubes are the preferred structures for many applications, especially biological ones, and thus have attracted much interest recently. However, there is still a significant need for developing more lipid nanotubes that are reversibly controllable to improve their functionality and usability. Here, we presented a two-way reversible morphology control of the nanotubes formed by the recently designed molecule AQUA (C25H29NO4). Because of its special design, the AQUA has both pH-sensitive and redox-active characters provided by the carboxylic acid and anthraquinone groups. Upon chemical reduction, the nanotubes turned into thinner ribbons, and this structural transformation was significantly reversible. The reduction of the AQUA nanotubes also switched the nanotubes from electrically conductive to insulative. Nanotube morphology can additionally be altered by decreasing the pH below the pKa value of the AQUA, at ∼4.9. Decreasing the pH caused the gradual unfolding of the nanotubes, and the interlayer distance in the nanotube's walls increased. This morphological change was fast and reversible at a wide pH range, including the physiological pH. Thus, the molecular design of the AQUA allowed for an unprecedented two-way and reversible morphology control with both redox and pH effects. These unique features make AQUA a very promising candidate for many applications, ranging from electronics to controlled drug delivery.

  10. Fabrication and characterization of a carbon nanotube-based nanoknife

    NASA Astrophysics Data System (ADS)

    Singh, G.; Rice, P.; Mahajan, R. L.; McIntosh, J. R.

    2009-03-01

    We demonstrate the fabrication and testing of a prototype microtome knife based on a multiwalled carbon nanotube (MWCNT) for cutting ~100 nm thick slices of frozen-hydrated biological samples. A piezoelectric-based 3D manipulator was used inside a scanning electron microscope (SEM) to select and position individual MWCNTs, which were subsequently welded in place using electron beam-induced deposition. The knife is built on a pair of tungsten needles with provision to adjust the distance between the needle tips, accommodating various lengths of MWCNTs. We performed experiments to test the mechanical strength of a MWCNT in the completed device using an atomic force microscope tip. An increasing force was applied at the mid-point of the nanotube until failure occurred, which was observed in situ in the SEM. The maximum breaking force was approximately (8 × 10-7) N which corresponds well with the typical microtome cutting forces reported in the literature. In situ cutting experiments were performed on a cell biological embedding plastic (epoxy) by pushing it against the nanotube. Initial experiments show indentation marks on the epoxy surface. Quantitative analysis is currently limited by the surface asperities, which have the same dimensions as the nanotube.

  11. Carbon Nanotubes for Space Applications

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya

    2000-01-01

    The potential of nanotube technology for NASA missions is significant and is properly recognized by NASA management. Ames has done much pioneering research in the last five years on carbon nanotube growth, characterization, atomic force microscopy, sensor development and computational nanotechnology. NASA Johnson Space Center has focused on laser ablation production of nanotubes and composites development. These in-house efforts, along with strategic collaboration with academia and industry, are geared towards meeting the agency's mission requirements. This viewgraph presentation (including an explanation for each slide) outlines the research focus for Ames nanotechnology, including details on carbon nanotubes' properties, applications, and synthesis.

  12. Spin transport in nanotubes (invited)

    SciTech Connect

    Alphenaar, B. W.; Tsukagoshi, K.; Wagner, M.

    2001-06-01

    We study electron spin transport through carbon nanotubes contacted by ferromagnetic electrodes. The resistance of a ferromagnetically contacted multiwalled nanotube switches hysteretically as a function of applied magnetic field, with a maximum resistance change of 9% at 4.2 K. Magnetoresistance measurements of carbon nanotubes having one cobalt contact and one platinum/gold contact, however, show no switching. In addition, we present calculations of the magnetoresistance ratio for the ferromagnetic nanotube device, and predict that a resistance change of 25% is possible. {copyright} 2001 American Institute of Physics.

  13. Nanotube-based nanoelectromechanical systems

    SciTech Connect

    Lozovik, Yu. E. Nikolaev, A. G.; Popov, A. M.

    2006-09-15

    Nanoelectromechanical systems based on multiwalled carbon nanotubes are considered. Control of motion and modes of operation of these systems are discussed. The structure of double-walled carbon nanotubes with atomic structural defects that can be used as bolt-nut pairs is analyzed. Energy barriers and threshold forces for relative motion of walls along and across the 'thread' are computed for double-walled nanotubes with various types of defects. It is found that the qualitative characteristics of the thread are independent of the type of defect. Feasibility of fabricating double-walled nanotubes for use as bolt-nut pairs by self-organization is discussed.

  14. Fabricating Copper Nanotubes by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  15. Accelerated dynamics simulations of nanotubes.

    SciTech Connect

    Uberuaga, B. P.; Stuart, S. J.; Voter, A. F.

    2002-01-01

    We report on the application of accelerated dynamics techniques to the study of carbon nanotubes. We have used the parallel replica method and temperature accelerated dynamics simulations are currently in progress. In the parallel replica study, we have stretched tubes at a rate significantly lower than that used in previous studies. In these preliminary results, we find that there are qualitative differences in the rupture of the nanotubes at different temperatures. We plan on extending this investigation to include nanotubes of various chiralities. We also plan on exploring unique geometries of nanotubes.

  16. Nanotube-assisted protein deactivation

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Punyani, Supriya; Bale, Shyam Sundhar; Yang, Hoichang; Borca-Tasciuc, Theodorian; Kane, Ravi S.

    2008-01-01

    Conjugating proteins onto carbon nanotubes has numerous applications in biosensing, imaging and cellular delivery. However, remotely controlling the activity of proteins in these conjugates has never been demonstrated. Here we show that upon near-infrared irradiation, carbon nanotubes mediate the selective deactivation of proteins in situ by photochemical effects. We designed nanotube-peptide conjugates to selectively destroy the anthrax toxin, and also optically transparent coatings that can self-clean following either visible or near-infrared irradiation. Nanotube-assisted protein deactivation may be broadly applicable to the selective destruction of pathogens and cells, and will have applications ranging from antifouling coatings to functional proteomics.

  17. Carbon nanotube IR detectors (SV)

    SciTech Connect

    Leonard, F. L.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  18. Neocortical Maturation during Adolescence: Change in Neuronal Soma Dimension

    ERIC Educational Resources Information Center

    Rabinowicz, Theodore; Petetot, Jean MacDonald-Comber; Khoury, Jane C.; de Courten-Myers, Gabrielle M.

    2009-01-01

    During adolescence, cognitive abilities increase robustly. To search for possible related structural alterations of the cerebral cortex, we measured neuronal soma dimension (NSD = width times height), cortical thickness and neuronal densities in different types of neocortex in post-mortem brains of five 12-16 and five 17-24 year-olds (each 2F,…

  19. Dimensions of systems biology.

    PubMed

    Huang, S; Wikswo, J

    2006-01-01

    Systems biology, possibly the latest sub-discipline of biology, has arisen as a result of the shockwave of genomic and proteomic data that has appeared in the past few years. However, despite ubiquitous initiatives that carry this label, there is no precise definition of systems biology other than the implication of a new, all-encompassing, multidisciplinary endeavor. Here we propose that systems biology is more than the integration of biology with methods of the physical and computational sciences, and also more than the expansion of the single-pathway approach to embracing genome-scale networks. It is the discipline that specifically addresses the fundamental properties of the complexity that living systems represent. To facilitate the discussion, we dissect and project the multifaceted systems complexity of living organisms into five dimensions: (1) molecular complexity; (2) structural complexity; (3) temporal complexity; (4) abstraction and emergence; and (5) algorithmic complexity. This "five-dimensional space" may provide a framework for comparing, classifying, and complementing the vast diversity of existing systems biology programs and their goals, and will also give a glimpse of the magnitude of the scientific problems associated with unraveling the ultimate mysteries of life.

  20. Physics in one dimension

    NASA Astrophysics Data System (ADS)

    van Houselt, A.; Schäfer, J.; Zandvliet, H. J. W.; Claessen, R.

    2013-01-01

    With modern microelectronics moving towards smaller and smaller length scales on the (sub-) nm scale, quantum effects (apart from band structure and band gaps) have begun to play an increasingly important role. This especially concerns dimensional confinement to 2D (high electron mobility transistors and integer/fractional quantum Hall effect physics, graphene and topological insulators) and 1D (with electrical connections eventually reaching the quantum limit). Recent developments in the above-mentioned areas have revealed that the properties of electron systems become increasingly exotic as one progresses from the 3D case into lower dimensions. As compared to 2D electron systems, much less experimental progress has been achieved in the field of 1D electron systems. The main reason for the lack of experimental results in this field is related to the difficulty of realizing 1D electron systems. Atom chains created in quantum mechanical break junction set-ups are too short to exhibit the typically 1D signatures. As an alternative, atomic chains can be produced on crystal surfaces, either via assembling them one-by-one using a scanning tunnelling microscope or via self-assembly. The drawback of the latter systems is that the atomic chains are not truly 1D since they are coupled to the underlying crystal and sometimes even to the neighbouring chains. In retrospect, this coupling turns out to be an absolute necessity in the experiment since true 1D systems are disordered at any non-zero temperature [1]. The coupling to the crystal and/or neighbouring chains shifts the phase transition, for example, a Peierls instability, to a non-zero temperature and thus allows experiments to be performed in the ordered state. Here, we want to emphasize that the electronic properties of the 1D electron system are fundamentally different from its 2D and 3D counterparts. The Fermi liquid theory, which is applicable to 2D and 3D electron systems, breaks down spectacularly in the 1D case

  1. Physics in one dimension

    NASA Astrophysics Data System (ADS)

    van Houselt, A.; Schäfer, J.; Zandvliet, H. J. W.; Claessen, R.

    2013-01-01

    With modern microelectronics moving towards smaller and smaller length scales on the (sub-) nm scale, quantum effects (apart from band structure and band gaps) have begun to play an increasingly important role. This especially concerns dimensional confinement to 2D (high electron mobility transistors and integer/fractional quantum Hall effect physics, graphene and topological insulators) and 1D (with electrical connections eventually reaching the quantum limit). Recent developments in the above-mentioned areas have revealed that the properties of electron systems become increasingly exotic as one progresses from the 3D case into lower dimensions. As compared to 2D electron systems, much less experimental progress has been achieved in the field of 1D electron systems. The main reason for the lack of experimental results in this field is related to the difficulty of realizing 1D electron systems. Atom chains created in quantum mechanical break junction set-ups are too short to exhibit the typically 1D signatures. As an alternative, atomic chains can be produced on crystal surfaces, either via assembling them one-by-one using a scanning tunnelling microscope or via self-assembly. The drawback of the latter systems is that the atomic chains are not truly 1D since they are coupled to the underlying crystal and sometimes even to the neighbouring chains. In retrospect, this coupling turns out to be an absolute necessity in the experiment since true 1D systems are disordered at any non-zero temperature [1]. The coupling to the crystal and/or neighbouring chains shifts the phase transition, for example, a Peierls instability, to a non-zero temperature and thus allows experiments to be performed in the ordered state. Here, we want to emphasize that the electronic properties of the 1D electron system are fundamentally different from its 2D and 3D counterparts. The Fermi liquid theory, which is applicable to 2D and 3D electron systems, breaks down spectacularly in the 1D case

  2. Carbon nanotubes and nanowires for biological sensing

    NASA Technical Reports Server (NTRS)

    Li, Jun; Ng, Hou Tee; Chen, Hua

    2005-01-01

    This chapter reviews the recent development in biological sensing using nanotechnologies based on carbon nanotubes and various nanowires. These 1D materials have shown unique properties that are efficient in interacting with biomolecules of similar dimensions, i.e., on a nanometer scale. Various aspects including synthesis, materials properties, device fabrication, biofunctionalization, and biological sensing applications of such materials are reviewed. The potential of such integrated nanobiosensors in providing ultrahigh sensitivity, fast response, and high-degree multiplex detection, yet with minimum sample requirements is demonstrated. This chapter is intended to provide comprehensive updated information for people from a variety of backgrounds but with common interests in the fast-moving interdisciplinary field of nanobiotechnology.

  3. Thermoacoustic transduction in individual suspended carbon nanotubes.

    PubMed

    Mason, Blake J; Chang, Shun-Wen; Chen, Jihan; Cronin, Stephen B; Bushmaker, Adam W

    2015-05-26

    We report an experimental measurement of the acoustic signal emitted from an individual suspended carbon nanotube (CNT) approximate 2 μm in length, 1 nm in diameter, and 10(-21) kg in mass. This system represents the smallest thermoacoustic system studied to date. By applying an AC voltage of 1.4 V at 8 kHz to the suspended CNT, we are able to detect the acoustic signal using a commercial microphone. The acoustic power detected is found to span a range from 0.1 to 2.4 attoWatts or 0.2 to 1 μPa of sound pressure. This corresponds to thermoacoustic efficiencies ranging from 0.007 to 0.6 Pa/W for the seven devices that were measured in this study. Here, the small lateral dimensions of these devices cause large heat losses due to thermal conduction, which result in the relatively small observed thermoacoustic efficiencies. PMID:25961803

  4. Carbon nanotube networks in epoxy composites and aerogels

    NASA Astrophysics Data System (ADS)

    Bryning, Mateusz B.

    This thesis describes the properties of carbon nanotube networks in epoxy composites and in novel carbon nanotube aerogels. SWNT Epoxy composites were created using a new procedure that enabled us to control SWNT concentration and dispersion quality in the composite. The composites exhibited percolation-like electrical conductivity with threshold volume fractions in the semi-dilute nanotube concentration regime. The observed electrical conductivites are described in terms of nanotube length, degree of aggregation, and sample homogeneity. By modifying the procedure to allow for nanotube chaining, conductive composites were created at SWNT volume fractions as low as 5.2 (+1.9/-0.5) x 10-5, the lowest reported to date. The thermal conductivity of SWNT-epoxy composites is also investigated. Composites were prepared using suspensions of SWNTs in N-N-Dimethylformamide (DMF) or surfactant stabilized aqueous SWNT suspensions. Thermal conductivity enhancement was observed in both types of composites, but DMF-processed composites showed an advantage at SWNT volume fractions between φ ˜ 0.001 to 0.005. Surfactant processed samples, however, allowed greater SWNT loading at which a larger overall enhancement (64 +/- 9) % at φ ˜ 0.1 was observed. The enhancement differences are attributed to a tenfold higher SWNT/solid-composite interfacial thermal resistance in the surfactant-processed composites over DMF-processed composites. The interfacial resistance was extracted from the data using effective medium theory. Carbon nanotube aerogels were created by freeze drying and critical point drying aqueous carbon nanotube gels. The resulting aerogels have densities of approximately 0.01 to 0.06 g/cm3 and maintain the dimensions of the wet gel. Critical point dried aerogels also preserve the microscopic three-dimensional network of debundled carbon nanotubes of the original gel. Pure SWNT aerogels are self-supporting. Reinforcement with small amounts of added polyvinyl alcohol (PVA

  5. Johannes Kepler and Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Hendry, Archibald W.

    2004-02-01

    How many dimensions are there? The answer used to be four — three spatial and one time dimension. Maybe it still is, though nowadays we hear that the answer may be more, perhaps many more. Many of our students have heard about this on television or read about it. They want to know more. Why do physicists think we need more than three spatial dimensions? What's the point of it all?

  6. Anomalous dimensions of conformal baryons

    NASA Astrophysics Data System (ADS)

    Pica, Claudio; Sannino, Francesco

    2016-10-01

    We determine the anomalous dimensions of baryon operators for the three-color theory as functions of the number of massless flavors within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within the δ expansion, for a wide range of number of flavors. We also find that this is always smaller than the anomalous dimension of the fermion mass operator. These findings challenge the partial compositeness paradigm.

  7. Exterior dimension of fat fractals

    NASA Technical Reports Server (NTRS)

    Grebogi, C.; Mcdonald, S. W.; Ott, E.; Yorke, J. A.

    1985-01-01

    Geometric scaling properties of fat fractal sets (fractals with finite volume) are discussed and characterized via the introduction of a new dimension-like quantity which is called the exterior dimension. In addition, it is shown that the exterior dimension is related to the 'uncertainty exponent' previously used in studies of fractal basin boundaries, and it is shown how this connection can be exploited to determine the exterior dimension. Three illustrative applications are described, two in nonlinear dynamics and one dealing with blood flow in the body. Possible relevance to porous materials and ballistic driven aggregation is also noted.

  8. Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection.

    PubMed

    Cruz-Silva, Eduardo; Lopez-Urias, Florentino; Munoz-Sandoval, Emilio; Sumpter, Bobby G; Terrones, Humberto; Charlier, Jean-Christophe; Meunier, Vincent; Terrones, Mauricio

    2011-03-01

    A first-principles approach is used to establish that substitutional phosphorus atoms within carbon nanotubes strongly modify the chemical properties of the surface, thus creating highly localized sites with specific affinity towards acceptor molecules. Phosphorus-nitrogen co-dopants within the tubes have a similar effect for acceptor molecules, but the P-N bond can also accept charge, resulting in affinity towards donor molecules. This molecular selectivity is illustrated in CO and NH3 adsorbed on PN-doped nanotubes, O2 on P-doped nanotubes, and NO2 and SO2 on both P- and PN-doped nanotubes. The adsorption of different chemical species onto the doped nanotubes modifies the dopant-induced localized states, which subsequently alter the electronic conductance. Although SO2 and CO adsorptions cause minor shifts in electronic conductance, NH3, NO2, and O2 adsorptions induce the suppression of a conductance dip. Conversely, the adsorption of NO2 on PN-doped nanotubes is accompanied with the appearance of an additional dip in conductance, correlated with a shift of the existing ones. Overall these changes in electric conductance provide an efficient way to detect selectively the presence of specific molecules. Additionally, the high oxidation potential of the P-doped nanotubes makes them good candidates for electrode materials in hydrogen fuel cells.

  9. Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks.

    PubMed

    Fabbro, Alessandra; Bosi, Susanna; Ballerini, Laura; Prato, Maurizio

    2012-08-15

    In the past decade, nanotechnology applications to the nervous system have often involved the study and the use of novel nanomaterials to improve the diagnosis and therapy of neurological diseases. In the field of nanomedicine, carbon nanotubes are evaluated as promising materials for diverse therapeutic and diagnostic applications. Besides, carbon nanotubes are increasingly employed in basic neuroscience approaches, and they have been used in the design of neuronal interfaces or in that of scaffolds promoting neuronal growth in vitro. Ultimately, carbon nanotubes are thought to hold the potential for the development of innovative neurological implants. In this framework, it is particularly relevant to document the impact of interfacing such materials with nerve cells. Carbon nanotubes were shown, when modified with biologically active compounds or functionalized in order to alter their charge, to affect neurite outgrowth and branching. Notably, purified carbon nanotubes used as scaffolds can promote the formation of nanotube-neuron hybrid networks, able per se to affect neuron integrative abilities, network connectivity, and synaptic plasticity. We focus this review on our work over several years directed to investigate the ability of carbon nanotube platforms in providing a new tool for nongenetic manipulations of neuronal performance and network signaling.

  10. P- and PN-Doped Nanotubes for Ultrasensitive and Selective Molecular Detection

    SciTech Connect

    Cruz Silva, Eduardo; Terrones Maldonado, Humberto; Terrones Maldonado, Mauricio; Charlier, Jean Christophe; Meunier, Vincent; Sumpter, Bobby G; Munoz-Sandoval, Emilio; Lopez, Florentino

    2010-01-01

    A first-principles approach is used to establish that substitutional phosphorus atoms strongly modify the chemical properties of the surface of carbon nanotubes, creating highly-localized sites with specific affinity towards acceptor molecules. Phosphorus-nitrogen co-dopants have a similar effect for acceptor molecules, but the P-N bond can also accept charge, resulting in affinity towards donor molecules. This molecular selectivity is illustrated in CO and NH3 adsorbed on PN doped nanotubes, O2 on P-doped nanotubes, and NO2 and SO2 on both P- and PN-doped nanotubes. The adsorption of different chemical species onto the doped nanotubes modifies the dopant-induced localized states, which subsequently alter electronic conductance. Although SO2 and CO adsorption cause minor shifts in electronic conductance; NH3, NO2, and O2 adsorptions induce the suppression of a conductance dip. Conversely, the adsorption of NO2 on PN-doped nanotubes is accompanied with the appearance of an additional dip in conductance, correlated with a shift of the existing ones. Overall these changes in electric conductance provide an efficient way to detect selectively the presence of specific molecules. Additionally, the high oxidation potential of the P-doped nanotubes makes them good candidates for electrode materials in hydrogen fuel cells.

  11. Phosphorus and phosphorus nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection

    SciTech Connect

    Cruz Silva, Eduardo; Lopez, Florentino; Munoz-Sandoval, Emilio; Sumpter, Bobby G; Terrones Maldonado, Humberto; Charlier, Jean Christophe; Meunier, Vincent; Terrones Maldonado, Mauricio

    2011-01-01

    A first-principles approach is used to establish that substitutional phosphorus atoms within carbon nanotubes strongly modify the chemical properties of the surface, thus creating highly localized sites with specific affinity towards acceptor molecules. Phosphorus nitrogen co-dopants within the tubes have a similar effect for acceptor molecules, but the P N bond can also accept charge, resulting in affinity towards donor molecules. This molecular selectivity is illustrated in CO and NH3 adsorbed on PN-doped nanotubes, O2 on P-doped nanotubes, and NO2 and SO2 on both P- and PN-doped nanotubes. The adsorption of different chemical species onto the doped nanotubes modifies the dopant-induced localized states, which subsequently alter the electronic conductance. Although SO2 and CO adsorptions cause minor shifts in electronic conductance, NH3, NO2, and O2 adsorptions induce the suppression of a conductance dip. Conversely, the adsorption of NO2 on PN-doped nanotubes is accompanied with the appearance of an additional dip in conductance, correlated with a shift of the existing ones. Overall these changes in electric conductance provide an efficient way to detect selectively the presence of specific molecules. Additionally, the high oxidation potential of the P-doped nanotubes makes them good candidates for electrode materials in hydrogen fuel cells.

  12. Adhesion to carbon nanotube conductive scaffolds forces action-potential appearance in immature rat spinal neurons.

    PubMed

    Fabbro, Alessandra; Sucapane, Antonietta; Toma, Francesca Maria; Calura, Enrica; Rizzetto, Lisa; Carrieri, Claudia; Roncaglia, Paola; Martinelli, Valentina; Scaini, Denis; Masten, Lara; Turco, Antonio; Gustincich, Stefano; Prato, Maurizio; Ballerini, Laura

    2013-01-01

    In the last decade, carbon nanotube growth substrates have been used to investigate neurons and neuronal networks formation in vitro when guided by artificial nano-scaled cues. Besides, nanotube-based interfaces are being developed, such as prosthesis for monitoring brain activity. We recently described how carbon nanotube substrates alter the electrophysiological and synaptic responses of hippocampal neurons in culture. This observation highlighted the exceptional ability of this material in interfering with nerve tissue growth. Here we test the hypothesis that carbon nanotube scaffolds promote the development of immature neurons isolated from the neonatal rat spinal cord, and maintained in vitro. To address this issue we performed electrophysiological studies associated to gene expression analysis. Our results indicate that spinal neurons plated on electro-conductive carbon nanotubes show a facilitated development. Spinal neurons anticipate the expression of functional markers of maturation, such as the generation of voltage dependent currents or action potentials. These changes are accompanied by a selective modulation of gene expression, involving neuronal and non-neuronal components. Our microarray experiments suggest that carbon nanotube platforms trigger reparative activities involving microglia, in the absence of reactive gliosis. Hence, future tissue scaffolds blended with conductive nanotubes may be exploited to promote cell differentiation and reparative pathways in neural regeneration strategies.

  13. Carbon nanotube Archimedes screws.

    PubMed

    Oroszlány, László; Zólyomi, Viktor; Lambert, Colin J

    2010-12-28

    Recently, nanomechanical devices composed of a long stationary inner carbon nanotube and a shorter, slowly rotating outer tube have been fabricated. In this paper, we study the possibility of using such devices as nanoscale transducers of motion into electricity. When the outer tube is chiral, we show that such devices act like quantum Archimedes screws, which utilize mechanical energy to pump electrons between reservoirs. We calculate the pumped charge from one end of the inner tube to the other, driven by the rotation of a chiral outer nanotube. We show that the pumped charge can be greater than one electron per 360° rotation, and consequently, such a device operating with a rotational frequency of 10 MHz, for example, would deliver a current of ≈1 pAmp.

  14. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  15. Engineering carbon nanotubes and nanotube circuits using electrical breakdown.

    PubMed

    Collins, P G; Arnold, M S; Avouris, P

    2001-04-27

    Carbon nanotubes display either metallic or semiconducting properties. Both large, multiwalled nanotubes (MWNTs), with many concentric carbon shells, and bundles or "ropes" of aligned single-walled nanotubes (SWNTs), are complex composite conductors that incorporate many weakly coupled nanotubes that each have a different electronic structure. Here we demonstrate a simple and reliable method for selectively removing single carbon shells from MWNTs and SWNT ropes to tailor the properties of these composite nanotubes. We can remove shells of MWNTs stepwise and individually characterize the different shells. By choosing among the shells, we can convert a MWNT into either a metallic or a semiconducting conductor, as well as directly address the issue of multiple-shell transport. With SWNT ropes, similar selectivity allows us to generate entire arrays of nanoscale field-effect transistors based solely on the fraction of semiconducting SWNTs.

  16. Carbon nanotube plane fastener

    NASA Astrophysics Data System (ADS)

    Hirahara, Kaori; Ajioka, Shoichi; Nakayama, Yoshikazu

    2011-12-01

    We report a feature of carbon nanotubes (CNTs) that arises when the surfaces of two vertically-aligned CNT brushes are pressed together. Adhesion between the CNTs creates a plane fastener-like device. Observations from scanning electron microscopy and measurements of adhesion properties indicate a device-dependence on CNT density and shape near the tip region. Among other applications, such fasteners have the potential to attach small components onto micron-sized electronic devices.

  17. Carbon nanotube network varactor

    NASA Astrophysics Data System (ADS)

    Generalov, A. A.; Anoshkin, I. V.; Erdmanis, M.; Lioubtchenko, D. V.; Ovchinnikov, V.; Nasibulin, A. G.; Räisänen, A. V.

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling.

  18. Carbon nanotube network varactor.

    PubMed

    Generalov, A A; Anoshkin, I V; Erdmanis, M; Lioubtchenko, D V; Ovchinnikov, V; Nasibulin, A G; Räisänen, A V

    2015-01-30

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling.

  19. Silicon Carbide Nanotube Synthesized

    NASA Technical Reports Server (NTRS)

    Lienhard, Michael A.; Larkin, David J.

    2003-01-01

    Carbon nanotubes (CNTs) have generated a great deal of scientific and commercial interest because of the countless envisioned applications that stem from their extraordinary materials properties. Included among these properties are high mechanical strength (tensile and modulus), high thermal conductivity, and electrical properties that make different forms of single-walled CNTs either conducting or semiconducting, and therefore, suitable for making ultraminiature, high-performance CNT-based electronics, sensors, and actuators. Among the limitations for CNTs is their inability to survive in high-temperature, harsh-environment applications. Silicon carbon nanotubes (SiCNTs) are being developed for their superior material properties under such conditions. For example, SiC is stable in regards to oxidation in air to temperatures exceeding 1000 C, whereas carbon-based materials are limited to 600 C. The high-temperature stability of SiCNTs is envisioned to enable high-temperature, harsh-environment nanofiber- and nanotube-reinforced ceramics. In addition, single-crystal SiC-based semiconductors are being developed for hightemperature, high-power electronics, and by analogy to CNTs with silicon semiconductors, SiCNTs with single-crystal SiC-based semiconductors may allow high-temperature harsh-environment nanoelectronics, nanosensors, and nanoactuators to be realized. Another challenge in CNT development is the difficulty of chemically modifying the tube walls, which are composed of chemically stable graphene sheets. The chemical substitution of the CNTs walls will be necessary for nanotube self-assembly and biological- and chemical-sensing applications. SiCNTs are expected to have a different multiple-bilayer wall structure, allowing the surface Si atoms to be functionalized readily with molecules that will allow SiCNTs to undergo self-assembly and be compatible with a variety of materials (for biotechnology applications and high-performance fiber-reinforced ceramics).

  20. Photoluminescence imaging of electronic-impurity-induced exciton quenching in single-walled carbon nanotubes.

    PubMed

    Crochet, Jared J; Duque, Juan G; Werner, James H; Doorn, Stephen K

    2012-02-01

    The electronic properties of single-walled carbon nanotubes can be altered by surface adsorption of electronic impurities or dopants. However, fully understanding the influence of these impurities is difficult because of the inherent complexity of the solution-based colloidal chemistry of nanotubes, and because of a lack of techniques for directly imaging dynamic processes involving these impurities. Here, we show that photoluminescence microscopy can be used to image exciton quenching in semiconducting single-walled carbon nanotubes during the early stages of chemical doping with two different species. The addition of AuCl(3) leads to localized exciton-quenching sites, which are attributed to a mid-gap electronic impurity level, and the adsorbed species are also found sometimes to be mobile on the surface of the nanotubes. The addition of H(2)O(2) leads to delocalized exciton-quenching hole states, which are responsible for long-range photoluminescence blinking, and are also mobile.

  1. Teslaphoresis of Carbon Nanotubes.

    PubMed

    Bornhoeft, Lindsey R; Castillo, Aida C; Smalley, Preston R; Kittrell, Carter; James, Dustin K; Brinson, Bruce E; Rybolt, Thomas R; Johnson, Bruce R; Cherukuri, Tonya K; Cherukuri, Paul

    2016-04-26

    This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale. PMID:27074626

  2. Silicon nanotubes: Why not?

    NASA Astrophysics Data System (ADS)

    Zhang, R. Q.; Lee, S. T.; Law, Chi-Kin; Li, Wai-Kee; Teo, Boon K.

    2002-10-01

    A diamond nanowire (CNW), a silicon nanowire (SiNW), a carbon nanotube (CNT), and a silicon nanotube (SiNT) were studied using the semiempirical molecular orbital PM3 method, with confirmations by calculations at the HF/3-21G and HF/3-21G(d) levels. It was shown that the systems with a diamond structure generally possess larger band gaps than their tubular counterparts. Carbon nanotubular structure shows efficient sp 2 hybridization and π bonding, thus allowing a high stability of the carbon nanotube structure. In contrast, silicon prefers sp 3 hybridization and favors the tetrahedral diamond-like structures, thereby forming the commonly observed nanowires. This distinction can be traced to the differences in the energetics and overlaps of the valence s and p orbitals of C vs Si. Nevertheless, when the dangling bonds are properly terminated, SiNT can in principle be formed. The resulting energy minimized SiNT, however, adopts a severely puckered structure (with a corrugated surface) with SiSi distances ranging from 1.85 to 2.25 Å.

  3. BOOK REVIEW: Quantum Physics in One Dimension

    NASA Astrophysics Data System (ADS)

    Logan, David

    2004-05-01

    To a casual ostrich the world of quantum physics in one dimension may sound a little one-dimensional, suitable perhaps for those with an unhealthy obsession for the esoteric. Nothing of course could be further from the truth. The field is remarkably rich and broad, and for more than fifty years has thrown up innumerable challenges. Theorists, realising that the role of interactions in 1D is special and that well known paradigms of higher dimensions (Fermi liquid theory for example) no longer apply, took up the challenge of developing new concepts and techniques to understand the undoubted pecularities of one-dimensional systems. And experimentalists have succeeded in turning pipe dreams into reality, producing an impressive and ever increasing array of experimental realizations of 1D systems, from the molecular to the mesoscopic---spin and ladder compounds, organic superconductors, carbon nanotubes, quantum wires, Josephson junction arrays and so on. Many books on the theory of one-dimensional systems are however written by experts for experts, and tend as such to leave the non-specialist a touch bewildered. This is understandable on both fronts, for the underlying theoretical techniques are unquestionably sophisticated and not usually part of standard courses in many-body theory. A brave author it is then who aims to produce a well rounded, if necessarily partial, overview of quantum physics in one dimension, accessible to a beginner yet taking them to the edge of current research, and providing en route a thorough grounding in the fundamental ideas, basic methods and essential phenomenology of the field. It is of course the brave who succeed in this world, and Thierry Giamarchi does just that with this excellent book, written by an expert for the uninitiated. Aimed in particular at graduate students in theoretical condensed matter physics, and assumimg little theoretical background on the part of the reader (well just a little), Giamarchi writes in a refreshingly

  4. Controlled growth of carbon nanotubes.

    PubMed

    Vajtai, R; Wei, B Q; Ajayan, P M

    2004-10-15

    Carbon nanotubes have extraordinary mechanical and electronic properties and hold great promise for future applications. The most important aspects of this structure are its low density, high aspect ratio, one dimensionality, high mechanical strength and high electrical and thermal conductivity. We present a short, state-of-the-art account of tailored nanotube growth. To provide these properties in real devices there exists a need for producing nanotubes on substrates. The challenge in the creation of mesoscale nanotube-based architectures and tailored nanotube networks consisting of thousands of tubes in a predefined order is obviously great. Currently, chemical vapour deposition (CVD) appears to be the most powerful method for achieving such required structures. We describe our work on a new synthesis method, based on catalytic CVD using mainly gas-phase catalyst delivery. Gas-phase catalyst delivery allows us to assemble single-walled and multi-walled carbon nanotubes in predetermined multiple orientations on substrates to build one- to three-dimensional architectures. We are able to control, to a large extent, the types of nanotubes produced, their lengths, locations and their orientations. The ability to make mesoscale architectures with nanotubes should lead us to develop applications in areas such as nano-electromechanical systems.

  5. Mesoporous metal and semiconductor nanowires and nanotubes

    NASA Astrophysics Data System (ADS)

    Luo, Hongmei

    Nanowires and nanotubes are central elements in nanoscience and nanotechnology for applications such as nanoelectronic devices, chemical sensors, and high-density data storage. Among various synthesis methods, the template assisted electrodeposition is particularly attractive because it provides an efficient route to fabricate arrays of nanomatenals of desired composition, size, and aspect ratio. Advanced applications need morphological control. Mesoporous materials with uniform and arranged pores with pore diameters between 2 and 50 nm have attracted much attention due to their unique structures and applications. This dissertation presents the fabrication, structure, and property investigation of magnetic, superconducting metal, and semiconductor nanostructures. We will report three-dimensional (3D) macroporous magnetic and superconducting metal films using opal templates, 2D hexagonal and 3D cubic metal nanowire thin films with tunable 3-10 nm wire diameters using mesoporous silica as templates, mesoporous cobalt and nickel films with hexagonal and lamellar structures direct templated by lyotropic liquid crystal phases. Compared with bulk and dense films, the porous magnetic films show higher coercivities. The cobalt nanowire thin films exhibit enhanced coercivities and controllable magnetic anisotropy through tuning the mesostructure and dimension of the nanowires. We will present a novel method, confined-assembly-template assisted (CATA) electrodeposition, by combination of nanoconfinement, supramolecular templating and electrodeposition technique to prepare mesoporous metal and semiconductor nanowires and nanotubes. Mesoporous palladium and cobalt nanowires are obtained by electrodeposition of hexagonal liquid crystal in porous membranes, mesoporous platinum and nickel nanotubes with controlled length are obtained by electrodeposition of lamellar liquid crystal, mesoporous zinc oxide nanowires are obtained by electrodeposition of interfacial SDS surfactant

  6. Dimensioning, Tolerancing, and Machine Finishes.

    ERIC Educational Resources Information Center

    Adams, George C.

    Intended for use with the vocational education student interested in technical drawing, this guide provides answers to questions relating to dimensioning and tolerancing machine drawings. It also gives examples of standard dimensioning practices, tolerancing applications, and finish applications. The problems and examples presented are based on…

  7. Dimensions of Organizational Task Environments.

    ERIC Educational Resources Information Center

    Dess, Gregory G.; Beard, Donald W.

