Sample records for altered renal expression

  1. Altered glutamyl-aminopeptidase activity and expression in renal neoplasms

    PubMed Central

    2014-01-01

    Background Advances in the knowledge of renal neoplasms have demonstrated the implication of several proteases in their genesis, growth and dissemination. Glutamyl-aminopeptidase (GAP) (EC. 3.4.11.7) is a zinc metallopeptidase with angiotensinase activity highly expressed in kidney tissues and its expression and activity have been associated wtih tumour development. Methods In this prospective study, GAP spectrofluorometric activity and immunohistochemical expression were analysed in clear-cell (CCRCC), papillary (PRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytoma (RO). Data obtained in tumour tissue were compared with those from the surrounding uninvolved kidney tissue. In CCRCC, classic pathological parameters such as grade, stage and tumour size were stratified following GAP data and analyzed for 5-year survival. Results GAP activity in both the membrane-bound and soluble fractions was sharply decreased and its immunohistochemical expression showed mild staining in the four histological types of renal tumours. Soluble and membrane-bound GAP activities correlated with tumour grade and size in CCRCCs. Conclusions This study suggests a role for GAP in the neoplastic development of renal tumours and provides additional data for considering the activity and expression of this enzyme of interest in the diagnosis and prognosis of renal neoplasms. PMID:24885240

  2. Alteration of renal excretion pathways in gentamicin-induced renal injury in rats.

    PubMed

    Ma, Yan-Rong; Luo, Xuan; Wu, Yan-Fang; Zhang, Tiffany; Zhang, Fan; Zhang, Guo-Qiang; Wu, Xin-An

    2018-07-01

    The kidney plays a major part in the elimination of many drugs and their metabolites, and drug-induced kidney injury commonly alters either glomerular filtration or tubular transport, or both. However, the renal excretion pathway of drugs has not been fully elucidated at different stages of renal injury. This study aimed to evaluate the alteration of renal excretion pathways in gentamicin (GEN)-induced renal injury in rats. Results showed that serum cystatin C, creatinine and urea nitrogen levels were greatly increased by the exposure of GEN (100 mg kg -1 ), and creatinine concentration was increased by 39.7% by GEN (50 mg kg -1 ). GEN dose-dependently upregulated the protein expression of rOCT1, downregulated rOCT2 and rOAT1, but not affected rOAT2. Efflux transporters, rMRP2, rMRP4 and rBCRP expressions were significantly increased by GEN(100), and the rMATE1 level was markedly increased by GEN(50) but decreased by GEN(100). GEN(50) did not alter the urinary excretion of inulin, but increased metformin and furosemide excretion. However, GEN(100) resulted in a significant decrease of the urinary excretion of inulin, metformin and p-aminohippurate. In addition, urinary metformin excretions in vivo were significantly decreased by GEN(100), but slightly increased by GEN(50). These results suggested that GEN(50) resulted in the induction of rOCTs-rMATE1 and rOAT3-rMRPs pathway, but not changed the glomerular filtration rate, and GEN(100)-induced acute kidney injury caused the downregulated function of glomerular filtration -rOCTs-rMATE1 and -rOAT1-rMRPs pathway. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Mechanisms of impaired nephrogenesis with fetal growth restriction: altered renal transcription and growth factor expression

    PubMed Central

    Abdel-Hakeem, Ahmed K; Henry, Tasmia Q; Magee, Thomas R; Desai, Mina; Ross, Michael; Mansano, Roy; Torday, John; Nast, Cynthia C.

    2010-01-01

    Objective Maternal food restriction during pregnancy results in growth restricted newborns and reduced glomerular number, contributing to programmed offspring hypertension. We investigated whether reduced nephrogenesis may be programmed by dysregulation of factors controlling ureteric bud branching and mesenchyme to epithelial transformation. Study Design 10 to 20 days gestation, Sprague Dawley pregnant rats (n=6/group) received ad libitum food; FR rats were 50% food restricted. At embryonic day 20, mRNA and protein expression of WT1, Pax2, FGF2, GDNF, cRET, WNT4, WNT11, BMP4, BMP7, and FGF7 were determined by real-time PCR and Western blotting. Results Maternal FR resulted in up-regulated mRNA expression for WT1, FGF2, and BMP7 whereas Pax2, GDNF, FGF7, BMP4, WNT4, and WNT11 mRNAs were down-regulated. Protein expression was concordant for WT1, GDNF, Pax2, FGF7, BMP4 and WNT4. Conclusion Maternal FR altered gene expression of fetal renal transcription and growth factors, and likely contributes to development of offspring hypertension. PMID:18639218

  4. Impact of Ischemia and Procurement Conditions on Gene Expression in Renal Cell Carcinoma

    PubMed Central

    Liu, Nick W.; Sanford, Thomas; Srinivasan, Ramaprasad; Liu, Jack L.; Khurana, Kiranpreet; Aprelikova, Olga; Valero, Vladimir; Bechert, Charles; Worrell, Robert; Pinto, Peter A.; Yang, Youfeng; Merino, Maria; Linehan, W. Marston; Bratslavsky, Gennady

    2013-01-01

    Purpose Previous studies have shown that ischemia alters gene expression in normal and malignant tissues. There are no studies that evaluated effects of ischemia in renal tumors. This study examines the impact of ischemia and tissue procurement conditions on RNA integrity and gene expression in renal cell carcinoma. Experimental Design Ten renal tumors were resected without renal hilar clamping from 10 patients with renal clear cell carcinoma. Immediately after tumor resection, a piece of tumor was snap frozen. Remaining tumor samples were stored at 4C, 22C and 37C and frozen at 5, 30, 60, 120, and 240 minutes. Histopathologic evaluation was performed on all tissue samples, and only those with greater than 80% tumor were selected for further analysis. RNA integrity was confirmed by electropherograms and quantitated using RIN index. Altered gene expression was assessed by paired, two-sample t-test between the zero time point and aliquots from various conditions obtained from the same tumor. Results One hundred and forty microarrays were performed. Some RNA degradation was observed 240 mins after resection at 37C. The expression of over 4,000 genes was significantly altered by ischemia times or storage conditions. The greatest gene expression changes were observed with longer ischemia time and warmer tissue procurement conditions. Conclusion RNA from kidney cancer remains intact for up to 4 hours post surgical resection regardless of storage conditions. Despite excellent RNA preservation, time after resection and procurement conditions significantly influence gene expression profiles. Meticulous attention to pre-acquisition variables is of paramount importance for accurate tumor profiling. PMID:23136194

  5. Aging is Associated with Impaired Renal Function, INF-gamma Induced Inflammation and with Alterations in Iron Regulatory Proteins Gene Expression.

    PubMed

    Costa, Elísio; Fernandes, João; Ribeiro, Sandra; Sereno, José; Garrido, Patrícia; Rocha-Pereira, Petronila; Coimbra, Susana; Catarino, Cristina; Belo, Luís; Bronze-da-Rocha, Elsa; Vala, Helena; Alves, Rui; Reis, Flávio; Santos-Silva, Alice

    2014-12-01

    Our aim was to contribute to a better understanding of the pathophysiology of anemia in elderly, by studying how aging affects renal function, iron metabolism, erythropoiesis and the inflammatory response, using an experimental animal model. The study was performed in male Wistar, a group of young rats with 2 months age and an old one with 18 months age. Old rats presented a significant higher urea, creatinine, interferon (INF)-gamma, ferritin and soluble transferrin receptor serum levels, as well as increased counts of reticulocytes and RDW. In addition, these rats showed significant lower erythropoietin (EPO) and iron serum levels. Concerning gene expression of iron regulatory proteins, old rats presented significantly higher mRNA levels of hepcidin (Hamp), transferrin (TF), transferrin receptor 2 (TfR2) and hemojuvelin (HJV); divalent metal transporter 1 (DMT1) mRNA levels were significantly higher in duodenal tissue; EPO gene expression was significantly higher in liver and lower in kidney, and the expression of the EPOR was significantly higher in both liver and kidney. Our results showed that aging is associated with impaired renal function, which could be in turn related with the inflammatory process and with a decline in EPO renal production. Moreover, we also propose that aging may be associated with INF-gamma-induced inflammation and with alterations upon iron regulatory proteins gene expression.

  6. Boldine prevents renal alterations in diabetic rats.

    PubMed

    Hernández-Salinas, Romina; Vielma, Alejandra Z; Arismendi, Marlene N; Boric, Mauricio P; Sáez, Juan C; Velarde, Victoria

    2013-01-01

    Diabetic nephropathy alters both structure and function of the kidney. These alterations are associated with increased levels of reactive oxygen species, matrix proteins, and proinflammatory molecules. Inflammation decreases gap junctional communication and increases hemichannel activity leading to increased membrane permeability and altering tissue homeostasis. Since current treatments for diabetic nephropathy do not prevent renal damage, we postulated an alternative treatment with boldine, an alkaloid obtained from boldo with antioxidant, anti-inflammatory, and hypoglycemic effects. Streptozotocin-induced diabetic and control rats were treated or not treated with boldine (50 mg/Kg/day) for ten weeks. In addition, mesangial cells were cultured under control conditions or in high glucose concentration plus proinflammatory cytokines, with or without boldine (100 µmol/L). Boldine treatment in diabetic animals prevented the increase in glycemia, blood pressure, renal thiobarbituric acid reactive substances and the urinary protein/creatinine ratio. Boldine also reduced alterations in matrix proteins and markers of renal damage. In mesangial cells, boldine prevented the increase in oxidative stress, the decrease in gap junctional communication, and the increase in cell permeability due to connexin hemichannel activity induced by high glucose and proinflammatory cytokines but did not block gap junction channels. Thus boldine prevented both renal and cellular alterations and could be useful for preventing tissue damage in diabetic subjects.

  7. Boldine Prevents Renal Alterations in Diabetic Rats

    PubMed Central

    Hernández-Salinas, Romina; Vielma, Alejandra Z.; Arismendi, Marlene N.; Boric, Mauricio P.; Sáez, Juan C.; Velarde, Victoria

    2013-01-01

    Diabetic nephropathy alters both structure and function of the kidney. These alterations are associated with increased levels of reactive oxygen species, matrix proteins, and proinflammatory molecules. Inflammation decreases gap junctional communication and increases hemichannel activity leading to increased membrane permeability and altering tissue homeostasis. Since current treatments for diabetic nephropathy do not prevent renal damage, we postulated an alternative treatment with boldine, an alkaloid obtained from boldo with antioxidant, anti-inflammatory, and hypoglycemic effects. Streptozotocin-induced diabetic and control rats were treated or not treated with boldine (50 mg/Kg/day) for ten weeks. In addition, mesangial cells were cultured under control conditions or in high glucose concentration plus proinflammatory cytokines, with or without boldine (100 µmol/L). Boldine treatment in diabetic animals prevented the increase in glycemia, blood pressure, renal thiobarbituric acid reactive substances and the urinary protein/creatinine ratio. Boldine also reduced alterations in matrix proteins and markers of renal damage. In mesangial cells, boldine prevented the increase in oxidative stress, the decrease in gap junctional communication, and the increase in cell permeability due to connexin hemichannel activity induced by high glucose and proinflammatory cytokines but did not block gap junction channels. Thus boldine prevented both renal and cellular alterations and could be useful for preventing tissue damage in diabetic subjects. PMID:24416726

  8. Aromatase Deficient Female Mice Demonstrate Altered Expression of Molecules Critical for Renal Calcium Reabsorption

    NASA Astrophysics Data System (ADS)

    Öz, Orhan K.; Hajibeigi, Asghar; Cummins, Carolyn; van Abel, Monique; Bindels, René J.; Kuro-o, Makoto; Pak, Charles Y. C.; Zerwekh, Joseph E.

    2007-04-01

    The incidence of kidney stones increases in women after the menopause, suggesting a role for estrogen deficiency. In order to determine if estrogen may be exerting an effect on renal calcium reabsorption, we measured urinary calcium excretion in the aromatase-deficient female mouse (ArKO) before and following estrogen therapy. ArKO mice had hypercalciuria that corrected during estrogen administration. To evaluate the mechanism by which estrogen deficiency leads to hypercalciuria, we examined the expression of several proteins involved in distal tubule renal calcium reabsorption, both at the message and protein levels. Messenger RNA levels of TRPV5, TRPV6, calbindin-D28K, the Na+/Ca++ exchanger (NCX1), and the plasma membrane calcium ATPase (PMCA1b) were significantly decreased in kidneys of ArKO mice. On the other hand, klotho mRNA levels were elevated in kidneys of ArKO mice. ArKO renal protein extracts had lower levels of calbindin-D28K but higher levels of the klotho protein. Immunochemistry demonstrated increased klotho expression in ArKO kidneys. Estradiol therapy normalized the expression of TRPV5, calbindin-D28K, PMCA1b and klotho. Taken together, these results demonstrate that estrogen deficiency produced by aromatase inactivation is sufficient to produce a renal leak of calcium and consequent hypercalciuria. This may represent one mechanism leading to the increased incidence of kidney stones following the menopause in women.

  9. Effects of early overnutrition on the renal response to Ang II and expression of RAAS components in rat renal tissue.

    PubMed

    Granado, M; Amor, S; Fernández, N; Carreño-Tarragona, G; Iglesias-Cruz, M C; Martín-Carro, B; Monge, L; García-Villalón, A L

    2017-10-01

    The aim of this study was to analyze the effects of early overnutrition (EON) on the expression of the renin angiotensin aldosterone system (RAAS) components in renal cortex, renal arteries and renal perivascular adipose tissue (PVAT), as well as the vascular response of renal arteries to Angiotensin II (Ang II). On birth day litters were adjusted to twelve (L12-control) or three (L3-overfed) pups per mother. Half of the animals were sacrificed at weaning (21 days old) and the other half at 5 months of age. Ang II-induced vasoconstriction of renal artery segments increased in young overfed rats and decreased in adult overfed rats. EON decreased the gene expression of angiotensinogen (Agt), Ang II receptors AT1 and AT2 and eNOS in renal arteries of young rats, while it increased the mRNA levels of AT-2 and ET-1 in adult rats. In renal PVAT EON up-regulated the gene expression of COX-2 and TNF-α in young rats and the mRNA levels of renin receptor both in young and in adult rats. On the contrary, Ang II receptors mRNA levels were downregulated at both ages. Renal cortex of overfed rats showed increased gene expression of Agt in adult rats and of AT1 in young rats. However the mRNA levels of AT1 were decreased in the renal cortex of overfed adult rats. EON is associated with alterations in the vascular response of renal arteries to Ang II and changes in the gene expression of RAAS components in renal tissue. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  10. Altered regulation of renal sodium transporters in salt-sensitive hypertensive rats induced by uninephrectomy.

    PubMed

    Jung, Ji Yong; Lee, Jay Wook; Kim, Sejoong; Jung, Eun Sook; Jang, Hye Ryoun; Han, Jin Suk; Joo, Kwon Wook

    2009-12-01

    Uninephrectomy (uNx) in young rats causes salt-sensitive hypertension (SSH). Alterations of sodium handling in residual nephrons may play a role in the pathogenesis. Therefore, we evaluated the adaptive alterations of renal sodium transporters according to salt intake in uNx-SSH rats. uNx or sham operations were performed in male Sprague-Dawley rats, and normal-salt diet was fed for 4 weeks. Four experimental groups were used: sham-operated rats raised on a high-salt diet for 2 weeks (CHH) or on a low-salt diet for 1 week after 1 week's high-salt diet (CHL) and uNx rats fed on the same diet (NHH, NHL) as the sham-operated rats were fed. Expression of major renal sodium transporters were determined by semiquantitative immunoblotting. Systolic blood pressure was increased in NHH and NHL groups, compared with CHH and CHL, respectively. Protein abundances of Na(+)/K(+)/2Cl(-) cotransporter (NKCC2) and Na(+)/Cl(-) cotransporter (NCC) in the CHH group were lower than the CHL group. Expression of epithelial sodium channel (ENaC)-γ increased in the CHH group. In contrast, expressions of NKCC2 and NCC in the NHH group didn't show any significant alterations, compared to the NHL group. Expressions of ENaC-α and ENaC-β in the NHH group were higher than the CHH group. Adaptive alterations of NKCC2 and NCC to changes of salt intake were different in the uNx group, and changes in ENaC-α and ENaC-β were also different. These altered regulations of sodium transporters may be involved in the pathogenesis of SSH in the uNx rat model.

  11. Induction of type 1 iodothyronine deiodinase expression inhibits proliferation and migration of renal cancer cells.

    PubMed

    Poplawski, Piotr; Rybicka, Beata; Boguslawska, Joanna; Rodzik, Katarzyna; Visser, Theo J; Nauman, Alicja; Piekielko-Witkowska, Agnieszka

    2017-02-15

    Type 1 iodothyronine deiodinase (DIO1) regulates peripheral metabolism of thyroid hormones that control cellular proliferation, differentiation and metabolism. The significance of DIO1 in cancer is unknown. In this study we hypothesized that diminished expression of DIO1, observed in renal cancer, contributes to the carcinogenic process in the kidney. Here, we demonstrate that ectopic expression of DIO1 in renal cancer cells changes the expression of genes controlling cell cycle, including cyclin E1 and E2F5, and results in inhibition of proliferation. The expression of genes encoding collagens (COL1A1, COL4A2, COL5A1), integrins (ITGA4, ITGA5, ITGB3) and transforming growth factor-β-induced (TGFBI) is significantly altered in renal cancer cells with induced expression of DIO1. Finally, we show that overexpression of DIO1 inhibits migration of renal cancer cells. In conclusion, we demonstrate for the first time that loss of DIO1 contributes to renal carcinogenesis and that its induced expression protects cells against cancerous proliferation and migration. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Alterations of Hepatic Metabolism in Chronic Kidney Disease via D-box-binding Protein Aggravate the Renal Dysfunction.

    PubMed

    Hamamura, Kengo; Matsunaga, Naoya; Ikeda, Eriko; Kondo, Hideaki; Ikeyama, Hisako; Tokushige, Kazutaka; Itcho, Kazufumi; Furuichi, Yoko; Yoshida, Yuya; Matsuda, Masaki; Yasuda, Kaori; Doi, Atsushi; Yokota, Yoshifumi; Amamoto, Toshiaki; Aramaki, Hironori; Irino, Yasuhiro; Koyanagi, Satoru; Ohdo, Shigehiro

    2016-03-04

    Chronic kidney disease (CKD) is associated with an increase in serum retinol; however, the underlying mechanisms of this disorder are poorly characterized. Here, we found that the alteration of hepatic metabolism induced the accumulation of serum retinol in 5/6 nephrectomy (5/6Nx) mice. The liver is the major organ responsible for retinol metabolism; accordingly, microarray analysis revealed that the hepatic expression of most CYP genes was changed in 5/6Nx mice. In addition, D-box-binding protein (DBP), which controls the expression of several CYP genes, was significantly decreased in these mice. Cyp3a11 and Cyp26a1, encoding key proteins in retinol metabolism, showed the greatest decrease in expression in 5/6Nx mice, a process mediated by the decreased expression of DBP. Furthermore, an increase of plasma transforming growth factor-β1 (TGF-β1) in 5/6Nx mice led to the decreased expression of the Dbp gene. Consistent with these findings, the alterations of retinol metabolism and renal dysfunction in 5/6Nx mice were ameliorated by administration of an anti-TGF-β1 antibody. We also show that the accumulation of serum retinol induced renal apoptosis in 5/6Nx mice fed a normal diet, whereas renal dysfunction was reduced in mice fed a retinol-free diet. These findings indicate that constitutive Dbp expression plays an important role in mediating hepatic dysfunction under CKD. Thus, the aggravation of renal dysfunction in patients with CKD might be prevented by a recovery of hepatic function, potentially through therapies targeting DBP and retinol. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Diabetes-Induced Decrease in Renal Oxygen Tension: Effects of an Altered Metabolism

    NASA Astrophysics Data System (ADS)

    Palm, Fredrik; Carlsson, Per-Ola; Fasching, Angelica; Hansell, Peter; Liss, Per

    During conditions with experimental diabetes mellitus, it is evident that several alterations in renal oxygen metabolism occur, including increased mitochondrial respiration and increased lactate accumulation in the renal tissue. Consequently, these alterations will contribute to decrease the interstitial pO2, preferentially in the renal medulla of animals with sustained long-term hyperglycemia.

  14. Renal alterations in feline immunodeficiency virus (FIV)-infected cats: a natural model of lentivirus-induced renal disease changes.

    PubMed

    Poli, Alessandro; Tozon, Natasa; Guidi, Grazia; Pistello, Mauro

    2012-09-01

    Human immunodeficiency virus (HIV) is associated with several renal syndromes including acute and chronic renal failures, but the underlying pathogenic mechanisms are unclear. HIV and feline immunodeficiency virus (FIV) share numerous biological and pathological features, including renal alterations. We investigated and compared the morphological changes of renal tissue of 51 experimentally and 21 naturally infected cats. Compared to the latter, the experimentally infected cats exhibited some mesangial widening and glomerulonephritis, milder proteinuria, and lower tubular and interstitial alterations. The numbers of giant protein tubular casts and tubular microcysts were also lower. In contrast, diffuse interstitial infiltrates and glomerular and interstitial amyloidosis were detected only in naturally infected cats. Similar alterations are found in HIV infected patients, thus supporting the idea of a causative role of FIV infection in renal disease, and underlining the relevance of the FIV and its natural host as an animal model for investigating lentivirus-associated nephropathy.

  15. Renal function alterations during skeletal muscle disuse in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Tucker, Bryan J.

    1992-01-01

    This project was to examine the alterations in renal functions during skeletal muscle disuse in simulated microgravity. Although this area could cover a wide range of investigative efforts, the limited funding resulted in the selection of two projects. These projects would result in data contributing to an area of research deemed high priority by NASA and would address issues of the alterations in renal response to vasoactive stimuli during conditions of skeletal muscle disuse as well as investigate the contribution of skeletal muscle disuse, conditions normally found in long term human exposure to microgravity, to the balance of fluid and macromolecules within the vasculature versus the interstitium. These two projects selected are as follows: investigate the role of angiotensin 2 on renal function during periods of simulated microgravity and skeletal muscle disuse to determine if the renal response is altered to changes in circulating concentrations of angiotensin 2 compared to appropriate controls; and determine if the shift of fluid balance from vasculature to the interstitium, the two components of extracellular fluid volume, that occur during prolonged exposure to microgravity and skeletal muscle disuse is a result, in part, to alterations in the fluid and macromolecular balance in the peripheral capillary beds, of which the skeletal muscle contains the majority of recruitment capillaries. A recruitment capillary bed would be most sensitive to alterations in Starling forces and fluid and macromolecular permeability.

  16. Perinatally administered losartan augments renal ACE2 expression but not cardiac or renal Mas receptor in spontaneously hypertensive rats

    PubMed Central

    Klimas, Jan; Olvedy, Michael; Ochodnicka-Mackovicova, Katarina; Kruzliak, Peter; Cacanyiova, Sona; Kristek, Frantisek; Krenek, Peter; Ochodnicky, Peter

    2015-01-01

    Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang-(1-7)/Mas receptor axis, renin-angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT-PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up-regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang-(1-7) in organ response to the developing hypertension in SHRs. PMID:25766467

  17. Cyclophilin B expression in renal proximal tubules of hypertensive rats.

    PubMed

    Kainer, D B; Doris, P A

    2000-04-01

    Rat cyclophilin-like protein (Cy-LP) is a candidate hypertension gene initially identified by differential hybridization and implicated in renal mechanisms of salt retention and high blood pressure. We report the molecular characterization of rat cyclophilin B (CypB) and demonstrate, through sequence analysis and an allele-specific polymerase chain reaction primer assay, that CypB but not Cy-LP is expressed in rat kidney. CypB is an endoplasmic reticulum-localized prolyl-isomerase that interacts with elongation initiation factor 2-beta, an important regulator of protein translation and a central component of the endoplasmic reticulum stress response to hypoxia or ATP depletion. Active renal transport of sodium is increased in the spontaneously hypertensive rat (SHR), and there is evidence that this coincides with hypoxia and ATP depletion in the renal cortex. In the present studies we have examined expression of CypB in rat proximal tubules, which contributes to the increased renal sodium reabsorption in this model of hypertension. We report that CypB transcript abundance is significantly elevated in proximal convoluted tubules from SHR compared with the control Wistar-Kyoto strain. This upregulation occurs in weanling animals and precedes the development of hypertension, indicating that it is not a simple response to hypertension in SHR. Further, CypB expression is also higher in a proximal tubule cell line derived from SHR compared with a similar line derived from Wistar-Kyoto rats, indicating that this difference is genetically determined. No sequence differences were observed in the CypB cDNA from these 2 strains. These observations suggest that a genetically determined alteration in proximal tubules from SHR occurs that leads to increased expression of CypB. In view of evidence linking CypB to the regulation of elongation initiation factor-2, the upregulation of CypB may result from metabolic stress.

  18. Effects of chronic fructose overload on renal dopaminergic system: alteration of urinary L-dopa/dopamine index correlates to hypertension and precedes kidney structural damage.

    PubMed

    Rukavina Mikusic, Natalia L; Kouyoumdzian, Nicolás M; Del Mauro, Julieta S; Cao, Gabriel; Trida, Verónica; Gironacci, Mariela M; Puyó, Ana M; Toblli, Jorge E; Fernández, Belisario E; Choi, Marcelo R

    2018-01-01

    Insulin resistance induced by a high-fructose diet has been associated to hypertension and renal damage. The aim of this work was to assess alterations in the urinary L-dopa/dopamine ratio over three time periods in rats with insulin resistance induced by fructose overload and its correlation with blood pressure levels and the presence of microalbuminuria and reduced nephrin expression as markers of renal structural damage. Male Sprague-Dawley rats were randomly divided into six groups: control (C) (C4, C8 and C12) with tap water to drink and fructose-overloaded (FO) rats (FO4, FO8 and FO12) with a fructose solution (10% w/v) to drink for 4, 8 and 12 weeks. A significant increase of the urinary L-dopa/dopamine ratio was found in FO rats since week 4, which positively correlated to the development of hypertension and preceded in time the onset of microalbuminuria and reduced nephrin expression observed on week 12 of treatment. The alteration of this ratio was associated to an impairment of the renal dopaminergic system, evidenced by a reduction in renal dopamine transporters and dopamine D1 receptor expression, leading to an overexpression and overactivation of the enzyme Na + , K + -ATPase with sodium retention. In conclusion, urinary L-dopa/dopamine ratio alteration in rats with fructose overload positively correlated to the development of hypertension and preceded in time the onset of renal structural damage. This is the first study to propose the use of the urinary L-dopa/dopamine index as marker of renal dysfunction that temporarily precedes kidney structural damage induced by fructose overload. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Perinatally administered losartan augments renal ACE2 expression but not cardiac or renal Mas receptor in spontaneously hypertensive rats.

    PubMed

    Klimas, Jan; Olvedy, Michael; Ochodnicka-Mackovicova, Katarina; Kruzliak, Peter; Cacanyiova, Sona; Kristek, Frantisek; Krenek, Peter; Ochodnicky, Peter

    2015-08-01

    Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang-(1-7)/Mas receptor axis, renin-angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT-PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up-regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang-(1-7) in organ response to the developing hypertension in SHRs. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Altered expression of intestinal duodenal cytochrome b and divalent metal transporter 1 might be associated with cardio-renal anemia syndrome.

    PubMed

    Naito, Yoshiro; Sawada, Hisashi; Oboshi, Makiko; Okuno, Keisuke; Yasumura, Seiki; Okuhara, Yoshitaka; Eguchi, Akiyo; Nishimura, Koichi; Soyama, Yuko; Asakura, Masanori; Ishihara, Masaharu; Tsujino, Takeshi; Masuyama, Tohru

    2017-11-01

    The interaction among heart failure (HF), chronic kidney disease (CKD), and anemia is called cardio-renal anemia syndrome. The mechanism of anemia in cardio-renal anemia syndrome is complex and remains completely unknown. We have previously reported that impaired intestinal iron transporters may contribute to the mechanism of anemia in HF using in vivo HF model rats. In this study, we assessed intestinal iron transporters in CKD model rats to investigate the association of intestinal iron transporters in the mechanism of cardio-renal anemia syndrome. CKD was induced by 5/6 nephrectomy in Sprague-Dawley rats. Sham-operated rats served as a control. After 24-week surgery, CKD rats exhibited normocytic normochromic anemia and normal serum erythropoietin levels despite of anemia. Serum iron levels were decreased in CKD rats compared with the controls. Of interest, intestinal expression of critical iron importers, such as duodenal cytochrome b (Dcyt-b) and divalent metal transporter 1 (DMT-1), was decreased in CKD rats compared with the controls. On the other hand, intestinal expression of ferroportin, an intestinal iron exporter, was not different in the control and CKD groups. Moreover, hepatic expression of hepcidin, a regulator of iron homeostasis, did not differ between the control and CKD groups. These results suggest that impaired intestinal expression of Dcyt-b and DMT-1 might be associated with the reduction of an iron uptake in CKD. Taken together, impaired these intestinal iron transporters may become a novel therapeutic target for cardio-renal anemia syndrome.

  1. Expression of Renal Aquaporins in Aristolochic Acid I and Aristolactam I-Induced Nephrotoxicity.

    PubMed

    Li, Ji; Zhang, Liang; Jiang, ZhenZhou; He, XiuQin; Zhang, LuYong; Xu, Ming

    2016-01-01

    Exposure to aristolochic acid (AA) can cause AA nephropathy, which is characterized by extensive proximal tubular damage and polyuria. To test the hypothesis that polyuria might be induced by altered regulation of aquaporins (AQPs) in the kidney, different doses of AA-I or aristolactam I (AL-I) were administered intraperitoneally to Sprague-Dawley rats, and urine, blood, and kidney samples were analyzed. In addition, AQP1, AQP2, AQP4 and AQP6 expression in the kidney were determined. The results showed dose-dependent proximal tubular damage and polyuria in the AA-I- and AL-I-treated groups, and the nephrotoxicity of AL-I was higher than that of AA-I. The expression of renal AQP1, AQP2 and AQP4, but not AQP6 were significantly inhibited by AA-I and AL-I. Comparison of the inhibition potencies of AA-I and AL-I showed that AL-I was a stronger inhibitor of AQP1 expression than AA-I, while there was no difference in their effects on AQP2 and AQP4. These results suggested that AA induced renal damage and polyuria were associated with a specific decrease in the expression of renal AQP1 AQP2 and AQP4, and AL-I showed higher nephrotoxicity than AA-I, which might be attributable to the differences in their inhibition of AQP1. © 2016 S. Karger AG, Basel.

  2. ACE2 alterations in kidney disease.

    PubMed

    Soler, María José; Wysocki, Jan; Batlle, Daniel

    2013-11-01

    Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that degrades angiotensin (Ang) II to Ang-(1-7). ACE2 is highly expressed within the kidneys, it is largely localized in tubular epithelial cells and less prominently in glomerular epithelial cells and in the renal vasculature. ACE2 activity has been shown to be altered in diabetic kidney disease, hypertensive renal disease and in different models of kidney injury. There is often a dissociation between tubular and glomerular ACE2 expression, particularly in diabetic kidney disease where ACE2 expression is increased at the tubular level but decreased at the glomerular level. In this review, we will discuss alterations in circulating and renal ACE2 recently described in different renal pathologies and disease models as well as their possible significance.

  3. ACE2 alterations in kidney disease

    PubMed Central

    Soler, María José; Wysocki, Jan; Batlle, Daniel

    2013-01-01

    Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that degrades angiotensin (Ang) II to Ang-(1–7). ACE2 is highly expressed within the kidneys, it is largely localized in tubular epithelial cells and less prominently in glomerular epithelial cells and in the renal vasculature. ACE2 activity has been shown to be altered in diabetic kidney disease, hypertensive renal disease and in different models of kidney injury. There is often a dissociation between tubular and glomerular ACE2 expression, particularly in diabetic kidney disease where ACE2 expression is increased at the tubular level but decreased at the glomerular level. In this review, we will discuss alterations in circulating and renal ACE2 recently described in different renal pathologies and disease models as well as their possible significance. PMID:23956234

  4. Global isoform-specific transcript alterations and deregulated networks in clear cell renal cell carcinoma

    PubMed Central

    Hamilton, Michael J.; Girke, Thomas; Martinez, Ernest

    2018-01-01

    Extensive genome-wide analyses of deregulated gene expression have now been performed for many types of cancer. However, most studies have focused on deregulation at the gene-level, which may overlook the alterations of specific transcripts for a given gene. Clear cell renal cell carcinoma (ccRCC) is one of the best-characterized and most pervasive renal cancers, and ccRCCs are well-documented to have aberrant RNA processing. In the present study, we examine the extent of aberrant isoform-specific RNA expression by reporting a comprehensive transcript-level analysis, using the new kallisto-sleuth-RATs pipeline, investigating coding and non-coding differential transcript expression in ccRCC. We analyzed 50 ccRCC tumors and their matched normal samples from The Cancer Genome Altas datasets. We identified 7,339 differentially expressed transcripts and 94 genes exhibiting differential transcript isoform usage in ccRCC. Additionally, transcript-level coexpression network analyses identified vasculature development and the tricarboxylic acid cycle as the most significantly deregulated networks correlating with ccRCC progression. These analyses uncovered several uncharacterized transcripts, including lncRNAs FGD5-AS1 and AL035661.1, as potential regulators of the tricarboxylic acid cycle associated with ccRCC progression. As ccRCC still presents treatment challenges, our results provide a new resource of potential therapeutics targets and highlight the importance of exploring alternative methodologies in transcriptome-wide studies.

  5. Unmasking glucose metabolism alterations in stable renal transplant recipients: a multicenter study.

    PubMed

    Delgado, Patricia; Diaz, Juan Manuel; Silva, Irene; Osorio, José M; Osuna, Antonio; Bayés, Beatriz; Lauzurica, Ricardo; Arellano, Edgar; Campistol, Jose Maria; Dominguez, Rosa; Gómez-Alamillo, Carlos; Ibernon, Meritxell; Moreso, Francisco; Benitez, Rocio; Lampreave, Ildefonso; Porrini, Esteban; Torres, Armando

    2008-05-01

    Emerging information indicates that glucose metabolism alterations are common after renal transplantation and are associated with carotid atheromatosis. The aims of this study were to investigate the prevalence of different glucose metabolism alterations in stable recipients as well as the factors related to the condition. A multicenter, cross-sectional study was conducted of 374 renal transplant recipients without pre- or posttransplantation diabetes. A standard 75-g oral glucose tolerance test was performed. Glucose metabolism alterations were present in 119 (31.8%) recipients: 92 (24.6%) with an abnormal oral glucose tolerance test and 27 (7.2%) with isolated impaired fasting glucose. The most common disorder was impaired glucose tolerance (17.9%), and an abnormal oral glucose tolerance test was observed for 21.5% of recipients with a normal fasting glucose. By multivariate analysis, age, prednisone dosage, triglyceride/high-density lipoprotein cholesterol ratio, and beta blocker use were shown to be factors related to glucose metabolism alterations. Remarkably, triglyceride levels, triglyceride/high-density lipoprotein cholesterol ratio, and the proportion of recipients with impaired fasting glucose were already higher throughout the first posttransplantation year in recipients with a current glucose metabolism alteration as compared with those without the condition. Glucose metabolism alterations are common in stable renal transplant recipients, and an oral glucose tolerance test is required for its detection. They are associated with a worse metabolic profile, which is already present during the first posttransplantation year. These findings may help planning strategies for early detection and intervention.

  6. Hypertension and Hyperglycemia Synergize to Cause Incipient Renal Tubular Alterations Resulting in Increased NGAL Urinary Excretion in Rats

    PubMed Central

    Blázquez-Medela, Ana M.; García-Sánchez, Omar; Blanco-Gozalo, Víctor; Quiros, Yaremi; Montero, María J.; Martínez-Salgado, Carlos; López-Novoa, José M.; López-Hernández, Francisco J.

    2014-01-01

    Background Hypertension and diabetes are the two leading causes of chronic kidney disease (CKD) eventually leading to end stage renal disease (ESRD) and the need of renal replacement therapy. Mortality among CKD and ESRD patients is high, mostly due to cardiovascular events. New early markers of risk are necessary to better anticipate the course of the disease, to detect the renal affection of additive risk factors, and to appropriately handle patients in a pre-emptive and personalized manner. Methods Renal function and NGAL urinary excretion was monitored in rats with spontaneous (SHR) or L-NAME induced hypertension rendered hyperglycemic (or not as controls). Results Combination of hypertension and hyperglycemia (but not each of these factors independently) causes an increased urinary excretion of neutrophil gelatinase-associated lipocalin (NGAL) in the rat, in the absence of signs of renal damage. Increased NGAL excretion is observed in diabetic animals with two independent models of hypertension. Elevated urinary NGAL results from a specific alteration in its tubular handling, rather than from an increase in its renal expression. In fact, when kidneys of hyperglycaemic-hypertensive rats are perfused in situ with Krebs-dextran solution containing exogenous NGAL, they excrete more NGAL in the urine than hypertensive rats. We also show that albuminuria is not capable of detecting the additive effect posed by the coexistence of these two risk factors. Conclusions Our results suggest that accumulation of hypertension and hyperglycemia induces an incipient and quite specific alteration in the tubular handling of NGAL resulting in its increased urinary excretion. PMID:25148248

  7. Hypertension and hyperglycemia synergize to cause incipient renal tubular alterations resulting in increased NGAL urinary excretion in rats.

    PubMed

    Blázquez-Medela, Ana M; García-Sánchez, Omar; Blanco-Gozalo, Víctor; Quiros, Yaremi; Montero, María J; Martínez-Salgado, Carlos; López-Novoa, José M; López-Hernández, Francisco J

    2014-01-01

    Hypertension and diabetes are the two leading causes of chronic kidney disease (CKD) eventually leading to end stage renal disease (ESRD) and the need of renal replacement therapy. Mortality among CKD and ESRD patients is high, mostly due to cardiovascular events. New early markers of risk are necessary to better anticipate the course of the disease, to detect the renal affection of additive risk factors, and to appropriately handle patients in a pre-emptive and personalized manner. Renal function and NGAL urinary excretion was monitored in rats with spontaneous (SHR) or L-NAME induced hypertension rendered hyperglycemic (or not as controls). Combination of hypertension and hyperglycemia (but not each of these factors independently) causes an increased urinary excretion of neutrophil gelatinase-associated lipocalin (NGAL) in the rat, in the absence of signs of renal damage. Increased NGAL excretion is observed in diabetic animals with two independent models of hypertension. Elevated urinary NGAL results from a specific alteration in its tubular handling, rather than from an increase in its renal expression. In fact, when kidneys of hyperglycaemic-hypertensive rats are perfused in situ with Krebs-dextran solution containing exogenous NGAL, they excrete more NGAL in the urine than hypertensive rats. We also show that albuminuria is not capable of detecting the additive effect posed by the coexistence of these two risk factors. Our results suggest that accumulation of hypertension and hyperglycemia induces an incipient and quite specific alteration in the tubular handling of NGAL resulting in its increased urinary excretion.

  8. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    PubMed Central

    Cristóbal-García, Magdalena; García-Arroyo, Fernando E.; Arellano-Buendía, Abraham S.; Madero, Magdalena; Rodríguez-Iturbe, Bernardo; Pedraza-Chaverrí, José; Zazueta, Cecilia; Johnson, Richard J.; Sánchez Lozada, Laura-Gabriela

    2015-01-01

    We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks) and short-term (3 weeks) effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW), OA+Allopurinol (AP, 150 mg/L drinking water), OA+Tempol (T, 15 mg/kg BW), or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase) and oxidative stress markers (lipid and protein oxidation) along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident. PMID:25918583

  9. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    PubMed Central

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  10. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease.

    PubMed

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.

  11. Unmasking Glucose Metabolism Alterations in Stable Renal Transplant Recipients: A Multicenter Study

    PubMed Central

    Delgado, Patricia; Diaz, Juan Manuel; Silva, Irene; Osorio, José M.; Osuna, Antonio; Bayés, Beatriz; Lauzurica, Ricardo; Arellano, Edgar; Campistol, Jose Maria; Dominguez, Rosa; Gómez-Alamillo, Carlos; Ibernon, Meritxell; Moreso, Francisco; Benitez, Rocio; Lampreave, Ildefonso; Porrini, Esteban; Torres, Armando

    2008-01-01

    Background and objectives: Emerging information indicates that glucose metabolism alterations are common after renal transplantation and are associated with carotid atheromatosis. The aims of this study were to investigate the prevalence of different glucose metabolism alterations in stable recipients as well as the factors related to the condition. Design, setting, participants, & measurements: A multicenter, cross-sectional study was conducted of 374 renal transplant recipients without pre- or posttransplantation diabetes. A standard 75-g oral glucose tolerance test was performed. Results: Glucose metabolism alterations were present in 119 (31.8%) recipients: 92 (24.6%) with an abnormal oral glucose tolerance test and 27 (7.2%) with isolated impaired fasting glucose. The most common disorder was impaired glucose tolerance (17.9%), and an abnormal oral glucose tolerance test was observed for 21.5% of recipients with a normal fasting glucose. By multivariate analysis, age, prednisone dosage, triglyceride/high-density lipoprotein cholesterol ratio, and β blocker use were shown to be factors related to glucose metabolism alterations. Remarkably, triglyceride levels, triglyceride/high-density lipoprotein cholesterol ratio, and the proportion of recipients with impaired fasting glucose were already higher throughout the first posttransplantation year in recipients with a current glucose metabolism alteration as compared with those without the condition. Conclusions: Glucose metabolism alterations are common in stable renal transplant recipients, and an oral glucose tolerance test is required for its detection. They are associated with a worse metabolic profile, which is already present during the first posttransplantation year. These findings may help planning strategies for early detection and intervention. PMID:18322043

  12. Oxidative stress induced by potassium bromate exposure results in altered tight junction protein expression in renal proximal tubule cells.

    PubMed

    Limonciel, Alice; Wilmes, Anja; Aschauer, Lydia; Radford, Robert; Bloch, Katarzyna M; McMorrow, Tara; Pfaller, Walter; van Delft, Joost H; Slattery, Craig; Ryan, Michael P; Lock, Edward A; Jennings, Paul

    2012-11-01

    Potassium bromate (KBrO(3)) is an oxidising agent that has been widely used in the food and cosmetic industries. It has shown to be both a nephrotoxin and a renal carcinogen in in vivo and in vitro models. Here, we investigated the effects of KBrO(3) in the human and rat proximal tubular cell lines RPTEC/TERT1 and NRK-52E. A genome-wide transcriptomic screen was carried out from cells exposed to a sub-lethal concentration of KBrO(3) for 6, 24 and 72 h. Pathway analysis identified "glutathione metabolism", "Nrf2-mediated oxidative stress" and "tight junction (TJ) signalling" as the most enriched pathways. TJ signalling was less impacted in the rat model, and further studies revealed low transepithelial electrical resistance (TEER) and an absence of several TJ proteins in NRK-52E cells. In RPTEC/TERT1 cells, KBrO(3) exposure caused a decrease in TEER and resulted in altered expression of several TJ proteins. N-Acetylcysteine co-incubation prevented these effects. These results demonstrate that oxidative stress has, in conjunction with the activation of the cytoprotective Nrf2 pathway, a dramatic effect on the expression of tight junction proteins. The further understanding of the cross-talk between these two pathways could have major implications for epithelial repair, carcinogenesis and metastasis.

  13. High-salt diets during pregnancy affected fetal and offspring renal renin-angiotensin system.

    PubMed

    Mao, Caiping; Liu, Rong; Bo, Le; Chen, Ningjing; Li, Shigang; Xia, Shuixiu; Chen, Jie; Li, Dawei; Zhang, Lubo; Xu, Zhice

    2013-07-01

    Intrauterine environments are related to fetal renal development and postnatal health. Influence of salty diets during pregnancy on renal functions and renin-angiotensin system (RAS) was determined in the ovine fetuses and offspring. Pregnant ewes were fed high-salt diet (HSD) or normal-salt diet (NSD) for 2 months during middle-to-late gestation. Fetal renal functions, plasma hormones, and mRNA and protein expressions of the key elements of renal RAS were measured in the fetuses and offspring. Fetal renal excretion of sodium was increased while urine volume decreased in the HSD group. Fetal blood urea nitrogen was increased, while kidney weight:body weight ratio decreased in the HSD group. The altered ratio was also observed in the offspring aged 15 and 90 days. Maternal and fetal plasma antidiuretic hormone was elevated without changes in plasma renin activity and Ang I levels, while plasma Ang II was decreased. The key elements of local renal RAS, including angiotensinogen, angiotensin converting enzyme (ACE), ACE2, AT1, and AT2 receptor expression in both mRNA and protein, except renin, were altered following maternal high salt intake. The results suggest that high intake of salt during pregnancy affected fetal renal development associated with an altered expression of the renal key elements of RAS, some alterations of fetal origins remained after birth as possible risks in developing renal or cardiovascular diseases.

  14. Microarray gene expression profiling using core biopsies of renal neoplasia.

    PubMed

    Rogers, Craig G; Ditlev, Jonathon A; Tan, Min-Han; Sugimura, Jun; Qian, Chao-Nan; Cooper, Jeff; Lane, Brian; Jewett, Michael A; Kahnoski, Richard J; Kort, Eric J; Teh, Bin T

    2009-01-01

    We investigate the feasibility of using microarray gene expression profiling technology to analyze core biopsies of renal tumors for classification of tumor histology. Core biopsies were obtained ex-vivo from 7 renal tumors-comprised of four histological subtypes-following radical nephrectomy using 18-gauge biopsy needles. RNA was isolated from these samples and, in the case of biopsy samples, amplified by in vitro transcription. Microarray analysis was then used to quantify the mRNA expression patterns in these samples relative to non-diseased renal tissue mRNA. Genes with significant variation across all non-biopsy tumor samples were identified, and the relationship between tumor and biopsy samples in terms of expression levels of these genes was then quantified in terms of Euclidean distance, and visualized by complete linkage clustering. Final pathologic assessment of kidney tumors demonstrated clear cell renal cell carcinoma (4), oncocytoma (1), angiomyolipoma (1) and adrenalcortical carcinoma (1). Five of the seven biopsy samples were most similar in terms of gene expression to the resected tumors from which they were derived in terms of Euclidean distance. All seven biopsies were assigned to the correct histological class by hierarchical clustering. We demonstrate the feasibility of gene expression profiling of core biopsies of renal tumors to classify tumor histology.

  15. Microarray gene expression profiling using core biopsies of renal neoplasia

    PubMed Central

    Rogers, Craig G.; Ditlev, Jonathon A.; Tan, Min-Han; Sugimura, Jun; Qian, Chao-Nan; Cooper, Jeff; Lane, Brian; Jewett, Michael A.; Kahnoski, Richard J.; Kort, Eric J.; Teh, Bin T.

    2009-01-01

    We investigate the feasibility of using microarray gene expression profiling technology to analyze core biopsies of renal tumors for classification of tumor histology. Core biopsies were obtained ex-vivo from 7 renal tumors—comprised of four histological subtypes—following radical nephrectomy using 18-gauge biopsy needles. RNA was isolated from these samples and, in the case of biopsy samples, amplified by in vitro transcription. Microarray analysis was then used to quantify the mRNA expression patterns in these samples relative to non-diseased renal tissue mRNA. Genes with significant variation across all non-biopsy tumor samples were identified, and the relationship between tumor and biopsy samples in terms of expression levels of these genes was then quantified in terms of Euclidean distance, and visualized by complete linkage clustering. Final pathologic assessment of kidney tumors demonstrated clear cell renal cell carcinoma (4), oncocytoma (1), angiomyolipoma (1) and adrenalcortical carcinoma (1). Five of the seven biopsy samples were most similar in terms of gene expression to the resected tumors from which they were derived in terms of Euclidean distance. All seven biopsies were assigned to the correct histological class by hierarchical clustering. We demonstrate the feasibility of gene expression profiling of core biopsies of renal tumors to classify tumor histology. PMID:19966938

  16. Alteration of Tight Junction Protein Expression in Dahl Salt-Sensitive Rat Kidney.

    PubMed

    Jo, Chor Ho; Kim, Sua; Oh, Il Hwan; Park, Joon-Sung; Kim, Gheun-Ho

    2017-01-01

    Altered pressure natriuresis is an important mechanism of hypertension, but it remains elusive at the molecular level. We hypothesized that in the kidney, tight junctions (TJs) may have a role in pressure natriuresis because paracellular NaCl transport affects interstitial hydrostatic pressure. To assess the association of salt-sensitive hypertension with altered renal TJ protein expression, Dahl salt-sensitive (SS) and salt-resistant (SR) rats were put on an 8% NaCl-containing rodent diet for 4 weeks. Systolic blood pressure (SBP) and urine NaCl excretion were measured weekly, and kidneys were harvested for immunoblotting and quantitative PCR analysis at the end of the animal experiments. SBP was significantly higher in SS rats than in SR rats during the first to fourth weeks of the animal experiments. During the first and second week, urinary NaCl excretion was significantly lower in SS rats as compared with SR rats. However, the difference between the two groups vanished at the third and fourth weeks. In the kidney, claudin-4 protein and mRNA were significantly increased in SS rats as compared with SR rats. On the other hand, occludin protein and mRNA were significantly decreased in SS rats as compared with SR rats. The expression of claudin-2, claudin-7, and claudin-8 did not vary significantly between the two groups. In SS rats, SS hypertension was associated with differential changes in renal TJ protein expression. Both upregulation of claudin-4 and downregulation of occludin might increase paracellular NaCl transport in the kidney, resulting in impaired pressure natriuresis in SS rats. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. High sodium intake increases blood pressure and alters renal function in intrauterine growth-retarded rats.

    PubMed

    Sanders, Marijke W; Fazzi, Gregorio E; Janssen, Ger M J; Blanco, Carlos E; De Mey, Jo G R

    2005-07-01

    A suboptimal fetal environment increases the risk to develop cardiovascular disease in the adult. We reported previously that intrauterine stress in response to reduced uteroplacental blood flow in the pregnant rat limits fetal growth and compromises renal development, leading to an altered renal function in the adult offspring. Here we tested the hypothesis that high dietary sodium intake in rats with impaired renal development attributable to intrauterine stress, results in increased blood pressure, altered renal function, and organ damage. In rats, intrauterine stress was induced by bilateral ligation of the uterine arteries at day 17 of pregnancy. At the age of 12 weeks, the offspring was given high-sodium drinking water (2% sodium chloride). At the age of 16 weeks, rats were instrumented for monitoring of blood pressure and renal function. After intrauterine stress, litter size and birth weight were reduced, whereas hematocrit at birth was increased. Renal blood flow, glomerular filtration rate, and the glomerular filtration fraction were increased significantly after intrauterine stress. High sodium intake did not change renal function and blood pressure in control animals. However, during high sodium intake in intrauterine stress offspring, renal blood flow, glomerular filtration rate, and the filtration fraction were decreased, and blood pressure was increased. In addition, these animals developed severe albuminuria, an important sign of renal dysfunction. Thus, a suboptimal fetal microenvironment, which impairs renal development, results in sodium-dependent hypertension and albuminuria.

  18. Altered levels of acid, basic, and neutral peptidase activity and expression in human clear cell renal cell carcinoma.

    PubMed

    Varona, Adolfo; Blanco, Lorena; López, José I; Gil, Javier; Agirregoitia, Ekaitz; Irazusta, Jon; Larrinaga, Gorka

    2007-02-01

    Peptides play important roles in cell regulation and signaling in many tissues and are regulated by peptidases, most of which are highly expressed in the kidney. Several peptide convertases have a function in different tumor stages, and some have been clearly characterized as diagnostic and prognostic markers for solid tumors, including renal cancer; however, little is known about their in vivo role in kidney tumors. The present study compares the activity of a range of peptidases in human tumor samples and nontumor tissue obtained from clear cell renal cell carcinoma (CCRCC) patients. To cover the complete spectrum and subcellular distribution of peptide-converting activity, acid, neutral, basic, and omega activities were selected. CCRCC displays a selective and restricted pattern of peptidase activities. Puromycin-sensitive aminopeptidase activity in the tumor increases [tumor (t) = 10,775 vs. nontumor (n) = 7,635 units of peptidase (UP)/mg protein; P < 0.05], whereas aminopeptidase N decreases (t = 6,664 vs. n = 33,381 UP/mg protein; P < 0.001). Aminopeptidase B activity of the particulate fraction in tumors decreases (t = 2,399 vs. n = 13,536 UP/mg protein; P < 0.001) compared with nontumor tissues, and aspartyl-aminopeptidase activity decreases significantly in CCRCC (t = 137 vs. n = 223 UP/mg protein; P < 0.05). Soluble and particulate pyroglutamyl peptidase I activities, aminopeptidase A activity, and soluble aminopeptidase B activity do not vary in renal cancer. The relative expression for the aforementioned peptidases, assayed using quantitative RT-PCR, increases in CCRCC for aminopeptidases B (1.5-fold) and A (19-fold), aspartyl-aminopeptidase (3.9-fold), puromycin-sensitive aminopeptidase (2.5-fold), and pyroglutamyl peptidase I (7.6-fold). Only aminopeptidase N expression decreases in tumors (1.3-fold). This peptidase activity profile in the neoplastic kidney suggests a specific role for the studied convertases and the possible involvement of an

  19. Expression of renin-angiotensin system signalling compounds in maternal protein-restricted rats: effect on renal sodium excretion and blood pressure.

    PubMed

    Mesquita, Flávia Fernandes; Gontijo, José Antonio Rocha; Boer, Patrícia Aline

    2010-02-01

    Intrauterine growth restriction due to low maternal dietary protein during pregnancy is associated with retardation of foetal growth, renal alterations and adult hypertension. The renin-angiotensin system (RAS) is a coordinated hormonal cascade in the control of cardiovascular, renal and adrenal function that governs body fluid and electrolyte balance, as well as arterial pressure. In the kidney, all the components of the renin-angiotensin system including angiotensin II type 1 (AT1) and type 2 (AT2) receptors are expressed locally during nephrogenesis. Hence, we investigated whether low protein diet intake during pregnancy altered kidney and adrenal expression of AT1(R) and AT2(R) receptors, their pathways and if the modified expression of the RAS compounds occurs associated with changes in urinary sodium and in arterial blood pressure in sixteen-week-old males' offspring of the underfed group. The pregnancy dams were divided in two groups: with normal protein diet (pups named NP) (17% protein) or low protein diet (pups LP) (6% protein) during all pregnancy. The present data confirm a significant enhancement in arterial pressure in the LP group. Furthermore, the study showed a significantly decreased expression of RAS pathway protein and Ang II receptors in the kidney and an increased expression in the adrenal of LP rats. The detailed immunohistochemical analysis of RAS signalling proteins in the kidney confirm the immunoblotting results for both groups. The present investigation also showed a pronounced decrease in fractional urinary sodium excretion in maternal protein-restricted offspring, compared with the NP age-matched group. This occurred despite unchanged creatinine clearance. The current data led us to hypothesize that foetal undernutrition could be associated with decreased kidney expression of AT(R) resulting in the inability of renal tubules to handle the hydro-electrolyte balance, consequently causing arterial hypertension.

  20. Expression of receptor-type protein tyrosine phosphatase in developing and adult renal vasculature

    PubMed Central

    Takahashi, Keiko; Kim, Rachel; Lauhan, Colette; Park, Yuna; Nguyen, Nghiep G.; Vestweber, Dietmar; Dominguez, Melissa G.; Valenzuela, David M.; Murphy, Andrew J.; Yancopoulos, George D.; Gale, Nicholas W.; Takahashi, Takamune

    2017-01-01

    Renal vascular development is a coordinated process that requires ordered endothelial cell proliferation, migration, intercellular adhesion, and morphogenesis. In recent decades, studies have defined the pivotal role of endothelial receptor tyrosine kinases (RPTKs) in the development and maintenance of renal vasculature. However, the expression and the role of receptor tyrosine phosphatases (RPTPs) in renal endothelium are poorly understood, though coupled and counterbalancing roles of RPTKs and RPTPs are well defined in other systems. In this study, we evaluated the promoter activity and immunolocalization of two endothelial RPTPs, VE-PTP and PTPμ, in developing and adult renal vasculature using the heterozygous LacZ knock-in mice and specific antibodies. In adult kidneys, both VE-PTP and PTPμ were expressed in the endothelium of arterial, glomerular, and medullary vessels, while their expression was highly limited in peritubular capillaries and venous endothelium. VE-PTP and PTPμ promoter activity was also observed in medullary tubular segments in adult kidneys. In embryonic (E12.5, E13.5, E15.5, E17.5) and postnatal (P0, P3, P7) kidneys, these RPTPs were expressed in ingrowing renal arteries, developing glomerular microvasculature (as early as the S-shaped stage), and medullary vessels. Their expression became more evident as the vasculatures matured. Peritubular capillary expression of VE-PTP was also noted in embryonic and postnatal kidneys. Compared to VE-PTP, PTPμ immunoreactivity was relatively limited in embryonic and neonatal renal vasculature and evident immunoreactivity was observed from the P3 stage. These findings indicate 1) VE-PTP and PTPμ are expressed in endothelium of arterial, glomerular, and medullary renal vasculature, 2) their expression increases as renal vascular development proceeds, suggesting that these RPTPs play a role in maturation and maintenance of these vasculatures, and 3) peritubular capillary VE-PTP expression is down

  1. Acute renal proximal tubule alterations during induced metabolic crises in a mouse model of glutaric aciduria type 1.

    PubMed

    Thies, Bastian; Meyer-Schwesinger, Catherine; Lamp, Jessica; Schweizer, Michaela; Koeller, David M; Ullrich, Kurt; Braulke, Thomas; Mühlhausen, Chris

    2013-10-01

    The metabolic disorder glutaric aciduria type 1 (GA1) is caused by deficiency of the mitochondrial glutaryl-CoA dehydrogenase (GCDH), leading to accumulation of the pathologic metabolites glutaric acid (GA) and 3-hydroxyglutaric acid (3OHGA) in blood, urine and tissues. Affected patients are prone to metabolic crises developing during catabolic conditions, with an irreversible destruction of striatal neurons and a subsequent dystonic-dyskinetic movement disorder. The pathogenetic mechanisms mediated by GA and 3OHGA have not been fully characterized. Recently, we have shown that GA and 3OHGA are translocated through membranes via sodium-dependent dicarboxylate cotransporter (NaC) 3, and organic anion transporters (OATs) 1 and 4. Here, we show that induced metabolic crises in Gcdh(-/-) mice lead to an altered renal expression pattern of NaC3 and OATs, and the subsequent intracellular GA and 3OHGA accumulation. Furthermore, OAT1 transporters are mislocalized to the apical membrane during metabolic crises accompanied by a pronounced thinning of proximal tubule brush border membranes. Moreover, mitochondrial swelling and increased excretion of low molecular weight proteins indicate functional tubulopathy. As the data clearly demonstrate renal proximal tubule alterations in this GA1 mouse model during induced metabolic crises, we propose careful evaluation of renal function in GA1 patients, particularly during acute crises. Further studies are needed to investigate if these findings can be confirmed in humans, especially in the long-term outcome of affected patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Alterations in blood pressure, antioxidant status and caspase 8 expression in cobalt chloride-induced cardio-renal dysfunction are reversed by Ocimum gratissimum and gallic acid in Wistar rats.

    PubMed

    Akinrinde, A S; Oyagbemi, A A; Omobowale, T O; Asenuga, E R; Ajibade, T O

    2016-07-01

    The protective abilities of the chloroform extract of Ocimum gratissimum (COG) and gallic acid against cobalt chloride (CoCl2) - induced cardiac and renal toxicity were evaluated. Rats were exposed to CoCl2 (350ppm) for 7 days, either alone, or in combination with COG (100 and 200mg/kg) or gallic acid (120mg/kg). CoCl2 given alone, caused significant increases (p<0.05) in oxidative stress parameters (hydrogen peroxide, H2O2 and malondialdehyde, MDA) and increased expression of the apoptotic initiator caspase 8 in the heart and kidneys. There was significant reduction (p<0.05) in reduced glutathione (GSH) in cardiac and renal tissues; reduction in superoxide dismutase (SOD) activity in the kidneys and adaptive increases in Glutathione S-transferase (GST) and catalase (CAT). CoCl2 also produced significant reduction (p<0.05) in systolic (SBP), diastolic (DBP) and mean arterial (MAP) blood pressures. Oral COG and gallic acid treatment significantly reduced (p<0.05) the levels of H2O2 and MDA; with reduced expression of caspase 8 and restoration of GSH levels, GPx, SOD and CAT activities, howbeit, to varying degrees in the heart and kidneys. COG (200mg/kg) was most effective in restoring the blood pressures in the rats to near control levels. CoCl2-induced histopathological lesions including myocardial infarction and inflammation and renal tubular necrosis and inflammation were effectively ameliorated by the treatments administered. This study provides evidence for the protective roles of O. gratissimum and gallic acid by modulation of CoCl2-induced alterations in blood pressure, antioxidant status and pro-apoptotic caspase 8 in Wistar rats. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Toll like receptor 4: A novel signaling pathway during renal fibrogenesis

    PubMed Central

    Campbell, Matthew T.; Hile, Karen L; Zhang, Hongji; Asanuma, Hiroshi; Vanderbrink, Brian A.; Rink, Richard R.; Meldrum, Kirstan K.