    1984-01-01

    Reducing Aldrich's codification of organizational task environments from six to three dimensions--munificence (capacity), complexity (homogeneity-heterogeneity, concentration-dispersion), and dynamism (stability-instability, turbulence), the authors use interim and factor analytical techniques to explore each dimension's viability and draw…

  8. Dimensions of temperament: an analysis.

    PubMed

    Lorr, M; Stefic, E C

    1976-01-01

    The TDOT recast into a single stimulus format was administered to 150 college Ss. A factor analysis of the items followed by an analysis of item clusters that define each factor indicated the presence of 14 dimensions. Of the 10 bipolar scales of the TDOT, 3 were confirmed as independent dimensions, and 5 were confirmed in part or split into unipolar factors.

  9. Nanotubes for noisy signal processing

    NASA Astrophysics Data System (ADS)

    Lee, Ian Yenyin

    Nanotubes can process noisy signals. We present two central results in support of this general thesis and make an informed extrapolation that uses nanotubes to improve body armor. The first result is that noise can help nanotubes detect weak signals. The finding confirmed a stochastic-resonance theoretical prediction that noise can enhance detection at the nano-level. Laboratory experiments with nanotubes showed that three types of noise improved three measures of detection. Small amounts of Gaussian, uniform, and Cauchy additive white noise increased mutual-information, cross-correlation, and bit-error-rate measures before degrading them with further increases in noise. Nanotubes can apply this noise-enhancement and nanotube electrical and mechanical properties to improve signal processing. Similar noise enhancement may benefit a proposed nanotube-array cochlear-model spectral processing. The second result is that nanotube antennas can directly detect narrowband electromagnetic (EM) signals. The finding showed that nanotube and thin-wire dipoles are similar: They are resonant and narrowband and can implement linear-array designs if the EM waves in the nanotubes propagate at or near the free-space velocity of light. The nanotube-antenna prediction is based on a Fresnel-zone or near-zone analysis of antenna impedance using a quantum-conductor model. The analysis also predicts a failure to resonate if the nanotube EM-wave propagation is much slower than free-space light propagation. We extrapolate based on applied and theoretical analysis of body armor. Field experiments used a baseball comparison and statistical and other techniques to model body-armor bruising effects. A baseball comparison showed that a large caliber handgun bullet can hit an armored chest as hard as a fast baseball can hit a bare chest. Adaptive fuzzy systems learned to predict a bruise profile directly from the experimental data and also from statistical analysis of the data. Nanotube signal

  10. Effect of sonication on the mechanical properties of poly (vinyl alcohol)/carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Truong, Van-Tan; Tsang, Kelly M. C.; Keough, Shannon J.; St John, Nigel A.

    2006-12-01

    Several sonication procedures were performed on multi-walled carbon nanotubes (MWNTs) in water by varying the length of time, the output power and the type of sonicating horn. Depending on the sonicating conditions, the multi-walled carbon nanotubes (MWNTs) could be well or poorly exfoliated and dispersed. Poly (vinyl alcohol) (PVA) and MNWT (0.5 wt%) composites were cast from the PVA/MWNT aqueous mixture. Enhancement of the mechanical properties of the composites was related to two factors: (1) crystallinity formed at the PVA and MWNT interface and (2) the size of nanotube agglomerates. The poorly dispersed solution produced nanotube agglomerates with the size of 50-100 μm that did not induce crystallization at the polymer/nanotube interface. They became stress concentrators reducing the Young's modulus and the tensile strength. Optimized sonication procedures resulted in well-dispersed nanotube agglomerates of submicron dimensions efficiently enhancing the mechanical properties. As centrifugation facilitated the removal of large agglomerates, noticeable enhancement of mechanical properties of the composites was achieved.

  11. Physical removal of metallic carbon nanotubes from nanotube network devices using a thermal and fluidic process.

    PubMed

    Ford, Alexandra C; Shaughnessy, Michael; Wong, Bryan M; Kane, Alexander A; Kuznetsov, Oleksandr V; Krafcik, Karen L; Billups, W Edward; Hauge, Robert H; Léonard, François

    2013-03-15

    Electronic and optoelectronic devices based on thin films of carbon nanotubes are currently limited by the presence of metallic nanotubes. Here we present a novel approach based on nanotube alkyl functionalization to physically remove the metallic nanotubes from such network devices. The process relies on preferential thermal desorption of the alkyls from the semiconducting nanotubes and the subsequent dissolution and selective removal of the metallic nanotubes in chloroform. The approach is versatile and is applied to devices post-fabrication.

  12. The screening effects of carbon nanotube arrays and its field emission optimum density

    SciTech Connect

    Cai, Dan Liu, Lie

    2013-12-15

    In order to investigate the field emission optimum density of carbon nanotube (CNT) array, the screening effects of CNT array have been studied. It has been shown that the electric field in the vicinity of an individual nanotube of array can be notable distorted due to the screening action of the surrounding neighbors. The optimum normalized spacing s/l(as referred to the length) for the maximum emission current is inversely proportional to aspect ratio l/r and electric field strength for CNT arrays with a fixed dimension.

  13. Mechanical behavior of carbon nanotubes in the rippled and buckled phase

    NASA Astrophysics Data System (ADS)

    Jackman, H.; Krakhmalev, P.; Svensson, K.

    2015-02-01

    We have studied the mechanical behavior of multi-walled carbon nanotubes for bending strains beyond the onset for rippling and buckling. We found a characteristic drop in the bending stiffness at the rippling and buckling onset and the relative retained stiffness was dependent on the nanotube dimensions and crystallinity. Thin tubes are more prone to buckle, where some lose all of their bending stiffness, while thicker tubes are more prone to ripple and on average retain about 20% of their bending stiffness. In defect rich tubes, the bending stiffness is very low prior to rippling, but these tubes retain up to 70% of their initial bending stiffness.

  14. Strain controlled thermomutability of single-walled carbon nanotubes.

    PubMed

    Xu, Zhiping; Buehler, Markus J

    2009-05-01

    Carbon nanotubes are superior materials for thermal management and phononic device use due to their extremely high thermal conductivity and unique one-dimensional geometry. Here we report a systematic investigation of the effects of mechanical tensile, compressive and torsional strain on the thermal conductivity of single-walled carbon nanotubes using molecular dynamics simulation. In contrast to conventional predictions for solids, an unexpected dependence on the applied strain is revealed by the low-dimensional nature and tubular geometry of carbon nanotubes. Under tension, the thermal conductivity is reduced due to the softening of G-band phonon modes. Under compression--in contrast to the case for conventional theories for solids--geometric instabilities lower the thermal conductivity due to the scattering, shortening of the mean free path and interface resistance that arise from localized radial buckling. We find that when torsional strain is applied, the thermal conductivity drops as well, with significant reductions once the carbon nanotube begins to buckle. This thermomutability concept--the ability to control thermal properties by means of external cues--could be used in developing novel thermal materials whose properties can be altered in situ.

  15. Formation of ordered ice nanotubes inside carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Koga, Kenichiro; Gao, G. T.; Tanaka, Hideki; Zeng, X. C.

    2001-08-01

    Following their discovery, carbon nanotubes have attracted interest not only for their unusual electrical and mechanical properties, but also because their hollow interior can serve as a nanometre-sized capillary, mould or template in material fabrication. The ability to encapsulate a material in a nanotube also offers new possibilities for investigating dimensionally confined phase transitions. Particularly intriguing is the conjecture that matter within the narrow confines of a carbon nanotube might exhibit a solid-liquid critical point beyond which the distinction between solid and liquid phases disappears. This unusual feature, which cannot occur in bulk material, would allow for the direct and continuous transformation of liquid matter into a solid. Here we report simulations of the behaviour of water encapsulated in carbon nanotubes that suggest the existence of a variety of new ice phases not seen in bulk ice, and of a solid-liquid critical point. Using carbon nanotubes with diameters ranging from 1.1nm to 1.4nm and applied axial pressures of 50MPa to 500MPa, we find that water can exhibit a first-order freezing transition to hexagonal and heptagonal ice nanotubes, and a continuous phase transformation into solid-like square or pentagonal ice nanotubes.

  16. Genotoxicity and carcinogenicity risk of carbon nanotubes.

    PubMed

    Toyokuni, Shinya

    2013-12-01

    Novel materials are often commercialized without a complete assessment of the risks they pose to human health because such assessments are costly and time-consuming; additionally, sometimes the methodology needed for such an assessment does not exist. Carbon nanotubes have the potential for widespread application in engineering, materials science and medicine. However, due to the needle-like shape and high durability of multiwalled carbon nanotubes (MWCNTs), concerns have been raised that they may induce asbestos-like pathogenicity when inhaled. Indeed, experiments in rodents supported this hypothesis. Notably, the genetic alterations in MWCNT-induced rat malignant mesothelioma were similar to those induced by asbestos. Single-walled CNTs (SWCNTs) cause mitotic disturbances in cultured cells, but thus far, there has been no report that SWCNTs are carcinogenic. This review summarizes the recent noteworthy publications on the genotoxicity and carcinogenicity of CNTs and explains the possible molecular mechanisms responsible for this carcinogenicity. The nanoscale size and needle-like rigid structure of CNTs appear to be associated with their pathogenicity in mammalian cells, where carbon atoms are major components in the backbone of many biomolecules. Publishing adverse events associated with novel materials is critically important for alerting people exposed to such materials. CNTs still have a bright future with superb economic and medical merits. However, appropriate regulation of the production, distribution and secondary manufacturing processes is required, at least to protect the workers.

  17. Nanotube networks in liquid crystals

    NASA Astrophysics Data System (ADS)

    Urbanski, Martin; Lagerwall, Jan Peter F.; Scalia, Giusy

    2016-03-01

    Liquid crystals (LCs) are very attractive hosts for the organization of anisotropic nanoparticles such as carbon nanotubes (CNTs) because of the macroscopic organization resulting in properties of nanoparticles manifest at a macroscopic scale. Different types of LCs have demonstrated the ability to organize nanotubes, showing the generality of the approach, i.e., that the liquid crystallinity per se is the driving factor for the organization. Compared to standard nanotube composites (e.g. with disordered polymer hosts) the introduction of carbon nanotubes into an LC allows not only the transfer of the outstanding CNT properties to the macroscopic phase, providing strength and conductivity, but these properties also become anisotropic, following the transfer of the orientational order from the LC to the CNTs. The LC molecular structure plays an important even if ancillary role since it enters in the surface interactions, fulfilling a mediating action between the particle and the bulk of the LC. Isolated nanotubes can be obtained by optimized dispersions at lower concentrations and this process requires the use or development of tailored strategies like using solvents or even another LC for pre-dispersing CNTs. Aggregates or networks can be observed in poor dispersions and at higher nanoparticle concentrations. In those, due to surface interactions, the LC behaviour can be strongly affected with changes in phase sequences or transition temperatures and the effect is expected to be more pronounced as the concentration of nanotubes increases. We present preliminary investigations and observations on nanotube - LC systems based on a smectic LC host.

  18. Carbon Nanotube Based Molecular Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  19. Carbon Nanotubes for Polymer Photovoltaics

    NASA Astrophysics Data System (ADS)

    Anctil, Annick; Dileo, Roberta; Schauerman, Chris; Landi, Brian; Raffaelle, Ryne

    2007-03-01

    Carbon nanotubes are being investigated for optical absorption, exciton dissociation, and carrier transport in polymer photovoltaic devices. In the present work, single wall carbon nanotubes (SWNTs) were synthesized by an Alexandrite pulsed laser vaporization reactor at standard conditions and purified based upon our previously reported TOP procedure. The SWNTs were dispersed in polymer composites for pure MEH-PPV, pure P3HT, and [C60]-PCBM-P3HT (1:1 by weight) as a function of nanotube weight loading (0.1 -- 5% w/w). The AM0 current-voltage measurements for structures sandwiched between PEDOT/PSS coated ITO substrates and an evaporated aluminum contact demonstrate the dramatic effect of SWNT content on the short circuit current density, with conversions efficiencies consistently greater than 1%. The temperature coefficient for nanotube-containing polymer photovoltaics has been compared to conventional PCBM-P3HT devices, and the general relationship of increasing efficiency with increasing temperature is observed. However, the necessity to control nanotube percolation to prevent device shunting has led to recent developments which focus on controlling nanotube length through oxidative cutting, the deposition of intrinsic polymer layers, and the use of aligned carbon nanotube arrays for preferential charge transport.

  20. Carbon Nanotubes in Cancer Therapy and Drug Delivery

    PubMed Central

    Elhissi, Abdelbary M. A.; Ahmed, Waqar; Hassan, Israr Ul; Dhanak, Vinod. R.; D'Emanuele, Antony

    2012-01-01

    Carbon nanotubes (CNTs) have been introduced recently as a novel carrier system for both small and large therapeutic molecules. CNTs can be functionalized (i.e., surface engineered) with certain functional groups in order to manipulate their physical or biological properties. In addition to the ability of CNTs to act as carriers for a wide range of therapeutic molecules, their large surface area and possibility to manipulate their surfaces and physical dimensions have been exploited for use in the photothermal destruction of cancer cells. This paper paper will discuss the therapeutic applications of CNTs with a major focus on their applications for the treatment of cancer. PMID:22028974

  1. Silicon Encapsulated Carbon Nanotubes

    PubMed Central

    2010-01-01

    A dual stage process of depositing bamboo-like carbon nanotubes (BCNTs) by hot filament chemical vapor deposition (HFCVD) and coating Si using Radio frequency sputtering (RFS) technique. The films were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron field emission studies (EFE). SEM results suggest a dense network of homogeneous silicon-coated BCNTs. From the comprehensive analysis of the results provided by these techniques emerges the picture of Si encapsulated BCNTs. PMID:20652067

  2. Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2, or F2, or CnHm) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec.

  3. Functionalization of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H.sub.2 or F.sub.2 or C.sub.nH.sub.m) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec.

  4. Functionalized boron nitride nanotubes

    DOEpatents

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  5. Carbon Nanotube Interconnect

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2006-01-01

    Method and system for fabricating an electrical interconnect capable of supporting very high current densities ( 10(exp 6)-10(exp 10) Amps/sq cm), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiOw, or SiuNv is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.

  6. A Periodic Table in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Rosén, Arne

    Access to techniques to produce and characterize free clusters built up from two to thousands of atoms has during the last decades generated several exciting discoveries and established cluster science as a research field of its own. This field is highly interdisciplinary, and knowledge from different areas of physics and chemistry has been of considerable importance for this rapid development. One of the objectives is to gain an understanding of the material growth i. e. how many atoms are needed in a cluster to make its physical or chemical properties similar to what is known for the corresponding solid. Studies of various properties for some clusters have, however, revealed large fluctuations and periodicities which can be interpreted either as geometric or electronic shell closings, with the appearance of so-called magic numbers. This kind of periodicity is quite different from what is known from the periodic table in atomic physics but has some similarities with the magic numbers in nuclear physics. In addition to clusters characterized by shell structure, also very unique clusters exist such as the fullerenes, in particular Buckminsterfullerene or Ceo discovered in 1985, which was a new form of carbon different from the earlier known forms of graphite and diamond. The field of fullerenes has, especially, after the invention of a method for production of macroscopic amounts in 1990, developed in an extremely exciting way with several serendipitous advances including fabrication of crystals, films and new materials with unique properties such as the nanotubes, carbon onions and met cars. Many of these discoveries have opened up new areas of modern mesoscopic physics and materials science. Particularly interesting is how some data available for clusters and fullerenes show periodicities which might be classified in "A Periodic Table in Three Dimensions".

  7. Carbon nanotubes in neural interfacing applications

    NASA Astrophysics Data System (ADS)

    Voge, Christopher M.; Stegemann, Jan P.

    2011-02-01

    Carbon nanotubes (CNT) are remarkable materials with a simple and inert molecular structure that gives rise to a range of potentially valuable physical and electronic properties, including high aspect ratio, high mechanical strength and excellent electrical conductivity. This review summarizes recent research on the application of CNT-based materials to study and control cells of the nervous system. It includes the use of CNT as cell culture substrates, to create patterned surfaces and to study cell-matrix interactions. It also summarizes recent investigations of CNT toxicity, particularly as related to neural cells. The application of CNT-based materials to directing the differentiation of progenitor and stem cells toward neural lineages is also discussed. The emphasis is on how CNT surface chemistry and nanotopography can be altered, and how such changes can affect neural cell function. This knowledge can be applied to creating improved neural interfaces and devices, as well as providing new approaches to neural tissue engineering and regeneration.

  8. Carbon nanotubes in neural interfacing applications.

    PubMed

    Voge, Christopher M; Stegemann, Jan P

    2011-02-01

    Carbon nanotubes (CNT) are remarkable materials with a simple and inert molecular structure that gives rise to a range of potentially valuable physical and electronic properties, including high aspect ratio, high mechanical strength and excellent electrical conductivity. This review summarizes recent research on the application of CNT-based materials to study and control cells of the nervous system. It includes the use of CNT as cell culture substrates, to create patterned surfaces and to study cell-matrix interactions. It also summarizes recent investigations of CNT toxicity, particularly as related to neural cells. The application of CNT-based materials to directing the differentiation of progenitor and stem cells toward neural lineages is also discussed. The emphasis is on how CNT surface chemistry and nanotopography can be altered, and how such changes can affect neural cell function. This knowledge can be applied to creating improved neural interfaces and devices, as well as providing new approaches to neural tissue engineering and regeneration.

  9. Carbon nanotubes in hyperthermia therapy

    PubMed Central

    Singh, Ravi; Torti, Suzy V.

    2013-01-01

    Thermal tumor ablation therapies are being developed with a variety of nanomaterials, including single-and multiwalled carbon nanotubes. Carbon nanotubes (CNTs) have attracted interest due to their potential for simultaneous imaging and therapy. In this review, we highlight in vivo applications of carbon nanotube-mediated thermal therapy (CNMTT) and examine the rationale for use of this treatment in recurrent tumors or those resistant to conventional cancer therapies. Additionally, we discuss strategies to localize and enhance the cancer selectivity of this treatment and briefly examine issues relating the toxicity and long term fate of CNTs. PMID:23933617

  10. Carbon nanotubes in hyperthermia therapy.

    PubMed

    Singh, Ravi; Torti, Suzy V

    2013-12-01

    Thermal tumor ablation therapies are being developed with a variety of nanomaterials, including single- and multiwalled carbon nanotubes. Carbon nanotubes (CNTs) have attracted interest due to their potential for simultaneous imaging and therapy. In this review, we highlight in vivo applications of carbon nanotube-mediated thermal therapy (CNMTT) and examine the rationale for use of this treatment in recurrent tumors or those resistant to conventional cancer therapies. Additionally, we discuss strategies to localize and enhance the cancer selectivity of this treatment and briefly examine issues relating the toxicity and long term fate of CNTs.

  11. NASA Innovation Builds Better Nanotubes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Nanotailor Inc., based in Austin, Texas, licensed Goddard Space Flight Center's unique single-walled carbon nanotube (SWCNT) fabrication process with plans to make high-quality, low-cost SWCNTs available commercially. Carbon nanotubes are being used in a wide variety of applications, and NASA's improved production method will increase their applicability in medicine, microelectronics, advanced materials, and molecular containment. Nanotailor built and tested a prototype based on Goddard's process, and is using this technique to lower the cost and improve the integrity of nanotubes, offering a better product for use in biomaterials, advanced materials, space exploration, highway and building construction, and many other applications.

  12. Carbon nanotubes as vaccine scaffolds

    PubMed Central

    Scheinberg, David A.; McDevitt, Michael R.; Dao, Tao; Mulvey, Justin J.; Feinberg, Evan; Alidori, Simone

    2013-01-01

    Carbon nanotubes display characteristics that are potentially useful in their development as scaffolds for vaccine compositions. These features include stability in vivo, lack of intrinsic immunogenicity, low toxicity, and the ability to be appended with multiple copies of antigens. In addition, the particulate nature of carbon nanotubes and their unusual properties of rapid entry into antigen-presenting cells, such as dendritic cells, make them especially useful as carriers of antigens. Early attempts demonstrating carbon nanotube-based vaccines can be used in both infectious disease settings and cancer are promising. PMID:23899863

  13. Method of manufacturing carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M. (Inventor); Leidecker, Henning W. (Inventor); Frazier, Jeffrey (Inventor)

    2004-01-01

    A process for manufacturing carbon nanotubes, including a step of inducing electrical current through a carbon anode and a carbon cathode under conditions effective to produce the carbon nanotubes, wherein the carbon cathode is larger than the carbon anode. Preferably, a welder is used to induce the electrical current via an arc welding process. Preferably, an exhaust hood is placed on the anode, and the process does not require a closed or pressurized chamber. The process provides high-quality, single-walled carbon nanotubes, while eliminating the need for a metal catalyst.

  14. Timbre Dimensions for Musical Control

    NASA Astrophysics Data System (ADS)

    Giese, Gregory Roy

    This dissertation addresses the folowing question: Given the technologies to develop and implement any kind of sound generating and controlling device, what will the instrument designer, the composer, and the performer need to know in order to more fully utilize the dimensions of timbre in music and musical performance? This question is approached from the standpoint of music theory. Definitions of timbre and a few examples of related physical and perceptual research are reviewed. Included is a discussion of the essential elements of musical control and of intelligent organization of sound in music. This discussion raises more questions than can be answered simply. It is an attempt to unravel the nature of sound clues and sound qualities as they convey sound identities and musical gesture. A theoretical simplification of sound dimensions for musical use is proposed. Sounds which can be sustained indefinitely consist of steady-state acoustical dimensions. These dimensions rely upon the perceptual phenomenon of simultaneous fusion (synance). Sounds which can not be sustained indefinitely consist of transitions. Transitions may cause successive fusion (sonance). The discussion of steady-state and transition dimensions includes a review of a few informal experiments. This work reveals problems that will influence the musical use of timbre dimensions. It also leads to a theory for the organization and control of timbre dimensions in music. Among the timbre dimensions discussed are: spectral envelope, harmonic content, brightness, phase, inharmonicity, aperiodicity, and temporal transitions. Questions are raised regarding the perception of harmonic content. The effect of register on perception of tones consisting of from two to nine partials is explored and discussed. The size of interval between partials determines a unique quality. This is most apparent with tones consisting of only two or three partials (dions or trions).

  15. Increasing the dimensions of metrology

    NASA Astrophysics Data System (ADS)

    Maurer, Wilhelm; Blaesing-Bangert, Carola; Paul, Hans-Helmut

    1990-06-01

    In any process that generates or measures pattern-placement (overlay), these parameters need to be regarded at least as two-dimensional. We show this on our procedure bringing a mask repeater under statistical process control SPC). In order to increase the accuracy of the overlay measurement process itself, plate bending has to be included as a third dimension. By taking the third dimension into account, the LMS 2000 Metrology System significantly reduces the maximum uncertainity of measurement results.

  16. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures

    NASA Astrophysics Data System (ADS)

    Pang, Xinchang; He, Yanjie; Jung, Jaehan; Lin, Zhiqun

    2016-09-01

    The ability to synthesize a diverse spectrum of one-dimensional (1D) nanocrystals presents an enticing prospect for exploring nanoscale size- and shape-dependent properties. Here we report a general strategy to craft a variety of plain nanorods, core-shell nanorods, and nanotubes with precisely controlled dimensions and compositions by capitalizing on functional bottlebrush-like block copolymers with well-defined structures and narrow molecular weight distributions as nanoreactors. These cylindrical unimolecular nanoreactors enable a high degree of control over the size, shape, architecture, surface chemistry, and properties of 1D nanocrystals. We demonstrate the synthesis of metallic, ferroelectric, upconversion, semiconducting, and thermoelectric 1D nanocrystals, among others, as well as combinations thereof.

  17. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures.

    PubMed

    Pang, Xinchang; He, Yanjie; Jung, Jaehan; Lin, Zhiqun

    2016-09-16

    The ability to synthesize a diverse spectrum of one-dimensional (1D) nanocrystals presents an enticing prospect for exploring nanoscale size- and shape-dependent properties. Here we report a general strategy to craft a variety of plain nanorods, core-shell nanorods, and nanotubes with precisely controlled dimensions and compositions by capitalizing on functional bottlebrush-like block copolymers with well-defined structures and narrow molecular weight distributions as nanoreactors. These cylindrical unimolecular nanoreactors enable a high degree of control over the size, shape, architecture, surface chemistry, and properties of 1D nanocrystals. We demonstrate the synthesis of metallic, ferroelectric, upconversion, semiconducting, and thermoelectric 1D nanocrystals, among others, as well as combinations thereof. PMID:27634531

  18. Large-Scale Processing of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Finn, John; Sridhar, K. R.; Meyyappan, M.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Scale-up difficulties and high energy costs are two of the more important factors that limit the availability of various types of nanotube carbon. While several approaches are known for producing nanotube carbon, the high-powered reactors typically produce nanotubes at rates measured in only grams per hour and operate at temperatures in excess of 1000 C. These scale-up and energy challenges must be overcome before nanotube carbon can become practical for high-consumption structural and mechanical applications. This presentation examines the issues associated with using various nanotube production methods at larger scales, and discusses research being performed at NASA Ames Research Center on carbon nanotube reactor technology.

  19. Carbon nanotube array actuators

    NASA Astrophysics Data System (ADS)

    Geier, S.; Mahrholz, T.; Wierach, P.; Sinapius, M.

    2013-09-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750-2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs.

  20. Studies of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  1. Single-file electrophoretic transport and counting of individual DNA molecules in surfactant nanotubes

    PubMed Central

    Tokarz, Michal; Åkerman, Björn; Olofsson, Jessica; Joanny, Jean-Francois; Dommersnes, Paul; Orwar, Owe

    2005-01-01

    We demonstrate a complete nanotube electrophoresis system (nanotube radii in the range of 50 to 150 nm) based on lipid membranes, comprising DNA injection, single-molecule transport, and single-molecule detection. Using gel-capped electrodes, electrophoretic single-file transport of fluorescently labeled dsDNA molecules is observed inside nanotubes. The strong confinement to a channel of molecular dimensions ensures a detection efficiency close to unity and identification of DNA size from its linear relation to the integrated peak intensity. In addition to constituting a nanotechnological device for identification and quantification of single macromolecules or biopolymers, this system provides a method to study their conformational dynamics, reaction kinetics, and transport in cell-like environments. PMID:15961544

  2. Stimuli-responsive transformation in carbon nanotube/expanding microsphere-polymer composites

    PubMed Central

    Loomis, James; Xu, Peng; Panchapakesan, Balaji

    2013-01-01

    Our work introduces a class of stimuli-responsive expanding polymer composites with ability to unidirectionally transform physical dimensions, elastic modulus, density, and electrical resistance. Carbon nanotubes and core-shell acrylic microspheres were dispersed in polydimethylsiloxane, resulting in composites that exhibit a binary set of material properties. Upon thermal or infrared stimuli, liquid cores encapsulated within the microspheres vaporize, expanding the surrounding shells and stretching the matrix. Microsphere expansion results in visible dimensional changes, regions of reduced polymeric chain mobility, nanotube tensioning, and overall elastic to plastic-like transformation of the composite. Here we show composite transformations including macroscopic volume expansion (>500%), density reduction (>80%), and elastic modulus increase (>675%). Additionally, conductive nanotubes allow for remote expansion monitoring and exhibit distinct loading-dependent electrical responses. With ability to pattern regions of tailorable expansion, strength, and electrical resistance into a single polymer skin, these composites present opportunities as structural and electrical building blocks in smart systems. PMID:23574648

  3. Magneto Themoelectric Generator with Carbon Nanotube Thermal Interfaces

    NASA Astrophysics Data System (ADS)

    McCarthy, Patrick T.; Fisher, Timothy S.; Marinero, Ernesto E.

    2013-03-01

    We report the thermal behavior of Gd foils used in a magneto thermoelectric generator cells. The device exploits the ferromagnetic phase transition of gadolinium to drive the movement of a diaphragm ``shuttle'' whose mechanical energy is converted to electrical form and which enhances heat transfer through both conduction and convection. Efficient heat transfer at mechanical interfaces is critical to increase shuttle speed and the commensurate rate of heat transfer. The synthesis and characterization of carbon nanotube thermal interfaces for the Gd foils are described. The samples generated in this study were consistently measured with total thermal interface resistances in the range of 65-105 mm2 K/W, a reduction of 55-70% compared to bare Gd (Rint ~ 230 mm2 K/W). The addition of carbon nanotube arrays did not alter the magnetic properties of the gadolinium foils and only a slight decrease in the magnetic moment of the gadolinium samples (8-13%) was measured after growth.

  4. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes.

    PubMed

    Lu, Xunyu; Yim, Wai-Leung; Suryanto, Bryan H R; Zhao, Chuan

    2015-03-01

    Large-scale storage of renewable energy in the form of hydrogen (H2) fuel via electrolytic water splitting requires the development of water oxidation catalysts that are efficient and abundant. Carbon-based nanomaterials such as carbon nanotubes have attracted significant applications for use as substrates for anchoring metal-based nanoparticles. We show that, upon mild surface oxidation, hydrothermal annealing and electrochemical activation, multiwall carbon nanotubes (MWCNTs) themselves are effective water oxidation catalysts, which can initiate the oxygen evolution reaction (OER) at overpotentials of 0.3 V in alkaline media. Oxygen-containing functional groups such as ketonic C═O generated on the outer wall of MWCNTs are found to play crucial roles in catalyzing OER by altering the electronic structures of the adjacent carbon atoms and facilitates the adsorption of OER intermediates. The well-preserved microscopic structures and highly conductive inner walls of MWCNTs enable efficient transport of the electrons generated during OER.

  5. Nanostructured water and carbon dioxide inside collapsing carbon nanotubes at high pressure.

    PubMed

    Cui, Wenwen; Cerqueira, Tiago F T; Botti, Silvana; Marques, Miguel A L; San-Miguel, Alfonso

    2016-07-20

    We present simulations of the collapse under hydrostatic pressure of carbon nanotubes containing either water or carbon dioxide. We show that the molecules inside the tube alter the dynamics of the collapse process, providing either mechanical support and increasing the collapse pressure, or reducing mechanical stability. At the same time the nanotube acts as a nanoanvil, and the confinement leads to the nanostructuring of the molecules inside the collapsed tube. In this way, depending on the pressure and on the concentration of water or carbon dioxide inside the nanotube, we observe the formation of 1D molecular chains, 2D nanoribbons, and even molecular single and multi-walled nanotubes. The structure of the encapsulated molecules correlates with the mechanical response of the nanotube, opening up opportunities for the development of new devices or composite materials. Our analysis is quite general and it can be extended to other molecules in carbon nanotube nanoanvils, providing a strategy to obtain a variety of nano-objects with controlled features. PMID:27400409

  6. Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes.

    SciTech Connect

    Viayan, B.; Dimitrijevic, N. M.; Rajh, T.; Gray, K.; Northwestern Univ.

    2010-08-05

    Titania nanotubes having diameters 8 to 12 nm and lengths of 50-300 nm were prepared using a hydrothermal method. Further, the titania nanotubes were calcined over the temperature range 200-800 C in order to enhance their photocatalytic properties by altering their morphology. The calcined titania nanotubes were characterized by using X-ray diffraction and surface area analysis and their morphological features were studied by scanning and transmission electron microscopy. Nanotubes calcined at 400 C showed the maximum extent of photocatalyitc reduction of carbon dioxide to methane, whereas samples calcined at 600 C produced maximum photocatalytic oxidation of acetaldehyde. Electron paramagnetic resonance (EPR) spectroscopy was used to interrogate the effects of nanotube structure on the charge separation and trapping as a function of calcination temperature. EPR results indicated that undercoordinated titania sites are associated with maximum CO{sub 2} reduction occurring in nanotubes calcined at 400 C. Despite the collapse of the nantube structure to form nanorods and the concomitant loss of surface area, the enhanced charge separation associated with increased crystallinity promoted high rates of oxidation of acetaldehyde in titania materials calcined at 600 C. These results illustrate that calcination temperature allows us to tune the morphological and surface features of the titania nanostructures for particular photocatalytic reactions.

  7. Single carbon nanotube photovoltaic device

    NASA Astrophysics Data System (ADS)

    Barkelid, M.; Zwiller, V.

    2013-10-01

    Here we present photocurrent measurements on a single suspended carbon nanotube p-n junction. The p-n junction was induced by electrostatic doping by local gates, and the E11 and E22 resonances in the nanotube could be probed using photocurrent spectroscopy. Current-voltage characteristics were recorded, revealing an enhanced optoelectronic response on resonance. The internal power conversion efficiency for the nanotube diode was extracted on and off resonance with the E11 and E22, and a large internal power conversion efficiency was observed. An internal efficiency of up to 23% is reported for the E11, showing the potential of carbon nanotubes to be used as the active element in photovoltaic devices. Finally, a photovoltaic device is proposed which exploits this enhanced efficiency.

  8. Method for producing carbon nanotubes

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Chen, Chun-Ku

    2006-02-14

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  9. Elastic modulus of viral nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Ge, Zhibin; Fang, Jiyu

    2008-09-01

    We report an experimental and theoretical study of the radial elasticity of tobacco mosaic virus (TMV) nanotubes. An atomic force microscope tip is used to apply small radial indentations to deform TMV nanotubes. The initial elastic response of TMV nanotubes can be described by finite-element analysis in 5nm indentation depths and Hertz theory in 1.5nm indentation depths. The derived radial Young’s modulus of TMV nanotubes is 0.92±0.15GPa from finite-element analysis and 1.0±0.2GPa from the Hertz model, which are comparable with the reported axial Young’s modulus of 1.1GPa [Falvo , Biophys. J. 72, 1396 (1997)].

  10. PECVD Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    McAninch, Ian; Arnold, James O. (Technical Monitor)

    2001-01-01

    Plasma enhanced chemical vapor deposition (PECVD), using inductively coupled plasma, has been used to grow carbon nanotubes (CNTs) and graphitic carbon fibers (GCF) on substrates sputtered with aluminum and iron catalyst. The capacitive plasma's power has been shown to cause a transition from nanotubes to nanofibers, depending on the strength of the plasma. The temperature, placement, and other factors have been shown to affect the height and density of the tube and fiber growth.

  11. Selective functionalization of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  12. Microwave absorption in nanocomposite material of magnetically functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Labunov, V. A.; Danilyuk, A. L.; Prudnikava, A. L.; Komissarov, I.; Shulitski, B. G.; Speisser, C.; Antoni, F.; Le Normand, F.; Prischepa, S. L.

    2012-07-01

    The interaction of electromagnetic radiation in X and Ka bands with magnetic nanocomposite of disordered carbon nanotubes arrays has been investigated both experimentally and theoretically. Samples were synthesized on the quartz reactor walls by decomposition of ferrocene and xylene which provided random intercalation of iron phase nanoparticles in carbon nanotube array. The exhaustive characterization of the samples by means of the scanning electron microscopy, Raman spectroscopy, and x-ray photoemission spectroscopy was performed. It was found that the absorption of the electromagnetic wave monotonically increases with the frequency. To describe these experimental data, we extended the Bruggeman effective medium theory to a more complex case of a magnetic nanocomposite with randomly distributed spherical ferromagnetic nanoparticles in a conducting medium. The essential feature of the developed model is the consideration of the complex nature of the studied material. In particular, such important parameters as magnetic and dielectric properties of both the carbon nanotube medium and the nanoparticles, the volume concentration and the dimensions of the nanoparticles, the wave impedance of the resistive-capacitive shells of the conductive nanoparticles are explicitly taken into account in our model. Moreover, analysing the experimental results, we were able to obtain the frequency dependencies of permittivity and permeability of the studied nanocomposite.