    2010-01-01

    Background The toll like receptor (TLR) family serves an important regulatory role in the innate immune system, and recent evidence has implicated TLR signaling in the pro-inflammatory response of a variety of endogenous and exogenous stimuli within the kidney. The role of TLR signaling in fibrotic renal injury; however, remains unknown. Materials and Methods C3H/HeJ TLR4 hyporesponsive mice (TLR4Lps-d) or WT controls (C3H/Heou/J) underwent either sham operation or 1 week of unilateral ureteral obstruction (UUO). The kidneys were harvested and tissues were analyzed for TLR4 expression (Western Blot; RTPCR), E-cadherin and α-SMA expression (Western Blot), fibroblast accumulation (fibroblast specific protein (FSP-1+) staining), renal fibrosis (collagen I RTPCR, total collagen assay, Masson's trichrome staining), cytokine gene expression (tumor necrosis factor-α (TNF-α) and transforming growth factor-beta1 (TGF-β1) RTPCR), and pSMAD2 and integrin α1 expression (Western Blot). Results Mice with intact TLR4 signaling demonstrate a significant increase in TLR4 expression, α-SMA expression, fibroblast accumulation, collagen deposition, and interstitial fibrosis, and a significant decrease in E-cadherin expression in response to UUO. TLR4 deficient mice; however, exhibit a significant reduction in obstruction-induced α-SMA expression, fibroblast accumulation, and renal fibrosis, with preservation of E-cadherin expression. TLR4's influence on fibroblast accumulation and renal fibrosis occurred independent of any alterations in TNF-α,TGF-β1, or pSMAD2 expression, but did involve alterations integrin α1 expression. Conclusion TLR4 appears to be a significant mediator of fibrotic renal injury. While TLR4 signaling is recognized as a critical component of the innate immune response, this is the first study to demonstrate a novel role for TLR4 in renal fibroblast accumulation and tubulointerstitial fibrosis. PMID:20089260

  4. Role of estrogen and progesterone in the modulation of CNG-A1 and Na/K+-ATPase expression in the renal cortex.

    PubMed

    Gracelli, Jones B; Souza-Menezes, Jackson; Barbosa, Carolina M L; Ornellas, Felipe S; Takiya, Christina M; Alves, Leandro M; Wengert, Mira; Feltran, Georgia da Silva; Caruso-Neves, Celso; Moyses, Margareth R; Prota, Luiz F M; Morales, Marcelo M

    2012-01-01

    The steroid hormones, estrogen and progesterone, are involved mainly in the control of female reproductive functions. Among other effects, estrogen and progesterone can modulate Na(+) reabsorption along the nephron altering the body's hydroelectrolyte balance. In this work, we analyzed the expression of cyclic nucleotide-gated channel A1 (CNG-A1) and α1 Na(+)/K(+)-ATPase subunit in the renal cortex and medulla of female ovariectomized rats and female ovariectomized rats subjected to 10 days of 17β-estradiol benzoate (2.0 µg/kg body weight) and progesterone (1.7 mg/kg body weight) replacement. Na(+)/K(+) ATPase activity was also measured. Immunofluorescence localization of CNG-A1 in the cortex and medulla was performed in control animals. We observed that CNG-A1 is localized at the basolateral membrane of proximal and distal tubules. Female ovariectomized rats showed low expression of CNG-A1 and low expression and activity of Na(+)/K(+) ATPase in the renal cortex. When female ovariectomized rats were subjected to 17β-estradiol benzoate replacement, normalization of CNG-A1 expression and Na(+)/K(+) ATPase expression and activity was observed. The replacement of progesterone was not able to recover CNG-A1 expression and Na(+)/K(+) ATPase expression at the control level. Only the activity of Na(+)/K(+) ATPase was able to be recovered at control levels in animals subjected to progesterone replacement. No changes in expression and activity were observed in the renal medulla. The expression of CNG-A1 is higher in cortex compared to medulla. In this work, we observed that estrogen and progesterone act in renal tissues modulating CNG-A1 and Na(+)/K(+) ATPase and these effects could be important in Na(+) and water balance. Copyright © 2012 S. Karger AG, Basel.

  5. Mild zinc deficiency in male and female rats: early postnatal alterations in renal nitric oxide system and morphology.

    PubMed

    Tomat, Analia Lorena; Veiras, Luciana Cecilia; Aguirre, Sofía; Fasoli, Héctor; Elesgaray, Rosana; Caniffi, Carolina; Costa, María Ángeles; Arranz, Cristina Teresa

    2013-03-01

    Fetal and postnatal zinc deficiencies induce an increase in arterial blood pressure and impair renal function in male adult rats. We therefore hypothesized that these renal alterations are present in early stages of life and that there are sexual differences in the adaptations to this nutritional injury. The aim was to study the effects of moderate zinc deficiency during fetal life and lactation on renal morphology, oxidative stress, apoptosis, and the nitric oxide system in male and female rats at 21 d of life. Female Wistar rats received low (8 ppm) or control (30 ppm) zinc diets from the beginning of pregnancy to weaning. Glomerulus number, morphology, oxidative stress, apoptotic cells, nitric oxide synthase activity, and protein expression were evaluated in the kidneys of offspring at 21 d. Zinc deficiency decreased the nephron number, induced glomerular hypertrophy, increased oxidative damage, and decreased nitric oxide synthase activity in the male and female rat kidneys. Nitric oxide synthase activity was not affected by inhibitors of the neuronal or inducible isoforms, so nitric oxide was mainly generated by the endothelial isoenzyme. Gender differences were observed in glomerular areas and antioxidant enzyme activities. Zinc deficiency during fetal life and lactation induces an early decrease in renal functional units, associated with a decrease in nitric oxide activity and an increase in oxidative stress, which would contribute to increased arterial blood pressure and renal dysfunction in adulthood. The sexual differences observed in this model may explain the dissimilar development of hypertension and renal diseases in adult life. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Splicing alterations in human renal allografts: detection of a new splice variant of protein kinase Par1/Emk1 whose expression is associated with an increase of inflammation in protocol biopsies of transplanted patients.

    PubMed

    Hueso, Miguel; Beltran, Violeta; Moreso, Francesc; Ciriero, Eva; Fulladosa, Xavier; Grinyó, Josep Maria; Serón, Daniel; Navarro, Estanis

    2004-05-24

    Protein kinase Emk1/Par1 (GenBank accession no. X97630) has been identified as a regulator of the immune system homeostasis. Since immunological factors are critical for the development of chronic allograft nephropathy (CAN), we reasoned that expression of Par1/Emk1 could be altered in kidney allografts undergoing CAN. In this paper, we have analysed the association among renal allograft lesions and expression of Par1/Emk1, studied by RT-PCR on total RNA from 51 protocol biopsies of transplanted kidneys, five normal kidneys, and five dysfunctional allografts. The most significant result obtained has been the detection of alterations in the normal pattern of alternative splicing of the Par1/Emk1 transcript, alterations that included loss of expression of constitutively expressed isoforms, and the inclusion of a cryptic exon to generate a new Emk1 isoform (Emk1C). Expression of Emk1C was associated with an increase in the extension of the interstitial infiltrate (0.88+/-0.33 in Emk1C([+]) vs. 0.41+/-0.50 in Emk1C([-]); P<0.011), and with a trend to display higher interstitial scarring (0.66+/-0.70 vs. 0.29+/-0.52; P=0.09) in protocol biopsies when evaluated according to the Banff schema. Moreover, a higher mean arterial pressure (MAP) was also observed (110+/-11 vs. 99+/-11 mm Hg; P=0.012). From these results we propose that Par1/Emk1 could have a role in the development of CAN in kidney allografts.

  7. Arterially Delivered Mesenchymal Stem Cells Prevent Obstruction-Induced Renal Fibrosis

    PubMed Central

    Asanuma, Hiroshi; Vanderbrink, Brian A.; Campbell, Matthew T.; Hile, Karen L.; Zhang, Hongji; Meldrum, Daniel R.; Meldrum, Kirstan K.

    2010-01-01

    Purpose Mesenchymal stem cells (MSCs) hold promise for the treatment of renal disease. While MSCs have been shown to accelerate recovery and prevent acute renal failure in multiple disease models, the effect of MSC therapy on chronic obstruction-induced renal fibrosis has not previously been evaluated. Materials and Methods Male Sprague-Dawley rats underwent renal artery injection of vehicle or fluorescent-labeled human bone marrow-derived MSCs immediately prior to sham operation or induction of left ureteral obstruction (UUO). One or 4 weeks later, the kidneys were harvested and the renal cortex analyzed for evidence of stem cell infiltration, epithelial-mesenchymal transition (EMT) as evidenced by E-cadherin/α-smooth muscle actin (α-SMA) expression and fibroblast specific protein (FSP+) staining, renal fibrosis (collagen content, Masson’s trichrome staining), and cytokine and growth factor activity (ELISA and real time RT-PCR). Results Fluorescent-labeled MSCs were detected in the interstitium of the kidney up to 4 weeks post-obstruction. Arterially delivered MSCs significantly reduced obstruction-induced α-SMA expression, FSP+ cell accumulation, total collagen content, and tubulointerstitial fibrosis, while simultaneously preserving E-cadherin expression, suggesting that MSCs prevent obstruction-induced EMT and renal fibrosis. Exogenous MSCs reduced obstruction-induced tumor necrosis factor-α (TNF-α) levels, but did not alter transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), interleukin-10 (IL-10), fibroblast growth factor (FGF), or hepatocyte growth factor (HGF) expression. Conclusions Human bone marrow-derived MSCs remain viable several weeks after delivery into the kidney and provide protection against obstruction-induced EMT and chronic renal fibrosis. While the mechanism of MSCs-induced renal protection during obstruction remains unclear, our results demonstrate that alterations in TNF-α production may be involved

  8. Microarray expression profiling identifies genes with altered expression in HDL-deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callow, Matthew J.; Dudoit, Sandrine; Gong, Elaine L.

    2000-05-05

    Based on the assumption that severe alterations in the expression of genes known to be involved in HDL metabolism may affect the expression of other genes we screened an array of over 5000 mouse expressed sequence tags (ESTs) for altered gene expression in the livers of two lines of mice with dramatic decreases in HDL plasma concentrations. Labeled cDNA from livers of apolipoprotein AI (apo AI) knockout mice, Scavenger Receptor BI (SR-BI) transgenic mice and control mice were co-hybridized to microarrays. Two-sample t-statistics were used to identify genes with altered expression levels in the knockout or transgenic mice compared withmore » the control mice. In the SR-BI group we found 9 array elements representing at least 5 genes to be significantly altered on the basis of an adjusted p value of less than 0.05. In the apo AI knockout group 8 array elements representing 4 genes were altered compared with the control group (p < 0.05). Several of the genes identified in the SR-BI transgenic suggest altered sterol metabolism and oxidative processes. These studies illustrate the use of multiple-testing methods for the identification of genes with altered expression in replicated microarray experiments of apo AI knockout and SR-BI transgenic mice.« less

  9. Increased Dietary Sodium Induces COX2 Expression by activating NFκB in Renal Medullary Interstitial Cells

    PubMed Central

    Zhao, Min; Davis, Linda S.; Blackwell, Timothy S.; Yull, Fiona; Breyer, Matthew D.; Hao, Chuan-Ming

    2013-01-01

    High salt diet induces renal medullary COX2 expression. Selective blockade of renal medullary COX2 activity in rats causes salt sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8% NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6J mice. Co-immunofluorescence using a COX2 antibody and antibodies against AQP2, ClC-K, AQP1 and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a 7 fold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of EGFP expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet fed C57Bl/6J mice with selective IκB kinase inhibitor IMD-0354 (8mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary PGE2. These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium. PMID:23900806

  10. Increased dietary sodium induces COX2 expression by activating NFκB in renal medullary interstitial cells.

    PubMed

    He, Wenjuan; Zhang, Min; Zhao, Min; Davis, Linda S; Blackwell, Timothy S; Yull, Fiona; Breyer, Matthew D; Hao, Chuan-Ming

    2014-02-01

    High salt diet induces renal medullary cyclooxygenase 2 (COX2) expression. Selective blockade of renal medullary COX2 activity in rats causes salt-sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8 % NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6 J mice. Co-immunofluorescence using a COX2 antibody and antibodies against aquaporin-2, ClC-K, aquaporin-1, and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a sevenfold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of enhanced green fluorescent protein (EGFP) expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet-fed C57Bl/6 J mice with selective IκB kinase inhibitor IMD-0354 (8 mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary prostaglandin E2 (PGE2). These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium.

  11. Cells differentiated from mouse embryonic stem cells via embryoid bodies express renal marker molecules.

    PubMed

    Kramer, Jan; Steinhoff, Jürgen; Klinger, Matthias; Fricke, Lutz; Rohwedel, Jürgen

    2006-03-01

    Differentiation of mouse embryonic stem (ES) cells via embryoid bodies (EB) is established as a suitable model to study cellular processes of development in vitro. ES cells are known to be pluripotent because of their capability to differentiate into cell types of all three germ layers including germ cells. Here, we show that ES cells differentiate into renal cell types in vitro. We found that genes were expressed during EB cultivation, which have been previously described to be involved in renal development. Marker molecules characteristic for terminally differentiated renal cell types were found to be expressed predominantly during late stages of EB cultivation, while marker molecules involved in the initiation of nephrogenesis were already expressed during early steps of EB development. On the cellular level--using immunostaining--we detected cells expressing podocin, nephrin and wt-1, characteristic for differentiated podocytes and other cells, which expressed Tamm-Horsfall protein, a marker for distal tubule epithelial cells of kidney tissue. Furthermore, the proximal tubule marker molecules renal-specific oxido reductase, kidney androgen-related protein and 25-hydroxyvitamin D3alpha-hydroxylase were found to be expressed in EBs. In particular, we could demonstrate that cells expressing podocyte marker molecules assemble to distinct ring-like structures within the EBs. Because the differentiation efficiency into these cell types is still relatively low, application of fibroblast growth factor (FGF)-2 in combination with leukaemia inhibitory factor was tested for induction, but did not enhance ES cell-derived renal differentiation in vitro.

  12. Noncoding RNA Expression and Targeted Next-Generation Sequencing Distinguish Tubulocystic Renal Cell Carcinoma (TC-RCC) from Other Renal Neoplasms.

    PubMed

    Lawrie, Charles H; Armesto, María; Fernandez-Mercado, Marta; Arestín, María; Manterola, Lorea; Goicoechea, Ibai; Larrea, Erika; Caffarel, María M; Araujo, Angela M; Sole, Carla; Sperga, Maris; Alvarado-Cabrero, Isabel; Michal, Michal; Hes, Ondrej; López, José I

    2018-01-01

    Tubulocystic renal cell carcinoma (TC-RCC) is a rare recently described renal neoplasm characterized by gross, microscopic, and immunohistochemical differences from other renal tumor types and was recently classified as a distinct entity. However, this distinction remains controversial particularly because some genetic studies suggest a close relationship with papillary RCC (PRCC). The molecular basis of this disease remains largely unexplored. We therefore performed noncoding (nc) RNA/miRNA expression analysis and targeted next-generation sequencing mutational profiling on 13 TC-RCC cases (11 pure, two mixed TC-RCC/PRCC) and compared with other renal neoplasms. The expression profile of miRNAs and other ncRNAs in TC-RCC was distinct and validated 10 differentially expressed miRNAs by quantitative RT-PCR, including miR-155 and miR-34a, that were significantly down-regulated compared with PRCC cases (n = 22). With the use of targeted next-generation sequencing we identified mutations in 14 different genes, most frequently (>60% of TC-RCC cases) in ABL1 and PDFGRA genes. These mutations were present in <5% of clear cell RCC, PRCC, or chromophobe RCC cases (n > 600) of The Cancer Genome Atlas database. In summary, this study is by far the largest molecular study of TC-RCC cases and the first to investigate either ncRNA expression or their genomic profile. These results add molecular evidence that TC-RCC is indeed a distinct entity from PRCC and other renal neoplasms. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  13. Endothelial mineralocorticoid receptor ablation does not alter blood pressure, kidney function or renal vessel contractility

    PubMed Central

    Laursen, Sidsel B.; Finsen, Stine; Marcussen, Niels; Quaggin, Susan E.

    2018-01-01

    Aldosterone blockade confers substantial cardiovascular and renal protection. The effects of aldosterone on mineralocorticoid receptors (MR) expressed in endothelial cells (EC) within the renal vasculature have not been delineated. We hypothesized that lack of MR in EC may be protective in renal vasculature and examined this by ablating the Nr3c2 gene in endothelial cells (EC-MR) in mice. Blood pressure, heart rate and PAH clearance were measured using indwelling catheters in conscious mice. The role of the MR in EC on contraction and relaxation was investigated in the renal artery and in perfused afferent arterioles. Urinary sodium excretion was determined by use of metabolic cages. EC-MR transgenics had markedly decreased MR expression in isolated aortic endothelial cells as compared to littermates (WT). Blood pressure and effective renal plasma flow at baseline and following AngII infusion was similar between groups. No differences in contraction and relaxation were observed between WT and EC-MR KO in isolated renal arteries during baseline or following 2 or 4 weeks of AngII infusion. The constriction or dilatations of afferent arterioles between genotypes were not different. No changes were found between the groups with respect to urinary excretion of sodium after 4 weeks of AngII infusion, or in urinary albumin excretion and kidney morphology. In conclusion, deletion of the EC-MR does not confer protection towards the development of hypertension, endothelial dysfunction of renal arteries or renal function following prolonged AngII-infusion. PMID:29466427

  14. Comprehensive Molecular Characterization of Papillary Renal Cell Carcinoma

    PubMed Central

    Linehan, W. Marston; Spellman, Paul T.; Ricketts, Christopher J.; Creighton, Chad J.; Fei, Suzanne S.; Davis, Caleb; Wheeler, David A.; Murray, Bradley A.; Schmidt, Laura; Vocke, Cathy D.; Peto, Myron; Al Mamun, Abu Amar M.; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W. Kimryn; Brooks, Angela N.; Hoadley, Katherine A.; Robertson, A. Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J.; Bootwalla, Moiz; Baylin, Stephen B.; Laird, Peter W.; Cherniack, Andrew D.; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B.; Akbani, Rehan; Leiserson, Mark D.M.; Raphael, Benjamin J.; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K.; Czerniak, Bogdan; Godwin, Andrew K.; Hakimi, A. Ari; Ho, Thai; Hsieh, James; Ittmann, Michael; Kim, William Y.; Krishnan, Bhavani; Merino, Maria J.; Mills Shaw, Kenna R.; Reuter, Victor E.; Reznik, Ed; Shelley, Carl Simon; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D.; Penny, Robert J.; Shelton, Candace; Shelton, W. Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T.; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A.; Felau, Ina; Hutter, Carolyn M.; Sheth, Margi; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S.N.; Carlsen, Rebecca; Carter, Scott L.; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R.; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, HarshaVardhan; Drummond, Jennifer; Gabriel, Stacey B.; Gibbs, Richard A.; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D. Neil; Holt, Robert A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Steven J.M.; Jones, Corbin D.; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A.; Moore, Richard A.; Morton, Donna; Mose, Lisle E.; Mungall, Andrew J.; Muzny, Donna; Parker, Joel S.; Perou, Charles M.; Roach, Jeffrey; Schein, Jacqueline E.; Schumacher, Steven E.; Shi, Yan; Simons, Janae V.; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G.; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D.; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N.; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J. Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L.; Boice, Lori; Bollag, Roni J.; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C.; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K.; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L.; Slaton, Joel; Stanton, Melissa; Thompson, R. Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M.; Winemiller, Cythnia; Zach, Leigh Anne; Zuna, Rosemary

    2016-01-01

    Background Papillary renal cell carcinoma, accounting for 15% of renal cell carcinoma, is a heterogeneous disease consisting of different types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal cell carcinoma; no effective forms of therapy for advanced disease exist. Methods We performed comprehensive molecular characterization utilizing whole-exome sequencing, copy number, mRNA, microRNA, methylation and proteomic analyses of 161 primary papillary renal cell carcinomas. Results Type 1 and Type 2 papillary renal cell carcinomas were found to be different types of renal cancer characterized by specific genetic alterations, with Type 2 further classified into three individual subgroups based on molecular differences that influenced patient survival. MET alterations were associated with Type 1 tumors, whereas Type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-ARE pathway. A CpG island methylator phenotype (CIMP) was found in a distinct subset of Type 2 papillary renal cell carcinoma characterized by poor survival and mutation of the fumarate hydratase (FH) gene. Conclusions Type 1 and Type 2 papillary renal cell carcinomas are clinically and biologically distinct. Alterations in the MET pathway are associated with Type 1 and activation of the NRF2-ARE pathway with Type 2; CDKN2A loss and CIMP in Type 2 convey a poor prognosis. Furthermore, Type 2 papillary renal cell carcinoma consists of at least 3 subtypes based upon molecular and phenotypic features. PMID:26536169

  15. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles.

    PubMed

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may be related to acute renal allograft

  16. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles

    PubMed Central

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Objectives: Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. Methods: MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. Results: A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. Conclusions: We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may

  17. Angiotensin II alters the expression of duodenal iron transporters, hepatic hepcidin, and body iron distribution in mice.

    PubMed

    Tajima, Soichiro; Ikeda, Yasumasa; Enomoto, Hideaki; Imao, Mizuki; Horinouchi, Yuya; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Miyamoto, Licht; Ishizawa, Keisuke; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2015-08-01

    Angiotensin II (ANG II) has been shown to affect iron metabolism through alteration of iron transporters, leading to increased cellular and tissue iron contents. Serum ferritin, a marker of body iron storage, is elevated in various cardiovascular diseases, including hypertension. However, the associated changes in iron absorption and the mechanism underlying increased iron content in a hypertensive state remain unclear. The C57BL6/J mice were treated with ANG II to generate a model of hypertension. Mice were divided into three groups: (1) control, (2) ANG II-treated, and (3) ANG II-treated and ANG II receptor blocker (ARB)-administered (ANG II-ARB) groups. Mice treated with ANG II showed increased serum ferritin levels compared to vehicle-treated control mice. In ANG II-treated mice, duodenal divalent metal transporter-1 and ferroportin (FPN) expression levels were increased and hepatic hepcidin mRNA expression and serum hepcidin concentration were reduced. The mRNA expression of bone morphogenetic protein 6 and CCAAT/enhancer-binding protein alpha, which are regulators of hepcidin, was also down-regulated in the livers of ANG II-treated mice. In terms of tissue iron content, macrophage iron content and renal iron content were increased by ANG II treatment, and these increases were associated with reduced expression of transferrin receptor 1 and FPN and increased expression of ferritin. These changes induced by ANG II treatment were ameliorated by the administration of an ARB. Angiotensin II (ANG II) altered the expression of duodenal iron transporters and reduced hepcidin levels, contributing to the alteration of body iron distribution.

  18. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma.

    PubMed

    Linehan, W Marston; Spellman, Paul T; Ricketts, Christopher J; Creighton, Chad J; Fei, Suzanne S; Davis, Caleb; Wheeler, David A; Murray, Bradley A; Schmidt, Laura; Vocke, Cathy D; Peto, Myron; Al Mamun, Abu Amar M; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W Kimryn; Brooks, Angela N; Hoadley, Katherine A; Robertson, A Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J; Bootwalla, Moiz; Baylin, Stephen B; Laird, Peter W; Cherniack, Andrew D; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B; Akbani, Rehan; Leiserson, Mark D M; Raphael, Benjamin J; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K; Czerniak, Bogdan; Godwin, Andrew K; Hakimi, A Ari; Ho, Thai H; Hsieh, James; Ittmann, Michael; Kim, William Y; Krishnan, Bhavani; Merino, Maria J; Mills Shaw, Kenna R; Reuter, Victor E; Reznik, Ed; Shelley, Carl S; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D; Penny, Robert J; Shelton, Candace; Shelton, W Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T; Bowen, Jay; Gastier-Foster, Julie M; Gerken, Mark; Leraas, Kristen M; Lichtenberg, Tara M; Ramirez, Nilsa C; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A; Felau, Ina; Hutter, Carolyn M; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C; Zhang, Jiashan; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S N; Carlsen, Rebecca; Carter, Scott L; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, Harsha V; Drummond, Jennifer A; Gabriel, Stacey B; Gibbs, Richard A; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D Neil; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven J M; Jones, Corbin D; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A; Moore, Richard A; Morton, Donna; Mose, Lisle E; Mungall, Andrew J; Muzny, Donna; Parker, Joel S; Perou, Charles M; Roach, Jeffrey; Schein, Jacqueline E; Schumacher, Steven E; Shi, Yan; Simons, Janae V; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L; Boice, Lori; Bollag, Roni J; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L; Slaton, Joel; Stanton, Melissa; Thompson, R Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M; Winemiller, Cynthia; Zach, Leigh Anne; Zuna, Rosemary

    2016-01-14

    Papillary renal-cell carcinoma, which accounts for 15 to 20% of renal-cell carcinomas, is a heterogeneous disease that consists of various types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal-cell carcinoma, and no effective forms of therapy for advanced disease exist. We performed comprehensive molecular characterization of 161 primary papillary renal-cell carcinomas, using whole-exome sequencing, copy-number analysis, messenger RNA and microRNA sequencing, DNA-methylation analysis, and proteomic analysis. Type 1 and type 2 papillary renal-cell carcinomas were shown to be different types of renal cancer characterized by specific genetic alterations, with type 2 further classified into three individual subgroups on the basis of molecular differences associated with patient survival. Type 1 tumors were associated with MET alterations, whereas type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in a distinct subgroup of type 2 papillary renal-cell carcinomas that was characterized by poor survival and mutation of the gene encoding fumarate hydratase (FH). Type 1 and type 2 papillary renal-cell carcinomas were shown to be clinically and biologically distinct. Alterations in the MET pathway were associated with type 1, and activation of the NRF2-ARE pathway was associated with type 2; CDKN2A loss and CIMP in type 2 conveyed a poor prognosis. Furthermore, type 2 papillary renal-cell carcinoma consisted of at least three subtypes based on molecular and phenotypic features. (Funded by the National Institutes of Health.).

  19. Expression of GSK-3β in renal allograft tissue and its significance in pathogenesis of chronic allograft dysfunction.

    PubMed

    Yan, Qiang; Wang, Baoyao; Sui, Weiguo; Zou, Guimian; Chen, Huaizhou; Xie, Shenping; Zou, Hequn

    2012-01-13

    To explore the expression of Glycogen synthase kinase 3 beta (GSK-3β) in renal allograft tissue and its significance in the pathogenesis of chronic allograft dysfunction. Renal allograft biopsy was performed in all of the renal allograft recipients with proteinuria or increased serum creatinine level who came into our hospital from January 2007 to December 2009. Among them 28 cases was diagnosed as chronic allograft dysfunction based on pahtological observation, including 21 males with a mean age of 45 ± 10 years old and 7 females with a mean age of 42 ± 9 years old. The time from kidney transplantation to biopsy were 1-9 (3.5) years. Their serum creatinine level were 206 ± 122 umol/L. Immunohistochemical assay and computer-assisted genuine color image analysis system (imagepro-plus 6.0) were used to detect the expression of GSK-3β in the renal allografts of 28 cases of recipients with chronic allograft dysfunction. Mean area and mean integrated optical density of GSK-3β expression were calculated. The relationship between expression level of GSK-3β and either the grade of inflammatory cell infiltration or interstitial fibrosis/tubular atrophy in renal allograft was analyzed. Five specimens of healthy renal tissue were used as controls. The expression level of the GSK-3β was significantly increased in the renal allograft tissue of recipients with chronic allograft dysfunction, compared to normal renal tissues, and GSK-3β expression became stronger along with the increasing of the grade of either inflammatory cell infiltration or interstitial fibrosis/tubular atrophy in renal allograft tissue. There might be a positive correlation between either inflammatory cell infiltration or interstitial fibrosis/tubular atrophy and high GSK-3β expression in renal allograft tissue. The virtual slide(s) for this article can be found here:http://www.diagnosticpathology.diagnomx.eu/vs/9924478946162998.

  20. Effects of fosinopril and losartan on renal Klotho expression and oxidative stress in spontaneously hypertensive rats.

    PubMed

    Tang, Rong; Zhou, Qiaoling; Liu, Zhichun; Xiao, Zhou; Pouranan, Veeraragoo

    2011-01-01

    To explore effects of fosinopril and losartan on renal Klotho expression and oxidative stress in spontaneously hypertensive rats (SHR) and the mechanisms underlying the protection against renal damage. Fifteen male SHRs (22 weeks old) were randomly divided into 3 groups (n=5 in each group): a SHR group, a fosinopril group [10 mg/(kg.d)], and a losartan group [50 mg/(kg.d)]. Age-matched Wistar-Kyoto (WKY) rats were chosen for a control group. Eight weeks later, tail arterial pressure, 24 hours urinary protein (Upro),urinary N-acetyl-β-D-glucosaminidase (NAGase) were measured. Renal pathological changes were examined under light microscopy by HE staining. The renal mRNA and protein expression of Klotho were determined by RT-PCR, immunohistochemical staining or Western blot. The levels of total antioxidant capacity (TAOC), malondialdehyde (MDA), Cu/Zn superoxide dismutase (Cu/Zn-SOD), Mn superoxide dismutase (Mn-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were determined. The typical pathological characteristics of hypertensive renal damage were observed in the kidney of the SHR group.Compared with the SHR group, the systolic pressure, Upro, and urinary NAGase, the content of MDA and renal pathological damage was reduced while the renal Klotho expression and activities of TAOC, Cu/Zn-SOD, CAT, and GSH-Px were increased (P<0.05 or P<0.01) in the fosinopril or losartan group. There was no significant difference in renal Mn-SOD level among the 4 groups (P>0.05). Fosinopril and losartan can exert protection against hypertensive renal damage through upregulating Klotho expression as well as reducing oxidative stress.

  1. Activation of the Ca2+-sensing receptor increases renal claudin-14 expression and urinary Ca2+ excretion

    PubMed Central

    Dimke, Henrik; Desai, Prajakta; Borovac, Jelena; Lau, Alyssa; Pan, Wanling; Alexander, R. Todd

    2016-01-01

    Kidney stones are a prevalent clinical condition imposing a large economic burden on the health-care system. Hypercalciuria remains the major risk factor for development of a Ca2+-containing stone. The kidney’s ability to alter Ca2+ excretion in response to changes in serum Ca2+ is in part mediated by the Ca2+-sensing receptor (CaSR). Recent studies revealed renal claudin-14 (Cldn14) expression localized to the thick ascending limb (TAL) and its expression to be regulated via the CaSR. We find that Cldn14 expression is increased by high dietary Ca2+ intake and by elevated serum Ca2+ levels induced by prolonged 1,25-dihydroxyvitamin D3 administration. Consistent with this, activation of the CaSR in vivo via administration of the calcimimetic cinacalcet hydrochloride led to a 40-fold increase in Cldn14 mRNA. Moreover, overexpression of Cldn14 in two separate cell culture models decreased paracellular Ca2+ flux by preferentially decreasing cation permeability, thereby increasing transepithelial resistance. These data support the existence of a mechanism whereby activation of the CaSR in the TAL increases Cldn14 expression, which in turn blocks the paracellular reabsorption of Ca2+. This molecular mechanism likely facilitates renal Ca2+ losses in response to elevated serum Ca2+. Moreover, dys-regulation of the newly described CaSR-Cldn14 axis likely contributes to the development of hypercalciuria and kidney stones. PMID:23283989

  2. High maternal sodium intake alters sex-specific renal renin-angiotensin system components in newborn Wistar offspring.

    PubMed

    Maia, D R R; Lopes, K L; Heimann, J C; Furukawa, L N S

    2016-01-28

    This study aimed to evaluate the systemic and renal renin-angiotensin-aldosterone system (RAAS) at birth in male and female offspring and in mothers fed a high sodium diet (HSD) before and during gestation. Female Wistar rats were fed a HSD (8.0% NaCl) or a normal sodium diet (1.3% NaCl) from 8 weeks of age until delivery of their first litter. Maternal body weight, tail blood pressure, and food and water intake were evaluated. The litter sizes were assessed, and the body and kidney weights of the offspring were measured. Both mothers and offspring were euthanized immediately following the birth of the pups to evaluate plasma renin activity (PRA), renal renin content (RRC), renal angiotensin-converting enzyme (ACE) activity, renal angiotensin (Ang) II content, serum aldosterone (ALDO) levels, and renal cortical and medullary renin messenger RNA expression. In mothers in the HSD group, water intake and kidney mass were higher, whereas renal ACE activity, Ang II, PRA, ALDO and RRC were decreased. In the offspring of HSD-fed dams, the body and kidney mass were lower in both genders, renal ACE activity was lower in females and renal Ang II was lower in males. PRA, RRC, renin gene expression and ALDO levels did not differ between the groups of offspring. The data presented herein showed that a maternal HSD during pregnancy induces low birth weight and a sex-specific response in the RAAS in offspring.

  3. Effect of renal nerve stimulation on responsiveness of the rat renal vasculature.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2002-11-01

    When the renal nerves are stimulated with sinusoidal stimuli over the frequency range 0.04-0.8 Hz, low (< or =0.4 Hz)- but not high (> or =0.4 Hz)-frequency oscillations appear in renal blood flow (RBF) and are proposed to increase responsiveness of the renal vasculature to stimuli. This hypothesis was tested in anesthetized rats in which RBF responses to intrarenal injection of norepinephrine and angiotensin and to reductions in renal arterial pressure (RAP) were determined during conventional rectangular pulse and sinusoidal renal nerve stimulation. Conventional rectangular pulse renal nerve stimulation decreased RBF at 2 Hz but not at 0.2 or 1.0 Hz. Sinusoidal renal nerve stimulation elicited low-frequency oscillations (< or =0.4 Hz) in RBF only when the basal carrier signal frequency produced renal vasoconstriction, i.e., at 5 Hz but not at 1 Hz. Regardless of whether renal vasoconstriction occurred, neither conventional rectangular pulse nor sinusoidal renal nerve stimulation altered renal vasoconstrictor responses to norepinephrine and angiotensin. The RBF response to reduction in RAP was altered by both conventional rectangular pulse and sinusoidal renal nerve stimulation only when renal vasoconstriction occurred: the decrease in RBF during reduced RAP was greater. Sinusoidal renal nerve stimulation with a renal vasoconstrictor carrier frequency results in a decrease in RBF with superimposed low-frequency oscillations. However, these low-frequency RBF oscillations do not alter renal vascular responsiveness to vasoconstrictor stimuli.

  4. High-fat diet amplifies renal renin angiotensin system expression, blood pressure elevation, and renal dysfunction caused by Ceacam1 null deletion.

    PubMed

    Li, Caixia; Culver, Silas A; Quadri, Syed; Ledford, Kelly L; Al-Share, Qusai Y; Ghadieh, Hilda E; Najjar, Sonia M; Siragy, Helmy M

    2015-11-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAMl), a substrate of the insulin receptor tyrosine kinase, regulates insulin action by promoting insulin clearance. Global null mutation of Ceacam1 gene (Cc1(-/-)) results in features of the metabolic syndrome, including insulin resistance, hyperinsulinemia, visceral adiposity, elevated blood pressure, and albuminuria. It also causes activation of the renal renin-angiotensin system (RAS). In the current study, we tested the hypothesis that high-fat diet enhances the expression of RAS components. Three-month-old wild-type (Cc1(+/+)) and Cc1(-/-) mice were fed either a regular or a high-fat diet for 8 wk. At baseline under regular feeding conditions, Cc1(-/-) mice exhibited higher blood pressure, urine albumin-to-creatinine ratio (UACR), and renal expression of angiotensinogen, renin/prorenin, angiotensin-converting enzyme, (pro)renin receptor, angiotensin subtype AT1 receptor, angiotensin II, and elevated PI3K phosphorylation, as detected by p85α (Tyr(508)) immunostaining, inflammatory response, and the expression of collagen I and collagen III. In Cc1(+/+) mice, high-fat diet increased blood pressure, UACR, the expression of angiotensin-converting enzyme and angiotensin II, PI3K phosphorylation, inflammatory response, and the expression of collagen I and collagen III. In Cc1(-/-) mice, high-fat intake further amplified these parameters. Immunohistochemical staining showed increased p-PI3K p85α (Tyr(508)) expression in renal glomeruli, proximal, distal, and collecting tubules of Cc1(-/-) mice fed a high-fat diet. Together, this demonstrates that high-fat diet amplifies the permissive effect of Ceacam1 deletion on renal expression of all RAS components, PI3K phosphorylation, inflammation, and fibrosis. Copyright © 2015 the American Physiological Society.

  5. NFκB-mediated cyclin D1 expression by microRNA-21 influences renal cancer cell proliferation.

    PubMed

    Bera, Amit; Ghosh-Choudhury, Nandini; Dey, Nirmalya; Das, Falguni; Kasinath, Balakuntalam S; Abboud, Hanna E; Choudhury, Goutam Ghosh

    2013-12-01

    MicroRNAs regulate post-transcriptomic landscape in many tumors including renal cell carcinoma. We have recently shown significantly increased expression of miR-21 in renal tumors and that this miRNA contributes to the proliferation of renal cancer cells in culture. However, the mechanism by which miR-21 regulates renal cancer cell proliferation is poorly understood. Addiction to constitutive NFκB activity is hallmark of many cancers including renal cancer. Using miR-21 Sponge in renal cancer cells to block endogenous function of miR-21, we show inhibition of phosphorylation of p65 subunit of NFκB, IKKβ and IκB, which results in attenuation of NFκB transcriptional activity. Subtle reduction in the tumor suppressor PTEN has been linked to various malignancies. We showed previously that miR-21 targeted PTEN in renal cancer cells. Inhibition of PTEN by siRNAs restored miR-21 Sponge-induced suppression of phosphorylation of p65, IKKβ, IκB and NFκB transcriptional activity along with reversal of miR-21 Sponge-reduced phosphorylation of Akt. Expression of constitutively active Akt protected against miR-21 Sponge- and PTEN-mediated decrease in p65/IKKβ/IκB phosphorylation and NFκB transcriptional activity. Furthermore, IKKβ and p65 were required for miR-21-induced renal cancer cell proliferation. Interestingly, miR-21 controlled the expression of cyclin D1 through NFκB-dependent transcription. Finally, we demonstrate that miR-21-regulated renal cancer cell proliferation is mediated by cyclin D1 and CDK4. Together, our results establish a molecular order of a phosphatase-kinase couple involving PTEN/Akt/IKKβ and NFκB-dependent cyclin D1 expression for renal carcinoma cell proliferation by increased miR-21 levels. © 2013.

  6. NFκB-mediated cyclin D1 expression by microRNA-21 influences renal cancer cell proliferation

    PubMed Central

    Bera, Amit; Ghosh-Choudhury, Nandini; Dey, Nirmalya; Das, Falguni; Kasinath, Balakuntalam S.; Abboud, Hanna E.; Choudhury, Goutam Ghosh

    2013-01-01

    MicroRNAs regulate post-transcriptomic landscape in many tumors including renal cell carcinoma. We have recently shown significantly increased expression of miR-21 in renal tumors and that this miRNA contributes to the proliferation of renal cancer cells in culture. However, the mechanism by which miR-21 regulates renal cancer cells proliferation is poorly understood. Addiction to constitutive NFκB activity is hallmark of many cancers including renal cancer. Using miR-21 Sponge in renal cancer cells to block endogenous function of miR-21, we show inhibition of phosphorylation of p65 subunit of NFκB, IKKβ and IκB, which results in attenuation of NFκB transcriptional activity. Subtle reduction in the tumor suppressor PTEN has been linked to various malignancies. We showed previously that miR-21 targeted PTEN in renal cancer cells. Inhibition of PTEN by siRNAs restored miR-21 Sponge-induced suppression of phosphorylation of p65, IKKβ, IκB and NFκB transcriptional activity along with reversal of miR-21 Sponge-reduced phosphorylation of Akt. Expression of constitutively active Akt protected against miR-21 Sponge- and PTEN-mediated decrease in p65/IKKβ/IκB phosphorylation and NFκB transcriptional activity. Furthermore, IKKβ and p65 were required for miR-21-induced renal cancer cell proliferation. Interestingly, miR-21 controlled the expression of cyclin D1 through NFκB-dependent transcription. Finally, we demonstrate that miR-21-regulated renal cancer cell proliferation is mediated by cyclin D1 and CDK4. Together, our results establish a molecular order of a phosphatase-kinase couple involving PTEN/Akt/IKKβ and NFκB-dependent cyclin D1 expression for renal carcinoma cell proliferation by increased miR-21 levels. PMID:23981302

  7. Sevoflurane pretreatment enhance HIF-2α expression in mice after renal ischemia/reperfusion injury

    PubMed Central

    Zheng, Beijie; Zhan, Qionghui; Chen, Jue; Xu, Huan; He, Zhenzhou

    2015-01-01

    Ischemia/reperfusion (I/R) injury often occurs, which is one of the major causes of acute kidney injury, thus increasing in-hospital mortality. HIF-2α has a protective role against ischemia of the kidney. Renal ischemia/reperfusion under sevoflurane anesthesia resulted in drastic improvements in renal function. We hypothesized that underlying mechanism responsible for renal protection from sevoflurane pretreatment involves the upregulation of HIF-2α. Sevoflurane pretreatment were performed on WT and HIF-2α knockout mice before renal ischemia/reperfusion. Levels of blood urea nitrogen (BUN) and serum creatinine (Cr) were determined with a standard clinical automatic analyzer. The left kidneys were taken for morphological examination. Expression of HIF-2α in kidney tissue was examined by western blotting. In WT mice, group I/R injury had significantly higher BUN and Cr levels than group control, whereas group I/R + Sev had significantly lower BUN and Cr levels than group I/R injury. Renal HIF-2α expression levels were significantly higher in WT mice of group I/R + Sev than group control and group I/R. In HIF-2α-/- mice, group I/R + Sev showed much higher BUN and Cr levels and severer histological damage than group I/R and group control. Renal HIF-2α expression levels were significantly higher in WT mice of group I/R + Sev than group control and group I/R. Our findings suggested that HIF-2α might contribute to the beneficial effect of sevoflurane in renal ischemia/reperfusion injury. PMID:26722509

  8. Geometric Alteration of Renal Arteries After Fenestrated Grafting and the Impact on Renal Function.

    PubMed

    Ou, Jiale; Chan, Yiu-Che; Chan, Crystal Yin-Tung; Cheng, Stephen W K

    2017-05-01

    This study aims to investigate the degree of geometric change on renal arteries and its impact on renal function after fenestrated endovascular aortic repair (fEVAR). Twenty-five patients with fEVAR were included. There were 47 renal arteries target vessels, and 43 of these (22 left and 21 right vessels) stented successfully. Their preoperative and first postoperative follow-up computed tomography (CT) images were reconstructed using the Aquarius workstation (TeraRecon, San Mateo, CA, USA). The superior mesenteric artery (SMA) or celiac axis (if SMA was stented) was appointed as reference origin. The longitudinal orientation of a renal artery or a stent was represented by a takeoff angle (ToA) between the renal artery or stent and the distal abdominal aorta. The postoperative stent ToAs were compared with those of preoperative renal arteries. Preoperative and short-term postoperative serum creatinine levels were measured. Renal function impairment was indicated as a >30% or >2.0 mg/dL rise in serum creatinine compared to the preoperative level. The relationship between postoperative renal function impairment and the stent orientation or geometric changes in renal arteries was correlated. The patency rate of renal arteries was 100% at the first postoperative CT review. The average ToAs of both renal arteries were significantly enlarged after stenting (P < 0.05). Seven stent deformations (16.3%) in four patients (16.0%) were observed. They were attributed to caudal misalignment of the fenestrated stent graft (n = 6) or inaccurate graft sizing (n = 1). There was no stent fracture or target vessel loss. Postoperatively, nine patients (36.0%) at day 1 and 10 patients (41.7%) after 3 months suffered the renal function impairment. This was found not to be associated with the stent angulation or angular change of the renal arteries (both P > 0.05). The three patients with stent deformation due to misalignment suffered postoperative renal function impairment and

  9. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations

    PubMed Central

    Blázquez-Medela, Ana M.; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M.; Romero, Miguel; Duarte, Juan M.; López-Hernández, Francisco J.; López-Novoa, José M.; Martínez-Salgado, Carlos

    2015-01-01

    Abstract Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys. We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage. Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments. The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening. KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage. PMID:26469898

  10. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations.

    PubMed

    Blázquez-Medela, Ana M; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M; Romero, Miguel; Duarte, Juan M; López-Hernández, Francisco J; López-Novoa, José M; Martínez-Salgado, Carlos

    2015-10-01

    Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys.We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage.Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments.The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening.KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage.

  11. Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas.

    PubMed

    Arai, Eri; Gotoh, Masahiro; Tian, Ying; Sakamoto, Hiromi; Ono, Masaya; Matsuda, Akio; Takahashi, Yoriko; Miyata, Sayaka; Totsuka, Hirohiko; Chiku, Suenori; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Matsumoto, Kenji; Yamada, Tesshi; Yoshida, Teruhiko; Kanai, Yae

    2015-12-01

    CpG-island methylator phenotype (CIMP)-positive clear cell renal cell carcinomas (RCCs) are characterized by accumulation of DNA hypermethylation of CpG islands, clinicopathological aggressiveness and poor patient outcome. The aim of this study was to clarify the molecular pathways participating in CIMP-positive renal carcinogenesis. Genome (whole-exome and copy number), transcriptome and proteome (two-dimensional image converted analysis of liquid chromatography-mass spectrometry) analyses were performed using tissue specimens of 87 CIMP-negative and 14 CIMP-positive clear cell RCCs and corresponding specimens of non-cancerous renal cortex. Genes encoding microtubule-associated proteins, such as DNAH2, DNAH5, DNAH10, RP1 and HAUS8, showed a 10% or higher incidence of genetic aberrations (non-synonymous single-nucleotide mutations and insertions/deletions) in CIMP-positive RCCs, whereas CIMP-negative RCCs lacked distinct genetic characteristics. MetaCore pathway analysis of CIMP-positive RCCs revealed that alterations of mRNA or protein expression were significantly accumulated in six pathways, all participating in the spindle checkpoint, including the "The metaphase checkpoint (p = 1.427 × 10(-6))," "Role of Anaphase Promoting Complex in cell cycle regulation (p = 7.444 × 10(-6))" and "Spindle assembly and chromosome separation (p = 9.260 × 10(-6))" pathways. Quantitative RT-PCR analysis revealed that mRNA expression levels for genes included in such pathways, i.e., AURKA, AURKB, BIRC5, BUB1, CDC20, NEK2 and SPC25, were significantly higher in CIMP-positive than in CIMP-negative RCCs. All CIMP-positive RCCs showed overexpression of Aurora kinases, AURKA and AURKB, and this overexpression was mainly attributable to increased copy number. These data suggest that abnormalities of the spindle checkpoint pathway participate in CIMP-positive renal carcinogenesis, and that AURKA and AURKB may be potential therapeutic targets in more aggressive CIMP-positive RCCs.

  12. Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas

    PubMed Central

    Arai, Eri; Gotoh, Masahiro; Tian, Ying; Sakamoto, Hiromi; Ono, Masaya; Matsuda, Akio; Takahashi, Yoriko; Miyata, Sayaka; Totsuka, Hirohiko; Chiku, Suenori; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Matsumoto, Kenji; Yamada, Tesshi; Yoshida, Teruhiko

    2015-01-01

    CpG‐island methylator phenotype (CIMP)‐positive clear cell renal cell carcinomas (RCCs) are characterized by accumulation of DNA hypermethylation of CpG islands, clinicopathological aggressiveness and poor patient outcome. The aim of this study was to clarify the molecular pathways participating in CIMP‐positive renal carcinogenesis. Genome (whole‐exome and copy number), transcriptome and proteome (two‐dimensional image converted analysis of liquid chromatography‐mass spectrometry) analyses were performed using tissue specimens of 87 CIMP‐negative and 14 CIMP‐positive clear cell RCCs and corresponding specimens of non‐cancerous renal cortex. Genes encoding microtubule‐associated proteins, such as DNAH2, DNAH5, DNAH10, RP1 and HAUS8, showed a 10% or higher incidence of genetic aberrations (non‐synonymous single‐nucleotide mutations and insertions/deletions) in CIMP‐positive RCCs, whereas CIMP‐negative RCCs lacked distinct genetic characteristics. MetaCore pathway analysis of CIMP‐positive RCCs revealed that alterations of mRNA or protein expression were significantly accumulated in six pathways, all participating in the spindle checkpoint, including the “The metaphase checkpoint (p = 1.427 × 10−6),” “Role of Anaphase Promoting Complex in cell cycle regulation (p = 7.444 × 10−6)” and “Spindle assembly and chromosome separation (p = 9.260 × 10−6)” pathways. Quantitative RT‐PCR analysis revealed that mRNA expression levels for genes included in such pathways, i.e., AURKA, AURKB, BIRC5, BUB1, CDC20, NEK2 and SPC25, were significantly higher in CIMP‐positive than in CIMP‐negative RCCs. All CIMP‐positive RCCs showed overexpression of Aurora kinases, AURKA and AURKB, and this overexpression was mainly attributable to increased copy number. These data suggest that abnormalities of the spindle checkpoint pathway participate in CIMP‐positive renal carcinogenesis, and that AURKA and AURKB may be potential

  13. Expression of a functional asialoglycoprotein receptor in human renal proximal tubular epithelial cells.

    PubMed

    Seow, Ying-ying T; Tan, Michelle G K; Woo, Keng Thye

    2002-07-01

    The asialoglycoprotein receptor (ASGPR) is a C lectin which binds and endocytoses serum glycoproteins. In humans, the ASGPR is shown mainly to occur in hepatocytes, but does occur extrahepatically in thyroid, in small and large intestines, and in the testis. In the kidney, there has been evidence both for and against its existence in mesangial cells. Standard light microscopy examination of renal tissue stained with an antibody against the ASGPR was performed. The mRNA expression for the ASGPR H1 and H2 subunits in primary human renal proximal tubular epithelial cells (RPTEC), in the human proximal tubular epithelial cell line HK2, and in human renal cortex was investigated using reverse-transcribed nested polymerase chain reaction. ASGPR protein expression as well as ligand binding and uptake were also examined using confocal microscopy and flow cytometry (fluorescence-activated cell sorting). Light microscopy of paraffin renal biopsy sections stained with a polyclonal antibody against the ASGPR showed proximal tubular epithelial cell staining of the cytoplasm and particularly in the basolateral region. Renal cortex and RPTEC specifically have mRNA for both H1 and H2 subunits of the ASGPR, but HK2 only expresses mRNA for H1. Using a monoclonal antibody, the presence of the ASGPR in RPTEC was shown by fluorescence-activated cell sorting and immunofluorescent staining. Specific binding and uptake of fluorescein isothiocyanate labelled asialofetuin which is a specific ASGPR ligand was also demonstrated in RPTEC. Primary renal proximal tubular epithelial cells have a functional ASGPR, consisting of the H1 and H2 subunits, that is capable of specific ligand binding and uptake. Copyright 2002 S. Karger AG, Basel

  14. Type of Renal Replacement Therapy (Hemodialysis versus Peritoneal Dialysis) Does Not Affect Cytokine Gene Expression or Clinical Parameters of Renal Transplant Candidates

    PubMed Central

    Kamińska, Dorota; Kościelska-Kasprzak, Katarzyna; Chudoba, Paweł; Mazanowska, Oktawia; Banasik, Mirosław; Żabinska, Marcelina; Boratyńska, Maria; Lepiesza, Agnieszka; Korta, Krzysztof; Gomółkiewicz, Agnieszka; Dzięgiel, Piotr; Klinger, Marian

    2015-01-01

    Patients with renal failure suffer from immune disturbances, caused by uremic toxins and influenced by dialysis treatment. The aim of the present study was to reveal whether type of dialysis modality (hemodialysis, HD, versus peritoneal dialysis, PD) differentially affects the immunocompetence, particularly the expression of genes involved in the immune response. Material. 87 renal transplant candidates (66 HD, 21 PD) were included in the study. Methods. The peripheral blood RNA samples were obtained with the PAXgene Blood system just before transplantation. The gene expression of CASP3, FAS, TP53, FOXP3, IFNG, IL2, IL6, IL8, IL10, IL17, IL18, LCN2, TGFB1, and TNF was assessed with real-time PCR on custom-designed low density arrays (TaqMan). Gene expression data were analyzed in relation to pretransplant clinical parameters. Results. The mean expression of examined genes showed no significant differences between PD and HD with the exception of FAS, expression of which was 30% higher in PD patients compared to the HD group. There was nonsignificantly higher expression of proinflammatory cytokines in the PD group. The clinical inflammatory parameters (CRP, albumin, cholesterol, and hemoglobin levels) did not differ between the groups. Conclusion. Type of renal replacement therapy exerts no differential effect on cytokine gene expression or inflammatory clinical parameters. PMID:26236736

  15. Deregulation of PAX2 expression in renal cell tumours: mechanisms and potential use in differential diagnosis

    PubMed Central

    Patrício, Patrícia; Ramalho-Carvalho, João; Costa-Pinheiro, Pedro; Almeida, Mafalda; Barros-Silva, João Diogo; Vieira, Joana; Dias, Paula Cristina; Lobo, Francisco; Oliveira, Jorge; Teixeira, Manuel R; Henrique, Rui; Jeronimo, Carmen

    2013-01-01

    Expression of PAX2 (Paired-box 2) is suppressed through promoter methylation at the later stages of embryonic development, but eventually reactivated during carcinogenesis. Pax-2 is commonly expressed in the most prevalent renal cell tumour (RCT) subtypes—clear cell RCC (ccRCC), papillary RCC (pRCC) and oncocytoma—but not in chromophobe RCC (chrRCC), which frequently displays chromosome 10 loss (to which PAX2 is mapped). Herein, we assessed the epigenetic and/or genetic alterations affecting PAX2 expression in RCTs and evaluated its potential as biomarker. We tested 120 RCTs (30 of each main subtype) and four normal kidney tissues. Pax-2 expression was assessed by immunohistochemistry and PAX2 mRNA expression levels were determined by quantitative RT-PCR. PAX2 promoter methylation status was assessed by methylation-specific PCR and bisulfite sequencing. Chromosome 10 and PAX2 copy number alterations were determined by FISH. Pax-2 immunoexpression was significantly lower in chrRCC compared to other RCT subtypes. Using a 10% immunoexpression cut-off, Pax-2 immunoreactivity discriminated chrRCC from oncocytoma with 67% sensitivity and 90% specificity. PAX2 mRNA expression was significantly lower in chrRCC, compared to ccRCC, pRCC and oncocytoma, and transcript levels correlated with immunoexpression. Whereas no promoter methylation was found in RCTs or normal kidney, 69% of chrRCC displayed chromosome 10 monosomy, correlating with Pax-2 immunoexpression. We concluded that Pax-2 expression might be used as an ancillary tool to discriminate chrRCC from oncocytomas with overlapping morphological features. The biological rationale lies on the causal relation between Pax-2 expression and chromosome 10 monosomy, but not PAX2 promoter methylation, in chrRCC. PMID:23890189

  16. Deregulation of PAX2 expression in renal cell tumours: mechanisms and potential use in differential diagnosis.

    PubMed

    Patrício, Patrícia; Ramalho-Carvalho, João; Costa-Pinheiro, Pedro; Almeida, Mafalda; Barros-Silva, João Diogo; Vieira, Joana; Dias, Paula Cristina; Lobo, Francisco; Oliveira, Jorge; Teixeira, Manuel R; Henrique, Rui; Jeronimo, Carmen

    2013-08-01

    Expression of PAX2 (Paired-box 2) is suppressed through promoter methylation at the later stages of embryonic development, but eventually reactivated during carcinogenesis. Pax-2 is commonly expressed in the most prevalent renal cell tumour (RCT) subtypes-clear cell RCC (ccRCC), papillary RCC (pRCC) and oncocytoma--but not in chromophobe RCC (chrRCC), which frequently displays chromosome 10 loss (to which PAX2 is mapped). Herein, we assessed the epigenetic and/or genetic alterations affecting PAX2 expression in RCTs and evaluated its potential as biomarker. We tested 120 RCTs (30 of each main subtype) and four normal kidney tissues. Pax-2 expression was assessed by immunohistochemistry and PAX2 mRNA expression levels were determined by quantitative RT-PCR. PAX2 promoter methylation status was assessed by methylation-specific PCR and bisulfite sequencing. Chromosome 10 and PAX2 copy number alterations were determined by FISH. Pax-2 immunoexpression was significantly lower in chrRCC compared to other RCT subtypes. Using a 10% immunoexpression cut-off, Pax-2 immunoreactivity discriminated chrRCC from oncocytoma with 67% sensitivity and 90% specificity. PAX2 mRNA expression was significantly lower in chrRCC, compared to ccRCC, pRCC and oncocytoma, and transcript levels correlated with immunoexpression. Whereas no promoter methylation was found in RCTs or normal kidney, 69% of chrRCC displayed chromosome 10 monosomy, correlating with Pax-2 immunoexpression. We concluded that Pax-2 expression might be used as an ancillary tool to discriminate chrRCC from oncocytomas with overlapping morphological features. The biological rationale lies on the causal relation between Pax-2 expression and chromosome 10 monosomy, but not PAX2 promoter methylation, in chrRCC. © 2013 The Authors. Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  17. Klotho Prevents Renal Calcium Loss

    PubMed Central

    Alexander, R. Todd; Woudenberg-Vrenken, Titia E.; Buurman, Jan; Dijkman, Henry; van der Eerden, Bram C. J.; van Leeuwen, Johannes P.T.M.; Bindels, René J.