  13. Impact of diameter on carbon nanotube transport in sand.

    PubMed

    O'Carroll, D M; Liu, X; Mattison, N T; Petersen, E J

    2013-01-15

    Carbon nanotubes are the subject of intense research due to their unique properties: light weight, significant strength, excellent conductivity, and outstanding chemical resistance. This has led to their application in a wide variety of industries (e.g., in composite materials). As a result of their potential impact to humans and ecosystems, there is increasing interest in understanding the factors that control the transport of carbon nanotubes in the environment, and of particular interest to this study, their transport in porous media. In this work, the transport behavior of multiwall carbon nanotubes (MWCNTs) is investigated in sand packed column experiments. To determine the importance of MWCNT diameter, experiments were conducted using four commercially available MWCNTs. Results suggest that smaller MWCNTs are less mobile than their larger counterparts, likely due to the increase in Brownian motion leading to more MWCNT collisions with the porous media with decreasing MWCNT size. A numerical model was used to simulate observed MWCNT transport behavior and facilitate comparison with published studies. These results suggest that careful characterization of MWCNT characteristics (i.e., dimensions and initial MWCNT mass in suspension) is essential to adequately interpret observed results. Results from this study suggest that MWCNTs may be mobile under conditions expected in subsurface aquifers.

  14. Directing peptide crystallization through curvature control of nanotubes.

    PubMed

    Gobeaux, Frédéric; Tarabout, Christophe; Fay, Nicolas; Meriadec, Cristelle; Ligeti, Melinda; Buisson, David-Alexandre; Cintrat, Jean-Christophe; Artzner, Franck; Paternostre, Maïté

    2014-07-01

    In the absence of efficient crystallization methods, the molecular structures of fibrous assemblies have so far remained rather elusive. In this paper, we present a rational method to crystallize the lanreotide octapeptide by modification of a residue involved in a close contact. Indeed, we show that it is possible to modify the curvature of the lanreotide nanotubes and hence their diameter. This fine tuning leads to crystallization because the radius of curvature of the initially bidimensional peptide wall can be increased up to a point where the wall is essentially flat and a crystal is allowed to grow along a third dimension. By comparing X-ray diffraction data and Fourier transform Raman spectra, we show that the nanotubes and the crystals share similar cell parameters and molecular conformations, proving that there is indeed a structural continuum between these two morphologies. These results illustrate a novel approach to crystallization and represent the first step towards the acquisition of an Å-resolution structure of the lanreotide nanotubes β-sheet assembly.

  15. Fractal dimension of alumina aggregates grown in two dimensions

    NASA Technical Reports Server (NTRS)

    Larosa, Judith L.; Cawley, James D.

    1992-01-01

    The concepts of fractal geometry are applied to the analysis of 0.4-micron alumina constrained to agglomerate in two dimensions. Particles were trapped at the bottom surface of a drop of a dilute suspension, and the agglomeration process was directly observed, using an inverted optical microscope. Photographs were digitized and analyzed, using three distinct approaches. The results indicate that the agglomerates are fractal, having a dimension of approximately 1.5, which agrees well with the predictions of the diffusion-limited cluster-cluster aggregation model.

  16. Dimension of fractal basin boundaries

    SciTech Connect

    Park, B.S.

    1988-01-01

    In many dynamical systems, multiple attractors coexist for certain parameter ranges. The set of initial conditions that asymptotically approach each attractor is its basin of attraction. These basins can be intertwined on arbitrary small scales. Basin boundary can be either smooth or fractal. Dynamical systems that have fractal basin boundary show final state sensitivity of the initial conditions. A measure of this sensitivity (uncertainty exponent {alpha}) is related to the dimension of the basin boundary d = D - {alpha}, where D is the dimension of the phase space and d is the dimension of the basin boundary. At metamorphosis values of the parameter, there might happen a conversion from smooth to fractal basin boundary (smooth-fractal metamorphosis) or a conversion from fractal to another fractal basin boundary characteristically different from the previous fractal one (fractal-fractal metamorphosis). The dimension changes continuously with the parameter except at the metamorphosis values where the dimension of the basin boundary jumps discontinuously. We chose the Henon map and the forced damped pendulum to investigate this. Scaling of the basin volumes near the metamorphosis values of the parameter is also being studied for the Henon map. Observations are explained analytically by using low dimensional model map.

  17. Computational Nanotechnology of Nanotubes, Composites, and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, D.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This viewgraph presentation addresses carbon nanotubes, their mechanical and thermal properties, and their structure, as well as possible miniature devices which may be assembled in the future from carbon nanotubes.

  18. Probing Photosensitization by Functionalized Carbon Nanotubes

    EPA Science Inventory

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  19. Scanning tunneling microscopy imaging of nanotubes

    SciTech Connect

    Antonenko, S. V. Malinovskaya, O. S.; Mal'tsev, S. N.

    2007-07-15

    Samples of carbon paper containing multiwalled carbon nanotube films are produced by current annealing. A scanning tunneling microscope is used to examine the structure of the modified carbon paper. X-, Y-, and V-shaped nanotubes are found.

  20. Occupational Exposure to Carbon Nanotubes and Nanofibers

    MedlinePlus

    ... Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers Recommend on Facebook Tweet Share Compartir ... composed of engineered nanoparticles, such as metal oxides, nanotubes, nanowires, quantum dots, and carbon fullerenes (buckyballs), among ...

  1. Oligomer functionalized nanotubes and composites formed therewith

    DOEpatents

    Zettl, Alexander K; Sainsbury, Toby; Frechet, Jean M.J.

    2014-03-18

    Disclosed herein is a sequential functionalization methodology for the covalent modification of nanotubes with between one and four repeat units of a polymer. Covalent attachment of oligomer units to the surface of nanotubes results in oligomer units forming an organic sheath around the nanotubes, polymer-functionalized-nanotubes (P-NTs). P-NTs possess chemical functionality identical to that of the functionalizing polymer, and thus provide nanoscale scaffolds which may be readily dispersed within a monomer solution and participate in the polymerization reaction to form a polymer-nanotube/polymer composite. Formation of polymer in the presence of P-NTs leads to a uniform dispersion of nanotubes within the polymer matrix, in contrast to aggregated masses of nanotubes in the case of pristine-NTs. The covalent attachment of oligomeric units to the surface of nanotubes represents the formation of a functional nanoscale building block which can be readily dispersed and integrated within the polymer to form a novel composite material.

  2. Classical Liquids in Fractal Dimension.

    PubMed

    Heinen, Marco; Schnyder, Simon K; Brady, John F; Löwen, Hartmut

    2015-08-28

    We introduce fractal liquids by generalizing classical liquids of integer dimensions d=1,2,3 to a noninteger dimension dl. The particles composing the liquid are fractal objects and their configuration space is also fractal, with the same dimension. Realizations of our generic model system include microphase separated binary liquids in porous media, and highly branched liquid droplets confined to a fractal polymer backbone in a gel. Here, we study the thermodynamics and pair correlations of fractal liquids by computer simulation and semianalytical statistical mechanics. Our results are based on a model where fractal hard spheres move on a near-critical percolating lattice cluster. The predictions of the fractal Percus-Yevick liquid integral equation compare well with our simulation results.

  3. Personality dimensions of opiate addicts.

    PubMed

    Vukov, M; Baba-Milkic, N; Lecic, D; Mijalkovic, S; Marinkovic, J

    1995-02-01

    A survey of 80 opiate addicts included in a detoxification program was conducted at the Institute on Addictions in Belgrade. In addition to a dependence diagnosis and mental disorders based on DSM-III-R, we applied a Tridimensional Personality Questionnaire (TPQ) that measures the 3 major personality dimensions: novelty-seeking (NS), harm avoidance (HA) and reward dependence (RD). When compared with a control group (a sample of Yugoslav undergraduate students), the opiate addicts demonstrate significantly high NS dimension as well as significant divergences of HA and RD subscales. The surveyed opiate addicts demonstrate a high percentage of personality disorders specifically in cluster B. The personality dimensions of opiate addicts showed certain temperament traits, such as: impulsiveness, shyness with strangers, fear of uncertainty and dependence. NS, HA and RD determined by temperament specifics may be an etiological factor in forming of a personality disorder, an affective disorder as well as of a drug choice.

  4. Collider searches for extra dimensions

    SciTech Connect

    Landsberg, Greg; /Brown U.

    2004-12-01

    Searches for extra spatial dimensions remain among the most popular new directions in our quest for physics beyond the Standard Model. High-energy collider experiments of the current decade should be able to find an ultimate answer to the question of their existence in a variety of models. Until the start of the LHC in a few years, the Tevatron will remain the key player in this quest. In this paper, we review the most recent results from the Tevatron on searches for large, TeV{sup -1}-size, and Randall-Sundrum extra spatial dimensions, which have reached a new level of sensitivity and currently probe the parameter space beyond the existing constraints. While no evidence for the existence of extra dimensions has been found so far, an exciting discovery might be just steps away.

  5. Correlated Electrons in Reduced Dimensions

    SciTech Connect

    Bonesteel, Nicholas E

    2015-01-31

    This report summarizes the work accomplished under the support of US DOE grant # DE-FG02-97ER45639, "Correlated Electrons in Reduced Dimensions." The underlying hypothesis of the research supported by this grant has been that studying the unique behavior of correlated electrons in reduced dimensions can lead to new ways of understanding how matter can order and how it can potentially be used. The systems under study have included i) fractional quantum Hall matter, which is realized when electrons are confined to two-dimensions and placed in a strong magnetic field at low temperature, ii) one-dimensional chains of spins and exotic quasiparticle excitations of topologically ordered matter, and iii) electrons confined in effectively ``zero-dimensional" semiconductor quantum dots.

  6. LDRD final report on carbon nanotube composites

    SciTech Connect

    Cahill, P.A.; Rand, P.B.

    1997-04-01

    Carbon nanotubes and their composites were examined using computational and experimental techniques in order to modify the mechanical and electrical properties of resins. Single walled nanotubes were the focus of the first year effort; however, sufficient quantities of high purity single walled nanotubes could not be obtained for mechanical property investigations. The unusually high electrical conductivity of composites loaded with <1% of multiwalled nanotubes is useful, and is the focus of continuing, externally funded, research.

  7. Carbon nanotubes by the metallocene route

    NASA Astrophysics Data System (ADS)

    Sen, Rahul; Govindaraj, A.; Rao, C. N. R.

    1997-03-01

    Pyrolysis of metallocenes such as ferrocene, cobaltocene and nickelocene, is shown to yield carbon nanotubes and metal-filled onion-like structures. Pyrolysis of benzene in the presence of a metallocene gives high yields of nanotubes, the wall thickness of the nanotubes depending on the metallocene content. Pyrolysis of benzene in the absence of any metal however gives monodispersed nanospheres of carbon rather than nanotubes.

  8. Carbon Nanotube Electron Gun

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  9. Carbon nanotube biosensors

    PubMed Central

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  10. Carbon nanotube electron gun

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2010-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  11. Carbon Nanotube Biosensors

    NASA Astrophysics Data System (ADS)

    Tilmaciu, Carmen-Mihaela; Morris, May

    2015-10-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  12. Carbon nanotube optical mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  13. Dispersible carbon nanotubes.

    PubMed

    Soulié-Ziakovic, Corinne; Nicolaÿ, Renaud; Prevoteau, Alexandre; Leibler, Ludwik

    2014-01-27

    A method is proposed to produce nanoparticles dispersible and recyclable in any class of solvents, and the concept is illustrated with the carbon nanotubes. Classically, dispersions of CNTs can be achieved through steric stabilization induced by adsorbed or grafted polymer chains. Yet, the surface modification of CNTs surfaces is irreversible, and the chemical nature of the polymer chains imposes the range of solvents in which CNTs can be dispersed. To address this limitation, supramolecular bonds can be used to attach and to detach polymer chains from the surface of CNTs. The reversibility of supramolecular bonds offers an easy way to recycle CNTs as well as the possibility to disperse the same functional CNTs in any type of solvent, by simply adapting the chemical nature of the stabilizing chains to the dispersing medium. The concept of supramolecular functionalization can be applied to other particles, for example, silica or metal oxides, as well as to dispersing in polymer melts, films or coatings.

  14. Carbon nanotube biconvex microcavities

    SciTech Connect

    Butt, Haider Ahmed, Rajib; Yetisen, Ali K.; Yun, Seok Hyun; Dai, Qing

    2015-03-23

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2–3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  15. Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  16. Cantilevered carbon nanotube hygrometer

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, Toshinori; Terada, Yuki; Takei, Kuniharu; Akita, Seiji; Arie, Takayuki

    2014-05-01

    We investigate the effects of humidity on the vibrations of carbon nanotubes (CNTs) using two types of CNT cantilevers: open-ended and close-ended CNT cantilevers. As the humidity increases, the resonant frequency of the open-ended CNT cantilever decreases due to the adsorption of water molecules onto the CNT tip, whereas that of the close-ended CNT cantilever increases probably due to the change in the viscosity of the air surrounding the CNT cantilever, which is negatively correlated with the humidity of air. Our findings suggest that a close-ended CNT cantilever is more suitable for a quick-response and ultrasensitive hygrometer because it continuously reads the viscosity change of moist air in the vicinity of the CNT.

  17. Carbon nanotube biconvex microcavities

    NASA Astrophysics Data System (ADS)

    Butt, Haider; Yetisen, Ali K.; Ahmed, Rajib; Yun, Seok Hyun; Dai, Qing

    2015-03-01

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2-3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  18. Peridynamic modeling and simulation of polymer-nanotube composites

    NASA Astrophysics Data System (ADS)

    Henke, Steven F.

    In this document, we develop and demonstrate a framework for simulating the mechanics of polymer materials that are reinforced by carbon nanotubes. Our model utilizes peridynamic theory to describe the mechanical response of the polymer and polymer-nanotube interfaces. We benefit from the continuum formulation used in peridynamics because (1) it allows the polymer material to be coarse-grained to the scale of the reinforcing nanofibers, and (2) failure via nanotube pull-out and matrix tearing are possible based on energetic considerations alone (i.e. without special treatment). To reduce the degrees of freedom that must be simulated, the reinforcement effect of the nanotubes is represented by a mesoscale bead-spring model. This approach permits the arbitrary placement of reinforcement ``strands'' in the problem domain and motivates the need for irregular quadrature point distributions, which have not yet been explored in the peridynamic setting. We address this matter in detail and report on aspects of mesh sensitivity that we uncovered in peridynamic simulations. Using a manufactured solution, we study the effects of quadrature point placement on the accuracy of the solution scheme in one and two dimensions. We demonstrate that square grids and the generator points of a centroidal Voronoi tessellation (CVT) support solutions of similar accuracy, but CVT grids have desirable characteristics that may justify the additional computational cost required for their construction. Impact simulations provide evidence that CVT grids support fracture patterns that resemble those obtained on higher resolution cubic Cartesian grids with a reduced computational burden. With the efficacy of irregular meshing schemes established, we exercise our model by dynamically stretching a cylindrical specimen composed of the polymer-nanotube composite. We vary the number of reinforcements, alignment of the filler, and the properties of the polymer-nanotube interface. Our results suggest

  19. Critical dimension: MEMS road map

    NASA Astrophysics Data System (ADS)

    Poulingue, Marc; Knutrud, Paul

    2007-03-01

    The use of Micro-Electro-Mechanical Systems (MEMS) technology in mechanical, biotechnology, optical, communications, and ink jet is growing. Critical dimensions in MEMS devices are getting smaller and processes are constantly facing new metrology challenges. This paper will examine some critical dimension metrology needs and challenges for MEMS using resist-on-silicon structures. It is shown that the use of automated optical CD metrology can meet emerging measurement requirements while bringing the advantages of a non-destructive, high throughput and precise methodology.

  20. Computational study of Al- or P-doped single-walled carbon nanotubes as NH3 and NO2 sensors

    NASA Astrophysics Data System (ADS)

    Azizi, Khaled; Karimpanah, Mohammad

    2013-11-01

    Density functional theory (DFT) calculations were carried out to analyze the electronic and structural properties of pristine and aluminum or phosphorus doped (8,0) single walled carbon nanotube (SWCNT) as a sensor for the detection of nitrogen dioxide (NO2) and ammonia (NH3). The binding energies, equilibrium gas-nanotube distances, the amounts of charge transfer and molecular orbital schemes as well as the density of states have been calculated and used to interpret the mechanism of gas adsorption on the surface of nanotubes. In agreement with the experimental data, our results show considerable binding energy and energy gap alteration due to the adsorption of NO2 on pristine SWCNT. The results reveal that the doping of both Al and P atoms increase the capability of the nanotube for the adsorption of NO2, and the effect is more significant for the Al-doped nanotube. The Al-doped nanotube can also be considered as a good sensor for NH3 due to its high binding energy, considerable amount of charge transfer and energy band gap alteration.

  1. Systematic study on synthesis and purification of double-walled carbon nanotubes synthesized via CVD

    NASA Astrophysics Data System (ADS)

    Jedrzejewska, A.; Kalenczuk, R. J.; Mijowska, E.

    2011-12-01

    Carbon nanotubes have unique properties, such as thermal and electrical conductance, which could be useful in the fields of aerospace, microelectronics and biotechnology. However, these properties may vary widely depending on the dimensions, uniformity and purity of the nanotube. Nanotube samples typically contain a significant percentage of more allotropes forms of carbon as well as metal particles left over from catalysts used in manufacturing. Purity characterization of double-walled carbon nanotubes (DWCNTs) is an increasingly popular topic in the field of carbon nanotechnology. In this study, DWCNTs were synthesized in a catalytic reaction, using Fe:MgO as catalyst and methane or methane/ethanol as carbon feedstock for chemical vapor deposition (CVD). The addition of ethanol as carbon feedstock allowed to investigate the influence of oxygen on the sample quality. The purification of the as-produced material from the metallic particles and the catalyst support was performed by sonication in an acid solution. The influence of the duration of the acid treatment using ultrasound on the sample purity was investigated, and the optimal value of this parameter was found. Transmission electron microscopy (TEM) images confirmed the removal of impurities and served to elucidate the morphology of the samples. The purity of carbon nanotubes was analyzed using thermal gravimetric analysis (TGA). The Raman spectra of the samples, as a measure of the concentration of defects, were also reported.

  2. Tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles.

    PubMed

    Sun, Leming; Fan, Zhen; Wang, Yongzhong; Huang, Yujian; Schmidt, Michael; Zhang, Mingjun

    2015-05-21

    While tremendous efforts have been made in investigating scalable approaches for fabricating nanoparticles, less progress has been made in scalable synthesis of cyclic peptide nanoparticles and nanotubes, despite their great potential for broader biomedical applications. In this paper, tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles using three different methods, phase equilibrium, pH-driven, and pH-sensitive methods, were proposed and investigated. The goal is scalable nanomanufacturing of cyclic peptide nanoparticles and nanotubes with different sizes in large quality by controlling multiple process parameters. Cyclo-(L-Gln-D-Ala-L-Glu-D-Ala-)2 was applied to illustrate the proposed ideas. In the study, mass spectrometry and high performance liquid chromatography were employed to verify the chemical structures and purity of the cyclic peptides. Morphology and size of the synthesized nanomaterials were characterized using atomic force microscopy and dynamic light scattering. The dimensions of the self-assembled nanostructures were found to be strongly influenced by the cyclic peptide concentration, side chain modification, pH values, reaction time, stirring intensity, and sonication time. This paper proposed an overall strategy to integrate all the parameters to achieve optimal synthesis outputs. Mechanisms of the self-assembly of the cyclic peptide nanotubes and nanoparticles under variable conditions and tunable parameters were discussed. This study contributes to scalable nanomanufacturing of cyclic peptide based self-assembled nanoparticles and nanotubes for broader biomedical applications. PMID:25858105

  3. Self-assembled supramolecular nanotube yarn.

    PubMed

    Liu, Yaqing; Wang, Tianyu; Huan, Yong; Li, Zhibo; He, Guowei; Liu, Minghua

    2013-11-01

    Metric length supramolecular nanotube yarns are fabricated though a spinning process from the diluted aqueous solution of self-assembled nanotubes, with bolaamphiphiles working as molecular building blocks. These non-covalent bonding based nanotube yarns show outstanding mechanical strength compared with some conventional polymers and could be operated under the macro conditions. PMID:23943418

  4. Conductance Oscillations in Squashed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Mehrez, H.; Anantram, M. P.; Svizhenko, A.

    2003-01-01

    A combination of molecular dynamics and electrical conductance calculations are used to probe the electromechanical properties of squashed metallic carbon nanotubes. We find that the conductance and bandgap of armchair nanotubes show oscillations upon squashing. The physical origin of these oscillations is attributed to interaction of carbon atoms with a fourth neighbor. Squashing of armchair and zigzag nanotubes ultimately leads to metallic behavior.

  5. Microscopy of single-layer carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Su; Zhou, Dan

    1994-07-01

    Single-layer carbon nanotubes produced with yttrium carbide as catalyst have been studied with high-resolution transmission electron microscopy (HRTEM). The morphology, condition of iamging and the method of measurement to determine the actual diameter of a single-layer carbon nanotube have been detailed and the growth mechanism of single-layer carbon nanotubes has been discussed in this research.

  6. Nanotubes in Nanoelectronics: Transport, Growth and Modeling

    NASA Technical Reports Server (NTRS)

    Anantram, M.; Delzeit, Lance; Cassell, Alan; Han, Jie; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Carbon nanotube (CNT) baud nanotechnology appears to be promising for future Theoretical analysis and results for the ballistic current carrying capacity of nanotube wires am presented. Aspects of metal-nanotube coupling are examined. Results am also presented for chemical vapor deposition of CNT from hydrocarbon feedstock.

  7. Improved Process for Fabricating Carbon Nanotube Probes

    NASA Technical Reports Server (NTRS)

    Stevens, R.; Nguyen, C.; Cassell, A.; Delzeit, L.; Meyyappan, M.; Han, Jie

    2003-01-01

    An improved process has been developed for the efficient fabrication of carbon nanotube probes for use in atomic-force microscopes (AFMs) and nanomanipulators. Relative to prior nanotube tip production processes, this process offers advantages in alignment of the nanotube on the cantilever and stability of the nanotube's attachment. A procedure has also been developed at Ames that effectively sharpens the multiwalled nanotube, which improves the resolution of the multiwalled nanotube probes and, combined with the greater stability of multiwalled nanotube probes, increases the effective resolution of these probes, making them comparable in resolution to single-walled carbon nanotube probes. The robust attachment derived from this improved fabrication method and the natural strength and resiliency of the nanotube itself produces an AFM probe with an extremely long imaging lifetime. In a longevity test, a nanotube tip imaged a silicon nitride surface for 15 hours without measurable loss of resolution. In contrast, the resolution of conventional silicon probes noticeably begins to degrade within minutes. These carbon nanotube probes have many possible applications in the semiconductor industry, particularly as devices are approaching the nanometer scale and new atomic layer deposition techniques necessitate a higher resolution characterization technique. Previously at Ames, the use of nanotube probes has been demonstrated for imaging photoresist patterns with high aspect ratio. In addition, these tips have been used to analyze Mars simulant dust grains, extremophile protein crystals, and DNA structure.

  8. Dispersions of Carbon nanotubes in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  9. Multilayer Film Assembly of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Meyyappan, M.; Han, Jie; Arnold, J. (Technical Monitor)

    2000-01-01

    An approach to assemble multilayers of carbon nanotubes on a substrate is presented. Chemical vapor deposition using a transition metal catalyst formulation is used to grow the nanotubes. Results show a bilayer assembly of nanotubes each with a different density of tubes.

  10. Effect of the rheological properties of carbon nanotube dispersions on the processing and properties of transparent conductive electrodes.

    PubMed

    Maillaud, Laurent; Poulin, Philippe; Pasquali, Matteo; Zakri, Cécile

    2015-06-01

    Transparent conductive films are made from aqueous surfactant stabilized dispersions of carbon nanotubes using an up-scalable rod coating method. The processability of the films is governed by the amount of surfactant which is shown to alter strongly the wetting and viscosity of the ink. The increase of viscosity results from surfactant mediated attractive interactions between the carbon nanotubes. Links between the formulation, ink rheological properties, and electro-optical properties of the films are determined. The provided guidelines are generalized and used to fabricate optimized electrodes using conductive polymers and carbon nanotubes. In these electrodes, the carbon nanotubes act as highly efficient viscosifiers that allow the optimized ink to be homogeneously spread using the rod coating method. From a general point of view and in contrast to previous studies, the CNTs are optimally used in the present approach as conductive additives for viscosity enhancements of electronic inks. PMID:25961667

  11. Dimensions of Interpersonal Relationships Revisited.

    ERIC Educational Resources Information Center

    Wiemann, John M.; Krueger, Dorothy Lenk

    The ways in which people described their own interpersonal relationships were examined along the universally acknowledged relational dimensions control and affiliation. A total of 216 undergraduate communication students wrote about one of three types of relationships they had: best liked friend of the opposite sex, (60), best liked friend of the…

  12. Dimension independence in exterior algebra.

    PubMed Central

    Hawrylycz, M

    1995-01-01

    The identities between homogeneous expressions in rank 1 vectors and rank n - 1 covectors in a Grassmann-Cayley algebra of rank n, in which one set occurs multilinearly, are shown to represent a set of dimension-independent identities. The theorem yields an infinite set of nontrivial geometric identities from a given identity. PMID:11607520

  13. The Visuospatial Dimension of Writing

    ERIC Educational Resources Information Center

    Olive, Thierry; Passerault, Jean-Michel

    2012-01-01

    The authors suggest that writing should be conceived of not only as a verbal activity but also as a visuospatial activity, in which writers process and construct visuospatial mental representations. After briefly describing research on visuospatial cognition, they look at how cognitive researchers have investigated the visuospatial dimension of…

  14. The European Dimension in Education.

    ERIC Educational Resources Information Center

    Council of Europe, Strasbourg (France). Directorate of Education, Culture and Sport, Documentation Section.

    This paper addresses concerns about a European dimension in education that has been created by the enlargement of the European Union (EU) (the inclusion of Austria, Finland, and Sweden) and the gradual transformations of institutions into a future federal state. Sections of the paper include: (1) "Introduction"; (2) "Defining the European…

  15. Heat conduction in three dimensions

    NASA Technical Reports Server (NTRS)

    Danza, T. M.; Fesler, L. W.; Mongan, R. D.

    1980-01-01

    Multidimensional heat conduction program computes transient temperature history and steady state temperatures of complex body geometries in three dimensions. Emphasis is placed on type of problems associated with Space Shuttle thermal protection system, but program could be used in thermal analysis of most three dimensional systems.

  16. Gears Based on Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Globus, Al; Deardorff, Glenn

    2005-01-01

    Gears based on carbon nanotubes (see figure) have been proposed as components of an emerging generation of molecular- scale machines and sensors. In comparison with previously proposed nanogears based on diamondoid and fullerene molecules, the nanotube-based gears would have simpler structures and are more likely to be realizable by practical fabrication processes. The impetus for the practical development of carbon-nanotube- based gears arises, in part, from rapid recent progress in the fabrication of carbon nanotubes with prescribed diameters, lengths, chiralities, and numbers of concentric shells. The shafts of the proposed gears would be made from multiwalled carbon nanotubes. The gear teeth would be rigid molecules (typically, benzyne molecules), bonded to the nanotube shafts at atomically precise positions. For fabrication, it may be possible to position the molecular teeth by use of scanning tunneling microscopy (STM) or other related techniques. The capability to position individual organic molecules at room temperature by use of an STM tip has already been demonstrated. Routes to the chemical synthesis of carbon-nanotube-based gears are also under investigation. Chemical and physical aspects of the synthesis of molecular scale gears based on carbon nanotubes and related molecules, and dynamical properties of nanotube- based gears, have been investigated by computational simulations using established methods of quantum chemistry and molecular dynamics. Several particularly interesting and useful conclusions have been drawn from the dynamical simulations performed thus far: The forces acting on the gears would be more sensitive to local molecular motions than to gross mechanical motions of the overall gears. Although no breakage of teeth or of chemical bonds is expected at temperatures up to at least 3,000 K, the gears would not work well at temperatures above a critical range from about 600 to about 1,000 K. Gear temperature could probably be controlled by

  17. Patenting activity in synthesis of lipid nanotubes and peptide nanotubes.

    PubMed

    Zhou, Yong

    2007-01-01

    Lipid nanotubes (LNTs) and peptide nanotubes (PNTs) are especially intriguing and noncovalent self-assemblies of amphiphiles. They have hydrophilically internal and external membrane surfaces, and can provide the wide scope for chemical modifications, in sharp contrast to carbon nanotubes. These unique properties make themselves as ideal candidates for a variety of applications in chemistry, biochemistry, materials science and medicine. Patenting the LNTs and PNTs is quite active recently. This mini-review provides a brief outline of patenting activity in synthesis of the LNTs and PNTs since 1980s. The key point of the present review aims to create an optimistic circulation between the basic research achievement and potential application of this sub-field of nanotechnology, promoting each other in their future development.

  18. EDITORIAL: Focus on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents <;A article="1367-2630/5/1/117">Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau

  19. EDITORIAL: Focus on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau, P Umek, K Hernadi, P Marcoux, B Lukic, Cs Mikó, M Milas, R Gaál and L Forró Transitional behaviour in the transformation from active end

  20. Nanocapillarity and chemistry in carbon nanotubes

    SciTech Connect

    Ugarte, D.; Chatelain, A.; Heer, W.A. de

    1996-12-13

    Open carbon nanotubes were filled with molten silver nitrate by capillary forces. Only those tubes with inner diameters of 4 nanometers or more were filled, suggesting a capillarity size dependence as a result of the lowering of the nanotube-salt interface energy with increasing curvature of the nanotube walls. Nanotube cavities should also be less chemically reactive than graphite and may serve as nanosize test tubes. This property has been illustrated by monitoring the decomposition of silver nitrate within nanotubes in situ in an electron microscope, which produced chains of silver nanobeads separated by high-pressure gas pockets. 32 refs., 3 figs.

  1. Processable Cyclic Peptide Nanotubes with Tunable Interiors

    SciTech Connect

    Hourani, Rami; Zhang, Chen; van der Weegen, Rob; Ruiz, Luis; Li, Changyi; Keten, Sinan; Helms, Brett A.; Xu, Ting

    2011-09-06

    A facile route to generate cyclic peptide nanotubes with tunable interiors is presented. By incorporating 3-amino-2-methylbenzoic acid in the d,l-alternating primary sequence of a cyclic peptide, a functional group can be presented in the interior of the nanotubes without compromising the formation of high aspect ratio nanotubes. The new design of such a cyclic peptide also enables one to modulate the nanotube growth process to be compatible with the polymer processing window without compromising the formation of high aspect ratio nanotubes, thus opening a viable approach toward molecularly defined porous membranes.

  2. Boron Nitride Nanotubes-Reinforced Glass Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam; Hurst, Janet B.; Choi, Sung R.

    2005-01-01

    Boron nitride nanotubes of significant lengths were synthesized by reaction of boron with nitrogen. Barium calcium aluminosilicate glass composites reinforced with 4 weight percent of BN nanotubes were fabricated by hot pressing. Ambient-temperature flexure strength and fracture toughness of the glass-BN nanotube composites were determined. The strength and fracture toughness of the composite were higher by as much as 90 and 35 percent, respectively, than those of the unreinforced glass. Microscopic examination of the composite fracture surfaces showed pullout of the BN nanotubes. The preliminary results on the processing and improvement in mechanical properties of BN nanotube reinforced glass matrix composites are being reported here for the first time.

  3. Supported Lipid Bilayer/Carbon Nanotube Hybrids

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose; Craighead, Harold; McEuen, Paul

    2007-03-01

    We form supported lipid bilayers on single-walled carbon nanotubes and use this hybrid structure to probe the properties of lipid membranes and their functional constituents. We first demonstrate membrane continuity and lipid diffusion over the nanotube. A membrane-bound tetanus toxin protein, on the other hand, sees the nanotube as a diffusion barrier whose strength depends on the diameter of the nanotube. Finally, we present results on the electrical detection of specific binding of streptavidin to biotinylated lipids with nanotube field effect transistors. Possible techniques to extract dynamic information about the protein binding events will also be discussed.

  4. Biomedical applications of carbon-nanotube composites.

    PubMed

    Meredith, Jay Russell; Jin, Chunming; Narayan, Roger J; Aggarwal, Ravi

    2013-01-01

    The unique physical, chemical and mechanical properties of carbon nanotubes make them attractive for a variety of biomedical applications. Carbon nanotubes have been used to modify conventional biomedical materials to enhance mechanical properties, biocompatibility, or to impart other functionalities. New multifunctional composite materials using carbon nanotubes have been developed by combining them with inorganic, polymeric or biological materials. The biomedical applications for which novel carbon nanotube composites have been investigated include antimicrobial coatings, neural implants, tissue engineering scaffolds and electrochemical biosensors. In this paper, research on development and application of carbon nanotube composites for biomedical applications has been reviewed. PMID:23277017

  5. Analysis of Carbon Nanotube Field-Effect-Transistors (FETs)

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    1999-01-01

    This five page presentation is grouped into 11 numbered viewgraphs, most of which contain one or more diagrams. Some of the diagrams are accompanied by captions, including: 2) Nanotube FET by Delft, IBM; 3) Nanotube FET/Standard MOSFET; 5) Saturation with carrier-carrier; 7) Electronic properties of carbon nanotube; 8) Theoretical nanotube FET characteristics; 11) Summary: Delft and IBM nanotube FET analysis.

  6. van Hove singularities in disordered multichannel quantum wires and nanotubes

    NASA Astrophysics Data System (ADS)

    Hügle, S.; Egger, R.

    2002-11-01

    We present a theory for the van Hove singularity (VHS) in the tunneling density of states (TDOS) of disordered multichannel quantum wires, in particular multiwall carbon nanotubes. We assume close-by gates that screen off electron-electron interactions. Diagrammatic perturbation theory within the noncrossing approximation yields analytical expressions governing the disorder-induced broadening and shift of VHS's as new subbands are opened. This problem is nontrivial because the (lowest-order) Born approximation breaks down close to the VHS. Interestingly, compared to the bulk case, the boundary TDOS shows drastically altered VHS's, even in the clean limit.

  7. All carbon nanotubes are not created equal

    SciTech Connect

    Geohegan, David B; Puretzky, Alexander A; Rouleau, Christopher M

    2010-01-01

    This chapter presents the various factors that enter into consideration when choosing the source of carbon nanotubes for a specific application. Carbon nanotubes are giant molecules made of pure carbon. They have captured the imagination of the scientific community by the unique structure that provides superior physical, chemical, and electrical properties. However, a surprisingly wide disparity exists between the intrinsic properties determined under ideal conditions and the properties that carbon nanotubes exhibit in real world situations. The lack of uniformity in carbon nanotube properties is likely to be the main obstacle holding back the development of carbon nanotube applications. This tutorial addresses the nonuniformity of carbon nanotube properties from the synthesis standpoint. This synthesis-related nonuniformity is on top of the intrinsic chirality distribution that gives the ~1:2 ratio of metallic to semiconducting nanotubes. From the standpoint of carbon bonding chemistry the variation in the quality and reproducibility of carbon nanotube materials is not unexpected. It is an intrinsic feature that is related to the metastability of carbon structures. The extent to which this effect is manifested in carbon nanotube formation is governed by the type and the kinetics of the carbon nanotube synthesis reaction. Addressing this variation is critical if nanotubes are to live up to the potential already demonstrated by their phenomenal physical properties.

  8. Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José Francisco; Quintana, Xabier; Otón, José Manuel

    2015-01-01

    The inclusion of nanoparticles modifies a number of fundamental properties of many materials. Doping of nanoparticles in self-organized materials such as liquid crystals may be of interest for the reciprocal interaction between the matrix and the nanoparticles. Elongated nanoparticles and nanotubes can be aligned and reoriented by the liquid crystal, inducing noticeable changes in their optical and electrical properties. In this work, cells of liquid crystal doped with high aspect ratio multi-walled carbon nanotubes have been prepared, and their characteristic impedance has been studied at different frequencies and excitation voltages. The results demonstrate alterations in the anisotropic conductivity of the samples with the applied electric field, which can be followed by monitoring the impedance evolution with the excitation voltage. Results are consistent with a possible electric contact between the coated substrates of the LC cell caused by the reorientation of the nanotubes. The reversibility of the doped system upon removal of the electric field is quite low.

  9. Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José Francisco; Quintana, Xabier; Otón, José Manuel

    2015-01-01

    The inclusion of nanoparticles modifies a number of fundamental properties of many materials. Doping of nanoparticles in self-organized materials such as liquid crystals may be of interest for the reciprocal interaction between the matrix and the nanoparticles. Elongated nanoparticles and nanotubes can be aligned and reoriented by the liquid crystal, inducing noticeable changes in their optical and electrical properties. In this work, cells of liquid crystal doped with high aspect ratio multi-walled carbon nanotubes have been prepared, and their characteristic impedance has been studied at different frequencies and excitation voltages. The results demonstrate alterations in the anisotropic conductivity of the samples with the applied electric field, which can be followed by monitoring the impedance evolution with the excitation voltage. Results are consistent with a possible electric contact between the coated substrates of the LC cell caused by the reorientation of the nanotubes. The reversibility of the doped system upon removal of the electric field is quite low. PMID:25821679

  10. A DFT study of adsorption of glycine onto the surface of BC2N nanotube

    NASA Astrophysics Data System (ADS)

    Soltani, Alireza; Azmoodeh, Zivar; Javan, Masoud Bezi; Lemeski, E. Tazikeh; Karami, Leila

    2016-10-01

    A theoretical study of structure and the energy interaction of amino acid glycine (NH2CH2COOH) with BC2N nanotube is crucial for apperception behavior occurring at the nanobiointerface. Herein, we studied the adsorption of glycine in their radical and zwitterionic forms upon the surface of BC2N nanotube using M06 functional and 6-311G** standard basis set. We also considered the different orientations of the glycine amino acid on the surface of adsorbent. Further, we found out that the stability of glycine from its carbonyl group is higher than hydroxyl and amine groups. Our results also indicated that the electronic structure of BC2N nanotube on the adsorption of glycine from its amine group is more altered than the other groups. Our study exhibits that opto-electronic property of adsorbent is changed after the glycine adsorption.

  11. Electronic transport and mechanical properties of phosphorus and phosphorus-nitrogen doped carbon nanotubes

    SciTech Connect

    Sumpter, Bobby G; Charlier, Jean Christophe; Terrones Maldonado, Mauricio; Meunier, Vincent; Terrones Maldonado, Humberto; Cruz Silva, Eduardo; Lopez, Florentino; Munoz-Sandoval, Emilio

    2009-01-01

    We present a density functional theory study of the electronic structure, quantum transport and mechanical properties of recently synthesized phosphorus (P) and phosphorus-nitrogen (PN) doped single-walled carbon nanotubes. The results demonstrate that substitutional P and PN doping creates localized electronic states that modify the electron transport properties by acting as scattering centers. For low doping concentrations (1 doping site per ~200 atoms), the quantum conductance for metallic nanotubes is found to be only slightly reduced. The substitutional doping also alters the mechanical strength, leading to a 50% reduction in the elongation upon fracture, while Young s modulus remains approximately unchanged. Overall, the PN- and P-doped nanotubes display promising properties for components in composite materials and, in particular, for fast response and ultra sensitive sensors operating at the molecular level.

  12. Effect of Carbon Nanotubes on Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Chen, Michelle; Ahmed, Asma; Black, Melanie; Kawamoto, Nicole; Lucas, Jessica; Pagala, Armie; Pham, Tram; Stankiewicz, Sara; Chen, Howard

    2010-03-01

    Carbon Nanotubes possess extraordinary electrical, mechanical, and thermal properties. Research on applying the carbon nanotubes for ultrasensitive detection, disease diagnosis, and drug delivery is rapidly developing. While the fundamental and technological findings on carbon nanotubes show great promise, it is extremely important to investigate the effect of the carbon nanotubes on human health. In our experiments, we introduce purified carbon nanotubes in suspension to ovary cells cultured from Hamsters. These cells are chosen since they show robust morphological changes associated with cytotoxicity that can easily be observed under a light microscope. We will discuss the toxicity of carbon nanotubes by characterizing the cell morphology and viability as a function of time and the concentration of carbon nanotube suspension.

  13. Architecture and Characteristics of Bacterial Nanotubes.

    PubMed

    Dubey, Gyanendra P; Malli Mohan, Ganesh Babu; Dubrovsky, Anna; Amen, Triana; Tsipshtein, Shai; Rouvinski, Alex; Rosenberg, Alex; Kaganovich, Daniel; Sherman, Eilon; Medalia, Ohad; Ben-Yehuda, Sigal

    2016-02-22

    Bacteria display an array of contact-dependent interaction systems that have evolved to facilitate direct cell-to-cell communication. We have previously identified a mode of bacterial communication mediated by nanotubes bridging neighboring cells. Here, we elucidate nanotube architecture, dynamics, and molecular components. Utilizing Bacillus subtilis as a model organism, we found that at low cell density, nanotubes exhibit remarkable complexity, existing as both intercellular tubes and extending tubes, with the latter frequently surrounding the cells in a "root-like" fashion. Observing nanotube formation in real time showed that these structures are formed in the course of minutes, displaying rapid movements. Utilizing a combination of super-resolution, light, and electron microscopy, we revealed that nanotubes are composed of chains of membranous segments harboring a continuous lumen. Furthermore, we discovered that a conserved calcineurin-like protein, YmdB, presents in nanotubes and is required for both nanotube production and intercellular molecular trade.

  14. Constitutive Modeling of Crosslinked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Frankland, S. J. V.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2004-01-01

    A non-linear, continuum-based constitutive model is developed for carbon nanotube materials in which bundles of aligned carbon nanotubes have varying amounts of crosslinks between the nanotubes. The model accounts for the non-linear elastic constitutive behavior of the material in terms of strain, and is developed using a thermodynamic energy approach. The model is used to examine the effect of the crosslinking on the overall mechanical properties of variations of the crosslinked carbon nanotube material with varying degrees of crosslinking. It is shown that the presence of the crosslinks has significant effects on the mechanical properties of the carbon nanotube materials. An increase in the transverse shear properties is observed when the nanotubes are crosslinked. However, this increase is accompanied by a decrease in axial mechanical properties of the nanotube material upon crosslinking.

  15. Architecture and Characteristics of Bacterial Nanotubes.

    PubMed

    Dubey, Gyanendra P; Malli Mohan, Ganesh Babu; Dubrovsky, Anna; Amen, Triana; Tsipshtein, Shai; Rouvinski, Alex; Rosenberg, Alex; Kaganovich, Daniel; Sherman, Eilon; Medalia, Ohad; Ben-Yehuda, Sigal

    2016-02-22

    Bacteria display an array of contact-dependent interaction systems that have evolved to facilitate direct cell-to-cell communication. We have previously identified a mode of bacterial communication mediated by nanotubes bridging neighboring cells. Here, we elucidate nanotube architecture, dynamics, and molecular components. Utilizing Bacillus subtilis as a model organism, we found that at low cell density, nanotubes exhibit remarkable complexity, existing as both intercellular tubes and extending tubes, with the latter frequently surrounding the cells in a "root-like" fashion. Observing nanotube formation in real time showed that these structures are formed in the course of minutes, displaying rapid movements. Utilizing a combination of super-resolution, light, and electron microscopy, we revealed that nanotubes are composed of chains of membranous segments harboring a continuous lumen. Furthermore, we discovered that a conserved calcineurin-like protein, YmdB, presents in nanotubes and is required for both nanotube production and intercellular molecular trade. PMID:26906740

  16. Optical Absorption Cross Section of Individual Multi-Walled Carbon Nanotubes in the Visible Region.

    PubMed

    Shahzad, Muhammad Imran; Shahzad, Nadia; Tagliaferro, Alberto

    2016-01-01

    The aim of the present work is to determine the optical absorption cross section for visible radiation of various types of multiwall carbon nanotubes (MWCNTs) having different dimensions through macroscopic optical measurements. This is achieved by dispersing MWCNTs in polydimethylsiloxane (PDMS) and preparing composite films. Different percentages (0.0% to 1.5%) of each MWCNTs type were mixed into the PDMS matrix using high speed mechanical stirring (~1000 rpm) and ultrasonication (~37 kHz) to reach optimal dispersion. By using doctor blading technique, 100 µm thick uniform films were produced on glass. They were then thermally cured and detached from the glass to get flexible and self-standing films. Field-Emission Scanning Electron Microscope (FESEM) analysis of cryo-fractured composite samples was used to check the dispersion of MWCNTs in PDMS, while Raman spectroscopy and FTIR were employed to rule out possible structural changes of the polymer in the composite that would have altered its optical properties. Total and specular reflection and transmission spectra were measured for all films. The absorption coefficient, which represents the fractional absorption per unit length and is proportional to the concentration of absorbing sites (i.e., MWCNTs at photon energies upon which PDMS is non-absorbing), was extracted. For each MWCNTs type, the absorption cross section of an individual MWCNT was obtained from the slope of absorption coefficient versus MWCNTs number density curve. It was found to be related with MWCNT volume. This method can be applied to all other nanoparticles as far as they can be dispersed in a host transparent matrix. PMID:27398474

  17. Pulsed laser deposition of carbon nanotube and polystyrene-carbon nanotube composite thin films

    NASA Astrophysics Data System (ADS)

    Stramel, A. A.; Gupta, M. C.; Lee, H. R.; Yu, J.; Edwards, W. C.

    2010-12-01

    In this work, we report on the fabrication of carbon nanotube thin films via pulsed laser deposition using a pulsed, diode pumped, Tm:Ho:LuLF laser with 2 μm wavelength. The thin films were deposited on silicon substrates using pure carbon nanotube targets and polystyrene-carbon nanotube composite targets. Raman spectra, scanning electron micrographs, and transmission electron micrographs show that carbon nanotubes are present in the deposited thin films, and that the pulsed laser deposition process causes minimal degradation to the quality of the nanotubes when using pure carbon nanotube targets.

  18. Augmentation of acrylic bone cement with multiwall carbon nanotubes.

    PubMed

    Marrs, Brock; Andrews, Rodney; Rantell, Terry; Pienkowski, David

    2006-05-01

    Acrylic bone cement, based on polymethylmethacrylate (PMMA), is a proven polymer having important applications in medicine and dentistry, but this polymer continues to have less than ideal resistance to mechanical fatigue and impact. A variety of materials have been added to bone cement to augment its mechanical strength, but none of these augmentative materials has proven successful. Carbon nanotubes, a new hollow multiwalled tubular material 10-40 nm in diameter, 10-100 microm long, and 50-100 times the strength of steel at 1/6 the weight, have emerged as a viable augmentation candidate because of their large surface area to volume ratio. The objective of this study was to determine if the addition of multiwall carbon nanotubes to bone cement can alter its static or dynamic mechanical properties. Bar-shaped specimens made from six different (0-10% by weight) concentrations of multiwall carbon nanotubes were tested to failure in quasi-static 3-point bending and in 4-point bending fatigue (5 Hz). Analyses of variance and the 3-Parameter Weibull model were used to analyze the material performance data. The 2 wt % MWNT concentration enhanced flexural strength by 12.8% (p=0.003) and produced a 13.1% enhancement in yield stress (p=0.002). Bending modulus increased slightly with the smaller (<5 wt % MWNT) concentrations, but increased 24.1% (p<0.001) in response to the 10 wt % loading. While the 2 wt % loading produced slightly improved quasi-static test results, it was associated with clearly superior fatigue performance (3.3x increase in the Weibull mean fatigue life). Weibull minimum fatigue life (No), Weibull modulus (alpha), and characteristic fatigue life (beta) for bone cement augmented with carbon nanotubes were enhanced versus that observed in the control group. These data unambiguously showed that the bone cement-MWNT polymer system has an enhanced fatigue life compared to "control" bone cement (no added nanotubes). It is concluded that specific multiwall

  19. Bloch oscillations in carbon nanotubes.

    PubMed

    Jódar, Esther; Pérez-Garrido, Antonio; Rojas, Fernando

    2009-05-27

    Bloch oscillations arise when electrons are in a one-dimensional linear chain of atoms under a constant electric field. In this paper we show numerically that electrons in different types of carbon nanotubes show oscillations with a Bloch frequency proportional to the constant electric field applied along the nanotube axis. We show these oscillations, calculating the quadratic displacement as a function of the electric field. Because of the double periodicity of the nanotubes' geometry (the lattice constant and the lines of atoms) two frequencies appear, one twice the value of the other. These frequencies coincide perfectly with those predicted for a linear chain of atoms, taking into account the periodicity considered in each case.

  20. Optical properties of chiral nanotubes

    NASA Astrophysics Data System (ADS)

    Cecilia, Noguez; Román-Velázquez Carlos, E.; Ariadna, Sánchez; Montes Lilia, Meza

    2004-03-01

    A recent theoretical model [1] is applied to study the optical properties chiral nanostructures like carbon nanotubes. We calculate the Circular Dichroism (CD) spectra for carbon nanotubes with different chirality. The calculated CD spectra show features that allow us to distinguish between nanotubes with different indexes of chirality. Other nanostructures, like chiral fullerenes are also investigated.These results provide theoretical support for the quantification of chirality and its measurement, using the CD lineshapes of chiral. This work has been partly financed by CONACyT grant No. 36651-E and by DGAPA-UNAM grants No. IN104201. [1] C. E. Roman-Velazquez, et al., J. of Phys. Chem. B (Letter) 107, 12035 (2003)

  1. Carbon Nanotube Material Quality Assessment

    NASA Technical Reports Server (NTRS)

    Yowell, Leonard; Arepalli, Sivaram; Sosa, Edward; Niolaev, Pavel; Gorelik, Olga

    2006-01-01

    The nanomaterial activities at NASA Johnson Space Center focus on carbon nanotube production, characterization and their applications for aerospace systems. Single wall carbon nanotubes are produced by arc and laser methods. Characterization of the nanotube material is performed using the NASA JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. A possible addition of other techniques such as XPS, and ICP to the existing protocol will be discussed. Changes in the quality of the material collected in different regions of the arc and laser production chambers is assessed using the original JSC protocol. The observed variations indicate different growth conditions in different regions of the production chambers.

  2. Plasma CVD of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Cruden, B.; Hash, D.; Meyyappan, M.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Carbon nanotubes(CNT) exhibit remarkable mechanical and unique electronic properties and thus have created excitement in the research community about their potential in electronics, computing, sensor and structural applications. Realization of these applications critically depends on the ability to control the properties(such as diameter, chirality) as well purity. We have investigated CNT growth using an inductively coupled plasma(ICP) process using hydrocarbon feedstock. The catalyst required for nanotube growth consists of thin sputtered layers of aluminum and iron(10 nm each) and aligned carbon nanotubes have been obtained. Optical emission diagnostics as well as a plasma modeling effort have been undertaken to understand growth mechanisms. This presentation will discuss growth characteristics under various pressure, power and feedgas compositions and our understanding from modeling and diagnostics.

  3. Critical gravity in four dimensions.

    PubMed

    Lü, H; Pope, C N

    2011-05-01

    We study four-dimensional gravity theories that are rendered renormalizable by the inclusion of curvature-squared terms to the usual Einstein action with a cosmological constant. By choosing the parameters appropriately, the massive scalar mode can be eliminated and the massive spin-2 mode can become massless. This "critical" theory may be viewed as a four-dimensional analogue of chiral topologically massive gravity, or of critical "new massive gravity" with a cosmological constant, in three dimensions. We find that the on-shell energy for the remaining massless gravitons vanishes. There are also logarithmic spin-2 modes, which have positive energy. The mass and entropy of standard Schwarzschild-type black holes vanish. The critical theory might provide a consistent toy model for quantum gravity in four dimensions. PMID:21635082

  4. Critical Gravity in Four Dimensions

    SciTech Connect

    Lue, H.; Pope, C. N.

    2011-05-06

    We study four-dimensional gravity theories that are rendered renormalizable by the inclusion of curvature-squared terms to the usual Einstein action with a cosmological constant. By choosing the parameters appropriately, the massive scalar mode can be eliminated and the massive spin-2 mode can become massless. This ''critical'' theory may be viewed as a four-dimensional analogue of chiral topologically massive gravity, or of critical 'new massive gravity' with a cosmological constant, in three dimensions. We find that the on-shell energy for the remaining massless gravitons vanishes. There are also logarithmic spin-2 modes, which have positive energy. The mass and entropy of standard Schwarzschild-type black holes vanish. The critical theory might provide a consistent toy model for quantum gravity in four dimensions.

  5. Critical gravity in four dimensions.

    PubMed

    Lü, H; Pope, C N

    2011-05-01

    We study four-dimensional gravity theories that are rendered renormalizable by the inclusion of curvature-squared terms to the usual Einstein action with a cosmological constant. By choosing the parameters appropriately, the massive scalar mode can be eliminated and the massive spin-2 mode can become massless. This "critical" theory may be viewed as a four-dimensional analogue of chiral topologically massive gravity, or of critical "new massive gravity" with a cosmological constant, in three dimensions. We find that the on-shell energy for the remaining massless gravitons vanishes. There are also logarithmic spin-2 modes, which have positive energy. The mass and entropy of standard Schwarzschild-type black holes vanish. The critical theory might provide a consistent toy model for quantum gravity in four dimensions.

  6. Double Semions in Arbitrary Dimension

    NASA Astrophysics Data System (ADS)

    Freedman, Michael H.; Hastings, Matthew B.

    2016-10-01

    We present a generalization of the double semion topological quantum field theory to higher dimensions, as a theory of {d-1} dimensional surfaces in a d dimensional ambient space. We construct a local Hamiltonian that is a sum of commuting projectors and analyze the excitations and the ground state degeneracy. Defining a consistent set of local rules requires the sign structure of the ground state wavefunction to depend not just on the number of disconnected surfaces, but also upon their higher Betti numbers through the semicharacteristic. For odd d the theory is related to the toric code by a local unitary transformation, but for even d the dimension of the space of zero energy ground states is in general different from the toric code and for even {d > 2} it is also in general different from that of the twisted {Z_2} Dijkgraaf-Witten model.

  7. Self-response multi-functional composite material base on carbon nanotube paper using deicing, flame retardancy, thermal insulation, and lightning-strike protection

    NASA Astrophysics Data System (ADS)

    Chu, Hetao; Zhang, Zhichun; Liu, Yanju; Leng, Jinsong

    2015-04-01

    Carbon nanotube paper (CNP) based multi-functional composite material is an attractive candidate for deicing, flame retardancy, thermal insulation and lighting strike protection due to the excellent conductivity, light weight and thin dimensions. In this article, multi-functional carbon nanotube paper was fabricated successfully by using commercial carbon nanotube. As a deicing composite material, carbon nanotube was used directly without pretreatment in fabricating carbon nanotube paper. The conductivities of the carbon nanotube paper and deicing composite were 77.8S/cm and 64.9S/ respectively. Electrical heating and deicing performance were test by infrared camera with deicing time less than 220s and 450s to melt a certain amount of ice under different ambient condition. CNT was grafted by zirconium (IV) butoxide solution and dimethyl dichlorosilicane to form co-oligomers on the tube surface while oligomers decompose under a certain temperature to develop an inorganic layer of silicon zirconium oxide. The oxidizing temperature of carbon nanotube increases more than 20°C and the weight loss rate decreases 20% than the untreated carbon nanotube. Lightning protection material required high electro conductivity, due to the utmost high current in a short time. Therefore, silver nanoparticles were deposited on the surface of carbon nanotube with the diameter around 100nm. The conductivity increased sharply from 84s/cm to1756s/cm with the mount of 5.9wt% Ag of the modified carbon nanotube paper because the silver nanoparticles deposited on the surface. In addition, the silver modified also can be used as thermal insulation material decreasing the infrared radiation.

  8. Novel Nanotube Manufacturing Streamlines Production

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Nanotubes have novel qualities that make them uniquely qualified for a plethora of uses, including applications in electronics, optics, and other scientific and industrial fields. The NASA process for creating these nanostructures involves using helium arc welding to vaporize an amorphous carbon rod and then form nanotubes by depositing the vapor onto a water-cooled carbon cathode, which then yields bundles, or ropes, of single-walled nanotubes at a rate of 2 grams per hour using a single setup. This eliminates costs associated with the use of metal catalysts, including the cost of product purification, resulting in a relatively inexpensive, high-quality, very pure end product. While managing to be less expensive, safer, and simpler, the process also increases the quality of the nanotubes. Goddard's Innovative Partnerships Program (IPP) Office promoted the technology, and in 2005, Boise-based Idaho Space Materials Inc. (ISM) was formed and applied for a nonexclusive license for the single-walled carbon nanotube (SWCNT) manufacturing technology. ISM commercialized its products, and the inexpensive, robust nanotubes are now in the hands of the scientists who will create the next generation of composite polymers, metals, and ceramics that will impact the way we live. In fact, researchers are examining ways for these newfound materials to be used in the manufacture of transistors and fuel cells, large screen televisions, ultra-sensitive sensors, high-resolution atomic force microscopy probes, supercapacitors, transparent conducting films, drug carriers, catalysts, and advanced composite materials, to name just a few of the myriad technologies to benefit.

  9. Electrons in semiconductors and nanotubes

    NASA Astrophysics Data System (ADS)

    Delaney, Paul Augustine

    In this thesis I will be presenting the results of my investigations into the electronic structure properties of various systems. The formalism used throughout is based on Density Functional Theory (DFT) in the local-density approximation (LDA), within the ab initio pseudopotential approximation for the valence wavefunctions, and the computations involve the solution of a self-consistent Schrodinger-like equation, which we solve by transforming this equation to reciprocal space and diagonalising the corresponding matrix. I organize these topics as follows: (1) The first chapter will be devoted to a discussion of the theoretical framework within which the calculations will be performed. First of all I will discuss the theory and history of the Compton profile. (2) In the second chapter, we shall study the computation of the Compton profiles of crystalline silicon. (3) Even without the pseudopotential approximation, the DFT-LDA formalism can include correlation between the various valence electrons only through an effective one-body potential in which these wavefunctions move. Thus it is very unlikely that the correct dynamical correlation between the valence electrons is present in the LDA wavefunctions. (4) In chapter four, we shall turn to a study of a novel material, carbon nanotubes, which have only recently been discovered. These nanotubes are long hollow cylinders formed by rolling up a graphene sheet (graphene is a single layer of graphite). When they occur individually they are called single-walled nanotubes, but they are also found to exist arranged concentrically around one central single-walled nanotube like the rings in a tree. These latter structures are called multi-walled nanotubes. Single-walled nanotubes are typically about 1 nm in diameter and many microns in length, and have exceptional mechanical strength. Depending on how the graphene sheet is rolled they may be metallic, small-gap semi-conductors or insulators. (Abstract shortened by UMI.)

  10. Turing patterns in three dimensions

    NASA Astrophysics Data System (ADS)

    Shoji, Hiroto; Yamada, Kohtaro; Ueyama, Daishin; Ohta, Takao

    2007-04-01

    We investigate three-dimensional Turing patterns in two-component reaction diffusion systems. The FitzHugh-Nagumo equation, the Brusselator, and the Gray-Scott model are solved numerically in three dimensions. Several interconnected structures of domains as well as lamellar, hexagonal, and spherical domains are obtained as stable motionless equilibrium patterns. The relative stability of these structures is studied analytically based on the reduction approximation. The relation with the microphase-separated structures in block copolymers is also discussed.

  11. BMS modules in three dimensions

    NASA Astrophysics Data System (ADS)

    Campoleoni, A.; Gonzalez, H. A.; Oblak, B.; Riegler, M.

    2016-04-01

    We build unitary representations of the BMS algebra and its higher-spin extensions in three dimensions, using induced representations as a guide. Our prescription naturally emerges from an ultrarelativistic limit of highest-weight representations of Virasoro and 𝒲 algebras, which is to be contrasted with nonrelativistic limits that typically give nonunitary representations. To support this dichotomy, we also point out that the ultrarelativistic and nonrelativistic limits of generic 𝒲 algebras differ in the structure of their nonlinear terms.

  12. The influence of titania-zirconia-zirconium titanate nanotube characteristics on osteoblast cell adhesion.

    PubMed

    Minagar, Sepideh; Li, Yuncang; Berndt, Christopher C; Wen, Cuie

    2015-01-01

    Studies of biomaterial surfaces and their influence on cell behavior provide insights concerning the design of surface physicochemical and topography properties of implant materials. Fabrication of biocompatible metal oxide nanotubes on metallic biomaterials, especially titanium alloys such as Ti50Zr via anodization, alters the surface chemistry as well as surface topography of the alloy. In this study, four groups of TiO2-ZrO2-ZrTiO4 nanotubes that exhibit diverse nanoscale dimensional characteristics (i.e. inner diameter Di, outer diameter Do and wall thicknesses Wt) were fabricated via anodization. The nanotubes were annealed and characterized using scanning electron microscopy and 3-D profilometry. The potential applied during anodization influenced the oxidation rate of titanium and zirconium, thereby resulting in different nanoscale characteristics for the nanotubes. The different oxidation and dissolution rates both led to changes in the surface roughness parameters. The in vitro cell response to the nanotubes with different nanoscale dimensional characteristics was assessed using osteoblast cells (SaOS2). The results of the MTS assay indicated that the nanotubes with inner diameter (Di)≈40nm exhibited the highest percentage of cell adhesion of 41.0%. This result can be compared to (i) 25.9% cell adhesion at Di≈59nm, (ii) 33.1% at Di≈64nm, and (iii) 33.5% at Di≈82nm. The nanotubes with Di≈59nm exhibited the greatest roughness parameter of Sa (mean roughness), leading to the lowest ability to interlock with SaOS2 cells.

  13. Carbon nanotubes instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes.

    PubMed

    Martinelli, Valentina; Cellot, Giada; Toma, Francesca Maria; Long, Carlin S; Caldwell, John H; Zentilin, Lorena; Giacca, Mauro; Turco, Antonio; Prato, Maurizio; Ballerini, Laura; Mestroni, Luisa

    2013-07-23

    Myocardial tissue engineering currently represents one of the most realistic strategies for cardiac repair. We have recently discovered the ability of carbon nanotube scaffolds to promote cell division and maturation in cardiomyocytes. Here, we test the hypothesis that carbon nanotube scaffolds promote cardiomyocyte growth and maturation by altering the gene expression program, implementing the cell electrophysiological properties and improving networking and maturation of functional syncytia. In our study, we combine microscopy, biological and electrophysiological methodologies, and calcium imaging, to verify whether neonatal rat ventricular myocytes cultured on substrates of multiwall carbon nanotubes acquire a physiologically more mature phenotype compared to control (gelatin). We show that the carbon nanotube substrate stimulates the induction of a gene expression profile characteristic of terminal differentiation and physiological growth, with a 2-fold increase of α-myosin heavy chain (P < 0.001) and upregulation of sarcoplasmic reticulum Ca(2+) ATPase 2a. In contrast, markers of pathological hypertrophy remain unchanged (β-myosin heavy chain, skeletal α-actin, atrial natriuretic peptide). These modifications are paralleled by an increase of connexin-43 gene expression, gap junctions and functional syncytia. Moreover, carbon nanotubes appear to exert a protective effect against the pathologic stimulus of phenylephrine. Finally, cardiomyocytes on carbon nanotubes demonstrate a more mature electrophysiological phenotype of syncytia and intracellular calcium signaling. Thus, carbon nanotubes interacting with cardiomyocytes have the ability to promote physiological growth and functional maturation. These properties are unique in the current vexing field of tissue engineering, and offer unprecedented perspectives in the development of innovative therapies for cardiac repair.

  14. Diameter-dependent hydrophobicity in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kyakuno, Haruka; Fukasawa, Mamoru; Ichimura, Ryota; Matsuda, Kazuyuki; Nakai, Yusuke; Miyata, Yasumitsu; Saito, Takeshi; Maniwa, Yutaka

    2016-08-01

    Single-wall carbon nanotubes (SWCNTs) are a good model system that provides atomically smooth nanocavities. It has been reported that water-SWCNTs exhibit hydrophobicity depending on the temperature T and the SWCNT diameter D. SWCNTs adsorb water molecules spontaneously in their cylindrical pores around room temperature, whereas they exhibit a hydrophilic-hydrophobic transition or wet-dry transition (WDT) at a critical temperature Twd ≈ 220-230 K and above a critical diameter Dc ≈ 1.4-1.6 nm. However, details of the WDT phenomenon and its mechanism remain unknown. Here, we report a systematic experimental study involving X-ray diffraction, optical microscopy, and differential scanning calorimetry. It is found that water molecules inside thick SWCNTs (D > Dc) evaporate and condense into ice Ih outside the SWCNTs at Twd upon cooling, and the ice Ih evaporates and condenses inside the SWCNTs upon heating. On the other hand, residual water trapped inside the SWCNTs below Twd freezes. Molecular dynamics simulations indicate that upon lowering T, the hydrophobicity of thick SWCNTs increases without any structural transition, while the water inside thin SWCNTs (D < Dc) exhibits a structural transition, forming an ordered ice. This ice has a well-developed hydrogen bonding network adapting to the cylindrical pores of the SWCNTs. Thus, the unusual diameter dependence of the WDT is attributed to the adaptability of the structure of water to the pore dimension and shape.

  15. Carbon nanotubes and graphene towards soft electronics

    NASA Astrophysics Data System (ADS)

    Chae, Sang Hoon; Lee, Young Hee

    2014-04-01

    Although silicon technology has been the main driving force for miniaturizing device dimensions to improve cost and performance, the current application of Si to soft electronics (flexible and stretchable electronics) is limited due to material rigidity. As a result, various prospective materials have been proposed to overcome the rigidity of conventional Si technology. In particular, nano-carbon materials such as carbon nanotubes (CNTs) and graphene are promising due to outstanding elastic properties as well as an excellent combination of electronic, optoelectronic, and thermal properties compared to conventional rigid silicon. The uniqueness of these nano-carbon materials has opened new possibilities for soft electronics, which is another technological trend in the market. This review covers the recent progress of soft electronics research based on CNTs and graphene. We discuss the strategies for soft electronics with nano-carbon materials and their preparation methods (growth and transfer techniques) to devices as well as the electrical characteristics of transparent conducting films (transparency and sheet resistance) and device performances in field effect transistor (FET) (structure, carrier type, on/off ratio, and mobility). In addition to discussing state of the art performance metrics, we also attempt to clarify trade-off issues and methods to control the trade-off on/off versus mobility). We further demonstrate accomplishments of the CNT network in flexible integrated circuits on plastic substrates that have attractive characteristics. A future research direction is also proposed to overcome current technological obstacles necessary to realize commercially feasible soft electronics.

  16. Processing and Characterization of Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Can, Roberto J.; Grimsley, Brian W.; Czabaj, Michael W.; Siochi, Emilie J.; Hull, Brandon

    2014-01-01

    Recent advances in the synthesis of large-scale quantities of carbon nanotubes (CNT) have provided the opportunity to study the mechanical properties of polymer matrix composites using these novel materials as reinforcement. Nanocomp Technologies, Inc. currently supplies large sheets with dimensions up to 122 cm x 244 cm containing both single-wall and few-wall CNTs. The tubes are approximately 1 mm in length with diameters ranging from 8 to 12 nm. In the present study being conducted at NASA Langley Research Center (LaRC), single and multiple layers of CNT sheets were infused or coated with various polymer solutions that included commercial toughened-epoxies and bismaleimides, as well as a LaRC developed polyimide. The resulting CNT composites were tested in tension using a modified version of ASTM D882-12 to determine their strength and modulus values. The effects of solvent treatment and mechanical elongation/alignment of the CNT sheets on the tensile performance of the composite were determined. Thin composites (around 50 wt% CNT) fabricated from acetone condensed and elongated CNT sheets with either a BMI or polyimide resin solution exhibited specific tensile moduli approaching that of toughened epoxy/ IM7 carbon fiber unidirectional composites.

  17. Supergravity Theory from Ten Dimensions.

    NASA Astrophysics Data System (ADS)

    Romans, Larry James

    1985-12-01

    This work is concerned with the study of several ten-dimensional field theories intimately associated with superstring theories, and possibilities for obtaining realistic four-dimensional theories from them. Three chapters follow the N = 2b supergravity from ten to five, then to four dimensions. First of all, compactifications to five dimensions on various manifolds are studied. Then the entire mass spectrum for the compactification on S('5) is derived using techniques of harmonic analysis on spheres. A particular set of modes corresponds to a gauged maximal supergravity theory in five dimensions; this theory, with Yang-Mills group SO(6), is constructed in detail. By a process similar to analytic continuation, noncompact versions of this theory are also obtained, gauging all the semisimple real forms of SO(6). One particular form, with gauge group SO*(6) (DBLTURN) SU(3,1), compactifies to flat four-dimensional spacetime and offers attractive phenomenological possibilities. The final chapter is concerned with candidates for effective low-energy theories for N = 1 superstrings with gauge group SO(32) or E(,8) x E(,8). These effective theories contain curvature squared terms, and require unusual gravitational interactions to cancel anomalies. The field equations are derived and found to admit compactifications to flat four dimensional spacetime, with the possibility of accommodating many phenomenological considerations.

  18. Endohedral impurities in carbon nanotubes.

    PubMed

    Clougherty, Dennis P

    2003-01-24

    A generalization of the Anderson model that includes pseudo-Jahn-Teller impurity coupling is proposed to describe distortions of an endohedral impurity in a carbon nanotube. Within mean-field theory, spontaneous axial symmetry breaking is found when the vibronic coupling strength g exceeds a critical value. The effective potential is found to have O(2) symmetry, in agreement with numerical calculations. For metallic zigzag nanotubes endohedrally doped with transition metals in the dilute limit, the low-energy properties of the system may display two-channel Kondo behavior; however, strong vibronic coupling is seen to exponentially suppress the Kondo energy scale. PMID:12570507

  19. Endohedral Impurities in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.

    2003-01-01

    A generalization of the Anderson model that includes pseudo-Jahn-Teller impurity coupling is proposed to describe distortions of an endohedral impurity in a carbon nanotube. Within mean-field theory, spontaneous axial symmetry breaking is found when the vibronic coupling strength g exceeds a critical value. The effective potential is found to have O(2) symmetry, in agreement with numerical calculations. For metallic zigzag nanotubes endohedrally doped with transition metals in the dilute limit, the low-energy properties of the system may display two-channel Kondo behavior; however, strong vibronic coupling is seen to exponentially suppress the Kondo energy scale.

  20. CMOS Integrated Carbon Nanotube Sensor

    SciTech Connect

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-05-23

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  1. Experimental imaging of silicon nanotubes

    NASA Astrophysics Data System (ADS)

    De Crescenzi, M.; Castrucci, P.; Scarselli, M.; Diociaiuti, M.; Chaudhari, Prajakta S.; Balasubramanian, C.; Bhave, Tejashree M.; Bhoraskar, S. V.

    2005-06-01

    Transmission electron microscopy (TEM), electron energy loss near edge structures (EELNES) and scanning tunneling microscopy (STM) were used to distinguish silicon nanotubes (SiNT) among the reaction products of a gas phase condensation synthesis. TEM images exhibit the tubular nature with a well-defined wall. The EELNES spectra performed on each single nanotube show that they are constituted by nonoxidized silicon atoms. STM images show that they have diameter ranging from 2 to 35 nm, have an atomic arrangement compatible with a puckered structure and different chiralities. Moreover, the I-V curves showed that SiNT can be semiconducting as well as metallic in character.

  2. Photodetector based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pavlov, A.; Kitsyuk, E.; Ryazanov, R.; Timoshenkov, V.; Adamov, Y.

    2015-09-01

    Photodetector based on carbon nanotubes (CNT) was investigated. Sensors were done on quartz and silicon susbtrate. Samples of photodetectors sensors were produced by planar technology. This technology included deposition of first metal layer (Al), lithography for pads formation, etching, and formation of local catalyst area by inverse lithography. Vertically-aligned multi-wall carbon nanotubes were directly synthesized on substrate by PECVD method. I-V analysis and spectrum sensitivity of photodetector were investigated for 0.4 μm - 1.2 μm wavelength. Resistivity of CNT layers over temperature was detected in the range of -20°C to 100°C.