    2009-01-01

    Disturbed calcium (Ca2+) homeostasis, which is implicit to the aging phenotype of klotho-deficient mice, has been attributed to altered vitamin D metabolism, but alternative possibilities exist. We hypothesized that failed tubular Ca2+ absorption is primary, which causes increased urinary Ca2+ excretion, leading to elevated 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and its sequelae. Here, we assessed intestinal Ca2+ absorption, bone densitometry, renal Ca2+ excretion, and renal morphology via energy-dispersive x-ray microanalysis in wild-type and klotho−/− mice. We observed elevated serum Ca2+ and fractional excretion of Ca2+ (FECa) in klotho−/− mice. Klotho−/− mice also showed intestinal Ca2+ hyperabsorption, osteopenia, and renal precipitation of calcium-phosphate. Duodenal mRNA levels of transient receptor potential vanilloid 6 (TRPV6) and calbindin-D9K increased. In the kidney, klotho−/− mice exhibited increased expression of TRPV5 and decreased expression of the sodium/calcium exchanger (NCX1) and calbindin-D28K, implying a failure to absorb Ca2+ through the distal convoluted tubule/connecting tubule (DCT/CNT) via TRPV5. Gene and protein expression of the vitamin D receptor (VDR), 25-hydroxyvitamin D-1-α-hydroxylase (1αOHase), and calbindin-D9K excluded renal vitamin D resistance. By modulating the diet, we showed that the renal Ca2+ wasting was not secondary to hypercalcemia and/or hypervitaminosis D. In summary, these findings illustrate a primary defect in tubular Ca2+ handling that contributes to the precipitation of calcium-phosphate in DCT/CNT. This highlights the importance of klotho to the prevention of renal Ca2+ loss, secondary hypervitaminosis D, osteopenia, and nephrocalcinosis. PMID:19713312

  18. Altered metabolic pathways in clear cell renal cell carcinoma: A meta-analysis and validation study focused on the deregulated genes and their associated networks

    PubMed Central

    Zaravinos, Apostolos; Pieri, Myrtani; Mourmouras, Nikos; Anastasiadou, Natassa; Zouvani, Ioanna; Delakas, Dimitris; Deltas, Constantinos

    2014-01-01

    Clear cell renal cell carcinoma (ccRCC) is the predominant subtype of renal cell carcinoma (RCC). It is one of the most therapy-resistant carcinomas, responding very poorly or not at all to radiotherapy, hormonal therapy and chemotherapy. A more comprehensive understanding of the deregulated pathways in ccRCC can lead to the development of new therapies and prognostic markers. We performed a meta- analysis of 5 publicly available gene expression datasets and identified a list of co- deregulated genes, for which we performed extensive bioinformatic analysis coupled with experimental validation on the mRNA level. Gene ontology enrichment showed that many proteins are involved in response to hypoxia/oxygen levels and positive regulation of the VEGFR signaling pathway. KEGG analysis revealed that metabolic pathways are mostly altered in ccRCC. Similarly, Ingenuity Pathway Analysis showed that the antigen presentation, inositol metabolism, pentose phosphate, glycolysis/gluconeogenesis and fructose/mannose metabolism pathways are altered in the disease. Cellular growth, proliferation and carbohydrate metabolism, were among the top molecular and cellular functions of the co-deregulated genes. qRT-PCR validated the deregulated expression of several genes in Caki-2 and ACHN cell lines and in a cohort of ccRCC tissues. NNMT and NR3C1 increased expression was evident in ccRCC biopsies from patients using immunohistochemistry. ROC curves evaluated the diagnostic performance of the top deregulated genes in each dataset. We show that metabolic pathways are mostly deregulated in ccRCC and we highlight those being most responsible in its formation. We suggest that these genes are candidate predictive markers of the disease. PMID:25594006

  19. Microalbuminuria and early renal response to lethal dose Shiga toxin type 2 in rats.

    PubMed

    Ochoa, Federico; Oltra, Gisela; Gerhardt, Elizabeth; Hermes, Ricardo; Cohen, Lilian; Damiano, Alicia E; Ibarra, Cristina; Lago, Nestor R; Zotta, Elsa

    2012-01-01

    In Argentina, hemolytic uremic syndrome (HUS) constitutes the most frequent cause of acute renal failure in children. Approximately 2%-4% of patients die during the acute phase, and one-third of the 96% who survive are at risk of chronic renal sequelae. Little information is available about the direct effect of Shiga toxin type 2 (Stx2) on the onset of proteinuria and the evolution of toxin-mediated glomerular or tubular injury. In this work, rats were injected intraperitoneally with recombinant Escherichia coli culture supernatant containing Stx2 (sStx2; 20 μg/kg body weight) to induce HUS. Functional, immunoblotting, and immunohistochemistry studies were carried out to determine alterations in slit diaphragm proteins and the proximal tubule endocytic system at 48 hours post-inoculation. We detected a significant increase in microalbuminuria, without changes in the proteinuria values compared to the control rats. In immunoperoxidase studies, the renal tubules and glomerular mesangium showed an increased expression of transforming growth factor β(1)(TGF-β(1)). The expression of megalin was decreased by immunoperoxidase and the cytoplasm showed a granular pattern of megalin expression by immunofluorescence techniques. Western blot analysis performed in the renal cortex from sStx2-treated and control rats using anti-nephrin and anti-podocalyxin antibodies showed a decreased expression of these proteins. We suggest that the alterations in slit diaphragm proteins and megalin expression could be related to the development of microalbuminuria in response to lethal doses of Stx2.

  20. Functions of the Renal Nerves.

    ERIC Educational Resources Information Center

    Koepke, John P.; DiBona, Gerald F.

    1985-01-01

    Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…

  1. Corneal Endothelial Alterations in Chronic Renal Failure.

    PubMed

    Sati, Alok; Jha, Ashok; Moulick, P S; Shankar, Sandeep; Gupta, Sandeep; Khan, M A; Dogra, Manu; Sangwan, Virender S

    2016-10-01

    To evaluate the corneal endothelial changes in patients with chronic renal failure. A total of 128 corneas of 128 subjects were studied, and 3 groups were formed. The first, the dialyzed group, composed of 32 corneas of 32 patients; the second, the nondialyzed group, composed of 34 corneas of 34 patients; and the third, the age-matched control group, composed of 64 corneas of 64 healthy subjects were examined by a specular microscope and the endothelial parameters were compared. The dialyzed group (enhanced level of toxins in the blood) was further analyzed to assess the influence of blood urea, serum creatinine, serum calcium, and serum phosphorus including the duration of dialysis on corneal endothelium. On comparing the 3 groups using analysis of variance and posthoc tests, a significant difference was found in the central corneal thickness (CCT) and endothelial cell density (CD) between the control (CCT: 506 ± 29 μm, CD: 2760 ± 304 cells/mm) and dialyzed groups (CCT: 549 ± 30 μm, CD: 2337 ± 324 cells/mm) [P < 0.001 (CCT); P < 0.001 (CD)]; control and nondialyzed groups (CCT: 524 ± 27 μm, CD: 2574 ± 260 cells/mm) [P = 0.023 (CCT); P = 0.016 (CD)]; and dialyzed and nondialyzed groups [P = 0.002 (CCT); P = 0.007 (CD)]. Using the linear generalized model, a significant correlation was found between the endothelial parameters and blood urea only [P = 0.006 (CCT), 0.002 (coefficient of variation), 0.022 (CD), and 0.026 (percentage of hexagonality)], although the correlation was poorly positive for CCT but poorly negative for the remaining endothelial parameters. Corneal endothelial alteration is present in patients with chronic renal failure, more marked in patients undergoing hemodialysis and with raised blood urea level.

  2. Renal dopaminergic system: Pathophysiological implications and clinical perspectives

    PubMed Central

    Choi, Marcelo Roberto; Kouyoumdzian, Nicolás Martín; Rukavina Mikusic, Natalia Lucía; Kravetz, María Cecilia; Rosón, María Inés; Rodríguez Fermepin, Martín; Fernández, Belisario Enrique

    2015-01-01

    Fluid homeostasis, blood pressure and redox balance in the kidney are regulated by an intricate interaction between local and systemic anti-natriuretic and natriuretic systems. Intrarenal dopamine plays a central role on this interactive network. By activating specific receptors, dopamine promotes sodium excretion and stimulates anti-oxidant and anti-inflammatory pathways. Different pathological scenarios where renal sodium excretion is dysregulated, as in nephrotic syndrome, hypertension and renal inflammation, can be associated with impaired action of renal dopamine including alteration in biosynthesis, dopamine receptor expression and signal transduction. Given its properties on the regulation of renal blood flow and sodium excretion, exogenous dopamine has been postulated as a potential therapeutic strategy to prevent renal failure in critically ill patients. The aim of this review is to update and discuss on the most recent findings about renal dopaminergic system and its role in several diseases involving the kidneys and the potential use of dopamine as a nephroprotective agent. PMID:25949933

  3. Effects of mechanical ventilation on gene expression profiles in renal allografts from brain dead rats.

    PubMed

    Hottenrott, Maximilia C; Krebs, Joerg; Pelosi, Paolo; Luecke, Thomas; Rocco, Patricia R M; Sticht, Carsten; Breedijk, Annette; Yard, Benito; Tsagogiorgas, Charalambos

    2017-12-01

    Pathophysiological changes of brain death (BD) are impairing distal organ function and harming potential renal allografts. Whether ventilation strategies influence the quality of renal allografts from BD donors has not been thoroughly studied. 28 adult male Wistar rats were randomly assigned to four groups: 1) no brain death (NBD) with low tidal volume/low positive endexpiratory pressure (PEEP) titrated to minimal static elastance of the respiratory system (LVT/OLPEEP); 2) NBD with high tidal volume/low PEEP (HVT/LPEEP); 3) brain death (BD) with LVT/OLPEEP; and 4) BD with HVT/LPEEP. We hypothesized that HVT/LPEEP in BD leads to increased interleukin 6 (IL-6) gene expression and impairs potential renal allografts after six hours of mechanical ventilation. We assessed inflammatory cytokines in serum, genome wide gene expression profiles and quantitative PCR (qPCR) in kidney tissue. The influence of BD on renal gene-expression profiles was greater than the influence of the ventilation strategy. In BD, LVT ventilation did not influence the inflammatory parameters or kidney function in our experimental model. Copyright © 2017. Published by Elsevier B.V.

  4. Prognostic and predictive value of VHL gene alteration in renal cell carcinoma: a meta-analysis and review.

    PubMed

    Kim, Bum Jun; Kim, Jung Han; Kim, Hyeong Su; Zang, Dae Young

    2017-02-21

    The von Hippel-Lindau (VHL) gene is often inactivated in sporadic renal cell carcinoma (RCC) by mutation or promoter hypermethylation. The prognostic or predictive value of VHL gene alteration is not well established. We conducted this meta-analysis to evaluate the association between the VHL alteration and clinical outcomes in patients with RCC. We searched PUBMED, MEDLINE and EMBASE for articles including following terms in their titles, abstracts, or keywords: 'kidney or renal', 'carcinoma or cancer or neoplasm or malignancy', 'von Hippel-Lindau or VHL', 'alteration or mutation or methylation', and 'prognostic or predictive'. There were six studies fulfilling inclusion criteria and a total of 633 patients with clear cell RCC were included in the study: 244 patients who received anti-vascular endothelial growth factor (VEGF) therapy in the predictive value analysis and 419 in the prognostic value analysis. Out of 663 patients, 410 (61.8%) had VHL alteration. The meta-analysis showed no association between the VHL gene alteration and overall response rate (relative risk = 1.47 [95% CI, 0.81-2.67], P = 0.20) or progression free survival (hazard ratio = 1.02 [95% CI, 0.72-1.44], P = 0.91) in patients with RCC who received VEGF-targeted therapy. There was also no correlation between the VHL alteration and overall survival (HR = 0.80 [95% CI, 0.56-1.14], P = 0.21). In conclusion, this meta-analysis indicates that VHL gene alteration has no prognostic or predictive value in patients with clear cell RCC.

  5. Exacerbation of Diabetic Renal Alterations in Mice Lacking Vasohibin-1

    PubMed Central

    Hinamoto, Norikazu; Maeshima, Yohei; Yamasaki, Hiroko; Nasu, Tatsuyo; Saito, Daisuke; Watatani, Hiroyuki; Ujike, Haruyo; Tanabe, Katsuyuki; Masuda, Kana; Arata, Yuka; Sugiyama, Hitoshi; Sato, Yasufumi; Makino, Hirofumi

    2014-01-01

    development of diabetic renal alterations, partly via direct effects on podocytes, and thus, a strategy to recover VASH1 might potentially lead to the development of a novel therapeutic approach for diabetic nephropathy. PMID:25255225

  6. Losartan prevents the imbalance between renal dopaminergic and renin angiotensin systems induced by fructose overload. L-dopa/dopamine index as new potential biomarker of renal dysfunction.

    PubMed

    Mikusic, Natalia Lucía Rukavina; Kouyoumdzian, Nicolás Martín; Uceda, Ana; Del Mauro, Julieta Sofía; Pandolfo, Marcela; Gironacci, Mariela Mercedes; Puyó, Ana María; Toblli, Jorge Eduardo; Fernández, Belisario Enrique; Choi, Marcelo Roberto

    2018-05-01

    The renin angiotensin system (RAS) and the renal dopaminergic system (RDS) act as autocrine and paracrine systems to regulate renal sodium management and inflammation and their alterations have been associated to hypertension and renal damage. Nearly 30-50% of hypertensive patients have insulin resistance (IR), with a strong correlation between hyperinsulinemia and microalbuminuria. The aim of this study was to demonstrate the existence of an imbalance between RAS and RDS associated to IR, hypertension and kidney damage induced by fructose overload (FO), as well as to establish their prevention, by pharmacological inhibition of RAS with losartan. Ninety-six male Sprague-Dawley rats were randomly divided into four groups and studied at 4, 8 and 12 weeks: control group (C4, C8 and C12; tap water to drink); fructose-overloaded group (F4, F8 and F12; 10% w/v fructose solution to drink); losartan-treated control (L) group (L4, L8 and L12; losartan 30 mg/kg/day, in drinking water); and fructose-overloaded plus losartan group (F + L4, F + L8 and F + L12, in fructose solution). FO induced metabolic and hemodynamic alterations as well as an imbalance between RAS and RDS, characterized by increased renal angiotensin II levels and AT 1 R overexpression, reduced urinary excretion of dopamine, increased excretion of L-dopa (increased L-dopa/dopamine index) and down-regulation of D 1 R and tubular dopamine transporters OCT-2, OCT-N1 and total OCTNs. This imbalance was accompanied by an overexpression of renal tubular Na + , K + -ATPase, pro-inflammatory (NF-kB, TNF-α, IL-6) and pro-fibrotic (TGF-β1 and collagen) markers and by renal damage (microalbuminuria and reduced nephrin expression). Losartan prevented the metabolic and hemodynamic alterations induced by FO from week 4. Increased urinary L-dopa/dopamine index and decreased D 1 R renal expression associated to FO were also prevented by losartan since week 4. The same pattern was observed for renal

  7. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma.

    PubMed

    Ambrosio, Maria R; Rocca, Bruno J; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T; Tripodi, Sergio A; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis.

  8. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma

    PubMed Central

    Ambrosio, Maria R.; Rocca, Bruno J.; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T.; Tripodi, Sergio A.; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis. PMID:26425551

  9. [Pathologic changes and expression of Heme oxygenase-1 in paraquat-induced renal injury].

    PubMed

    Tian, Ying-ping; Liu, Fu-rong; Tong, Fei; Shi, Han-wen; Yao, Dong-qi

    2009-08-01

    To study the mechanism of paraquat-induced renal injury in rats. Adult healthy Sprague-Dawley (SD) rats (female and male in half) were randomly divided into two groups, the control group and the paraquat poisoned group. The rats in the paraquat poisoned group were treated with PQ (25 mg/kg) intraperitoneally while the rats in the control group were treated with the same dose of normal saline. Its histopathological change was observed and the expression of HO-1 and the mRNA expression of HO-1 were detected by RT-PCR at 3rd h, 6th h, 12th h, on 1st d, 2nd d, 3rd d and 5th d. (1) In the control group, the tissue structure was clear without edema, vacuolar degeneration, cloudy swelling and necrosis. In the paraquat poisoned group, there were obvious lesions in the renal tubule of cortical part, including cellular swelling, the narrow cannula, the mesenchymal congestion and edema. These pathologic changes gradually became more severe, reached the peak on the 1st day, and did not relieve until the end of this study; there was the karyopyknosis and the cyto-architecture disappeared in some severe cases; Some glomerulus and medulla were also involved. (2) In the control group, there was no or weak expression of HO-1 and HO-1 mRNA. At the 3rd hour, the expressions of HO-1 in the paraquat poisoned group were observed in the membrane and cytoplasm of renal tubular epithelial cell of cortical part. Immunohistochemistry score (IHS) in the paraquat poisoned group was higher than that in the control group (P<0.05), except the HIS of the 5th day. At the 3rd hour, the expression of HO-1 mRNA increased, reached the peak on the 1st day, and then decreased. The expression of HO-1 mRNA was (0.53 +/- 0.21), (0.55 +/- 0.31), (0.56 +/- 0.22), (0.64 +/- 0.14) and (0.43 +/- 0.25) at the time point other than on the 3rd and 5th day. It showed statistical difference between the paraquat poisoned group and the control group from the 3rd hour to the 2nd day (P<0.05). The mechanism of paraquat

  10. Roles of mitogen-activated protein kinases and angiotensin II in renal development.

    PubMed

    Balbi, A P C; Francescato, H D C; Marin, E C S; Costa, R S; Coimbra, T M

    2009-01-01

    Experimental and clinical evidence suggests that angiotensin II (AII) participates in renal development. Renal AII content is several-fold higher in newborn rats and mice than in adult animals. AII receptors are also expressed in higher amounts in the kidneys of newborn rats. The kidneys of fetuses whose mother received a type 1 AII receptor (AT1) antagonist during gestation present several morphological alterations. Mutations in genes that encode components of the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Morphological changes were detected in the kidneys of 3-week-old angiotensin-deficient mice. Mitogen-activated protein kinases (MAPKs) are important mediators that transduce extracellular stimuli to intracellular responses. The MAPK family comprises three major subgroups, namely extracellular signal-regulated protein kinase (ERK), c-jun N-terminal kinases (JNK), and p38 MAPK (p38). Important events in renal growth during nephrogenesis such as cellular proliferation and differentiation accompanied by apoptosis on a large scale can be mediated by MAPK pathways. A decrease in glomerulus number was observed in embryos cultured for 48 and 120 h with ERK or p38 inhibitors. Many effects of AII are mediated by MAPK pathways. Treatment with losartan during lactation provoked changes in renal function and structure associated with alterations in AT1 and type 2 AII (AT2) receptors and p-JNK and p-p38 expression in the kidney. Several studies have shown that AII and MAPKs play an important role in renal development. However, the relationship between the effects of AII and MAPK activation on renal development is still unclear.

  11. Different expression patterns of renal Na+/K+-ATPase α-isoform-like proteins between tilapia and milkfish following salinity challenges.

    PubMed

    Yang, Wen-Kai; Chung, Chang-Hung; Cheng, Hui Chen; Tang, Cheng-Hao; Lee, Tsung-Han

    2016-12-01

    Euryhaline teleosts can survive in a broad range of salinity via alteration of the molecular mechanisms in certain osmoregulatory organs, including in the gill and kidney. Among these mechanisms, Na + /K + -ATPase (NKA) plays a crucial role in triggering ion-transporting systems. The switch of NKA isoforms in euryhaline fish gills substantially contributes to salinity adaptation. However, there is little information about switches in the kidneys of euryhaline teleosts. Therefore, the responses of the renal NKA α-isoform protein switch to salinity challenge in euryhaline tilapia (Oreochromis mossambicus) and milkfish (Chanos chanos) with different salinity preferences were examined and compared in this study. Immunohistochemical staining in tilapia kidneys revealed the localization of NKA in renal tubules rather than in the glomeruli, similar to our previous findings in milkfish kidneys. Protein abundance in the renal NKA pan α-subunit-like, α1-, and α3-isoform-like proteins in seawater-acclimated tilapia was significantly higher than in the freshwater group, whereas the α2-isoform-like protein exhibited the opposite pattern of expression. In the milkfish, higher protein abundance in the renal NKA pan α-subunit-like and α1-isoform-like proteins was found in freshwater-acclimated fish, whereas no difference was found in the protein abundance of α2- and α3-isoform-like proteins between groups. These findings suggested that switches for renal NKA α-isoforms, especially the α1-isoform, were involved in renal osmoregulatory mechanisms of euryhaline teleosts. Moreover, differences in regulatory responses of the renal NKA α-subunit to salinity acclimation between tilapia and milkfish revealed that divergent mechanisms for maintaining osmotic balance might be employed by euryhaline teleosts with different salinity preferences. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Cytoplasmic expression of Twist1, an EMT-related transcription factor, is associated with higher grades renal cell carcinomas and worse progression-free survival in clear cell renal cell carcinoma.

    PubMed

    Rasti, Arezoo; Madjd, Zahra; Abolhasani, Maryam; Mehrazma, Mitra; Janani, Leila; Saeednejad Zanjani, Leili; Asgari, Mojgan

    2018-05-01

    Twist1 is a key transcription factor, which confers tumor cells with cancer stem cell (CSC)-like characteristics and enhances epithelial-mesenchymal transition in pathological conditions including tumor malignancy and metastasis. This study aimed to evaluate the expression patterns and clinical significance of Twist1 in renal cell carcinoma (RCC). The cytoplasmic and nuclear expression of Twist1 were examined in 252 well-defined renal tumor tissues, including 173 (68.7%) clear cell renal cell carcinomas (ccRCC), 45 (17.9%) papillary renal cell carcinomas (pRCC) and 34 (13.5%) chromophobe renal cell carcinoma, by immunohistochemistry on a tissue microarray. The association between expression of this marker and clinicopathologic parameters and survival outcomes were then analyzed. Twist1 was mainly localized to the cytoplasm of tumor cells (98.8%). Increased cytoplasmic expression of Twist1 was associated with higher grade tumors (P = 0.045), renal vein invasion (P = 0.031) and microvascular invasion (P = 0.044) in RCC. It was positively correlated with higher grade tumors (P = 0.026), shorter progression-free survival time (P = 0.027) in patients with ccRCC, and also with higher stage in pRCC patients (P = 0.036). Significantly higher cytoplasmic expression levels of Twist1 were found in ccRCC and pRCC subtypes, due to their more aggressive tumor behavior. Increased cytoplasmic expression of Twist1 had a critical role in worse prognosis in ccRCC. These findings suggest that cytoplasmic, rather than nuclear expression of Twist1 can be considered as a prognostic and therapeutic marker for targeted therapy of RCC, especially for ccRCC patients.

  13. Autocrine CSF-1 and CSF-1 Receptor Co-expression Promotes Renal Cell Carcinoma Growth

    PubMed Central

    Menke, Julia; Kriegsmann, Jörg; Schimanski, Carl Christoph; Schwartz, Melvin M.; Schwarting, Andreas; Kelley, Vicki R.

    2011-01-01

    Renal cell carcinoma is increasing in incidence but the molecular mechanisms regulating its growth remain elusive. Co-expression of the monocytic growth factor CSF-1 and its receptor CSF-1R on renal tubular epithelial cells (TEC) will promote proliferation and anti-apoptosis during regeneration of renal tubules. Here we show that a CSF-1-dependent autocrine pathway is also responsible for the growth of renal cell carcinoma (RCC). CSF-1 and CSF-1R were co-expressed in RCC and TEC proximally adjacent to RCC. CSF-1 engagement of CSF-1R promoted RCC survival and proliferation and reduced apoptosis, in support of the likelihood that CSF-1R effector signals mediate RCC growth. In vivo CSF-1R blockade using a CSF-1R tyrosine kinase inhibitor decreased RCC proliferation and macrophage infiltration in a manner associated with a dramatic reduction in tumor mass. Further mechanistic investigations linked CSF-1 and EGF signaling in RCC. Taken together, our results suggest that budding RCC stimulates the proximal adjacent microenvironment in the kidney to release mediators of CSF-1, CSF-1R and EGF expression in RCC. Further, our findings imply that targeting CSF-1/CSF-1R signaling may be therapeutically effective in RCC. PMID:22052465

  14. Effect of dietary protein restriction on renal ammonia metabolism

    PubMed Central

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Guo, Hui; Verlander, Jill W.

    2015-01-01

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction. PMID:25925252

  15. Restoration of podocyte structure and improvement of chronic renal disease in transgenic mice overexpressing renin.

    PubMed

    Huby, Anne-Cécile; Rastaldi, Maria-Pia; Caron, Kathleen; Smithies, Oliver; Dussaule, Jean-Claude; Chatziantoniou, Christos

    2009-08-21

    Proteinuria is a major marker of the decline of renal function and an important risk factor of coronary heart disease. Elevated proteinuria is associated to the disruption of slit-diaphragm and loss of podocyte foot processes, structural alterations that are considered irreversible. The objective of the present study was to investigate whether proteinuria can be reversed and to identify the structural modifications and the gene/protein regulation associated to this reversal. We used a novel transgenic strain of mouse (RenTg) that overexpresses renin at a constant high level. At the age of 12-month, RenTg mice showed established lesions typical of chronic renal disease such as peri-vascular and periglomerular inflammation, glomerular ischemia, glomerulosclerosis, mesangial expansion and tubular dilation. Ultrastructural analysis indicated abnormal heterogeneity of basement membrane thickness and disappearance of podocyte foot processes. These structural alterations were accompanied by decreased expressions of proteins specific of podocyte (nephrin, podocin), or tubular epithelial cell (E-cadherin and megalin) integrity. In addition, since TGFbeta is considered the major pro-fibrotic agent in renal disease and since exogenous administration of BMP7 is reported to antagonize the TGFbeta-induced phenotype changes in kidney, we have screened the expressions of several genes belonging in the TGFbeta/BMP superfamily. We found that the endogenous inhibitors of BMPs such as noggin and Usag-1 were several-fold activated inhibiting the action of BMPs and thus reinforcing the deleterious action of TGFbeta.Treatment with an AT1 receptor antagonist, at dose that did not decrease arterial pressure, gradually reduced albuminuria. This decrease was accompanied by re-expression of podocin, nephrin, E-cadherin and megalin, and reappearance of podocyte foot processes. In addition, expressions of noggin and Usag-1 were markedly decreased, permitting thus activation of the beneficial

  16. Persistent oxidative stress following renal ischemia-reperfusion injury increases ANG II hemodynamic and fibrotic activity

    PubMed Central

    Leonard, Ellen C.; Beal, Alisa G.; Schleuter, Devin; Friedrich, Jessica

    2012-01-01

    ANG II is a potent renal vasoconstrictor and profibrotic factor and its activity is enhanced by oxidative stress. We sought to determine whether renal oxidative stress was persistent following recovery from acute kidney injury (AKI) induced by ischemia-reperfusion (I/R) injury in rats and whether this resulted in increased ANG II sensitivity. Rats were allowed to recover from bilateral renal I/R injury for 5 wk and renal blood flow responses were measured. Post-AKI rats showed significantly enhanced renal vasoconstrictor responses to ANG II relative to sham-operated controls and treatment of AKI rats with apocynin (15 mM, in the drinking water) normalized these responses. Recovery from AKI for 5 wk resulted in sustained oxidant stress as indicated by increased dihydroethidium incorporation in renal tissue slices and was normalized in apocynin-treated rats. Surprisingly, the renal mRNA expression for common NADPH oxidase subunits was not altered in kidneys following recovery from AKI; however, mRNA screening using PCR arrays suggested that post-AKI rats had decreased renal Gpx3 mRNA and an increased expression other prooxidant genes such as lactoperoxidase, myeloperoxidase, and dual oxidase-1. When rats were infused for 7 days with ANG II (100 ng·kg−1·min−1), renal fibrosis was not apparent in sham-operated control rats, but it was enhanced in post-AKI rats. The profibrotic response was significantly attenuated in rats treated with apocynin. These data suggest that there is sustained renal oxidant stress following recovery from AKI that alters both renal hemodynamic and fibrotic responses to ANG II, and may contribute to the transition to chronic kidney disease following AKI. PMID:22442209

  17. Elsholtzia ciliata (Thunb.) Hylander attenuates renal inflammation and interstitial fibrosis via regulation of TGF-ß and Smad3 expression on unilateral ureteral obstruction rat model.

    PubMed

    Kim, Tae-Won; Kim, Young-Jung; Seo, Chang-Seob; Kim, Hyun-Tae; Park, Se-Ra; Lee, Mee-Young; Jung, Ju-Young

    2016-04-15

    Renal interstitial fibrosis is characterized by excessive accumulation of extracellular matrix, which leads to end-stage renal failure. The aim of this study was to explore the effect of Elsholtzia ciliata (Thunb.) Hylander ethanol extract (ECE) on renal interstitial fibrosis induced by unilateral ureteral obstruction (UUO). After quantitative analysis of ECE using the high performance liquid chromatography-photodiode array (HPLC-PDA) method, an in vitro study was performed to assess the anti-inflammatory and anti-fibrotic effects of ECE, using lipopolysaccharide (LPS) and transforming growth factor-ß (TGF-ß), respectively. For in vivo study, all male Sprague Dawley (SD) rats (n=10/group), except for those in the control group, underwent UUO. The rats were orally treated with water (control), captopril (positive control, 200 mg/kg), and ECE (300 and 500 mg/kg) for 14 days. In ECE, luteolin and rosmarinic acid were relatively abundant among the other flavonoids and phenolic acids. ECE treatment ameliorated LPS-induced overexpression of nuclear factor-κB, tumor necrosis factor (TNF-α), and interleukin-6 and improved oxidative stress in RAW 264.7 cells. Furthermore, ECE treatment suppressed TGF-ß-induced α-smooth muscle actin and matrix metalloproteinase 9 expression in human renal mesangial cells. In the UUO model, 14 consecutive days of ECE treatment improved UUO-induced renal damage and attenuated histopathological alterations and interstitial fibrosis. Moreover, the renal expression of TNF-α, TGF-ß, and Smad 3 were inhibited by ECE treatment. Taken together, the effects of ECE may be mediated by blocking the activation of TGF-ß and inflammatory cytokines, leading subsequently to degradation of the ECM accumulation pathway. Based on these findings, ECE might serve as an improved treatment strategy for renal fibrotic disease. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Alterations of type IV collagen alpha chains in patients with chronic acquired glomerulopathies: mRNA levels, protein expression and urinary loss.

    PubMed

    Sanna-Cherchi, Simone; Carnevali, Maria Luisa; Martorana, Davide; Cravedi, Paolo; Maggiore, Umberto; Alinovi, Rossella; Bovino, Achiropita; Mattei, Silvia; Orlandini, Guido; Gatti, Rita; Savi, Mario; Sado, Yoshikazu; Neri, Tauro M; Allegri, Landino

    2007-01-01

    Type IV collagen is a major structural component of the normal kidney glomerulus. However, its role in chronic acquired glomerulopathies has been only partially elucidated. Urinary levels of col(IV)alpha1, col(IV)alpha3 and col(IV)alpha5 collagen chains were analyzed in 107 patients with chronic acquired glomerulopathies. In a subgroup of 33 patients, tissue mRNA levels, protein expression and urinary excretion were evaluated for all col(IV)alpha chains, from col(IV)alpha1 to col(IV)alpha5. The renal specimens were examined to get a semiquantitative score of the acute and chronic activity of the histological lesions. Urines obtained from 13 healthy subjects and 10 normal renal tissue samples were used as controls. Urinary levels of col(IV)alpha1, col(IV)alpha3, col(IV)alpha5 chains were significantly higher in patients than in controls [p < 0.01 for all], while only col(IV)alpha1 and col(IV)alpha3 urinary excretion correlated with the degree of chronic histological damage [col(IV)alpha1 R = 0.44, p < 0.001; col(IV)alpha3: R = 0.47, p < 0.001]. Compared with controls, patients showed a renal expression of mRNA for col(IV)alpha5 chain significantly higher [p = 0.001], while having a significantly lower protein expression of col(IV)alpha3, col(IV)alpha4 and col(IV)alpha5 chains [p < 0.01 for all]. Patients with chronic acquired glomerulopathies show important alterations in the col(IV)alpha chain network mimicking some molecular features of the X-linked Alport's syndrome. Further studies are needed to show whether urinary levels of the col(IV)alpha chains may be used as markers for monitoring renal injury. Copyright 2007 S. Karger AG, Basel.

  19. Cytochrome P450-2C11 mRNA is not expressed in endothelial cells dissected from rat renal arterioles.

    PubMed

    Heil, Sandra G; De Vriese, An S; Kluijtmans, Leo A J; Dijkman, Henry; van Strien, Denise; Akkers, Robert; Blom, Henk J

    2005-01-01

    Cytochrome P450 (CYP) isoenzymes (CYP2C and CYP2J) are involved in the production of epoxyeicosatrienoic acids, which are postulated as endothelium-derived hyperpolarizing factors (EDHFs). We hypothesized that if CYP2C11 is involved in the EDHF-mediated responses, its mRNA should be expressed in endothelial cells. We, therefore, examined the mRNA expression of CYP2C11 in endothelial cells of renal arterioles. Laser microdissection was applied to isolate endothelial cells from the renal arterioles of 4 male and 4 female Wistar rats. As a positive control of CYP2C11 expression, hepatocytes were also dissected from these rats. RNA was isolated and real-time quantitative polymerase chain reaction (Q-PCR) analysis was applied. Q-PCR analysis showed that CYP2C11 mRNA was not expressed in laser microdissected endothelial cells of renal arterioles of male and female rats. CYP2C11 mRNA expression was highly abundant in hepatocytes dissected from male livers, but in female livers hardly any CYP2C11 mRNA was detected. We have shown that endothelial cells can be dissected from small renal arterioles by laser microdissection to study the mRNA expression of specific genes by Q-PCR. Using this novel tool, we demonstrated that the CYP2C11 mRNA was not expressed in the endothelial cells of renal arterioles. Therefore, we speculate that CYP2C11 does not contribute to the EDHF-mediated responses in renal arterioles. Copyright (c) 2005 S. Karger AG, Basel.

  20. Mannose Receptor 2 Attenuates Renal Fibrosis

    PubMed Central

    López-Guisa, Jesús M.; Cai, Xiaohe; Collins, Sarah J.; Yamaguchi, Ikuyo; Okamura, Daryl M.; Bugge, Thomas H.; Isacke, Clare M.; Emson, Claire L.; Turner, Scott M.; Shankland, Stuart J.

    2012-01-01

    Mannose receptor 2 (Mrc2) expresses an extracellular fibronectin type II domain that binds to and internalizes collagen, suggesting that it may play a role in modulating renal fibrosis. Here, we found that Mrc2 levels were very low in normal kidneys but subsets of interstitial myofibroblasts and macrophages upregulated Mrc2 after unilateral ureteral obstruction (UUO). Renal fibrosis and renal parenchymal damage were significantly worse in Mrc2-deficient mice. Similarly, Mrc2-deficient Col4α3−/− mice with hereditary nephritis had significantly higher levels of total kidney collagen, serum BUN, and urinary protein than Mrc2-sufficient Col4α3−/− mice. The more severe phenotype seemed to be the result of reduced collagen turnover, because procollagen III (α1) mRNA levels and fractional collagen synthesis in the wild-type and Mrc2-deficient kidneys were similar after UUO. Although Mrc2 associates with the urokinase receptor, differences in renal urokinase activity did not account for the increased fibrosis in the Mrc2-deficient mice. Treating wild-type mice with a cathepsin inhibitor, which blocks proteases implicated in Mrc2-mediated collagen degradation, worsened UUO-induced renal fibrosis. Cathepsin mRNA profiles were similar in Mrc2-positive fibroblasts and macrophages, and Mrc2 genotype did not alter relative cathepsin mRNA levels. Taken together, these data establish an important fibrosis-attenuating role for Mrc2-expressing renal interstitial cells and suggest the involvement of a lysosomal collagen turnover pathway. PMID:22095946

  1. Monitoring of renal ischemia reperfusion injury in rabbits by ultrasonic contrast and its relationship with expression of VEGF in renal tissue.

    PubMed

    Hao, Peng

    2016-02-01

    To evaluate the renal ischemia reperfusion injury (IRI) in rabbits using the ultrasonic contrast technique and discuss the clinical value of ultrasonic contrast technique in the diagnosis of renal IRI by comparing the time-intensity curve of renal cortex and the expression of vascular endothelial growth factor (VEGF) of renal tissue. Twenty 3-month-old New Zealand rabbits were randomly divided into 4 groups, namely Ctrl group, IRI-12 h, IRI-24 h and IRI-48 h groups. The two dimensional gray-scale ultrasonography was employed to determine and mark the position of rabbit kidney. Rabbits were given the intraperitoneal anesthesia with 20% urethane with the dosage of 5 mL/kg. The aseptic operation was performed after the local skin disinfection in the area of both kidneys. The right kidney of animals in the control group was excised without any treatment for the left kidney. After excising the right kidney of animals in groups of IRI-12 h, IRI-24 h and IRI-48 h, the aneurysm clip was used to clip the renal pedicle vessel of left kidney, in order to simulate the ischemia. Because of the tissue ischemia, it could be seen that the color of kidney was changed from bright red to dark red, which indicated the successful modeling of ischemia. The aneurysm clip was released after one hour of maintaining the ischemia. Then the kidney turned out to be bright red from dark red, which indicated that the reperfusion was completed. Taking this moment as the time of ischemia reperfusion, the wound was stitched up. A total of 12, 24 and 36 h after the operation, the two-dimensional and color Doppler flow imaging and ultrasonic contrast were employed for the examination. The dynamic changes of ultrasonic contrast were recorded. The quantitative analysis software (QontraXt) was adopted to analyze the time-intensity curve of echo at different positions of renal cortex. After the ultrasonic contrast testing, rabbits were put to death. The renal cortex tissue was isolated and the

  2. Reactive oxygen species in the presence of high glucose alter ureteric bud morphogenesis.

    PubMed

    Zhang, Shao-Ling; Chen, Yun-Wen; Tran, Stella; Chenier, Isabelle; Hébert, Marie-Josée; Ingelfinger, Julie R

    2007-07-01

    Renal malformations are a major cause of childhood renal failure. During the development of the kidney, ureteric bud (UB) branching morphogenesis is critical for normal nephrogenesis. These studies investigated whether renal UB branching morphogenesis is altered by a high ambient glucose environment and studied underlying mechanism(s). Kidney explants that were isolated from different periods of gestation (embryonic days 12 to 18) from Hoxb7-green fluorescence protein mice were cultured for 24 h in either normal d-glucose (5 mM) or high d-glucose (25 mM) medium with or without various inhibitors. Alterations in renal morphogenesis were assessed by fluorescence microscopy. Paired-homeobox 2 (Pax-2) gene expression was determined by real-time quantitative PCR, Western blotting, and immunohistology. The results revealed that high d-glucose (25 mM) specifically stimulates UB branching morphogenesis via Pax-2 gene expression, whereas other glucose analogs, such as d-mannitol, l-glucose, and 2-deoxy-d-glucose, had no effect. The stimulatory effect of high glucose on UB branching was blocked in the presence of catalase and inhibitors of NADPH oxidase, mitochondrial electron transport chain complex I, and Akt signaling. Moreover, in in vivo studies, it seems that high glucose induces, via Pax-2 (mainly localized in UB), acceleration of UB branching but not nephron formation. Taken together, these data demonstrate that high glucose alters UB branching morphogenesis. This occurs, at least in part, via reactive oxygen species generation, activation of Akt signaling, and upregulation of Pax-2 gene expression.

  3. High expression of CXCR4, CXCR7 and SDF-1 predicts poor survival in renal cell carcinoma

    PubMed Central

    2012-01-01

    Background Chemokines and their receptors are known to play important roles in the tumorigenesis of many malignancies. The aim of this study was to evaluate the prognostic impact of the expression of the chemokine SDF-1 and its receptors CXCR4 and CXCR7 in patients with renal cell carcinoma. Methods The expression of CXCR4, CXCR7 and SDF-1 in specimens from 97 renal cell carcinoma patients was evaluated by immunohistochemistry on a tissue microarray. These results were correlated with the clinicopathological parameters and survival of the patients. Results CXCR4 and CXCR7 were expressed in all patients, whereas SDF-1 was expressed in 61 patients (62.9%). No association was observed between the expression of CXCR4, CXCR7 or SDF-1 and the clinical or pathological data except between SDF-1 expression and Fuhrman’s grade (P = 0.015). Patients with high expression of CXCR4, CXCR7 and SDF-1 had shorter overall survival and recurrence-free survival than those with low expression. In a multivariate analysis, the high expression of CXCR4, CXCR7 and SDF-1 correlated with poor overall survival and recurrence-free survival independent of gender, age, AJCC stage, lymph node status, metastasis, histologic variant and Fuhrman’s grade. Conclusions High levels of CXCR4, CXCR7 and SDF-1 were associated with poor overall survival and recurrence-free survival in renal cell carcinoma patients. CXCR4, CXCR7 and SDF-1 may serve as useful prognostic markers and therapeutic targets for renal cell carcinoma. PMID:23039915

  4. Immunohistochemical study of C-kit expression in subtypes of renal cell carcinoma.

    PubMed

    Norouzinia, Farahnaz; Abbasi, Fariba; Dindarian, Sina; Mohammadi, Sedra; Meisami, Farid; Bagheri, Mahdi; Mohammadi, Hozan

    2018-01-01

    Renal cell carcinomas (RCCs) include about 2% of adult neoplasms and 90-95% of all renal tumors. Mostly, it is possible to distinguish RCC subtypes using hematoxylin-eosin staining. However, overlapping morphologic features cause some difficulties in making a precise diagnosis. In order to render an accurate diagnosis, additional methods such as immunohistochemical staining for c-kit have been recommended. In this study, we aimed to investigate c-kit gene expression in various subtypes of RCC. We reviewed 65 diagnosed RCC cases. Formalin- fixed, paraffin- embedded specimens were available for the cases. The expression of c-kit was evaluated using immunohistochemistry. The correlation between c-kit expression and clinicopathological parameters including patients' age and gender in addition to grade, stage, and size of the tumor were investigated. Six cases of 39 clear cell types (15.4%), 8 of 13 papillary types (61.5%), 11 of 12 chromophobe types (91.7%), and no sarcomatoid type were positive for c-kit expression. Based on chi-square test results, there was a significant relationship between RCC subtypes and c-kit expression (p=0.001). There was no significant correlation between age, sex, grade, stage, and size of the tumor and c-kit expression. The expression of c-kit in RCC may have diagnostic significance in subtypes of RCC especially papillary and chromophobe subtypes of RCC.

  5. NBCe1 expression is required for normal renal ammonia metabolism

    PubMed Central

    Handlogten, Mary E.; Osis, Gunars; Lee, Hyun-Wook; Romero, Michael F.; Verlander, Jill W.

    2015-01-01

    The mechanisms regulating proximal tubule ammonia metabolism are incompletely understood. The present study addressed the role of the proximal tubule basolateral electrogenic Na+-coupled bicarbonate cotransporter (NBCe1; Slc4a4) in renal ammonia metabolism. We used mice with heterozygous and homozygous NBCe1 gene deletion and compared these mice with their wild-type littermates. Because homozygous NBCe1 gene deletion causes 100% mortality before day 25, we studied mice at day 8 (±1 day). Both heterozygous and homozygous gene deletion caused a gene dose-related decrease in serum bicarbonate. The ability to lower urinary pH was intact, and even accentuated, with NBCe1 deletion. However, in contrast to the well-known effect of metabolic acidosis to increase urinary ammonia excretion, NBCe1 deletion caused a gene dose-related decrease in ammonia excretion. There was no identifiable change in proximal tubule structure by light microscopy. Examination of proteins involved in renal ammonia metabolism showed decreased expression of phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase, key enzymes in proximal tubule ammonia generation, and increased expression of glutamine synthetase, which recycles intrarenal ammonia and regenerates glutamine. Expression of key proteins involved in ammonia transport outside of the proximal tubule (rhesus B glycoprotein and rhesus C glycoprotein) was not significantly changed by NBCe1 deletion. We conclude from these findings that NBCe1 expression is necessary for normal proximal tubule ammonia metabolism. PMID:26224717

  6. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    PubMed Central

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  7. Valproic acid inhibits epithelial‑mesenchymal transition in renal cell carcinoma by decreasing SMAD4 expression.

    PubMed

    Mao, Shaowei; Lu, Guoliang; Lan, Xiaopeng; Yuan, Chuanwei; Jiang, Wei; Chen, Yougen; Jin, Xunbo; Xia, Qinghua

    2017-11-01

    Renal cell carcinoma (RCC) is the most common malignancy in urogenital neoplasms worldwide. According to previous studies, valproic acid (VPA), an anticonvulsant drug, can suppress tumor metastasis and decrease the expression level of Mothers against decapentaplegic homolog 4 (SMAD4) and therefore may inhibit epithelial‑mesenchymal transition (EMT), which is responsible for cancer metastasis. However, the association between VPA, EMT and SMAD4 in RCC metastasis remains obscure. In the present study, it was demonstrated that in the RCC cell lines 786‑O and Caki‑1 treated with VPA, the neural (N)‑cadherin, vimentin and SMAD4 protein and mRNA levels were decreased, accompanied with an increase in expression of epithelial (E)‑cadherin. Silencing SMAD4 expression decreased the expression of EMT markers, including N‑cadherin and simultaneously upregulated E‑cadherin in RCC cell lines. SMAD4 overexpression counteracted the VPA‑mediated EMT‑inhibitory effect (P<0.05). The present study demonstrates that VPA inhibited EMT in RCC cells via altering SMAD4 expression. In addition, immunohistochemical staining demonstrated that transforming growth factor‑β (TGF‑β) and low expression of SMAD4 was associated with a lower Fuhrman grade and low expression of transcription intermediary factor 1‑γ was associated with a higher tumor Fuhrman grade (P<0.05), Therefore, based on the regulatory effect of SMAD4 on EMT‑associated transcription factors, SMAD4 which can form a SMAD3/SMAD4 complex induced by TGF‑β, could be a potential anticancer drug target inhibiting tumor invasion and metastasis in RCC.

  8. Changes in skeletal muscle gene expression consequent to altered weight bearing

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Kirby, C. R.

    1992-01-01

    Skeletal muscle is a dynamic organ that adapts to alterations in weight bearing. This brief review examines changes in muscle gene expression resulting from the removal of weight bearing by hindlimb suspension and from increased weight bearing due to eccentric exercise. Acute (less than or equal to 2 days) non-weight bearing of adult rat soleus muscle alters only the translational control of muscle gene expression, while chronic (greater than or equal to 7 days) removal of weight bearing appears to influence pretranslational, translational, and posttranslational mechanisms of control. Acute and chronic eccentric exercise are associated with alterations of translational and posttranslational control, while chronic eccentric training also alters the pretranslational control of muscle gene expression. Thus alterations in weight bearing influence multiple sites of gene regulation.

  9. Droxidopa, an oral norepinephrine precursor, improves hemodynamic and renal alterations of portal hypertensive rats.

    PubMed

    Coll, Mar; Rodriguez, Sarai; Raurell, Imma; Ezkurdia, Nahia; Brull, Astrid; Augustin, Salvador; Guardia, Jaime; Esteban, Rafael; Martell, María; Genescà, Joan

    2012-11-01

    We aimed to evaluate the effects of droxidopa (an oral synthetic precursor of norepinephrine) on the hemodynamic and renal alterations of portal hypertensive rats. Sham, portal vein-ligated (PVL), and 4-week biliary duct-ligated (BDL) rats received a single oral dose of droxidopa (25-50 mg/kg) or vehicle and hemodynamic parameters were monitored for 2 hours. Two groups of BDL and cirrhotic rats induced by carbon tetrachloride (CCl(4) ) were treated for 5 days with droxidopa (15 mg/kg, twice daily, orally); hemodynamic parameters and blood and urinary parameters were assessed. The droxidopa effect on the Rho kinase (RhoK) / protein kinase B (AKT) / endothelial nitric oxide synthase (eNOS) pathways was analyzed by western blot in superior mesenteric artery (SMA). The acute administration of droxidopa in PVL and BDL rats caused a significant and maintained increase in arterial pressure and mesenteric arterial resistance, with a significant decrease of mesenteric arterial and portal blood flow, without changing portal pressure and renal blood flow. Two-hour diuresis greatly increased. Carbidopa (DOPA decarboxylase inhibitor) blunted all effects of droxidopa. Chronic droxidopa therapy in BDL rats produced the same beneficial hemodynamic effects observed in the acute study, did not alter liver function parameters, and caused a 50% increase in 24-hour diuresis volume (7.4 ± 0.9 mL/100g in BDL vehicle versus 11.8 ± 2.5 mL/100g in BDL droxidopa; P = 0.01). Droxidopa-treated rats also showed a decreased ratio of p-eNOS/eNOS and p-AKT/AKT and increased activity of RhoK in SMA. The same chronic treatment in CCl(4) rats caused similar hemodynamic effects and produced significant increases in diuresis volume and 24-hour natriuresis (0.08 ± 0.02 mmol/100g in CCl(4) vehicle versus 0.23 ± 0.03 mmol/100g in CCl(4) droxidopa; P = 0.014). Droxidopa might be an effective therapeutic agent for hemodynamic and renal alterations of liver cirrhosis and should be tested in cirrhosis

  10. Renal C-type natriuretic peptide and natriuretic peptide receptor B mRNA expression are affected by water deprivation in the Spinifex Hopping mouse.

    PubMed

    Heimeier, Rachel A; Donald, John A

    2003-11-01

    This study investigated the effect of water deprivation on the expression of C-type natriuretic peptide (CNP) and natriuretic peptide receptor B (NPR-B) mRNA, and the ability of NPR-B to generate cGMP in the Spinifex Hopping mouse, Notomys alexis. This rodent is a native of central and western Australia that is well adapted to survive in arid environments. Initially, CNP and NPR-B cDNAs (partial for NPR-B) were cloned and sequenced, and were shown to have high homology with those of rat and mouse. RT-PCR analysis showed CNP mRNA expression in the kidney, proximal and distal colon and small intestine, whilst NPR-B mRNA expression was found in the kidney, proximal and distal colon and the atria. Using a semi-quantitative multiplex PCR technique, the expression of renal CNP and NPR-B mRNA was determined in 7- and 14-day water-deprived hopping mice, in parallel with control hopping mice (access to water). Water deprivation significantly decreased the relative levels of CNP and NPR-B mRNA expression in both the 7- and 14-day water-deprived hopping mice, when compared to control hopping mice. In contrast, the ability of CNP to stimulate cGMP production was significantly increased after 14 days of water deprivation. This study shows that alterations in the renal CNP/NPR-B system may be an important physiological adjustment when water is scarce.

  11. Renal function assessment in atrial fibrillation: Usefulness of chronic kidney disease epidemiology collaboration vs re-expressed 4 variable modification of diet in renal disease.

    PubMed

    Abumuaileq, Rami Riziq-Yousef; Abu-Assi, Emad; López-López, Andrea; Raposeiras-Roubin, Sergio; Rodríguez-Mañero, Moisés; Martínez-Sande, Luis; García-Seara, Francisco Javier; Fernandez-López, Xesus Alberte; González-Juanatey, Jose Ramón

    2015-10-26

    To compare the performance of the re-expressed Modification of Diet in Renal Disease equation vs the new Chronic Kidney Disease Epidemiology Collaboration equation in patients with non-valvular atrial fibrillation. We studied 911 consecutive patients with non-valvular atrial fibrillation on vitamin-K antagonist. The performance of the re-expressed Modification of Diet in Renal Disease equation vs the new Chronic Kidney Disease Epidemiology Collaboration equation in patients with non-valvular atrial fibrillation with respect to either a composite endpoint of major bleeding, thromboembolic events and all-cause mortality or each individual component of the composite endpoint was assessed using continuous and categorical ≥ 60, 59-30, and < 30 mL/min per 1.73 m(2) estimated glomerular filtration rate. During 10 ± 3 mo, the composite endpoint occurred in 98 (10.8%) patients: 30 patients developed major bleeding, 18 had thromboembolic events, and 60 died. The new equation provided lower prevalence of renal dysfunction < 60 mL/min per 1.73 m(2) (32.9%), compared with the re-expressed equation (34.1%). Estimated glomerular filtration rate from both equations was independent predictor of composite endpoint (HR = 0.98 and 0.97 for the re-expressed and the new equation, respectively; P < 0.0001) and all-cause mortality (HR = 0.98 for both equations, P < 0.01). Strong association with thromboembolic events was observed only when estimated glomerular filtration rate was < 30 mL/min per 1.73 m(2): HR is 5.1 for the re-expressed equation, and HR = 5.0 for the new equation. No significant association with major bleeding was observed for both equations. The new equation reduced the prevalence of renal dysfunction. Both equations performed similarly in predicting major adverse outcomes.

  12. TLR-4 polymorphisms and leukocyte TLR-4 expression in febrile UTI and renal scarring.

    PubMed

    Bayram, Meral Torun; Soylu, Alper; Ateş, Halil; Kızıldağ, Sefa; Kavukçu, Salih

    2013-09-01

    In this study, we aimed to determine the relation of TLR-4 Asp299Gly and Thr399Ile polymorphisms and monocyte/neutrophil TLR-4 expression to febrile urinary tract infection (UTI) and renal scar development in children. The study was performed in children with a history of febrile UTI. Patients with and without renal scarring were classified as group 1 and group 2, respectively, while the control cases in our previous study were used as the control group (group 3). All three groups were compared for the rate of TLR-4 Asp299Gly and Thr399Ile polymorphisms, and for basal and lipopolysaccharide-stimulated monocyte/neutrophil TLR-4 expression levels. There were 168 patients (86 in group 1, 82 in group 2) and 120 control cases. Monocyte/neutrophil TLR-4 expression levels were similar in groups 1 and 2. However, both groups had lower TLR-4 expression than group 3. The rate of TLR-4 Asp299Gly polymorphism was not different in all groups. TLR-4 Thr399Ile polymorphism was higher in groups 1 and 2 than in group 3 (14.0, 12.2, and 2.0 %, respectively), while group 1 and group 2 were not different. Furthermore, monocyte TLR-4 expression level was lower in those having TLR-4 Thr399Ile polymorphism than in those without this polymorphism. Patients with febrile UTI had more frequent TLR-4 Thr399Ile polymorphism and lower monocyte/neutrophil TLR-4 expression. These findings indicate that children carrying TLR-4 Thr399Ile polymorphism and/or having low level of monocyte/neutrophil TLR-4 expression have a tendency to develop febrile UTI. However, we could not show the association of TLR-4 polymorphisms and of TLR-4 expression level to renal scarring.

  13. Macrophage and epithelial cell H-ferritin expression regulates renal inflammation

    PubMed Central

    Bolisetty, Subhashini; Zarjou, Abolfazl; Hull, Travis D.; Traylor, Amie; Perianayagam, Anjana; Joseph, Reny; Kamal, Ahmed I; Arosio, Paolo; Soares, Miguel P; Jeney, Viktoria; Balla, Jozsef; George, James F.; Agarwal, Anupam

    2015-01-01

    Inflammation culminating in fibrosis contributes to progressive kidney disease. Crosstalk between the tubular epithelium and interstitial cells regulates inflammation by a coordinated release of cytokines and chemokines. Here we studied the role of heme oxygenase-1 (HO-1) and the heavy subunit of ferritin (FtH) in macrophage polarization and renal inflammation. Deficiency in HO-1 was associated with increased FtH expression, accumulation of macrophages with a dysregulated polarization profile, and increased fibrosis following unilateral ureteral obstruction in mice; a model of renal inflammation and fibrosis. Macrophage polarization in vitro was predominantly dependent on FtH expression in isolated bone marrow-derived mouse monocytes. Utilizing transgenic mice with conditional deletion of FtH in the proximal tubules (FtHPT−/−) or myeloid cells (FtHLysM−/−), we found that myeloid FtH deficiency did not affect polarization or accumulation of macrophages in the injured kidney compared to wild-type (FtH+/+) controls. However, tubular FtH deletion led to a marked increase in pro-inflammatory macrophages. Furthermore, injured kidneys from FtHPT−/− mice expressed significantly higher levels of inflammatory chemokines and fibrosis compared to kidneys from FtH+/+ and FtHLysM−/− mice. Thus, there are differential effects of FtH in macrophages and epithelial cells, which underscores the critical role of FtH in tubular-macrophage crosstalk during kidney injury. PMID:25874599

  14. Renal dopamine containing nerves. What is their functional significance?

    PubMed

    DiBona, G F

    1990-06-01

    Biochemical and morphological studies indicate that there are nerves within the kidney that contain dopamine and that various structures within the kidney contain dopamine receptors. However, the functional significance of these renal dopamine containing nerves in relation to renal dopamine receptors is unknown. The functional significance could be defined by demonstrating that an alteration in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves is dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors. Thus, the hypothesis becomes: reflex or electrical activation of efferent renal nerves causes alterations in renal function (eg, renal blood flow, water and solute handling) that are inhibited by specific and selective dopamine receptor antagonists. As reviewed herein, the published experimental data do not support the hypothesis. Therefore, the view that alterations in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves are dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors remains unproven.

  15. Human Cytomegalovirus-Encoded Receptor US28 Is Expressed in Renal Allografts and Facilitates Viral Spreading In Vitro.

    PubMed

    Lollinga, Wouter T; de Wit, Raymond H; Rahbar, Afsar; Vasse, Gwenda F; Davoudi, Belghis; Diepstra, Arjan; Riezebos-Brilman, Annelies; Harmsen, Martin C; Hillebrands, Jan-Luuk; Söderberg-Naucler, Cecilia; van Son, Willem J; Smit, Martine J; Sanders, Jan-Stephan; van den Born, Jacob

    2017-03-01

    Renal transplantation is the preferred treatment for patients with end-stage renal disease. Human cytomegalovirus (HCMV) activation is associated with decreased renal graft function and survival. Human cytomegalovirus encodes several immune modulatory proteins, including the G protein-coupled receptor US28, which scavenges human chemokines and modulates intracellular signaling. Our aim was to identify the expression and localization of US28 in renal allograft biopsies by immunohistochemistry and determine its role in viral spreading in vitro. Immunohistochemistry revealed US28 in 31 of 34 renal transplant biopsies from HCMV-seropositive donors. Expression was independent of HCMV viremia or IgG serostatus. US28 was predominantly expressed in the cytoplasm of vascular smooth muscle cells (VSMCs) and tubular epithelial cells, with a median positivity of 20% and 40%, respectively. Also, US28-positive cells were present within arterial neointima. In contrast to US28, HCMV-encoded immediate early antigen was detected in less than 5% of VSMCs, tubular epithelial cells, interstitial endothelium, interstitial inflammatory infiltrates, and glomerular cells.Primary VSMCs were infected with green fluorescent protein-tagged wild type or US28-deficient HCMV. The viral spreading of US28-deficient HCMV, via culture medium or cell-to-cell transmission, was significantly impeded as shown by green fluorescent protein (ie, infected) cell quantification and quantitative real-time polymerase chain reaction. Additionally, the number and size of foci was smaller. In summary, HCMV-encoded US28 was detected in renal allografts from HCMV-positive donors independent of viremia and serostatus. Also, US28 facilitates HCMV spreading in VSMCs in vitro. Because the vasculature is affected in chronic renal transplant dysfunction, US28 may provide a potential target for therapeutic intervention.

  16. Expression analysis and in silico characterization of intronic long noncoding RNAs in renal cell carcinoma: emerging functional associations

    PubMed Central

    2013-01-01

    Background Intronic and intergenic long noncoding RNAs (lncRNAs) are emerging gene expression regulators. The molecular pathogenesis of renal cell carcinoma (RCC) is still poorly understood, and in particular, limited studies are available for intronic lncRNAs expressed in RCC. Methods Microarray experiments were performed with custom-designed arrays enriched with probes for lncRNAs mapping to intronic genomic regions. Samples from 18 primary RCC tumors and 11 nontumor adjacent matched tissues were analyzed. Meta-analyses were performed with microarray expression data from three additional human tissues (normal liver, prostate tumor and kidney nontumor samples), and with large-scale public data for epigenetic regulatory marks and for evolutionarily conserved sequences. Results A signature of 29 intronic lncRNAs differentially expressed between RCC and nontumor samples was obtained (false discovery rate (FDR) <5%). A signature of 26 intronic lncRNAs significantly correlated with the RCC five-year patient survival outcome was identified (FDR <5%, p-value ≤0.01). We identified 4303 intronic antisense lncRNAs expressed in RCC, of which 22% were significantly (p <0.05) cis correlated with the expression of the mRNA in the same locus across RCC and three other human tissues. Gene Ontology (GO) analysis of those loci pointed to 'regulation of biological processes’ as the main enriched category. A module map analysis of the protein-coding genes significantly (p <0.05) trans correlated with the 20% most abundant lncRNAs, identified 51 enriched GO terms (p <0.05). We determined that 60% of the expressed lncRNAs are evolutionarily conserved. At the genomic loci containing the intronic RCC-expressed lncRNAs, a strong association (p <0.001) was found between their transcription start sites and genomic marks such as CpG islands, RNA Pol II binding and histones methylation and acetylation. Conclusion Intronic antisense lncRNAs are widely expressed in RCC tumors. Some of them

  17. Expression of EphA2 protein is positively associated with age, tumor size and Fuhrman nuclear grade in clear cell renal cell carcinomas.

    PubMed

    Wang, Longxin; Hu, Haibing; Tian, Feng; Zhou, Wenquan; Zhou, Shuigen; Wang, Jiandong

    2015-01-01

    The receptor tyrosine kinase of EphA2 has been shown frequently overexpressed in various types of human carcinomas, which implicated that it plays important roles in carcinogenesis. Although EphA2 protein expression has been investigated in many types of human carcinomas, the relationship between the expression of EphA2 protein in clear cell renal cell carcinoma was not well documented. In the present study, using specific anit-EphA2 polyclonal antibody and immunohistochemistry, we evaluated EphA2 protein expression levels in clear cell RCC specimens surgically resected from 90 patients. Our results shows that EphA2 protein was positively expressed in all normal renal tubes of 90 samples (100%, 3+), which was expressed at low levels in renal cortex but high levels in the collecting ducts of the renal medulla and papilla. EphA2 was negatively or weakly expressed in 30 out of 90 samples (33.3%, 0/1+), moderately expressed in 24 samples (26.7%, 2+) and strongly expressed in 36 samples (40%, 3+). Expression of EphA2 was positively associated with age (P=0.029), tumor diameters (P<0.001) and Fuhrman nuclear grade (P<0.001). Our results indicate that EphA2 variably expressed in clear cell renal cell carcinomas. High expression of EphA2 was more often found in big size and high nuclear grade tumors, which indicated EphA2 protein may be used as a new marker for the prognosis of clear cell renal cell carcinoma.

  18. Renal cell carcinoma associated with transcription factor E3 expression and Xp11.2 translocation: incidence, characteristics, and prognosis.

    PubMed

    Klatte, Tobias; Streubel, Berthold; Wrba, Friedrich; Remzi, Mesut; Krammer, Barbara; de Martino, Michela; Waldert, Matthias; Marberger, Michael; Susani, Martin; Haitel, Andrea

    2012-05-01

    We studied the characteristics and prognosis of renal cell carcinoma (RCC) associated with Xp11.2 translocation and transcription factor E3 (TFE3) expression and determined the need for genetic analysis in routine diagnostics. Of 848 consecutive cases, 75 showed microscopic features suggestive of Xp11.2 translocation RCC or occurred in patients 40 years or younger. Of these cases, 17 (23%) showed strong nuclear TFE3 immunostaining, which was associated with more advanced tumors and inverse prognosis in univariate (P = .032) but not multivariate (P = .404) analysis. With fluorescence in situ hybridization and polymerase chain reaction, only 2 cases showed alterations of the X chromosome and the ASPL-TFE3 gene fusion, respectively. In our laboratory, the predictive value of TFE3 expression for the Xp11.2 translocation was 12%. Strong nuclear TFE3 expression is associated with metastatic spread and a poor prognosis. In our laboratory, TFE3 is not diagnostic for Xp11.2 translocation RCC. Diagnosis of Xp11.2 translocation RCC may be made only genetically.

  19. Disturbed expression of type 1 iodothyronine deiodinase splice variants in human renal cancer.

    PubMed

    Piekielko-Witkowska, Agnieszka; Master, Adam; Wojcicka, Anna; Boguslawska, Joanna; Brozda, Izabela; Tanski, Zbigniew; Nauman, Alicja

    2009-10-01

    Alternative splicing, one of the sources of protein diversity, is often disturbed in cancer. Type 1 iodothyronine deiodinase (DIO1) catalyzes deiodination of thyroxine generating triiodothyronine, an important regulator of cell proliferation and differentiation. The expression of DIO1 is disturbed in different types of cancer. The aim of the study was to analyze the alternative splicing of DIO1 and its possible disturbance in renal cancer. Using real-time PCR, we analyzed 19 tissue samples (T) of renal cancer and 19 matched control samples (C) of the opposite pole of the kidney, not infiltrated by tumor, and 6 control samples (N) (nonneoplastic kidney abnormalities). Cloning of DIO1 mRNA isoforms revealed 11 different transcripts, among them 7 new splice variants, not previously reported. The expression of all variants of DIO1 was dramatically (>90%) and significantly (p < or = 0.0003) lowered in samples T compared to control samples C. The ratio of mRNA isoforms encoding DIO1 protein variants possessing or lacking the active center was lowered in samples T compared with control samples C, suggesting disturbed alternative splicing of DIO1. The expression of mRNA of splicing factors SF2/ASF (splicing factor-2/alternative-splicing factor) and hnRNPA1 (heterogeneous ribonucleoprotein A1), regulating 5'-splice site selection, was significantly but not proportionally lowered in samples T compared to samples C. The mRNA ratio of splicing factors SF2/ASF and hnRNPA1 correlated with the ratio of mRNA isoforms encoding DIO1 protein variants possessing or lacking the active center in controls C but not in samples T. Our results show that the expression and alternative splicing of DIO1 mRNA is disturbed in renal cancer, possibly due to changes in expression of splicing factors SF2/ASF and hnRNPA1.

  20. Regulated Expression of a Calmodulin Isoform Alters Growth and Development in Potato

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Takezawa, D.; An, G.; Han, T.-J.

    1996-01-01

    A transgene approach was taken to study the consequences of altered expression of a calmodutin iso-form on plant growth and development. Eight genomic clones of potato calmodulin (PCM 1 to 8) have been isolated and characterized. Among the potato calmodulin isoforms studied, PCM 1 differs from the other isoforms because of its unique amino acid substitutions. Transgenic potato plants were produced carrying sense construct of PCM 1 fused to the CAMV 35S promoter. Transgenic plants showing a moderate increase in PCM 1 MRNA exhibited strong apical dominance, produced elongated tubers, and were taller than the controls. Interestingly, the plants expressing the highest level of PCM 1 MRNA did not form underground tubers. Instead, these transgenic plants produced aerial tubers when allowed to grow for longer periods. The expression of different calmodulin isoforms (PCM 1, 5, 6, and 8) was studied in transgenic plants. Among the four potato calmodulin isoforms, only the expression of PCM 1 MRNA was altered in transgenic plants, while the expression of other isoforms was not significantly altered. Western analysis revealed increased PCM 1 protein in transgenic plants, indicating that the expression of both MRNA and protein are altered in transgenic plants. These results suggest that increasing the expression of PCM 1 alters growth and development in potato plants.

  1. Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors.

    PubMed

    Ronn, Jonas; Jensen, Elisa P; Wewer Albrechtsen, Nicolai J; Holst, Jens Juul; Sorensen, Charlotte M

    2017-12-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone increasing postprandial insulin release. GLP-1 also induces diuresis and natriuresis in humans and rodents. The GLP-1 receptor is extensively expressed in the renal vascular tree in normotensive rats where acute GLP-1 treatment leads to increased mean arterial pressure (MAP) and increased renal blood flow (RBF). In hypertensive animal models, GLP-1 has been reported both to increase and decrease MAP. The aim of this study was to examine expression of renal GLP-1 receptors in spontaneously hypertensive rats (SHR) and to assess the effect of acute intrarenal infusion of GLP-1. We hypothesized that GLP-1 would increase diuresis and natriuresis and reduce MAP in SHR. Immunohistochemical staining and in situ hybridization for the GLP-1 receptor were used to localize GLP-1 receptors in the kidney. Sevoflurane-anesthetized normotensive Sprague-Dawley rats and SHR received a 20 min intrarenal infusion of GLP-1 and changes in MAP, RBF, heart rate, dieresis, and natriuresis were measured. The vasodilatory effect of GLP-1 was assessed in isolated interlobar arteries from normo- and hypertensive rats. We found no expression of GLP-1 receptors in the kidney from SHR. However, acute intrarenal infusion of GLP-1 increased MAP, RBF, dieresis, and natriuresis without affecting heart rate in both rat strains. These results suggest that the acute renal effects of GLP-1 in SHR are caused either by extrarenal GLP-1 receptors activating other mechanisms (e.g., insulin) to induce the renal changes observed or possibly by an alternative renal GLP-1 receptor. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Expression of Bcl-2 and NF-κB in brain tissue after acute renal ischemia-reperfusion in rats.

    PubMed

    Zhang, Na; Cheng, Gen-Yang; Liu, Xian-Zhi; Zhang, Feng-Jiang

    2014-05-01

    To investigate the effect of acute renal ischemia reperfusion on brain tissue. Fourty eight rats were randomly divided into four groups (n=12): sham operation group, 30 min ischemia 60 min reperfusion group, 60 min ischemia 60 min reperfusion group, and 120 min ischemia 60 min reperfusion group. The brain tissues were taken after the experiment. TUNEL assay was used to detect the brain cell apoptosis, and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors. Renal ischemia-reperfusion induced apoptosis of brain tissues, and the apoptosis increased with prolongation of ischemia time. The detection at the molecular level showed decreased Bcl-2 expression, increased Bax expression, upregulated expression of NF-κB and its downstream factor COX-2/PGE2. Acute renal ischemia-reperfusion can cause brain tissue damage, manifested as induced brain tissues apoptosis and inflammation activation. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  3. Altered renal FGF23-mediated activity involving MAPK and Wnt: effects of the Hyp mutation.

    PubMed

    Farrow, Emily G; Summers, Lelia J; Schiavi, Susan C; McCormick, James A; Ellison, David H; White, Kenneth E

    2010-10-01

    Fibroblast growth factor-23 (FGF23), a hormone central to renal phosphate handling, is elevated in multiple hypophosphatemic disorders. Initial FGF23-dependent Erk1/2 activity in the kidney localizes to the distal convoluted tubule (DCT) with the co-receptor α-Klotho (KL), distinct from Npt2a in proximal tubules (PT). The Hyp mouse model of X-linked hypophosphatemic rickets (XLH) is characterized by hypophosphatemia with increased Fgf23, and patients with XLH elevate FGF23 following combination therapy of phosphate and calcitriol. The molecular signaling underlying renal FGF23 activity, and whether these pathways are altered in hypophosphatemic disorders, is unknown. To examine Npt2a in vivo, mice were injected with FGF23. Initial p-Erk1/2 activity in the DCT occurred within 10 min; however, Npt2a protein was latently reduced in the PT at 30-60  min, and was independent of Npt2a mRNA changes. KL-null mice had no DCT p-Erk1/2 staining following FGF23 delivery. Under basal conditions in Hyp mice, c-Fos and Egr1, markers of renal Fgf23 activity, were increased; however, KL mRNA was reduced 60% (P<0.05). Despite the prevailing hypophosphatemia and elevated Fgf23, FGF23 injections into Hyp mice activated p-Erk1/2 in the DCT. FGF23 injection also resulted in phospho-β-catenin (p-β-cat) co-localization with KL in wild-type mice, and Hyp mice demonstrated strong p-β-cat staining under basal conditions, indicating potential crosstalk between mitogen-activated protein kinase and Wnt signaling. Collectively, these studies refine the mechanisms for FGF23 bioactivity, and demonstrate novel suppression of Wnt signaling in a KL-dependent DCT-PT axis, which is likely altered in XLH. Finally, the current treatment of phosphate and calcitriol for hypophosphatemic disorders may increase FGF23 activity.

  4. Neural control of renal function: role of renal alpha adrenoceptors.

    PubMed

    DiBona, G F

    1985-01-01

    Adrenoceptors of various subtypes mediate the renal functional responses to alterations in efferent renal sympathetic nerve activity, the neural component, and renal arterial plasma catecholamine concentrations, the humoral component, of the sympathoadrenergic nervous system. Under normal physiologic as well as hypertensive conditions, the influence of the renal sympathetic nerves predominates over that of circulating plasma catecholamines. In most mammalian species, increases in efferent renal sympathetic nerve activity elicit renal vasoconstrictor responses mediated predominantly by renal vascular alpha-1 adrenoceptors, increases in renin release mediated largely by renal juxtaglomerular granular cell beta-1 adrenoceptors with involvement of renal vascular alpha-1 adrenoceptors only when renal vasoconstriction occurs, and direct increases in renal tubular sodium and water reabsorption mediated predominantly by renal tubular alpha-1 adrenoceptors. In most mammalian species, alpha-2 adrenoceptors do not play a significant role in the renal vascular or renin release responses to renal sympathoadrenergic stimulation. Although renal tubular alpha-2 adrenoceptors do not mediate the increases in renal tubular sodium and water reabsorption produced by increases in efferent renal sympathetic nerve activity, they may be involved through their inhibitory effect on adenylate cyclase in modulating the response to other hormonal agents that influence renal tubular sodium and water reabsorption via stimulation of adenylate cyclase.

  5. Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection

    NASA Astrophysics Data System (ADS)

    Sinha, Rileen; Winer, Andrew G.; Chevinsky, Michael; Jakubowski, Christopher; Chen, Ying-Bei; Dong, Yiyu; Tickoo, Satish K.; Reuter, Victor E.; Russo, Paul; Coleman, Jonathan A.; Sander, Chris; Hsieh, James J.; Hakimi, A. Ari

    2017-05-01

    The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours clustering with cell lines display clinical and genomic features of more aggressive disease, suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy number alterations for important kidney cancer genes by the consistency between databases, and classify cell lines into established gene expression-based indolent and aggressive subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines.

  6. High expression of fructose-bisphosphate aldolase A induces progression of renal cell carcinoma.

    PubMed

    Huang, Zhengkai; Hua, Yibo; Tian, Ye; Qin, Chao; Qian, Jian; Bao, Meiling; Liu, Yiyang; Wang, Shangqian; Cao, Qiang; Ju, Xiaobing; Wang, Zengjun; Gu, Min

    2018-06-01

    Aldolase A (fructose-bisphosphate aldolase A, ALDOA) is a glycolytic enzyme that catalyzes reversible conversion of fructose‑1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. ALDOA has been revealed to be related with many carcinomas, but its expression and function in renal cell carcinoma (RCC) remain unknown. This study aimed to detect expression of ALDOA in human RCC tissue samples and to explore its function in RCC cell lines. Reverse transcription-polymerase chain reaction was used to quantify ALDOA in human RCC samples. A total of 139 RCC tissue samples obtained after surgery were analyzed in tissue microarray for ALDOA immunohistochemistry-based protein expression. Assays for cell cycle, viability, migration, and invasion were performed to assess phenotypic changes in RCC cells after ALDOA knockdown by small interfering RNA-mediated gene silencing approach and ALDOA upregulation by overexpression plasmids. Western blot analysis was used to identify alterations in markers for epithelial-mesenchymal transition (EMT), which affects metastasis and the Wnt/β‑catenin signaling pathway that influences RCC cell growth. ALDOA was upregulated in RCC samples and RCC cell lines (P<0.01). Expression of ALDOA was significantly associated with metastasis (P=0.020) and survival (P=0.0341). Downregulation of ALDOA suppressed proliferation (P<0.05) by triggering G0/G1 cell cycle arrest (P<0.05) and also inhibited migration (P<0.05) and invasion (P<0.01). Upregulation of ALDOA promoted proliferation (P<0.05) and enhanced migration (P<0.001) and invasion (P<0.001). Low expression of ALDOA could reverse EMT and inactivate the Wnt/β‑catenin signaling pathway. Our data revealed that ALDOA functions as a tumor promoter, plays a prominent role in proliferation, migration, and invasion of RCC cells with high expression, and may promote EMT and activate the Wnt/β‑catenin signaling pathway.

  7. PAH clearance after renal ischemia and reperfusion is a function of impaired expression of basolateral Oat1 and Oat3.

    PubMed

    Bischoff, Ariane; Bucher, Michael; Gekle, Michael; Sauvant, Christoph

    2014-02-01

    Determination of renal plasma flow (RPF) by para-aminohippurate (PAH) clearance leads to gross underestimation of this respective parameter due to impaired renal extraction of PAH after renal ischemia and reperfusion injury. However, no mechanistic explanation for this phenomenon is available. Based on our own previous studies we hypothesized that this may be due to impairment of expression of the basolateral rate limiting organic anion transporters Oat1 and Oat3. Thus, we investigated this phenomenon in a rat model of renal ischemia and reperfusion by determining PAH clearance, PAH extraction, PAH net secretion, and the expression of rOat1 and rOat3. PAH extraction was seriously impaired after ischemia and reperfusion which led to a threefold underestimation of RPF when PAH extraction ratio was not considered. PAH extraction directly correlated with the expression of basolateral Oat1 and Oat3. Tubular PAH secretion directly correlated with PAH extraction. Consequently, our data offer an explanation for impaired renal PAH extraction by reduced expression of the rate limiting basolateral organic anion transporters Oat1 and Oat3. Moreover, we show that determination of PAH net secretion is suitable to correct PAH clearance for impaired extraction after ischemia and reperfusion in order to get valid results for RPF.

  8. Regulated expression of a calmodulin isoform alters growth and development in potato.

    PubMed

    Poovaiah, B W; Takezawa, D; An, G; Han, T J

    1996-01-01

    A transgene approach was taken to study the consequences of altered expression of a calmodulin isoform on plant growth and development. Eight genomic clones of potato calmodulin (PCM1 to 8) have been isolated and characterized (Takezawa et al., 1995). Among the potato calmodulin isoforms studied, PCM1 differs from the other isoforms because of its unique amino acid substitutions. Transgenic potato plants were produced carrying sense construct of PCM1 fused to the CaMV 35S promoter. Transgenic plants showing a moderate increase in PCM1 mRNA exhibited strong apical dominance, produced elongated tubers, and were taller than the controls. Interestingly, the plants expressing the highest level of PCM1 mRNA did not form underground tubers. Instead, these transgenic plants produced aerial tubers when allowed to grow for longer periods. The expression of different calmodulin isoforms (PCM1, 5, 6, and 8) was studied in transgenic plants. Among the four potato calmodulin isoforms, only the expression of PCM1 mRNA was altered in transgenic plants, while the expression of other isoforms was not significantly altered. Western analysis revealed increased PCM1 protein in transgenic plants, indicating that the expression of both mRNA and protein are altered in transgenic plants. These results suggest that increasing the expression of PCM1 alters growth and development in potato plants.

  9. Expression of MLH1 and MSH2 in urothelial carcinoma of the renal pelvis.

    PubMed

    Ehsani, Laleh; Osunkoya, Adeboye O

    2014-09-01

    In this study, we investigated microsatellite instability in urothelial carcinoma of the renal pelvis by lack of immunohistochemical staining for MLH1 and MSH2. The study included 44 cases of urothelial carcinoma of the renal pelvis obtained from radical nephroureterectomy specimens at our institution. We evaluated the loss of nuclear immunohistochemical staining of MLH1 and MSH2. Eight of 44 (18 %) patients had negative MLH1 expression and 25/44 (57 %) patients had negative MSH2 expression. Six of 8 (75 %) patients with negative MLH1 expression were male and 2/8 (25 %) patients were female. Nineteen of 25 (75 %) patients with negative MSH2 expression were male, and 6/25 (24 %) patients were female. Seven of 8 (88 %) cases with negative MLH1 expression were high-grade urothelial carcinoma, and 21/25 (84 %) cases with negative MSH2 expression were high-grade urothelial carcinoma. Twenty-one of 44 (48 %) cases had an inverted growth pattern, of which 3/21 (14 %) cases had negative MLH1 expression and 14/21 (67 %) cases had negative MSH2 expression. Our study showed that microsatellite instability based on negative expression of MLH1 and MSH2 was more common in male patients with high-grade urothelial carcinoma. There is a strong correlation between inverted growth pattern and negative MSH2 expression. Microsatellite instability testing should be performed in patients with upper urinary tract carcinoma and may have prognostic value.

  10. The effect of leptin and resveratrol on JAK/STAT pathways and Sirt-1 gene expression in the renal tissue of ischemia/reperfusion induced rats.

    PubMed

    Erkasap, S; Erkasap, N; Bradford, B; Mamedova, L; Uysal, O; Ozkurt, M; Ozyurt, R; Kutlay, O; Bayram, B

    2017-01-01

    Our study aimed to investigate the possible modifying effects of leptin and combined use of resveratrol on rat renal I/R injury and their relationship on signal pathways and apoptosis-related mechanisms. Renal ischemia-reperfusion (I/R) injury is an important cause of acute renal failure. Male Sprague Dawley rats were divided into 5 groups: Control, I/R, I/R+leptin, I/R+resveratrol and I/R+leptin+resveratrol. Leptin (10 μg/kg BW) was administered (i.p.) 30 min prior to I/R. Resveratrol was administered by gavage at 20 mg/kg BW per d for 12 d prior to I/R. The left renal artery was exposed to 1 h of ischemia and 1 h of reperfusion. Resveratrol treatment alone increased TNF-α, TNF-α R1, NF-κB, SIRT-1, STAT1 and STAT3 mRNA levels and decreased caspase 3 protein levels. Leptin treatment alone significantly decreased the caspase 3 protein levels. The combined use of resveratrol and leptin significantly increased STAT3, and caspase 3 mRNA levels, and decreased the caspase 3 protein levels. Apoptosis was significantly decreased especially in the leptin and leptin+resveratrol groups. The present study suggest that a combined use of resveratrol and leptin has preventive and regulatory effects on renal I/R injury; the mechanism involves decreasing apoptosis, likely by altering the JAK/STAT pathway and SIRT1 expression (Fig. 8, Ref. 24).

  11. COX inhibitors directly alter gene expression: role in cancer prevention?

    PubMed Central

    Wang, Xingya; Baek, Seung Joon; Eling, Thomas

    2016-01-01

    Inflammation is an important contributor to the development and progression of human cancers. Inflammatory lipid metabolites, prostaglandins, formed from arachidonic acid by prostaglandin H synthases commonly called cyclooxygenases (COXs) bind to specific receptors that activate signaling pathways driving the development and progression of tumors. Inhibitors of prostaglandin formation, COX inhibitors, or nonsteroidal anti-inflammatory drugs (NSAIDs) are well documented as agents that inhibit tumor growth and with long-term use prevent tumor development. NSAIDs also alter gene expression independent of COX inhibition and these changes in gene expression also appear to contribute to the anti-tumorigenic activity of these drugs. Many NSAIDs, as illustrated by sulindac sulfide, alter gene expressions by altering the expression or phosphorylation status of the transcription factors specificity protein 1 and early growth response-1 with the balance between these two events resulting in increases or decreases in specific target genes. In this review, we have summarized and discussed the various genes altered by this mechanism after NSAID treatment and how these changes in expression relate to the anti-tumorigenic activity. A major focus of the review is on NSAID-activated gene (NAG-1) or growth differentiation factor 15. This unique member of the TGF-β superfamily is highly induced by NSAIDs and numerous drugs and chemicals with anti-tumorigenic activities. Investigations with a transgenic mouse expressing the human NAG-1 suggest it acts to suppress tumor development in several mouse models of cancer. The biochemistry and biology of NAG-1 were discussed as potential contributor to cancer prevention by COX inhibitors. PMID:22020924

  12. Cellular mechanisms of renal adaptation of sodium dependent sulfate cotransport to altered dietary sulfate in rats.

    PubMed

    Sagawa, K; DuBois, D C; Almon, R R; Murer, H; Morris, M E

    1998-12-01

    The renal transport and fractional reabsorption of inorganic sulfate is altered under conditions of sulfate deficiency or excess. The objective of this study was to examine the cellular mechanisms of adaptation of renal sodium/sulfate cotransport after varying dietary intakes of a sulfur containing amino acid, methionine. Female Lewis rats were divided into four groups and fed diets containing various concentrations of methionine (0, 0.3, 0.82 and 2.46%) for 8 days. Urinary excretion rates and renal clearance of sulfate were significantly decreased in the animals fed a 0% methionine diet or a 0.3% methionine diet, and significantly increased in the animals fed a 2.46% methionine diet when evaluated on days 4 and 7. Serum sulfate concentrations were unchanged by diet treatment in all animals. The fractional reabsorption of sulfate was significantly increased in the animals fed the 0% methionine diet and the 0.3% methionine diets, and decreased in the animals fed the 2.46% methionine diet. Increased mRNA and protein levels for the sodium/sulfate transporter (NaSi-1) were found in the kidney cortex following treatment with the 0 and 0.3% methionine diet groups. Sulfate homeostasis by renal reabsorption is maintained by an up-regulation of steady state levels of NaSi-1 mRNA and protein when the diet is low in methionine.

  13. FLI1 levels impact CXCR3 expression and renal infiltration of T cells and renal glycosphingolipid metabolism in the MRL/lpr lupus mouse strain

    PubMed Central

    Sundararaj, Kamala P.; Thiyagarajan, Thirumagal; Molano, Ivan; Basher, Fahmin; Powers, Thomas W.; Drake, Richard R.; Nowling, Tamara K.

    2015-01-01

    The ETS factor FLI1 is a key modulator of lupus disease expression. Over-expressing FLI1 in healthy mice, results in the development of an autoimmune kidney disease similar to that observed in lupus. Lowering the global levels of FLI1 in two lupus strains (Fli1+/−) significantly improved kidney disease and prolonged survival. T cells from MRL/lpr Fli1+/− lupus mice have reduced activation and IL-4 production, Neuraminidase1 (Neu1) expression, and the levels of the glycosphingolipid (GSL) lactosylceramide (LacCer). Here we demonstrate that MRL/lpr Fli1+/− mice have significantly decreased renal Neu1 and LacCer levels. This corresponds with a significant decrease in the number of total CD3+ cells, as well as CD4+ and CD44+CD62L− T cell subsets in the kidney of MRL/lpr Fli1+/− mice compared to the Fli1+/+ nephritic mice. We further demonstrate that the percentage of CXCR3+ T cells and Cxcr3 message levels in T cells are significantly decreased and corresponds with a decrease in renal CXCR3+ cells and in Cxcl9 and Cxcl10 expression in the MRL/lpr Fli1+/− compared to the Fli1+/+ nephritic mice. Our results suggest that reducing the levels of FLI1 in MRL/lpr mice may be protective against development of nephritis in part through down-regulation of CXCR3, reducing renal T cell infiltration and GSL levels. PMID:26538397

  14. Efficacy of lycopene on modulation of renal antioxidant enzymes, ACE and ACE gene expression in hyperlipidaemic rats.

    PubMed

    Khan, Nazish Iqbal; Noori, Shafaq; Mahboob, Tabassum

    2016-07-01

    We aimed to evaluate the efficacy of lycopene on renal tissue antioxidant enzymes and angiotensin converting enzyme (ACE) gene expression and serum activity in diet-induced hyperlipidaemia. Thirty-two female Wistar albino rats (200-250 g weight), 5-6 months of age, were randomly selected and divided into four groups. Group I received normal diet; group II received 24 g high fat diet/100 g of daily diet; group III received 24 g high fat diet/100 g daily diet and 200 ml of lycopene extract (twice a week) for 8 weeks; and group IV received 200 ml oral lycopene extract twice a week for 8 weeks. A marked increase was observed in plasma urea and creatinine levels, serum C-reactive protein, kidney weight, tissue renal malonyldialdehyde level, ACE gene expression and serum level, while a decrease catalase level among hyperlipidaemic rats was observed. Histologically, interstitial inflammation and proliferation was seen. Lycopene supplementation significantly decreased plasma urea and creatinine, serum ACE, renal tissue malonyldialdehyde level and C-reactive protein level, while it increased tissue antioxidant enzymes level and total protein. Tissue inflammation and proliferation was improved. This finding suggests that supplementation of lycopene is effective for renal antioxidant enzymes, ACE gene expression and ACE serum level in hyperlipidaemic rats. © The Author(s) 2016.

  15. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quoilin, C., E-mail: cquoilin@ulg.ac.be; Mouithys-Mickalad, A.; Duranteau, J.

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonancemore » spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.« less

  16. Expression of CD105 cancer stem cell marker in three subtypes of renal cell carcinoma.

    PubMed

    Saeednejad Zanjani, Leili; Madjd, Zahra; Abolhasani, Maryam; Shariftabrizi, Ahmad; Rasti, Arezoo; Asgari, Mojgan

    2018-01-01

    CD105 is recently described as a cancer stem cell (CSC) marker. The present study was aimed to investigate the expression and prognostic significance of the CSC marker CD105 in different histological subtypes of renal cell carcinoma (RCC). Expression of CD105 was evaluated using immunohistochemistry in RCC samples on tissue microarrays including clear cell RCCs (ccRCCs), papillary, and chromophobe RCCs. The association between CD105 expression and clinicopathological features as well as survival outcomes was determined. In ccRCC, increased tumoral cytoplasmic and endothelial expression of CD105 were significantly associated with advanced stage, renal vein invasion, and microvascular invasion (MVI). In addition, MVI was associated with a worse overall survival (OS). Moreover, in multivariate analysis tumor stage and nuclear grade were independent prognostic factors for OS both in case of tumoral cytoplasmic and endothelial CD105 expression. Additionally, CD105 expression was found to be a predictor of worse OS in univariate analysis. However, in papillary and chromophobe RCC, no significant association was found between CD105 expression and clinicopathological parameters or prognosis. We showed that CD105 expression was associated with more aggressive tumor behavior, more advanced disease, and worse prognosis in ccRCC but not in the other RCC subtypes.

  17. Renal pathophysiologic role of cortical tubular inclusion bodies.

    PubMed

    Radi, Zaher A; Stewart, Zachary S; Grzemski, Felicity A; Bobrowski, Walter F

    2013-01-01

    Renal tubular inclusion bodies are rarely associated with drug administration. The authors describe the finding of renal cortical tubular intranuclear and intracytoplasmic inclusion bodies associated with the oral administration of a norepinephrine/serotonin reuptake inhibitor (NSRI) test article in Sprague-Dawley (SD) rats. Rats were given an NSRI daily for 4 weeks, and kidney histopathologic, ultrastructural pathology, and immunohistochemical examinations were performed. Round eosinophilic intranuclear inclusion bodies were observed histologically in the tubular epithelial cells of the renal cortex in male and female SD rats given the NSRI compound. No evidence of degeneration or necrosis was noted in the inclusion-containing renal cells. By ultrastructural pathology, inclusion bodies consisted of finely granular, amorphous, and uniformly stained nonmembrane-bound material. By immunohistochemistry, inclusion bodies stained positive for d-amino acid oxidase (DAO) protein. In addition, similar inclusion bodies were noted in the cytoplasmic tubular epithelial compartment by ultrastructural and immunohistochemical examination.  This is the first description of these renal inclusion bodies after an NSRI test article administration in SD rats. Such drug-induced renal inclusion bodies are rat-specific, do not represent an expression of nephrotoxicity, represent altered metabolism of d-amino acids, and are not relevant to human safety risk assessment.

  18. CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion.

    PubMed

    Rogers, Natasha M; Zhang, Zheng J; Wang, Jiao-Jing; Thomson, Angus W; Isenberg, Jeffrey S

    2016-08-01

    Defects in renal tubular epithelial cell repair contribute to renal ischemia reperfusion injury, cause acute kidney damage, and promote chronic renal disease. The matricellular protein thrombospondin-1 and its receptor CD47 are involved in experimental renal ischemia reperfusion injury, although the role of this interaction in renal recovery is unknown. We found upregulation of self-renewal genes (transcription factors Oct4, Sox2, Klf4 and cMyc) in the kidney of CD47(-/-) mice after ischemia reperfusion injury. Wild-type animals had minimal self-renewal gene expression, both before and after injury. Suggestive of cell autonomy, CD47(-/-) renal tubular epithelial cells were found to increase expression of the self-renewal genes. This correlated with enhanced proliferative capacity compared with cells from wild-type mice. Exogenous thrombospondin-1 inhibited self-renewal gene expression in renal tubular epithelial cells from wild-type but not CD47(-/-) mice, and this was associated with decreased proliferation. Treatment of renal tubular epithelial cells with a CD47 blocking antibody or CD47-targeting small interfering RNA increased expression of some self-renewal transcription factors and promoted cell proliferation. In a syngeneic kidney transplant model, treatment with a CD47 blocking antibody increased self-renewal transcription factor expression, decreased tissue damage, and improved renal function compared with that in control mice. Thus, thrombospondin-1 via CD47 inhibits renal tubular epithelial cell recovery after ischemia reperfusion injury through inhibition of proliferation/self-renewal. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. The impact of galectin-3 inhibition on aldosterone-induced cardiac and renal injuries.

    PubMed

    Calvier, Laurent; Martinez-Martinez, Ernesto; Miana, Maria; Cachofeiro, Victoria; Rousseau, Elodie; Sádaba, J Rafael; Zannad, Faiez; Rossignol, Patrick; López-Andrés, Natalia

    2015-01-01

    This study investigated whether galectin (Gal)-3 inhibition could block aldosterone-induced cardiac and renal fibrosis and improve cardiorenal dysfunction. Aldosterone is involved in cardiac and renal fibrosis that is associated with the development of cardiorenal injury. However, the mechanisms of these interactions remain unclear. Gal-3, a β-galactoside-binding lectin, is increased in heart failure and kidney injury. Rats were treated with aldosterone-salt combined with spironolactone (a mineralocorticoid receptor antagonist) or modified citrus pectin (a Gal-3 inhibitor), for 3 weeks. Wild-type and Gal-3 knockout mice were treated with aldosterone for 3 weeks. Hemodynamic, cardiac, and renal parameters were analyzed. Hypertensive aldosterone-salt-treated rats presented cardiac and renal hypertrophy (at morphometric, cellular, and molecular levels) and dysfunction. Cardiac and renal expressions of Gal-3 as well as levels of molecular markers attesting fibrosis were also augmented by aldosterone-salt treatment. Spironolactone or modified citrus pectin treatment reversed all of these effects. In wild-type mice, aldosterone did not alter blood pressure levels but increased cardiac and renal Gal-3 expression, fibrosis, and renal epithelial-mesenchymal transition. Gal-3 knockout mice were resistant to aldosterone effects. In experimental hyperaldosteronism, the increase in Gal-3 expression was associated with cardiac and renal fibrosis and dysfunction but was prevented by pharmacological inhibition (modified citrus pectin) or genetic disruption of Gal-3. These data suggest a key role for Gal-3 in cardiorenal remodeling and dysfunction induced by aldosterone. Gal-3 could be used as a new biotarget for specific pharmacological interventions. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease.

    PubMed

    Falkevall, Annelie; Mehlem, Annika; Palombo, Isolde; Heller Sahlgren, Benjamin; Ebarasi, Lwaki; He, Liqun; Ytterberg, A Jimmy; Olauson, Hannes; Axelsson, Jonas; Sundelin, Birgitta; Patrakka, Jaakko; Scotney, Pierre; Nash, Andrew; Eriksson, Ulf

    2017-03-07

    Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways.

    PubMed

    Li, Jinhua; Moe, Birget; Liu, Yanming; Li, Xing-Fang

    2018-06-05

    Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.

  2. IGFBP-4 activates the Wnt/beta-catenin signaling pathway and induces M-CAM expression in human renal cell carcinoma.

    PubMed

    Ueno, Koji; Hirata, Hiroshi; Majid, Shahana; Tabatabai, Z Laura; Hinoda, Yuji; Dahiya, Rajvir

    2011-11-15

    The Wnt/β-catenin signaling pathway is inactivated by Wnt antagonists in most cancers and IGFBP-4 is an antagonist of the Wnt/ β-catenin signaling pathway. However, the function of IGFBP-4 is not currently understood in renal cell carcinoma (RCC). We initially found that the expression of IGFBP-4 was significantly lower in primary RCC and higher in metastatic RCC compared to normal human kidney tissues. To assess the function of IGFBP4, we established IGFBP4 transfectants (primary renal cancer cell line) and performed functional analyses including Tcf reporter assays, cell viability, invasive capability, mortality, and in vivo tumor growth. Interestingly IGFBP-4 transfectants promoted cell growth (in vitro and in vivo), invasion, and motility in primary renal cancer. Tcf transcriptional activity was significantly increased in IGFBP-4 transfectants compared to mock cells and β-catenin expression was increased. Also the β-catenin downstream effector, MT1-MMP showed increased expression in IGFBP4 transfectants. Additionally IGFBP4 induced the expression of M-CAM, a marker of tumor progression. In order to assess the role of IGFBP4 in metastatic renal cancer, IGFBP-4 mRNA in a metastatic renal cancer cell lines (ACHN) was knocked-down using a siRNA technique. The cell growth and motility was decreased in si-IGFBP4 transfected ACHN cells compared to cells transfected with control siRNA. Tcf activity in ACHN cells was also decreased with si-IGFBP-4 transfection. This is a first report documenting that IGFBP-4 expression in RCC activates cell growth, metastasis, Wnt/beta-catenin signaling and may be involved in RCC metastasis. Copyright © 2011 UICC.

  3. Renal expression of aminopeptidase A in rats with two-kidney, one-clip hypertension.

    PubMed

    Wolf, G; Wenzel, U; Assmann, K J; Stahl, R A

    2000-12-01

    Angiotensin II (ANG II) is a major factor involved in the progression of chronic renal disease. Although the generation of this vasoactive peptide has been investigated in great detail, only a few studies have hitherto addressed the metabolism of ANG II into fragments such as angiotensin III and IV (ANG III, IV) which may exert physiological effects independent of ANG II. Aminopeptidase A (APA) is the major enzyme degrading ANG II. The aim of the current study was to evaluate glomerular APA expression in rats with two-kidney, one-clip hypertension. The left renal artery was restricted with a 0.2-mm silver clip. Kidneys were harvested 1 and 4 weeks after surgery. APA enzyme and protein expression was evaluated in kidney sections. Total APA enzyme activity and mRNA expression was assessed in isolated glomeruli. Degradation of exogenous ANG II by isolated glomeruli was measured with reverse-phase high-performance liquid chromatography. APA enzyme activity, protein, and mRNA expression were stimulated in the clipped kidney 1 week after surgery compared with the contralateral kidney or normal controls. In contrast, 4 weeks after clipping APA activity and expression was higher in the contralateral kidney. In parallel to these findings, degradation of ANG II was greatest in isolated glomeruli obtained from the clipped kidney after 1 week. However, preparations from the contralateral kidney 4 weeks after surgery were more active in the metabolism of exogenous ANG II. The present study provides evidence that APA is complexly regulated in in vivo situations with an activated local renin-ANG II system. ANG II appears to play a direct role in this regulation. However, since conversion of ANG II to ANG III by APA is the initial step leading to the formation of ANG IV which may exert detrimental effects not mediated through classical ANG II receptors, a local increase in APA activity may contribute to the progression of chronic renal disease even during complete AT(1)-receptor

  4. Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c.

    PubMed

    Tenenhouse, Harriet S; Martel, Josée; Gauthier, Claude; Segawa, Hiroko; Miyamoto, Ken-ichi

    2003-12-01

    The present study was undertaken to define the mechanisms governing the regulation of the novel renal brush-border membrane (BBM) Na-phosphate (Pi) cotransporter designated type IIc (Npt2c). To address this issue, the renal expression of Npt2c was compared in two hypophosphatemic mouse models with impaired renal BBM Na-Pi cotransport. In mice homozygous for the disrupted Npt2a gene (Npt2-/-), BBM Npt2c protein abundance, relative to actin, was increased 2.8-fold compared with Npt2+/+ littermates, whereas a corresponding increase in renal Npt2c mRNA abundance, relative to beta-actin, was not evident. In contrast, in X-linked Hyp mice, which harbor a large deletion in the Phex gene, the renal abundance of both Npt2c protein and mRNA was significantly decreased by 80 and 50%, respectively, relative to normal littermates. Pi deprivation elicited a 2.5-fold increase in BBM Npt2c protein abundance in Npt2+/+ mice but failed to elicit a further increase in Npt2c protein in Npt2-/- mice. Pi restriction led to an increase in BBM Npt2c protein abundance in both normal and Hyp mice without correcting its renal expression in the mutants. In summary, we report that BBM Npt2c protein expression is differentially regulated in Npt2-/- mice and Hyp mice and that the Npt2c response to low-Pi challenge differs in both hypophosphatemic mouse strains. We demonstrate that Npt2c protein is maximally upregulated in Npt2-/- mice and suggest that Npt2c likely accounts for residual BBM Na-Pi cotransport in the knockout model. Finally, our data indicate that loss of Phex function abrogates renal Npt2c protein expression.

  5. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression

    PubMed Central

    Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad

    2015-01-01

    Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression. PMID:26583057

  6. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression.

    PubMed

    Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad

    2015-01-01

    Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression.

  7. Prostate cancer-associated gene expression alterations determined from needle biopsies.

    PubMed

    Qian, David Z; Huang, Chung-Ying; O'Brien, Catherine A; Coleman, Ilsa M; Garzotto, Mark; True, Lawrence D; Higano, Celestia S; Vessella, Robert; Lange, Paul H; Nelson, Peter S; Beer, Tomasz M

    2009-05-01

    To accurately identify gene expression alterations that differentiate neoplastic from normal prostate epithelium using an approach that avoids contamination by unwanted cellular components and is not compromised by acute gene expression changes associated with tumor devascularization and resulting ischemia. Approximately 3,000 neoplastic and benign prostate epithelial cells were isolated using laser capture microdissection from snap-frozen prostate biopsy specimens provided by 31 patients who subsequently participated in a clinical trial of preoperative chemotherapy. cDNA synthesized from amplified total RNA was hybridized to custom-made microarrays composed of 6,200 clones derived from the Prostate Expression Database. Expression differences for selected genes were verified using quantitative reverse transcription-PCR. Comparative analyses identified 954 transcript alterations associated with cancer (q < 0.01%), including 149 differentially expressed genes with no known functional roles. Gene expression changes associated with ischemia and surgical removal of the prostate gland were absent. Genes up-regulated in prostate cancer were statistically enriched in categories related to cellular metabolism, energy use, signal transduction, and molecular transport. Genes down-regulated in prostate cancers were enriched in categories related to immune response, cellular responses to pathogens, and apoptosis. A heterogeneous pattern of androgen receptor expression changes was noted. In exploratory analyses, androgen receptor down-regulation was associated with a lower probability of cancer relapse after neoadjuvant chemotherapy followed by radical prostatectomy. Assessments of tumor phenotypes based on gene expression for treatment stratification and drug targeting of oncogenic alterations may best be ascertained using biopsy-based analyses where the effects of ischemia do not complicate interpretation.

  8. Prostate Cancer-Associated Gene Expression Alterations Determined from Needle Biopsies

    PubMed Central

    Qian, David Z.; Huang, Chung-Ying; O'Brien, Catherine A.; Coleman, Ilsa M.; Garzotto, Mark; True, Lawrence D.; Higano, Celestia S.; Vessella, Robert; Lange, Paul H.; Nelson, Peter S.; Beer, Tomasz M.

    2010-01-01

    Purpose To accurately identify gene expression alterations that differentiate neoplastic from normal prostate epithelium using an approach that avoids contamination by unwanted cellular components and is not compromised by acute gene expression changes associated with tumor devascularization and resulting ischemia. Experimental Design Approximately 3,000 neoplastic and benign prostate epithelial cells were isolated using laser capture microdissection from snap-frozen prostate biopsy specimens provided by 31 patients who subsequently participated in a clinical trial of preoperative chemotherapy. cDNA synthesized from amplified total RNA was hybridized to custom-made microarrays comprised of 6200 clones derived from the Prostate Expression Database. Expression differences for selected genes were verified using quantitative RT-PCR. Results Comparative analyses identified 954 transcript alterations associated with cancer (q value <0.01%) including 149 differentially expressed genes with no known functional roles. Gene expression changes associated with ischemia and surgical removal of the prostate gland were absent. Genes up-regulated in prostate cancer were statistically enriched in categories related to cellular metabolism, energy utilization, signal transduction, and molecular transport. Genes down-regulated in prostate cancers were enriched in categories related to immune response, cellular responses to pathogens, and apoptosis. A heterogeneous pattern of AR expression changes was noted. In exploratory analyses, AR down regulation was associated with a lower probability of cancer relapse after neoadjuvant chemotherapy followed by radical prostatectomy. Conclusions Assessments of tumor phenotypes based on gene expression for treatment stratification and drug targeting of oncogenic alterations may best be ascertained using biopsy-based analyses where the effects of ischemia do not complicate interpretation. PMID:19366833

  9. [Effect of Cordyceps sinensis on the expression of HIF-1α and NGAL in rats with renal ischemia-reperfusion injury].

    PubMed

    Yu, Honglei; Zhou, Qiaoling; Huang, Renfa; Yuan, Mingxia; Ao, Xiang; Yang, Jinghua

    2012-01-01

    To observe the level of urinary neutrophil gelatinase-associated lipocalin (NGAL), the expression of hypoxia inducible factor-1α (HIF-1α) and NGAL in rat kidney after renal ischemia and reperfusion (I/R), before and after the treatment with Cordyceps Sinensis (C. sinensis), and to explore the mechanism of C. sinensis against I/R injury. A total of 45 healthy male Sprague-Dawley rats were randomly divided into a sham group, a renal I/R model group, and a C. sinensis group (15 in each group).The rats in the sham group and the renal I/R model group were intragastrically administered saline (2 mL/d), and rats in the treatment group were intragastricabby administered of C. sinensis [5.0 g/(kg.d)]. The rats were sacrificed at 24, 48, and 72 h, respectively after the reperfusion and urinary N-acetyl-β-D-glucosaminidase (NAG) level was measured, renal function in rats was detected, and the pathological changes were observed with HE staining. We determined the urinary NGAL levels in the rats by ELISA, the expression of HIF-1α mRNA by RT-PCR, and the expressions of HIF-1α and NGAL proteins by confocal immunofluorescence. Compared with the sham group, the levels of BUN, SCr, levels of NAG and NGAL in urine were increased in the I/R group and the C. sinensis group, reached a peak at 24 h after the reperfusion and slowly declined at 48 and 72 h. Glomerular and tubulointerstitial areas in the sham group did not show any pathological change. Induced pathological changes included tubular cell necrosis, focal areas of proximal tubular dilation, distal tubular casts, effacement and loss of proximal tubule brush border, etc. Compared with the sham group, the expression of HIF-1α and NGAL in the kidney tissues of the I/R group and the C. sinensis group increased. C. sinensis can lower the level of NAG and NGAL in the urine and the expression of NGAL protein in the kidney tissues. It up-regulated the expression of HIF-1α mRNA and protein in the kidney tissues whilst attenuated

  10. Increased expression of CD44 is associated with more aggressive behavior in clear cell renal cell carcinoma.

    PubMed

    Zanjani, Leili Saeednejad; Madjd, Zahra; Abolhasani, Maryam; Rasti, Arezoo; Fodstad, Oystein; Andersson, Yvonne; Asgari, Mojgan

    2018-01-01

    Although CD44 has been suggested as a prognostic marker in renal cell carcinoma (RCC), the prognostic significance of this marker in three main subtypes of RCC is still unclear. Thus, the present study was conducted to evaluate the expression and prognostic significance of CD44 as a cancer stem cell marker in different histological subtypes of RCC. Methodology & results: CD44 expression was evaluated in 206 well-defined renal tumor samples using immunohistochemistry on tissue microarrays. Higher CD44 expression was associated with more aggressive behavior, tumor progression and worse prognosis in clear cell RCC (ccRCC) but not in papillary and chromophobe RCC subtypes. Cancer stem cell marker CD44 may be a promising target for cancer treatment only in ccRCC.

  11. Renal Hypoxia and Dysoxia After Reperfusion of the Ischemic Kidney

    PubMed Central

    Legrand, Matthieu; Mik, Egbert G; Johannes, Tanja; Payen, Didier; Ince, Can

    2008-01-01

    Ischemia is the most common cause of acute renal failure. Ischemic-induced renal tissue hypoxia is thought to be a major component in the development of acute renal failure in promoting the initial tubular damage. Renal oxygenation originates from a balance between oxygen supply and consumption. Recent investigations have provided new insights into alterations in oxygenation pathways in the ischemic kidney. These findings have identified a central role of microvascular dysfunction related to an imbalance between vasoconstrictors and vasodilators, endothelial damage and endothelium–leukocyte interactions, leading to decreased renal oxygen supply. Reduced microcirculatory oxygen supply may be associated with altered cellular oxygen consumption (dysoxia), because of mitochondrial dysfunction and activity of alternative oxygen-consuming pathways. Alterations in oxygen utilization and/or supply might therefore contribute to the occurrence of organ dysfunction. This view places oxygen pathways’ alterations as a potential central player in the pathogenesis of acute kidney injury. Both in regulation of oxygen supply and consumption, nitric oxide seems to play a pivotal role. Furthermore, recent studies suggest that, following acute ischemic renal injury, persistent tissue hypoxia contributes to the development of chronic renal dysfunction. Adaptative mechanisms to renal hypoxia may be ineffective in more severe cases and lead to the development of chronic renal failure following ischemia-reperfusion. This paper is aimed at reviewing the current insights into oxygen transport pathways, from oxygen supply to oxygen consumption in the kidney and from the adaptation mechanisms to renal hypoxia. Their role in the development of ischemia-induced renal damage and ischemic acute renal failure are discussed. PMID:18488066

  12. Cytoplasmic expression of CD133 stemness marker is associated with tumor aggressiveness in clear cell renal cell carcinoma.

    PubMed

    Saeednejad Zanjani, Leili; Madjd, Zahra; Abolhasani, Maryam; Andersson, Yvonne; Rasti, Arezoo; Shariftabrizi, Ahmad; Asgari, Mojgan

    2017-10-01

    Prominin-1 (CD133) is one of the most commonly used markers for cancer stem cells (CSCs), which are characterized by their ability for self-renewal and tumorigenicity. However, the clinical and prognostic significance of CSCs in renal cell carcinoma (RCC) remains unclear. The aim of this study was to investigate the expression patterns and prognostic significance of the cancer stem cell marker CD133 in different histological subtypes of RCC. CD133 expression was evaluated using immunohistochemistry in 193 well-defined renal tumor samples on tissue microarrays, including 136 (70.5%) clear cell renal cell carcinomas (CCRCCs), 26 (13.5%) papillary RCCs, and 31 (16.1%) chromophobe RCCs. The association between CD133 expression and clinicopathological features as well as the survival outcomes was determined. There was a statistically significant difference between CD133 expression among the different RCC subtypes. In CCRCC, higher cytoplasmic expression of CD133 was significantly associated with increase in grade, stage, microvascular invasion (MVI) and lymph node invasion (LNI), while no association was found with the membranous expression. Moreover, on multivariate analysis, TNM stage and nuclear grade were independent prognostic factors for overall survival (OS) in cytoplasmic expression. We showed that higher cytoplasmic CD133 expression was associated with more aggressive tumor behavior and more advanced disease in CCRCC but not in the other examined subtypes. Our results demonstrated that higher cytoplasmic CD133 expression is clinically significant in CCRCC and is associated with increased tumor aggressiveness and is useful for predicting cancer progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effects of apigenin on the expression levels of B-cell lymphoma-2, Fas and Fas ligand in renal ischemia-reperfusion injury in rats.

    PubMed

    Liu, Yang; Liu, Xiuheng; Wang, Lei; Du, Yang; Chen, Zhiyuan; Chen, Hui; Guo, Jia; Weng, Xiaodong; Wang, Xiao; Wang, Ming; Wang, Zhishun

    2017-12-01

    The aim of the present study was to investigate the effect and possible mechanism of apigenin on renal ischemia-reperfusion (I/R) injury in rats, as well as in in vitro experiments. In total, 36 rats were subjected to 45 min of renal ischemia, with or without treatment prior to ischemia with different concentrations of apigenin (2, 10 and 50 mg/kg) administered intravenously. All rats were sacrificed at 24 h after I/R injury. The serum creatinine (Cr) and blood urea nitrogen (BUN) levels were analyzed, and histological examination was conducted. In addition, the expression levels of B-cell lymphoma 2 (Bcl-2) and Fas/Fas ligand (FasL) were detected by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction and western blot analysis. For in vitro experiments, the NRK-52E cell line was employed. The viability, apoptosis and expression levels of Fas, FasL and Bcl-2 were examined in the culture of NRK-52E cells following the I/R. The results indicated that apigenin significantly decreased the levels of serum Cr and BUN induced by renal I/R, demonstrating an improvement in renal function. The histological evidence of renal damage associated with I/R was also mitigated by apigenin in vivo . Furthermore, apigenin increased the cell viability and decreased cell apoptosis in the culture of NRK52E after I/R in vitro . Compared with the I/R group, the expression of Bcl-2 was upregulated and the expression levels of Fas and FasL were downregulated by apigenin at the mRNA and protein levels in vivo and in vitro . In conclusion, apigenin appeared to increase the expression of Bcl-2 and reduce Fas/FasL expression in renal I/R injury, providing evident protection against renal I/R injury in rats.

  14. Effects of apigenin on the expression levels of B-cell lymphoma-2, Fas and Fas ligand in renal ischemia-reperfusion injury in rats

    PubMed Central

    Liu, Yang; Liu, Xiuheng; Wang, Lei; Du, Yang; Chen, Zhiyuan; Chen, Hui; Guo, Jia; Weng, Xiaodong; Wang, Xiao; Wang, Ming; Wang, Zhishun

    2017-01-01

    The aim of the present study was to investigate the effect and possible mechanism of apigenin on renal ischemia-reperfusion (I/R) injury in rats, as well as in in vitro experiments. In total, 36 rats were subjected to 45 min of renal ischemia, with or without treatment prior to ischemia with different concentrations of apigenin (2, 10 and 50 mg/kg) administered intravenously. All rats were sacrificed at 24 h after I/R injury. The serum creatinine (Cr) and blood urea nitrogen (BUN) levels were analyzed, and histological examination was conducted. In addition, the expression levels of B-cell lymphoma 2 (Bcl-2) and Fas/Fas ligand (FasL) were detected by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction and western blot analysis. For in vitro experiments, the NRK-52E cell line was employed. The viability, apoptosis and expression levels of Fas, FasL and Bcl-2 were examined in the culture of NRK-52E cells following the I/R. The results indicated that apigenin significantly decreased the levels of serum Cr and BUN induced by renal I/R, demonstrating an improvement in renal function. The histological evidence of renal damage associated with I/R was also mitigated by apigenin in vivo. Furthermore, apigenin increased the cell viability and decreased cell apoptosis in the culture of NRK52E after I/R in vitro. Compared with the I/R group, the expression of Bcl-2 was upregulated and the expression levels of Fas and FasL were downregulated by apigenin at the mRNA and protein levels in vivo and in vitro. In conclusion, apigenin appeared to increase the expression of Bcl-2 and reduce Fas/FasL expression in renal I/R injury, providing evident protection against renal I/R injury in rats. PMID:29285062

  15. [Gene expression analyses of kidney biopsies: the European renal cDNA bank--Kröner-Fresenius biopsy bank].

    PubMed

    Cohen, C D; Kretzler, M

    2009-03-01

    Histological analysis of kidney biopsies is an essential part of our current diagnostic workup of patients with renal disease. Besides the already established diagnostic tools, new methods allow extensive analysis of the sample tissue's gene expression. Using results from a European multicenter study on gene expression analysis of renal biopsies, in this review we demonstrate that this novel approach not only expands the scope of so-called basic research but also might supplement future biopsy diagnostics. The goals are improved diagnosis and more specific therapy choice and prognosis estimates.

  16. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cárdenas-González, Mariana C.; Del Razo, Luz M.; Barrera-Chimal, Jonatan

    2013-11-01

    Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end ofmore » the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary β-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: • Exposure to low concentrations of fluoride induced proximal tubular injury • Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group • Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups • Fluoride exposure increased renal Kim, Clu and OPN mRNA expression

  17. High and Low Salt Intake during Pregnancy: Impact on Cardiac and Renal Structure in Newborns.

    PubMed

    Seravalli, Priscila; de Oliveira, Ivone Braga; Zago, Breno Calazans; de Castro, Isac; Veras, Mariana Matera; Alves-Rodrigues, Edson Nogueira; Heimann, Joel C

    2016-01-01

    Previous studies from our laboratory demonstrated that dietary salt overload and salt restriction during pregnancy were associated with cardiac and renal structural and/or functional alterations in adult offspring. The present study evaluated renal and cardiac structure and the local renin-angiotensin system in newborns from dams fed high-, normal- or low-salt diets during pregnancy. Female Wistar rats were fed low- (LS, 0.15% NaCl), normal- (NS, 1.3% NaCl) or high- (HS, 8% NaCl) salt diets during pregnancy. Kidneys and hearts were collected from newborns (n = 6-8/group) during the first 24 hours after birth to evaluate possible changes in structure using stereology. Protein expression of renin-angiotensin system components was evaluated using an indirect enzyme-linked immunosorbent assay (ELISA). No differences between groups were observed in total renal volume, volume of renal compartments or number of glomeruli. The transverse diameter of the nuclei of cardiomyocytes was greater in HS than NS males in the left and right ventricles. Protein expression of the AT1 receptor was lower in the kidneys of the LS than in those of the NS and HS males but not females. Protein expression of the AT2 receptor was lower in the kidneys of the LS males and females than in those of the NS males and females. High salt intake during pregnancy induced left and right ventricular hypertrophy in male newborns. Salt restriction during pregnancy reduced the expression of renal angiotensin II receptors in newborns.

  18. Delayed mTOR inhibition with low dose of everolimus reduces TGFβ expression, attenuates proteinuria and renal damage in the renal mass reduction model.

    PubMed

    Kurdián, Melania; Herrero-Fresneda, Inmaculada; Lloberas, Nuria; Gimenez-Bonafe, Pepita; Coria, Virginia; Grande, María T; Boggia, José; Malacrida, Leonel; Torras, Joan; Arévalo, Miguel A; González-Martínez, Francisco; López-Novoa, José M; Grinyó, Josep; Noboa, Oscar

    2012-01-01

    The immunosuppressive mammalian target of rapamycin (mTOR) inhibitors are widely used in solid organ transplantation, but their effect on kidney disease progression is controversial. mTOR has emerged as one of the main pathways regulating cell growth, proliferation, differentiation, migration, and survival. The aim of this study was to analyze the effects of delayed inhibition of mTOR pathway with low dose of everolimus on progression of renal disease and TGFβ expression in the 5/6 nephrectomy model in Wistar rats. This study evaluated the effects of everolimus (0.3 mg/k/day) introduced 15 days after surgical procedure on renal function, proteinuria, renal histology and mechanisms of fibrosis and proliferation. Everolimus treated group (EveG) showed significantly less proteinuria and albuminuria, less glomerular and tubulointerstitial damage and fibrosis, fibroblast activation cell proliferation, when compared with control group (CG), even though the EveG remained with high blood pressure. Treatment with everolimus also diminished glomerular hypertrophy. Everolimus effectively inhibited the increase of mTOR developed in 5/6 nephrectomy animals, without changes in AKT mRNA or protein abundance, but with an increase in the pAKT/AKT ratio. Associated with this inhibition, everolimus blunted the increased expression of TGFβ observed in the remnant kidney model. Delayed mTOR inhibition with low dose of everolimus significantly prevented progressive renal damage and protected the remnant kidney. mTOR and TGFβ mRNA reduction can partially explain this anti fibrotic effect. mTOR can be a new target to attenuate the progression of chronic kidney disease even in those nephropathies of non-immunologic origin.

  19. Nephron-Specific Deletion of Circadian Clock Gene Bmal1 Alters the Plasma and Renal Metabolome and Impairs Drug Disposition.

    PubMed

    Nikolaeva, Svetlana; Ansermet, Camille; Centeno, Gabriel; Pradervand, Sylvain; Bize, Vincent; Mordasini, David; Henry, Hugues; Koesters, Robert; Maillard, Marc; Bonny, Olivier; Tokonami, Natsuko; Firsov, Dmitri

    2016-10-01

    The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question, we performed a combined functional, transcriptomic, and metabolomic analysis in mice with inducible conditional knockout (cKO) of BMAL1, which is critically involved in the circadian clock system, in renal tubular cells (Bmal1 lox/lox /Pax8-rtTA/LC1 mice). Induction of cKO in adult mice did not produce obvious abnormalities in renal sodium, potassium, or water handling. Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport in cKO mice compared with control littermates. Furthermore, kidneys from cKO mice exhibited a significant decrease in the NAD + -to-NADH ratio, which reflects the oxidative phosphorylation-to-glycolysis ratio and/or the status of mitochondrial function. Metabolome profiling showed significant changes in plasma levels of amino acids, biogenic amines, acylcarnitines, and lipids. In-depth analysis of two selected pathways revealed a significant increase in plasma urea level correlating with increased renal Arginase II activity, hyperargininemia, and increased kidney arginine content as well as a significant increase in plasma creatinine concentration and a reduced capacity of the kidney to secrete anionic drugs (furosemide) paralleled by an approximate 80% decrease in the expression level of organic anion transporter 3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at the intrarenal and systemic levels and are involved in drug disposition. Copyright © 2016 by the American Society of Nephrology.

  20. MicroRNA-214 Reduces Insulin-like Growth Factor-1 (IGF-1) Receptor Expression and Downstream mTORC1 Signaling in Renal Carcinoma Cells*

    PubMed Central

    Das, Falguni; Dey, Nirmalya; Bera, Amit; Kasinath, Balakuntalam S.; Ghosh-Choudhury, Nandini; Choudhury, Goutam Ghosh

    2016-01-01

    Elevated IGF-1/insulin-like growth factor-1 receptor (IGF-1R) autocrine/paracrine signaling in patients with renal cell carcinoma is associated with poor prognosis of the disease independent of their von Hippel-Lindau (VHL) status. Increased expression of IGF-1R in renal cancer cells correlates with their potency of tumor development and progression. The mechanism by which expression of IGF-1R is increased in renal carcinoma is not known. We report that VHL-deficient and VHL-positive renal cancer cells possess significantly decreased levels of mature, pre-, and pri-miR-214 than normal proximal tubular epithelial cells. We identified an miR-214 recognition element in the 3′UTR of IGF-1R mRNA and confirmed its responsiveness to miR-214. Overexpression of miR-214 decreased the IGF-1R protein levels, resulting in the inhibition of Akt kinase activity in both types of renal cancer cells. IGF-1 provoked phosphorylation and inactivation of PRAS40 in an Akt-dependent manner, leading to the activation of mTORC1 signal transduction to increase phosphorylation of S6 kinase and 4EBP-1. Phosphorylation-deficient mutants of PRAS40 and 4EBP-1 significantly inhibited IGF-1R-driven proliferation of renal cancer cells. Expression of miR-214 suppressed IGF-1R-induced phosphorylation of PRAS40, S6 kinase, and 4EBP-1, indicating inhibition of mTORC1 activity. Finally, miR-214 significantly blocked IGF-1R-forced renal cancer cell proliferation, which was reversed by expression of 3′UTR-less IGF-1R and constitutively active mTORC1. Together, our results identify a reciprocal regulation of IGF-1R levels and miR-214 expression in renal cancer cells independent of VHL status. Our data provide evidence for a novel mechanism for IGF-1R-driven renal cancer cell proliferation involving miR-214 and mTORC1. PMID:27226530

  1. Impaired renal function and development in Belgrade rats

    PubMed Central

    Veuthey, Tania; Hoffmann, Dana; Vaidya, Vishal S.