  3. Carbon nanotube computer.

    PubMed

    Shulaker, Max M; Hills, Gage; Patil, Nishant; Wei, Hai; Chen, Hong-Yu; Wong, H-S Philip; Mitra, Subhasish

    2013-09-26

    The miniaturization of electronic devices has been the principal driving force behind the semiconductor industry, and has brought about major improvements in computational power and energy efficiency. Although advances with silicon-based electronics continue to be made, alternative technologies are being explored. Digital circuits based on transistors fabricated from carbon nanotubes (CNTs) have the potential to outperform silicon by improving the energy-delay product, a metric of energy efficiency, by more than an order of magnitude. Hence, CNTs are an exciting complement to existing semiconductor technologies. Owing to substantial fundamental imperfections inherent in CNTs, however, only very basic circuit blocks have been demonstrated. Here we show how these imperfections can be overcome, and demonstrate the first computer built entirely using CNT-based transistors. The CNT computer runs an operating system that is capable of multitasking: as a demonstration, we perform counting and integer-sorting simultaneously. In addition, we implement 20 different instructions from the commercial MIPS instruction set to demonstrate the generality of our CNT computer. This experimental demonstration is the most complex carbon-based electronic system yet realized. It is a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next generation of highly energy-efficient electronic systems.

  4. Carbon Nanotube Purification

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor); Delzeit, Clement J. (Inventor)

    2005-01-01

    A method for cleaning or otherwise removing amorphous carbon and other residues that arise in growth of a carbon nanotube (CNT) array. The CNT array is exposed to a plurality of hydroxyls or hydrogen, produced from a selected vapor or liquid source such as H2O or H2O2. and the hydroxyls or hydrogen (neutral or electrically charged) react with the residues to produce partly or fully dissolved or hydrogenated or hydroxylizated products that can be removed or separated from the CNT array. The hydroxyls or hydrogen can be produced by heating the CNT array, residue and selected vapor or liquid source or by application of an electromagnetic excitation signal with a selected frequency or range of frequencies to dissociate the selected vapor or liquid. The excitation frequency can be chirped to cover a selected range of frequencies corresponding to dissociation of the selected vapor or liquid. Sonication may be uscd to supplement dissociation of the H2O and/or H2O2.

  5. Carbon nanotube TiO2 hybrid films for detecting traces of O2

    NASA Astrophysics Data System (ADS)

    Llobet, E.; Espinosa, E. H.; Sotter, E.; Ionescu, R.; Vilanova, X.; Torres, J.; Felten, A.; Pireaux, J. J.; Ke, X.; Van Tendeloo, G.; Renaux, F.; Paint, Y.; Hecq, M.; Bittencourt, C.

    2008-09-01

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO2 films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. <=10 ppm) in a flow of CO2, which is of interest for the beverage industry.

  6. Analysis of Stress Responsive Genes Induced by Single-Walled Carbon Nanotubes in BJ Foreskin Cells

    PubMed Central

    Sarkar, Shubhashish; Sharma, Chidananda; Yog, Rajeshwari; Periakaruppan, Adaikkappan; Jejelowo, Olufisayo; Thomas, Renard; Barrera, Enrique V.; Rice-Ficht, Allison C.; Wilson, Bobby L.; Ramesh, Govindarajan T.

    2009-01-01

    Nanotechnology is finding its use as a potential technology in consumer products, defense, electronics, and medical applications by exploiting the properties of nanomaterials. Single-walled carbon nanotubes are novel forms of these nanomaterials with potential for large applications. However, the toxicity studies on this material are not explored in detail and therefore limiting its use. It has been earlier reported that single-walled carbon nanotubes induces oxidative stress and also dictates activation of specific signaling pathway in keratinocytes. The present study explores the effect of single-walled carbon nanotubes on stress genes in human BJ Foreskin cells. The results show induction of oxidative stress in BJ Foreskin cells by single-walled carbon nanotubes and increase in stress responsive genes. The genes included inducible genes like HMOX1, HMOX2, and Cyp1B1. In addition we validated increase for four genes by SWCNT, namely ATM, CCNC, DNAJB4, and GADD45A by RT-PCR. Moreover results of the altered stress related genes have been discussed and that partially explains some of the toxic responses induced by single-walled carbon nanotubes. PMID:17450800

  7. Modified carbon nanotubes and methods of forming carbon nanotubes

    DOEpatents

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  8. Carbon nanotube transistors, sensors, and beyond

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian

    Carbon nanotubes are tiny hollow cylinders, made from a single graphene sheet, that possess many amazing properties. Another reason why nanotubes have generated intense research activities from scientists of various disciplines is they represent a new class of materials for the study of one-dimensional physics. In this thesis we investigate the electrical transport of semiconducting single-walled carbon nanotubes and their potential applications as biological sensors. Electrons have been predicted, by theoretical physicists, to go through nanotubes without much resistance. But this has not been properly quantified experimentally, and the origin of the routinely observed large resistance in nanotubes is not clear. In this thesis we show that in moderate long high quality nanotubes the electrical transport is limited by electron-phonon scattering. Systematic studies are carried out using many devices of different diameters at various temperatures. The resistance and inverse of peak mobility are observed to decrease linearly with temperature, indicating the influence of phonons. The conductance and peak mobility scales with nanotube diameters also, in a linear fashion and quadratic fashion respectively. Based on electron-phonon scattering, a theory model is developed that can not only predict how the resistance changes with gate voltage but also explain the observed temperature and diameter dependence. This work clarifies the nature of electrical transport in nanotubes and sets a performance limit of nanotube devices in diffusive regime. The electrical transport in nanotubes is extremely sensitive to local electrostatic environment due to their small size, large surface to volume ratio and high mobility, making nanotubes ideal key elements in biological sensors. In the second part of this thesis, we integrate nanotubes with supported lipid bilayers, mimic structures of cell membranes, and use this platform as a way to introduce biomolecules into the vicinity of

  9. Multiwalled carbon nanotube CVD synthesis, modification, and composite applications

    NASA Astrophysics Data System (ADS)

    Qian, Dali

    Well-aligned carbon multiwall nanotube (MWNT) arrays have been continuously synthesized by a floating catalytic chemical vapor deposition (CVD) method involving the pyrolysis of xylene-ferrocene mixtures. The CVD parameters have been studied to selectively synthesize nanotubes with required dimensions. A mixed tip-root growth model has been proposed for the floating catalytic CVD synthesis. Coarsening of the catalyst particle at the root end promoted MWNT wall coarsening (addition of new concentric graphene shells), while the smaller catalyst particle at the tip contributed to MWNT elongation. A two-step process in which ferrocene was fed for only five minutes to nucleate the DTs was developed to understand if a continuous supply of catalyst was necessary for continued growth. The results show that the ferrocene was only necessary for initial nucleation. To simplify the CVD process further, another two-step synthesis method was developed in which the ferrocene was pre-decomposed so that the nanotube nucleation could be isolated from the growth, enabling quantification of growth mechanisms and kinetics. Mass spectra and hydrocarbon analyses of the CVD reactor tail gas were performed to understand the pyrolysis chemistry. Well-aligned N-doped and Ru-doped MWNT arrays have been produced by pyrolysis of pyridine ferrocene mixtures and xylene-ferrocene-ruthenocene mixtures, respectively. Various material characterization techniques were used to measure the dopant distributions and correlate the catalyst phase with the novel nanotube structures. High-temperature annealing has been shown to be a viable means to remove both the catalyst particles and certain microstructural defects within the CVD-derived DTs. The phase transformation of catalyst during annealing has also been studied. Homogeneous distribution of MWNTs in polystyrene matrices was achieved by an ultrasonic assisted solution-evaporation method. Addition of only 1 wt % DTs to polystyrene increased the polymer

  10. Lipid bilayers covalently anchored to carbon nanotubes.

    PubMed

    Dayani, Yasaman; Malmstadt, Noah

    2012-05-29

    The unique physical and electrical properties of carbon nanotubes make them an exciting material for applications in various fields such as bioelectronics and biosensing. Due to the poor water solubility of carbon nanotubes, functionalization for such applications has been a challenge. Of particular need are functionalization methods for integrating carbon nanotubes with biomolecules and constructing novel hybrid nanostructures for bionanoelectronic applications. We present a novel method for the fabrication of dispersible, biocompatible carbon nanotube-based materials. Multiwalled carbon nanotubes (MWCNTs) are covalently modified with primary amine-bearing phospholipids in a carbodiimide-activated reaction. These modified carbon nanotubes have good dispersibility in nonpolar solvents. Fourier transform infrared (FTIR) spectroscopy shows peaks attributable to the formation of amide bonds between lipids and the nanotube surface. Simple sonication of lipid-modified nanotubes with other lipid molecules leads to the formation of a uniform lipid bilayer coating the nanotubes. These bilayer-coated nanotubes are highly dispersible and stable in aqueous solution. Confocal fluorescence microscopy shows labeled lipids on the surface of bilayer-modified nanotubes. Transmission electron microscopy (TEM) shows the morphology of dispersed bilayer-coated MWCNTs. Fluorescence quenching of lipid-coated MWCNTs confirms the bilayer configuration of the lipids on the nanotube surface, and fluorescence anisotropy measurements show that the bilayer is fluid above the gel-to-liquid transition temperature. The membrane protein α-hemolysin spontaneously inserts into the MWCNT-supported bilayer, confirming the biomimetic membrane structure. These biomimetic nanostructures are a promising platform for the integration of carbon nanotube-based materials with biomolecules.

  11. [Altered states of consciousness].

    PubMed

    Gora, E P

    2005-01-01

    The review of modern ideas concerning the altered states of consciousness is presented in this article. Various methods of entry into the altered states of consciousness are looked over. It is shown that the altered states of consciousness are insufficiently known, but important aspects of human being existence. The role of investigation of the altered states of consciousness for the creation of integrative scientific conception base is discussed.

  12. [Altered states of consciousness].

    PubMed

    Gora, E P

    2005-01-01

    The review of modern ideas concerning the altered states of consciousness is presented in this article. Various methods of entry into the altered states of consciousness are looked over. It is shown that the altered states of consciousness are insufficiently known, but important aspects of human being existence. The role of investigation of the altered states of consciousness for the creation of integrative scientific conception base is discussed. PMID:15810684

  13. Gastric Cancer: Molecular and Clinical Dimensions

    PubMed Central

    Wadhwa, Roopma; Song, Shumei; Lee, Ju-Seog; Yao, Yixin; Wei, Qingyi; Ajani, Jaffer A.

    2014-01-01

    Gastric cancer (GC) imposes a significant health burden around the globe despite its declining incidence. GC is often diagnosed in advanced stages and carries a poor prognosis. In depth understanding of molecular underpinnings of GC has lagged behind many other cancers of its magnitude, as a result our knowledge base for identifying germline susceptibility traits for risk and somatic drivers of progression (to identify novel therapeutic targets) is limited. A few germline (PLCE1) and somatic (ERBB2, ERBB3, PTEN, PI3K/AKT/mTOR, FGF, TP53, CDH1, and c-MET) alterations are emerging and some are being pursued in the clinic. Novel somatic gene targets, Arid1a, FAT4, and MLL/MLL3 are of interest. Clinically, variations in the therapeutic approaches for localized GC are evident by geographic regions. These are driven by preferences for the adjunctive strategies and the extent of surgery coupled with philosophical divides. However, there is a greater uniformity in approaches to metastatic cancer, an incurable condition. Having realized only modest successes, the momentum is building for carrying out more phase 3 comparative trials and some are using biomarker-based patient selection. Overall, rapid progress in biotechnology is improving our molecular understanding and can help with new drug discovery. The future prospects are excellent for defining biomarker-based subsets of patients and application of specific therapeutics. However, many challenges remain to be tackled. Here we review representative molecular and clinical dimensions of GC. PMID:24061039

  14. Can nitrones functionalize carbon nanotubes?

    PubMed

    Ghini, Giacomo; Luconi, Lapo; Rossin, Andrea; Bianchini, Claudio; Giambastiani, Giuliano; Cicchi, Stefano; Lascialfari, Luisa; Brandi, Alberto; Giannasi, Alessandra

    2010-01-14

    An unprecedented functionalization of multi-walled carbon nanotubes (MWCNTs) has been conveniently achieved by the 1,3-dipolar cycloaddition of a cyclic nitrone. This organic functionalization yields materials with a great solubility in DMF (close to 10 mg per mL of DMF) preferentially occurring at the defects of the MWCNT sp(2) network. PMID:20024342

  15. Terahertz detection and carbon nanotubes

    SciTech Connect

    Leonard, Francois

    2014-06-11

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  16. Thermoelectrics: Carbon nanotubes get high

    NASA Astrophysics Data System (ADS)

    Crispin, Xavier

    2016-04-01

    Waste heat can be converted to electricity by thermoelectric generators, but their development is hindered by the lack of cheap materials with good thermoelectric properties. Now, carbon-nanotube-based materials are shown to have improved properties when purified to contain only semiconducting species and then doped.

  17. Method for synthesizing carbon nanotubes

    DOEpatents

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  18. Conical beams from open nanotubes

    NASA Astrophysics Data System (ADS)

    Saito, Yahachi; Hamaguchi, Koji; Hata, Koichi; Uchida, Kunio; Tasaka, Yoshiharu; Ikazaki, Fumikazu; Yumura, Motoo; Kasuya, Atsuo; Nishina, Yuichiro

    1997-10-01

    Electron guns are indispensable devices that are widely used in household and industrial appliances. Field electron-emitting sources (which emit electrons by tunnelling effects in electric fields), with their small size, small energy spread, high current density and no requirement for heat, have distinct advantages over thermionic emitters. We have made a field electron emitter from hollow, open-ended carbon nanotubes.

  19. Twisting Graphene into Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kit, Oleg O.; Tallinen, Tuomas; Mahadevan, L.; Timonen, Jussi; Koskinen, Pekka

    2012-02-01

    Carbon nanotubes are usually described as being rolled up from graphene sheets; this process, however, have never been realized experimentally. We showed that graphene can indeed be transformed into nanotube by twisting [1]. Further, we showed that tube formation can be well-explained within classical theory of elasticity---in fact the very mechanism of tube formation can be observed by twisting a strap from one's backpack (try now!). Furthermore, we showed that nanotube chirality may not only be predicted, but can also be controlled externally. The quantum molecular dynamic simulations at T=300K were achieved thanks to the revised periodic boundary conditions (RPBC) approach [2-3]. The structures similar to simulated have been recently observed experimentally [4]. This novel rote for nanotube formation opens new opportunities in nanomaterial manipulation not restricted to carbon alone. In the presentation, I will describe tube formation, as well as outline the easy and efficient technique for distorted nanostructures simulation, the RPBC approach. [4pt] [1] O. O. Kit et al. arXiv:1108.0048[0pt] [2] P. Koskinen & O. O. Kit PRL 105, 106401 (2010)[0pt] [3] O. O. Kit, L. Pastewka, P. Koskinen PRB 84, 155431 (2011)[0pt] [4] A. Chuvilin et al. Nature Materials 10, 687 (2011)

  20. Self-organized nanotube serpentines.

    PubMed

    Geblinger, Noam; Ismach, Ariel; Joselevich, Ernesto

    2008-04-01

    Carbon nanotubes have unique mechanical, electronic, optical and thermal properties, which make them attractive building blocks in the field of nanotechnology. However, their organization into well-defined straight or curved geometries and arrays on surfaces remains a critical challenge for their integration into functional nanosystems. Here we show that combined surface- and flow-directed growth enable the controlled formation of uniquely complex and coherent geometries of single-walled carbon nanotubes, including highly oriented and periodic serpentines and coils. We propose a mechanism of non-equilibrium self-organization, in which competing dissipative forces of adhesion and aerodynamic drag induce oscillations in the nanotubes as they adsorb on the surface. Our results demonstrate the use of 'order through fluctuations' to shape nanostructures into complex geometries. The nanotube serpentines and loops are shown to be electrically conducting and could therefore find a wide range of potential applications, such as receiving and transmitting antennas, heating and cooling elements, optoelectronic devices and single-molecule dynamos.

  1. Proton Beams from Nanotube Accelerator

    NASA Astrophysics Data System (ADS)

    Murakami, Masakatsu; Tanaka, Motohiko

    2013-10-01

    A carbon nanotube (CNT) is known to have extraordinary material and mechanical properties. Here we propose a novel ion acceleration scheme with nanometer-size CNT working at such an extreme circumstance as temperatures higher than billions of degree and durations shorter than tens of femtosecond, dubbed as nanotube accelerator, with which quasimonoenergetic and collimated MeV-order proton beams are generated. In nanotube accelerators, CNTs with fragments of a hydrogen compound embedded inside are irradiated by an ultrashort ultraintense laser. Under such laser and target conditions, low-Z materials such as hydrogen and carbon will be fully ionized. Substantial amount of electrons of the system are then blown off by the brutal laser electric field within only a few laser cycles. This leads to a new type of ion acceleration, in which the nanotube and embedded materials play the roles of a gun barrel and bullets, respectively, to produce highly collimated and quasimonoenergetic proton beams. Three-dimensional particle simulations, that take all the two-body Coulomb interactions into account, demonstrate generation of quasimonoenergetic 1.5-MeV proton beams under a super-intense electrostatic field ~ 1014 V m-1.

  2. Terahertz detection and carbon nanotubes

    ScienceCinema

    Leonard, Francois

    2016-07-12

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  3. Carbon nanotube: the inside story.

    PubMed

    Ando, Yoshinori

    2010-06-01

    Carbon nanotubes (CNTs) were serendipitously discovered as a byproduct of fullerenes by direct current (DC) arc discharge; and today this is the most-wanted material in the nanotechnology research. In this brief review, I begin with the history of the discovery of CNTs and focus on CNTs produced by arc discharge in hydrogen atmosphere, which is little explored outside my laboratory. DC arc discharge evaporation of pure graphite rod in pure hydrogen gas results in multi-walled carbon nanotubes (MWCNTs) of high crystallinity in the cathode deposit. As-grown MWCNTs have very narrow inner diameter. Raman spectra of these MWCNTs show high-intensity G-band, unusual high-frequency radial breathing mode at 570 cm(-1), and a new characteristic peak near 1850 cm(-1). Exciting carbon nanowires (CNWs), consisting of a linear carbon chain in the center of MWCNTs are also produced. Arc evaporation of graphite rod containing metal catalysts results in single-wall carbon nanotubes (SWCNTs) in the whole chamber like macroscopic webs. Two kinds of arc method have been developed to produce SWCNTs: Arc plasma jet (APJ) and Ferrum-Hydrogen (FH) arc methods. Some new purification methods for as-produced SWCNTs are reviewed. Finally, double-walled carbon nanotubes (DWCNTs) are also described.

  4. Quantum cosmology near two dimensions

    NASA Astrophysics Data System (ADS)

    Bautista, Teresa; Dabholkar, Atish

    2016-08-01

    We consider a Weyl-invariant formulation of gravity with a cosmological constant in d -dimensional spacetime and show that near two dimensions the classical action reduces to the timelike Liouville action. We show that the renormalized cosmological term leads to a nonlocal quantum momentum tensor which satisfies the Ward identities in a nontrivial way. The resulting evolution equations for an isotropic, homogeneous universe lead to slowly decaying vacuum energy and power-law expansion. We outline the implications for the cosmological constant problem, inflation, and dark energy.

  5. Turing patterns in three dimensions.

    PubMed

    Shoji, Hiroto; Yamada, Kohtaro; Ueyama, Daishin; Ohta, Takao

    2007-04-01

    We investigate three-dimensional Turing patterns in two-component reaction diffusion systems. The FitzHugh-Nagumo equation, the Brusselator, and the Gray-Scott model are solved numerically in three dimensions. Several interconnected structures of domains as well as lamellar, hexagonal, and spherical domains are obtained as stable motionless equilibrium patterns. The relative stability of these structures is studied analytically based on the reduction approximation. The relation with the microphase-separated structures in block copolymers is also discussed. PMID:17500983

  6. Equientangled bases in arbitrary dimensions

    SciTech Connect

    Karimipour, V.; Memarzadeh, L.

    2006-01-15

    For the space of two identical systems of arbitrary dimensions, we introduce a continuous family of bases with the following properties: (i) the bases are orthonormal (ii) in each basis, all the states have the same values of entanglement, and (iii) they continuously interpolate between the product basis and the maximally entangled basis. The states thus constructed may find applications in many areas related to the quantum information science including quantum cryptography, optimal Bell tests, and the investigation of the enhancement of channel capacity due to entanglement.

  7. Correlation dimension of complex networks.

    PubMed

    Lacasa, Lucas; Gómez-Gardeñes, Jesús

    2013-04-19

    We propose a new measure to characterize the dimension of complex networks based on the ergodic theory of dynamical systems. This measure is derived from the correlation sum of a trajectory generated by a random walker navigating the network, and extends the classical Grassberger-Procaccia algorithm to the context of complex networks. The method is validated with reliable results for both synthetic networks and real-world networks such as the world air-transportation network or urban networks, and provides a computationally fast way for estimating the dimensionality of networks which only relies on the local information provided by the walkers.

  8. Fractal dimension of bioconvection patterns

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1990-01-01

    Shallow cultures of the motile algal strain, Euglena gracilis, were concentrated to 2 x 10 to the 6th organisms per ml and placed in constant temperature water baths at 24 and 38 C. Bioconvective patterns formed an open two-dimensional structure with random branches, similar to clusters encountered in the diffusion-limited aggregation (DLA) model. When averaged over several example cultures, the pattern was found to have no natural length scale, self-similar branching, and a fractal dimension (d about 1.7). These agree well with the two-dimensional DLA.

  9. Localized instanton in four dimensions

    NASA Astrophysics Data System (ADS)

    O'brien, G. M.; Tchrakian, D. H.

    1987-02-01

    A family of generalized Yang-Mills- (GYM) Higgs (H) systems is proposed as phenomenological models giving rise to localized instantons in four dimensions. An argument in favor of the (qualified) uniqueness of this system, which features a fundamental-representation Higgs field, is given. Two ``radial'' Ansa$auml-tze are made, and the compatibility of one of them with the field equation is analyzed in detail. It is suggested that such GYMH systems can be used in the computation of the confining potential.

  10. Direct intermolecular force measurements between functional groups and individual metallic or semiconducting single-walled carbon nanotubes.

    PubMed

    Thong, Ya Xuan; Poon, Yin Fun; Chen, Tzu-Yin; Li, Lain-Jong; Chan-Park, Mary B

    2014-02-26

    Many electronic applications of single-walled carbon nanotubes (SWNTs) require electronic homogeneity in order to maximally exploit their outstanding properties. Non-covalent separation is attractive as it is scalable and results in minimal alteration of nanotube properties. However, fundamental understanding of the metallicity-dependence of functional group interactions with nanotubes is still lacking; this lack is compounded by the absence of methods to directly measure these interactions. Herein, a novel technology platform based on a recently developed atomic force microscopy (AFM) mode is reported which directly quantifies the adhesion forces between a chosen functional group and individual nanotubes of known metallicity, permitting comparisons between different metallicity. These results unambiguously show that this technology platform is able to discriminate the subtle adhesion force differences of a chosen functional group with pure metallic as opposed to pure semiconducting nanotubes. This new method provides a route towards rapid advances in understanding of non-covalent interactions of large libraries of compounds with nanotubes of varying metallicity and diameter; presenting a superior tool to assist the discovery of more effective metallicity-based SWNT separation agents.

  11. Transition from single-file to Fickian diffusion for binary mixtures in single-walled carbon nanotubes.

    PubMed

    Chen, Qu; Moore, Joshua D; Liu, Ying-Chun; Roussel, Thomas J; Wang, Qi; Wu, Tao; Gubbins, Keith E

    2010-09-01

    The transition from single-file diffusion to Fickian diffusion in narrow cylindrical pores is investigated for systems of rigid single-walled armchair carbon nanotubes, solvated with binary mixtures of Lennard-Jones fluids (Ar/Ne, Ar/Kr, and Ar/Xe). A range of effects is examined including the mixture concentration, the size ratio of the two components, and the nanotube diameter. The transition from single-file to Fickian diffusion in varying carbon nanotube diameters is analyzed in terms of the Fickian self-diffusivity and the single-file mobility of the mixture components. It is found that the single-file to Fickian carbon nanotube transition diameter is a unique property of the individual molecule's diameter and remains unchanged regardless of the mixture composition. In applications of binary mixtures, each component may crossover from single-file to Fickian diffusion in a different carbon nanotube diameter, giving rise to bimodal diffusion in some nanotubes. This transition allows for one species to diffuse in single-file while the other diffuses by a Fickian mechanism, yielding orders of magnitude difference between the self-diffusional rates of the two molecules. This phenomenon might be further extended to alter the diffusional motion of molecules in nanoporous materials.

  12. Random flights through spaces of different dimensions

    NASA Astrophysics Data System (ADS)

    Reimberg, Paulo H. F.; Abramo, L. Raul

    2015-01-01

    We shall study random flights that start in a space of one given dimension and, after performing a definite number of steps, continue to develop in a space of higher dimension. We show that if the difference of the dimension of spaces is even, then the probability density describing the composite flight can be expressed as marginalizations of the probability density associated to a random flight in the space of less dimensions. This dimensional reduction is a consequence of Gegenbauer addition theorem.

  13. 16 CFR 1508.3 - Dimensions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Dimensions. 1508.3 Section 1508.3 Commercial... FULL-SIZE BABY CRIBS § 1508.3 Dimensions. Full-size baby cribs shall have dimensions as follows: (a) Interior. The interior dimensions shall be 71±1.6 centimeters (28±5/8 inches) wide as measured between...

  14. 16 CFR 1508.3 - Dimensions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Dimensions. 1508.3 Section 1508.3 Commercial... FULL-SIZE BABY CRIBS § 1508.3 Dimensions. Full-size baby cribs shall have dimensions as follows: (a) Interior. The interior dimensions shall be 71±1.6 centimeters (28±5/8 inches) wide as measured between...

  15. Quantum Dimension and Quantum Projective Spaces

    NASA Astrophysics Data System (ADS)

    Matassa, Marco

    2014-09-01

    We show that the family of spectral triples for quantum projective spaces introduced by D'Andrea and Dąbrowski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K_{2rho} or its inverse. The spectral dimension computed in this sense coincides with the dimension of the classical projective spaces. The connection with the well known notion of quantum dimension of quantum group theory is pointed out.

  16. Carbon-Nanotube Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Wong, Eric; Schlecht, Erich; Hunt, Brian; Siegel, Peter

    2006-01-01

    Schottky diodes based on semiconducting single-walled carbon nanotubes are being developed as essential components of the next generation of submillimeter-wave sensors and sources. Initial performance predictions have shown that the performance characteristics of these devices can exceed those of the state-of-the-art solid-state Schottky diodes that have been the components of choice for room-temperature submillimeter-wave sensors for more than 50 years. For state-of-the-art Schottky diodes used as detectors at frequencies above a few hundred gigahertz, the inherent parasitic capacitances associated with their semiconductor junction areas and the resistances associated with low electron mobilities limit achievable sensitivity. The performance of such a detector falls off approximately exponentially with frequency above 500 GHz. Moreover, when used as frequency multipliers for generating signals, state-of-the-art solid-state Schottky diodes exhibit extremely low efficiencies, generally putting out only micro-watts of power at frequencies up to 1.5 THz. The shortcomings of the state-of-the-art solid-state Schottky diodes can be overcome by exploiting the unique electronic properties of semiconducting carbon nanotubes. A single-walled carbon nanotube can be metallic or semiconducting, depending on its chirality, and exhibits high electron mobility (recently reported to be approx.= 2x10(exp 5)sq cm/V-s) and low parasitic capacitance. Because of the narrowness of nanotubes, Schottky diodes based on carbon nanotubes have ultra-small junction areas (of the order of a few square nanometers) and consequent junction capacitances of the order of 10(exp -18) F, which translates to cutoff frequency >5 THz. Because the turn-on power levels of these devices are very low (of the order of nano-watts), the input power levels needed for pumping local oscillators containing these devices should be lower than those needed for local oscillators containing state-of-the-art solid

  17. Psychobiology of altered states of consciousness.

    PubMed

    Vaitl, Dieter; Birbaumer, Niels; Gruzelier, John; Jamieson, Graham A; Kotchoubey, Boris; Kübler, Andrea; Lehmann, Dietrich; Miltner, Wolfgang H R; Ott, Ulrich; Pütz, Peter; Sammer, Gebhard; Strauch, Inge; Strehl, Ute; Wackermann, Jiri; Weiss, Thomas

    2005-01-01

    The article reviews the current knowledge regarding altered states of consciousness (ASC) (a) occurring spontaneously, (b) evoked by physical and physiological stimulation, (c) induced by psychological means, and (d) caused by diseases. The emphasis is laid on psychological and neurobiological approaches. The phenomenological analysis of the multiple ASC resulted in 4 dimensions by which they can be characterized: activation, awareness span, self-awareness, and sensory dynamics. The neurophysiological approach revealed that the different states of consciousness are mainly brought about by a compromised brain structure, transient changes in brain dynamics (disconnectivity), and neurochemical and metabolic processes. Besides these severe alterations, environmental stimuli, mental practices, and techniques of self-control can also temporarily alter brain functioning and conscious experience.

  18. Telescopic nanotube device for hot nanolithography

    DOEpatents

    Popescu, Adrian; Woods, Lilia M

    2014-12-30

    A device for maintaining a constant tip-surface distance for producing nanolithography patterns on a surface using a telescopic nanotube for hot nanolithography. An outer nanotube is attached to an AFM cantilever opposite a support end. An inner nanotube is telescopically disposed within the outer nanotube. The tip of the inner nanotube is heated to a sufficiently high temperature and brought in the vicinity of the surface. Heat is transmitted to the surface for thermal imprinting. Because the inner tube moves telescopically along the outer nanotube axis, a tip-surface distance is maintained constant due to the vdW force interaction, which in turn eliminates the need of an active feedback loop.

  19. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  20. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    PubMed Central

    2009-01-01

    In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N) nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS) mechanism was proposed for the growth of the nanotubes. PMID:20596377

  1. Deconvoluting hepatic processing of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J. Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L. J.; Ulmert, Hans David S.; Brea, Elliott J.; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A.; McDevitt, Michael R.

    2016-07-01

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.

  2. Development of Carbon-Nanotube/Polymer Composites

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas A.

    2005-01-01

    A report presents a short discussion of one company's effort to develop composites of carbon nanotubes in epoxy and other polymer matrices. The focus of the discussion is on the desirability of chemically modifying carbon nanotubes to overcome their inherent chemical nonreactivity and thereby enable the formation of strong chemical bonds between nanotubes and epoxies (or other polymeric matrix materials or their monomeric precursors). The chemical modification is effected in a process in which discrete functional groups are covalently attached to the nanotube surfaces. The functionalization process was proposed by the company and demonstrated in practice for the first time during this development effort. The covalently attached functional groups are capable of reacting with the epoxy or other matrix resin to form covalent bonds. Furthermore, the company uses this process to chemically modify the nanotube surfaces, affording tunable adhesion to polymers and solubility in select solvents. Flat-sheet composites containing functionalized nanotubes demonstrate significantly improved mechanical, thermal, and electrical properties.

  3. Purification of Carbon Nanotubes: Alternative Methods

    NASA Technical Reports Server (NTRS)

    Files, Bradley; Scott, Carl; Gorelik, Olga; Nikolaev, Pasha; Hulse, Lou; Arepalli, Sivaram

    2000-01-01

    Traditional carbon nanotube purification process involves nitric acid refluxing and cross flow filtration using surfactant TritonX. This is believed to result in damage to nanotubes and surfactant residue on nanotube surface. Alternative purification procedures involving solvent extraction, thermal zone refining and nitric acid refiuxing are used in the current study. The effect of duration and type of solvent to dissolve impurities including fullerenes and P ACs (polyaromatic compounds) are monitored by nuclear magnetic reasonance, high performance liquid chromatography, and thermogravimetric analysis. Thermal zone refining yielded sample areas rich in nanotubes as seen by scanning electric microscopy. Refluxing in boiling nitric acid seem to improve the nanotube content. Different procedural steps are needed to purify samples produced by laser process compared to arc process. These alternative methods of nanotube purification will be presented along with results from supporting analytical techniques.

  4. NEW DIMENSIONS IN JUNIOR COLLEGE PLANNING.

    ERIC Educational Resources Information Center

    BOYCE, R. DUDLEY; AND OTHERS

    THIS REPORT CONSISTS OF A SERIES OF DISCUSSIONS BY MANY AUTHORS IN FOUR BROAD DIMENSIONS RELATIVE TO JUNIOR COLLEGES. THE FIRST DIMENSION IS PURPOSES AND DEALS WITH THE UNIQUE ROLE OF THE COMMUNITY JUNIOR COLLEGE, PROVISIONS FOR FACILITIES, PROBLEMS, AND POTENTIALITIES. THE SECOND DIMENSION FOCUSES ON PLANNING AND REPORTS ON STUDIES IN PLANNING…

  5. 15 CFR 241.5 - Standard dimensions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Standard dimensions. 241.5 Section 241..., VEGETABLES AND OTHER DRY COMMODITIES, AND FOR CRANBERRIES § 241.5 Standard dimensions. Whenever in the rules and regulations in this part the error on a dimension is mentioned, this error shall be determined...

  6. 15 CFR 241.5 - Standard dimensions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Standard dimensions. 241.5 Section 241..., VEGETABLES AND OTHER DRY COMMODITIES, AND FOR CRANBERRIES § 241.5 Standard dimensions. Whenever in the rules and regulations in this part the error on a dimension is mentioned, this error shall be determined...

  7. Persistence Length Control of the Polyelectrolyte Layer-by-Layer Self-Assembly on Carbon Nanotubes

    SciTech Connect

    Huang, S J; Artyukhin, A B; Wang, Y; Ju, J; Stroeve, P; Noy, A

    2005-04-30

    considered only nano-particles with radius 5 nanometer and larger. One-dimensional materials, such as carbon nanotubes, provide an even more interesting template for studying self-assembly mechanisms, since they give us access to even smaller surface curvatures down to 1 nm. We have examined the role of the polymer persistence length in layer-by-layer self-assembly process on carbon nanotubes by observing formation of multilayer polyelectrolyte shells around carbon nanotubes at different ionic strength. Persistence length of polyelectrolytes varies with solution ionic strength, due to screening of the electrostatic repulsion between the polymer Figure 1. TEM images of single-walled carbon nanotubes after polymer deposition for ionic strengths of (A) 0.05M, (B) 0.1M, (C) 0.2M, (D) 0.4M, (E) 0.65M, and (F) 1.05M. Scale bar corresponds to 10 nm. backbone charges; therefore changing ionic strength is a convenient way to alter the configuration of the polymer molecule systematically. We have used the layer-by-layer self-assembly technique to form 5-layer thick coating of the alternating polyallylamine hydrochloride (PAH) and sodium poly(styrenesulfonate) (PSS) layers on the surfaces of the pristine single-wall carbon nanotubes. For our experiments, we grew the nanotubes across copper TEM grid openings using catalytic chemical vapor deposition. The deposition solutions contained different amounts of NaCl to vary the ionic strength. After polymer multilayer formation we examined the resulting coating in high-resolution TEM.

  8. Reflections from the fourth dimension

    NASA Astrophysics Data System (ADS)

    Lefranc, Marc

    2013-01-01

    The knot-theoretic characterization of three-dimensional strange attractors has proved an invaluable tool for comparing models to experiments, understanding the structure of bifurcation diagrams, constructing symbolic encodings or obtaining signatures of chaos. In four dimensions and above, however, all closed curves can be deformed into each other without crossing themselves. Therefore, the fundamental idea of topological analysis, namely that the topological structure of a strange attractor provides signatures of the stretching and folding mechanisms which organize it, must be translated into a different formalism. Here, we discuss two modest attempts to make progress in this direction. First, we illustrate the relevance of catastrophe theory in the analysis of higher-dimensional systems by describing experimental signatures of cusps in weakly coupled chaotic systems. Second, we note that determinism not only precludes intersection of two trajectories but also orientation reversal of phase space volume elements. Enforcing this principle on dynamical triangulations of periodic points advected by the flow leads to higher-dimensional analogues of braids, which in three dimensions appear to provide the same information as usual approaches.