    2013-01-01

    Belgrade rats carry a disabling mutation in the iron transporter divalent metal transporter 1 (DMT1). Although DMT1 plays a major role in intestinal iron absorption, the transporter is also highly expressed in the kidney, where its function remains unknown. The goal of this study was to characterize renal physiology of Belgrade rats. Male Belgrade rats died prematurely with ∼50% survival at 20 wk of age. Necropsy results indicated marked glomerular nephritis and chronic end-stage renal disease. By 15 wk of age, Belgrade rats displayed altered renal morphology associated with sclerosis and fibrosis. Creatinine clearance was significantly lower compared with heterozygote littermates. Urinary biomarkers of kidney injury, including albumin, fibrinogen, and kidney injury molecule-1, were significantly elevated. Pilot morphological studies suggest that nephrogenesis is delayed in Belgrade rat pups due to their low iron status and fetal growth restriction. Such defects in renal development most likely underlie the compromised renal metabolism observed in adult b/b rats. Belgrade rat kidney nonheme iron levels were not different from controls but urinary iron and transferrin levels were higher. These results further implicate an important role for the transporter in kidney function not only in iron reabsorption but also in glomerular filtration of the serum protein. PMID:24226520

  2. Renal function and acute heart failure outcome.

    PubMed

    Llauger, Lluís; Jacob, Javier; Miró, Òscar

    2018-06-05

    The interaction between acute heart failure (AHF) and renal dysfunction is complex. Several studies have evaluated the prognostic value of this syndrome. The aim of this systematic review, which includes non-selected samples, was to investigate the impact of different renal function variables on the AHF prognosis. The categories included in the studies reviewed included: creatinine, blood urea nitrogen (BUN), the BUN/creatinine quotient, chronic kidney disease, the formula to estimate the glomerular filtration rate, criteria of acute renal injury and new biomarkers of renal damage such as neutrophil gelatinase-associated lipocalin (NGAL and cystatin c). The basal alterations of the renal function, as well as the acute alterations, transient or not, are related to a worse prognosis in AHF, it is therefore necessary to always have baseline, acute and evolutive renal function parameters. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  3. Overexpression of catalase prevents hypertension and tubulointerstitial fibrosis and normalization of renal angiotensin-converting enzyme-2 expression in Akita mice

    PubMed Central

    Shi, Yixuan; Lo, Chao-Sheng; Chenier, Isabelle; Maachi, Hasna; Filep, Janos G.; Ingelfinger, Julie R.; Zhang, Shao-Ling

    2013-01-01

    We investigated the relationship among oxidative stress, hypertension, renal injury, and angiotensin-converting enzyme-2 (ACE2) expression in type 1 diabetic Akita mice. Blood glucose, blood pressure, and albuminuria were monitored for up to 5 mo in adult male Akita and Akita catalase (Cat) transgenic (Tg) mice specifically overexpressing Cat, a key antioxidant enzyme in their renal proximal tubular cells (RPTCs). Same-age non-Akita littermates and Cat-Tg mice served as controls. In separate studies, adult male Akita mice (14 wk) were treated with ANG 1–7 (500 μg·kg−1·day−1 sc) ± A-779, an antagonist of the Mas receptor (10 mg·kg−1·day−1 sc), and euthanized at the age of 18 wk. The left kidneys were processed for histology and apoptosis studies. Renal proximal tubules were isolated from the right kidneys to assess protein and gene expression. Urinary angiotensinogen (AGT), angiotensin II (ANG II), and ANG 1–7 were quantified by specific ELISAs. Overexpression of Cat attenuated renal oxidative stress; prevented hypertension; normalized RPTC ACE2 expression and urinary ANG 1–7 levels (both were low in Akita mice); ameliorated glomerular filtration rate, albuminuria, kidney hypertrophy, tubulointerstitial fibrosis, and tubular apoptosis; and suppressed profibrotic and proapoptotic gene expression in RPTCs of Akita Cat-Tg mice compared with Akita mice. Furthermore, daily administration of ANG 1–7 normalized systemic hypertension in Akita mice, which was reversed by A-779. These data demonstrate that Cat overexpression prevents hypertension and progression of nephropathy and highlight the importance of intrarenal oxidative stress and ACE2 expression contributing to hypertension and renal injury in diabetes. PMID:23552863

  4. Cyclic adenosine monophosphate modulates cell morphology and behavior of a cultured renal epithelial.

    PubMed

    Amsler, K

    1990-07-01

    The role of cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) in modulating functions of differentiated renal cells is well established. Its importance in controlling their growth and differentiation is less clear. We have used somatic cell genetic techniques to probe the role of PKA in controlling morphology and behavior of a renal epithelial cell line, LLC-PK1, which acquires many properties characteristic of the renal proximal tubular cell. Mutants of this line altered in PKA activity have been isolated and their behavior compared to that of the parent line. The results indicate that PKA is involved, either directly or indirectly, in maintenance of cell morphology, cell-cell and cell-substratum interactions, density-dependent growth regulation, and expression of one function characteristic of the renal proximal tubular cell, Na-hexose symport. The relevance of these results to the role of PKA in controlling growth and differentiation of renal epithelial cells in vivo is discussed.

  5. Expression of genes of the cardiac and renal renin-angiotensin systems in preterm piglets: is this system a suitable target for therapeutic intervention?

    PubMed

    Kim, Eleanor; Eiby, Yvonne; Lumbers, Eugenie; Boyce, Amanda; Gibson, Karen; Lingwood, Barbara

    2015-10-01

    The newborn circulating, cardiac and renal renin-angiotensin systems (RASs) are essential for blood pressure control, and for cardiac and renal development. If cardiac and renal RASs are immature this may contribute to cardiovascular compromise in preterm infants. This study measured mRNA expression of cardiac and renal RAS components in preterm, glucocorticoid (GC) exposed preterm, and term piglets. Renal and cardiac RAS mRNA levels were measured using real-time polymerase chain reaction (PCR). Genes studied were: (pro)renin receptor, renin, angiotensinogen, angiotensin converting enzyme (ACE), ACE2, angiotensin type 1 receptor (AT1R) and angiotensin type 2 receptor (AT2R). All the genes studied were expressed in the kidney; neither renin nor AT2R mRNA were detected in the heart. There were no gestational changes in (pro)renin receptor, renin, ACE or AT1R mRNA levels. Right ventricular angiotensinogen mRNA levels in females were lower in preterm animals than at term, and GC exposure increased levels in male piglets. Renal angiotensinogen mRNA levels in female term piglets were lower than females from both preterm groups, and lower than male term piglets. Left ventricular ACE2 mRNA expression was lower in GC treated preterm piglets. Renal AT2R mRNA abundance was highest in GC treated preterm piglets, and the AT1R/AT2R ratio was increased at term. Preterm cardiac and renal RAS mRNA levels were similar to term piglets, suggesting that immaturity of these RASs does not contribute to preterm cardiovascular compromise. Since preterm expression of both renal and cardiac angiotensin II-AT1R is similar to term animals, cardiovascular dysfunction in the sick preterm human neonate might be effectively treated by agents acting on their RASs. © The Author(s), 2015.

  6. Altered Mucin and Glycoprotein Expression in Dry Eye Disease.

    PubMed

    Stephens, Denise N; McNamara, Nancy A

    2015-09-01

    Mucins are among the many important constituents of a healthy tear film. Mucins secreted and/or associated with conjunctival goblet cells, ocular mucosal epithelial cells, and the lacrimal gland must work together to create a stable tear film. Although many studies have explored the mechanism(s) whereby mucins maintain and protect the ocular surface, the effects of dry eye on the structure and function of ocular mucins are unclear. Here, we summarize current findings regarding ocular mucins and how they are altered in dry eye. We performed a literature review of studies exploring the expression of mucins produced and/or associated with tissues that comprise the lacrimal functional unit and how they are altered in dry eye. We also summarize new insights on the immune-mediated effects of aqueous tear deficiency on ocular surface mucins that we discovered using a mouse model of dry eye. Although consistent decreases in MUC5AC and altered expression of membrane-bound mucins have been noted in both Sjögren and non-Sjögren dry eye, many reports of altered mucins in dry eye are contradictory. Mechanistic studies, including our own, suggest that changes in the glycosylation of mucins rather than the proteins themselves may occur as the direct result of local inflammation induced by proinflammatory mediators, such as interleukin-1. Altered expression of ocular mucins in dry eye varies considerably from study to study, likely attributed to inherent difficulties in analyzing small-volume tear samples, as well as differences in tear collection methods and disease severity in dry eye cohorts. To better define the functional role of ocular mucin glycosylation in the pathogenesis of dry eye disease, we propose genomic and proteomic studies along with biological pathway analysis to reveal novel avenues for exploration.

  7. Dynamic gene expression response to altered gravity in human T cells.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Huge, Andreas; Tauber, Svantje; Lauber, Beatrice A; Polzer, Jennifer; Paulsen, Katrin; Lier, Hartwin; Engelmann, Frank; Schmitz, Burkhard; Schütte, Andreas; Layer, Liliana E; Ullrich, Oliver

    2017-07-12

    We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.

  8. Renal formulas pretreated with medications alters the nutrient profile

    PubMed Central

    Oladitan, Leah; Carlson, Susan; Hamilton-Reeves, Jill M.

    2015-01-01

    Background Pretreating renal formulas with medications to lower the potassium and phosphorus content is common in clinical practice; however, the effect of this treatment on other nutrients is relatively unstudied. We examine whether nutrient composition is affected by pretreating renal formulas with sodium polystyrene sulfonate (SPS) suspension and sevelamer carbonate. Methods Fixed medication doses and treatment times were utilized to determine changes in the nutrient composition of Suplena® and Similac® PM 60/40. The effect of simultaneously adding both medications (co-administration) to the formula on the nutrient composition of Suplena® was also evaluated. Results Pretreatment of Suplena® with SPS reduced the concentrations of calcium (11–38 %), copper (3–11 %), manganese (3–16 %), phosphorus (0–7 %), potassium (6–34 %), and zinc (5–20 %) and increased those of iron (9–34 %), sodium (89–260 %), and sulfur (19–45 %) and the pH (0.20–0.50 units). Pretreatment of Similac® PM 60/40 with SPS reduced the concentrations of calcium (8–29 %), copper (5–19 %), magnesium (3–26 %), and potassium (33–63 %) and increased those of iron (13–87 %) and sodium (86–247 %) and the pH (0.40–0.81 units). Pretreatment of both formulas with the SPS suspension led to significant increases in the aluminum concentration in both formulas (507–3957 %). No differences in potassium concentration were observed between treatment times. Unexpectedly, the levels of neither phosphorus nor potassium were effectively reduced in Suplena® pretreated with sevelamer carbonate alone or when co-administered with SPS. Conclusions Pretreating formula with medications alters nutrients other than the intended target(s). Future studies should be aimed at predicting the loss of these nutrients or identifying alternative methods for managing serum potassium and phosphorus levels in formula-fed infants. The safety of pretreating formula with SPS suspension should also be

  9. Differential expression of the intermediate filament protein nestin during renal development and its localization in adult podocytes.

    PubMed

    Chen, Jing; Boyle, Scott; Zhao, Min; Su, Wei; Takahashi, Keiko; Davis, Linda; Decaestecker, Mark; Takahashi, Takamune; Breyer, Matthew D; Hao, Chuan-Ming

    2006-05-01

    Nestin, an intermediate filament protein, is widely used as stem cell marker. Nestin has been shown to interact with other cytoskeleton proteins, suggesting a role in regulating cellular cytoskeletal structure. These studies examined renal nestin localization and developmental expression in mice. In developing kidney, anti-nestin antibody revealed strong immunoreactivity in vascular cleft of the S-shaped body and vascular tuft of capillary loop-stage glomerulus. The nestin-positive structures also were labeled by endothelial cell markers FLK1 and CD31 in immature glomeruli. Nestin was not detected in epithelial cells of immature glomeruli. In contrast, in mature glomerular, nestin immunoreactivity was observed only outside laminin-positive glomerular basement membrane, and co-localized with nephrin, consistent with podocyte nestin expression. In adult kidney, podocytes were the only cells that exhibited persistent nestin expression. Nestin was not detected in ureteric bud and its derivatives throughout renal development. Cell lineage studies, using a nestin promoter-driven Cre mouse and a ROSA26 reporter mouse, showed a strong beta-galactosidase activity in intermediate mesoderm in an embryonic day 10 embryo and all of the structures except those that were derived from ureteric bud in embryonic kidney through adult kidney. These studies show that nestin is expressed in progenitors of glomerular endothelial cells and renal progenitors that are derived from metanephric mesenchyme. In the adult kidney, nestin expression is restricted to differentiated podocytes, suggesting that nestin could play an important role in maintaining the structural integrity of the podocytes.

  10. Regulation of Dab2 expression in intestinal and renal epithelia by development.

    PubMed

    Vázquez-Carretero, María D; García-Miranda, Pablo; Calonge, María L; Peral, María J; Ilundáin, Anunciación A

    2011-01-01

    Disabled-2 (Dab2) is an intracellular adaptor protein proposed to function in endocytosis. Here, we investigate the intestinal and renal Dab2 expression versus maturation. Dab2 mRNA levels measured by RT-PCR are greater in the small than in the large intestine. Immunological studies localize Dab2 to the terminal web domain of the enterocytes and reveal the presence of a 96-kDa Dab2 isoform in the apical membrane of the jejunum, ileum, and renal cortex of the suckling and adult rat. A 69-kDa Dab2 isoform is only observed in the apical membranes of the suckling ileum. During the suckling period, the Dab2 mRNA levels measured in the enterocytes and crypts and those of the 96-kDa Dab2 isoform are greater in the ileum than in the jejunum. No segmental differences are observed in the adult intestine. In the intestine, the levels of Dab2 mRNA and those of the 96-kDa Dab2 isoform decrease to adult values at weaning, whereas in the kidney they increase with development. Weaning the pups on a commercial milk diet slows the periweaning decline in the levels of Dab2 mRNA in the crypts and of those of the 96-kDa isoform. This is the first report showing that the 96-kDa Dab2 isoform is expressed at the apical domain of rat small intestine, that ontogeny regulates Dab2 gene expression in intestine and kidney and that retarding weaning affects intestinal Dab2 gene expression.

  11. Renal dysfunction and barttin expression in Bartter syndrome Type IV associated with a G47R mutation in BSND in a family.

    PubMed

    Park, C W; Lim, J H; Youn, D-Y; Chung, S; Lim, M-H; Kim, Y K; Chang, Y S; Lee, J-H

    2011-02-01

    Bartter syndrome (BS) Type IV, associated with a G47R mutation in the BSND gene, is known to result in a mild renal phenotype. However, we report here on three brothers with varying degrees of renal dysfunction from mild to end-stage renal disease associated with renal barttin and ClC-K expression. The brothers had histories of polyhydramnios, prematurity, polyuria, deafness, and small body size. Laboratory findings showed hypokalemic metabolic alkalosis, normotensive hyperreninemic hyperaldosteronism, and an increased urinary excretion of sodium, potassium and chloride, consistent with BS Type IV. Microscopic examination of renal tissue showed hyperplasia of cells at the juxtaglomerular apparatus with dilated atrophic tubules and tubulointerstitial fibrosis. A weak barttin signal related to CIC-K expression in the cytoplasm of tubule cells, but not the basement membrane, was noted. A sequence analysis of the BSND gene showed that the affected males were homozygous for a missense G47R mutation in exon 1 of BSND. These findings suggest that the G47R mutation results in a dramatic decrease in barttin expression, which appears to be related to the location of CIC-K being changed from the basement membrane to the cytoplasm in the tubule and might have varying effects on renal function associated with factors other than this gene.

  12. Altered expression of key cell cycle regulators in renal cell carcinoma associated with Xp11.2 translocation.

    PubMed

    Barroca, H; Castedo, S; Vieira, J; Teixeira, M; Müller-Höcker, J

    2009-01-01

    Renal cell carcinoma (RCC) is a rare tumor in the pediatric population. Recently, a phenotypically and genetically distinct kidney carcinoma, mainly prevalent in children and associated with an Xp11.2 translocation or TFE3 gene fusion, has been described. It has been advanced that in this subtype of RCC, there is an accumulation of cyclin D1, cyclin D3, and p21 ((wafl/cip1)). The aim of the present study was to figure out in two pediatric RCC recently diagnosed in our department (one clear cell-type RCC and one TFE3-positive RCC) whether those features are indeed specific of the latter tumor or occur in pediatric RCC irrespective of the tumor type. The following immunostains were performed in both cases: Ki67, p16(ink4a), p21 ((wafl/cip1)), p27(kip1), p53, p63, mdm2, cyclin D1, cyclin D3, TFE3, CD10, vimentin, E-cadherin, and RCC-antigen. We observed in the TFE3-positive carcinoma an intense immunoreaction for p21 ((wafl/cip1)), cyclin D1, and cyclin D3, without expression for p53, p16, p27(kip1), and mdm2, whereas the immunoexpression profile observed in the classic RCC was similar to that of clear cell, adult-type RCC. Our study confirms that TFE3-positive RCC exhibits a deregulation of the cell cycle apparently unrelated to the young age of the patients.

  13. Real-time quantitative reverse transcription-PCR assay for renal cell carcinoma-associated antigen G250.

    PubMed

    Chuanzhong, Ye; Ming, Guan; Fanglin, Zhang; Haijiao, Chen; Zhen, Lin; Shiping, Chen; YongKang, Zhang

    2002-04-01

    Gene amplification/expression of G250 is a major event in human renal tumorigenesis. G250-based therapeutic agents and G250-specific gene therapy are under development. These new perspectives call for a sensitive and accurate method to screen G250 alterations in renal cell cancer (RCC) patients and investigate the relationship between G250 mRNA expression and RCC. We developed a quantitative RT-PCR assay for the measurement of G250 mRNA expression using a real-time procedure based on the use of fluorogenic probes and the ABI PRISM 7700 Sequence Detector System. The method has been applied to the measurement of quantitative mRNA level of G250 in 31 cases RCC and 6 normal renal tissues. The dynamic range was 10(3)-10(8). The relationship between Ct and log starting concentration was linear (r=0.99). G250 expression was present in all RCCs with G250 amplification but was absent in normal ones. G250 mRNA expression ranged from 2.9 x 10(3) to 6.5 x 10(7) copy/microg RNA, with a mean value of 3.5 x 10(6) copy/microg RNA. The expression of G250 revealed an inverse correlation to tumor grade. G250 mRNA level did not correlate with the cell types and clinical stages (P>0.05). G250 has the potential to be used as a marker of diagnosis and increasing proliferation in RCC. This new simple, rapid, semi-automated assay was a major alternative to competitive PCR and Northern blot analysis for gene alteration analysis in human tumors and might be a powerful tool for large randomized, prospective cooperative group trials and supporting future G250-based biological and gene therapy approaches.

  14. Restoration of type 1 iodothyronine deiodinase expression in renal cancer cells downregulates oncoproteins and affects key metabolic pathways as well as anti-oxidative system.

    PubMed

    Popławski, Piotr; Wiśniewski, Jacek R; Rijntjes, Eddy; Richards, Keith; Rybicka, Beata; Köhrle, Josef; Piekiełko-Witkowska, Agnieszka

    2017-01-01

    Type 1 iodothyronine deiodinase (DIO1) contributes to deiodination of 3,5,3',5'-tetraiodo-L-thyronine (thyroxine, T4) yielding of 3,5,3'-triiodothyronine (T3), a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The 'downregulated' group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2) that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2), enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2), sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10). DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression and changes

  15. Restoration of type 1 iodothyronine deiodinase expression in renal cancer cells downregulates oncoproteins and affects key metabolic pathways as well as anti-oxidative system

    PubMed Central

    Rijntjes, Eddy; Richards, Keith; Rybicka, Beata; Köhrle, Josef

    2017-01-01

    Type 1 iodothyronine deiodinase (DIO1) contributes to deiodination of 3,5,3’,5’-tetraiodo-L-thyronine (thyroxine, T4) yielding of 3,5,3’-triiodothyronine (T3), a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The ‘downregulated’ group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2) that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2), enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2), sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10). DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression

  16. Ameliorative effect of naringin in acetaminophen-induced hepatic and renal toxicity in laboratory rats: role of FXR and KIM-1.

    PubMed

    Adil, Mohammad; Kandhare, Amit D; Ghosh, Pinaki; Venkata, Shivakumar; Raygude, Kiran S; Bodhankar, Subhash L

    2016-07-01

    Acetaminophen (APAP) is an analgesic and antipyretic agent commonly known agent to cause hepatic and renal toxicity at a higher dose. Naringin, a bioflavonoid possesses multiple pharmacological properties such as antioxidant, anti-inflammatory, analgesic and anti-hyperlipidemic activity. To evaluate the effect of naringin against the APAP-induced hepatic and renal toxicity. Male Wistar albino rats (180-220 g) were divided into various groups, and toxicity was induced by APAP (700 mg/kg, p.o., 14 days). Naringin (20, 40 and 80 mg/kg, p.o.) or Silymarin (25 mg/kg) was administered to rats 2 h before APAP oral administration. Various biochemical, molecular and histopathological parameter were accessed in hepatic and renal tissue. Naringin pretreatment significantly decreased (p < 0.05) serum creatinine, blood urea nitrogen, bilirubin, aspartate transaminase, alanine transaminase, lactate dehydrogenase, low-density lipoprotein, very low-density lipoprotein, cholesterol and triglycerides as compared with APAP control rats. Decreased level of serum albumin, uric acid, and high-density lipoprotein were also significantly restored (p < 0.05) by naringin pretreatment. It also significantly restores (p < 0.05) the altered level of superoxide dismutase, reduced glutathione, malondialdehyde and nitric oxide in hepatic and renal tissue. Moreover, altered mRNA expression of hepatic farnesoid X receptor and renal injury molecule-1 (KIM-1) were significantly restored (p < 0.05) by naringin treatment. Naringin treatment also reduced histological alteration induced by APAP in the liver and kidney. Naringin exerts its hepato- and nephroprotective effect via modulation of oxido-nitrosative stress, FXR and KIM-1 mRNA expression.

  17. Cyclooxygenase-2 Selectively Controls Renal Blood Flow Through a Novel PPARβ/δ-Dependent Vasodilator Pathway.

    PubMed

    Kirkby, Nicholas S; Sampaio, Walkyria; Etelvino, Gisele; Alves, Daniele T; Anders, Katie L; Temponi, Rafael; Shala, Fisnik; Nair, Anitha S; Ahmetaj-Shala, Blerina; Jiao, Jing; Herschman, Harvey R; Xiaomeng, Wang; Wahli, Walter; Santos, Robson A; Mitchell, Jane A

    2018-02-01

    Cyclooxygenase-2 (COX-2) is an inducible enzyme expressed in inflammation and cancer targeted by nonsteroidal anti-inflammatory drugs. COX-2 is also expressed constitutively in discreet locations where its inhibition drives gastrointestinal and cardiovascular/renal side effects. Constitutive COX-2 expression in the kidney regulates renal function and blood flow; however, the global relevance of the kidney versus other tissues to COX-2-dependent blood flow regulation is not known. Here, we used a microsphere deposition technique and pharmacological COX-2 inhibition to map the contribution of COX-2 to regional blood flow in mice and compared this to COX-2 expression patterns using luciferase reporter mice. Across all tissues studied, COX-2 inhibition altered blood flow predominantly in the kidney, with some effects also seen in the spleen, adipose, and testes. Of these sites, only the kidney displayed appreciable local COX-2 expression. As the main site where COX-2 regulates blood flow, we next analyzed the pathways involved in kidney vascular responses using a novel technique of video imaging small arteries in living tissue slices. We found that the protective effect of COX-2 on renal vascular function was associated with prostacyclin signaling through PPARβ/δ (peroxisome proliferator-activated receptor-β/δ). These data demonstrate the kidney as the principle site in the body where local COX-2 controls blood flow and identifies a previously unreported PPARβ/δ-mediated renal vasodilator pathway as the mechanism. These findings have direct relevance to the renal and cardiovascular side effects of drugs that inhibit COX-2, as well as the potential of the COX-2/prostacyclin/PPARβ/δ axis as a therapeutic target in renal disease. © 2018 The Authors.

  18. Autonomic and Renal Alterations in the Offspring of Sleep-Restricted Mothers During Late Pregnancy.

    PubMed

    Raimundo, Joyce R S; Bergamaschi, Cassia T; Campos, Ruy R; Palma, Beatriz D; Tufik, Sergio; Gomes, Guiomar N

    2016-09-01

    Considering that changes in the maternal environment may result in changes in progeny, the aim of this study was to investigate the influence of sleep restriction during the last week of pregnancy on renal function and autonomic responses in male descendants at an adult age. After confirmation of pregnancy, female Wistar rats were randomly assigned to either a control or a sleep restriction group. The sleep-restricted rats were subjected to sleep restriction using the multiple platforms method for over 20 hours per day between the 14th and 20th day of pregnancy. After delivery, the litters were limited to 6 offspring that were designated as offspring from control and offspring from sleep-restricted mothers. Indirect measurements of systolic blood pressure (BPi), renal plasma flow, glomerular filtration rate, glomerular area and number of glomeruli per field were evaluated at three months of age. Direct measurements of cardiovascular function (heart rate and mean arterial pressure), cardiac sympathetic tone, cardiac parasympathetic tone, and baroreflex sensitivity were evaluated at four months of age. The sleep-restricted offspring presented increases in BPi, glomerular filtration rate and glomerular area compared with the control offspring. The sleep-restricted offspring also showed higher basal heart rate, increased mean arterial pressure, increased sympathetic cardiac tone, decreased parasympathetic cardiac tone and reduced baroreflex sensitivity. Our data suggest that reductions in sleep during the last week of pregnancy lead to alterations in cardiovascular autonomic regulation and renal morpho-functional changes in offspring, triggering increases in blood pressure.

  19. Differential expression of microRNA501-5p affects the aggressiveness of clear cell renal carcinoma

    PubMed Central

    Mangolini, Alessandra; Bonon, Anna; Volinia, Stefano; Lanza, Giovanni; Gambari, Roberto; Pinton, Paolo; Russo, Gian Rosario; del Senno, Laura; Dell’Atti, Lucio; Aguiari, Gianluca

    2014-01-01

    Renal cell carcinoma is a common neoplasia of the adult kidney that accounts for about 3% of adult malignancies. Clear cell renal carcinoma is the most frequent subtype of kidney cancer and 20–40% of patients develop metastases. The absence of appropriate biomarkers complicates diagnosis and prognosis of this disease. In this regard, small noncoding RNAs (microRNAs), which are mutated in several neoplastic diseases including kidney carcinoma, may be optimal candidates as biomarkers for diagnosis and prognosis of this kind of cancer. Here we show that patients with clear cell kidney carcinoma that express low levels of miR501-5p exhibited a good prognosis compared with patients with unchanged or high levels of this microRNA. Consistently, in kidney carcinoma cells the downregulation of miR501-5p induced an increased caspase-3 activity, p53 expression as well as decreased mTOR activation, leading to stimulation of the apoptotic pathway. Conversely, miR501-5p upregulation enhanced the activity of mTOR and promoted both cell proliferation and survival. These biological processes occurred through p53 inactivation by proteasome degradation in a mechanism involving MDM2-mediated p53 ubiquitination. Our results support a role for miR501-5p in balancing apoptosis and cell survival in clear cell renal carcinoma. In particular, the downregulation of microRNA501-5p promotes a good prognosis, while its upregulation contributes to a poor prognosis, in particular, if associated with p53 and MDM2 overexpression and mTOR activation. Thus, the expression of miR501-5p is a possible biomarker for the prognosis of clear cell renal carcinoma. PMID:25426415

  20. Delayed mTOR Inhibition with Low Dose of Everolimus Reduces TGFβ Expression, Attenuates Proteinuria and Renal Damage in the Renal Mass Reduction Model

    PubMed Central

    Kurdián, Melania; Herrero-Fresneda, Inmaculada; Lloberas, Nuria; Gimenez-Bonafe, Pepita; Coria, Virginia; Grande, María T.; Boggia, José; Malacrida, Leonel; Torras, Joan; Arévalo, Miguel A.; González-Martínez, Francisco; López-Novoa, José M.; Grinyó, Josep; Noboa, Oscar

    2012-01-01

    Background The immunosuppressive mammalian target of rapamycin (mTOR) inhibitors are widely used in solid organ transplantation, but their effect on kidney disease progression is controversial. mTOR has emerged as one of the main pathways regulating cell growth, proliferation, differentiation, migration, and survival. The aim of this study was to analyze the effects of delayed inhibition of mTOR pathway with low dose of everolimus on progression of renal disease and TGFβ expression in the 5/6 nephrectomy model in Wistar rats. Methods This study evaluated the effects of everolimus (0.3 mg/k/day) introduced 15 days after surgical procedure on renal function, proteinuria, renal histology and mechanisms of fibrosis and proliferation. Results Everolimus treated group (EveG) showed significantly less proteinuria and albuminuria, less glomerular and tubulointerstitial damage and fibrosis, fibroblast activation cell proliferation, when compared with control group (CG), even though the EveG remained with high blood pressure. Treatment with everolimus also diminished glomerular hypertrophy. Everolimus effectively inhibited the increase of mTOR developed in 5/6 nephrectomy animals, without changes in AKT mRNA or protein abundance, but with an increase in the pAKT/AKT ratio. Associated with this inhibition, everolimus blunted the increased expression of TGFβ observed in the remnant kidney model. Conclusion Delayed mTOR inhibition with low dose of everolimus significantly prevented progressive renal damage and protected the remnant kidney. mTOR and TGFβ mRNA reduction can partially explain this anti fibrotic effect. mTOR can be a new target to attenuate the progression of chronic kidney disease even in those nephropathies of non-immunologic origin. PMID:22427849

  1. Febuxostat Prevents Renal Interstitial Fibrosis by the Activation of BMP-7 Signaling and Inhibition of USAG-1 Expression in Rats.

    PubMed

    Cao, Jing; Li, Yong; Peng, Yingxian; Zhang, Yaqian; Li, Huanhuan; Li, Ran; Xia, Anzhou

    2015-01-01

    Renal interstitial fibrosis (RIF) is a common pathology associated with end-stage renal diseases. The activation of bone morphogenetic protein-7 (BMP-7)-Smad1/5/8 pathway seems to alleviate RIF. Uterine sensitization-associated gene-1 (USAG-1), a kidney-specific BMPs antagonist, is associated with the development and prognosis of several renal diseases. Febuxostat is a xanthine oxidase inhibitor that can attenuate the renal dysfunction of patients. The purpose of this study was to investigate the effects of febuxostat on renal fibrosis and to clarify the mechanisms underlying these effects. Rats were randomly divided into 6 groups termed a sham-operated group, a unilateral ureteral obstruction (UUO) group, 3 doses of febuxostat groups (low, intermediate and high doses) and a sham group treated with high-dose febuxostat. After 14 days, renal function, relative kidney weight, accumulation of glycogen and collagens were examined by different methods. Expression of α-SMA, transforming growth factor-β1 (TGF-β1), BMP-7 and USAG-1 was detected by western blotting and RT-PCR, respectively. The phosphorylation level of Smad1/5/8 was also quantified by western blotting. The renal function was declined, and large amounts of glycogen and collagens were deposited in the kidneys of UUO rats compared with the rats in the sham group. Besides, expression of α-SMA and USAG-1 in these kidneys was elevated, and the TGF-β1 was also activated, while the BMP-7-Smad1/5/8 pathway was inhibited. Febuxostat reversed the changes stated earlier, exhibiting protective effects on RIF induced by UUO. Febuxostat was able to attenuate RIF caused by UUO, which was associated with the activation of BMP-7-Smad1/5/8 pathway and the inhibition of USAG-1 expression in the kidneys of UUO rats. © 2015 S. Karger AG, Basel.

  2. Transient renal tubulopathy in a racing Greyhound.

    PubMed

    Abraham, L A; Tyrrell, D; Charles, J A

    2006-11-01

    A 2-year-old female Greyhound was presented for inappetence and lethargy. On referral, results of diagnostic tests indicated renal glucosuria, increased excretion of selected amino acids and abnormal fractional excretion of electrolytes consistent with renal tubular dysfunction. Systemic blood pressure was elevated. Renal biopsy revealed mild proximal renal tubular damage consistent with a subacute toxic or hypoxic insult. Systemic hypertension, renal glucosuria and altered fractional excretion of electrolytes resolved during the 7 day period of hospital treatment. The Greyhound resumed training without recurrence of renal dysfunction.

  3. Alterations of bone microstructure and strength in end-stage renal failure.

    PubMed

    Trombetti, A; Stoermann, C; Chevalley, T; Van Rietbergen, B; Herrmann, F R; Martin, P-Y; Rizzoli, R

    2013-05-01

    End-stage renal disease (ESRD) patients have a high risk of fractures. We evaluated bone microstructure and finite-element analysis-estimated strength and stiffness in patients with ESRD by high-resolution peripheral computed tomography. We observed an alteration of cortical and trabecular bone microstructure and of bone strength and stiffness in ESRD patients. Fragility fractures are common in ESRD patients on dialysis. Alterations of bone microstructure contribute to skeletal fragility, independently of areal bone mineral density. We compared microstructure and finite-element analysis estimates of strength and stiffness by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 33 ESRD patients on dialysis (17 females and 16 males; mean age, 47.0 ± 12.6 years) and 33 age-matched healthy controls. Dialyzed women had lower radius and tibia cortical density with higher radius cortical porosity and lower tibia cortical thickness, compared to controls. Radius trabecular number was lower with higher heterogeneity of the trabecular network. Male patients displayed only a lower radius cortical density. Radius and tibia cortical thickness correlated negatively with bone-specific alkaline phosphatase (BALP). Microstructure did not correlate with parathyroid hormone (PTH) levels. Cortical porosity correlated positively with "Kidney Disease: Improving Global Outcomes" working group PTH level categories (r = 0.36, p < 0.04). BMI correlated positively with trabecular number (r = 0.4, p < 0.02) and negatively with trabecular spacing (r = -0.37, p < 0.03) and trabecular network heterogeneity (r = -0.4, p < 0.02). Biomechanics positively correlated with BMI and negatively with BALP. Cortical and trabecular bone microstructure and calculated bone strength are altered in ESRD patients, predominantly in women. Bone microstructure and biomechanical assessment by HR-pQCT may be of major clinical relevance in the evaluation of bone

  4. The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma.

    PubMed

    Ricketts, Christopher J; De Cubas, Aguirre A; Fan, Huihui; Smith, Christof C; Lang, Martin; Reznik, Ed; Bowlby, Reanne; Gibb, Ewan A; Akbani, Rehan; Beroukhim, Rameen; Bottaro, Donald P; Choueiri, Toni K; Gibbs, Richard A; Godwin, Andrew K; Haake, Scott; Hakimi, A Ari; Henske, Elizabeth P; Hsieh, James J; Ho, Thai H; Kanchi, Rupa S; Krishnan, Bhavani; Kwiatkowski, David J; Lui, Wembin; Merino, Maria J; Mills, Gordon B; Myers, Jerome; Nickerson, Michael L; Reuter, Victor E; Schmidt, Laura S; Shelley, C Simon; Shen, Hui; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Vincent, Benjamin G; Vocke, Cathy D; Wheeler, David A; Yang, Lixing; Kim, William Y; Robertson, A Gordon; Spellman, Paul T; Rathmell, W Kimryn; Linehan, W Marston

    2018-04-03

    Renal cell carcinoma (RCC) is not a single disease, but several histologically defined cancers with different genetic drivers, clinical courses, and therapeutic responses. The current study evaluated 843 RCC from the three major histologic subtypes, including 488 clear cell RCC, 274 papillary RCC, and 81 chromophobe RCC. Comprehensive genomic and phenotypic analysis of the RCC subtypes reveals distinctive features of each subtype that provide the foundation for the development of subtype-specific therapeutic and management strategies for patients affected with these cancers. Somatic alteration of BAP1, PBRM1, and PTEN and altered metabolic pathways correlated with subtype-specific decreased survival, while CDKN2A alteration, increased DNA hypermethylation, and increases in the immune-related Th2 gene expression signature correlated with decreased survival within all major histologic subtypes. CIMP-RCC demonstrated an increased immune signature, and a uniform and distinct metabolic expression pattern identified a subset of metabolically divergent (MD) ChRCC that associated with extremely poor survival. Published by Elsevier Inc.

  5. Altered oscillation of Doppler-derived renal and renal interlobar venous flow velocities in hypertensive and diabetic patients.

    PubMed

    Kudo, Yusuke; Mikami, Taisei; Nishida, Mutsumi; Okada, Kazunori; Kaga, Sanae; Masauzi, Nobuo; Omotehara, Satomi; Shibuya, Hitoshi; Kahata, Kaoru; Shimizu, Chikara

    2017-10-01

    Flow velocity oscillation rate (FVOR) of the renal interlobar vein has been reported to be decreased in patients with urinary obstruction or diabetic nephropathy, and increased in those with hypertension during pregnancy. To clarify the clinical role of the renal interlobar venous FVOR, we investigated the flow velocity patterns of the renal vessels in patients with hypertension (HT) and/or diabetes (DM). Pulsed-wave Doppler sonography was performed in 34 patients: 15 with HT, 10 with DM, and nine with both HT and DM (HT-DM). Each FVOR of the right and left interlobar veins was closely and positively correlated with the ipsilateral interlobar arterial resistive index (RI), especially in the HT group, but not with the estimated glomerular filtration rate. The right interlobar venous FVOR was decreased in the DM and HT-DM groups compared to the HT group. The renal interlobar venous FVOR is strongly influenced by the arterial RI in HT patients, and is reduced in DM patients without an obvious relationship with diabetic nephropathy. These findings should be noted for the clinical application of renal interlobar venous flow analysis.

  6. Developmental programming: gestational testosterone treatment alters fetal ovarian gene expression.

    PubMed

    Luense, Lacey J; Veiga-Lopez, Almudena; Padmanabhan, Vasantha; Christenson, Lane K

    2011-12-01

    Prenatal testosterone (T) treatment leads to polycystic ovarian morphology, enhanced follicular recruitment/depletion, and increased estradiol secretion. This study addresses whether expression of key ovarian genes and microRNA are altered by prenatal T excess and whether changes are mediated by androgenic or estrogenic actions of T. Pregnant Suffolk ewes were treated with T or T plus the androgen receptor antagonist, flutamide (T+F) from d 30 to 90 of gestation. Expression of steroidogenic enzymes, steroid/gonadotropin receptors, and key ovarian regulators were measured by RT-PCR using RNA obtained from fetal ovaries collected on d 65 [n = 4, 5, and 5 for T, T+F, and control groups, respectively] and d 90 (n = 5, 7, 4) of gestation. Additionally, fetal d 90 RNA were hybridized to multispecies microRNA microarrays. Prenatal T decreased (P < 0.05) Cyp11a1 expression (3.7-fold) in d 90 ovaries and increased Cyp19 (3.9-fold) and 5α-reductase (1.8-fold) expression in d 65 ovaries. Flutamide prevented the T-induced decrease in Cyp11a1 mRNA at d 90 but not the Cyp19 and 5α-reductase increase in d 65 ovaries. Cotreatment with T+F increased Cyp11a1 (3.0-fold) expression in d 65 ovaries, relative to control and T-treated ovaries. Prenatal T altered fetal ovarian microRNA expression, including miR-497 and miR-15b, members of the same family that have been implicated in insulin signaling. These studies demonstrate that maternal T treatment alters fetal ovarian steroidogenic gene and microRNA expression and implicate direct actions of estrogens in addition to androgens in the reprogramming of ovarian developmental trajectory leading up to adult reproductive pathologies.

  7. Altered Expression of Diabetes-Related Genes in Alzheimer's Disease Brains: The Hisayama Study

    PubMed Central

    Hokama, Masaaki; Oka, Sugako; Leon, Julio; Ninomiya, Toshiharu; Honda, Hiroyuki; Sasaki, Kensuke; Iwaki, Toru; Ohara, Tomoyuki; Sasaki, Tomio; LaFerla, Frank M.; Kiyohara, Yutaka; Nakabeppu, Yusaku

    2014-01-01

    Diabetes mellitus (DM) is considered to be a risk factor for dementia including Alzheimer's disease (AD). However, the molecular mechanism underlying this risk is not well understood. We examined gene expression profiles in postmortem human brains donated for the Hisayama study. Three-way analysis of variance of microarray data from frontal cortex, temporal cortex, and hippocampus was performed with the presence/absence of AD and vascular dementia, and sex, as factors. Comparative analyses of expression changes in the brains of AD patients and a mouse model of AD were also performed. Relevant changes in gene expression identified by microarray analysis were validated by quantitative real-time reverse-transcription polymerase chain reaction and western blotting. The hippocampi of AD brains showed the most significant alteration in gene expression profile. Genes involved in noninsulin-dependent DM and obesity were significantly altered in both AD brains and the AD mouse model, as were genes related to psychiatric disorders and AD. The alterations in the expression profiles of DM-related genes in AD brains were independent of peripheral DM-related abnormalities. These results indicate that altered expression of genes related to DM in AD brains is a result of AD pathology, which may thereby be exacerbated by peripheral insulin resistance or DM. PMID:23595620

  8. FLI1 Levels Impact CXCR3 Expression and Renal Infiltration of T Cells and Renal Glycosphingolipid Metabolism in the MRL/lpr Lupus Mouse Strain.

    PubMed

    Sundararaj, Kamala P; Thiyagarajan, Thirumagal; Molano, Ivan; Basher, Fahmin; Powers, Thomas W; Drake, Richard R; Nowling, Tamara K

    2015-12-15

    The ETS factor Friend leukemia virus integration 1 (FLI1) is a key modulator of lupus disease expression. Overexpressing FLI1 in healthy mice results in the development of an autoimmune kidney disease similar to that observed in lupus. Lowering the global levels of FLI1 in two lupus strains (Fli1(+/-)) significantly improved kidney disease and prolonged survival. T cells from MRL/lpr Fli1(+/-) lupus mice have reduced activation and IL-4 production, neuraminidase 1 expression, and the levels of the glycosphingolipid lactosylceramide. In this study, we demonstrate that MRL/lpr Fli1(+/-) mice have significantly decreased renal neuraminidase 1 and lactosylceramide levels. This corresponds with a significant decrease in the number of total CD3(+) cells, as well as CD4(+) and CD44(+)CD62L(-) T cell subsets in the kidney of MRL/lpr Fli1(+/-) mice compared with the Fli1(+/+) nephritic mice. We further demonstrate that the percentage of CXCR3(+) T cells and Cxcr3 message levels in T cells are significantly decreased and correspond with a decrease in renal CXCR3(+) cells and in Cxcl9 and Cxcl10 expression in the MRL/lpr Fli1(+/-) compared with the Fli1(+/+) nephritic mice. Our results suggest that reducing the levels of FLI1 in MRL/lpr mice may be protective against development of nephritis in part through downregulation of CXCR3, reducing renal T cell infiltration and glycosphingolipid levels. Copyright © 2015 by The American Association of Immunologists, Inc.

  9. Sickle cell disease: renal manifestations and mechanisms

    PubMed Central

    Nath, Karl A.; Hebbel, Robert P.

    2015-01-01

    Sickle cell disease (SCD) substantially alters renal structure and function, and causes various renal syndromes and diseases. Such diverse renal outcomes reflect the uniquely complex vascular pathobiology of SCD and the propensity of red blood cells to sickle in the renal medulla because of its hypoxic, acidotic, and hyperosmolar conditions. Renal complications and involvement in sickle cell nephropathy (SCN) include altered haemodynamics, hypertrophy, assorted glomerulopathies, chronic kidney disease, acute kidney injury, impaired urinary concentrating ability, distal nephron dysfunction, haematuria, and increased risks of urinary tract infections and renal medullary carcinoma. SCN largely reflects an underlying vasculopathy characterized by cortical hyperperfusion, medullary hypoperfusion, and an increased, stress-induced vasoconstrictive response. Renal involvement is usually more severe in homozygous disease (sickle cell anaemia, HbSS) than in compound heterozygous types of SCD (for example HbSC and HbSβ+-thalassaemia), and is typically mild, albeit prevalent, in the heterozygous state (sickle cell trait, HbAS). Renal involvement contributes substantially to the diminished life expectancy of patients with SCD, accounting for 16–18% of mortality. As improved clinical care promotes survival into adulthood, SCN imposes a growing burden on both individual health and health system costs. This Review addresses the renal manifestations of SCD and focuses on their underlying mechanisms. PMID:25668001

  10. Expression and clinical significance of CD147 in renal cell carcinoma: a meta-analysis

    PubMed Central

    Shi, Shupeng; Xu, Yadong; Wei, Ling; Liu, Jing; Liu, Yanting

    2017-01-01

    Objective To assess clinical significance of CD147 in renal cell carcinoma. Methods Collect case-control studies which focus on CD147's expression in renal cell carcinoma. Trails were retrieved from CBM, CNKI, Wan-fang database, PubMed, Cochrane Library and Embase. According to the inclusion and exclusion criteria, data extraction and quality assessment were done by two researchers independently, and outcomes were pooled with Revman5.3 and STATA14.0. Results A total of 11 studies were confirmed, among which renal cell carcinoma 887 cases, non-cancer 505cases. As for the positive rate of CD147, there are statistical differences among survival, renal cell carcinoma tissue vs. non-cancer tissues [OR= 8.19, P= 0.0002], with vs. without lymph node metastases [OR= 6.52, P= 0.001], clinical stage III~IV vs. II~I [OR= 4.07, P< 0.00001], histopathological stage III~IV vs. II [OR= 3.01, P= 0.002], histopathological stage III~IV vs. I [OR= 7.50, P< 0.00001], tumor size [OR= 5.01, P= 0.0007]. No significant difference was tested among different age, gender, histological types and Position of cancer. Conclusion As shown in our results, CD 147 may participate the whole course of carcinogenesis of renal cell carcinoma, which might be valuable for the diagnosis, treatment and prognosis. PMID:28881651

  11. Altered gravity downregulates aquaporin-1 protein expression in choroid plexus.

    PubMed

    Masseguin, C; Corcoran, M; Carcenac, C; Daunton, N G; Güell, A; Verkman, A S; Gabrion, J

    2000-03-01

    Aquaporin-1 (AQP1) is a water channel expressed abundantly at the apical pole of choroidal epithelial cells. The protein expression was quantified by immunocytochemistry and confocal microscopy in adult rats adapted to altered gravity. AQP1 expression was decreased by 64% at the apical pole of choroidal cells in rats dissected 5.5-8 h after a 14-day spaceflight. AQP1 was significantly overexpressed in rats readapted for 2 days to Earth's gravity after an 11-day flight (48% overshoot, when compared with the value measured in control rats). In a ground-based model that simulates some effects of weightlessness and alters choroidal structures and functions, apical AQP1 expression was reduced by 44% in choroid plexus from rats suspended head down for 14 days and by 69% in rats suspended for 28 days. Apical AQP1 was rapidly enhanced in choroid plexus of rats dissected 6 h after a 14-day suspension (57% overshoot, in comparison with control rats) and restored to the control level when rats were dissected 2 days after the end of a 14-day suspension. Decreases in the apical expression of choroidal AQP1 were also noted in rats adapted to hypergravity in the NASA 24-ft centrifuge: AQP1 expression was reduced by 47% and 85% in rats adapted for 14 days to 2 G and 3 G, respectively. AQP1 is downregulated in the apical membrane of choroidal cells in response to altered gravity and is rapidly restored after readaptation to normal gravity. This suggests that water transport, which is partly involved in the choroidal production of cerebrospinal fluid, might be decreased during spaceflight and after chronic hypergravity.

  12. Methamphetamine and HIV-Tat alter murine cardiac DNA methylation and gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koczor, Christopher A., E-mail: ckoczor@emory.edu; Fields, Earl; Jedrzejczak, Mark J.

    This study addresses the individual and combined effects of HIV-1 and methamphetamine (N-methyl-1-phenylpropan-2-amine, METH) on cardiac dysfunction in a transgenic mouse model of HIV/AIDS. METH is abused epidemically and is frequently associated with acquisition of HIV-1 infection or AIDS. We employed microarrays to identify mRNA differences in cardiac left ventricle (LV) gene expression following METH administration (10 d, 3 mg/kg/d, subcutaneously) in C57Bl/6 wild-type littermates (WT) and Tat-expressing transgenic (TG) mice. Arrays identified 880 differentially expressed genes (expression fold change > 1.5, p < 0.05) following METH exposure, Tat expression, or both. Using pathway enrichment analysis, mRNAs encoding polypeptides formore » calcium signaling and contractility were altered in the LV samples. Correlative DNA methylation analysis revealed significant LV DNA methylation changes following METH exposure and Tat expression. By combining these data sets, 38 gene promoters (27 related to METH, 11 related to Tat) exhibited differences by both methods of analysis. Among those, only the promoter for CACNA1C that encodes L-type calcium channel Cav1.2 displayed DNA methylation changes concordant with its gene expression change. Quantitative PCR verified that Cav1.2 LV mRNA abundance doubled following METH. Correlative immunoblots specific for Cav1.2 revealed a 3.5-fold increase in protein abundance in METH LVs. Data implicate Cav1.2 in calcium dysregulation and hypercontractility in the murine LV exposed to METH. They suggest a pathogenetic role for METH exposure to promote LV dysfunction that outweighs Tat-induced effects. - Highlights: • HIV-1 Tat and methamphetamine (METH) alter cardiac gene expression and epigenetics. • METH impacts gene expression or epigenetics more significantly than Tat expression. • METH alters cardiac mitochondrial function and calcium signaling independent of Tat. • METH alters DNA methylation, expression, and protein

  13. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats.

    PubMed

    Zafrani, Lara; Ergin, Bulent; Kapucu, Aysegul; Ince, Can

    2016-12-20

    The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Twenty-seven Wistar albino rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 7), a LPS group that received fluid resuscitation (n = 7), and a LPS group that received blood transfusion (n = 7). The mean arterial blood pressure, renal blood flow, and renal microvascular oxygenation within the kidney cortex were recorded. Acute kidney injury was assessed using the serum creatinine levels, metabolic cost, and histopathological lesions. Nitrosative stress (expression of endothelial (eNOS) and inducible nitric oxide synthase (iNOS)) within the kidney was assessed by immunohistochemistry. Hemoglobin levels, pH, serum lactate levels, and liver enzymes were measured. Fluid resuscitation and blood transfusion both significantly improved the mean arterial pressure and renal blood flow after LPS infusion. Renal microvascular oxygenation, serum creatinine levels, and tubular damage significantly improved in the LPS group that received blood transfusion compared to the group that received fluids. Moreover, the renal expression of eNOS was markedly suppressed under endotoxin challenge. Blood transfusion, but not fluid resuscitation, was able to restore the renal expression of eNOS. However, there were no significant differences in lactic acidosis or liver function between the two groups. Blood transfusion significantly improved renal function in endotoxemic rats. The specific beneficial effect of blood transfusion on the kidney could have been mediated in part by the improvements in renal microvascular oxygenation and sepsis-induced endothelial dysfunction via the restoration of eNOS expression within the kidney.

  14. miR-1915 and miR-1225-5p Regulate the Expression of CD133, PAX2 and TLR2 in Adult Renal Progenitor Cells

    PubMed Central

    Costantino, Vincenzo; Curci, Claudia; Cox, Sharon N.; De Palma, Giuseppe; Schena, Francesco P.

    2013-01-01

    Adult renal progenitor cells (ARPCs) were recently identified in the cortex of the renal parenchyma and it was demonstrated that they were positive for PAX2, CD133, CD24 and exhibited multipotent differentiation ability. Recent studies on stem cells indicated that microRNAs (miRNAs), a class of noncoding small RNAs that participate in the regulation of gene expression, may play a key role in stem cell self-renewal and differentiation. Distinct sets of miRNAs are specifically expressed in pluripotent stem cells but not in adult tissues, suggesting a role for miRNAs in stem cell self-renewal. We compared miRNA expression profiles of ARPCs with that of mesenchymal stem cells (MSCs) and renal proximal tubular cells (RPTECs) finding distinct sets of miRNAs that were specifically expressed in ARPCs. In particular, miR-1915 and miR-1225-5p regulated the expression of important markers of renal progenitors, such as CD133 and PAX2, and important genes involved in the repair mechanisms of ARPCs, such as TLR2. We demonstrated that the expression of both the renal stem cell markers CD133 and PAX2 depends on lower miR-1915 levels and that the increase of miR-1915 levels improved capacity of ARPCs to differentiate into adipocyte-like and epithelial-like cells. Finally, we found that the low levels of miR-1225-5p were responsible for high TLR2 expression in ARPCs. Therefore, together, miR-1915 and miR-1225-5p seem to regulate important traits of renal progenitors: the stemness and the repair capacity. PMID:23861881

  15. Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease.

    PubMed

    Tanji, N; Markowitz, G S; Fu, C; Kislinger, T; Taguchi, A; Pischetsrieder, M; Stern, D; Schmidt, A M; D'Agati, V D

    2000-09-01

    Advanced glycation end products (AGE) contribute to diabetic tissue injury by two major mechanisms, i.e., the alteration of extracellular matrix architecture through nonenzymatic glycation, with formation of protein crosslinks, and the modulation of cellular functions through interactions with specific cell surface receptors, the best characterized of which is the receptor for AGE (RAGE). Recent evidence suggests that the AGE-RAGE interaction may also be promoted by inflammatory processes and oxidative cellular injury. To characterize the distributions of AGE and RAGE in diabetic kidneys and to determine their specificity for diabetic nephropathy, an immunohistochemical analysis of renal biopsies from patients with diabetic nephropathy (n = 26), hypertensive nephrosclerosis (n = 7), idiopathic focal segmental glomerulosclerosis (n = 11), focal sclerosis secondary to obesity (n = 7), and lupus nephritis (n = 11) and from normal control subjects (n = 2) was performed, using affinity-purified antibodies raised to RAGE and two subclasses of AGE, i.e., N(epsilon)-(carboxymethyl)-lysine (CML) and pentosidine (PENT). AGE were detected equally in diffuse and nodular diabetic nephropathy. CML was the major AGE detected in diabetic mesangium (96%), glomerular basement membranes (GBM) (42%), tubular basement membranes (85%), and vessel walls (96%). In diabetic nephropathy, PENT was preferentially located in interstitial collagen (90%) and was less consistently observed in vessel walls (54%), mesangium (77%), GBM (4%), and tubular basement membranes (31%). RAGE was expressed on normal podocytes and was upregulated in diabetic nephropathy. The restriction of RAGE mRNA expression to glomeruli was confirmed by reverse transcription-PCR analysis of microdissected renal tissue compartments. The extent of mesangial and GBM immunoreactivity for CML, but not PENT, was correlated with the severity of diabetic glomerulosclerosis, as assessed pathologically. CML and PENT were also

  16. Efficient genome editing of differentiated renal epithelial cells.

    PubMed

    Hofherr, Alexis; Busch, Tilman; Huber, Nora; Nold, Andreas; Bohn, Albert; Viau, Amandine; Bienaimé, Frank; Kuehn, E Wolfgang; Arnold, Sebastian J; Köttgen, Michael

    2017-02-01

    Recent advances in genome editing technologies have enabled the rapid and precise manipulation of genomes, including the targeted introduction, alteration, and removal of genomic sequences. However, respective methods have been described mainly in non-differentiated or haploid cell types. Genome editing of well-differentiated renal epithelial cells has been hampered by a range of technological issues, including optimal design, efficient expression of multiple genome editing constructs, attainable mutation rates, and best screening strategies. Here, we present an easily implementable workflow for the rapid generation of targeted heterozygous and homozygous genomic sequence alterations in renal cells using transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat (CRISPR) system. We demonstrate the versatility of established protocols by generating novel cellular models for studying autosomal dominant polycystic kidney disease (ADPKD). Furthermore, we show that cell culture-validated genetic modifications can be readily applied to mouse embryonic stem cells (mESCs) for the generation of corresponding mouse models. The described procedure for efficient genome editing can be applied to any cell type to study physiological and pathophysiological functions in the context of precisely engineered genotypes.

  17. Identification of Reference Genes in Human Myelomonocytic Cells for Gene Expression Studies in Altered Gravity

    PubMed Central

    Thiel, Cora S.; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E.

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098

  18. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

  19. Combining differential expression, chromosomal and pathway analyses for the molecular characterization of renal cell carcinoma

    PubMed Central

    Furge, Kyle A; Dykema, Karl; Petillo, David; Westphal, Michael; Zhang, Zhongfa; Kort, Eric J; Teh, Bin Tean

    2007-01-01

    Using high-throughput gene-expression profiling technology, we can now gain a better understanding of the complex biology that is taking place in cancer cells. This complexity is largely dictated by the abnormal genetic makeup of the cancer cells. This abnormal genetic makeup can have profound effects on cellular activities such as cell growth, cell survival and other regulatory processes. Based on the pattern of gene expression, or molecular signatures of the tumours, we can distinguish or subclassify different types of cancers according to their cell of origin, behaviour, and the way they respond to therapeutic agents and radiation. These approaches will lead to better molecular subclassification of tumours, the basis of personalized medicine. We have, to date, done whole-genome microarray gene-expression profiling on several hundreds of kidney tumours. We adopt a combined bioinformatic approach, based on an integrative analysis of the gene-expression data. These data are used to identify both cytogenetic abnormalities and molecular pathways that are deregulated in renal cell carcinoma (RCC). For example, we have identified the deregulation of the VHL-hypoxia pathway in clear-cell RCC, as previously known, and the c-Myc pathway in aggressive papillary RCC. Besides the more common clear-cell, papillary and chromophobe RCCs, we are currently characterizing the molecular signatures of rarer forms of renal neoplasia such as carcinoma of the collecting ducts, mixed epithelial and stromal tumours, chromosome Xp11 translocations associated with papillary RCC, renal medullary carcinoma, mucinous tubular and spindle-cell carcinoma, and a group of unclassified tumours. Continued development and improvement in the field of molecular profiling will better characterize cancer and provide more accurate diagnosis, prognosis and prediction of drug response. PMID:18542781

  20. Angiotensin-converting enzyme inhibition and angiotensin AT1 receptor blockade downregulate angiotensin-converting enzyme expression and attenuate renal injury in streptozotocin-induced diabetic rats.

    PubMed

    Motawi, Tarek K; El-Maraghy, Shohda A; Senousy, Mahmoud A

    2013-07-01

    Angiotensin-converting enzyme (ACE) is upregulated in the diabetic kidney and contributes to renal injury. This study investigates the possible beneficial effects of the ACE inhibitor (ACEI), enalapril and the AT1 receptor blocker (ARB), valsartan, on renal ACE expression, renal structure, and function in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were allocated into four groups: control, STZ-diabetic rats, and STZ-diabetic rats treated with either enalapril (10 mg/kg/day) or valsartan (50 mg/kg/day) for 8 weeks. Enalapril and valsartan reduced renal ACE mRNA and protein expression, Na(+) /K(+) -ATPase activity, oxidative stress, and serum transforming growth factor-β1 levels compared to the diabetic group. Both treatments normalized renal nitrate/nitrite levels and ameliorated the observed histopathological changes. In conclusion, ACE downregulation by ACEI and ARB indicates that angiotensin II upregulates ACE through AT1 receptor. Prevention of diabetes-induced changes in ACE expression and Na(+) /K(+) -ATPase activity could be a new explanation of the renoprotective effects of ACEIs and ARBs. © 2013 Wiley Periodicals, Inc.

  1. Role of NH3 and NH4+ transporters in renal acid-base transport.

    PubMed

    Weiner, I David; Verlander, Jill W

    2011-01-01

    Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.

  2. Altered gene expression in human placenta after suspected preterm labour.

    PubMed

    Oros, D; Strunk, M; Breton, P; Paules, C; Benito, R; Moreno, E; Garcés, M; Godino, J; Schoorlemmer, J

    2017-07-01

    Suspected preterm labour occurs in around 9% of pregnancies. However, almost two-thirds of women admitted for threatened preterm labour ultimately deliver at term and are considered risk-free for fetal development. We examined placental and umbilical cord blood samples from preterm or term deliveries after threatened preterm labour as well as term deliveries without threatened preterm labour. We quantitatively analysed the mRNA expression of inflammatory markers (IL6, IFNγ, and TNFα) and modulators of angiogenesis (FGF2, PGF, VEGFA, VEGFB, and VEGFR1). A total of 132 deliveries were analysed. Preterm delivery and term delivery after suspected preterm labour groups showed similar increases in TNFα expression compared with the term delivery control group in umbilical cord blood samples. Placental samples from preterm and term deliveries after suspected preterm labour exhibited significantly increased expression of TNFα and IL6 and decreased expression of IFNγ. Suspected preterm labour was also associated with altered expression of angiogenic factors, although not all differences reached statistical significance. We found gene expression patterns indicative of inflammation in human placentas after suspected preterm labour regardless of whether the deliveries occurred preterm or at term. Similarly, a trend towards altered expression of angiogeneic factors was not limited to preterm birth. These findings suggest that the biological mechanisms underlying threatened preterm labour affect pregnancies independently of gestational age at birth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Versican Promotes Tumor Progression, Metastasis and Predicts Poor Prognosis in Renal Carcinoma.

    PubMed

    Mitsui, Yozo; Shiina, Hiroaki; Kato, Taku; Maekawa, Shigekatsu; Hashimoto, Yutaka; Shiina, Marisa; Imai-Sumida, Mitsuho; Kulkarni, Priyanka; Dasgupta, Pritha; Wong, Ryan Kenji; Hiraki, Miho; Arichi, Naoko; Fukuhara, Shinichiro; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Deng, Guoren; Dahiya, Rajvir; Nakajima, Koichi; Tanaka, Yuichiro

    2017-07-01

    The proteoglycan versican (VCAN) promotes tumor progression and enhances metastasis in several cancers; however, its role in clear cell renal cell carcinoma (ccRCC) remains unknown. Recent evidence suggests that VCAN is an important target of chromosomal 5q gain, one of the most prevalent genetic abnormalities in ccRCC. Thus, we investigated whether VCAN expression is associated with the pathogenesis of ccRCC. VCAN expression was analyzed using three RCC and normal kidney cell lines as well as a clinical cohort of 84 matched ccRCC and normal renal tissues. Functional analyses on growth and progression properties were performed using VCAN-depleted ccRCC cells. Microarray expression profiling was employed to investigate the target genes and biologic pathways involved in VCAN-mediated ccRCC carcinogenesis. ccRCC had elevated VCAN expression in comparison with normal kidney in both cell lines and clinical specimens. The elevated expression of VCAN was significantly correlated with metastasis ( P < 0.001) and worse 5-year overall survival after radical nephrectomy ( P = 0.014). In vitro , VCAN knockdown significantly decreased cell proliferation and increased apoptosis in Caki-2 and 786-O cells, and this was associated with alteration of several TNF signaling-related genes such as TNFα, BID , and BAK Furthermore, VCAN depletion markedly decreased cell migration and invasion which correlated with reduction of MMP7 and CXCR4. These results demonstrate that VCAN promotes ccRCC tumorigenesis and metastasis and thus is an attractive target for novel diagnostic, prognostic, and therapeutic strategies. Implications: This study highlights the oncogenic role of VCAN in renal cell carcinogenesis and suggests that this gene has therapeutic and/or biomarker potential for renal cell cancer. Mol Cancer Res; 15(7); 884-95. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Alterations in Bronchial Airway miRNA Expression for Lung Cancer Detection.

    PubMed

    Pavel, Ana B; Campbell, Joshua D; Liu, Gang; Elashoff, David; Dubinett, Steven; Smith, Kate; Whitney, Duncan; Lenburg, Marc E; Spira, Avrum

    2017-11-01

    We have previously shown that gene expression alterations in normal-appearing bronchial epithelial cells can serve as a lung cancer detection biomarker in smokers. Given that miRNAs regulate airway gene expression responses to smoking, we evaluated whether miRNA expression is also altered in the bronchial epithelium of smokers with lung cancer. Using epithelial brushings from the mainstem bronchus of patients undergoing bronchoscopy for suspected lung cancer (as part of the AEGIS-1/2 clinical trials), we profiled miRNA expression via small-RNA sequencing from 347 current and former smokers for which gene expression data were also available. Patients were followed for one year postbronchoscopy until a final diagnosis of lung cancer ( n = 194) or benign disease ( n = 153) was made. Following removal of 6 low-quality samples, we used 138 patients (AEGIS-1) as a discovery set to identify four miRNAs (miR-146a-5p, miR-324-5p, miR-223-3p, and miR-223-5p) that were downregulated in the bronchial airway of lung cancer patients (ANOVA P < 0.002, FDR < 0.2). The expression of these miRNAs is significantly more negatively correlated with the expression of their mRNA targets than with the expression of other nontarget genes (K-S P < 0.05). Furthermore, these mRNA targets are enriched among genes whose expression is elevated in cancer patients (GSEA FDR < 0.001). Finally, we found that the addition of miR-146a-5p to an existing mRNA biomarker for lung cancer significantly improves its performance (AUC) in the 203 samples (AEGIS-1/2) serving an independent test set (DeLong P < 0.05). Our findings suggest that there are miRNAs whose expression is altered in the cytologically normal bronchial epithelium of smokers with lung cancer, and that they may regulate cancer-associated gene expression differences. Cancer Prev Res; 10(11); 651-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Normal distribution and medullary-to-cortical shift of Nestin-expressing cells in acute renal ischemia.

    PubMed

    Patschan, D; Michurina, T; Shi, H K; Dolff, S; Brodsky, S V; Vasilieva, T; Cohen-Gould, L; Winaver, J; Chander, P N; Enikolopov, G; Goligorsky, M S

    2007-04-01

    Nestin, a marker of multi-lineage stem and progenitor cells, is a member of intermediate filament family, which is expressed in neuroepithelial stem cells, several embryonic cell types, including mesonephric mesenchyme, endothelial cells of developing blood vessels, and in the adult kidney. We used Nestin-green fluorescent protein (GFP) transgenic mice to characterize its expression in normal and post-ischemic kidneys. Nestin-GFP-expressing cells were detected in large clusters within the papilla, along the vasa rectae, and, less prominently, in the glomeruli and juxta-glomerular arterioles. In mice subjected to 30 min bilateral renal ischemia, glomerular, endothelial, and perivascular cells showed increased Nestin expression. In the post-ischemic period, there was an increase in fluorescence intensity with no significant changes in the total number of Nestin-GFP-expressing cells. Time-lapse fluorescence microscopy performed before and after ischemia ruled out the possibility of engraftment by the circulating Nestin-expressing cells, at least within the first 3 h post-ischemia. Incubation of non-perfused kidney sections resulted in a medullary-to-cortical migration of Nestin-GFP-positive cells with the rate of expansion of their front averaging 40 microm/30 min during the first 3 h and was detectable already after 30 min of incubation. Explant matrigel cultures of the kidney and aorta exhibited sprouting angiogenesis with cells co-expressing Nestin and endothelial marker, Tie-2. In conclusion, several lines of circumstantial evidence identify a sub-population of Nestin-expressing cells with the mural cells, which are recruited in the post-ischemic period to migrate from the medulla toward the renal cortex. These migrating Nestin-positive cells may be involved in the process of post-ischemic tissue regeneration.

  6. Expression of renal distal tubule transporters TRPM6 and NCC in a rat model of cyclosporine nephrotoxicity and effect of EGF treatment.

    PubMed

    Ledeganck, Kristien J; Boulet, Gaëlle A; Horvath, Caroline A; Vinckx, Marleen; Bogers, Johannes J; Van Den Bossche, Rita; Verpooten, Gert A; De Winter, Benedicte Y

    2011-09-01

    Renal magnesium (Mg(2+)) and sodium (Na(+)) loss are well-known side effects of cyclosporine (CsA) treatment in humans, but the underlying mechanisms still remain unclear. Recently, it was shown that epidermal growth factor (EGF) stimulates Mg(2+) reabsorption in the distal convoluted tubule (DCT) via TRPM6 (Thébault S, Alexander RT, Tiel Groenestege WM, Hoenderop JG, Bindels RJ. J Am Soc Nephrol 20: 78-85, 2009). In the DCT, the final adjustment of renal sodium excretion is regulated by the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), which is activated by the renin-angiotensin-aldosterone system (RAAS). The aim of this study was to gain more insight into the molecular mechanisms of CsA-induced hypomagnesemia and hyponatremia. Therefore, the renal expression of TRPM6, TRPM7, EGF, EGF receptor, claudin-16, claudin-19, and the NCC, and the effect of the RAAS on NCC expression, were analyzed in vivo in a rat model of CsA nephrotoxicity. Also, the effect of EGF administration on these parameters was studied. CsA significantly decreased the renal expression of TRPM6, TRPM7, NCC, and EGF, but not that of claudin-16 and claudin-19. Serum aldosterone was significantly lower in CsA-treated rats. In control rats treated with EGF, an increased renal expression of TRPM6 together with a decreased fractional excretion of Mg(2+) (FE Mg(2+)) was demonstrated. EGF did not show this beneficial effect on TRPM6 and FE Mg(2+) in CsA-treated rats. These data suggest that CsA treatment affects Mg(2+) homeostasis via the downregulation of TRPM6 in the DCT. Furthermore, CsA downregulates the NCC in the DCT, associated with an inactivation of the RAAS, resulting in renal sodium loss.

  7. Downregulation of the c-Fes protein-tyrosine kinase inhibits the proliferation of human renal carcinoma cells

    PubMed Central

    Kanda, Shigeru; Miyata, Yasuyoshi; Kanetake, Hiroshi; Smithgall, Thomas E.

    2009-01-01

    The c-Fes protein-tyrosine kinase is associated with growth and differentiation of hematopoietic, neuronal, vascular endothelial and epithelial cell types. In this study, we investigated whether small interfering RNA (siRNA)-mediated knockdown of c-Fes expression affected proliferation of the human renal carcinoma cell lines, ACHN and VMRC-RCW. Immunofluorescence microscopy showed that c-Fes was expressed in both the cytosol and nuclei of these cells, and siRNA treatment preferentially downregulated c-Fes expression in the cytosol. Knock-down of c-Fes inhibited cellular proliferation in a dose-dependent manner with minimal increase in cell death. c-Fes siRNA treatment also downregulated the phosphorylation of Akt1 on S473 and IKKα on T23, and cyclin D1 expression, enhanced the expression of IκBα, and prevented the nuclear localization of NFκB. Treatment with an NFκB inhibitory peptide (SN50) also blocked the proliferation and nuclear localization of NFκB in these cells. The effect of SN50 treatment was not enhanced by c-Fes siRNA, suggesting that downregulation of c-Fes expression inhibited cell cycle progression through the Akt1/NFκB pathway. In contrast to siRNA-mediated knockdown, ectopic expression of either wild-type or kinase-inactive c-Fes in renal carcinoma cells failed to alter their proliferation in vitro and in vivo. Thus, suppression of proliferation resulting from siRNA-mediated knockdown may depend upon an expression of c-Fes protein rather than its kinase activity. Taken together, our results indicate that downregulation of c-Fes expression may be a potential therapeutic strategy for advanced human renal cell carcinoma and inhibition of its kinase activity as an antiangiogenic therapy does not seem to induce the growth of human renal carcinoma cells. PMID:19082481

  8. Cytochrome P450 and Lipoxygenase Metabolites on Renal Function

    PubMed Central

    Imig, John D.; Hye Khan, Md. Abdul

    2018-01-01

    Arachidonic acid metabolites have a myriad of biological actions including effects on the kidney to alter renal hemodynamics and tubular transport processes. Cyclooxygenase metabolites are products of an arachidonic acid enzymatic pathway that has been extensively studied in regards to renal function. Two lesser-known enzymatic pathways of arachidonic acid metabolism are the lipoxygenase (LO) and cytochrome P450 (CYP) pathways. The importance of LO and CYP metabolites to renal hemodynamics and tubular transport processes is now being recognized. LO and CYP metabolites have actions to alter renal blood flow and glomerular filtration rate. Proximal and distal tubular sodium transport and fluid and electrolyte homeostasis are also significantly influenced by renal CYP and LO levels. Metabolites of the LO and CYP pathways also have renal actions that influence renal inflammation, proliferation, and apoptotic processes at vascular and epithelial cells. These renal LO and CYP pathway actions occur through generation of specific metabolites and cell-signaling mechanisms. Even though the renal physiological importance and actions for LO and CYP metabolites are readily apparent, major gaps remain in our understanding of these lipid mediators to renal function. Future studies will be needed to fill these major gaps regarding LO and CYP metabolites on renal function. PMID:26756638

  9. Renal development: a complex process dependent on inductive interaction.

    PubMed

    Upadhyay, Kiran K; Silverstein, Douglas M

    2014-01-01

    Renal development begins in-utero and continues throughout childhood. Almost one-third of all developmental anomalies include structural or functional abnormalities of the urinary tract. There are three main phases of in-utero renal development: Pronephros, Mesonephros and Metanephros. Within three weeks of gestation, paired pronephri appear. A series of tubules called nephrotomes fuse with the pronephric duct. The pronephros elongates and induces the nearby mesoderm, forming the mesonephric (Woffian) duct. The metanephros is the precursor of the mature kidney that originates from the ureteric bud and the metanephric mesoderm (blastema) by 5 weeks of gestation. The interaction between these two components is a reciprocal process, resulting in the formation of a mature kidney. The ureteric bud forms the major and minor calyces, and the collecting tubules while the metanephrogenic blastema develops into the renal tubules and glomeruli. In humans, all of the nephrons are formed by 32 to 36 weeks of gestation. Simultaneously, the lower urinary tract develops from the vesico urethral canal, ureteric bud and mesonephric duct. In utero, ureters deliver urine from the kidney to the bladder, thereby creating amniotic fluid. Transcription factors, extracellular matrix glycoproteins, signaling molecules and receptors are the key players in normal renal development. Many medications (e.g., aminoglycosides, cyclooxygenase inhibitors, substances that affect the renin-angiotensin aldosterone system) also impact renal development by altering the expression of growth factors, matrix regulators or receptors. Thus, tight regulation and coordinated processes are crucial for normal renal development.

  10. H2S improves renal fibrosis in STZ-induced diabetic rats by ameliorating TGF-β1 expression.

    PubMed

    Li, Yan; Li, Lin; Zeng, Ou; Liu, Jun Mao; Yang, Jun

    2017-11-01

    Nephropathy develops in many patients with type 1 diabetes mellitus (T1DM). However, the specific mechanisms and therapies remain unclear. For this purpose we investigated the effects of hydrogen sulfide (H 2 S) on renal fibrosis in streptozotocin (STZ) induced diabetic rats and its underlying mechanisms. Experimental rats were randomly divided into four groups: Control group (normal rats), DM group (diabetes rats), DM + NaHS group [diabetes rats treated with sodium hydrosulfide (NaHS)], and NaHS group (normal rats treated with NaHS). The diabetic models were established by intraperitoneal injection of STZ. The NaHS-treated rats were injected with NaHS as an exogenous donor of H 2 S. At the same time, control group and DM group were administrated with equal doses of normal saline (NS). After eight weeks, the rats' urine samples were collected to measure the renal hydroxyproline content by basic hydrolysis method with a hydroxyproline detection kit. Collagen I and III content was detected by immunohistochemical method, and the pathology morphology of kidney was analyzed by Masson staining. Protein expressions of transforming growth factor beta 1 (TGF-β1), ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 were assessed by western blotting. The results showed that significant fibrosis occurred in the kidney of diabetes rats. NaHS treatment downregulated TGF-β1, ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 expressions in the kidney of these diabetes rats (p<.01). This result suggests that NaHS treatment could attenuate renal fibrosis by TGF-β1 signaling, and its mechanisms may be correlated with ERK1/2 expression and modulation of MMPs/TIMPs expression. Therefore, H 2 S may provide a promising option for defensing against diabetic renal fibrosis through TGF-β1 signaling, equilibrating the balance between profibrotic and antifibrotic mediators.

  11. Origanum Majoranum Extract Modulates Gene Expression, Hepatic and Renal Changes in a Rat Model of Type 2 Diabetes

    PubMed Central

    Soliman, Mohamed Mohamed; Abdo Nassan, Mohamed; Ismail, Tamer Ahmed

    2016-01-01

    The present study was conducted to test the effect of Origanum Majoranum Extract (OME) of leaves on alterations induced in a model of type 2 diabetic rats. Adult male Wistar rats were fed high fat diet for 3 weeks and injected a single dose of streptozotocin (35 mg/kg) intraperitoneally to induce type 2 diabetic rats. Diabetic rats were given aqueous extract of OME in a dose of 20 mg/kg orally for 3 weeks. Changes in lipid profiles, glucose, insulin, expression of some genes related to glucose metabolism and histopathological changes in liver and kidney were examined. Administration of OME improved and normalized dyslipidemia recorded in type 2 diabetic rats together with reduction in glucose and insulin levels. OME induced up-regulation in gene expression of glucose [adiponectin and glucose transporter-2 (GLUT-2)] and lipid metabolism [lipoprotein lipase (LPL)]. Moreover, OME normalized histopathological changes occurred in liver and kidney of diabetic rats. OME decreased lipids accumulation in liver and kidney and increased regeneration of hepatic parenchyma and restored normal renal architecture with disappearance of fat droplets. In conclusion, OME improved dyslipidemia associated with type 2 diabetes through regulation of genes related to glucose and lipid metabolism. PMID:28228803

  12. Poly[ADP-ribose] polymerase-1 expression is related to cold ischemia, acute tubular necrosis, and delayed renal function in kidney transplantation.

    PubMed

    O'Valle, Francisco; Del Moral, Raimundo G M; Benítez, María del Carmén; Martín-Oliva, David; Gómez-Morales, Mercedes; Aguilar, David; Aneiros-Fernández, José; Hernández-Cortés, Pedro; Osuna, Antonio; Moreso, Francesc; Serón, Daniel; Oliver, Francisco J; Del Moral, Raimundo G

    2009-09-28

    Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD) transplantation. Ischemia-reperfusion (IR) injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1) activation. The present study explored the hypothesis that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in non-ECD allografts that develop posttransplant acute tubular necrosis (ATN). Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal allograft biopsies (193 with different degrees of ATN and 133 controls) and in murine Parp-1 knockout model of IR injury. PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603), time to effective diuresis (r = 0.770), serum creatinine levels at biopsy (r = 0.649), and degree of ATN (r = 0.810) (p = 0.001, Pearson test). In the murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN. In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function.

  13. Endoglin regulates renal ischaemia-reperfusion injury.

    PubMed

    Docherty, Neil G; López-Novoa, José M; Arevalo, Miguel; Düwel, Annette; Rodriguez-Peña, Ana; Pérez-Barriocanal, Fernando; Bernabeu, Carmelo; Eleno, Nélida

    2006-08-01

    Renal ischaemia-reperfusion (I-R) can cause acute tubular necrosis and chronic renal deterioration. Endoglin, an accessory receptor for Transforming Growth Factor-beta1 (TGF-beta1), is expressed on activated endothelium during macrophage maturation and implicated in the control of fibrosis, angiogenesis and inflammation. Endoglin expression was monitored over 14 days after renal I-R in rats. As endoglin-null mice are not viable, the role of endoglin in I-R was studied by comparing renal I-R injury in haploinsufficient mice (Eng(+/-)) and their wild-type littermates (Eng(+/+)). Renal function, morphology and molecular markers of acute renal injury and inflammation were compared. Endoglin mRNA up-regulation in the post-ischaemic kidneys of rats occurred at 12 h after I-R; endoglin protein levels were elevated throughout the study period. Expression was initially localized to the vascular endothelium, then extended to fibrotic and inflamed areas of the interstitium. Two days after I-R, plasma creatinine elevation and acute tubular necrosis were less marked in Eng(+/-) than in Eng(+/+) mice. Significant up-regulation of endoglin protein was found only in the post-ischaemic kidneys of Eng(+/+) mice and coincided with an increased mRNA expression of the TGF-beta1 and collagen IV (alpha1) chain genes. Significant increases in vascular cell adhesion molecule-1 (VCAM-1) and inducible nitric oxide synthase (iNOS) expression, nitrosative stress, myeloperoxidase activity and CD68 staining for macrophages were evident in post-ischaemic kidneys of Eng(+/+), but not Eng(+/-) mice, suggesting that impaired endothelial activation and macrophage maturation may account for the reduced injury in post-ischaemic kidneys of Eng(+/-) mice. Endoglin is up-regulated in the post-ischaemic kidney and endoglin-haploinsufficient mice are protected from renal I-R injury. Endoglin may play a primary role in promoting inflammatory responses following renal I-R.

  14. Prognostic and predictive value of VHL gene alteration in renal cell carcinoma: a meta-analysis and review

    PubMed Central

    Kim, Bum Jun; Kim, Jung Han; Kim, Hyeong Su; Zang, Dae Young

    2017-01-01

    The von Hippel-Lindau (VHL) gene is often inactivated in sporadic renal cell carcinoma (RCC) by mutation or promoter hypermethylation. The prognostic or predictive value of VHL gene alteration is not well established. We conducted this meta-analysis to evaluate the association between the VHL alteration and clinical outcomes in patients with RCC. We searched PUBMED, MEDLINE and EMBASE for articles including following terms in their titles, abstracts, or keywords: ‘kidney or renal’, ‘carcinoma or cancer or neoplasm or malignancy’, ‘von Hippel-Lindau or VHL’, ‘alteration or mutation or methylation’, and ‘prognostic or predictive’. There were six studies fulfilling inclusion criteria and a total of 633 patients with clear cell RCC were included in the study: 244 patients who received anti-vascular endothelial growth factor (VEGF) therapy in the predictive value analysis and 419 in the prognostic value analysis. Out of 663 patients, 410 (61.8%) had VHL alteration. The meta-analysis showed no association between the VHL gene alteration and overall response rate (relative risk = 1.47 [95% CI, 0.81-2.67], P = 0.20) or progression free survival (hazard ratio = 1.02 [95% CI, 0.72-1.44], P = 0.91) in patients with RCC who received VEGF-targeted therapy. There was also no correlation between the VHL alteration and overall survival (HR = 0.80 [95% CI, 0.56-1.14], P = 0.21). In conclusion, this meta-analysis indicates that VHL gene alteration has no prognostic or predictive value in patients with clear cell RCC. PMID:28103578

  15. Association between renal iron accumulation and renal interstitial fibrosis in a rat model of chronic kidney disease.

    PubMed

    Naito, Yoshiro; Fujii, Aya; Sawada, Hisashi; Oboshi, Makiko; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Hirotani, Shinichi; Masuyama, Tohru

    2015-07-01

    Iron accumulation is associated with the pathophysiology of chronic kidney disease (CKD). Renal fibrosis is a final common feature that contributes to the progression of CKD; however, little is known about the association between renal iron accumulation and renal interstitial fibrosis in CKD. Here we investigate the effects of iron chelation on renal interstitial fibrosis in a rat model of CKD. CKD was induced by 5/6 nephrectomy in Sprague-Dawley rats. At 8 weeks after operation, 5/6 nephrectomized rats were administered an oral iron chelator, deferasirox (DFX), in chow for 8 weeks. Other CKD rats were given a normal diet. Sham-operative rats given a normal diet served as a control. CKD rats exhibited hypertension, glomerulosclerosis and renal interstitial fibrosis. Iron chelation with DFX did not change hypertension and glomerulosclerosis; however, renal interstitial fibrosis was attenuated in CKD rats. Consistent with these findings, renal gene expression of collagen type III and transforming growth factor-β was increased in CKD rats compared with the controls, while iron chelation suppressed these increments. In addition, a decrease in vimentin along an increase in E-cadherin in renal gene expression was observed in CKD rats with iron chelation. CKD rats also showed increased CD68-positive cells in the kidney, whereas its increase was attenuated by iron deprivation. Similarly, increased renal gene expression of CD68, tumor necrosis factor-α and monocyte chemoattractant protein-1 was suppressed in CKD rats with iron chelation. Renal iron accumulation seems to be associated with renal interstitial fibrosis in a rat model of CKD.

  16. Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage

    PubMed Central

    Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C.; Khadayate, Sanjay; Mas, Valeria R.; Nitsch, Dorothea D.; Wang, Zhen; Norman, Jill T.; Wilcox, Christopher S.; Wheeler, David C.; Leiper, James

    2015-01-01

    Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule–specific Ddah1 knockout (Ddah1PT−/−) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1PT−/− mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. PMID:25855779

  17. Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage.

    PubMed

    Tomlinson, James A P; Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C; Khadayate, Sanjay; Mas, Valeria R; Nitsch, Dorothea D; Wang, Zhen; Norman, Jill T; Wilcox, Christopher S; Wheeler, David C; Leiper, James

    2015-12-01

    Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule-specific Ddah1 knockout (Ddah1(PT-/-)) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1(PT-/-) mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. Copyright © 2015 by the American Society of Nephrology.

  18. Altered gene expression in conjunctival squamous cell carcinoma.

    PubMed

    Mahale, Alka; Alkatan, Hind; Alwadani, Saeed; Othman, Maha; Suarez, Maria J; Price, Antoinette; Al-Hussain, Hailah; Jastaneiah, Sabah; Yu, Wayne; Maktabi, Azza; Deepak, Edward P; Eberhart, Charles G; Asnaghi, Laura

    2016-05-01

    Conjunctival squamous cell carcinoma is a malignancy of the ocular surface. The molecular drivers responsible for the development and progression of this disease are not well understood. We therefore compared the transcriptional profiles of eight snap-frozen conjunctival squamous cell carcinomas and one in situ lesion with normal conjunctival specimens in order to identify diagnostic markers or therapeutic targets. RNA was analyzed using oligonucleotide microarrays, and a wide range of transcripts with altered expression identified, including many dysregulated in carcinomas arising at other sites. Among the upregulated genes, we observed more than 30-fold induction of the matrix metalloproteinases, MMP-9 and MMP-11, as well as a prominent increase in the mRNA level of a calcium-binding protein important for the intracellular calcium signaling, S100A2, which was induced over 20-fold in the tumor cohort. Clusterin was the most downregulated gene, with an approximately 180-fold reduction in the mRNA expression. These alterations were all confirmed by qPCR in the samples used for initial microarray analysis. In addition, immunohistochemical analysis confirmed the overexpression of MMP-11 and S100A2, as well as reductions in clusterin, in several independent in situ carcinomas of conjunctiva. These data identify a number of alterations, including upregulation of MMP-9, MMP-11, and S100A2, as well as downregulation of clusterin, associated with epithelial tumorigenesis in the ocular surface.

  19. Altered Stra13 and Dec2 circadian gene expression in hypoxic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillaumond, Fabienne; Lacoche, Samuel; Dulong, Sandrine

    2008-05-16

    The circadian system regulates rhythmically most of the mammalian physiology in synchrony with the environmental light/dark cycle. Alteration of circadian clock gene expression has been associated with tumour progression but the molecular links between the two mechanisms remain poorly defined. Here we show that Stra13 and Dec2, two circadian transcriptional regulators which play a crucial role in cell proliferation and apoptosis are overexpressed and no longer rhythmic in serum shocked fibroblasts treated with CoCl{sub 2,} a substitute of hypoxia. This effect is associated with a loss of circadian expression of the clock genes Rev-erb{alpha} and Bmal1, and the clock-controlled genemore » Dbp. Consistently, cotransfection assays demonstrate that STRA13 and DEC2 both antagonize CLOCK:BMAL1 dependent transactivation of the Rev-erb{alpha} and Dbp promoters. Using a transplantable osteosarcoma tumour model, we show that hypoxia is associated with altered circadian expression of Stra13, Dec2, Rev-erb{alpha}, Bmal1 and Dbp in vivo. These observations collectively support the notion that overexpression of Stra13 and Dec2 links hypoxia signalling to altered circadian clock gene expression.« less

  20. Alteration of gene expression by restriction enzymes electroporated into plant cells.

    PubMed

    Ashraf, M; Altschuler, M; Galasinski, S; Griffiths, T D

    1993-06-01

    The alteration in the expression of a beta-glucuronidase (GUS) reporter gene was used to monitor the effect of restriction endonucleases electroporated into the tobacco (Nicotiana tabacum L.) protoplasts. Restriction enzyme (RE) Hind III which does not have a recognition site within the gene cassette, had little effect on enzyme activity. In contrast restriction endonucleases Hae III and Sau3A1 which possess 8 and 16 recognition sites in the GUS cassette, were found to reduce the enzyme activity by 89% and 94% respectively when compared to control electroporations. Restriction-site mutation analysis (RSM) and Southern blot analysis indicated the enzymatic degradation of GUS coding sequence by the REs Hae III and Sau3A1. Results of this study suggest that on electroporation, REs can enter into plant cells and alter the expression of the GUS gene. The alteration of gene expression is thus correlated with the digestion of GUS template DNA. Future applications of this technique could include addressing fundamental questions with regard to DNA repair, site-specific recombination, identifying mutations, insertional mutagenesis, enhancement of stable transformation and gene tagging in plants.

  1. Haploinsufficiency in tumor predisposition syndromes: altered genomic transcription in morphologically normal cells heterozygous for VHL or TSC mutation

    PubMed Central

    Peri, Suraj; Caretti, Elena; Tricarico, Rossella; Devarajan, Karthik; Cheung, Mitchell; Sementino, Eleonora; Menges, Craig W.; Nicolas, Emmanuelle; Vanderveer, Lisa A.; Howard, Sharon; Conrad, Peggy; Crowell, James A.; Campbell, Kerry S.; Ross, Eric A.; Godwin, Andrew K.; Yeung, Anthony T.; Clapper, Margie L.; Uzzo, Robert G.; Henske, Elizabeth P.; Ricketts, Christopher J.; Vocke, Cathy D.; Linehan, W. Marston; Testa, Joseph R.; Bellacosa, Alfonso; Kopelovich, Levy; Knudson, Alfred G.

    2017-01-01

    Tumor suppressor genes and their effector pathways have been identified for many dominantly heritable cancers, enabling efforts to intervene early in the course of disease. Our approach on the subject of early intervention was to investigate gene expression patterns of morphologically normal one-hit cells before they become hemizygous or homozygous for the inherited mutant gene which is usually required for tumor formation. Here, we studied histologically non-transformed renal epithelial cells from patients with inherited disorders that predispose to renal tumors, including von Hippel-Lindau (VHL) disease and Tuberous Sclerosis (TSC). As controls, we studied histologically normal cells from non-cancerous renal epithelium of patients with sporadic clear cell renal cell carcinoma (ccRCC). Gene expression analyses of VHLmut/wt or TSC1/2mut/wt versus wild-type (WT) cells revealed transcriptomic alterations previously implicated in the transition to precancerous renal lesions. For example, the gene expression changes in VHLmut/wt cells were consistent with activation of the hypoxia response, associated, in part, with the Warburg effect. Knockdown of any remaining VHL mRNA using shRNA induced secondary expression changes, such as activation of NF?B and interferon pathways, that are fundamentally important in the development of RCC. We posit that this is a general pattern of hereditary cancer predisposition, wherein haploinsufficiency for VHL or TSC1/2, or potentially other tumor susceptibility genes, is sufficient to promote development of early lesions, while cancer results from inactivation of the remaining normal allele. The gene expression changes identified here are related to the metabolic basis of renal cancer and may constitute suitable targets for early intervention. PMID:27682873

  2. The protective effects of ischemic preconditioning on rats with renal ischemia-reperfusion injury and the effects on the expression of Bcl-2 and Bax.

    PubMed

    Shen, Sheng; Zhou, Jiexue; Meng, Shandong; Wu, Jiaqing; Ma, Juan; Zhu, Chunli; Deng, Gengguo; Liu, Dong

    2017-11-01

    The aim of the present study was to investigate the protective effects of ischemic preconditioning on rats with renal ischemia-reperfusion injury and the effects on the expression of Bcl-2 and Bax. Thirty-six SD rats were randomly divided into three groups (n=12) including sham operation (S) group, ischemia-reperfusion group (I/R) group and ischemic preconditioning (IP) group. After anesthesia with intraperitoneal injection of chloral hydrate, bilateral renal pedicles were clipped for 45 min, followed by perfusion for 6 h to establish the I/R model. Both kidneys in rats of S group were separated and exposed for 45 min, but renal pedicles were not clipped. In IP group, bilateral renal pedicles were clipped for 5 min, followed by perfusion for 5 min, this procedure was repeated 3 times. Then bilateral renal pedicles were clipped for 45 min, followed by perfusion for 6 h. Blood samples were collected and rats were sacrificed to collect renal tissue. Levels of serum creatinine (Cr) and blood urea nitrogen (BUN) were measured. Activity of superoxide dismutase (SOD) was measured by xanthine oxidase assay. Degree of renal injury was evaluated by H&E staining. TUNEL kit was used to detect the number of apoptotic cells in renal tissue. Expression levels of Bcl-2 and Bax were detected by semi-quantitative PCR and western blot analysis at mRNA and protein levels, respectively. Results showed that levels of Cr and BUN in I/R and IP groups were significantly higher than those in S group, and levels of Cr and BUN in I/R group were significantly higher than that in IP group (P<0.05). Activity of SOD in I/R group and IP group were significantly lower than those in S group, and activity of SOD in I/R group were significantly lower than those in IP group (P<0.05). H&E staining showed that, compared with S group, renal injury in the I/R and IP groups was more serious than that in the S group, and I/R group was more serious than the IP group (P<0.05). TUNEL apoptosis assay showed that

  3. Altering sensorimotor feedback disrupts visual discrimination of facial expressions.

    PubMed

    Wood, Adrienne; Lupyan, Gary; Sherrin, Steven; Niedenthal, Paula

    2016-08-01

    Looking at another person's facial expression of emotion can trigger the same neural processes involved in producing the expression, and such responses play a functional role in emotion recognition. Disrupting individuals' facial action, for example, interferes with verbal emotion recognition tasks. We tested the hypothesis that facial responses also play a functional role in the perceptual processing of emotional expressions. We altered the facial action of participants with a gel facemask while they performed a task that involved distinguishing target expressions from highly similar distractors. Relative to control participants, participants in the facemask condition demonstrated inferior perceptual discrimination of facial expressions, but not of nonface stimuli. The findings suggest that somatosensory/motor processes involving the face contribute to the visual perceptual-and not just conceptual-processing of facial expressions. More broadly, our study contributes to growing evidence for the fundamentally interactive nature of the perceptual inputs from different sensory modalities.

  4. Intercalated cell-specific Rh B glycoprotein deletion diminishes renal ammonia excretion response to hypokalemia

    PubMed Central

    Bishop, Jesse M.; Lee, Hyun-Wook; Handlogten, Mary E.; Han, Ki-Hwan; Verlander, Jill W.

    2013-01-01

    The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K+-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia. PMID:23220726

  5. Altered PKR signalling and C/EBPβ expression is associated with HLA-B27 expression in monocytic cells

    PubMed Central

    Sahlberg, Anna S.; Ruuska, Marja; Colbert, Robert A.; Granfors, Kaisa; Penttinen, Markus A.

    2011-01-01

    Infection caused by certain gram negative bacteria, e.g. Salmonella, can trigger inflammatory joint disease reactive arthritis (ReA). It is suggested that the disease-triggering bacteria or bacterial components persist in patients for an abnormally long time. Development of ReA is strongly associated with tissue antigen HLA-B27. Previously, we reported an enhanced replication of S. enteritidis and altered p38 MAP kinase signalling in HLA-B27-expressing monocytic cells. Here we aimed to investigate the role of HLA-B27 in regulation of double-stranded RNA activated kinase (PKR)-related signalling in Salmonella-infected or Salmonella LPS-stimulated human U937 monocytic cells, since PKR has been reported to modify p38 signalling in Salmonella-infected cells. In cells expressing HLA-B27, PKR is overexpressed and hypophosphorylated, and the expression of transcription factor CCAAT enhancer binding protein beta (C/EBPβ) is increased upon Salmonella infection and LPS stimulation. The expression of C/EBPβ is PKR-dependent in LPS-stimulated mock cells whereas in LPS-stimulated B27 cells the majority of C/EBPβ is expressed in a PKR-independent manner. Our results show that the expression of HLA-B27 disturbs the PKR-mediated signalling pathway. Moreover, altered signalling is related to misfolding-linked Glu45 in the B pocket of the HLA-B27 heavy chain. We suggest that the expression of HLA-B27 HCs modulates the intracellular environment of monocyte/macrophages and the mechanisms that are important in eliminating intracellular S. enteritidis by altering the intracellular signalling. This phenomenon is at least partly dependent on the misfolding featureof the B27 molecule. These observations offer a novel mechanism by which HLA-B27 may modulate inflammatory response induced by ReA-triggering bacteria. PMID:21988375

  6. Deregulation of energetic metabolism in the clear cell renal cell carcinoma: A multiple pathway analysis based on microarray profiling.

    PubMed

    Soltysova, Andrea; Breza, Jan; Takacova, Martina; Feruszova, Jana; Hudecova, Sona; Novotna, Barbora; Rozborilova, Eva; Pastorekova, Silvia; Kadasi, Ludevit; Krizanova, Olga

    2015-07-01

    Clear cell renal cell carcinoma (ccRCC) is the most frequent type of kidney cancer. In order to better understand the biology of ccRCC, we accomplished the gene profiling of fresh tissue specimens from 11 patients with the renal tumors (9 ccRCCs, 1 oncocytoma and 1 renal B-lymphoma), in which the tumor-related data were compared to the paired healthy kidney tissues from the same patients. All ccRCCs exhibited a considerably elevated transcription of the gene coding for carbonic anhydrase IX (CAIX). Moreover, the ccRCC tumors consistently displayed increased expression of genes encoding the glycolytic pathway enzymes, e.g. hexokinase II (HK2) and lactate dehydrogenase A (LDHA) and a decreased expression of genes for the mitochondrial electron transport chain components, indicating an overall reprogramming of the energetic metabolism in this tumor type. This appears to be accompanied by altered expression of the genes of the pH regulating machinery, including ion and lactate transporters. Immunohistochemical staining of tumor tissue sections confirmed the increased expression of CAIX, HK2 and LDHA in ccRCC, validating the microarray data and supporting their potential as the energetic metabolism-related biomarkers of the ccRCC.

  7. Recent Advances in Renal Ammonia Metabolism and Transport

    PubMed Central

    Weiner, I. David; Verlander, Jill W.

    2016-01-01

    Purpose of review The purpose of this review is to provide a succinct description of recent findings that advance our understanding of the fundamental renal process of ammonia metabolism and transport in conditions relevant to the clinician. Recent findings Recent studies advance our understanding of renal ammonia metabolism. Mechanisms through which chronic kidney disease and altered dietary protein intake alter ammonia excretion have been identified. Lithium, although it can acutely cause distal RTA, was shown with long-term use to increase urinary ammonia excretion, and this appeared to be mediated, at least in part, by increased Rhcg expression. Gene deletion studies showed that the ammonia recycling enzyme, glutamine synthetase, has a critical role in normal and acidosis-stimulated ammonia metabolism and that the proximal tubule basolateral bicarbonate transporter, NBCe1, is necessary for normal ammonia metabolism. Finally, our understanding of the molecular ammonia species, NH3 versus NH4+, transported by Rh glycoproteins continues to be advanced. Summary Fundamental studies have been recently published that advance our understanding of the regulation of ammonia metabolism in clinically important circumstances and our understanding of the mechanisms and regulation of proximal tubule ammonia generation and the mechanisms through which Rh glycoproteins contribute to ammonia secretion. PMID:27367914

  8. Changes in forearm muscle temperature alter renal vascular responses to isometric handgrip.

    PubMed

    Kuipers, Nathan T; Sauder, Charity L; Kearney, Matthew L; Ray, Chester A

    2007-12-01

    The purpose of the present study was to examine the effect of heating and cooling the forearm muscles on renal vascular responses to ischemic isometric handgrip (IHG). It was hypothesized that heating and cooling the forearm would augment and attenuate, respectively, renal vascular responses to IHG. Renal vascular responses to IHG were studied during forearm heating at 39 degrees C (n = 15, 26 +/- 1 yr) and cooling at 26 degrees C (n = 12, 26 +/- 1 yr). For a control trial, subjects performed the experimental protocol while the forearm was normothermic (approximately 34 degrees C). Muscle temperature (measured by intramuscular probe) was controlled by changing the temperature of water cycling through a water-perfused sleeve. The experimental protocol was as follows: 3 min at baseline, 1 min of ischemia, ischemic IHG to fatigue, and 2 min of postexercise muscle ischemia. At rest, renal artery blood velocity (RBV; Doppler ultrasound) and renal vascular conductance (RVC = RBV/mean arterial blood pressure) were not different between normothermia and the two thermal conditions. During ischemic IHG, there were greater decreases in RBV and RVC in the heating trial. However, RBV and RVC were similar during postexercise muscle ischemia during heating and normothermia. RVC decreased less during cooling than in normothermia while the subjects performed the ischemic IHG protocol. During postexercise muscle ischemia, RVC was greater during cooling than in normothermia. These results indicate that heating augments mechanoreceptor-mediated renal vasoconstriction whereas cooling blunts metaboreceptor-mediated renal vasoconstriction.

  9. Altered Kinematics of Facial Emotion Expression and Emotion Recognition Deficits Are Unrelated in Parkinson's Disease.

    PubMed

    Bologna, Matteo; Berardelli, Isabella; Paparella, Giulia; Marsili, Luca; Ricciardi, Lucia; Fabbrini, Giovanni; Berardelli, Alfredo

    2016-01-01

    Altered emotional processing, including reduced emotion facial expression and defective emotion recognition, has been reported in patients with Parkinson's disease (PD). However, few studies have objectively investigated facial expression abnormalities in PD using neurophysiological techniques. It is not known whether altered facial expression and recognition in PD are related. To investigate possible deficits in facial emotion expression and emotion recognition and their relationship, if any, in patients with PD. Eighteen patients with PD and 16 healthy controls were enrolled in this study. Facial expressions of emotion were recorded using a 3D optoelectronic system and analyzed using the facial action coding system. Possible deficits in emotion recognition were assessed using the Ekman test. Participants were assessed in one experimental session. Possible relationship between the kinematic variables of facial emotion expression, the Ekman test scores, and clinical and demographic data in patients were evaluated using the Spearman's test and multiple regression analysis. The facial expression of all six basic emotions had slower velocity and lower amplitude in patients in comparison to healthy controls (all P s < 0.05). Patients also yielded worse Ekman global score and disgust, sadness, and fear sub-scores than healthy controls (all P s < 0.001). Altered facial expression kinematics and emotion recognition deficits were unrelated in patients (all P s > 0.05). Finally, no relationship emerged between kinematic variables of facial emotion expression, the Ekman test scores, and clinical and demographic data in patients (all P s > 0.05). The results in this study provide further evidence of altered emotional processing in PD. The lack of any correlation between altered facial emotion expression kinematics and emotion recognition deficits in patients suggests that these abnormalities are mediated by separate pathophysiological mechanisms.

  10. Alterations in Circulatory and Renal Angiotensin-Converting Enzyme and Angiotensin-Converting Enzyme 2 in Fetal Programmed Hypertension

    PubMed Central

    Shaltout, Hossam A.; Figueroa, Jorge P.; Rose, James C.; Diz, Debra I.; Chappell, Mark C.

    2009-01-01

    Antenatal betamethasone treatment is a widely accepted therapy to accelerate lung development and improve survival in preterm infants. However, there are reports that infants who receive antenatal glucocorticoids exhibit higher systolic blood pressure in their early adolescent years. We have developed an experimental model of programming whereby the offspring of pregnant sheep administered clinically relevant doses of betamethasone exhibit elevated blood pressure. We tested the hypothesis as to whether alterations in angiotensin-converting enzyme (ACE), ACE2, and neprilysin in serum, urine, and proximal tubules are associated with this increase in mean arterial pressure. Male sheep were administered betamethasone (2 doses of 0.17 mg/kg, 24 hours apart) or vehicle at the 80th day of gestation and delivered at term. Sheep were instrumented at adulthood (1.8 years) for direct conscious recording of mean arterial pressure. Serum and urine were collected and proximal tubules isolated from the renal cortex. Betamethasone-treated animals had elevated mean arterial pressure (97±3 versus 83±2 mm Hg; P<0.05) and a 25% increase in serum ACE activity (48.4±7.0 versus 36.0±2.7 fmol/mL per minute) but a 40% reduction in serum ACE2 activity (18.8±1.2 versus 31.4±4.4 fmol/mL per minute). In isolated proximal tubules, ACE2 activity and expression were 50% lower in the treated sheep with no significant change in ACE or neprilysin activities. We conclude that antenatal steroid treatment results in the chronic alteration of ACE and ACE2 in the circulatory and tubular compartments, which may contribute to the higher blood pressure in this model of fetal programming-induced hypertension. PMID:19047579

  11. Nephroprotective effects of b-carotene on ACE gene expression, oxidative stress and antioxidant status in thioacetamide induced renal toxicity in rats.

    PubMed

    Fazal, Yumna; Fatima, Syeda Nuzhat; Shahid, Syed Muhammad; Mahboob, Tabassum

    2016-07-01

    β -carotene is one of carotenoid natural pigments, which are produced by plants and are accountable for the bright colors of various fruits and vegetables. These pigments have been widely studied for their ability to prevent chronic diseases and toxicities. This study was designed to evaluate the effects of β-carotene on angiotensin converting enzyme (ACE) gene expression, oxidative stress and antioxidant status in thioacetamide induced renal toxicity. Total 24 albino wistar rats of male sex (200-250gm) were divided into 6 groups as Group-1: The control remained untreated; Group-2: Received thioacetamide (200mg/kg b.w; i.p) for 12 weeks; Group-3: Received β-carotene orally (200mg/kg b.w), for 24 weeks; and Group-4: Received thioacetamide (200mg/kg b.w; i.p) for 12 weeks + received β-carotene orally (200mg/kg b.w), for further 12 weeks. The expression of ACE gene in thioacetamide induced renal toxicity in rats as well as supplemented with β-carotene was investigated and compared their level with control groups by using the quantitative RT-PCR method. The ACE gene expression was significantly increase in TAA rats as compare to control rats specifies that TAA induced changes in ACE gene of kidney, elevated renal ACE has been correlated with increase hypertensive end organ renal damage. The quantity of ACE gene were diminish in our rats who received β-Carotene after TAA is administered, for this reason they seemed to be defended against increased ACE levels in kidney bought by TAA. In pre- and post-treatment groups, we studied the role of β-Carotene against thioacetamide in the kidney of Wistar rats. Experimental confirmation from our study illustrates that β-Carotene can certainly work as a successful radical-trapping antioxidant our results proved that TAA injury increased lipid peroxidation and diminish antioxidant GSH, SOD and CAT in renal tissue. Since β-Carotene administration recover renal lipid peroxidation and antioxidants, it give the impression that

  12. Poly[ADP-Ribose] Polymerase-1 Expression Is Related To Cold Ischemia, Acute Tubular Necrosis, and Delayed Renal Function In Kidney Transplantation

    PubMed Central

    O'Valle, Francisco; Del Moral, Raimundo G. M.; Benítez, María del Carmén; Martín-Oliva, David; Gómez-Morales, Mercedes; Aguilar, David; Aneiros-Fernández, José; Hernández-Cortés, Pedro; Osuna, Antonio; Moreso, Francesc; Serón, Daniel; Oliver, Francisco J.; Del Moral, Raimundo G.

    2009-01-01

    Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD) transplantation. Ischemia-reperfusion (IR) injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1) activation. The present study explored the hypothesis that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in non-ECD allografts that develop posttransplant acute tubular necrosis (ATN). Materials and Methods Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal allograft biopsies (193 with different degrees of ATN and 133 controls) and in murine Parp-1 knockout model of IR injury. Results PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603), time to effective diuresis (r = 0.770), serum creatinine levels at biopsy (r = 0.649), and degree of ATN (r = 0.810) (p = 0.001, Pearson test). In the murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN. In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function. PMID:19784367

  13. Differential expression of c-Met between primary and metastatic sites in clear-cell renal cell carcinoma and its association with PD-L1 expression.

    PubMed

    Lalani, Aly-Khan A; Gray, Kathryn P; Albiges, Laurence; Callea, Marcella; Pignon, Jean-Christophe; Pal, Soumitro; Gupta, Mamta; Bhatt, Rupal S; McDermott, David F; Atkins, Michael B; Woude, G F Vande; Harshman, Lauren C; Choueiri, Toni K; Signoretti, Sabina

    2017-11-28

    In preclinical models, c-Met promotes survival of renal cancer cells through the regulation of programmed death-ligand 1 (PD-L1). However, this relationship in human clear cell renal cell carcinoma (ccRCC) is not well characterized. We evaluated c-Met expression in ccRCC patients using paired primary and metastatic samples and assessed the association with PD-L1 expression and other clinical features. Areas with predominant and highest Fuhrman nuclear grade (FNG) were selected. c-Met expression was evaluated by IHC using an anti-Met monoclonal antibody (MET4 Ab) and calculated by a combined score (CS, 0-300): intensity of c-Met staining (0-3) x % of positive cells (0-100). PD-L1 expression in tumor cells was previously assessed by IHC and PD-L1+ was defined as PD-L1 > 0% positive cells. Our cohort consisted of 45 pairs of primary and metastatic ccRCC samples. Overall, c-Met expression was higher in metastatic sites compared to primary sites (average c-Met CS: 55 vs. 28, p = 0.0003). Higher c-Met expression was associated with higher FNG (4 vs. 3) in primary tumors (average c-Met CS: 52 vs. 20, p = 0.04). c-Met expression was numerically greater in PD-L1+ vs. PD-L1- tumors. Higher c-Met expression in metastatic sites compared to primary tumors suggests that testing for biomarkers of response to c-Met inhibitors should be conducted in metastases. While higher c-Met expression in PD-L1+ tumors requires further investigation, it supports exploring these targets in combination clinical trials.

  14. Expression of Cyt-c-Mediated Mitochondrial Apoptosis-Related Proteins in Rat Renal Proximal Tubules during Development.

    PubMed

    Song, Xiao-Feng; Tian, He; Zhang, Ping; Zhang, Zhen-Xing

    2017-01-01

    Apoptosis regulates embryogenesis, organ metamorphosis and tissue homeostasis. Mitochondrial signaling is an apoptotic pathway, in which Cyt-c and Apaf-1 are transformed into an apoptosome, which activates procaspase-9 and triggers apoptosis. This study evaluated Cyt-c, Apaf-1 and caspase-9 expression during renal development. Kidneys from embryonic (E) 16-, 18-, and 20-day-old fetuses and postnatal (P) 1-, 3-, 5-, 7-, 14-, and 21-day-old pups were obtained. Immunohistochemical analysis, dual-labeled immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) technique assay and Western blot were performed in addition to histological analysis. Immunohistochemistry showed that Cyt-c was strongly expressed in proximal and distal tubules (DTs) at all time points. Caspase-9 and Apaf-1 were strongly expressed in proximal tubules (PTs) but only weakly expressed in DTs. Dual-labeled immunofluorescence showed that most tubules expressed both Cyt-c and Apaf-1, except for some tubules that only expressed Cyt-c. The TUNEL assay showed a greater percentage of apoptotic cells in PTs compared to DTs. Apaf-1 and cleaved caspase-9 protein expression gradually increased during the embryonic period and peaked during the early postnatal period but apparently declined from P7. Cyt-c protein expression was weak during the embryonic period but obviously increased after P1. This study showed that PTs are more sensitive to apoptosis than DTs during rat renal development, even though both tubule segments contain a large number of mitochondria. Furthermore, Cyt-c-mediated mitochondrial apoptosis-related proteins play an important role in PTs during the early postnatal kidney development. © 2016 S. Karger AG, Basel.

  15. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression

    PubMed Central

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de los Angeles

    2016-01-01

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation. PMID:27677351

  16. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression.

    PubMed

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de Los Angeles

    2016-09-28

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation.

  17. Novel prediction model of renal function after nephrectomy from automated renal volumetry with preoperative multidetector computed tomography (MDCT).

    PubMed

    Isotani, Shuji; Shimoyama, Hirofumi; Yokota, Isao; Noma, Yasuhiro; Kitamura, Kousuke; China, Toshiyuki; Saito, Keisuke; Hisasue, Shin-ichi; Ide, Hisamitsu; Muto, Satoru; Yamaguchi, Raizo; Ukimura, Osamu; Gill, Inderbir S; Horie, Shigeo

    2015-10-01

    The predictive model of postoperative renal function may impact on planning nephrectomy. To develop the novel predictive model using combination of clinical indices with computer volumetry to measure the preserved renal cortex volume (RCV) using multidetector computed tomography (MDCT), and to prospectively validate performance of the model. Total 60 patients undergoing radical nephrectomy from 2011 to 2013 participated, including a development cohort of 39 patients and an external validation cohort of 21 patients. RCV was calculated by voxel count using software (Vincent, FUJIFILM). Renal function before and after radical nephrectomy was assessed via the estimated glomerular filtration rate (eGFR). Factors affecting postoperative eGFR were examined by regression analysis to develop the novel model for predicting postoperative eGFR with a backward elimination method. The predictive model was externally validated and the performance of the model was compared with that of the previously reported models. The postoperative eGFR value was associated with age, preoperative eGFR, preserved renal parenchymal volume (RPV), preserved RCV, % of RPV alteration, and % of RCV alteration (p < 0.01). The significant correlated variables for %eGFR alteration were %RCV preservation (r = 0.58, p < 0.01) and %RPV preservation (r = 0.54, p < 0.01). We developed our regression model as follows: postoperative eGFR = 57.87 - 0.55(age) - 15.01(body surface area) + 0.30(preoperative eGFR) + 52.92(%RCV preservation). Strong correlation was seen between postoperative eGFR and the calculated estimation model (r = 0.83; p < 0.001). The external validation cohort (n = 21) showed our model outperformed previously reported models. Combining MDCT renal volumetry and clinical indices might yield an important tool for predicting postoperative renal function.

  18. Expression of peroxisomal proliferator-activated receptors and retinoid X receptors in the kidney.

    PubMed

    Yang, T; Michele, D E; Park, J; Smart, A M; Lin, Z; Brosius, F C; Schnermann, J B; Briggs, J P

    1999-12-01

    The discovery that 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) is a ligand for the gamma-isoform of peroxisome proliferator-activated receptor (PPAR) suggests nuclear signaling by prostaglandins. Studies were undertaken to determine the nephron localization of PPAR isoforms and their heterodimer partners, retinoid X receptors (RXR), and to evaluate the function of this system in the kidney. PPARalpha mRNA, determined by RT-PCR, was found predominately in cortex and further localized to proximal convoluted tubule (PCT); PPARgamma was abundant in renal inner medulla, localized to inner medullary collecting duct (IMCD) and renal medullary interstitial cells (RMIC); PPARbeta, the ubiquitous form of PPAR, was abundant in all nephron segments examined. RXRalpha was localized to PCT and IMCD, whereas RXRbeta was expressed in almost all nephron segments examined. mRNA expression of acyl-CoA synthase (ACS), a known PPAR target gene, was stimulated in renal cortex of rats fed with fenofibrate, but the expression was not significantly altered in either cortex or inner medulla of rats fed with troglitazone. In cultured RMIC cells, both troglitazone and 15d-PGJ2 significantly inhibited cell proliferation and dramatically altered cell shape by induction of cell process formation. We conclude that PPAR and RXR isoforms are expressed in a nephron segment-specific manner, suggesting distinct functions, with PPARalpha being involved in energy metabolism through regulating ACS in PCT and with PPARgamma being involved in modulating RMIC growth and differentiation.

  19. Prevalence and predictors of renal artery stenosis in patients undergoing peripheral and coronary angiography.

    PubMed

    Shukla, Anand N; Madan, Tarun H; Jayaram, Ashwal A; Kute, Vivek B; Rawal, Jayesh R; Manjunath, A P; Udhreja, Satyam

    2013-12-01

    Renal artery stenosis is a potential cause of secondary hypertension, ischemic nephropathy and end-stage renal disease. Atherosclerosis is by far the most common etiology of renal artery stenosis in elderly. We investigated whether the presence of significant atherosclerotic renal artery stenosis (ARAS) with luminal diameter narrowing ≥50 % could be predicted in patients undergoing peripheral and coronary angiography. The records of 3,500 consecutive patients undergoing simultaneous renal angiography along with peripheral and coronary angiography were reviewed. The patients with known renal artery disease were excluded. Prevalence of ARAS was 5.7 %. Significant ARAS (luminal diameter narrowing ≥50 %) was present in 139 patients (3.9 %). Hypertension with altered serum creatinine and triple-vessel CAD were associated with significant renal artery stenosis in multivariate analysis. No significant relationship between the involved coronary arteries like left anterior descending, left circumflex, right coronary artery and ARAS was found. Only hypertension and altered serum creatinine were associated with bilateral ARAS. Extent of CAD or risk factors like diabetes, hyperlipidemia or smoking did not predict the unilateral or bilateral ARAS. Prevalence of ARAS among the patients in routine cardiac catheterization was 5.7 %. Hypertension is closely associated with significant ARAS. Significant CAD in the form of triple-vessel disease and altered renal function tests are closely associated with ARAS. They predict the presence of significant renal artery stenosis in patients undergoing routine peripheral and coronary angiography. Moreover, hypertension and altered renal functions predict bilateral ARAS.

  20. The effect of maleate induced proximal tubular dysfunction on the renal handling of Tc-99m DMSA in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provoost, A.P.; Van Aken, M.

    1984-01-01

    In the healthy kidney Tc-99m DMSA accumulates in the proximal tubular cells. Consequently, impairment of the reabsorptive function of these cells may alter the renal handling of this static renal imaging agent. The authors investigated in rats the effects of a sodiummaleate (Ma) (2mmol/kg iv) induced proximal tubular dysfunction on the renal accumulation and excretion of Tc-99m DMSA. Such a treatment results in a moderate fall of the glomerular filtration rate, glycosuria, aminoaciduria and a tubular proteinuria. In 7 adult male Wistar rats, Tc-99m DMSA scans were taken before Ma, on the day of treatment, and 1 week thereafter. Themore » accumulation of Tc-99m DMSA in kidneys (Ki) and bladder (Bl) was determined at 1, 2, 4, and 24 hours after i.v. injection. The results, expressed as a percentage of the injected dose, are presented. The findings show that a reversible Ma induced impairment of the proximal reabsorptive capacity severely alters the renal tubular handling of Tc-99m DMSA. In contrast to the control situation, only a small fraction of the DMSA is retained in the kidney and the majority is transported directly to the urinary bladder. When similar alterations are observed in clinical Tc-99m DMSA scans, this may be an indication of an impairment of the proximal tubular function.« less

  1. The somatic genomic landscape of chromophobe renal cell carcinoma

    PubMed Central

    Davis, Caleb F.; Ricketts, Christopher; Wang, Min; Yang, Lixing; Cherniack, Andrew D.; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C.; Hacker, Kathryn E.; Bhanot, Gyan; Gordenin, Dmitry A.; Chu, Andy; Gunaratne, Preethi H.; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A.; Bristow, Christopher A.; Donehower, Lawrence A.; Wallen, Eric M.; Smith, Angela B.; Tickoo, Satish K.; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S.; Hsieh, James J.; Choueiri, Toni K.; Hakimi, A. Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A. Gordon; Laird, Peter W.; Henske, Elizabeth P.; Kwiatkowski, David J.; Park, Peter J.; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A.; Linehan, W. Marston; Gibbs, Richard A.; Rathmell, W. Kimryn; Creighton, Chad J.

    2014-01-01

    Summary We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) based on multidimensional and comprehensive characterization, including mitochondrial DNA (mtDNA) and whole genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared to other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT up-regulation in cancer distinct from previously-observed amplifications and point mutations. PMID:25155756

  2. Expression of BMP-2 in Vascular Endothelial Cells of Recipient May Predict Delayed Graft Function After Renal Transplantation.

    PubMed

    Basic-Jukic, Nikolina; Gulin, Marijana; Hudolin, Tvrtko; Kastelan, Zeljko; Katalinic, Lea; Coric, Marijana; Veda, Marija Varnai; Ivkovic, Vanja; Kes, Petar; Jelakovic, Bojan

    2016-01-01

    Delayed graft function (DGF) is associated with adverse outcomes after renal transplantation. Bone morphogenetic protein-2 (BMP-2) is involved in both endothelial function and immunological events. We compared expression of BMP-2 in epigastric artery of renal transplant recipients with immediate graft function (IGF) and DGF. 79 patients were included in this prospective study. Patients were divided in IGF group (64 patients) and DGF group (15 patients). BMP-2 expression in intima media (BMP2m) and endothelium (BMP2e) of epigastric artery was assessed by immunohistochemistry. Lower intensity of BMP2e staining was recorded in DGF compared to IGF. In DGF patients, 93% had no expression of BMP2e and 7% had 1st grade expression, compared to 45% and 41% in IGF group, respectively (P=0.001) (P<0.001 for no expression and P = 0.015 for 1st grade expression). Patients who had BMP2e staining positive had lower odds for DGF (OR 0.059 [0.007, 0.477]) and this remained significant even after adjustment for donor and recipient variables, cold ischemia time, and immunological matching (OR 0.038 [0.003, 0.492]). Our results demonstrate that BMP-2 expression in endothelial cells of epigastric arteries may predict development of DGF. © 2016 The Author(s) Published by S. Karger AG, Basel.