  9. Fractal Dimensions of Macromolecular Structures

    PubMed Central

    Todoroff, Nickolay; Kunze, Jens; Schreuder, Herman; Hessler, Gerhard; Baringhaus, Karl-Heinz; Schneider, Gisbert

    2014-01-01

    Quantifying the properties of macromolecules is a prerequisite for understanding their roles in biochemical processes. One of the less-explored geometric features of macromolecules is molecular surface irregularity, or ‘roughness’, which can be measured in terms of fractal dimension (D). In this study, we demonstrate that surface roughness correlates with ligand binding potential. We quantified the surface roughnesses of biological macromolecules in a large-scale survey that revealed D values between 2.0 and 2.4. The results of our study imply that surface patches involved in molecular interactions, such as ligand-binding pockets and protein-protein interfaces, exhibit greater local fluctuations in their fractal dimensions than ‘inert’ surface areas. We expect approximately 22 % of a protein’s surface outside of the crystallographically known ligand binding sites to be ligandable. These findings provide a fresh perspective on macromolecular structure and have considerable implications for drug design as well as chemical and systems biology. PMID:26213587

  10. Tan relations in one dimension

    SciTech Connect

    Barth, Marcus Zwerger, Wilhelm

    2011-10-15

    We derive exact relations that connect the universal C/k{sup 4}-decay of the momentum distribution at large k with both thermodynamic properties and correlation functions of two-component Fermi gases in one dimension with contact interactions. The relations are analogous to those obtained by Tan in the three-dimensional case and are derived from an operator product expansion of the one- and two-particle density matrix. They extend earlier results by Olshanii and Dunjko (2003) for the bosonic Lieb-Liniger gas. As an application, we calculate the pair distribution function at short distances and the dimensionless contact in the limit of infinite repulsion. The ground state energy approaches a universal constant in this limit, a behavior that also holds in the three-dimensional case. In both one and three dimensions, a Stoner instability to a saturated ferromagnet for repulsive fermions with zero range interactions is ruled out at any finite coupling. - Highlights: > We derive universal relations for the two-component, contact-interacting 1D Fermi gas. > These relations connect the tail of the momentum distribution to thermodynamic properties. > There is no saturated ferromagnetism at finite, repulsive couplings for the 3D model.

  11. An anticorrosive magnesium/carbon nanotube composite

    NASA Astrophysics Data System (ADS)

    Endo, M.; Hayashi, T.; Itoh, I.; Kim, Y. A.; Shimamoto, D.; Muramatsu, H.; Shimizu, Y.; Morimoto, S.; Terrones, M.; Iinou, S.; Koide, S.

    2008-02-01

    Here, we report a drastically improved anticorrosive characteristic of magnesium alloy composites with the introduction of multiwalled carbon nanotubes. Highly depressed corrosion of nanotube-filled magnesium composite in salt water is due to the formation of stable oxide films along the grain boundaries of magnesium. Our results indicate that carbon nanotube acted as effective multifunctional filler to improve both mechanical and anticorrosive performances of magnesium alloy.

  12. Covalent Sidewall Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Chiang, I.W.; Saini, R. K.; Mickelson, E. T.; Billups, W. E.; Hauge, R. H.; Margrave, J. L.

    2001-01-01

    Progress of fluorination of single-wall carbon nanotubes is being reported. Covalent attachment of alkyl groups including methyl, n-butyl and n-hexyl groups to the sidewalls of single wall carbon nanotubes (SWNTs) has been achieved. Quantitative measurement of the alkylation was done by thermal gravimetric analysis. FTIR, Raman and UV-Vis-NIR were used to characterize these alkylated SWNTs. Application of these nanotubes are being investigated-fibers, composites, batteries, lubricants, etc.

  13. Dispersion of carbon nanotubes using organic solvents.

    PubMed

    Dumonteil, S; Demortier, A; Detriche, S; Raes, C; Fonseca, A; Rühle, M; Nagy, J B

    2006-05-01

    Phenyl ethyl alcohol was used for fast and stable dispersion of carbon nanotubes. This solvent, more effective than ethanol and toluene, allows easy dispersion of carbon nanotubes for TEM characterization. For TEM grids prepared at high dilution, it is possible to observe each tube separately. Applying that solvent, it was possible to measure the length, the diameter and the solubility of different carbon nanotubes samples.

  14. Modelling water molecules inside cyclic peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Tiangtrong, Prangsai; Thamwattana, Ngamta; Baowan, Duangkamon

    2016-03-01

    Cyclic peptide nanotubes occur during the self-assembly process of cyclic peptides. Due to the ease of synthesis and ability to control the properties of outer surface and inner diameter by manipulating the functional side chains and the number of amino acids, cyclic peptide nanotubes have attracted much interest from many research areas. A potential application of peptide nanotubes is their use as artificial transmembrane channels for transporting ions, biomolecules and waters into cells. Here, we use the Lennard-Jones potential and a continuum approach to study the interaction of a water molecule in a cyclo[(- D-Ala- L-Ala)_4-] peptide nanotube. Assuming that each unit of a nanotube comprises an inner and an outer tube and that a water molecule is made up of a sphere of two hydrogen atoms uniformly distributed over its surface and a single oxygen atom at the centre, we determine analytically the interaction energy of the water molecule and the peptide nanotube. Using this energy, we find that, independent of the number of peptide units, the water molecule will be accepted inside the nanotube. Once inside the nanotube, we show that a water molecule prefers to be off-axis, closer to the surface of the inner nanotube. Furthermore, our study of two water molecules inside the peptide nanotube supports the finding that water molecules form an array of a 1-2-1-2 file inside peptide nanotubes. The theoretical study presented here can facilitate thorough understanding of the behaviour of water molecules inside peptide nanotubes for applications, such as artificial transmembrane channels.

  15. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    NASA Technical Reports Server (NTRS)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  16. Method of making carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  17. Engineering molecular chains in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chamberlain, Thomas W.; Pfeiffer, Rudolf; Howells, Jonathan; Peterlik, Herwig; Kuzmany, Hans; Kräutler, Bernhard; da Ros, Tatiana; Melle-Franco, Manuel; Zerbetto, Francesco; Milić, Dragana; Khlobystov, Andrei N.

    2012-11-01

    A range of mono- and bis-functionalised fullerenes have been synthesised and inserted into single-walled carbon nanotubes. The effect of the size and shape of the functional groups of the fullerenes on the resultant 1D arrays formed within the nanotubes was investigated by high resolution transmission electron microscopy and X-ray diffraction. The addition of non-planar, sterically bulky chains to the fullerene cage results in highly ordered 1D structures in which the fullerenes are evenly spaced along the internal nanotube cavity. Theoretical calculations reveal that the functional groups interact with neighbouring fullerene cages to space the fullerenes evenly within the confines of the nanotube. The addition of two functional groups to opposite sides of the fullerene cages results in a further increase in the separation of the fullerene cages within the nanotubes at the cost of lower nanotube filling rates.A range of mono- and bis-functionalised fullerenes have been synthesised and inserted into single-walled carbon nanotubes. The effect of the size and shape of the functional groups of the fullerenes on the resultant 1D arrays formed within the nanotubes was investigated by high resolution transmission electron microscopy and X-ray diffraction. The addition of non-planar, sterically bulky chains to the fullerene cage results in highly ordered 1D structures in which the fullerenes are evenly spaced along the internal nanotube cavity. Theoretical calculations reveal that the functional groups interact with neighbouring fullerene cages to space the fullerenes evenly within the confines of the nanotube. The addition of two functional groups to opposite sides of the fullerene cages results in a further increase in the separation of the fullerene cages within the nanotubes at the cost of lower nanotube filling rates. Electronic supplementary information (ESI) available: HRTEM images of 4@SWNT, space filling models of 1-6@SWNT structures and crystal packing

  18. Carbon nanotube oscillators toward zeptogram detection

    SciTech Connect

    Nishio, Mitsumasa; Sawaya, Shintaro; Akita, Seiji; Nakayama, Yoshikazu

    2005-03-28

    We demonstrate an application of a nanotube cantilever for zeptogram-level mass detection. This letter presents a quantitative method to measure the oscillation amplitude of a nanotube cantilever using a focused electron beam of a scanning electron microscope. The quality factor of {approx}1000 for the nanotube cantilever is revealed and the resolution of the resonant frequency is achieved to be {approx}10 Hz, which corresponds to a mass range of less than 100 zg at room temperature.

  19. Lighting up silica nanotubes transcribed from the submicron structure of a metal-peptide hybrid

    NASA Astrophysics Data System (ADS)

    Pu, Fang; Ren, Jinsong

    2013-09-01

    Fluorescent silica nanotubes are attracting increasing interest because of their versatile applicability in a range of diverse fields. By using sol-gel transcription of tetraethylorthosilicate (TEOS) from various soft templates, silica nanotubes can be conveniently prepared. Metal-peptide hybrids with well-defined nanostructures and outstanding functionalities are very interesting candidates to serve as templates. Herein, we demonstrate that glutathione (GSH) can act as a building block for a bioinspired structure with dimensions down to the nanoscale, based on specific interactions between metal ions and the peptide. Congo red is able to selectively stain the nanofibres obtained, and appears apple-green in colour, implying that Congo red is promising to serve as an effective and convenient probe for determining the self-assembly of GSH and copper ions. Furthermore, silica nanotubes are synthesized using the nanofibres as a template in a very simple way. The silica nanotubes can be lit up by biomolecule-templated metal nanoparticles or nanoclusters and emit bright fluorescence. This work will certainly open up new opportunities in fabricating a broad range of nanostructured materials with versatile functionalities.

  20. DNA mediated assembly of single walled carbon nanotubes: role of DNA linkers and annealing.

    PubMed

    Xu, Phyllis F; Noh, Hyunwoo; Lee, Ju Hun; Cha, Jennifer N

    2011-06-01

    With the high demand for nanoelectronic devices, extensive research has focused on the use of single walled carbon nanotubes (CNTs) due to their high electron carrier mobility, large tensile strength, and single nanometer dimensions. Despite their promise, however, their applicability has been greatly hindered by the inherent difficulties of both separating nanotubes of different chiralities and diameters and positioning them from metallic tubes and positioning them in a precise location on a surface. In recent years, single stranded DNA (ssDNA) has been identified as a potential solution for both of these problems since DNA can be used to both separate the different types of CNTs as well as direct their organization. We demonstrate here the first principles on how to guide CNT assembly directly on surfaces from solution by specific DNA hybridization. It was found that the specific DNA sequence used to disperse the carbon nanotubes greatly influences the adsorption and specificity of nanotube binding to the surface. Furthermore, we demonstrate here that thermal annealing can correct misaligned tubes or incorrect binding. These studies provide an excellent foundation for employing two-dimensional DNA templates for CNT organization for nanoelectronic logic and memory based applications. Furthermore, using a single biomaterial to both sort and place CNTs in minimal steps would greatly help the throughput, manufacturability, and cost of such devices.

  1. Fabrication of Gate-Electrode Integrated Carbon-Nanotube Bundle Field Emitters

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; Bronikowski, Michael; Luong, Edward; Manohara, Harish

    2008-01-01

    A continuing effort to develop carbon-nanotube-based field emitters (cold cathodes) as high-current-density electron sources has yielded an optimized device design and a fabrication scheme to implement the design. One major element of the device design is to use a planar array of bundles of carbon nanotubes as the field-emission tips and to optimize the critical dimensions of the array (principally, heights of bundles and distances between them) to obtain high area-averaged current density and high reliability over a long operational lifetime a concept that was discussed in more detail in Arrays of Bundles of Carbon Nanotubes as Field Emitters (NPO-40817), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 58. Another major element of the design is to configure the gate electrodes (anodes used to extract, accelerate, and/or focus electrons) as a ring that overhangs a recess wherein the bundles of nanotubes are located, such that by virtue of the proximity between the ring and the bundles, a relatively low applied potential suffices to generate the large electric field needed for emission of electrons.

  2. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites.

    PubMed

    Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan

    2016-03-28

    Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm(-1) under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot "hand" were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.

  3. Liquid surface model for carbon nanotube energetics.

    PubMed

    Solov'yov, Ilia A; Mathew, Maneesh; Solov'yov, Andrey V; Greiner, Walter

    2008-11-01

    In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms are known. The parameters of the liquid surface model and its potential applications are discussed. The model has been suggested for open end and capped nanotubes. The influence of the catalytic nanoparticle, atop which nanotubes grow, on the nanotube stability is also discussed. The suggested model gives an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions.

  4. From carbon nanobells to nickel nanotubes

    NASA Astrophysics Data System (ADS)

    Ma, S.; Srikanth, V. V. S. S.; Maik, D.; Zhang, G. Y.; Staedler, T.; Jiang, X.

    2009-01-01

    A generic strategy is proposed to prepare one dimensional (1D) metallic nanotubes by using 1D carbon nanostructures as the initial templates. Following the strategy, nickel (Ni) nanotubes are prepared by using carbon nanobells (CNBs) as the initial templates. CNBs are first prepared by microwave plasma enhanced chemical vapor deposition technique. Carbon/nickel core/shell structures are then prepared by electroplating the CNBs in a nickel-Watts electrolytic cell. In the final step, the carbon core is selectively removed by employing hydrogen plasma etching to obtain Ni nanotubes. The mechanism leading to Ni nanotubes is briefly discussed.

  5. Field emission and growth of fullerene nanotubes

    SciTech Connect

    Rinzler, A.G.; Hafner, J.H.; Nilolaev, P.; Colbert, D.T.; Smalley, R.E.

    1994-11-01

    Efforts to control the growth of individual carbon nanotubes from nanotube seed crystals have led to a characterization of their field-induced electron emission behavior. The application of a bias voltage in the growth apparatus was motivated by the prolific formation of nanotubes in the carbon are growth method, in which the electric field appears to play a central role. The authors report here the ability to achieve various tube tip configurations by the controlled application of voltage, heat and chemicals to an individual nanotube, and that these states are well characterized by the emission currents they induce.

  6. Dissymmetric carbon nanotubes by bipolar electrochemistry.

    PubMed

    Warakulwit, Chompunuch; Nguyen, Thi; Majimel, Jérome; Delville, Marie-Hélène; Lapeyre, Véronique; Garrigue, Patrick; Ravaine, Valérie; Limtrakul, Jumras; Kuhn, Alexander

    2008-02-01

    Short carbon nanotubes have been modified selectively on one end with metal using a bulk technique based on bipolar electrochemistry. A stabilized suspension of nanotubes is introduced in a capillary containing an aqueous metal salt solution, and a high electric field is applied to orientate and polarize the individual tubes. During their transport through the capillary under sufficient polarization (30 kV), each nanotube is the site of water oxidation on one end and the site of metal ion reduction on the other end with the size of the formed metal cluster being proportional to the potential drop along the nanotube.

  7. Quantum conductance of carbon nanotube peapods

    SciTech Connect

    Yoon, Young-Gui; Mazzoni, Mario S.C.; Louie, Steven G.

    2003-08-01

    We present a first-principles study of the quantum conductance of hybrid nanotube systems consisting of single-walled carbon nanotubes (SWCNTs) encapsulating either an isolated single C60 molecule or a chain of C60 molecules (nanotube peapods). The calculations show a rather weak bonding interaction between the fullerenes and the SWCNTs. The conductance of a (10,10) SWCNT with a single C60 molecule is virtually unaffected at the Fermi level, but exhibits quantized resonant reductions at the molecular levels. The nanotube peapod arrangement gives rise to high density of states for the fullerene highest occupied molecular orbital and lowest unoccupied molecular orbital bands.

  8. Towards chirality-pure carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Yani; Zheng, Lianxi

    2010-10-01

    Current as-grown single-walled carbon nanotubes vary in diameter and chirality, which results in variations in their electronic and optical properties. Two approaches have been intensively studied to obtain chirality-pure nanotube structures and thus uniform properties for advanced applications. The first approach involves the post-synthesis separation according to the nanotubes' chiral vectors (n, m), and the second one involves direct synthes of carbon nanotubes with the same (n, m). This paper reviews the efforts along these two directions, with emphasis on the most recent progress of post-synthesis separation and the perspectives of controllable synthesis.

  9. Carbon nanotube coatings as chemical absorbers

    DOEpatents

    Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

    2004-06-15

    Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

  10. Plasticity and Kinky Chemistry of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Dzegilenko, Fedor

    2000-01-01

    Since their discovery in 1991, carbon nanotubes have been the subject of intense research interest based on early predictions of their unique mechanical, electronic, and chemical properties. Materials with the predicted unique properties of carbon nanotubes are of great interest for use in future generations of aerospace vehicles. For their structural properties, carbon nanotubes could be used as reinforcing fibers in ultralight multifunctional composites. For their electronic properties, carbon nanotubes offer the potential of very high-speed, low-power computing elements, high-density data storage, and unique sensors. In a continuing effort to model and predict the properties of carbon nanotubes, Ames accomplished three significant results during FY99. First, accurate values of the nanomechanics and plasticity of carbon nanotubes based on quantum molecular dynamics simulations were computed. Second, the concept of mechanical deformation catalyzed-kinky-chemistry as a means to control local chemistry of nanotubes was discovered. Third, the ease of nano-indentation of silicon surfaces with carbon nanotubes was established. The elastic response and plastic failure mechanisms of single-wall nanotubes were investigated by means of quantum molecular dynamics simulations.

  11. From carbon nanobells to nickel nanotubes

    SciTech Connect

    Ma, S.; Srikanth, V. V. S. S.; Maik, D.; Zhang, G. Y.; Staedler, T.; Jiang, X.

    2009-01-05

    A generic strategy is proposed to prepare one dimensional (1D) metallic nanotubes by using 1D carbon nanostructures as the initial templates. Following the strategy, nickel (Ni) nanotubes are prepared by using carbon nanobells (CNBs) as the initial templates. CNBs are first prepared by microwave plasma enhanced chemical vapor deposition technique. Carbon/nickel core/shell structures are then prepared by electroplating the CNBs in a nickel-Watts electrolytic cell. In the final step, the carbon core is selectively removed by employing hydrogen plasma etching to obtain Ni nanotubes. The mechanism leading to Ni nanotubes is briefly discussed.

  12. Nanomechanics and the viscoelastic behavior of carbon nanotube-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Fisher, Frank Thomas

    Recent experimental results demonstrate that substantial improvements in the mechanical behavior of polymers can be attained using small amounts of carbon nanotubes as a reinforcing phase. While this suggests the potential use of carbon nanotube-reinforced polymers (NRPs) for structural applications, the development of predictive models describing NRP effective behavior will be critical in the development and ultimate employment of such materials. To date many researchers have simply studied the nanoscale behavior of NRPs using techniques developed for traditional composite materials. While such studies can be useful, this dissertation seeks to extend these traditional theories to more accurately model the nanoscale interaction of the NRP constituent phases. Motivated by micrographs showing that embedded nanotubes often exhibit significant curvature within the polymer, in the first section of this dissertation a hybrid finite element-micromechanical model is developed to incorporate nanotube waviness into micromechanical predictions of NRP effective modulus. While also suitable for other types of wavy inclusions, results from this model indicate that moderate nanotube waviness can dramatically decrease the effective modulus of these materials. The second portion of this dissertation investigates the impact of the nanotubes on the overall NRP viscoelastic behavior. Because the nanotubes are on the size scale of the individual polymer chains, nanotubes may alter the viscoelastic response of the NRP in comparison to that of the pure polymer; this behavior is distinctly different from that seen in traditional polymer matrix composites. Dynamic mechanical analysis (DMA) results for each of three modes of viscoelastic behavior (glass transition temperature, relaxation spectrum, and physical aging) are all consistent with the hypothesis of a reduced mobility, non-bulk polymer phase in the vicinity of the embedded nanotubes. These models represent initial efforts to

  13. [Progress in the research of carbon nanotubes as drug carriers].

    PubMed

    Yu, Jin-gang; Huang, Ke-long; Yang, Qiao-qin; Liu, Su-qin; Tang, Jin-chun

    2008-10-01

    Research and development of new drug carriers are crucial to the research of drugs. Due to their unique hollow structure and nano-diameter, carbon nanotubes (CNTs) can be used as drug carriers. Functionalization of CNTs with peptides, proteins, nucleic acids or even drug molecules, the so obtained functionalized CNTs can be used as carriers to deliver bioactive molecules into cells without causing any toxicity. The research progress of CNTs as drug carriers in recent years is summarized, and the CNTs' cytotoxicity and their ability to penetrate cells are discussed, and the methods of functionalizing carbon nanotubes are also mentioned in the paper. Along with the advancement of CNTs in drug carriers system, the relationship between the way to functionalize CNTs and the so obtained modified CNTs' ability to penetrate into cells, including the effect of dimension, should be further studied. Preparation of functionalized CNTs with high solubility and low toxicity as drug carriers will be the main research areas in the near future. PMID:19127860

  14. Structure and dynamics of water inside endohedrally functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Paul, Sanjib; Abi, T. G.; Taraphder, Srabani

    2014-05-01

    We have carried out classical molecular dynamics simulations on the formation of extended water chains inside single-walled carbon nanotubes (SWCNTs) in water in the presence of selected functional groups covalently attached to the inner wall of the tube. Analogues of polar amino acid sidechains have been chosen to carry out the endohedral functionalization of SWCNTs. Our results show a spontaneous and asymmetric filling of the nanotube with dynamical water chains in all the cases studied. The presence of Asp- and Glu-like sidechains is found to result in the formation of well-ordered water chains across the tube having the maximum number of water molecules being retained within the core with the largest residence times. The presence of methyl or methylene groups along the suspended chain is observed to disrupt the formation of water chains with higher length and/or longer residence times. The importance of hydrogen bonding in forming these water chains is assessed in terms of the relaxations of different hydrogen bond correlation functions. For a given dimension of the hydrophobic nanopore, we thus obtain a scale comparing the ability of carboxylic, alcohol, and imidazole groups in controlling the structure and dynamics of water in it. Our results also suggest that SWCNTs of varying lengths, endohedrally functionalized with Asp- and Glu-like sidechains, may be used as design templates in CNT-based water storage devices.

  15. Group IV nanotube transistors for next generation ubiquitous computing

    NASA Astrophysics Data System (ADS)

    Fahad, Hossain M.; Hussain, Aftab M.; Sevilla Torres, Galo A.; Banerjee, Sanjay K.; Hussain, Muhammad M.

    2014-06-01

    Evolution in transistor technology from increasingly large power consuming single gate planar devices to energy efficient multiple gate non-planar ultra-narrow (< 20 nm) fins has enhanced the scaling trend to facilitate doubling performance. However, this performance gain happens at the expense of arraying multiple devices (fins) per operation bit, due to their ultra-narrow dimensions (width) originated limited number of charges to induce appreciable amount of drive current. Additionally arraying degrades device off-state leakage and increases short channel characteristics, resulting in reduced chip level energy-efficiency. In this paper, a novel nanotube device (NTFET) topology based on conventional group IV (Si, SiGe) channel materials is discussed. This device utilizes a core/shell dual gate strategy to capitalize on the volume-inversion properties of an ultra-thin (< 10 nm) group IV nanotube channel to minimize leakage and short channel effects while maximizing performance in an area-efficient manner. It is also shown that the NTFET is capable of providing a higher output drive performance per unit chip area than an array of gate-all-around nanowires, while maintaining the leakage and short channel characteristics similar to that of a single gate-all-around nanowire, the latter being the most superior in terms of electrostatic gate control. In the age of big data and the multitude of devices contributing to the internet of things, the NTFET offers a new transistor topology alternative with maximum benefits from performance-energy efficiency-functionality perspective.

  16. Carbon nanotube and graphene multiple-thread yarns.

    PubMed

    Zhong, Xiaohua; Wang, Rui; Yangyang, Wen; Yali, Li

    2013-02-01

    Carbon nanotubes (CNTs) and graphene (GNS) hybrid multiple-thread yarns were fabricated by chemical vapor deposition followed by a posted-stretching processing. The as-prepared CNTs and GNS multiple-thread yarns consisted of tens of single-thread fibers with diameters of around 20 μm. The single-thread fibers are composed of double-walled carbon nanotube (DWNT) bundles and GNS tablets. DWNT bundles in the single-thread fiber are highly disordered and are rounded by GNS. The content and dimensions of GNS are changeable along the fiber axial direction. The as-obtained CNT and GNS hybrid multiple-thread yarns can be twisted, forming one fiber. The mechanical measurement of the twisted yarn gave a strength of 300 MPa and the electrical conductivity is 10(5) S m(-1). These unique structures, possessing various promising properties, can be readily and directly applied in different fields. Here, the hybrid yarns of CNTs and GNS were applied as a lamp thread and woven macroscopic body, as demonstrated. PMID:23299393

  17. Carbon nanotube forests: a non-stick workbench for nanomanipulation

    NASA Astrophysics Data System (ADS)

    Gjerde, Kjetil; Kjelstrup-Hansen, Jakob; Clausen, Casper H.; Teo, Kenneth B. K.; Milne, William I.; Rubahn, Horst-Günter; Bøggild, Peter

    2006-10-01

    The ubiquitous static friction (stiction) and adhesion forces comprise a major obstacle in the manipulation of matter at the nanoscale (Falvo et al 1999 Nature 397 236; Urbakh M et al 2004 Nature 430 525). In this work it is shown that a surface coated with vertically aligned carbon nanotubes—a nanotube forest—acts as an effective non-stick workbench for the manipulation of micro-objects and fibres/wires with one or more dimensions in the nano-range. These include organic nanofibres (Balzer and Rubahn 2001 Appl. Phys. Lett. 79 3860) and microsized latex beads, which adhere strongly even to a conventional low surface-energy material like Teflon. Although organic nanofibres are attractive as device components due to their chemical adaptability, adhesion forces nearly always rule out manipulation as a route to assembly of prototype devices based on such materials, because organic materials are soft and fragile, and tend to stick to any surface. We demonstrate here that the nanotube forest due to its roughness not only exhibits very low stiction and dynamic friction; it also acts as a springy and mechanically compliant surface, making it possible to lift up and manipulate delicate nanostructures such as organic nanofibres in ways not possible on planar, rigid surfaces.

  18. International dimensions of Colombian violence.

    PubMed

    Franco, S

    2000-01-01

    Violence is the main public health problem in Colombia, as demonstrated by current homicide rates (the highest in the world), the strong effect of violence on the health care sector, and the forceful displacement of citizens, among other factors. This violence has international dimensions and consequences: inequity resulting from the political-economic system and increased by the neoliberal adjustments; the international traffic of drugs and weapons; exile and forceful displacement of persons into bordering countries; and frequent violations of human rights and humanitarian international rights. The international community can play a role in the search for a solution to this problem, as the author discusses in terms of contributions made in the past and those that could be made in the near future. Colombian violence can be viewed as a problem, a message, and a challenge for international public health, and the author suggests specific areas in which international public health could contribute to the study and solution of this complex situation.

  19. Kolmogorov Flow in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Woodruff, Stephen L.

    1996-01-01

    A numerical study of the long-time evolution of incompressible Navier-Stokes turbulence forced at a single long-wavelength Fourier mode, i.e., a Kolmogorov flow, has been completed. The boundary conditions are periodic in three dimensions and the forcing is effected by imposing a steady, two-dimensional, sinusoidal shear velocity which is directed along the x-direction and varies along the z-direction. A comparison with experimental data shows agreement with measured cross-correlations of the turbulent velocity components which lie in the mean-flow plane. A statistical analysis reveals that the shear-driven turbulence studied here has significant spectral anisotropy which increases with wave number.

  20. Ambitwistor Strings in Four Dimensions

    NASA Astrophysics Data System (ADS)

    Geyer, Yvonne; Lipstein, Arthur E.; Mason, Lionel

    2014-08-01

    We develop ambitwistor string theories for four dimensions to obtain new formulas for tree-level gauge and gravity amplitudes with arbitrary amounts of supersymmetry. Ambitwistor space is the space of complex null geodesics in complexified Minkowski space, and in contrast to earlier ambitwistor strings, we use twistors rather than vectors to represent this space. Although superficially similar to the original twistor string theories of Witten, Berkovits, and Skinner, these theories differ in the assignment of world sheet spins of the fields, rely on both twistor and dual twistor representatives for the vertex operators, and use the ambitwistor procedure for calculating correlation functions. Our models are much more flexible, no longer requiring maximal supersymmetry, and the resulting formulas for amplitudes are simpler, having substantially reduced moduli. These are supported on the solutions to the scattering equations refined according to helicity and can be checked by comparison with corresponding formulas of Witten and of Cachazo and Skinner.

  1. Ethical Dimensions and Filial Caregiving

    PubMed Central

    McCarty, Ellen F.; Hendricks, Constance S.; Hendricks, Denisha L.; McCarty, Kathleen M.

    2013-01-01

    The elderly are growing rapidly today as life expectancy increases. As this longevity has increased, so has the need for filial caregivers. While much has been written about caregiving stress, little has been written regarding the ethical dimensions of filial responsibility and daughter and son caregivers’ perceptions of responsibility and moral demands. This paper will address the concept of family caregiving and contextual family characteristics. Family characteristics will expand awareness of the interrelationship value between the nature of the prior filial relationship, image of caregiving, and ethical views that underscore acceptance of the filial obligation. An explanation of both the interview process and selected measurements that speak to ethical perspective, sense of caregiving image, and expectations of filial caregiving will also be addressed. Therefore, the purpose of this paper is to elucidate how adult children may be helped in an anticipatory and proactive manner as more and more adult children take on parent care for longer durations of time. PMID:23459516

  2. Casimir interactions between scatterers in metallic carbon nanotubes

    SciTech Connect

    Zhabinskaya, Dina; Mele, E. J.

    2009-10-15

    We study interactions between localized scatterers on metallic carbon nanotubes by a mapping onto a one-dimensional Casimir problem. Backscattering of electrons between localized scattering potentials mediates long-range forces between them. We model spatially localized scatterers by local and nonlocal potentials and treat simultaneously the effects of intravalley and intervalley backscattering. We find that the long-range forces between scatterers exhibit the universal power-law decay of the Casimir force in one dimension, with prefactors that control the sign and strength of the interaction. These prefactors are nonuniversal and depend on the symmetry and degree of localization of the scattering potentials. We find that local potentials inevitably lead to a coupled valley scattering problem, though by contrast nonlocal potentials lead to two decoupled single-valley problems in a physically realized regime. The Casimir effect due to two-valley scattering potentials is characterized by the appearance of spatially periodic modulations of the force.

  3. Supramolecular Macrostructures of UPy-Functionalized Carbon Nanotubes.

    PubMed

    Micoli, Alessandra; Nieuwenhuizen, Marko; Koenigs, Marcel; Quintana, Mildred; Sijbesma, Rint; Prato, Maurizio

    2015-09-28

    Carbon nanotubes (CNTs) are considered excellent materials for the construction of flexible displays due to their nanoscale dimensions and unique physical and chemical properties. By using the recognition properties of 2-ureido-4[1H]pyrimidinone (UPy), a versatile and simple methodology was demonstrated for the construction of macroscopic structures based on UPy-CNT/polymer composites prepared by a combination of two functionalization approaches: 1) covalent attachment of UPy pendants on the multiwalled CNT surface (UPy-MWCNTs) and 2) directed self-assembly of UPy-MWCNTs within polymers bearing UPy pendants (Bis-UPy 1 and Bis-UPy 2) by quadruple complementary DDAA-AADD hydrogen-bond recognition (D=donor, A=acceptor).

  4. Constitutive Modeling of Nanotube/Polymer Composites with Various Nanotube Orientations

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.

    2002-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT) with various orientations with respect to the bulk material coordinates. A nanotube, the local polymer adjacent to the nanotube, and the nanotube/polymer interface have been modeled as an equivalent-continuum fiber by using an equivalent-continuum modeling method. The equivalent-continuum fiber accounts for the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composite. As an example, the proposed approach is used for the constitutive modeling of a SWNT/LaRC-SI (with a PmPV interface) composite system, with aligned nanotubes, three-dimensionally randomly oriented nanotubes, and nanotubes oriented with varying degrees of axisymmetry. It is shown that the Young s modulus is highly dependent on the SWNT orientation distribution.

  5. Atomic nanotube welders: boron interstitials triggering connections in double-walled carbon nanotubes.

    PubMed

    Endo, Morinobu; Muramatsu, Hiroyuki; Hayashi, Takuya; Kim, Yoong-Ahm; Van Lier, Gregory; Charlier, Jean-Christophe; Terrones, Humberto; Terrones, Mauricio; Dresselhaus, Mildred S

    2005-06-01

    Here we demonstrate that the incorporation of boron (B) atoms between double-walled carbon nanotubes (DWNTs) during thermal annealing (1400-1600 degrees C) results in covalent nanotube "Y" junctions, DWNT coalescence, and the formation of flattened multiwalled carbon nanotubes (MWNTs). These processes occur via the merging of adjacent tubes, which is triggered by B interstitial atoms. We observe that B atom interstitials between DWNTs are responsible for the rapid establishment of covalent connections between neighboring tubes (polymerization), thereby resulting in the fast annealing of the carbon cylinders with B atoms embedded in the newly created carbon nanotube network. Once B is in the lattice, tube faceting (polygonization) starts to occur, and the electronic properties are expected to change dramatically. Therefore, B atoms indeed act as atomic nanotube fusers (or welders), and this process could now be used in assembling novel electronic nanotube devices, nanotube networks, carbon nanofoams and heterojunctions exhibiting p-type electronic properties.

  6. 4-N-pyridin-2-yl-benzamide nanotubes compatible with mouse stem cell and oral delivery in Drosophila

    NASA Astrophysics Data System (ADS)

    Yadav, Jhillu S.; Lavanya, Madugula P.; Das, Pragna P.; Bag, Indira; Krishnan, Anita; Jagannadh, Bulusu; Mohapatra, Debendra K.; Pal Bhadra, Manika; Bhadra, Utpal

    2010-04-01

    p-aminobenzoic acid (PABA), a structural moiety of many commercial drugs, is self-assembled with linker alkyl side chains to form tubular nanostructures. The tubes exhibited fluorescence either intrinsic or from fluorescent molecules embedded in the wall during self-assembly. Uptake and inter-cellular delivery of the conjugated nanotubes in human cancer cells and in mouse embryonic stem cells were demonstrated by fluorescence imaging and flow cytometry. Biocompatibility, cytotoxicity and clearance were monitored both ex vivo in mouse multipotent embryonic stem cells and in vivo in adult Drosophila. Accumulation of nanotubes had no adverse effects and abnormalities on stem cell morphology and proliferation rate. A distinct distribution of two separate nanotubes in various internal organs of Drosophila interprets that accumulation of nanomaterials might be interdependent on the side chain modifications and physiological settings of cell or tissue types. Unlike carbon nanomaterials, exposure of PABA nanotubes does not produce any hazards including locomotion defects and mortality of adult flies. Despite differential uptake and clearance from multiple live tissues, the use of self-assembled nanotubes can add new dimensions and scope to the development of dual-purpose oral carriers for the fulfilment of many biological promises.