  3. Shadows alter facial expressions of Noh masks.

    PubMed

    Kawai, Nobuyuki; Miyata, Hiromitsu; Nishimura, Ritsuko; Okanoya, Kazuo

    2013-01-01

    A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers' recognition of the emotional expressions. In Experiment 1, neutral-faced Noh masks having the attached shadows of the happy/sad masks were recognized as bearing happy/sad expressions, respectively. This was true for all four types of masks each of which represented a character differing in sex and age, even though the original characteristics of the masks also greatly influenced the evaluation of emotions. Experiment 2 further revealed that frontal Noh mask images having shadows of upward/downward tilted masks were evaluated as sad/happy, respectively. This was consistent with outcomes from preceding studies using actually tilted Noh mask images. Results from the two experiments concur that purely manipulating attached shadows of the different types of Noh masks significantly alters the emotion recognition. These findings go in line with the mysterious facial expressions observed in Western paintings, such as the elusive qualities of Mona Lisa's smile. They also agree with the aesthetic principle of Japanese traditional art "yugen (profound grace and subtlety)", which highly appreciates subtle emotional expressions in the darkness.

  4. Amelioration of renal ischaemia–reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells

    PubMed Central

    Rogers, NM; Stephenson, MD; Kitching, AR; Horowitz, JD; Coates, PTH

    2012-01-01

    BACKGROUND AND PURPOSE Renal ischaemia–reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. EXPERIMENTAL APPROACH We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. KEY RESULTS Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. CONCLUSIONS AND IMPLICATIONS Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury. PMID:21745189

  5. Tranilast prevents renal interstitial fibrosis by blocking mast cell infiltration in a rat model of diabetic kidney disease.

    PubMed

    Yin, Dan-Dan; Luo, Jun-Hui; Zhao, Zhu-Ye; Liao, Ying-Jun; Li, Ying

    2018-05-01

    Renal interstitial fibrosis is a final pathway that is observed in various types of kidney diseases, including diabetic kidney disease (DKD). The present study investigated the effect of tranilast on renal interstitial fibrosis and the association between its role and mast cell infiltration in a rat model of DKD. A total of 30 healthy 6‑week‑old male Sprague‑Dawley rats were randomly divided into the following four groups: Normal control group; DKD model group; low‑dose tranilast group (200 mg/kg/day); and high‑dose tranilast group (400 mg/kg/day). The morphological alterations of tubulointerstitial fibrosis were evaluated by Masson's trichrome staining, while mast cell infiltration into the renal tubular interstitium was measured by toluidine blue staining and complement C3a receptor 1 (C3aR) immunohistochemical staining (IHC). The expression of fibronectin (FN), collagen I (Col‑I), stem cell factor (SCF) and proto‑oncogene c‑kit (c‑kit) was detected by IHC, western blotting and reverse transcription‑quantitative‑polymerase chain reaction. The results demonstrated that tubulointerstitial fibrosis and mast cell infiltration were observed in DKD model rats, and this was improved dose‑dependently in the tranilast treatment groups. The expression of FN, Col‑I, SCF and c‑kit mRNA and protein was upregulated in the tubulointerstitium of DKD model rats compared with the normal control rats, and tranilast inhibited the upregulated expression of these markers. Furthermore, the degree of SCF and c‑kit expression demonstrated a significant positive correlation with C3aR‑positive mast cells and the markers of renal interstitial fibrosis. The results of the present study indicate that mast cell infiltration may promote renal interstitial fibrosis via the SCF/c‑kit signaling pathway. Tranilast may prevent renal interstitial fibrosis through inhibition of mast cell infiltration mediated through the SCF/c-kit signaling pathway.

  6. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    PubMed

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  7. Allopurinol attenuates rhabdomyolysis-associated acute kidney injury: Renal and muscular protection.

    PubMed

    Gois, Pedro H F; Canale, Daniele; Volpini, Rildo A; Ferreira, Daniela; Veras, Mariana M; Andrade-Oliveira, Vinicius; Câmara, Niels O S; Shimizu, Maria H M; Seguro, Antonio C

    2016-12-01

    Acute kidney injury (AKI) is the most severe complication of rhabdomyolysis. Allopurinol (Allo), a xanthine oxidase inhibitor, has been in the spotlight in the last decade due to new therapeutic applications related to its potent antioxidant effect. The aim of this study was to evaluate the efficacy of Allo in the prevention and treatment of rhabdomyolysis-associated AKI. Male Wistar rats were divided into five groups: saline control group; prophylactic Allo (300mg/L of drinking water, 7 days); glycerol (50%, 5ml/kg, IM); prophylactic Allo + glycerol; and therapeutic Allo (50mg/Kg, IV, 30min after glycerol injection) + glycerol. Glycerol-injected rats showed markedly reduced glomerular filtration rate associated with renal vasoconstriction, renal tubular damage, increased oxidative stress, apoptosis and inflammation. Allo ameliorated all these alterations. We found 8-isoprostane-PGF 2a (F2-IsoP) as a main factor involved in the oxidative stress-mediated renal vasoconstriction following rhabdomyolysis. Allo reduced F2-IsoP renal expression and restored renal blood flow. Allo also reduced oxidative stress in the damaged muscle, attenuated muscle lesion/inflammation and accelerated muscular recovery. Moreover, we showed new insights into the pathogenesis of rhabdomyolysis-associated AKI, whereas Allo treatment reduced renal inflammation by decreasing renal tissue uric acid levels and consequently inhibiting the inflammasome cascade. Allo treatment attenuates renal dysfunction in a model of rhabdomyolysis-associated AKI by reducing oxidative stress (systemic, renal and muscular), apoptosis and inflammation. This may represent a new therapeutic approach for rhabdomyolysis-associated AKI - a new use for an old and widely available medication. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. JBP485 improves gentamicin-induced acute renal failure by regulating the expression and function of Oat1 and Oat3 in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xinjin; Meng, Qiang; Liu, Qi

    2013-09-01

    We investigated the effects of JBP485 (an anti-inflammatory dipeptide and a substrate of OAT) on regulation of the expression and function of renal Oat1 and Oat3, which can accelerate the excretion of accumulated uremic toxins (e.g. indoxyl sulfate) in the kidney to improve gentamicin-induced ARF in rats. JBP485 caused a significant decrease in the accumulation of endogenous substances (creatinine, blood urea nitrogen and indoxyl sulfate) in vivo, an increase in the excretion of exogenous compounds (lisinopril and inulin) into urine, and up-regulation of the expressions of renal Oat1 and Oat3 in the kidney tissues and slices via substrate induction. Tomore » determine the effect of JBP485 on the accelerated excretion of uremic toxins mediated by Oat1 and Oat3, the mRNA and protein expression levels of renal basolateral Oats were assessed by quantitative real-time PCR, western blot, immunohistochemical analysis and an immunofluorescence method. Gentamicin down-regulated the expression of Oats mRNA and protein in rat kidney, and these effects were reversed after administration of JBP485. In addition, JBP485 caused a significant decrease in MPO and MDA levels in the kidney, and improved the pathological condition of rat kidney. These results indicated that JBP485 improved acute renal failure by increasing the expression and function of Oat1 and Oat3, and by decreasing overoxidation of the kidney in gentamicin-induced ARF rats. - Highlights: • JBP485 could up-regulate function and expression of Oat1 and Oat3 in kidney. • Effects of JBP485 on ARF are mediated by stimulating excretion of uremic toxins. • JBP485 protected against gentamicin-induced ARF by decreasing MPO and MDA.« less

  9. Pregnancy Complicated by Obesity Induces Global Transcript Expression Alterations in Visceral and Subcutaneous Fat

    PubMed Central

    Bashiri, Asher; Heo, Hye J.; Ben-Avraham, Danny; Mazor, Moshe; Budagov, Temuri; Einstein, Francine H.; Atzmon, Gil

    2014-01-01

    Maternal obesity is a significant risk factor for development of both maternal and fetal metabolic complications. Increase in visceral fat and insulin resistance is a metabolic hallmark of pregnancy, yet little is known how obesity alters adipose cellular function and how this may contribute to pregnancy morbidities. We sought to identify alterations in genome-wide transcription expression in both visceral (omental) and abdominal subcutaneous fat deposits in pregnancy complicated by obesity. Visceral and abdominal subcutaneous fat deposits were collected from normal weight and obese pregnant women (n=4/group) at time of scheduled uncomplicated cesarean section. A genome-wide expression array (Affymetrix Human Exon 1.0 st platform), validated by quantitative real-time PCR, was utilized to establish the gene transcript expression profile in both visceral and abdominal subcutaneous fat in normal weight and obese pregnant women. Global alteration in gene expression was identified in pregnancy complicated by obesity. These regions of variations lead to identification of indolethylamine N-methyltransferase (INMT), tissue factor pathway inhibitor-2 (TFPI-2), and ephrin type-B receptor 6 (EPHB6), not previously associated with fat metabolism during pregnancy. In addition, subcutaneous fat of obese pregnant women demonstrated increased coding protein transcripts associated with apoptosis compared to lean counterparts. Global alteration of gene expression in adipose tissue may contribute to adverse pregnancy outcomes associated with obesity. PMID:24696292

  10. Renal denervation attenuates aldosterone expression and associated cardiovascular pathophysiology in angiotensin II-induced hypertension.

    PubMed

    Hong, Mo-Na; Li, Xiao-Dong; Chen, Dong-Rui; Ruan, Cheng-Chao; Xu, Jian-Zhong; Chen, Jing; Wu, Yong-Jie; Ma, Yu; Zhu, Ding-Liang; Gao, Ping-Jin

    2016-10-18

    The sympathetic nervous system interacts with the renin-angiotensin-aldosterone system (RAAS) contributing to cardiovascular diseases. In this study, we sought to determine if renal denervation (RDN) inhibits aldosterone expression and associated cardiovascular pathophysiological changes in angiotensin II (Ang II)-induced hypertension. Bilateral RDN or SHAM operation was performed before chronic 14-day Ang II subcutaneous infusion (200ng/kg/min) in male Sprague-Dawley rats. Bilateral RDN blunted Ang II-induced hypertension and ameliorated the mesenteric vascular dysfunction. Cardiovascular hypertrophy in response to Ang II was significantly attenuated by RDN as shown by histopathology and transthoracic echocardiography. Moreover, Ang II-induced vascular and myocardial inflammation and fibrosis were suppressed by RDN with concurrent decrease in fibronectin and collagen deposition, macrophage infiltration, and MCP-1 expression. Interestingly, RDN also inhibited Ang II-induced aldosterone expression in the plasma, kidney and heart. This was associated with the reduction of calcitonin gene-related peptide (CGRP) in the adrenal gland. Ang II promoted aldosterone secretion which was partly attenuated by CGRP in the adrenocortical cell line, suggesting a protective role of CGRP in this model. Activation of transforming growth factor-β (TGF-β)/Smad and mitogen-activated protein kinases (MAPKs) signaling pathway was both inhibited by RDN especially in the heart. These results suggest that the regulation of the renal sympathetic nerve in Ang II-induced hypertension and associated cardiovascular pathophysiological changes is likely mediated by aldosterone, with CGRP involvement.

  11. Renal denervation attenuates aldosterone expression and associated cardiovascular pathophysiology in angiotensin II-induced hypertension

    PubMed Central

    Chen, Dong-Rui; Ruan, Cheng-Chao; Xu, Jian-Zhong; Chen, Jing; Wu, Yong-Jie; Ma, Yu; Zhu, Ding-Liang; Gao, Ping-Jin

    2016-01-01

    The sympathetic nervous system interacts with the renin-angiotensin-aldosterone system (RAAS) contributing to cardiovascular diseases. In this study, we sought to determine if renal denervation (RDN) inhibits aldosterone expression and associated cardiovascular pathophysiological changes in angiotensin II (Ang II)-induced hypertension. Bilateral RDN or SHAM operation was performed before chronic 14-day Ang II subcutaneous infusion (200ng/kg/min) in male Sprague-Dawley rats. Bilateral RDN blunted Ang II-induced hypertension and ameliorated the mesenteric vascular dysfunction. Cardiovascular hypertrophy in response to Ang II was significantly attenuated by RDN as shown by histopathology and transthoracic echocardiography. Moreover, Ang II-induced vascular and myocardial inflammation and fibrosis were suppressed by RDN with concurrent decrease in fibronectin and collagen deposition, macrophage infiltration, and MCP-1 expression. Interestingly, RDN also inhibited Ang II-induced aldosterone expression in the plasma, kidney and heart. This was associated with the reduction of calcitonin gene-related peptide (CGRP) in the adrenal gland. Ang II promoted aldosterone secretion which was partly attenuated by CGRP in the adrenocortical cell line, suggesting a protective role of CGRP in this model. Activation of transforming growth factor-β (TGF-β)/Smad and mitogen-activated protein kinases (MAPKs) signaling pathway was both inhibited by RDN especially in the heart. These results suggest that the regulation of the renal sympathetic nerve in Ang II-induced hypertension and associated cardiovascular pathophysiological changes is likely mediated by aldosterone, with CGRP involvement. PMID:27661131

  12. Alteration of gene expression by alcohol exposure at early neurulation.

    PubMed

    Zhou, Feng C; Zhao, Qianqian; Liu, Yunlong; Goodlett, Charles R; Liang, Tiebing; McClintick, Jeanette N; Edenberg, Howard J; Li, Lang

    2011-02-21

    We have previously demonstrated that alcohol exposure at early neurulation induces growth retardation, neural tube abnormalities, and alteration of DNA methylation. To explore the global gene expression changes which may underline these developmental defects, microarray analyses were performed in a whole embryo mouse culture model that allows control over alcohol and embryonic variables. Alcohol caused teratogenesis in brain, heart, forelimb, and optic vesicle; a subset of the embryos also showed cranial neural tube defects. In microarray analysis (accession number GSM9545), adopting hypothesis-driven Gene Set Enrichment Analysis (GSEA) informatics and intersection analysis of two independent experiments, we found that there was a collective reduction in expression of neural specification genes (neurogenin, Sox5, Bhlhe22), neural growth factor genes [Igf1, Efemp1, Klf10 (Tieg), and Edil3], and alteration of genes involved in cell growth, apoptosis, histone variants, eye and heart development. There was also a reduction of retinol binding protein 1 (Rbp1), and de novo expression of aldehyde dehydrogenase 1B1 (Aldh1B1). Remarkably, four key hematopoiesis genes (glycophorin A, adducin 2, beta-2 microglobulin, and ceruloplasmin) were absent after alcohol treatment, and histone variant genes were reduced. The down-regulation of the neurospecification and the neurotrophic genes were further confirmed by quantitative RT-PCR. Furthermore, the gene expression profile demonstrated distinct subgroups which corresponded with two distinct alcohol-related neural tube phenotypes: an open (ALC-NTO) and a closed neural tube (ALC-NTC). Further, the epidermal growth factor signaling pathway and histone variants were specifically altered in ALC-NTO, and a greater number of neurotrophic/growth factor genes were down-regulated in the ALC-NTO than in the ALC-NTC embryos. This study revealed a set of genes vulnerable to alcohol exposure and genes that were associated with neural tube

  13. Renal denervation prevents long-term sequelae of ischemic renal injury

    PubMed Central

    Kim, Jinu; Padanilam, Babu J.

    2014-01-01

    Signals that drive interstitial fibrogenesis after renal ischemia reperfusion injury remain undefined. Sympathetic activation is manifest even in the early clinical stages of chronic kidney disease and is directly related to disease severity. A role for renal nerves in renal interstitial fibrogenesis in the setting of ischemia reperfusion injury has not been studied. In male 129S1/SvImJ mice, ischemia reperfusion injury induced tubulointerstitial fibrosis as indicated by collagen deposition and profibrotic protein expression 4 to 16 days after the injury.. Leukocyte influx, proinflammatory protein expression, oxidative stress, apoptosis, and cell cycle arrest at G2/M phase were enhanced after ischemia reperfusion injury. Renal denervation at the time of injury or up to 1 day post-injury improved histology, decreased proinflammatory/profibrotic responses and apoptosis, and prevented G2/M cell cycle arrest in the kidney. Treatment with afferent nerve-derived calcitonin gene-related peptide (CGRP) or efferent nerve-derived norepinephrine in denervated and ischemia reperfusion injury-induced kidneys mimicked innervation, restored inflammation and fibrosis, induced G2/M arrest, and enhanced TGF-β1 activation. Blocking norepinephrine or CGRP function using respective receptor blockers prevented these effects. Consistent with the in vivo study, treatment with either norepinephrine or CGRP induced G2/M cell cycle arrest in HK-2 proximal tubule cells, whereas antagonists against their respective receptors prevented G2/M arrest. Thus, renal nerve stimulation is a primary mechanism and renal nerve-derived factors drive epithelial cell cycle arrest and the inflammatory cascade causing interstitial fibrogenesis after ischemia reperfusion injury. PMID:25207878

  14. Nursing frequency alters circadian patterns of mammary gene expression in lactating mice

    USDA-ARS?s Scientific Manuscript database

    Milking frequency impacts lactation in dairy cattle and in rodent models of lactation. The role of circadian gene expression in this process is unknown. The hypothesis tested was that changing nursing frequency alters the circadian patterns of mammary gene expression. Mid-lactation CD1 mice were stu...

  15. Enhanced renal prostaglandin production in the dog. I. Effects on renal function.

    PubMed

    Tannenbaum, J; Splawinski, J A; Oates, J A; Nies, A S

    1975-01-01

    The changes in renal function produced by endogenous synthesis of prostaglandins by the kidney were evaluated by infusing sodium arachidonate, the prescursor of the prostaglandins, into one renal artery of the dog. These changes were compared with those produced by similar infusions on performed prostaglandin (PG) E2 and F2alpha.PGE2given at 0.01-0.3 mug/kg min--1 produced dose-related increases in urine flow, sodium and potassium excretion, free water clearance, and renal blood flow. The glomerular filtration rage increased only at the lowest dose and the calculated filtration fraction fell. Arachidonic acid at 1.0-30.0 mug/kg min--1 similarly produced dose-related increases in electrolyte excretion, but the increase in renal blood flow was much less than that produced by PGE2 and there were no changes in glomerular filtration rate, filtration fraction, or free water clearances. PGF2alpha had essentially no effects at infusion rates of 0.03-1.0 mug/kg min--1. All renal effects of arachidonic acid were inhibited by simultaneous infusions of an inhibitor of prostaglandin synthetase, 5, 8, 11,14-eicosatetraynoic acid (20:4). None of the effects produced by PGE2 were inhibited by 20:4. These results indicate that enhanced endogenous renal prostaglandin synthesis, which can be produced by arachidonate infusion, results in significant alterations of renal function. This finding strengthens the hypothesis that renal prostaglandins formed in vivo have physiological importance as regulators of renal function.

  16. Hemodynamics in Transplant Renal Artery Stenosis and its Alteration after Stent Implantation Based on a Patient-specific Computational Fluid Dynamics Model.

    PubMed

    Wang, Hong-Yang; Liu, Long-Shan; Cao, Hai-Ming; Li, Jun; Deng, Rong-Hai; Fu, Qian; Zhang, Huan-Xi; Fei, Ji-Guang; Wang, Chang-Xi

    Accumulating studies on computational fluid dynamics (CFD) support the involvement of hemodynamic factors in artery stenosis. Based on a patient-specific CFD model, the present study aimed to investigate the hemodynamic characteristics of transplant renal artery stenosis (TRAS) and its alteration after stent treatment. Computed tomography angiography (CTA) data of kidney transplant recipients in a single transplant center from April 2013 to November 2014 were reviewed. The three-dimensional geometry of transplant renal artery (TRA) was reconstructed from the qualified CTA images and categorized into three groups: the normal, stenotic, and stented groups. Hemodynamic parameters including pressure distribution, velocity, wall shear stress (WSS), and mass flow rate (MFR) were extracted. The data of hemodynamic parameters were expressed as median (interquartile range), and Mann-Whitney U-test was used for analysis. Totally, 6 normal, 12 stenotic, and 6 stented TRAs were included in the analysis. TRAS presented nonuniform pressure distribution, adverse pressure gradient across stenosis throat, flow vortex, and a separation zone at downstream stenosis. Stenotic arteries had higher maximal velocity and maximal WSS (2.94 [2.14, 3.30] vs. 1.06 [0.89, 1.15] m/s, 256.5 [149.8, 349.4] vs. 41.7 [37.8, 45.3] Pa at end diastole, P= 0.001; 3.25 [2.67, 3.56] vs. 1.65 [1.18, 1.72] m/s, 281.3 [184.3, 364.7] vs. 65.8 [61.2, 71.9] Pa at peak systole, P= 0.001) and lower minimal WSS and MFRs (0.07 [0.03, 0.13] vs. 0.52 [0.45, 0.67] Pa, 1.5 [1.0, 3.0] vs. 11.0 [8.0, 11.3] g/s at end diastole, P= 0.001; 0.08 [0.03, 0.19] vs. 0.70 [0.60, 0.81] Pa, 2.0 [1.3, 3.3] vs. 16.5 [13.0, 20.3] g/s at peak systole, P= 0.001) as compared to normal arteries. Stent implantation ameliorated all the alterations of the above hemodynamic factors except low WSS. Hemodynamic factors were significantly changed in severe TRAS. Stent implantation can restore or ameliorate deleterious change of hemodynamic

  17. Hemodynamics in Transplant Renal Artery Stenosis and its Alteration after Stent Implantation Based on a Patient-specific Computational Fluid Dynamics Model

    PubMed Central

    Wang, Hong-Yang; Liu, Long-Shan; Cao, Hai-Ming; Li, Jun; Deng, Rong-Hai; Fu, Qian; Zhang, Huan-Xi; Fei, Ji-Guang; Wang, Chang-Xi

    2017-01-01

    Background: Accumulating studies on computational fluid dynamics (CFD) support the involvement of hemodynamic factors in artery stenosis. Based on a patient-specific CFD model, the present study aimed to investigate the hemodynamic characteristics of transplant renal artery stenosis (TRAS) and its alteration after stent treatment. Methods: Computed tomography angiography (CTA) data of kidney transplant recipients in a single transplant center from April 2013 to November 2014 were reviewed. The three-dimensional geometry of transplant renal artery (TRA) was reconstructed from the qualified CTA images and categorized into three groups: the normal, stenotic, and stented groups. Hemodynamic parameters including pressure distribution, velocity, wall shear stress (WSS), and mass flow rate (MFR) were extracted. The data of hemodynamic parameters were expressed as median (interquartile range), and Mann–Whitney U-test was used for analysis. Results: Totally, 6 normal, 12 stenotic, and 6 stented TRAs were included in the analysis. TRAS presented nonuniform pressure distribution, adverse pressure gradient across stenosis throat, flow vortex, and a separation zone at downstream stenosis. Stenotic arteries had higher maximal velocity and maximal WSS (2.94 [2.14, 3.30] vs. 1.06 [0.89, 1.15] m/s, 256.5 [149.8, 349.4] vs. 41.7 [37.8, 45.3] Pa at end diastole, P = 0.001; 3.25 [2.67, 3.56] vs. 1.65 [1.18, 1.72] m/s, 281.3 [184.3, 364.7] vs. 65.8 [61.2, 71.9] Pa at peak systole, P = 0.001) and lower minimal WSS and MFRs (0.07 [0.03, 0.13] vs. 0.52 [0.45, 0.67] Pa, 1.5 [1.0, 3.0] vs. 11.0 [8.0, 11.3] g/s at end diastole, P = 0.001; 0.08 [0.03, 0.19] vs. 0.70 [0.60, 0.81] Pa, 2.0 [1.3, 3.3] vs. 16.5 [13.0, 20.3] g/s at peak systole, P = 0.001) as compared to normal arteries. Stent implantation ameliorated all the alterations of the above hemodynamic factors except low WSS. Conclusions: Hemodynamic factors were significantly changed in severe TRAS. Stent implantation can restore or

  18. pH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+cells: a versatile in vitro model to study renal proximal tubule metabolism and function

    PubMed Central

    Curthoys, Norman P.

    2014-01-01

    Ammoniagenesis and gluconeogenesis are prominent metabolic features of the renal proximal convoluted tubule that contribute to maintenance of systemic acid-base homeostasis. Molecular analysis of the mechanisms that mediate the coordinate regulation of the two pathways required development of a cell line that recapitulates these features in vitro. By adapting porcine renal epithelial LLC-PK1 cells to essentially glucose-free medium, a gluconeogenic subline, termed LLC-PK1-FBPase+ cells, was isolated. LLC-PK1-FBPase+ cells grow in the absence of hexoses and pentoses and exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase. The cells also express significant levels of the key gluconeogenic enzymes, fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus the altered phenotype of LLC-PK1-FBPase+ cells is pleiotropic. Most importantly, when transferred to medium that mimics a pronounced metabolic acidosis (9 mM HCO3−, pH 6.9), the LLC-PK1-FBPase+ cells exhibit a gradual increase in NH4+ ion production, accompanied by increases in glutaminase and cytosolic PEPCK mRNA levels and proteins. Therefore, the LLC-PK1-FBPase+ cells retained in culture many of the metabolic pathways and pH-responsive adaptations characteristic of renal proximal tubules. The molecular mechanisms that mediate enhanced expression of the glutaminase and PEPCK in LLC-PK1-FBPase+ cells have been extensively reviewed. The present review describes novel properties of this unique cell line and summarizes the molecular mechanisms that have been defined more recently using LLC-PK1-FBPase+ cells to model the renal proximal tubule. It also identifies future studies that could be performed using these cells. PMID:24808535

  19. Shadows Alter Facial Expressions of Noh Masks

    PubMed Central

    Kawai, Nobuyuki; Miyata, Hiromitsu; Nishimura, Ritsuko; Okanoya, Kazuo

    2013-01-01

    Background A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers’ recognition of the emotional expressions. Methodology/Principal Findings In Experiment 1, neutral-faced Noh masks having the attached shadows of the happy/sad masks were recognized as bearing happy/sad expressions, respectively. This was true for all four types of masks each of which represented a character differing in sex and age, even though the original characteristics of the masks also greatly influenced the evaluation of emotions. Experiment 2 further revealed that frontal Noh mask images having shadows of upward/downward tilted masks were evaluated as sad/happy, respectively. This was consistent with outcomes from preceding studies using actually tilted Noh mask images. Conclusions/Significance Results from the two experiments concur that purely manipulating attached shadows of the different types of Noh masks significantly alters the emotion recognition. These findings go in line with the mysterious facial expressions observed in Western paintings, such as the elusive qualities of Mona Lisa’s smile. They also agree with the aesthetic principle of Japanese traditional art “yugen (profound grace and subtlety)”, which highly appreciates subtle emotional expressions in the darkness. PMID:23940748

  20. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    DOE PAGES

    Xue, Kai; Xie, Jianping; Zhou, Aifen; ...

    2016-05-06

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less

  1. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Kai; Xie, Jianping; Zhou, Aifen

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less

  2. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    PubMed Central

    Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Zhou, Jizhong

    2016-01-01

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming. PMID:27199978

  3. Angiotensin II Reduces Food Intake by Altering Orexigenic Neuropeptide Expression in the Mouse Hypothalamus

    PubMed Central

    Yoshida, Tadashi; Semprun-Prieto, Laura; Wainford, Richard D.; Sukhanov, Sergiy; Kapusta, Daniel R.

    2012-01-01

    Angiotensin II (Ang II), which is elevated in many chronic disease states such as end-stage renal disease and congestive heart failure, induces cachexia and skeletal muscle wasting by increasing muscle protein breakdown and reducing food intake. Neurohormonal mechanisms that mediate Ang II-induced appetite suppression are unknown. Consequently, we examined the effect of Ang II on expression of genes regulating appetite. Systemic Ang II (1 μg/kg · min) infusion in FVB mice rapidly reduced hypothalamic expression of neuropeptide Y (Npy) and orexin and decreased food intake at 6 h compared with sham-infused controls but did not change peripheral leptin, ghrelin, adiponectin, glucagon-like peptide, peptide YY, or cholecystokinin levels. These effects were completely blocked by the Ang II type I receptor antagonist candesartan or deletion of Ang II type 1a receptor. Ang II markedly reduced phosphorylation of AMP-activated protein kinase (AMPK), an enzyme that is known to regulate Npy expression. Intracerebroventricular Ang II infusion (50 ng/kg · min) caused a reduction of food intake, and Ang II dose dependently reduced Npy and orexin expression in the hypothalamus cultured ex vivo. The reduction of Npy and orexin in hypothalamic cultures was completely prevented by candesartan or the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside. Thus, Ang II type 1a receptor-dependent Ang II signaling reduces food intake by suppressing the hypothalamic expression of Npy and orexin, likely via AMPK dephosphorylation. These findings have major implications for understanding mechanisms of cachexia in chronic disease states such as congestive heart failure and end-stage renal disease, in which the renin-angiotensin system is activated. PMID:22234465

  4. Reproductive experience alters prolactin receptor expression in mammary and hepatic tissues in female rats.

    PubMed

    Bridges, Robert S; Scanlan, Victoria F; Lee, Jong-O; Byrnes, Elizabeth M

    2011-08-01

    Recent studies have reported that reproductive experience in female rats alters prolactin (PRL) receptor gene expression in the brain as well as neural sensitivity to PRL. Given PRL's actions in nonneural tissues, that is, mammary tissue and liver, it was asked whether reproductive experience may also alter prolactin receptor (Prlr) gene expression in these tissues. Groups of age-matched female rats were generated with varying reproductive histories. Separate groups of primiparous (first lactation) and multiparous (second lactation) had mammary tissue and liver samples collected on Day 3 or 10 of lactation. A fifth group raised one litter to weaning and then resumed estrous cyclicity. This group and a final group of age-matched, virgin controls were killed on diestrus. Tissue was processed by quantitative PCR for expression rates of the long and short forms of Prlr mRNA as well as casein beta mRNA (mammary tissue only). Western blots were performed to quantify receptor protein content. Multiple lactations as well as lactation itself resulted in alterations in Prlr expression. Prlr gene expression in mammary tissue was increased in primiparous mothers compared with that in multiparous dams, whereas in the liver, Prlr expression was reduced during an initial lactation. In contrast, PRLR protein levels declined during lactation in mammary, but not hepatic, tissues. Overall, the results demonstrate that the prolactin receptor system is altered in nonneural tissues as a result of the female's reproductive history. The findings are discussed in the context of milk and bile production and PRL's possible role in breast cancer.

  5. Amelioration of renal ischaemia-reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells.

    PubMed

    Rogers, N M; Stephenson, M D; Kitching, A R; Horowitz, J D; Coates, P T H

    2012-05-01

    Renal ischaemia-reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  6. Changes in gene expression in human renal proximal tubule cells exposed to low concentrations of S-(1,2-dichlorovinyl)-L-cysteine, a metabolite of trichloroethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lock, Edward A.; Barth, Jeremy L.; Argraves, Scott W.

    2006-10-15

    Epidemiology studies suggest that there may be a weak association between high level exposure to trichloroethylene (TCE) and renal tubule cell carcinoma. Laboratory animal studies have shown an increased incidence of renal tubule carcinoma in male rats but not mice. TCE can undergo metabolism via glutathione (GSH) conjugation to form metabolites that are known to be nephrotoxic. The GSH conjugate, S-(1,2-dichlorovinyl)glutathione (DCVG), is processed further to the cysteine conjugate, S-(1,2-dichlorovinyl)-L-cysteine (DCVC), which is the penultimate nephrotoxic species. We have cultured human renal tubule cells (HRPTC) in serum-free medium under a variety of different culture conditions and observed growth, respiratory controlmore » and glucose transport over a 20 day period in medium containing low glucose. Cell death was time- and concentration-dependent, with the EC{sub 5} for DCVG being about 3 {mu}M and for DCVC about 7.5 {mu}M over 10 days. Exposure of HRPTC to sub-cytotoxic doses of DCVC (0.1 {mu}M and 1 {mu}M for 10 days) led to a small number of changes in gene expression, as determined by transcript profiling with Affymetrix human genome chips. Using the criterion of a mean 2-fold change over control for the four samples examined, 3 genes at 0.1 {mu}M DCVC increased, namely, adenosine kinase, zinc finger protein X-linked and an enzyme with lyase activity. At 1 {mu}M DCVC, two genes showed a >2-fold decrease, N-acetyltransferase 8 and complement factor H. At a lower stringency (1.5-fold change), a total of 63 probe sets were altered at 0.1 {mu}M DCVC and 45 at 1 {mu}M DCVC. Genes associated with stress, apoptosis, cell proliferation and repair and DCVC metabolism were altered, as were a small number of genes that did not appear to be associated with the known mode of action of DCVC. Some of these genes may serve as molecular markers of TCE exposure and effects in the human kidney.« less

  7. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    PubMed

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Expression and function of CLC and cystic fibrosis transmembrane conductance regulator chloride channels in renal epithelial tubule cells: pathophysiological implications.

    PubMed

    Vandewalle, Alain

    2007-01-01

    Cl(-) channels play important roles in the regulation of a variety of functions, including electrical excitability, cell volume regulation, transepithelial transport and acidification of cellular organelles. They are expressed in plasma membranes or reside in intracellular organelles. A large number of Cl(-) channels with different functions have been identified. Some of them are highly expressed in the kidney. They include members of the CLC Cl(-) channel family: ClC-K1 (or ClC-Ka), ClC-K2 (or ClC-Kb) and ClC-5. The identification of mutations responsible for human inherited diseases (Bartter syndrome for ClC-Kb and Dent's disease for ClC-5) and studies on knockout mice models have evidenced the physiological importance of these CLC Cl(-) channels, permitting better understanding on their functions in renal tubule epithelial cells. The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, also expressed in renal tubule epithelial cells, is involved in the transepithelial transport of Cl(-) in the distal nephron. This short review focuses on intrarenal distribution, subcellular localization and function of the ClK(-1), ClC-K2 and ClC-5 Cl(-) channels in renal tubule epithelial cells, and the role of the CFTR Cl(-) channel in chloride fluxes elicited by vasopressin in the distal nephron.

  9. Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes

    PubMed Central

    Naesens, Maarten; Khatri, Purvesh; Li, Li; Sigdel, Tara K.; Vitalone, Matthew J.; Chen, Rong; Butte, Atul J.; Salvatierra, Oscar; Sarwal, Minnie M.

    2015-01-01

    The degree of progressive chronic histological damage is associated with long-term renal allograft survival. In order to identify promising molecular targets for timely intervention, we examined renal allograft protocol and indication biopsies from 120 low-risk pediatric and adolescent recipients by whole-genome microarray expression profiling. In data-driven analysis, we found a highly regulated pattern of adaptive and innate immune gene expression that correlated with established or ongoing histological chronic injury, and also with development of future chronic histological damage, even in histologically pristine kidneys. Hence, histologically unrecognized immunological injury at a molecular level sets the stage for the development of chronic tissue injury, while the same molecular response is accentuated during established and worsening chronic allograft damage. Irrespective of the hypothesized immune or nonimmune trigger for chronic allograft injury, a highly orchestrated regulation of innate and adaptive immune responses was found in the graft at the molecular level. This occurred months before histologic lesions appear, and quantitatively below the diagnostic threshold of classic T-cell or antibody-mediated rejection. Thus, measurement of specific immune gene expression in protocol biopsies may be warranted to predict the development of subsequent chronic injury in histologically quiescent grafts and as a means to titrate immunosuppressive therapy. PMID:21881554

  10. Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes.

    PubMed

    Naesens, Maarten; Khatri, Purvesh; Li, Li; Sigdel, Tara K; Vitalone, Matthew J; Chen, Rong; Butte, Atul J; Salvatierra, Oscar; Sarwal, Minnie M

    2011-12-01

    The degree of progressive chronic histological damage is associated with long-term renal allograft survival. In order to identify promising molecular targets for timely intervention, we examined renal allograft protocol and indication biopsies from 120 low-risk pediatric and adolescent recipients by whole-genome microarray expression profiling. In data-driven analysis, we found a highly regulated pattern of adaptive and innate immune gene expression that correlated with established or ongoing histological chronic injury, and also with development of future chronic histological damage, even in histologically pristine kidneys. Hence, histologically unrecognized immunological injury at a molecular level sets the stage for the development of chronic tissue injury, while the same molecular response is accentuated during established and worsening chronic allograft damage. Irrespective of the hypothesized immune or nonimmune trigger for chronic allograft injury, a highly orchestrated regulation of innate and adaptive immune responses was found in the graft at the molecular level. This occurred months before histologic lesions appear, and quantitatively below the diagnostic threshold of classic T-cell or antibody-mediated rejection. Thus, measurement of specific immune gene expression in protocol biopsies may be warranted to predict the development of subsequent chronic injury in histologically quiescent grafts and as a means to titrate immunosuppressive therapy.

  11. Altered MENIN expression disrupts the MAFA differentiation pathway in insulinoma.

    PubMed

    Hamze, Z; Vercherat, C; Bernigaud-Lacheretz, A; Bazzi, W; Bonnavion, R; Lu, J; Calender, A; Pouponnot, C; Bertolino, P; Roche, C; Stein, R; Scoazec, J Y; Zhang, C X; Cordier-Bussat, M

    2013-12-01

    The protein MENIN is the product of the multiple endocrine neoplasia type I (MEN1) gene. Altered MENIN expression is one of the few events that are clearly associated with foregut neuroendocrine tumours (NETs), classical oncogenes or tumour suppressors being not involved. One of the current challenges is to understand how alteration of MENIN expression contributes to the development of these tumours. We hypothesised that MENIN might regulate factors maintaining endocrine-differentiated functions. We chose the insulinoma model, a paradigmatic example of well-differentiated pancreatic NETs, to study whether MENIN interferes with the expression of v-MAF musculoaponeurotic fibrosarcoma oncogene homologue A (MAFA), a master glucose-dependent transcription factor in differentiated β-cells. Immunohistochemical analysis of a series of human insulinomas revealed a correlated decrease in both MENIN and MAFA. Decreased MAFA expression resulting from targeted Men1 ablation was also consistently observed in mouse insulinomas. In vitro analyses using insulinoma cell lines showed that MENIN regulated MAFA protein and mRNA levels, and bound to Mafa promoter sequences. MENIN knockdown concomitantly decreased mRNA expression of both Mafa and β-cell differentiation markers (Ins1/2, Gck, Slc2a2 and Pdx1) and, in parallel, increased the proliferation rate of tumours as measured by bromodeoxyuridine incorporation. Interestingly, MAFA knockdown alone also increased proliferation rate but did not affect the expression of candidate proliferation genes regulated by MENIN. Finally, MENIN variants with missense mutations detected in patients with MEN1 lost the WT MENIN properties to regulate MAFA. Together, our findings unveil a previously unsuspected MENIN/MAFA connection regarding control of the β-cell differentiation/proliferation balance, which could contribute to tumorigenesis.

  12. Effects of Renal Denervation from the Intima and the Adventitia of Renal Arteries on Renal Sympathetic Nerve Activity in Dogs: A Comparative Study.

    PubMed

    Bai, Minfu; Yang, Chaokuan; Gao, Chuanyu; Wang, Xianpei; Liu, Hongzhi; Zhang, You; Liu, Jun; Wu, Jintao; Jian, Dongdong; Zhu, Lijie; Zhao, Wenli; Ma, Peiyao; Han, Yaqi

    2015-01-01

    This study was designed to observe the efficacy and safety of renal denervation from the inside and outside of renal arteries. Fourteen beagles were randomly divided into a control group (n = 4) and treatment group (n = 10). One renal artery in every beagle of the treatment group was randomly assigned to an intimal group (10 renal arteries) which underwent percutaneous renal denervation from the inside, and another renal artery was assigned to an adventitial group (10 renal arteries) which underwent renal denervation from the outside by laparotomy. Compared with the intimal group, the renal norepinephrine (NE) concentration in the adventitial group had significantly decreased (p = 0.003) at 3 months postsurgery. Renal artery HE staining showed that the perineurium from the adventitial group appeared thickened. Western blotting showed that renal tissue tyrosine hydroxylase (TH) protein expression in the adventitial group was significantly lower than that in the intimal group (p < 0.01) at 3 months postsurgery. There was a renal artery stenosis and a renal atrophy in the intimal group after 1 month of follow-up. The inhibitory effect on renal sympathetic nerve activity was more effective in the adventitial group than the intimal group, and renal denervation in the former group was safe. © 2015 S. Karger AG, Basel.

  13. Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Liang-Jiao; Frost, Christopher J.; Tsai, Chung-Jui

    Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism inmore » root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.« less

  14. Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression

    DOE PAGES

    Xue, Liang-Jiao; Frost, Christopher J.; Tsai, Chung-Jui; ...

    2016-09-19

    Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism inmore » root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.« less

  15. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion

    PubMed Central

    Mitch, William E.; Sands, Jeff M.

    2015-01-01

    Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance. PMID:25078422

  16. Renal and metabolic effects of three months of decarbonated cola beverages in rats.

    PubMed

    Celec, Peter; Pálffy, Roland; Gardlík, Roman; Behuliak, Michal; Hodosy, Július; Jáni, Peter; Bozek, Peter; Sebeková, Katarína

    2010-11-01

    Epidemiological studies have shown an association between the intake of cola beverages and chronic kidney diseases. Experimental evidence for the negative effects of cola intake on kidneys is lacking. Male Wistar rats had ad libitum access to water (control group) or three different sugar-sweetened cola beverages for three months. Despite very high cola intake (daily cca 140 mL), no differences were found in body weight, kidney weight, glomerular morphology, oxidative and carbonyl stress or expression of selected marker genes in the renal cortex. Interestingly, all groups consuming cola beverages had lower blood glucose levels during an oral glucose tolerance test, suggesting improved insulin sensitivity. Despite hyperfiltration (5-6-fold increase in diuresis), cola beverages had no effect on assessed parameters of renal function, histology, gene expression or oxidative stress. Moreover, cola intake seems to increase creatinine clearance and to decrease plasma levels of urea. In our study increased insulin sensitivity and altered renal functional parameters were observed in rats receiving cola beverages for three months. Whether the findings are due to the short duration of the study or interspecies metabolic differences should be uncovered in further studies. Even more interesting might be the analysis of effects of cola intake in animal models of diabetes.

  17. Regulation of carcinoma cell invasion by protein C inhibitor whose expression is decreased in renal cell carcinoma.

    PubMed

    Wakita, Toshiaki; Hayashi, Tatsuya; Nishioka, Junji; Tamaru, Hiroshi; Akita, Nobuyuki; Asanuma, Kunihiro; Kamada, Haruhiko; Gabazza, Esteban C; Ido, Masaru; Kawamura, Juichi; Suzuki, Koji

    2004-02-10

    Protein C inhibitor (PCI), a member of the serine protease inhibitor family, is produced in various human tissues, including the liver, kidney and testis. In addition to inhibiting the anticoagulant protein C pathway, PCI also inhibits urinary plasminogen activator (uPA), which is a well-known mediator of tumor cell invasion. In the present study, to clarify the biologic significance of PCI in the kidney, we compared the expression of PCI between human renal cell carcinoma (RCC) tissue and nontumor kidney tissue. The PCI antigen level in RCC tissue was found to be significantly lower than in nontumor kidney tissue, and expression of PCI mRNA was detected in normal renal proximal tubular epithelial cells (RPTEC), but not in RCC or in an RCC cell line (Caki-1 cells). No differences were detected between the nucleotide sequence of the major cis-elements in the promoter region of the PCI gene from nontumor kidney and RCC tissues, RPTEC and Caki-1 cells, an RPTEC-derived RCC cell line. The in vitro invasiveness of Caki-1 cells transfected with a PCI expression vector was significantly decreased compared to mock-transfected Caki-1 cells, and it was blocked in the presence of anti-PCI antibody. Since PCI itself did not affect the proliferation rate of Caki-1 cells or cell expression of uPA in vitro, the effect of uPA, PCI, heat-inactivated PCI and plasminogen activator inhibitor (PAI)-1 on the invasive potential of cultured RCC cells was evaluated. The in vitro invasiveness of Caki-1 cells, which express uPA, was significantly enhanced by the addition of uPA, and it was inhibited by anti-uPA antibody, PCI and PAI-1, but not by heat-inactivated PCI. In addition, uPA activity was significantly decreased and uPA-PCI complex level was significantly increased in the culture medium of PCI expression vector-transfected Caki-1 cells as compared to mock-transfected Caki-1 cells. These findings strongly suggest that PCI regulates the invasive potential of RCC cells by inhibiting u

  18. A High-Calcium and Phosphate Rescue Diet and VDR-Expressing Transgenes Normalize Serum Vitamin D Metabolite Profiles and Renal Cyp27b1 and Cyp24a1 Expression in VDR Null Mice

    PubMed Central

    Kaufmann, Martin; Lee, Seong Min; Pike, J. Wesley

    2015-01-01

    Vitamin D receptor (VDR)-mediated 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-dependent gene expression is compromised in the VDR null mouse. The biological consequences include: hypocalcemia, hypophosphatemia, elevated parathyroid hormone (PTH) and 1,25(OH)2D3, and consequential skeletal abnormalities. CYP24A1 is a cytochrome P450 enzyme that is involved in the side chain oxidation and destruction of both 1,25(OH)2D3 and 25-hydroxyvitamin D3 (25-OH-D3). In the current studies, we used liquid chromatography-tandem mass spectrometry technology to compare the metabolic profiles of VDR null mice fed either a normal or a calcium and phosphate-enriched rescue diet and to assess the consequence of transgenic expression of either mouse or human VDR genes in the same background. Serum 1,25(OH)2D3 levels in VDR null mice on normal chow were highly elevated (>3000 pg/mL) coincident with undetectable levels of catabolites such as 24,25-(OH)2D3 and 25-OH-D3-26,23-lactone normally observed in wild-type mice. The rescue diet corrected serum Ca++, PTH, and 1,25(OH)2D3 values and restored basal expression of Cyp24a1 as evidenced by both renal expression of Cyp24a1 and detection of 24,25-(OH)2D3 and the 25-OH-D3-26,23-lactone. Unexpectedly, this diet also resulted in supranormal levels of 3-epi-24,25-(OH)2D3 and 3-epi-25-OH-D3-26,23-lactone. The reappearance of serum 24,25-(OH)2D3 and renal Cyp24a1 expression after rescue suggests that basal levels of Cyp24a1 may be repressed by high PTH. Introduction of transgenes for either mouse or human VDR also normalized vitamin D metabolism in VDR null mice, whereas this metabolic pattern was unaffected by a transgene encoding a ligand binding-deficient mutant (L233S) human VDR. We conclude that liquid chromatography-tandem mass spectrometry-based metabolic profiling is an ideal analytical method to study mouse models with alterations in calcium/phosphate homeostasis. PMID:26441239

  19. Renal inflammation, autoimmunity and salt-sensitive hypertension

    PubMed Central

    Rodríguez-Iturbe, Bernardo; Franco, Martha; Tapia, Edilia; Quiroz, Yasmir; Johnson, Richard J

    2011-01-01

    This article reviews the role of immune competent cells infiltrating the kidney and their association with oxidative stress and renal angiotensin activity in the development of salt-sensitive hypertension.We discuss the alteration of the pressure-natriuresis relationship resulting from renal inflammation and its improvement resulting from immunosuppressive treatment.The potential role of T cell-driven reactivity in sustaining the renal inflammation is examined in the light of accumulating evidence of autoimmune mechanisms in experimental and clinical hypertension. PMID:21251049

  20. The somatic genomic landscape of chromophobe renal cell carcinoma.

    PubMed

    Davis, Caleb F; Ricketts, Christopher J; Wang, Min; Yang, Lixing; Cherniack, Andrew D; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C; Hacker, Kathryn E; Bhanot, Gyan; Gordenin, Dmitry A; Chu, Andy; Gunaratne, Preethi H; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A; Bristow, Christopher A; Donehower, Lawrence A; Wallen, Eric M; Smith, Angela B; Tickoo, Satish K; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S; Hsieh, James J; Choueiri, Toni K; Hakimi, A Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A Gordon; Laird, Peter W; Henske, Elizabeth P; Kwiatkowski, David J; Park, Peter J; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A; Linehan, W Marston; Gibbs, Richard A; Rathmell, W Kimryn; Creighton, Chad J

    2014-09-08

    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared with other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT upregulation in cancer distinct from previously observed amplifications and point mutations. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. The Putative Role of the Antiageing Protein Klotho in Cardiovascular and Renal Disease

    PubMed Central

    Maltese, Giuseppe; Karalliedde, Janaka

    2012-01-01

    Ageing is a multifactorial process often characterized by a progressive decline in physiological function(s). Ageing can and is often associated with an increased incidence of cardiovascular and renal disease. Klotho is a novel antiageing gene that encodes a protein with multiple pleiotropic functions including an emerging role in cardiorenal disease. Mice deficient for this gene display a phenotype of premature human ageing characterized by diffuse vascular calcification, altered calcium/phosphate metabolism, and shortened lifespan. Klotho is mainly expressed in the renal tubules but it also exists as circulating soluble form detectable in the blood, with systemic effects. Reduction in soluble Klotho has been associated with renal disease, hyperphosphataemia, increased oxidative stress, endothelial dysfunction, and diffuse vascular calcification. Conversely, overexpression of Klotho promotes cardiovascular-renal protection. The majority of the research on Klotho has been conducted in vitro and in animal studies but there is emerging data from human studies which suggest that Klotho may be a modifiable factor involved in the pathogenesis of cardiovascular and renal disease in at-risk populations. Further data is required to confirm if this novel protein can emerge as therapeutic tool that may be used to prevent or slow progression of cardiorenal disease. PMID:22121479

  2. Recirculation zone length in renal artery is affected by flow spirality and renal-to-aorta flow ratio.

    PubMed

    Javadzadegan, Ashkan; Fulker, David; Barber, Tracie

    2017-07-01

    Haemodynamic perturbations such as flow recirculation zones play a key role in progression and development of renal artery stenosis, which typically originate at the aorta-renal bifurcation. The spiral nature of aortic blood flow, division of aortic blood flow in renal artery as well as the exercise conditions have been shown to alter the haemodynamics in both positive and negative ways. This study focuses on the combinative effects of spiral component of blood flow, renal-to-aorta flow ratio and the exercise conditions on the size and distribution of recirculation zones in renal branches using computational fluid dynamics technique. Our findings show that the recirculation length was longest when the renal-to-aorta flow ratio was smallest. Spiral flow and exercise conditions were found to be effective in reducing the recirculation length in particular in small renal-to-aorta flow ratios. These results support the hypothesis that in renal arteries with small flow ratios where a stenosis is already developed an artificially induced spiral flow within the aorta may decelerate the progression of stenosis and thereby help preserve kidney function.

  3. [Clinical features and expression of PLA(2)R in renal tissue with idiopathic membranous nephropathy in children].

    PubMed

    Dong, Y F; Sun, L W; Zhang, B; Kuang, X Y; Niu, X L; Kang, Y L; Hao, S; Wang, P; Li, Z; Zhu, G H; Huang, W Y; Wu, Y

    2018-03-02

    Objective: To explore the clinical features and expression of PLA(2)R in renal tissue of children with idiopathic membranous nephropathy. Methods: Retrospective study was performed in patients with membranous nephropathy diagnosed through renal biopsy and the follow-up time was at least half a year in Shanghai Children ' s Hospital from January 2010 to February 2017. We compared their clinicopathological and pathological findings of IMN. Indirect immunofluorescence assay was used to detect glomerular PLA(2)R expression. We analyzed the differences of clinical features between the PLA(2)R negative and positive groups. T test, rank-sum test and Fisher exact test were used. Results: Eleven cases had hematuria and proteinuria, 9 cases presented with nephrotic syndrome, and 2 cases showed isolated proteinuria. Of the 22 cases of children with IMN, 16 patients had complete remission (complete remission rate was 72.8%), and 22 patients had partial remission. The renal function of all cases was normal and in all cases the estimated glomerular filtration rate was > 90 ml/(min·1.73m(2)). Of 22 cases with IMN, 7 cases were PLA(2)R-positive in renal tissue and 15 cases were PLA(2)R-negative. The age of positive group (10 years old) was older than the negative group (6 years old)( Z= -2.483, P< 0.05) and the time of positive group (6 months) for urine protein to return to negative was longer than the negative group (2.5 months) through treatment. These differences were significantly different ( Z= -2.072, P< 0.05). Conclusions: Hematuria and proteinuria can be found in most children with idiopathic primary membranous nephropathy. Prednisone combined with immunosuppressant was effective. The positive rate of PLA(2)R in renal tissue of children with IMN was about 32%. The age of PLA(2)R positive group was older than the negative group. And the time of urine protein turning to negative in positive group was longer than that in the negative group.

  4. Erhuang Formula ameliorates renal damage in adenine-induced chronic renal failure rats via inhibiting inflammatory and fibrotic responses.

    PubMed

    Zhang, Chun-Yan; Zhu, Jian-Yong; Ye, Ying; Zhang, Miao; Zhang, Li-Jun; Wang, Su-Juan; Song, Ya-Nan; Zhang, Hong

    2017-11-01

    The present study aimed to evaluate the protective effects of Erhuang Formula (EHF) and explore its pharmacological mechanisms on adenine-induced chronic renal failure (CRF). The compounds in EHF were analyzed by HPLC/MS. Adenine-induced CRF rats were administrated by EHF. The effects were evaluated by renal function examination and histology staining. Immunostaining of some proteins related cell adhesion was performedin renal tissues, including E-cadherin, β-catenin, fibronectin and laminin. The qRT-PCR was carried out determination of gene expression related inflammation and fibrosis including NF-κB, TNF-α, TGF-β1, α-SMA and osteopontin (OPN). Ten compounds in EHF were identified including liquiritigenin, farnesene, vaccarin, pachymic acid, cycloastragenol, astilbin, 3,5,6,7,8,3',4'-heptemthoxyflavone, physcion, emodin and curzerene. Abnormal renal function and histology had significant improvements by EHF treatment. The protein expression of β-catenin, fibronectin and laminin were significantly increased and the protein expression of E-cadherin significantly decreased in CRF groups. However, these protein expressions were restored to normal levels in EHF group. Furthermore, low expression of PPARγ and high expression of NF-κB, TNF-α, TGF-β1, α-SMA and OPN were substantially restored by EHF treatment in a dose-dependent manner. EHF ameliorated renal damage in adenine-induced CRF rats, and the mechanisms might involve in the inhibition of inflammatory and fibrotic responses and the regulation of PPARγ, NF-κB and TGF-β signaling pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Complex Patterns of Altered MicroRNA Expression during the Adenoma-Adenocarcinoma Sequence for Microsatellite-Stable Colorectal Cancer

    PubMed Central

    Bartley, Angela N.; Yao, Hui; Barkoh, Bedia A.; Ivan, Cristina; Mishra, Bal M.; Rashid, Asif; Calin, George A.; Luthra, Rajyalakshmi; Hamilton, Stanley R.

    2012-01-01

    Purpose MicroRNAs are short noncoding RNAs that regulate gene expression and are over- or under-expressed in most tumors, including colorectal adenocarcinoma. MicroRNAs are potential biomarkers and therapeutic targets and agents, but limited information on microRNAome alterations during progression in the well-known adenoma-adenocarcinoma sequence is available to guide their usage. Experimental Design We profiled 866 human microRNAs by microarray analysis in 69 matched specimens of microsatellite-stable adenocarcinomas, adjoining precursor adenomas including areas of high- and low-grade dysplasia, and nonneoplastic mucosa. Results We found 230 microRNAs that were significantly differentially expressed during progression, including 19 not reported previously. Altered microRNAs clustered into two major patterns of early (type I) and late (type II) differential expression. The largest number (n = 108) was altered at the earliest step from mucosa to low-grade dysplasia (subtype IA) prior to major nuclear localization of β-catenin, including 36 microRNAs that had persistent differential expression throughout the entire sequence to adenocarcinoma. Twenty microRNAs were intermittently altered (subtype IB), and six were transiently altered (subtype IC). In contrast, 33 microRNAs were altered late in high-grade dysplasia and adenocarcinoma (subtype IIA), and 63 in adenocarcinoma only (subtype IIB). Predicted targets in 12 molecular pathways were identified for highly altered microRNAs, including the Wnt signaling pathway leading to low-grade dysplasia. β-catenin expression correlated with downregulated microRNAs. Conclusions Our findings suggest that numerous microRNAs play roles in the sequence of molecular events, especially early events, resulting in colorectal adenocarcinoma. The temporal patterns and complexity of microRNAome alterations during progression will influence the efficacy of microRNAs for clinical purposes. PMID:21948089

  6. Reduced expression of fumarate hydratase in clear cell renal cancer mediates HIF-2α accumulation and promotes migration and invasion.

    PubMed

    Sudarshan, Sunil; Shanmugasundaram, Karthigayan; Naylor, Susan L; Lin, Shu; Livi, Carolina B; O'Neill, Christine F; Parekh, Dipen J; Yeh, I-Tien; Sun, Lu-Zhe; Block, Karen

    2011-01-01

    Germline mutations of FH, the gene that encodes for the tricarboxylic acid TCA (TCA) cycle enzyme fumarate hydratase, are associated with an inherited form of cancer referred to as Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC). Individuals with HLRCC are predisposed to the development of highly malignant and lethal renal cell carcinoma (RCC). The mechanisms of tumorigenesis proposed have largely focused on the biochemical consequences of loss of FH enzymatic activity. While loss of the tumor suppressor gene von Hippel Lindau (VHL) is thought to be an initiating event for the majority of RCCs, a role for FH in sporadic renal cancer has not been explored. Here we report that FH mRNA and protein expression are reduced in clear cell renal cancer, the most common histologic variant of kidney cancer. Moreover, we demonstrate that reduced FH leads to the accumulation of hypoxia inducible factor- 2α (HIF-2α), a transcription factor known to promote renal carcinogenesis. Finally, we demonstrate that overexpression of FH in renal cancer cells inhibits cellular migration and invasion. These data provide novel insights into the tumor suppressor functions of FH in sporadic kidney cancer.

  7. Neural control of renal function.

    PubMed

    Johns, Edward J; Kopp, Ulla C; DiBona, Gerald F

    2011-04-01

    The kidney is innervated with efferent sympathetic nerve fibers that directly contact the vasculature, the renal tubules, and the juxtaglomerular granular cells. Via specific adrenoceptors, increased efferent renal sympathetic nerve activity decreases renal blood flow and glomerular filtration rate, increases renal tubular sodium and water reabsorption, and increases renin release. Decreased efferent renal sympathetic nerve activity produces opposite functional responses. This integrated system contributes importantly to homeostatic regulation of sodium and water balance under physiological conditions and to pathological alterations in sodium and water balance in disease. The kidney contains afferent sensory nerve fibers that are located primarily in the renal pelvic wall where they sense stretch. Stretch activation of these afferent sensory nerve fibers elicits an inhibitory renorenal reflex response wherein the contralateral kidney exhibits a compensatory natriuresis and diuresis due to diminished efferent renal sympathetic nerve activity. The renorenal reflex coordinates the excretory function of the two kidneys so as to facilitate homeostatic regulation of sodium and water balance. There is a negative feedback loop in which efferent renal sympathetic nerve activity facilitates increases in afferent renal nerve activity that in turn inhibit efferent renal sympathetic nerve activity so as to avoid excess renal sodium retention. In states of renal disease or injury, there is activation of afferent sensory nerve fibers that are excitatory, leading to increased peripheral sympathetic nerve activity, vasoconstriction, and increased arterial pressure. Proof of principle studies in essential hypertensive patients demonstrate that renal denervation produces sustained decreases in arterial pressure. © 2011 American Physiological Society. Compr Physiol 1:699-729, 2011.

  8. Overexpression of heterogeneous nuclear ribonucleoprotein F stimulates renal Ace-2 gene expression and prevents TGF-β1-induced kidney injury in a mouse model of diabetes.