  7. Carbon nanotube materials characterization and devices design

    NASA Astrophysics Data System (ADS)

    Li, Weifeng

    The objective of this research is to characterize the electrical and mechanical properties of Carbon Nanotube (CNT) materials, and explore possible device applications for these materials. In order to achieve this goal, different forms of Carbon Nanotube materials---including Carbon Nanotubes, Carbon Nanotube Arrays, Carbon Nanotube Ribbon, Carbon Nanotube Thread, and sub-micrometer Carbon Nanotube Thread---were tested under a Scanning Electron Microscope (SEM) using a Micromanipulator (MM). Video and sound recording of the testing in the microscope provided new understanding how thread is formed and how nanotube materials fail. As-produced and thermally treated nanotubes were also tested. The main electrical parameters measured were electrical resistivity and maximum current density. The main mechanical property measured was strength. Together, these parameters are helping to determine the strongest and most conductive forms of CNT material. Putting nanotube materials into application is the ultimate goal of this continuing research. Several aggressive application ideas were investigated in a preliminary way in this work. In biomedical applications, a bundle of CNTs was formed for use as an electrode for accurate biosensing. A simple robot was designed using CNT electrical fiber. The robot was powered by two solenoids and could act as an in-body sensor and actuator to perform some impossible tasks from the viewpoint of current medical technology. In aerospace engineering, CNT materials could replace copper wire to reduce the weight of aircraft. Based on the excellent mechanical properties of CNT materials, a challenging idea is to use CNT material to build elevators to move payloads to outer space without using rockets. This dissertation makes contributions in the characterization of nanotube materials and in the design of miniature electromagnetic devices.

  8. Multibiomarker response in the earthworm Eisenia fetida as tool for assessing multi-walled carbon nanotube ecotoxicity.

    PubMed

    Calisi, A; Grimaldi, A; Leomanni, A; Lionetto, M G; Dondero, F; Schettino, T

    2016-05-01

    Carbon nanotubes have received a great attention in the last years thanks to their remarkable structural, electrical, and chemical properties. Nowadays carbon nanotubes are increasingly found in terrestrial and aquatic environment and potential harmful impacts of these nanoparticles on humans and wildlife are attracting increasing research and public attention. The effects of carbon nanotubes on aquatic organisms have been explored by several authors, but comparatively the information available on the impact of these particles on soil organisms is much less. Earthworms have traditionally been considered to be convenient indicators of land use impact and soil fertility. The aim of this work was to study the integrated response of a suite of biomarkers covering molecular to whole organism endpoints for the assessment of multi-walled carbon nanotube (MWCNTs) effects on earthworms (Eisenia fetida) exposed to spiked soil. Results showed that cellular and biochemical responses, such as immune cells morphometric alterations and lysosomal membrane destabilization, acetylcholinesterase inhibition and metallothionein tissue concentration changes, showed high sensitivity to MWCNTs exposure. They can improve our understanding and ability to predict chronic toxicity outcomes of MWCNTs exposure such as reproductive alterations. In this context although more investigation is needed to understand the mechanistic pathway relating the biochemical and cellular biomarker analyzed to reproductive alterations, the obtained results give an early contribution to the future development of an adverse outcomes pathways for MWCNTs exposure. PMID:26892788

  9. Torsional Carbon Nanotube Artificial Muscles

    NASA Astrophysics Data System (ADS)

    Foroughi, Javad; Spinks, Geoffrey M.; Wallace, Gordon G.; Oh, Jiyoung; Kozlov, Mikhail E.; Fang, Shaoli; Mirfakhrai, Tissaphern; Madden, John D. W.; Shin, Min Kyoon; Kim, Seon Jeong; Baughman, Ray H.

    2011-10-01

    Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.

  10. Ballistic Fracturing of Carbon Nanotubes.

    PubMed

    Ozden, Sehmus; Machado, Leonardo D; Tiwary, ChandraSekhar; Autreto, Pedro A S; Vajtai, Robert; Barrera, Enrique V; Galvao, Douglas S; Ajayan, Pulickel M

    2016-09-21

    Advanced materials with multifunctional capabilities and high resistance to hypervelocity impact are of great interest to the designers of aerospace structures. Carbon nanotubes (CNTs) with their lightweight and high strength properties are alternative to metals and/or metallic alloys conventionally used in aerospace applications. Here we report a detailed study on the ballistic fracturing of CNTs for different velocity ranges. Our results show that the highly energetic impacts cause bond breakage and carbon atom rehybridizations, and sometimes extensive structural reconstructions were also observed. Experimental observations show the formation of nanoribbons, nanodiamonds, and covalently interconnected nanostructures, depending on impact conditions. Fully atomistic reactive molecular dynamics simulations were also carried out in order to gain further insights into the mechanism behind the transformation of CNTs. The simulations show that the velocity and relative orientation of the multiple colliding nanotubes are critical to determine the impact outcome. PMID:27564421

  11. A Tunable Carbon Nanotube Oscillator

    NASA Astrophysics Data System (ADS)

    Sazonova, Vera

    2005-03-01

    Nanoelectromechanical systems (NEMS) hold promise for a number of scientific and technological applications. Carbon nanotubes (NT) are perhaps the ultimate material for realizing a NEMS device as they are the stiffest material known, have low density, ultrasmall cross sections and can be defect-free. Equally important, a nanotube can act as a transistor and thus is able to sense its own motion. Here, we report the electrical actuation and detection of the guitar-string oscillation modes of doubly-clamped NT oscillators. We observed resonance frequencies in the 5MHz to 150MHz range with quality factors in the 50 to 100 range. We showed that the resonance frequencies can be widely tuned by a gate voltage. We also report on the temperature dependence of the quality factor and present a discussion of possible loss mechanisms.

  12. Ballistic Fracturing of Carbon Nanotubes.

    PubMed

    Ozden, Sehmus; Machado, Leonardo D; Tiwary, ChandraSekhar; Autreto, Pedro A S; Vajtai, Robert; Barrera, Enrique V; Galvao, Douglas S; Ajayan, Pulickel M

    2016-09-21

    Advanced materials with multifunctional capabilities and high resistance to hypervelocity impact are of great interest to the designers of aerospace structures. Carbon nanotubes (CNTs) with their lightweight and high strength properties are alternative to metals and/or metallic alloys conventionally used in aerospace applications. Here we report a detailed study on the ballistic fracturing of CNTs for different velocity ranges. Our results show that the highly energetic impacts cause bond breakage and carbon atom rehybridizations, and sometimes extensive structural reconstructions were also observed. Experimental observations show the formation of nanoribbons, nanodiamonds, and covalently interconnected nanostructures, depending on impact conditions. Fully atomistic reactive molecular dynamics simulations were also carried out in order to gain further insights into the mechanism behind the transformation of CNTs. The simulations show that the velocity and relative orientation of the multiple colliding nanotubes are critical to determine the impact outcome.

  13. Carbon Nanotubes: Molecular Electronic Components

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.

  14. Sagnac interference in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bishara, Waheb; Refael, Gil; Bockrath, Marc

    2008-10-01

    The Sagnac interference mode arises when two interfering counterpropogating beams traverse a loop, but with their velocities detuned by a small amount 2u , with vR/L=vF±u . In this paper we perform a perturbative nonequilibrium calculation of Sagnac interference in single-channel wires as well as armchair nanotube loops. We study the dependence of the Sagnac conductance oscillations on temperature and interactions. We find that the Sagnac interference is not destroyed by strong interactions, but becomes weakly dependent on the velocity detuning u . In armchairs nanotubes with typical interaction strength, 0.25≤g≤0.5 , we find that the necessary temperature for observing the interference effect, TSAG is also only weakly dependent on the interaction, and is enhanced by a factor of 8 relative to the temperature necessary for observing Fabry-Pérot interference in the same system, TFP .

  15. Longitudinal solitons in carbon nanotubes

    SciTech Connect

    Astakhova, T. Yu.; Gurin, O. D.; Menon, M.; Vinogradov, G. A.

    2001-07-15

    We present results on soliton excitations in carbon nanotubes (CNT's) using Brenner's many-body potential. Our numerical simulations demonstrate high soliton stability in (10,10) CNT's. The interactions of solitons and solitary excitation with CNT defect are found to be inelastic if the excitations and defects length scales are comparable, resulting in a substantial part of soliton energy being distributed inhomogeneously over the defect bonds. In these solitary-excitation--cap collisions the local energy of a few bonds in the cap can exceed the average energy by an order of magnitude and more. This phenomenon, denoted the ''Tsunami effect,'' can contribute dynamically to the recently proposed ''kinky chemistry.'' We also present results of changes in the local density of states and variations in the atomic partial charges estimated at different time instants of the solitary-excitation Tsunami at the nanotube cap.

  16. Oriented nanotube electrodes for lithium ion batteries and supercapacitors

    DOEpatents

    Frank, Arthur J.; Zhu, Kai; Wang, Qing

    2013-03-05

    An electrode having an oriented array of multiple nanotubes is disclosed. Individual nanotubes have a lengthwise inner pore defined by interior tube walls which extends at least partially through the length of the nanotube. The nanotubes of the array may be oriented according to any identifiable pattern. Also disclosed is a device featuring an electrode and methods of fabrication.

  17. Tubular electrodeposition of chitosan-carbon nanotube implants enriched with calcium ions.

    PubMed

    Nawrotek, Katarzyna; Tylman, Michał; Rudnicka, Karolina; Gatkowska, Justyna; Balcerzak, Jacek

    2016-07-01

    A new approach for obtaining chitosan-carbon nanotube implants enriched with calcium ions in the form of tubular hydrogels is fostered. The intended application of the hydrogels is tissue engineering, especially peripheral nervous tissue regeneration. The fabrication method, based on an electrodeposition phenomenon, shows significant advantages over current solutions as implants can now be obtained rapidly at any required dimensions. Thus, it may open a new avenue to treat patients with peripheral nerve injuries. Either single walled or multiwalled carbon nanotubes enhance the mechanical properties of the tubular hydrogels. The controlled presence of calcium ions, sourced from hydroxyapatite, is also expected to augment the regenerative response. Because in vitro cytotoxic assays on mouse cell lines (L929 fibroblasts and mHippoE-18 hippocampal cells) as well as pro-inflammatory tests on THP-1XBlue™ cells show that the manufactured implants are biocompatible, we next intend to evaluate their immune- and nervous-safety on an animal model.

  18. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene

    NASA Astrophysics Data System (ADS)

    Eichler, A.; Moser, J.; Chaste, J.; Zdrojek, M.; Wilson-Rae, I.; Bachtold, A.

    2011-06-01

    The theory of damping is discussed in Newton's Principia and has been tested in objects as diverse as the Foucault pendulum, the mirrors in gravitational-wave detectors and submicrometre mechanical resonators. In general, the damping observed in these systems can be described by a linear damping force. Advances in nanofabrication mean that it is now possible to explore damping in systems with one or more atomic-scale dimensions. Here we study the damping of mechanical resonators based on carbon nanotubes and graphene sheets. The damping is found to strongly depend on the amplitude of motion, and can be described by a nonlinear rather than a linear damping force. We exploit the nonlinear nature of damping in these systems to improve the figures of merit for both nanotube and graphene resonators. For instance, we achieve a quality factor of 100,000 for a graphene resonator.

  19. Large Bandgap Shrinkage from Doping and Dielectric Interface in Semiconducting Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Comfort, Everett; Lee, Ji Ung

    2016-06-01

    The bandgap of a semiconductor is one of its most important electronic properties. It is often considered to be a fixed property of the semiconductor. As the dimensions of semiconductors reduce, however, many-body effects become dominant. Here, we show that doping and dielectric, two critical features of semiconductor device manufacturing, can dramatically shrink (renormalize) the bandgap. We demonstrate this in quasi-one-dimensional semiconducting carbon nanotubes. Specifically, we use a four-gated device, configured as a p-n diode, to investigate the fundamental electronic structure of individual, partially supported nanotubes of varying diameter. The four-gated construction allows us to combine both electrical and optical spectroscopic techniques to measure the bandgap over a wide doping range.

  20. Large Bandgap Shrinkage from Doping and Dielectric Interface in Semiconducting Carbon Nanotubes.

    PubMed

    Comfort, Everett; Lee, Ji Ung

    2016-01-01

    The bandgap of a semiconductor is one of its most important electronic properties. It is often considered to be a fixed property of the semiconductor. As the dimensions of semiconductors reduce, however, many-body effects become dominant. Here, we show that doping and dielectric, two critical features of semiconductor device manufacturing, can dramatically shrink (renormalize) the bandgap. We demonstrate this in quasi-one-dimensional semiconducting carbon nanotubes. Specifically, we use a four-gated device, configured as a p-n diode, to investigate the fundamental electronic structure of individual, partially supported nanotubes of varying diameter. The four-gated construction allows us to combine both electrical and optical spectroscopic techniques to measure the bandgap over a wide doping range. PMID:27339272

  1. Large Bandgap Shrinkage from Doping and Dielectric Interface in Semiconducting Carbon Nanotubes

    PubMed Central

    Comfort, Everett; Lee, Ji Ung

    2016-01-01

    The bandgap of a semiconductor is one of its most important electronic properties. It is often considered to be a fixed property of the semiconductor. As the dimensions of semiconductors reduce, however, many-body effects become dominant. Here, we show that doping and dielectric, two critical features of semiconductor device manufacturing, can dramatically shrink (renormalize) the bandgap. We demonstrate this in quasi-one-dimensional semiconducting carbon nanotubes. Specifically, we use a four-gated device, configured as a p-n diode, to investigate the fundamental electronic structure of individual, partially supported nanotubes of varying diameter. The four-gated construction allows us to combine both electrical and optical spectroscopic techniques to measure the bandgap over a wide doping range. PMID:27339272

  2. Induced fermionic current in toroidally compactified spacetimes with applications to cylindrical and toroidal nanotubes

    SciTech Connect

    Bellucci, S.; Saharian, A. A.; Bardeghyan, V. M.

    2010-09-15

    The vacuum expectation value of fermionic current is evaluated for a massive spinor field in spacetimes with an arbitrary number of toroidally compactified spatial dimensions in the presence of a constant gauge field. By using the Abel-Plana type summation formula and the zeta-function technique we present the fermionic current in two different forms. Nontrivial topology of the background spacetime leads to the Aharonov-Bohm effect for the fermionic current induced by the gauge field. The current is a periodic function of the magnetic flux with the period equal to the flux quantum. In the absence of gauge field it vanishes for special cases of untwisted and twisted fields. Applications of general formulas to Kaluza-Klein type models and to cylindrical and toroidal carbon nanotubes are given. In the absence of magnetic flux the total fermionic current in carbon nanotubes vanishes, due to the cancellation of contributions from two different sublattices of the hexagonal lattice of graphene.

  3. Atomic Entanglement in Carbon Nanotubes.

    NASA Astrophysics Data System (ADS)

    Bondarev, Igor; Vlahovic, Branislav

    2006-03-01

    The development of materials that may host quantum coherent states is a critical research problem for the nearest future. Recent progress in the growth of centimeter-long small-diameter single-walled carbon nanotubes (CNs)[1] and successful experiments on the encapsulation of single atoms into CNs[2], stimulate the study of dynamical quantum processes in atomically doped CN systems. We have recently shown[3] that atomic states may be strongly coupled to vacuum surface photonic modes in the CN, thus forming quasi-1D cavity polaritons similar to those observed for quantum dots in semiconductor nanocavities[4], which were recently suggested to be a possible way to produce the excitonic qubit entanglement[5]. Here, we show that, being strongly coupled to the (resonator-like) cylindrical nanotube environment, the two atomic quasi-1D polaritons can be easily entangled as well, thus challenging a novel alternative approach towards quantum information transfer over centimeter-long distances. [1]L.X.Zheng et al, Proc. Nanotech 2005 (May 8-12, 2005, Anaheim, CA, USA), vol.3, p.126. [2]G.-H.Jeong et al, Phys. Rev. B68,075410(2003). [3]I.V.Bondarev and Ph.Lambin, in: Trends in Nanotubes Reasearch (NovaScience, NY, 2005); Phys. Rev. B70,035407(2004); Phys. Rev. B72,035451(2005). [4]T.Yoshie et al, Nature 432,200(2004). [5]S.Hughes, Phys. Rev. Lett.94,227402(2005).

  4. Spectroscopic study of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Curran, Seamus; Weldon, Declan N.; Blau, Werner J.; Zandbergen, Henny W.; Kastner, J.; Kuzmany, Hans

    1994-11-01

    We present a comprehensive experimental study of the vibrational spectra of nanotubes. There are two main lines observed in the Raman spectrum, one positioned at 1350 cm-1, the D line, and the other at 1580 cm-1, the G line. Both these lines are very similar to those seen with disordered graphite. The disorder induced D line is very weak compared to the G line which is indicative of high crystalline materials. The position and intensity of the D line strongly depends on the energy of the exciting laser. This dispersion effect was also observed for graphitic particles and may be explained by a photoselective resonance process of nanotubes with different sizes. There are two optically active modes in the Infrared spectrum for highly orientated polycrystalline graphite which are the E1u and A2u modes. The E1u mode is positioned at 1587 cm-1 while the A2u mode is positioned at 868 cm-1. The Infrared spectrum of the nanotubes shows both modes although the E1u mode is downshifted to 1575 cm-1.

  5. Method for nano-pumping using carbon nanotubes

    DOEpatents

    Insepov, Zeke; Hassanein, Ahmed

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  6. Gastric cancer-molecular and clinical dimensions.

    PubMed

    Wadhwa, Roopma; Song, Shumei; Lee, Ju-Seog; Yao, Yixin; Wei, Qingyi; Ajani, Jaffer A

    2013-11-01

    Gastric cancer imposes a considerable health burden around the globe despite its declining incidence. The disease is often diagnosed in advanced stages and is associated with a poor prognosis for patients. An in-depth understanding of the molecular underpinnings of gastric cancer has lagged behind many other cancers of similar incidence and morbidity, owing to our limited knowledge of germline susceptibility traits for risk and somatic drivers of progression (to identify novel therapeutic targets). A few germline (PLCE1) and somatic (ERBB2, ERBB3, PTEN, PI3K/AKT/mTOR, FGF, TP53, CDH1 and MET) alterations are emerging and some are being pursued clinically. Novel somatic gene targets (ARID1A, FAT4, MLL and KMT2C) have also been identified and are of interest. Variations in the therapeutic approaches dependent on geographical region are evident for localized gastric cancer-differences that are driven by preferences for the adjuvant strategies and the extent of surgery coupled with philosophical divides. However, greater uniformity in approach has been noted in the metastatic cancer setting, an incurable condition. Having realized only modest successes, momentum is building for carrying out more phase III comparative trials, with some using biomarker-based patient selection strategies. Overall, rapid progress in biotechnology is improving our molecular understanding and can help with new drug discovery. The future prospects are excellent for defining biomarker-based subsets of patients and application of specific therapeutics. However, many challenges remain to be tackled. Here, we review representative molecular and clinical dimensions of gastric cancer.

  7. Social interpersonal dimensions of the psychoses.

    PubMed

    Lindsay, J S

    1999-04-01

    This paper looks at the patterns for the creation and social management of insanity and the involvements of those concerned. It describes an interaction model with people in a social reality of everyday living, built up of and defined by 'subjective' definitions of a situation. The psychiatric profession, involved in their conventional medical one-to-one confidential consultations with their patients, fails to be informed about the societal dimensions with two, three or more members as first described by Simmel (1902) (1). The differences are traditional, 'Two is company' and 'Three is a crowd'. If one of the possible two-person relationships in a family develops some emotional change to define itself as 'Two is company', this may alter the emotional balance in the whole family and may lead to 'split minds' (schizo/phrenia) and involving relationships with and between other family members. The arrival of the first baby changes two to three and creates 'Our Family'. 'Two is company: but it is not our family.' 'Three is a crowd' but now, with three possible pairs, who is the odd one to be left out, or to push in or be pushed out? This is proposed as the interpersonal relationships substrate of the manic-(push in) or depressive (pushed out) psychoses in an older family generation. Both propositions are to be developed using probability theory to define the number of members, the corresponding numbers of their possible kinetic interpersonal relationships, their social dynamism probabilities, and potential outcomes involving modern non-linear mathematics. These patients are described as 'not themselves' or 'beside themselves'. Those who are themselves but described as neurotic or psychopathic will also be mentioned.

  8. The electrical conduction variation in stained carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sun, Shih-Jye; Wei Fan, Jun; Lin, Chung-Yi

    2012-01-01

    Carbon nanotubes become stained from coupling with foreign molecules, especially from adsorbing gas molecules. The charge exchange, which is due to the orbital hybridization, occurred in the stained carbon nanotube induces electrical dipoles that consequently vary the electrical conduction of the nanotube. We propose a microscopic model to evaluate the electrical current variation produced by the induced electrical dipoles in a stained zigzag carbon nanotube. It is found that stronger orbital hybridization strengths and larger orbital energy differences between the carbon nanotube and the gas molecules help increasing the induced electrical dipole moment. Compared with the stain-free carbon nanotube, the induced electrical dipoles suppress the current in the nanotube. In the carbon nanotubes with induced dipoles the current increases as a result of increasing orbital energy dispersion via stronger hybridization couplings. In particular, at a fixed hybridization coupling, the current increases with the bond length for the donor-carbon nanotube but reversely for the acceptor-carbon nanotube.

  9. Invisible Hyperbolic Metamaterial Nanotube at Visible Frequency.

    PubMed

    Kim, Kyoung-Ho; No, You-Shin; Chang, Sehwan; Choi, Jae-Hyuck; Park, Hong-Gyu

    2015-01-01

    Subwavelength-scale metal and dielectric nanostructures have served as important building blocks for electromagnetic metamaterials, providing unprecedented opportunities for manipulating the optical response of the matter. Recently, hyperbolic metamaterials have been drawing particular interest because of their unusual optical properties and functionalities, such as negative refraction and hyperlensing of light. Here, as a promising application of a hyperbolic metamaterial at visible frequency, we propose an invisible nanotube that consists of metal and dielectric alternating thin layers. The theoretical study of the light scattering of the layered nanotube reveals that almost-zero scattering can be achieved at a specific wavelength when the transverse-electric- or transverse-magnetic-polarized light is incident to the nanotube. In addition, the layered nanotube can be described as a radial-anisotropic hyperbolic metamaterial nanotube. The low scattering occurs when the effective permittivity of the hyperbolic nanotube in the angular direction is near zero, and thus the invisibility of the layered nanotube can be efficiently obtained by analyzing the equivalent hyperbolic nanotube. Our new method to design and tune an invisible nanostructure represents a significant step toward the practical implementation of unique nanophotonic devices such as invisible photodetectors and low-scattering near-field optical microscopes.

  10. Defect-Free Carbon Nanotube Coils.

    PubMed

    Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J; Machado, Leonardo D; Legoas, Sergio B; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto

    2016-04-13

    Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos.

  11. Nanotube Electron Drag in Flowing Liquids.

    PubMed

    Král; Shapiro

    2001-01-01

    We show that electric current can be generated in metallic carbon nanotubes immersed in liquids flowing along them. Molecular layers of the liquid coat the nanotube, slip along its surface, and excite there a phonon wind, which drags free carriers in the tube. The induced electric current should allow building of nanoscale detectors or power cells.

  12. Carbon Nanotubes for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Files, Brad; Yowell, Leonard

    2003-01-01

    Single-wall carbon nanotubes offer the promise of a new class of revolutionary materials for space applications. The Carbon Nanotube Project at NASA Johnson Space Center has been actively researching this new technology by investigating nanotube production methods (arc, laser, and HiPCO) and gaining a comprehensive understanding of raw and purified material using a wide range of characterization techniques. After production and purification, single wall carbon nanotubes are processed into composites for the enhancement of mechanical, electrical, and thermal properties. This "cradle-to-grave" approach to nanotube composites has given our team unique insights into the impact of post-production processing and dispersion on the resulting material properties. We are applying our experience and lessons-learned to developing new approaches toward nanotube material characterization, structural composite fabrication, and are also making advances in developing thermal management materials and electrically conductive materials in various polymer-nanotube systems. Some initial work has also been conducted with the goal of using carbon nanotubes in the creation of new ceramic materials for high temperature applications in thermal protection systems. Human space flight applications such as advanced life support and fuel cell technologies are also being investigated. This discussion will focus on the variety of applications under investigation.

  13. Sacrificial template method of fabricating a nanotube

    DOEpatents

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yi-Ying; Li, Deyu; Majumdar, Arun

    2007-05-01

    Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

  14. Oscillating carbon nanotori along carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hilder, Tamsyn A.; Hill, James M.

    2007-03-01

    The discovery of carbon nanostructures, such as nanotubes and C60 fullerenes, has given rise to a number of potential nanoscale devices. One such device is the gigahertz oscillator, comprising an inner shell sliding inside an outer shell of a multiwalled carbon nanotube, and which, at least theoretically, generates oscillatory frequencies in the gigahertz range. Following the concept of these gigahertz oscillators and the recent discovery of “fullerene crop circles,” here we propose the notion of a nanotorus-nanotube oscillator comprising a carbon nanotorus which is sucked by the van der Waals force onto the carbon nanotube, and subsequently oscillates along the nanotube axis due to the equal and opposite pulselike forces acting at either end of the nanotube. Assuming a continuum approach, where the interatomic interactions are replaced by uniform atomic surface densities, and assuming that the geometry of the nanotube and nanotorus is such that the nanotorus always remains symmetrically situated around the nanotube, we present the basic mechanics of such a system, including the determination of the suction and acceptance energies, and the frequency of the resulting oscillatory motion. In contrast to the previously studied gigahertz nanoscale oscillators, here the oscillatory frequencies are shown to be in the megahertz range. Our study, although purely theoretical must necessarily precede any experimental implementation of such oscillatory systems.

  15. Nanotubes based on monolayer blue phosphorus

    NASA Astrophysics Data System (ADS)

    Montes, E.; Schwingenschlögl, U.

    2016-07-01

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube diameter and axial strain. The nanotubes are found to be semiconductors with a sensitive indirect band gap that allows flexible tuning.

  16. Ophthalmologial Applications of Carbon Nanotube Nanotechology

    NASA Technical Reports Server (NTRS)

    Loftus, David; Girten, Beverly (Technical Monitor)

    2002-01-01

    The development of an implantable device consisting of an array of carbon nanotubes on a silicon chip for restoration of vision in patients with macular degeneration and other retinal disorders is presented. The use of carbon nanotube bucky paper for retinal cell transplantation is proposed. This paper is in viewgraph form.

  17. Metallic Electrode: Semiconducting Nanotube Junction Model

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryon (Technical Monitor)

    2001-01-01

    A model is proposed for two observed current-voltage (I-V) patterns in an experiment with a scanning tunneling microscope tip and a carbon nanotube [Collins et al., Science 278, 100 ('97)]. We claim that there are two contact modes for a tip (metal) -nanotube semi conductor) junction depending whether the alignment of the metal and semiconductor band structure is (1) variable (vacuum-gap) or (2) fixed (touching) with V. With the tip grounded, the tunneling case in (1) would produce large dI/dV with V > 0, small dI/dV with V < 0, and I = 0 near V = 0 for an either n- or p-nanotube. However, the Schottky mechanism in (2) would result in forward current with V < 0 for an n-nanotube, while with V > 0 for an p-nanotube. The two observed I-V patterns are thus entirely explained by a tip-nanotube contact of the two types, where the nanotube must be n-type. We apply this picture to the source-drain I-V characteristics in a long nanotube-channel field-effect-transistor (Zhou et al., Appl. Phys. Lett. 76, 1597 ('00)], and show that two independent metal-semiconductor junctions connected in series are responsible for the observed behavior.

  18. Invisible Hyperbolic Metamaterial Nanotube at Visible Frequency

    PubMed Central

    Kim, Kyoung-Ho; No, You-Shin; Chang, Sehwan; Choi, Jae-Hyuck; Park, Hong-Gyu

    2015-01-01

    Subwavelength-scale metal and dielectric nanostructures have served as important building blocks for electromagnetic metamaterials, providing unprecedented opportunities for manipulating the optical response of the matter. Recently, hyperbolic metamaterials have been drawing particular interest because of their unusual optical properties and functionalities, such as negative refraction and hyperlensing of light. Here, as a promising application of a hyperbolic metamaterial at visible frequency, we propose an invisible nanotube that consists of metal and dielectric alternating thin layers. The theoretical study of the light scattering of the layered nanotube reveals that almost-zero scattering can be achieved at a specific wavelength when the transverse-electric- or transverse-magnetic-polarized light is incident to the nanotube. In addition, the layered nanotube can be described as a radial-anisotropic hyperbolic metamaterial nanotube. The low scattering occurs when the effective permittivity of the hyperbolic nanotube in the angular direction is near zero, and thus the invisibility of the layered nanotube can be efficiently obtained by analyzing the equivalent hyperbolic nanotube. Our new method to design and tune an invisible nanostructure represents a significant step toward the practical implementation of unique nanophotonic devices such as invisible photodetectors and low-scattering near-field optical microscopes. PMID:26522815

  19. Defect-Free Carbon Nanotube Coils.

    PubMed

    Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J; Machado, Leonardo D; Legoas, Sergio B; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto

    2016-04-13

    Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos. PMID:26708150

  20. Amazing Altered Books

    ERIC Educational Resources Information Center

    Kieling, Linda W.

    2006-01-01

    Linda Kieling, an art teacher at Rosemont Ridge Middle school in West Linn, Oregon, describes an altered book art project she introduced to her students. Alteration of books is a form of recycling that started in the eleventh century when Italian monks recycled old manuscripts written on vellum by scraping off the ink and adding new text and…

  1. On some trees having partition dimension four

    NASA Astrophysics Data System (ADS)

    Ida Bagus Kade Puja Arimbawa, K.; Baskoro, Edy Tri

    2016-02-01

    In 1998, G. Chartrand, E. Salehi and P. Zhang introduced the notion of partition dimension of a graph. Since then, the study of this graph parameter has received much attention. A number of results have been obtained to know the values of partition dimensions of various classes of graphs. However, for some particular classes of graphs, finding of their partition dimensions is still not completely solved, for instances a class of general tree. In this paper, we study the properties of trees having partition dimension 4. In particular, we show that, for olive trees O(n), its partition dimension is equal to 4 if and only if 8 ≤ n ≤ 17. We also characterize all centipede trees having partition dimension 4.

  2. Changes in fractal dimension during aggregation.

    PubMed

    Chakraborti, Rajat K; Gardner, Kevin H; Atkinson, Joseph F; Van Benschoten, John E

    2003-02-01

    Experiments were performed to evaluate temporal changes in the fractal dimension of aggregates formed during flocculation of an initially monodisperse suspension of latex microspheres. Particle size distributions and aggregate geometrical information at different mixing times were obtained using a non-intrusive optical sampling and digital image analysis technique, under variable conditions of mixing speed, coagulant (alum) dose and particle concentration. Pixel resolution required to determine aggregate size and geometric measures including the fractal dimension is discussed and a quantitative measure of accuracy is developed. The two-dimensional fractal dimension was found to range from 1.94 to 1.48, corresponding to aggregates that are either relatively compact or loosely structured, respectively. Changes in fractal dimension are explained using a conceptual model, which describes changes in fractal dimension associated with aggregate growth and changes in aggregate structure. For aggregation of an initially monodisperse suspension, the fractal dimension was found to decrease over time in the initial stages of floc formation.

  3. Space: The Hunt for Hidden Dimensions

    SciTech Connect

    Hewett, JoAnne

    2006-04-25

    Extra dimensions of space may be present in our universe. Their discovery would dramatically change our view of the cosmos and would prompt many questions. How do they hide? What is their shape? How many are there? How big are they? Do particles and forces feel their presence? This lecture will explain the concept of dimensions and show that current theoretical models predict the existence of extra spatial dimensions which could be in the discovery reach of present and near-term experiments. The manner by which these additional dimensions reveal their existence will be described. Searches for modifications of the gravitational force, astrophysical effects, and collider signatures already constrain the size of extra dimensions and will be summarized. Once new dimensions are discovered, the technology by which the above questions can be answered will be discussed.

  4. CARBON NANOTUBES: PROPERTIES AND APPLICATIONS

    SciTech Connect

    Fischer, John, E.

    2009-07-24

    Carbon nanotubes were discovered in 1991 as a minority byproduct of fullerene synthesis. Remarkable progress has been made in the ensuing years, including the discovery of two basic types of nanotubes (single-wall and multi-wall), great strides in synthesis and purification, elucidation of many fundamental physical properties, and important steps towards practical applications. Both the underlying science and technological potential of SWNT can profitably be studied at the scale of individual tubes and on macroscopic assemblies such as fibers. Experiments on single tubes directly reveal many of the predicted quantum confinement and mechanical properties. Semiconductor nanowires have many features in common with nanotubes, and many of the same fundamental and practical issues are in play – quantum confinement and its effect on properties; possible device structures and circuit architectures; thermal management; optimal synthesis, defect morphology and control, etc. In 2000 we began a small effort in this direction, conducted entirely by undergraduates with minimal consumables support from this grant. With DOE-BES approval, this grew into a project in parallel with the carbon nanotube work, in which we studied of inorganic semiconductor nanowire growth, characterization and novel strategies for electronic and electromechanical device fabrication. From the beginnings of research on carbon nanotubes, one of the major applications envisioned was hydrogen storage for fuel-cell powered cars and trucks. Subsequent theoretical models gave mixed results, the most pessimistic indicating that the fundamental H2-SWNT interaction was similar to flat graphite (physisorption) with only modest binding energies implying cryogenic operation at best. New material families with encouraging measured properties have emerged, and materials modeling has gained enormously in predictive power, sophistication, and the ability to treat a realistically representative number of atoms. One of

  5. Ultralong single-wall carbon nanotubes.

    PubMed

    Zheng, L X; O'Connell, M J; Doorn, S K; Liao, X Z; Zhao, Y H; Akhadov, E A; Hoffbauer, M A; Roop, B J; Jia, Q X; Dye, R C; Peterson, D E; Huang, S M; Liu, J; Zhu, Y T

    2004-10-01

    Since the discovery of carbon nanotubes in 1991 by Iijima, there has been great interest in creating long, continuous nanotubes for applications where their properties coupled with extended lengths will enable new technology developments. For example, ultralong nanotubes can be spun into fibres that are more than an order of magnitude stronger than any current structural material, allowing revolutionary advances in lightweight, high-strength applications. Long metallic nanotubes will enable new types of micro-electromechanical systems such as micro-electric motors, and can also act as a nanoconducting cable for wiring micro-electronic devices. Here we report the synthesis of 4-cm-long individual single-wall carbon nanotubes (SWNTs) at a high growth rate of 11 microm s(-1) by catalytic chemical vapour deposition. Our results suggest the possibility of growing SWNTs continuously without any apparent length limitation.

  6. Substrate-supported lipid nanotube arrays.

    SciTech Connect

    Smirnov, A. I.; Poluektov, O. G.; Chemistry; North Carolina State

    2003-07-16

    This Communication describes the self-assembly of phospholipids into lipid nanotubes inside nanoporous anodic aluminum oxide substrate. Orientations of the lipid molecules in such lipid nanoscale structures were verified by high-resolution spin labeling EPR at 95 GHz. The static order parameter of lipids in such nanotube arrays was determined from low-temperature EPR spectra and was found to be exceptionally high, S{sub static} {approx} 0.9. We propose that substrate-supported lipid nanotube arrays have potential for building robust biochips and biosensors in which rigid nanoporous substrates protect the bilayer surface from contamination. The total bilayer surface in the lipid nanotube arrays is much greater than that in the planar substrate-supported membranes. The lipid nanotube arrays seem to be suitable for developing patterned lipid deposition and could be potentially used for patterning of membrane-associated molecules.

  7. Smart nanotubes for bioseparations and biocatalysis.

    PubMed

    Mitchell, David T; Lee, Sang Bok; Trofin, Lăcrămioara; Li, Naichao; Nevanen, Tarja K; Söderlund, Hans; Martin, Charles R

    2002-10-01

    Tube-shaped nanostructures (nanotubes) have a number of attributes that make them potentially useful for biomedical applications such as drug delivery/detoxification and enzyme immobilization. Template synthesis provides a route for preparing monodisperse nanotubes of nearly any size and composed of nearly any material. We show here that template-synthesized silica nanotubes can be biochemically functionalized such that they act as biocatalysts and highly selective nano-phase extraction agents for bioseparations. For example, nanotubes containing an enantioselective antibody selectively extract the enantiomer of a drug molecule that binds to the antibody, relative to the enantiomer that has no specific interaction with the antibody. Nanotubes containing the enzyme glucose oxidase function as nanophase bioreactors to catalyze the oxidation of glucose.

  8. Symmetry Properties of Single-Walled BC2N Nanotubes

    SciTech Connect

    Pan, Hui; Feng, Yuan Ping; Lin, Jainyi

    2009-06-01

    The symmetry properties of the single-walled BC2N nanotubes were investigated. All the BC2N nanotubes possess nonsymmorphic line groups. In contrast with the carbon and boron nitride nanotubes, armchair and zigzag BC2N nanotubes belong to different line groups, depending on the index n (even or odd) and the vector chosen. The number of Raman- active phonon modes is almost twice that of the infrared-active phonon modes for all kinds of BC2N nanotubes.

  9. Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    NASA Technical Reports Server (NTRS)

    Ziegler, Kirk J. (Inventor); Rauwald, Urs (Inventor); Hauge, Robert H. (Inventor); Schmidt, Howard K. (Inventor); Smalley, Richard E. (Inventor); Kittrell, W. Carter (Inventor); Gu, Zhenning (Inventor)

    2013-01-01

    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.

  10. Carbon Nanotube Based Microfluidic Elements for Filtration and Concentration

    SciTech Connect

    Bakajin, O; Ben-Barak, N; Peng, J; Noy, A

    2003-06-25

    We have developed a method for integration of patterned arrays of carbon nanotubes or the ''nanotube mesh'' into microfabricated channels. The method includes standard lithographic methods for patterning and etching the substrate, followed by catalyst patterning, CVD deposition of nanotubes, and anodic bonding of coverslip top. We will describe a carbon nanotube filtering device fabricated using this method and discuss the use of carbon nanotube arrays as molecular concentration and separation media.

  11. Radial sizing of lipid nanotubes using membrane displacement analysis.

    PubMed

    Stepanyants, Natalia; Jeffries, Gavin D M; Orwar, Owe; Jesorka, Aldo

    2012-03-14

    We report a novel method for the measurement of lipid nanotube radii. Membrane translocation is monitored between two nanotube-connected vesicles, during the expansion of a receiving vesicle, by observing a photobleached region of the nanotube. We elucidate nanotube radii, extracted from SPE vesicles, enabling quantification of membrane composition and lamellarity. Variances of nanotube radii were measured, showing a growth of 40-56 nm, upon increasing cholesterol content from 0 to 20%.

  12. The international dimensions of neuroethics.

    PubMed

    Lombera, Sofia; Illes, Judy

    2009-08-01

    Neuroethics, in its modern form, investigates the impact of brain science in four basic dimensions: the self, social policy, practice and discourse. In this study, we analyzed a set of 461 peer-reviewed articles with neuroethics content, published by authors from 32 countries. We analyzed the data for: (1) trends in the development of international neuroethics over time, and (2) how challenges at the intersection of ethics and neuroscience are viewed in countries that are considered developed by International Monetary Fund (IMF) standards, and in those that are developing. Our results demonstrate a steady increase in global participation in neuroethics from 1989 to 2005, characterized by an increase in numbers of articles published specifically on neuroethics, journals publishing these articles, and countries contributing to the literature. The focus from all countries was on the practice of brain science and the amelioration of neurological disease. Indicators of technology creation and diffusion in developing countries were specifically correlated with increases in publications concerning policy implications of brain science. Neuroethics is an international endeavor and, as such, should be sensitive to the impact that context has on acceptance and use of technological innovation.

  13. Invariant imbedding in two dimensions

    SciTech Connect

    Faber, V.; Seth, D.L.; Wing, G.M.

    1988-01-01

    J. Corones has noted that the doubling and addition formulas of invariant imbedding can be extended conceptually to very general situations. All that is needed is a black box ''process'' with n ''ports.'' The /ital i/th port has vector input I/sub i/ and vector output J/sub i/. Addition formulas result when two or more of these processes are joined together to form a new process in some regular way. For example, four congruent squares can be juxtaposed to form a larger square. At each join, the output of one process becomes the input of the other and vice versa. (We always suppose the join to occur at one or more ports.) Addition formulas result from the combination of these shared quantities. Corones has thus pointed out that invariant imbedding is not, as is sometimes asserted, an inherently one-dimensional (1-D) method, but works conceptually in any number of dimensions; some previous work that is conceptually along these lines, with references to other such works, can be found in Refs. 2-4. The details can, of course, become very complicated. We shall show that the method is computationally feasible for certain two-dimensional (2-D) problems. To conform to the thrust of these proceedings, we shall usually phrase our discussions in terms of transport theory rather than speaking of more abstract processes. 7 refs., 13 figs.

  14. Higgs bosons in extra dimensions

    NASA Astrophysics Data System (ADS)

    Quiros, Mariano

    2015-04-01

    In this paper, motivated by the recent discovery of a Higgs-like boson at the Large Hadron Collider (LHC) with a mass mH≃125 GeV, we review different models where the hierarchy problem is solved by means of a warped extra dimension. In the Randall-Sundrum (RS) model electroweak observables provide very strong bounds on the mass of KK modes which motivates extensions to overcome this problem. Two extensions are briefly discussed. One particular extension is based on the deformation of the metric such that it strongly departs from the AdS5 structure in the IR region while it goes asymptotically to AdS5 in the UV brane. This model has the IR brane close to a naked metric singularity (which is outside the physical interval) characteristic of soft-walls constructions. The proximity of the singularity provides a strong wave function renormalization for the Higgs field which suppresses the T and S parameters. The second class of considered extensions are based on the introduction of an extra gauge group in the bulk such that the custodial SU(2)R symmetry is gauged and protects the T parameter. By further enlarging the bulk gauge symmetry one can find models where the Higgs is identified with the fifth component of gauge fields and for which the Higgs potential along with the Higgs mass can be dynamically determined by the Coleman-Weinberg mechanism.

  15. Contagion Shocks in One Dimension

    NASA Astrophysics Data System (ADS)

    Bertozzi, Andrea L.; Rosado, Jesus; Short, Martin B.; Wang, Li

    2015-02-01

    We consider an agent-based model of emotional contagion coupled with motion in one dimension that has recently been studied in the computer science community. The model involves movement with a speed proportional to a "fear" variable that undergoes a temporal consensus averaging based on distance to other agents. We study the effect of Riemann initial data for this problem, leading to shock dynamics that are studied both within the agent-based model as well as in a continuum limit. We examine the behavior of the model under distinguished limits as the characteristic contagion interaction distance and the interaction timescale both approach zero. The limiting behavior is related to a classical model for pressureless gas dynamics with "sticky" particles. In comparison, we observe a threshold for the interaction distance vs. interaction timescale that produce qualitatively different behavior for the system - in one case particle paths do not cross and there is a natural Eulerian limit involving nonlocal interactions and in the other case particle paths can cross and one may consider only a kinetic model in the continuum limit.

  16. Optoacoustic imaging in five dimensions

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. L.; Gottschalk, Sven; Fehm, Thomas F.; Razansky, Daniel

    2015-03-01

    We report on an optoacoustic imaging system capable of acquiring volumetric multispectral optoacoustic data in real time. The system is based on simultaneous acquisition of optoacoustic signals from 256 different tomographic projections by means of a spherical matrix array. Thereby, volumetric reconstructions can be done at high frame rate, only limited by the pulse repetition rate of the laser. The developed tomographic approach presents important advantages over previously reported systems that use scanning for attaining volumetric optoacoustic data. First, dynamic processes, such as the biodistribution of optical biomarkers, can be monitored in the entire volume of interest. Second, out-of-plane and motion artifacts that could degrade the image quality when imaging living specimens can be avoided. Finally, real-time 3D performance can obviously save time required for experimental and clinical observations. The feasibility of optoacoustic imaging in five dimensions, i.e. real time acquisition of volumetric datasets at multiple wavelengths, is reported. In this way, volumetric images of spectrally resolved chromophores are rendered in real time, thus offering an unparallel imaging performance among the current bio-imaging modalities. This performance is subsequently showcased by video-rate visualization of in vivo hemodynamic changes in mouse brain and handheld visualization of blood oxygenation in deep human vessels. The newly discovered capacities open new prospects for translating the optoacoustic technology into highly performing imaging modality for biomedical research and clinical practice with multiple applications envisioned, from cardiovascular and cancer diagnostics to neuroimaging and ophthalmology.

  17. What dimensions underlie cluster B personality disorders?

    PubMed

    Looper, K J; Paris, J

    2000-01-01

    This report presents a conceptual model of the relationships between personality dimensions and the four personality disorders listed in the B cluster on axis II. The hypothesis will be developed that while impulsivity is the common dimension underlying all four disorders, differences between the categories reflect the severity of impulsive traits, interactions with other personality dimensions, the effects of gender, and the influence of culture. Clinical and research implications of the model are then described.

  18. Hexagonal silicon nanotube confined inside a carbon nanotube: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhu, Weijuan; Yan, Xiaohong; Xiao, Yang

    2008-02-01

    We studied the stability, geometrical structures and electronic energy band of hexagonal silicon nanotube (SiNT) confined inside carbon nanotubes based on first-principle calculations. The results show that the encapsulating process of SiNT is exothermic in ( 9,9) carbon nanotube while endothermic in ( 8,8) and ( 7,7) carbon nanotubes. When the SiNT is inserted into ( 9,9) carbon nanotube, the insertion energy is about 0.09 eV. Energy band of SiNT@( 9,9) nanotube is not distorted greatly compared with the superposition of bands of isolated SiNT and ( 9,9) carbon nanotube. Especially, a parabolic band occurs near the Fermi level of energy band in SiNT@( 7,7) nanotube. Such a band could be a nearly free electronic state originating from carbon nanotube. Moreover, we discuss the variation of total energy as the SiNT rotates around its axis inside carbon nanotubes.

  19. A Carbon Arc Apparatus For Production Of Nanotubes In Microgravity

    NASA Technical Reports Server (NTRS)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2003-01-01

    Although many methods are available for production of single-walled carbon nanotubes (SWNTs), the conventional carbon arc process remains the most popular due to its simplicity and large production rate. However, high temperatures inside the carbon arc generate strong buoyancy driven convection, and it is hypothesized that the non-uniform environment created by this flow will have large effects on the growth and morphology of SWNTs produced by the arc process. Indeed, using normal gravity experiments, Marin et al. have demonstrated that changes in the buoyant convection plume produced by altering the arc electrode orientation can be used to change the diameter distribution of the SWNTs produced; an effect they attribute to changes in the temperature of the local nanotube growth environment. While these experiments present convincing evidence that buoyant convection has a strong effect on nanotube growth, normal gravity experiments are severely limited in scope. The ideal way to study the effect of buoyancy on SWNT production is to remove it completely. Toward this goal, a microgravity carbon arc reactor has been designed for use in the NASA Glenn 2.2 and 5 second drop towers. Although simple in principle, conventional carbon arc machines, which generally employ large reaction chambers and require heavy duty welding power supplies capable of supplying kilowatts of power, are not suitable for microgravity experiments. Here we describe a miniature carbon arc machine for SWNT production that fits into a conventional drop rig for use on the NASA Glenn 2.2 and 5 second drop towers, but that has a performance (production rate) that is better than most large ground-based machines.

  20. Spontaneous symmetry breaking in quasi one dimension

    SciTech Connect

    Satpathi, Urbashi Deo, P. Singha

    2015-06-24

    Electronic charge and spin separation leading to charge density wave and spin density wave is well established in one dimension in the presence and absence of Coulomb interaction. We start from quasi one dimension and show the possibility of such a transition in quasi one dimension as well as in two dimensions by going to a regime where it can be shown for electrons that just interact via Fermi statistics. Such density waves arise due to internal symmetry breaking in a many fermion quantum system. We can extend this result to very wide rings with infinitely many electrons including Coulomb interaction.

  1. Dimensions of depressive symptoms and cingulate volumes in older adults

    PubMed Central

    McLaren, M E; Szymkowicz, S M; O'Shea, A; Woods, A J; Anton, S D; Dotson, V M

    2016-01-01

    Clinical depression and subthreshold depressive symptoms in older adults have been linked to structural changes in the cingulate gyrus. The cingulate comprises functionally distinct subregions that may have distinct associations with different types, or symptom dimensions, of depression. This study examined the relationship between symptom dimensions of depression and gray matter volumes in the anterior cingulate, posterior cingulate and isthmus of the cingulate in a nonclinical sample. The study included 41 community-dwelling older adults between the ages of 55 and 81. Participants received a structural magnetic resonance imaging scan and completed the Center for Epidemiologic Studies Depression Scale. Subscale scores for depressed mood, somatic symptoms and lack of positive affect were calculated, and Freesurfer was used to extract cingulate gray matter volumes. Regression analyses were conducted to examine the relationship between depressive symptoms and volumes of cingulate subregions while controlling for sex, age and estimated total intracranial volume. Higher scores on the depressed mood subscale were associated with larger volumes in the left posterior cingulate and smaller volumes in the isthmus cingulate. Higher scores on the somatic symptoms subscale were significantly related to smaller volumes in the posterior cingulate. A trend was observed for a positive relationship between higher scores on the lack of positive affect subscale and larger volumes in the anterior cingulate cortex. These results are consistent with previous findings of altered cingulate volumes with increased depressive symptomatology and suggest specific symptom dimensions of depression may differ in their relationship with subregions of the cingulate. PMID:27093070

  2. Dose-dependent mesothelioma induction by intraperitoneal administration of multi-wall carbon nanotubes in p53 heterozygous mice.

    PubMed

    Takagi, Atsuya; Hirose, Akihiko; Futakuchi, Mitsuru; Tsuda, Hiroyuki; Kanno, Jun

    2012-08-01

    Among various types of multi-wall carbon nanotubes (MWCNT) are those containing fibrous particles longer than 5 μm with an aspect ratio of more than three (i.e. dimensions similar to mesotheliomagenic asbestos). A previous study showed that micrometer-sized MWCNT (μm-MWCNT) administered intraperitoneally at a dose of 3000 μg/mouse corresponding to 1 × 10(9) fibers per mouse induced mesotheliomas in p53 heterozygous mice. Here, we report a dose-response study; three groups of p53 heterozygous mice (n = 20) were given a single intraperitoneal injection of 300 μg/mouse of μm-MWCNT (corresponding to 1 × 10(8) fibers), 30 μg/mouse (1 × 10(7)) or 3 μg/mouse (1 × 10(6)), respectively, and observed for up to 1 year. The cumulative incidence of mesotheliomas was 19/20, 17/20 and 5/20, respectively. The severity of peritoneal adhesion and granuloma formation were dose-dependent and minimal in the lowest dose group. However, the time of tumor onset was apparently independent of the dose. All mice in the lowest dose group that survived until the terminal kill had microscopic atypical mesothelial hyperplasia considered as a precursor lesion of mesothelioma. Right beneath was a mononuclear cell accumulation consisting of CD45- or CD3-positive lymphocytes and CD45/CD3-negative F4/80 faintly positive macrophages; some of the macrophages contained singular MWCNT in their cytoplasm. The lesions were devoid of epithelioid cell granuloma and fibrosis. These findings were in favor of the widely proposed mode of action of fiber carcinogenesis, that is, frustrated phagocytosis where the mesotheliomagenic microenvironment on the peritoneal surface is neither qualitatively altered by the density of the fibers per area nor by the formation of granulomas against agglomerates.

  3. Origin of Everything and the 21 Dimensions of the Universe

    NASA Astrophysics Data System (ADS)

    Loev, Mark

    2009-03-01

    The Dimensions of the Universe correspond with the Dimensions of the human body. The emotion that is a positive for every dimension is Love. The negative emotion that effects each dimension are listed. All seven negative emotions effect Peace, Love and Happiness. 21st Dimension: Happiness Groin & Heart 20th Dimension: Love Groin & Heart 19th Dimension: Peace Groin & heart 18th Dimension: Imagination Wave Eyes Anger 17th Dimension: Z Wave / Closed Birth 16th Dimension: Electromagnetic Wave Ears Anger 15th Dimension: Universal Wave Skin Worry 14th Dimension: Lover Wave Blood Hate 13th Dimension: Disposal Wave Buttocks Fear 12th Dimension: Builder Wave Hands Hate 11th Dimension: Energy Wave Arms Fear 10th Dimension: Time Wave Brain Pessimism 9th Dimension: Gravity Wave Legs Fear 8th Dimension: Sweet Wave Pancreas Fear 7th Dimension: File Wave Left Lung Fear 6th Dimension: Breathing Wave Right Lung Fear 5th Dimension: Digestive Wave Stomach Fear 4th Dimension: Swab Wave Liver Guilt 3rd Dimension: Space Wave Face Sadness 2nd Dimension: Line Wave Mouth Revenge 1st Dimension: Dot Wave Nose Sadness The seven deadly sins correspond: Anger Hate Sadness Fear Worry Pessimism Revenge Note: Guilt is fear

  4. Potential in vitro effects of carbon nanotubes on human aortic endothelial cells

    SciTech Connect

    Walker, Valerie G.; Li Zheng; Hulderman, Tracy; Schwegler-Berry, Diane; Kashon, Michael L.; Simeonova, Petia P.

    2009-05-01

    Respiratory exposure of mice to carbon nanotubes induces pulmonary toxicity and adverse cardiovascular effects associated with atherosclerosis. We hypothesize that the direct contact of carbon nanotubes with endothelial cells will result in dose-dependent effects related to altered cell function and cytotoxicity which may play a role in potential adverse pulmonary and cardiovascular outcomes. To test this hypothesis, we examined the effects of purified single- and multi-walled carbon nanotubes (SWCNT and MWCNT) on human aortic endothelial cells by evaluating actin filament integrity and VE-cadherin distribution by fluorescence microscopy, membrane permeability by measuring the lactate dehydrogenase (LDH) release, proliferation/viability by WST-1 assay, and overall functionality by tubule formation assay. Marked actin filament and VE-cadherin disruption, cytotoxicity, and reduced tubule formation occurred consistently at 24 h post-exposure to the highest concentrations [50-150 {mu}g/10{sup 6} cells (1.5-4.5 {mu}g/ml)] for both SWCNT and MWCNT tested in our studies. These effects were not observed with carbon black exposure and carbon nanotube exposure in lower concentrations [1-10 {mu}g/10{sup 6} cells (0.04-0.4 {mu}g/ml)] or in any tested concentrations at 3 h post-exposure. Overall, the results indicate that SWCNT and MWCNT exposure induce direct effects on endothelial cells in a dose-dependent manner.

  5. Physiological changes of the lichen Parmotrema tinctorum as result of carbon nanotubes exposition.

    PubMed

    Viana, Camila de O; Vaz, Raissa P; Cano, Abraham; Santos, Adelina P; Cançado, Luiz G; Ladeira, Luiz O; Junior, Ary Corrêa

    2015-10-01

    Carbon nanotubes (CNT) is one of the more abundant nanomaterial produced in the world. Therefore, it is desirable to access its effects in all environment compartments, in order to mitigate environmental distress. This study aims to verify the potential use of lichens - classical atmospheric pollution indicators - as biomonitors of carbon nanotubes aerosols. To examine cause-effect relationships, preserving environmental microclimatic parameters, the lichen Parmotrema tinctorum (Nyl.) Hale was transplanted to open top chambers where aerosols of CNT were daily added. Physiological parameters such as cell viability, photosynthetic efficiency, cell permeability as well as nanoparticle internalization were assessed. Carbon nanotubes exposure led to reduction on the cell viability of P. tinctorum. The treatment with 100µg/mL of MWCNT-COOH resulted in intracellular ion leakage, probably due to changes in membrane permeability. No alterations on photosynthetic efficiency were detected. Carbon nanotubes entrapment and internalization into the lichen thallus were observed. Short term exposition of CNT produced measurable physiological changes in P. tinctorum lichen. This suggests the possibility of use of lichens as models to assess the environmental impact (air related) of engineered nanomaterials.

  6. Structure -- Magnetic Property Correlations in TiO 2 Nanotube Arrays

    NASA Astrophysics Data System (ADS)

    Mohammad Hosseinpour, Pegah

    TiO2 nanotube arrays are promising candidates for applications such as photocatalysis and for potential employment in spin-electronic (spintronic) devices. The functionality of TiO2-based nanotubes is highly dependent on their structure (microstructure and crystallographic symmetry) and magnetic properties. Unified understanding of the influence of these factors on the electronic structure of TiO2 is of paramount importance towards engineering these materials. This Dissertation aims at investigating the correlations of the morphology, crystallinity, crystal structure, electronic structure and magnetic properties of TiO2 nanotubes, with potential relevance to their functionality. Self-ordered arrays of amorphous TiO2 nanotubes (pure and Fe-doped with cationic concentration of ~2.1 at%) were synthesized by the electrochemical anodization technique, followed by subjecting them to thermal treatments up to 450 °C to crystallize these nanostructures. A variety of probes---morphological, structural, magnetic and spectroscopic---were used to characterize the properties of these nanostructures as functions of their processing conditions and the dopant content. Structure-functionality relationships in these nanostructures were verified by examining the photodegradation rate of methyl orange (a model water pollutant) in presence of TiO2 nanotubes under UV-Visible light irradiation. Results from this Dissertation research demonstrated that post-synthesis processing conditions---specifically, the nature of the annealing environment, as well as the presence of an external dopant, can alter the crystal structure and local electronic environment in TiO2 nanotubes, with subsequent effects on the magnetic properties of these nanostructures. The fundamental knowledge obtained in this research, on the interrelations of structural-magnetic properties and their potential influence on the functionality of TiO 2-based nanotubes, can be extended to the metal oxide semiconducting systems

  7. Affinity of Drugs and Small Biologically Active Molecules to Carbon Nanotubes: A Pharmacodynamics and Nanotoxicity Factor?

    PubMed Central

    Liu, John; Yang, Liu; Hopfinger, Anton J.

    2009-01-01

    The MM-PBSA MD method was used to estimate the affinity, as represented by log kb, of each of a variety of biologically active molecules to a carbon nanotube in an aqueous environment. These ligand-receptor binding simulations were calibrated by first estimating the log kb values for eight ligands to human serum albumin, HSA, whose log kb values have been observed. A validation linear correlation equation was established [R2 = 0.888 Q2 = 0.603] between the observed and estimated log kb values to HSA. This correlation equation was then used to re-scale all MM-PBSA MD log kb values using a carbon nanotube as the receptor. The log kb of the eight HSA ligands, nine polar and/or rigid ligands and six nonpolar and/or flexible ligands to a carbon nanotube were estimated. The range in re-scaled log kb values across this set of 23 ligands is 0.25 to 7.14, essentially seven orders of magnitude. Some ligands, like PGI2, bind in the log kb = 7 range which corresponds to the lower limits of known drugs. Thus, such significant levels of binding of biologically relevant compounds to carbon nanotubes might lead to alterations in the normal pharmacodynamic profiles of these compounds and be a source of toxicity. Ligand binding potency to a carbon nanotube is largely controlled by the shape, polarity/nonpolarity distribution and flexibility of the ligand. HSA ligands exhibit the most limited binding to a carbon nanotube, and they are relatively rigid and of generally spherical shape. Polar and/or rigid ligands bind less strongly to the carbon nanotube, on average, than nonpolar and/or flexible ligands even though the chosen members of both classes of ligands in this study have chain-like shapes that facilitate binding. The introduction of only a few strategically spaced single bonds in the polar and/or rigid ligands markedly increases their binding to a carbon nanotube. PMID:19281188

  8. Micromagnetics at submicron dimensions (abstract)

    NASA Astrophysics Data System (ADS)

    Slonczewski, J. C.

    1997-04-01

    We represent the state of a circa 10-nm thick submicron dimensioned magnetic film with a superposition of two-dimensional (2D) magnetic pseudovortices. The effective intervortex exchange-stiffness potential and local magnetization angle at a complex distance z=x+iy from the kth vortex center are given by the real and imaginary parts respectively, of the function -wklnz. Each of the four corners of the rectangle has a stationary quarter vortex with negative winding (wk=-1). Two mobile semivortices with winding wk=+1 and N and S magnetic poles lie at general positions X1 and X2, respectively, along edges of the rectangle. The approximate boundary condition of vanishing M-component normal to each edge is satisfied by repeated reflections which generate a periodic extension of this vortex array to a lattice filling all of a 2D space. The internal energy V(X1,X2) is principally composed of the inter vortex exchange stiffness. Given this function, numerical evaluation of the integrated moment m=m(X1,X2) provides the functional dependence of V on m as parametrized by (X1,X2). The function V(X1,X2) has four equal minima representing states with the N and S vortices located at diagonally opposite corners, in agreement with direct numerical simulations. Therefore, the predicted hysteresis behavior of our vortex model has significantly more complex transitions than those of a uniaxial single-domain particle having only two minima. Our employment of but two variables, rather than the continuum of straightforward micromagnetics, makes possible a more insightful analysis of the smallscale structures used in storage and memory.

  9. Nanorods and nanotubes: Synthesis, manipulation and properties

    NASA Astrophysics Data System (ADS)

    Wong, Eric Warren

    Nanorods and nanotubes represent idealized structures for investigating phenomena associated with reduced dimensionality and are potential building blocks for nanostructured materials. Understanding their synthesis as well as physical properties is crucial if they are to form the basis for future devices. The synthesis of carbide nanotubes and nanorods is described. Also presented is a general method that combines micropatterning techniques with scanning force microscopy (SFM) to probe individual quasi-one-dimensional materials. Polycrystalline TiC and NbC nanorods, with 20-30 nm diameters and lengths exceeding 1 mum, were synthesized by reacting gaseous Ti-I or Nb-I at 550-1100sp°C with carbon nanotubes which served as structural templates. Template growth from nanotubes appears general since polycrystalline BCsb{x} and amorphous Fesb3C nanorods were produced from Bsb2Osb2 and FeClsb3, respectively. However, reaction of Si-I precursors with nanotubes or graphite above 1050sp°C resulted in single crystal SiC nanorods, with 1-20 nm diameters and 1-20 mum lengths, that grew catalytically from MoSisb2 nanoparticles by a vapor-solid mechanism. Above 1200sp°C, single crystal TiC nanorods grew from nanotubes and Ti-I or TiO by an undetermined mechanism. To probe electrical transport in carbon nanotubes, a method was devised where a static gold contact was lithographically formed with one end of a nanotube while a second dynamic contact was made by a conducting SFM probe. The conducting SFM tip can simultaneously map the topography and conductance of the nanotube. The transport properties of a series of structurally distinct nanotubes were studied and shown to sensitively depend on their structure, the presence of defects causing dramatic increases in resistivity. The mechanics of SiC nanorods and carbon nanotubes were studied using an analogous technique. An SFM tip was used to measure the forces required to bend nanobeams. The SiC nanorods had elastic moduli in close

  10. Full mouth rehabilitation of a patient with reduced vertical dimension using multiple metal ce ramic restorations.

    PubMed

    Jain, Ashish R; Nallaswamy, Deepak; Ariga, Padma; Philip, Jacob Mathew

    2013-10-01

    Rehabilitation of a patient with severely worn dentition after restoring the vertical dimension is a complex procedure and assessment of the vertical dimension is an important aspect in these cases. This clinical report describes the full mouth rehabilitation of a patient who was clinically monitored to evaluate the adaptation to a removable occlusal splint to restore vertical dimension for a period 1 month and provisional restorations to determine esthetic and functional outcome for a period of 3 months. It is necessary to recognizing that form follows function and that anterior teeth play a vital role in the maintenance of oral health. Confirmation of tolerance to changes in the vertical dimension of occlusion (VDO) is of paramount importance. Articulated study casts and a diagnostic wax-up can provide important information for the evaluation of treatment options. Alteration of the VDO should be conservative and should not be changed without careful consideration.

  11. Full mouth rehabilitation of a patient with reduced vertical dimension using multiple metal ce ramic restorations

    PubMed Central

    Jain, Ashish R; Nallaswamy, Deepak; Ariga, Padma; Philip, Jacob Mathew

    2013-01-01

    Rehabilitation of a patient with severely worn dentition after restoring the vertical dimension is a complex procedure and assessment of the vertical dimension is an important aspect in these cases. This clinical report describes the full mouth rehabilitation of a patient who was clinically monitored to evaluate the adaptation to a removable occlusal splint to restore vertical dimension for a period 1 month and provisional restorations to determine esthetic and functional outcome for a period of 3 months. It is necessary to recognizing that form follows function and that anterior teeth play a vital role in the maintenance of oral health. Confirmation of tolerance to changes in the vertical dimension of occlusion (VDO) is of paramount importance. Articulated study casts and a diagnostic wax-up can provide important information for the evaluation of treatment options. Alteration of the VDO should be conservative and should not be changed without careful consideration. PMID:24403804

  12. Titania nanotube arrays as potential interfaces for neurological prostheses

    NASA Astrophysics Data System (ADS)

    Sorkin, Jonathan Andrew

    Neural prostheses can make a dramatic improvement for those suffering from visual and auditory, cognitive, and motor control disabilities, allowing them regained functionality by the use of stimulating or recording electrical signaling. However, the longevity of these devices is limited due to the neural tissue response to the implanted device. In response to the implant penetrating the blood brain barrier and causing trauma to the tissue, the body forms a to scar to isolate the implant in order to protect the nearby tissue. The scar tissue is a result of reactive gliosis and produces an insulated sheath, encapsulating the implant. The glial sheath limits the stimulating or recording capabilities of the implant, reducing its effectiveness over the long term. A favorable interaction with this tissue would be the direct adhesion of neurons onto the contacts of the implant, and the prevention of glial encapsulation. With direct neuronal adhesion the effectiveness and longevity of the device would be significantly improved. Titania nanotube arrays, fabricated using electrochemical anodization, provide a conductive architecture capable of altering cellular response. This work focuses on the fabrication of different titania nanotube array architectures to determine how their structures and properties influence the response of neural tissue, modeled using the C17.2 murine neural stem cell subclone, and if glial encapsulation can be reduced while neuronal adhesion is promoted.

  13. Effect of multiwalled carbon nanotubes on UASB microbial consortium.

    PubMed

    Yadav, Tushar; Mungray, Alka A; Mungray, Arvind K

    2016-03-01

    The continuous rise in production and applications of carbon nanotubes (CNTs) has grown a concern about their fate and toxicity in the environment. After use, these nanomaterials pass through sewage and accumulate in wastewater treatment plants. Since, such plants rely on biological degradation of wastes; their activity may decrease due to the presence of CNTs. This study investigated the effect of multiwalled carbon nanotubes (MWCNTs) on upflow anaerobic sludge blanket (UASB) microbial activity. The toxic effect on microbial viability, extracellular polymeric substances (EPS), volatile fatty acids (VFA), and biogas generation was determined. The reduction in a colony-forming unit (CFU) was 29 and 58 % in 1 and 100 mg/L test samples, respectively, as compared to control. The volatile fatty acids and biogas production was also found reduced. The scanning electron microscopy (SEM) and fluorescent microscopy images confirmed that the MWCNT mediated microbial cell damage. This damage caused the increase in EPS carbohydrate, protein, and DNA concentration. Fourier transform infrared (FTIR) spectroscopy results supported the alterations in sludge EPS due to MWCNT. Our observations offer a new insight to understand the nanotoxic effect of MWCNTs on UASB microflora in a complex environment system.

  14. New generation fiber reinforced polymer composites incorporating carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Soliman, Eslam

    The last five decades observed an increasing use of fiber reinforced polymer (FRP) composites as alternative construction materials for aerospace and infrastructure. The high specific strength of FRP attracted its use as non-corrosive reinforcement. However, FRP materials were characterized with a relatively low ductility and low shear strength compared with steel reinforcement. On the other hand, carbon nanotubes (CNTs) have been introduced in the last decade as a material with minimal defect that is capable of increasing the mechanical properties of polymer matrices. This dissertation reports experimental investigations on the use of multi-walled carbon nanotubes (MWCNTs) to produce a new generation of FRP composites. The experiments showed significant improvements in the flexure properties of the nanocomposite when functionalized MWCNTs were used. In addition, MWCNTs were used to produce FRP composites in order to examine static, dynamic, and creep behavior. The MWCNTs improved the off-axis tension, off-axis flexure, FRP lap shear joint responses. In addition, they reduced the creep of FRP-concrete interface, enhanced the fracture toughness, and altered the impact resistance significantly. In general, the MWCNTs are found to affect the behaviour of the FRP composites when matrix failure dominates the behaviour. The improvement in the mechanical response with the addition of low contents of MWCNTs would benefit many industrial and military applications such as strengthening structures using FRP composites, composite pipelines, aircrafts, and armoured vehicles.

  15. Carbon nanotubes and nucleic acids: tools and targets

    NASA Astrophysics Data System (ADS)

    Onoa, Bibiana; Zheng, Ming; Dresselhaus, Mildred S.; Diner, Bruce A.

    2006-05-01

    Nucleic acids, with their intrinsic structural properties as well as their high specificity, are playing an important role in the rapid development of nano-technologies. In turn, these new technologies and their efficient performance enable fast and precise methods for detection of nucleic acids, improving the diagnosis of diseases and identification of pathogens. We discuss the use of nucleic acids to disperse and sort single walled carbon nanotubes (SWNTs), and carbon nanotube-based field effect transistors (CNT-FETs) to electrically detect specific nucleic acid sequences. Both DNA and RNA are efficient agents for dispersion and separation of SWNTs by diameter and chirality. Fractions enriched in a narrow band gap distribution of DNA:SWNT hybrids do not alter the electronic performance of field effect transistors. A CNT-FET fulfills the requirements for a nanosensing device that can greatly exceed the existing technologies. Electrical detection of specific nucleic acid sequence could potentially overcome the current limitations of optical detection, by increasing sensitivity and speed, while reducing sample manipulation, size, and cost.

  16. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  17. Helical polycarbodiimide cloaking of carbon nanotubes enables inter-nanotube exciton energy transfer modulation.

    PubMed

    Budhathoki-Uprety, Januka; Jena, Prakrit V; Roxbury, Daniel; Heller, Daniel A

    2014-11-01

    The use of single-walled carbon nanotubes (SWCNTs) as near-infrared optical probes and sensors require the ability to simultaneously modulate nanotube fluorescence and functionally derivatize the nanotube surface using noncovalent methods. We synthesized a small library of polycarbodiimides to noncovalently encapsulate SWCNTs with a diverse set of functional coatings, enabling their suspension in aqueous solution. These polymers, known to adopt helical conformations, exhibited ordered surface coverage on the nanotubes and allowed systematic modulation of nanotube optical properties, producing up to 12-fold differences in photoluminescence efficiency. Polymer cloaking of the fluorescent nanotubes facilitated the first instance of controllable and reversible internanotube exciton energy transfer, allowing kinetic measurements of dynamic self-assembly and disassembly.

  18. Quality Dimensions of Internet Search Engines.

    ERIC Educational Resources Information Center

    Xie, M.; Wang, H.; Goh, T. N.

    1998-01-01

    Reviews commonly used search engines (AltaVista, Excite, infoseek, Lycos, HotBot, WebCrawler), focusing on existing comparative studies; considers quality dimensions from the customer's point of view based on a SERVQUAL framework; and groups these quality expectations in five dimensions: tangibles, reliability, responsiveness, assurance, and…

  19. Four Essential Dimensions of Workplace Learning

    ERIC Educational Resources Information Center

    Hopwood, Nick

    2014-01-01

    Purpose: This conceptual paper aims to argue that times, spaces, bodies and things constitute four essential dimensions of workplace learning. It examines how practices relate or hang together, taking Gherardi's texture of practices or connectedness in action as the foundation for making visible essential but often overlooked dimensions of…

  20. Unconscious Evaluation of Faces on Social Dimensions

    ERIC Educational Resources Information Center

    Stewart, Lorna H.; Ajina, Sara; Getov, Spas; Bahrami, Bahador; Todorov, Alexander; Rees, Geraint

    2012-01-01

    It has been proposed that two major axes, dominance and trustworthiness, characterize the social dimensions of face evaluation. Whether evaluation of faces on these social dimensions is restricted to conscious appraisal or happens at a preconscious level is unknown. Here we provide behavioral evidence that such preconscious evaluations exist and…