    PubMed

    Lo, Chao-Sheng; Shi, Yixuan; Chang, Shiao-Ying; Abdo, Shaaban; Chenier, Isabelle; Filep, Janos G; Ingelfinger, Julie R; Zhang, Shao-Ling; Chan, John S D

    2015-10-01

    We investigated whether heterogeneous nuclear ribonucleoprotein F (hnRNP F) stimulates renal ACE-2 expression and prevents TGF-β1 signalling, TGF-β1 inhibition of Ace-2 gene expression and induction of tubulo-fibrosis in an Akita mouse model of type 1 diabetes. Adult male Akita transgenic (Tg) mice overexpressing specifically hnRNP F in their renal proximal tubular cells (RPTCs) were studied. Non-Akita littermates and Akita mice served as controls. Immortalised rat RPTCs stably transfected with plasmid containing either rat Hnrnpf cDNA or rat Ace-2 gene promoter were also studied. Overexpression of hnRNP F attenuated systemic hypertension, glomerular filtration rate, albumin/creatinine ratio, urinary angiotensinogen (AGT) and angiotensin (Ang) II levels, renal fibrosis and profibrotic gene (Agt, Tgf-β1, TGF-β receptor II [Tgf-βrII]) expression, stimulated anti-profibrotic gene (Ace-2 and Ang 1-7 receptor [MasR]) expression, and normalised urinary Ang 1-7 level in Akita Hnrnpf-Tg mice as compared with Akita mice. In vitro, hnRNP F overexpression stimulated Ace-2 gene promoter activity, mRNA and protein expression, and attenuated Agt, Tgf-β1 and Tgf-βrII gene expression. Furthermore, hnRNP F overexpression prevented TGF-β1 signalling and TGF-β1 inhibition of Ace-2 gene expression. These data demonstrate that hnRNP F stimulates Ace-2 gene transcription, prevents TGF-β1 inhibition of Ace-2 gene transcription and induction of kidney injury in diabetes. HnRNP F may be a potential target for treating hypertension and renal fibrosis in diabetes.

  9. Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friddle, Carl J; Koga, Teiichiro; Rubin, Edward M.

    2000-03-15

    While cardiac hypertrophy has been the subject of intensive investigation, regression of hypertrophy has been significantly less studied, precluding large-scale analysis of the relationship between these processes. In the present study, using pharmacological models of hypertrophy in mice, expression profiling was performed with fragments of more than 3,000 genes to characterize and contrast expression changes during induction and regression of hypertrophy. Administration of angiotensin II and isoproterenol by osmotic minipump produced increases in heart weight (15% and 40% respectively) that returned to pre-induction size following drug withdrawal. From multiple expression analyses of left ventricular RNA isolated at daily time-points duringmore » cardiac hypertrophy and regression, we identified sets of genes whose expression was altered at specific stages of this process. While confirming the participation of 25 genes or pathways previously known to be altered by hypertrophy, a larger set of 30 genes was identified whose expression had not previously been associated with cardiac hypertrophy or regression. Of the 55 genes that showed reproducible changes during the time course of induction and regression, 32 genes were altered only during induction and 8 were altered only during regression. This study identified both known and novel genes whose expression is affected at different stages of cardiac hypertrophy and regression and demonstrates that cardiac remodeling during regression utilizes a set of genes that are distinct from those used during induction of hypertrophy.« less

  10. The sodium-bicarbonate cotransporter NBCe2 (slc4a5) expressed in human renal proximal tubules shows increased apical expression under high-salt conditions.

    PubMed

    Gildea, John J; Xu, Peng; Carlson, Julia M; Gaglione, Robert T; Bigler Wang, Dora; Kemp, Brandon A; Reyes, Camellia M; McGrath, Helen E; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2015-12-01

    The electrogenic sodium bicarbonate cotransporter (NBCe2) is encoded by SLC4A5, variants of which have been associated with salt sensitivity of blood pressure, which affects 25% of the adult population. NBCe2 is thought to mediate sodium bicarbonate cotransport primarily in the renal collecting duct, but NBCe2 mRNA is also found in the rodent renal proximal tubule (RPT). The protein expression or function of NBCe2 has not been demonstrated in the human RPT. We validated an NBCe2 antibody by shRNA and Western blot analysis, as well as overexpression of an epitope-tagged NBCe2 construct in both RPT cells (RPTCs) and human embryonic kidney 293 (HEK293) cells. Using this validated NBCe2 antibody, we found NBCe2 protein expression in the RPT of fresh and frozen human kidney slices, RPTCs isolated from human urine, and isolated RPTC apical membrane. Under basal conditions, NBCe2 was primarily found in the Golgi, while NBCe1 was primarily found at the basolateral membrane. Following an acute short-term increase in intracellular sodium, NBCe2 expression was increased at the apical membrane in cultured slices of human kidney and polarized, immortalized RPTCs. Sodium bicarbonate transport was increased by monensin and overexpression of NBCe2, decreased by NBCe2 shRNA, but not by NBCe1 shRNA, and blocked by 2,2'-(1,2-ethenediyl)bis[5-isothiocyanato-benzenesulfonic acid]. NBCe2 could be important in apical sodium and bicarbonate cotransport under high-salt conditions; the implication of the ex vivo studies to the in vivo situation when salt intake is increased remains unclear. Therefore, future studies will examine the role of NBCe2 in mediating increased renal sodium transport in humans whose blood pressures are elevated by an increase in sodium intake. Copyright © 2015 the American Physiological Society.

  11. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells

    PubMed Central

    Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor

  12. Neural control of renal function: cardiovascular implications.

    PubMed

    DiBona, G F

    1989-06-01

    The innervation of the kidney serves to function of its component parts, for example, the blood vessels, the nephron (glomerulus, tubule), and the juxtaglomerular apparatus. Alterations in efferent renal sympathetic nerve activity produce significant changes in renal blood flow, glomerular filtration rate, the reabsorption of water, sodium, and other ions, and the release of renin, prostaglandins, and other vasoactive substances. These functional effects contribute significantly to the renal regulation of total body sodium and fluid volumes with important implications for the control of arterial pressure. The renal nerves, both efferent and afferent, are known to be important contributors to the pathogenesis of hypertension. In addition, the efferent renal nerves participate in the mediation of the excessive renal sodium retention, which characterizes edema-forming states such as congestive heart failure. Thus, the renal nerves play an important role in overall cardiovascular homeostasis in both normal and pathological conditions.

  13. Alterations in renal stone risk factors after space flight

    NASA Technical Reports Server (NTRS)

    Whitson, P. A.; Pietrzyk, R. A.; Pak, C. Y.; Cintron, N. M.

    1993-01-01

    Exposure to the microgravity environment of space produces a number of physiological changes of metabolic and environmental origin that could increase the potential for renal stone formation. Metabolic, environmental and physicochemical factors that influence renal stone risk potential were examined in 24-hour urine samples from astronauts 10 days before launch and on landing day to provide an immediate postflight assessment of these factors. In addition, comparisons were made between male and female crewmembers, and between crewmembers on missions of less than 6 days and those on 6 to 10-day missions. Results suggest that immediately after space flight the risk of calcium oxalate and uric acid stone formation is increased as a result of metabolic (hypercalciuria, hypocitraturia, pH) and environmental (lower urine volume) derangements, some of which could reflect residual effects of having been exposed to microgravity.

  14. Inhibition of WISE preserves renal allograft function.

    PubMed

    Qian, Xueming; Yuan, Xiaodong; Vonderfecht, Steven; Ge, Xupeng; Lee, Jae; Jurisch, Anke; Zhang, Li; You, Andrew; Fitzpatrick, Vincent D; Williams, Alexia; Valente, Eliane G; Pretorius, Jim; Stevens, Jennitte L; Tipton, Barbara; Winters, Aaron G; Graham, Kevin; Harriss, Lindsey; Baker, Daniel M; Damore, Michael; Salimi-Moosavi, Hossein; Gao, Yongming; Elkhal, Abdallah; Paszty, Chris; Simonet, W Scott; Richards, William G; Tullius, Stefan G

    2013-01-01

    Wnt-modulator in surface ectoderm (WISE) is a secreted modulator of Wnt signaling expressed in the adult kidney. Activation of Wnt signaling has been observed in renal transplants developing interstitial fibrosis and tubular atrophy; however, whether WISE contributes to chronic changes is not well understood. Here, we found moderate to high expression of WISE mRNA in a rat model of renal transplantation and in kidneys from normal rats. Treatment with a neutralizing antibody against WISE improved proteinuria and graft function, which correlated with higher levels of β-catenin protein in kidney allografts. In addition, treatment with the anti-WISE antibody reduced infiltration of CD68(+) macrophages and CD8(+) T cells, attenuated glomerular and interstitial injury, and decreased biomarkers of renal injury. This treatment reduced expression of genes involved in immune responses and in fibrogenic pathways. In summary, WISE contributes to renal dysfunction by promoting tubular atrophy and interstitial fibrosis.

  15. Cytotoxic effect of the Her-2/Her-1 inhibitor PKI-166 on renal cancer cells expressing the connexin 32 gene.

    PubMed

    Fujimoto, Eriko; Yano, Tomohiro; Sato, Hiromi; Hagiwara, Kiyokazu; Yamasaki, Hiroshi; Shirai, Sumiko; Fukumoto, Keiko; Hagiwara, Hiromi; Negishi, Etsuko; Ueno, Koichi

    2005-02-01

    We have reported that connexin (Cx) 32 acts as a tumor suppressor gene in renal cancer cells partly due to Her-2 inactivation. Here, we determined if a Her-2/Her-1 inhibitor (PKI-166) can enhance the tumor-suppressive effect of Cx32 in Caki-2 cells from human renal cell carcinoma. The expression of Cx32 in Caki-2 cells was required for PKI-166-induced cytotoxic effect at lower doses. The cyctotoxicity was dependent on the occurrence of apoptosis and partly mediated by Cx32-driven gap junction intercellular communications. These results suggest that PKI-166 further supports the tumor-suppressive effect of the Cx32 gene in renal cancer cells through the induction of apoptosis.

  16. Alteration of estrogen-regulated gene expression in human cells induced by the agricultural and horticultural herbicide glyphosate.

    PubMed

    Hokanson, R; Fudge, R; Chowdhary, R; Busbee, D

    2007-09-01

    Gene expression is altered in mammalian cells (MCF-7 cells), by exposure to a variety of chemicals that mimic steroid hormones or interact with endocrine receptors or their co-factors. Among those populations chronically exposed to these endocrine disruptive chemicals are persons, and their families, who are employed in agriculture or horticulture, or who use agricultural/horticultural chemicals. Among the chemicals most commonly used, both commercially and in the home, is the herbicide glyphosate. Although glyphosate is commonly considered to be relatively non-toxic, we utilized in vitro DNA microarray analysis of this chemical to evaluate its capacity to alter the expression of a variety of genes in human cells. We selected a group of genes, determined by DNA microarray analysis to be dysregulated, and used quantitative real-time PCR to corroborate their altered states of expression. We discussed the reported function of those genes, with emphasis on altered physiological states that are capable of initiating adverse health effects that might be anticipated if gene expression were significantly altered in either adults or embryos exposed in utero.

  17. FXYD8, a Novel Regulator of Renal Na+/K+-ATPase in the Euryhaline Teleost, Tetraodon nigroviridis

    PubMed Central

    Wang, Pei-Jen; Yang, Wen-Kai; Lin, Chia-Hao; Hwang, Hau-Hsuan; Lee, Tsung-Han

    2017-01-01

    FXYD proteins are important regulators of Na+/K+-ATPase (NKA) activity in mammals. As an inhabitant of estuaries, the pufferfish (Tetraodon nigroviridis) responds to ambient salinity changes with efficient osmoregulation, including alterations in branchial, and renal NKA activities. Previous studies on teleostean FXYDs have mainly focused on the expression and potential functions of FXYD proteins in gills. The goal of the present study was to elucidate the potential role of FXYD8, a member of the fish FXYD protein family, in the modulation of NKA activity in the kidneys of this euryhaline pufferfish by using molecular, biochemical, and physiological approaches. The results demonstrate that T. nigroviridis FXYD8 (TnFXYD8) interacts with NKA in renal tubules. Meanwhile, the protein expression of renal TnFXYD8 was found to be significantly upregulated in hyperosmotic seawater-acclimated pufferfish. Moreover, overexpression of TnFXYD8 in Xenopus oocytes decreased NKA activity. Our results suggest the FXYD8 is able to modulate NKA activity through inhibitory effects upon salinity challenge. The present study further extends our understanding of the functions of FXYD proteins, the regulators of NKA, in vertebrates. PMID:28848450

  18. Crocin improves renal function by declining Nox-4, IL-18, and p53 expression levels in an experimental model of diabetic nephropathy.

    PubMed

    Yaribeygi, Habib; Mohammadi, Mohammad T; Rezaee, Ramin; Sahebkar, Amirhossein

    2018-03-25

    Oxidative damage, inflammation and apoptosis play significant roles in diabetic nephropathy. Previous studies demonstrated anti-inflammatory and anti-oxidative effects of crocin, but there is no evidence about its effects on IL-18, NOX-4, and p53 expression in diabetic kidneys. The aim of this study was to evaluate possible effects of crocin on improving main mechanisms underlying diabetic nephropathy. Male Wistar rats were randomly divided into four separate groups as normal (C), normal treated (CC), diabetic (D), and diabetic treated (DC) (n = 6). Diabetes was induced by a single dose of streptozotocin (40 mg/kg/intravenous). Treated groups received crocin (40 mg/kg, intraperitoneal) for 8 weeks. At the end of the 8th week of the study, all rats were sacrificed and urine, blood and tissue were collected. Levels of urea, uric acid, creatinine and glucose were determined collected sera, and proteinuria was measured in urine samples. Moreover, the contents of malondialdehyde (MDA), nitrate, and glutathione (GLT) as well as catalase (CAT) and superoxide dismutase (SOD) enzymes activities were measured. The expression of NOX-4, IL-18, and p53 at both mRNA and protein levels were also assessed. Hyperglycemia significantly increased proteinuria in diabetic rats (D). Also, depressed antioxidant defense system potency, but increased NOX-4 expression and free radicals production resulting in oxidative stress, were observed. Moreover, expressions of IL-18 (as a marker of inflammation) and p53 (as a marker of apoptosis) were increased. These outcomes were accompanied by enhanced histological damages and renal failure but, treatment with crocin improved these deteriorations, and ameliorated renal function. It potentiated renal cells antioxidant defense system and declined inflammation. Also, crocin lowered apoptosis and improved histological damages in renal cells. Oxidative stress, inflammation and apoptosis are considered three main mechanisms underlying diabetic

  19. Alteration of renal function of rats following spaceflight.

    PubMed

    Wade, C E; Morey-Holton, E

    1998-10-01

    Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.

  20. Alteration of renal function of rats following spaceflight

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Morey-Holton, E.

    1998-01-01

    Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.

  1. Encouraging expressions affect the brain and alter visual attention.

    PubMed

    Martín-Loeches, Manuel; Sel, Alejandra; Casado, Pilar; Jiménez, Laura; Castellanos, Luis

    2009-06-17

    Very often, encouraging or discouraging expressions are used in competitive contexts, such as sports practice, aiming at provoking an emotional reaction on the listener and, consequently, an effect on subsequent cognition and/or performance. However, the actual efficiency of these expressions has not been tested scientifically. To fill this gap, we studied the effects of encouraging, discouraging, and neutral expressions on event-related brain electrical activity during a visual selective attention task in which targets were determined by location, shape, and color. Although the expressions preceded the attentional task, both encouraging and discouraging messages elicited a similar long-lasting brain emotional response present during the visuospatial task. In addition, encouraging expressions were able to alter the customary working pattern of the visual attention system for shape selection in the attended location, increasing the P1 and the SP modulations while simultaneously fading away the SN. This was interpreted as an enhancement of the attentional processes for shape in the attended location after an encouraging expression. It can be stated, therefore, that encouraging expressions, as those used in sport practice, as well as in many other contexts and situations, do seem to be efficient in exerting emotional reactions and measurable effects on cognition.

  2. Aging Selectively Modulates Vitamin C Transporter Expression Patterns in the Kidney.

    PubMed

    Forman, Katherine; Martínez, Fernando; Cifuentes, Manuel; Bertinat, Romina; Salazar, Katterine; Nualart, Francisco

    2017-09-01

    In the kidney, vitamin C is reabsorbed from the glomerular ultrafiltrate by sodium-vitamin C cotransporter isoform 1 (SVCT1) located in the brush border membrane of the proximal tubules. Although we know that vitamin C levels decrease with age, the adaptive physiological mechanisms used by the kidney for vitamin C reabsorption during aging remain unknown. In this study, we used an animal model of accelerated senescence (SAMP8 mice) to define the morphological alterations and aging-induced changes in the expression of vitamin C transporters in renal tissue. Aging induced significant morphological changes, such as periglomerular lymphocytic infiltrate and glomerular congestion, in the kidneys of SAMP8 mice, although no increase in collagen deposits was observed using 2-photon microscopy analysis and second harmonic generation. The most characteristic histological alteration was the dilation of intracellular spaces in the basolateral region of proximal tubule epithelial cells. Furthermore, a combination of laser microdissection, qRT-PCR, and immunohistochemical analyses allowed us to determine that SVCT1 expression specifically increased in the proximal tubules from the outer strip of the outer medulla (segment S3) and cortex (segment S2) during aging and that these tubules also express GLUT1. We conclude that aging modulates vitamin C transporter expression and that renal over-expression of SVCT1 enhances vitamin C reabsorption in aged animals that may synthesize less vitamin C. J. Cell. Physiol. 232: 2418-2426, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion.

    PubMed

    Weiner, I David; Mitch, William E; Sands, Jeff M

    2015-08-07

    Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance. Copyright © 2015 by the American Society of Nephrology.

  4. Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells.

    PubMed

    Navarro-Moreno, L G; Quintanar-Escorza, M A; González, S; Mondragón, R; Cerbón-Solorzáno, J; Valdés, J; Calderón-Salinas, J V

    2009-10-01

    Lead intoxication is a worldwide health problem which frequently affects the kidney. In this work, we studied the effects of chronic lead intoxication (500 ppm of Pb in drinking water during seven months) on the structure, function and biochemical properties of rat proximal tubule cells. Lead-exposed animals showed increased lead concentration in kidney, reduction of calcium and amino acids uptake, oxidative damage and glucosuria, proteinuria, hematuria and reduced urinary pH. These biochemical and physiological alterations were related to striking morphological modifications in the structure of tubule epithelial cells and in the morphology of their mitochondria, nuclei, lysosomes, basal and apical membranes. Interestingly, in addition to the nuclei, inclusion bodies were found in the cytoplasm and in mitochondria. The epithelial cell structure modifications included an early loss of the apical microvillae, followed by a decrement of the luminal space and the respective apposition and proximity of apical membranes, resulting in the formation of atypical intercellular contacts and adhesion structures. Similar but less marked alterations were observed in subacute lead intoxication as well. Our work contributes in the understanding of the physiopathology of lead intoxication on the structure of renal tubular epithelial cell-cell contacts in vivo.

  5. Oral Manifestations in a Renal Osteodystrophy Patient - A Case Report with Review of Literature

    PubMed Central

    Nisha V, Aarthi; GS, Asokan; CA, Prakash; MM, Varadharaja

    2014-01-01

    Renal Osteodystrophy (ROD) is a common complication of chronic renal disease (CRD) and is the part of a broad spectrum of disorders of mineral metabolism that occurs in the clinical setting. It occurs early in the course of chronic renal failure and progresses as the kidney function deteriorates. It is an osseous alteration believed to arise from increased parathyroid function associated with inappropriate calcium, phosphorus and vitamin D metabolism. Involvement of the jaws is common and radiographic alterations are often one of the earliest signs of chronic renal failure. Herein, reporting a case of Chronic Renal Failure (Bilateral Grade I Neuropathy) with ROD presenting oral manifestations in an 11-year -old male child. PMID:25302278

  6. Oral manifestations in a renal osteodystrophy patient - a case report with review of literature.

    PubMed

    J, Parthiban; Nisha V, Aarthi; Gs, Asokan; Ca, Prakash; Mm, Varadharaja

    2014-08-01

    Renal Osteodystrophy (ROD) is a common complication of chronic renal disease (CRD) and is the part of a broad spectrum of disorders of mineral metabolism that occurs in the clinical setting. It occurs early in the course of chronic renal failure and progresses as the kidney function deteriorates. It is an osseous alteration believed to arise from increased parathyroid function associated with inappropriate calcium, phosphorus and vitamin D metabolism. Involvement of the jaws is common and radiographic alterations are often one of the earliest signs of chronic renal failure. Herein, reporting a case of Chronic Renal Failure (Bilateral Grade I Neuropathy) with ROD presenting oral manifestations in an 11-year -old male child.

  7. Fas expression in renal cell carcinoma accurately predicts patient survival after radical nephrectomy.

    PubMed

    Sejima, Takehiro; Morizane, Shuichi; Hinata, Nobuyuki; Yao, Akihisa; Isoyama, Tadahiro; Saito, Motoaki; Takenaka, Atsushi

    2012-01-01

    To investigate Fas, Fas ligand (FasL) and Bcl-2 expression, which are considered to be important apoptotic regulatory factors in renal cell carcinomas (RCCs). mRNA quantification and immunohistochemistry allowed for the determination of the expression of these three factors in surgically resected tumors from 82 patients with RCC. The correlation of protein and gene expression with more than 10 years of survival data following nephrectomy (along with clinical and pathologic parameters) was analyzed using uni- and multivariate statistical models. A significantly poorer outcome was observed in patients with tumors expressing high levels of Fas mRNA in the multivariate analysis (p = 0.0002). In addition, patient survival was significantly worse in FasL mRNA-positive tumor cases when compared with FasL mRNA-negative cases (p = 0.0345). Ten cases relapsed more than 5 years after nephrectomy. Among them, the tumors of 8 cases (80%) did not express FasL mRNA. Analysis of Bcl-2 did not show statistical significance of Bcl-2 expression as a prognostic indicator. The data suggest that pronounced Fas expression is a surrogate biomarker of active cancer cell proliferation. Given the FasL tumor counterattack theory, FasL overexpression in RCC may be one of the host immune deficiencies, consequently leading to poor prognosis. Copyright © 2012 S. Karger AG, Basel.

  8. Detecting truly clonal alterations from multi-region profiling of tumours

    PubMed Central

    Werner, Benjamin; Traulsen, Arne; Sottoriva, Andrea; Dingli, David

    2017-01-01

    Modern cancer therapies aim at targeting tumour-specific alterations, such as mutations or neo-antigens, and maximal treatment efficacy requires that targeted alterations are present in all tumour cells. Currently, treatment decisions are based on one or a few samples per tumour, creating uncertainty on whether alterations found in those samples are actually present in all tumour cells. The probability of classifying clonal versus sub-clonal alterations from multi-region profiling of tumours depends on the earliest phylogenetic branching event during tumour growth. By analysing 181 samples from 10 renal carcinoma and 11 colorectal cancers we demonstrate that the information gain from additional sampling falls onto a simple universal curve. We found that in colorectal cancers, 30% of alterations identified as clonal with one biopsy proved sub-clonal when 8 samples were considered. The probability to overestimate clonal alterations fell below 1% in 7/11 patients with 8 samples per tumour. In renal cell carcinoma, 8 samples reduced the list of clonal alterations by 40% with respect to a single biopsy. The probability to overestimate clonal alterations remained as high as 92% in 7/10 renal cancer patients. Furthermore, treatment was associated with more unbalanced tumour phylogenetic trees, suggesting the need of denser sampling of tumours at relapse. PMID:28344344

  9. Detecting truly clonal alterations from multi-region profiling of tumours

    NASA Astrophysics Data System (ADS)

    Werner, Benjamin; Traulsen, Arne; Sottoriva, Andrea; Dingli, David

    2017-03-01

    Modern cancer therapies aim at targeting tumour-specific alterations, such as mutations or neo-antigens, and maximal treatment efficacy requires that targeted alterations are present in all tumour cells. Currently, treatment decisions are based on one or a few samples per tumour, creating uncertainty on whether alterations found in those samples are actually present in all tumour cells. The probability of classifying clonal versus sub-clonal alterations from multi-region profiling of tumours depends on the earliest phylogenetic branching event during tumour growth. By analysing 181 samples from 10 renal carcinoma and 11 colorectal cancers we demonstrate that the information gain from additional sampling falls onto a simple universal curve. We found that in colorectal cancers, 30% of alterations identified as clonal with one biopsy proved sub-clonal when 8 samples were considered. The probability to overestimate clonal alterations fell below 1% in 7/11 patients with 8 samples per tumour. In renal cell carcinoma, 8 samples reduced the list of clonal alterations by 40% with respect to a single biopsy. The probability to overestimate clonal alterations remained as high as 92% in 7/10 renal cancer patients. Furthermore, treatment was associated with more unbalanced tumour phylogenetic trees, suggesting the need of denser sampling of tumours at relapse.

  10. CMV drives the expansion of highly functional memory T cells expressing NK-cell receptors in renal transplant recipients.

    PubMed

    Makwana, Nandini; Foley, Bree; Fernandez, Sonia; Lee, Silvia; Irish, Ashley; Pircher, Hanspeter; Price, Patricia

    2017-08-01

    Cytomegalovirus (CMV) is a common opportunistic infection encountered in renal transplant recipients (RTRs) and may be reactivated without symptoms at any time post-transplant. We describe how active and latent CMV affect T-cell subsets in RTRs who are stable on maintenance therapy. T-cell responses to CMV were assessed in RTRs (n = 54) >2 years post-transplant, and healthy controls (n = 38). Seven RTRs had CMV DNA detectable in plasma. CMV antibody and DNA aligned with increased proportions of CD8 + T cells and reduced CD4/CD8 ratios. This paralleled an expansion of effector memory T-cell (T EM ), terminally differentiated T-cell (T EMRA ) and CD57 + T EMRA cell populations. Expression of NK-cell receptors, LIR-1 and KLRG1 on CD4 + and CD8 + CD57 + T EM and T EMRA cells correlated with elevated interferon-γ and cytotoxic responses to anti-CD3 and increased cytotoxic responses to CMV phosphoprotein (pp) 65 in RTRs who carried CMV DNA. CD8 + T cells from all CMV seropositive RTRs responded efficiently to CMV immediate early (IE) -1 peptides. The data show that latent and active CMV infection can alter T-cell subsets in RTRs many years after transplantation, and up-regulate T-cell expression of NK-cell receptors. This may enhance effector responses of CD4 + and CD8 + T cells against CMV. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Epoxyeicosatrienoic Acid Analog Decreases Renal Fibrosis by Reducing Epithelial-to-Mesenchymal Transition

    PubMed Central

    Skibba, Melissa; Hye Khan, Md. Abdul; Kolb, Lauren L.; Yeboah, Michael M.; Falck, John R.; Amaradhi, Radhika; Imig, John D.

    2017-01-01

    Renal fibrosis, which is a critical pathophysiological event in chronic kidney diseases, is associated with renal epithelial-to-mesenchymal transition (EMT). Epoxyeicosatrienoic acids (EETs) are Cyp epoxygenase arachidonic acid metabolites that demonstrate biological actions that result in kidney protection. Herein, we investigated the ability of 14,15-EET and its synthetic analog, EET-A, to reduce kidney fibrosis induced by unilateral ureter obstruction (UUO). C57/BL6 male mice underwent sham or UUO surgical procedures and were treated with 14,15-EET or EET-A in osmotic pump (i.p.) for 10 days following UUO surgery. UUO mice demonstrated renal fibrosis with an 80% higher kidney-collagen positive area and 70% higher α-smooth muscle actin (SMA) positive renal areas compared to the sham group. As a measure of collagen content, kidney hydroxyproline content was also higher in UUO (6.4 ± 0.5 μg/10 mg) compared to sham group (2.5 ± 0.1 μg/10 mg). Along with marked renal fibrosis, UUO mice had reduced renal expression of EET producing Cyp epoxygenase enzymes. Endogenous 14,15-EET or EET-A demonstrated anti-fibrotic action in UUO by reducing kidney-collagen positive area (50–60%), hydroxyproline content (50%), and renal α-SMA positive area (85%). In UUO mice, renal expression of EMT inducers, Snail1 and ZEB1 were higher compared to sham group. Accordingly, renal epithelial marker E-cadherin expression was reduced and mesenchymal marker expression was elevated in the UUO compared to sham mice. Interestingly, EET-A reduced EMT in UUO mice by deceasing renal Snail1 and ZEB1 expression. EET-A treatment also opposed the decrease in renal E-cadherin expression and markedly reduced several prominent renal mesenchymal/myofibroblast markers in UUO mice. Overall, our results demonstrate that EET-A is a novel anti-fibrotic agent that reduces renal fibrosis by decreasing renal EMT. PMID:28713267

  12. Dietary docosahexaenoic acid ameliorates, but rapeseed oil and safflower oil accelerate renal injury in stroke-prone spontaneously hypertensive rats as compared with soybean oil, which is associated with expression for renal transforming growth factor-beta, fibronectin and renin.

    PubMed

    Miyazaki, M; Takemura, N; Watanabe, S; Hata, N; Misawa, Y; Okuyama, H

    2000-01-03

    We have noted that n-3 fatty acid-rich oils, such as fish oil, perilla oil and flaxseed oil as well as ethyl docosahexaenoate (DHA) prolonged the survival time of stroke-prone spontaneously hypertensive rats (SHRSP) rats by approximately 10% as compared with linoleate (n-6)-rich safflower oil. Rapeseed oil with a relatively low n-6/n-3 ratio unusually shortened the survival time by approximately 40%, suggesting the presence of minor components unfavorable to SHRSP rats. This study examined the effects of dietary oils and DHA on renal injury and gene expression related to renal injury in SHRSP rats. Rats fed rapeseed oil- and safflower oil-supplemented diets developed more severe proteinuria than those fed soybean oil-supplemented diet used as a control, but there were no significant differences in blood pressure. In contrast, the DHA-supplemented diet inhibited the development of proteinuria and suppressed hypertension. The mRNA levels for renal TGF-beta, fibronectin and renin were higher in the rapeseed oil and safflower oil groups after 9 weeks of feeding of the experimental diet than in the soybean oil and DHA groups. The fatty acid composition of kidney phospholipids was markedly affected by these diets. These results indicate that the renal injury observed in the groups fed safflower oil with a high n-6/n-3 ratio and rapeseed oil with presumed minor components is accompanied by increased expression of the TGF-beta, renin and fibronectin genes, and that dietary DHA suppresses renal injury and gene expression as compared with soybean oil.

  13. The Expression of BTS-2 Enhances Cell Growth and Invasiveness in Renal Cell Carcinoma.

    PubMed

    Pham, Quoc Thang; Oue, Naohide; Yamamoto, Yuji; Shigematsu, Yoshinori; Sekino, Yohei; Sakamoto, Naoya; Sentani, Kazuhiro; Uraoka, Naohiro; Tiwari, Mamata; Yasui, Wataru

    2017-06-01

    Renal cell carcinoma (RCC) is one of the most common types of cancer in developed countries. Bone marrow stromal cell antigen 2 (BST2) gene, which encodes BST2 transmembrane glycoprotein, is overexpressed in several cancer types. In the present study, we analyzed the expression and function of BST2 in RCC. BST2 expression was analyzed by immunohistochemistry in 123 RCC cases. RNA interference was used to inhibit BST2 expression in a RCC cell line. Immunohistochemical analysis showed that 32% of the 123 RCC cases were positive for BST2. BST2 expression was positively associated with tumour stage. Furthermore, BST2 expression was an independent predictor of survival in patients with RCC. BST2 siRNA-transfected Caki-1 cells displayed significantly reduced cell growth and invasive activity relative to negative control siRNA-transfected cells. These results suggest that BST2 plays an important role in the progression of RCC. Because BST2 is expressed on the cell membrane, BST2 is a good therapeutic target for RCC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Reproductive Experience Alters Prolactin Receptor Expression in Mammary and Hepatic Tissues in Female Rats1

    PubMed Central

    Bridges, Robert S.; Scanlan, Victoria F.; Lee, Jong-O; Byrnes, Elizabeth M.

    2011-01-01

    Recent studies have reported that reproductive experience in female rats alters prolactin (PRL) receptor gene expression in the brain as well as neural sensitivity to PRL. Given PRL's actions in nonneural tissues, that is, mammary tissue and liver, it was asked whether reproductive experience may also alter prolactin receptor (Prlr) gene expression in these tissues. Groups of age-matched female rats were generated with varying reproductive histories. Separate groups of primiparous (first lactation) and multiparous (second lactation) had mammary tissue and liver samples collected on Day 3 or 10 of lactation. A fifth group raised one litter to weaning and then resumed estrous cyclicity. This group and a final group of age-matched, virgin controls were killed on diestrus. Tissue was processed by quantitative PCR for expression rates of the long and short forms of Prlr mRNA as well as casein beta mRNA (mammary tissue only). Western blots were performed to quantify receptor protein content. Multiple lactations as well as lactation itself resulted in alterations in Prlr expression. Prlr gene expression in mammary tissue was increased in primiparous mothers compared with that in multiparous dams, whereas in the liver, Prlr expression was reduced during an initial lactation. In contrast, PRLR protein levels declined during lactation in mammary, but not hepatic, tissues. Overall, the results demonstrate that the prolactin receptor system is altered in nonneural tissues as a result of the female's reproductive history. The findings are discussed in the context of milk and bile production and PRL's possible role in breast cancer. PMID:21508351

  15. Whole Blood mRNA Expression-Based Prognosis of Metastatic Renal Cell Carcinoma.

    PubMed

    Giridhar, Karthik V; Sosa, Carlos P; Hillman, David W; Sanhueza, Cristobal; Dalpiaz, Candace L; Costello, Brian A; Quevedo, Fernando J; Pitot, Henry C; Dronca, Roxana S; Ertz, Donna; Cheville, John C; Donkena, Krishna Vanaja; Kohli, Manish

    2017-11-03

    The Memorial Sloan Kettering Cancer Center (MSKCC) prognostic score is based on clinical parameters. We analyzed whole blood mRNA expression in metastatic clear cell renal cell carcinoma (mCCRCC) patients and compared it to the MSKCC score for predicting overall survival. In a discovery set of 19 patients with mRCC, we performed whole transcriptome RNA sequencing and selected eighteen candidate genes for further evaluation based on associations with overall survival and statistical significance. In an independent validation of set of 47 patients with mCCRCC, transcript expression of the 18 candidate genes were quantified using a customized NanoString probeset. Cox regression multivariate analysis confirmed that two of the candidate genes were significantly associated with overall survival. Higher expression of BAG1 [hazard ratio (HR) of 0.14, p < 0.0001, 95% confidence interval (CI) 0.04-0.36] and NOP56 (HR 0.13, p < 0.0001, 95% CI 0.05-0.34) were associated with better prognosis. A prognostic model incorporating expression of BAG1 and NOP56 into the MSKCC score improved prognostication significantly over a model using the MSKCC prognostic score only ( p < 0.0001). Prognostic value of using whole blood mRNA gene profiling in mCCRCC is feasible and should be prospectively confirmed in larger studies.

  16. Altered gene expression in human placentas after IVF/ICSI.

    PubMed

    Nelissen, Ewka C M; Dumoulin, John C M; Busato, Florence; Ponger, Loïc; Eijssen, Lars M; Evers, Johannes L H; Tost, Jörg; van Montfoort, Aafke P A

    2014-12-01

    Is gene expression in placental tissue of IVF/ICSI patients altered when compared with a spontaneously conceived group, and are these alterations due to loss of imprinting (LOI) in the case of imprinted genes? An altered imprinted gene expression of H19 and Pleckstrin homology-like domain family A member 2 (PHLDA2), which was not due to LOI, was observed in human placentas after IVF/ICSI and several biological pathways were significantly overrepresented and mostly up-regulated. Genomic imprinting plays an important role in placental biology and in placental adaptive responses triggered by external stimuli. Changes in placental development and function can have dramatic effects on the fetus and its ability to cope with the intrauterine environment. An increased frequency of placenta-related problems as well as an adverse perinatal outcome is seen in IVF/ICSI derived pregnancies, but the role of placental epigenetic deregulation is not clear yet. In this prospective cohort study, a total of 115 IVF/ICSI and 138 control couples were included during pregnancy. After applying several exclusion criteria (i.e. preterm birth or stillbirth, no placental samples, pregnancy complications or birth defects), respectively, 81 and 105 placentas from IVF/ICSI and control pregnancies remained for analysis. Saliva samples were collected from both parents. We quantitatively analysed the mRNA expression of several growth-related imprinted genes [H19, insulin-like growth factor 2 (IGF2), PHLDA2, cyclin-dependent kinase inhibitor 1C (CDKN1C), mesoderm-specific transcript homolog (MEST) isoform α and β by quantitative PCR] after standardization against three housekeeping genes [Succinate dehydrogenase A (SDHA), YWHAZ and TATA-binding protein (TBP)]. A quantitative allele-specific expression analysis of the differentially expressed imprinted genes was performed to investigate LOI, independent of the mechanism of imprinting. Furthermore, a microarray analysis was carried out (n = 10 in

  17. Gene expression profiling in rat kidney after intratracheal exposure to cadmium-doped nanoparticles

    NASA Astrophysics Data System (ADS)

    Coccini, Teresa; Roda, Elisa; Fabbri, Marco; Sacco, Maria Grazia; Gribaldo, Laura; Manzo, Luigi

    2012-08-01

    While nephrotoxicity of cadmium is well documented, very limited information exists on renal effects of exposure to cadmium-containing nanomaterials. In this work, "omics" methodologies have been used to assess the action of cadmium-containing silica nanoparticles (Cd-SiNPs) in the kidney of Sprague-Dawley rats exposed intratracheally. Groups of animals received a single dose of Cd-SiNPs (1 mg/rat), CdCl2 (400 μg/rat) or 0.1 ml saline (control). Renal gene expression was evaluated 7 and 30 days post exposure by DNA microarray technology using the Agilent Whole Rat Genome Microarray 4x44K. Gene modulating effects were observed in kidney at both time periods after treatment with Cd-SiNPs. The number of differentially expressed genes being 139 and 153 at the post exposure days 7 and 30, respectively. Renal gene expression changes were also observed in the kidney of CdCl2-treated rats with a total of 253 and 70 probes modulated at 7 and 30 days, respectively. Analysis of renal gene expression profiles at day 7 indicated in both Cd-SiNP and CdCl2 groups downregulation of several cluster genes linked to immune function, oxidative stress, and inflammation processes. Differing from day 7, the majority of cluster gene categories modified by nanoparticles in kidney 30 days after dosing were genes implicated in cell regulation and apoptosis. Modest renal gene expression changes were observed at day 30 in rats treated with CdCl2. These results indicate that kidney may be a susceptible target for subtle long-lasting molecular alterations produced by cadmium nanoparticles locally instilled in the lung.

  18. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.

    PubMed

    Ding, Hao; Jiang, Lei; Xu, Jing; Bai, Feng; Zhou, Yang; Yuan, Qi; Luo, Jing; Zen, Ke; Yang, Junwei

    2017-09-01

    Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy. Copyright © 2017 the American Physiological Society.

  19. Clinical relevance of hepsin and hepatocyte growth factor activator inhibitor type 2 expression in renal cell carcinoma.

    PubMed

    Betsunoh, Hironori; Mukai, Shoichiro; Akiyama, Yutaka; Fukushima, Tsuyoshi; Minamiguchi, Naoki; Hasui, Yoshihiro; Osada, Yukio; Kataoka, Hiroaki

    2007-04-01

    Cell surface proteolysis is important for the generation of bioactive proteins mediating tumor progression. Recent studies suggest that the membrane-anchored cell surface proteinases matriptase and hepsin have significant roles in tumors. We analyzed the expression and clinical relevance of matriptase and hepsin, and their inhibitors hepatocyte growth factor activator inhibitor type 1 (HAI-1) and type 2 (HAI-2) in 66 cases of conventional renal cell carcinomas (RCC). The mRNA level was evaluated in paired samples from tumor and non-tumorous renal tissues by real-time reverse transcription-polymerase chain reaction. As matriptase and hepsin potently activate the proform of hepatocyte growth factor (HGF), the expression of HGF and its receptor, c-Met, was also analyzed. Although upregulation of matriptase was observed occasionally in RCC, the expression level was not associated with prognostic parameters. Hepsin was downregulated in RCC, particularly in early stage disease, but upregulated in advanced stages. There was a trend of higher hepsin expression in RCC with distant metastasis, and Kaplan-Meier survival curves showed that high hepsin expression was associated with reduced overall survival (P<0.01, log-rank test). Moreover, multivariate analysis indicated that hepsin was an independent prognostic factor. Overexpression of HGF or c-Met also showed reduced overall survival. We also observed a tendency of low HAI-2 expression with reduced overall survival and a statistical association between high hepsin and low HAI-2 level. No associations were observed between matriptase and HAI-1 and HAI-2. Our findings suggest that the balance between hepsin and its inhibitor, HAI-2, may have prognostic value in RCC.

  20. Identification of molecular tumor markers in renal cell carcinomas with TFE3 protein expression by RNA sequencing.

    PubMed

    Pflueger, Dorothee; Sboner, Andrea; Storz, Martina; Roth, Jasmine; Compérat, Eva; Bruder, Elisabeth; Rubin, Mark A; Schraml, Peter; Moch, Holger

    2013-11-01

    TFE3 translocation renal cell carcinoma (tRCC) is defined by chromosomal translocations involving the TFE3 transcription factor at chromosome Xp11.2. Genetically proven TFE3 tRCCs have a broad histologic spectrum with overlapping features to other renal tumor subtypes. In this study, we aimed for characterizing RCC with TFE3 protein expression. Using next-generation whole transcriptome sequencing (RNA-Seq) as a discovery tool, we analyzed fusion transcripts, gene expression profile, and somatic mutations in frozen tissue of one TFE3 tRCC. By applying a computational analysis developed to call chimeric RNA molecules from paired-end RNA-Seq data, we confirmed the known TFE3 translocation. Its fusion partner SFPQ has already been described as fusion partner in tRCCs. In addition, an RNA read-through chimera between TMED6 and COG8 as well as MET and KDR (VEGFR2) point mutations were identified. An EGFR mutation, but no chromosomal rearrangements, was identified in a control group of five clear cell RCCs (ccRCCs). The TFE3 tRCC could be clearly distinguished from the ccRCCs by RNA-Seq gene expression measurements using a previously reported tRCC gene signature. In validation experiments using reverse transcription-PCR, TMED6-COG8 chimera expression was significantly higher in nine TFE3 translocated and six TFE3-expressing/non-translocated RCCs than in 24 ccRCCs (P < .001) and 22 papillary RCCs (P < .05-.07). Immunohistochemical analysis of selected genes from the tRCC gene signature showed significantly higher eukaryotic translation elongation factor 1 alpha 2 (EEF1A2) and Contactin 3 (CNTN3) expression in 16 TFE3 translocated and six TFE3-expressing/non-translocated RCCs than in over 200 ccRCCs (P < .0001, both).

  1. Global differential gene expression in response to growth temperature alteration in group A Streptococcus.

    PubMed

    Smoot, L M; Smoot, J C; Graham, M R; Somerville, G A; Sturdevant, D E; Migliaccio, C A; Sylva, G L; Musser, J M

    2001-08-28

    Pathogens are exposed to different temperatures during an infection cycle and must regulate gene expression accordingly. However, the extent to which virulent bacteria alter gene expression in response to temperatures encountered in the host is unknown. Group A Streptococcus (GAS) is a human-specific pathogen that is responsible for illnesses ranging from superficial skin infections and pharyngitis to severe invasive infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. GAS survives and multiplies at different temperatures during human infection. DNA microarray analysis was used to investigate the influence of temperature on global gene expression in a serotype M1 strain grown to exponential phase at 29 degrees C and 37 degrees C. Approximately 9% of genes were differentially expressed by at least 1.5-fold at 29 degrees C relative to 37 degrees C, including genes encoding transporter proteins, proteins involved in iron homeostasis, transcriptional regulators, phage-associated proteins, and proteins with no known homologue. Relatively few known virulence genes were differentially expressed at this threshold. However, transcription of 28 genes encoding proteins with predicted secretion signal sequences was altered, indicating that growth temperature substantially influences the extracellular proteome. TaqMan real-time reverse transcription-PCR assays confirmed the microarray data. We also discovered that transcription of genes encoding hemolysins, and proteins with inferred roles in iron regulation, transport, and homeostasis, was influenced by growth at 40 degrees C. Thus, GAS profoundly alters gene expression in response to temperature. The data delineate the spectrum of temperature-regulated gene expression in an important human pathogen and provide many unforeseen lines of pathogenesis investigation.

  2. Effect of Cuscuta chinensis on renal function in ischemia/reperfusion-induced acute renal failure rats.

    PubMed

    Shin, Sun; Lee, Yun Jung; Kim, Eun Ju; Lee, An Sook; Kang, Dae Gill; Lee, Ho Sub

    2011-01-01

    The kidneys play a central role in regulating water, ion composition and excretion of metabolic waste products in the urine. Cuscuta chinensis has been known as an important traditional Oriental medicine for the treatment of liver and kidney disorders. Thus, we studied whether an aqueous extract of Cuscuta chinensis (ACC) seeds has an effect on renal function parameters in ischemia/reperfusion-induced acute renal failure (ARF) rats. Administration of 250 mg/kg/day ACC showed that renal functional parameters including urinary excretion rate, osmolality, Na(+), K(+), Cl(-), creatinine clearance, solute-free water reabsorption were significantly recovered in ischemia/reperfusion-induced ARF. Periodic acid Schiff staining showed that administration of ACC improved tubular damage in ischemia/reperfusion-induced ARF. In immunoblot and immunohistological examinations, ischemia/reperfusion-induced ARF decreased the expressions of water channel AQP 2, 3 and sodium potassium pump Na,K-ATPase in the renal medulla. However, administration of ACC markedly incremented AQP 2, 3 and Na,K-ATPase expressions. Therefore, these data indicate that administration of ACC ameliorates regulation of the urine concentration and renal functions in rats with ischemia/reperfusion-induced ARF.

  3. Renal neural mechanisms in salt-sensitive hypertension.

    PubMed

    DiBona, G F

    1995-01-01

    Genetic forms of salt (NaCl)-sensitive hypertension are characterized by increased renal sympathetic nerve activity responses to environmental stimuli. The increases in renal sympathetic nerve activity produce marked changes in renal function with renal vasoconstriction and sodium and water retention which can contribute to the initiation, development and maintenance of hypertension. In genetic forms of NaCl-sensitive hypertension, increased dietary NaCl intake produces alterations in norepinephrine kinetics with decreased concentrations of norepinephrine in regions of the anterior hypothalamus which are critical for the regulation of peripheral sympathetic nerve activity. This local central decrease in tonic alpha 2 adrenoceptor sympathoinhibitory input leads to increased peripheral (renal) sympathetic nerve activity and hypertension. Similarly, with increased dietary NaCl intake, patients with NaCl-sensitive hypertension develop increased arterial pressure, renal vasoconstriction, increased glomerular capillary pressure and increased urinary albumin excretion. Thus, increased dietary NaCl intake can, via central nervous system actions, produce increases in renal sympathetic nerve activity whose renal functional effects contribute to the pathophysiology of hypertension.

  4. Renal blood flow measurement with contrast-enhanced harmonic ultrasonography: evaluation of dopamine-induced changes in renal cortical perfusion in humans.

    PubMed

    Kishimoto, N; Mori, Y; Nishiue, T; Shibasaki, Y; Iba, O; Nose, A; Uchiyama-Tanaka, Y; Masaki, H; Matsubara, H; Iwasaka, T

    2003-06-01

    An accessible non-invasive method for evaluating renal regional blood flow in real time is highly desirable in the clinical setting. Recent progress in ultrasonography with microbubble contrast has allowed quantification of regional blood flow in animal models. Goal ofthis study was to establish a convenient contrast--enhanced harmonic ultrasonography (CEHU) method for evaluating renal cortical blood flow in humans. We carried out intermittent second harmonic imaging in 9 healthy volunteers. Pulse interval was progressively decreased from 4 s - 0.2 s during continuous venous infusion of the microbubble contrast agent. Pulse interval versus CEHU-derived acoustic intensity plots provided microbubble velocity (MV) and fractional vascular volume (FVV) during renal cortical perfusion in humans. Low-dose dopamine infusion (2 microg/min/kg) resulted in a significant increase in MV which correlated well with the increase in total renal blood flow (RBF) determined by a conventional study of p-aminohippurate clearance (C(PAH)) (r = 0.956, p < 0.0001). Although FVV was not significantly increased, alterations in CEHU-derived renal cortical blood flow calculated by the products of MV and FVV were also correlated with alterations in total RBF (r = 0.969, p < 0.0001). Thus, low-dose dopamine infusion increases renal cortical blood flow observed in CEHU, mainly by increasing MV. The present study shows that renal cortical blood flow in humans can be measured non-invasively by CEHU and that CEHU can be used for quantitatively evaluating changes induced by a therapeutic agent such as dopamine in flow velocity and in FVV.

  5. Altered expression of junctional adhesion molecule 4 in injured podocytes.

    PubMed

    Harita, Yutaka; Miyauchi, Naoko; Karasawa, Tamaki; Suzuki, Koichi; Han, Gi Dong; Koike, Hiroko; Igarashi, Takashi; Shimizu, Fujio; Kawachi, Hiroshi

    2006-02-01

    Recent investigations have revealed the importance of glomerular podocytes with its diaphragm as the major filtration barrier. Junctional adhesion molecule 4 (JAM4) has been identified as a protein that interacts with membrane-associated guanyl kinase inverted (MAGI)-1 and is reported to be expressed on podocytes. To elucidate the role of JAM4 on podocytes, we examined the expression of JAM4 and MAGI-1 in normal and two different proteinuric rat models: puromycin aminonucleoside (PAN) nephropathy and anti-nephrin antibody-induced (ANA) nephropathy, one model with and one without effacement of podocyte foot processes. JAM4 was detected by immunomicroscopy at the apical membrane of normal podocytes. JAM4 immunostaining was focally increased in the podocytes in PAN nephropathy but not in ANA nephropathy. In proteinuric podocytes, the expression of JAM4 was distinct from that of MAGI-1 or other slit diaphragm molecules such as nephrin and ZO-1. Close colocalization of JAM4 and ezrin was maintained in PAN nephropathy. By immunoelectron microscopy, the signals for JAM4 were detected at the free apical membrane of the podocytes with effaced foot processes. Studies with selective detergent extract revealed that the subcellular localization of JAM4 was altered in PAN nephropathy. Thus the altered expression of JAM4 appears to be associated with morphological changes in podocytes and can be a useful marker of injured podocytes. JAM4 may have a different role at the apical membrane besides the role as a junctional molecule and is likely associated with the unique structure of this epithelium.

  6. Organic Selenium Alleviated the Formation of Ethylene Glycol-Induced Calcium Oxalate Renal Calculi by Improving Osteopontin Expression and Antioxidant Capability in Dogs.

    PubMed

    Liu, Yongwang; Xu, Haibin; Zhong, Wenting; Shen, Qingpeng; Zhuang, Tenghan; Huang, Kehe

    2015-12-01

    Twenty one-year-old local male dogs were randomly assigned into four groups (five dogs per group). The control and the ethylene glycol (EG) groups were fed basal diets without and with EG, and the EG+sodium selenite (EG+SS) and EG+selenium yeast (EG+SY) groups were fed basal diets with EG containing SS and SY, respectively. Blood, urine, and renal samples were taken after 18 weeks of feeding. The results showed that compared with the control group, the serum calcium levels and antioxidase activities significantly decreased in the EG group. Serum creatinine, urea nitrogen, and malondialdehyde (MDA) levels and urine calcium and oxalate levels significantly increased. Calcium oxalate crystal deposition and osteopontin (OPN) messenger RNA and protein expression in the renal tissues significantly increased. These changes above in the EG group were reversed within limits by adding selenium in the diets (both EG+SS and EG+SY groups). Further, compared with the EG+SS group, the EG+SY group showed better effects in decreasing the formation of EG-induced calcium oxalate renal calculi and OPN expression and improving antioxidant capability in dogs. It indicates that organic selenium has the potential value to alleviate the formation of EG-induced calcium oxalate renal calculi.

  7. The association between expression of IFIT1 in podocytes of MRL/lpr mice and the renal pathological changes it causes: An animal study.

    PubMed

    Hu, Weiping; Niu, Guodong; Li, Hongbo; Gao, Hanyuan; Kang, Rudian; Chen, Xiaoqing; Lin, Ling

    2016-11-22

    Renal damage is the major cause of SLE associated mortality, and IFIT1expression was elevated in SLE cases in accordance of previous studies. Therefore, we conducted an animal study to identify the role of IFIT1 expression in renal pathological changes.18 female MRL/lpr mice and same number of female BALB/c mice were enrolled in present study. Quantitative analysis of urine protein, Complement C3 and C4, and anti-ds DNA antibody were conducted. HE and PAS staining and TEM analysis were employed to observe the pathological changes in renal tissue. Significant elevation on urine protein and anti-dsDNA and reduction on Complement C3 and C4 were observed in MRL/lpr mice when comparing the controls in same age. Staining and TEM analysis observed several pathological changes in glomerulus among MRL/lpr mice, including cellular enlargement, basement membrane thickening, and increased cellularcasts. The linear regression analysis found the optical density of IFIT1 was inversely associated with F-actin, Nephrin, and Podocin, but not Synatopodin. In summary, IFIT1 expression is associated with podocytes damage, and capable of suppressing some proteins essential to glomerular filtration.

  8. Tangeretin attenuates cisplatin-induced renal injury in rats: Impact on the inflammatory cascade and oxidative perturbations.

    PubMed

    Arab, Hany H; Mohamed, Wafaa R; Barakat, Bassant M; Arafa, El-Shaimaa A

    2016-10-25

    Despite the efficacy of cisplatin as a chemotherapeutic agent against various cancers, its clinical utility is limited by serious adverse reactions including nephrotoxicity. The current study aims to investigate the protective potential of tangeretin, a citrus flavone with marked antioxidant actions, against cisplatin-induced renal injury in rats. Tangeretin was administered at 50 and 100 mg/kg p.o. for 1 week starting one day before cisplatin (7.5 mg/kg i.p.) injection. Likewise, silymarin was administered at 100 mg/kg orally. Renal function tests, histopathology, oxidative stress and inflammatory events were investigated. Tangeretin mitigated the increased levels of serum creatinine, blood urea nitrogen and histopathologic alterations evoked by cisplatin. It alleviated renal oxidative stress due to cisplatin by lowering lipid peroxides, nitric oxide and Nrf2 levels with concomitant enhancement of GSH and GPx. Tangeretin also suppressed the upregulated inflammatory response seen with cisplatin treatment by downregulation of activated NF-κB p65 protein expression together with its downstream effectors e.g., iNOS and TNF-α, with restoration of the anti-inflammatory interleukin IL-10. Additionally, it down-regulated the expression of caspase-3, an apoptotic marker, thus favoring renal cell survival. Importantly, tangeretin enhanced the cytotoxic actions of cisplatin in Hep3B and HCT-116 human cancer cell lines. Together, these findings accentuate the dual benefit of tangeretin: mitigation of renal injury-induced by cisplatin and enhancement of its cytotoxic effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. 6β-HYDROXYTESTOSTERONE, A CYTOCHROME P450 1B1-TESTOSTERONE-METABOLITE, MEDIATES ANGIOTENSIN II-INDUCED RENAL DYSFUNCTION IN MALE MICE

    PubMed Central

    Pingili, Ajeeth K.; Thirunavukkarasu, Shyamala; Kara, Mehmet; Brand, David; Katsurada, Akemi; Majid, Dewan S. A.; Navar, L. Gabriel; Gonzalez, Frank J.; Malik, Kafait U.

    2016-01-01

    6β-hydroxytestosterone, a cytochrome P450 1B1-derived metabolite of testosterone, contributes to the development of angiotensin II-induced hypertension and associated cardiovascular pathophysiology. In view of the critical role of angiotensin II in the maintenance of renal homeostasis, development of hypertension and end organ damage, this study was conducted to determine the contribution of 6β-hydroxytestosterone to angiotensin II actions on water consumption and renal function in male Cyp1b1+/+ and Cyp1b1−/− mice. Castration of Cyp1b1+/+ mice or Cyp1b1−/− gene disruption minimized the angiotensin II-induced increase in water consumption, urine output, proteinuria, and sodium excretion and decreases in urine osmolality. 6β-hydroxytestosterone did not alter angiotensin II-induced increases in water intake, urine output, proteinuria, and sodium excretion or decreases in osmolality in Cyp1b1+/+ mice, but restored these effects of angiotensin II in Cyp1b1−/− or castrated mice Cyp1b1+/+ mice. Cyp1b1 gene disruption or castration prevented angiotensin II-induced renal fibrosis, oxidative stress, inflammation, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, and angiotensin converting enzyme. 6β-hydroxytestosterone did not alter angiotensin II-induced renal fibrosis, inflammation, oxidative stress, urinary excretion angiotensinogen, expression of angiotensin II type 1 receptor, or angiotensin converting enzyme in Cyp1b1+/+ mice; however, in Cyp1b1−/− or castrated mice Cyp1b1+/+ mice, it restored these effects of angiotensin II. These data indicate that 6β-hydroxytestosterone contributes to increased thirst, impairment of renal function, and end organ injury associated with angiotensin II-induced hypertension in male mice and that cytochrome P450 1B1 could serve as a novel target for treating renal disease and hypertension in males. PMID:26928804

  10. Cross-cancer profiling of molecular alterations within the human autophagy interaction network

    PubMed Central

    Lebovitz, Chandra B; Robertson, A Gordon; Goya, Rodrigo; Jones, Steven J; Morin, Ryan D; Marra, Marco A; Gorski, Sharon M

    2015-01-01

    Aberrant activation or disruption of autophagy promotes tumorigenesis in various preclinical models of cancer, but whether the autophagy pathway is a target for recurrent molecular alteration in human cancer patient samples is unknown. To address this outstanding question, we surveyed 211 human autophagy-associated genes for tumor-related alterations to DNA sequence and RNA expression levels and examined their association with patient survival outcomes in multiple cancer types with sequence data from The Cancer Genome Atlas consortium. We found 3 (RB1CC1/FIP200, ULK4, WDR45/WIPI4) and one (ATG7) core autophagy genes to be under positive selection for somatic mutations in endometrial carcinoma and clear cell renal carcinoma, respectively, while 29 autophagy regulators and pathway interactors, including previously identified KEAP1, NFE2L2, and MTOR, were significantly mutated in 6 of the 11 cancer types examined. Gene expression analyses revealed that GABARAPL1 and MAP1LC3C/LC3C transcripts were less abundant in breast cancer and non-small cell lung cancers than in matched normal tissue controls; ATG4D transcripts were increased in lung squamous cell carcinoma, as were ATG16L2 transcripts in kidney cancer. Unsupervised clustering of autophagy-associated mRNA levels in tumors stratified patient overall survival in 3 of 9 cancer types (acute myeloid leukemia, clear cell renal carcinoma, and head and neck cancer). These analyses provide the first comprehensive resource of recurrently altered autophagy-associated genes in human tumors, and highlight cancer types and subtypes where perturbed autophagy may be relevant to patient overall survival. PMID:26208877

  11. Periodontal therapy alters gene expression of peripheral blood monocytes

    PubMed Central

    Papapanou, Panos N.; Sedaghatfar, Michael H.; Demmer, Ryan T.; Wolf, Dana L.; Yang, Jun; Roth, Georg A.; Celenti, Romanita; Belusko, Paul B.; Lalla, Evanthia; Pavlidis, Paul

    2009-01-01

    Aims We investigated the effects of periodontal therapy on gene expression of peripheral blood monocytes. Methods Fifteen patients with periodontitis gave blood samples at four time points: 1 week before periodontal treatment (#1), at treatment initiation (baseline, #2), 6-week (#3) and 10-week post-baseline (#4). At baseline and 10 weeks, periodontal status was recorded and subgingival plaque samples were obtained. Periodontal therapy (periodontal surgery and extractions without adjunctive antibiotics) was completed within 6 weeks. At each time point, serum concentrations of 19 biomarkers were determined. Peripheral blood monocytes were purified, RNA was extracted, reverse-transcribed, labelled and hybridized with AffymetrixU133Plus2.0 chips. Expression profiles were analysed using linear random-effects models. Further analysis of gene ontology terms summarized the expression patterns into biologically relevant categories. Differential expression of selected genes was confirmed by real-time reverse transcriptase-polymerase chain reaction in a subset of patients. Results Treatment resulted in a substantial improvement in clinical periodontal status and reduction in the levels of several periodontal pathogens. Expression profiling over time revealed more than 11,000 probe sets differentially expressed at a false discovery rate of <0.05. Approximately 1/3 of the patients showed substantial changes in expression in genes relevant to innate immunity, apoptosis and cell signalling. Conclusions The data suggest that periodontal therapy may alter monocytic gene expression in a manner consistent with a systemic anti-inflammatory effect. PMID:17716309

  12. Renal and adrenal tumours in children

    PubMed Central

    2007-01-01

    The differential diagnosis of renal and supra-renal masses firstly depends on the age of the child. Neuroblastoma (NBL) may be seen antenatally or in the newborn period; this tumour has a good prognosis unlike NBL seen in older children (particularly NBL in those aged 2–4 years). Benign renal masses predominate in early infancy but beyond the first year of life Wilms' tumour is the most common renal malignancy, until adolescence when renal cell carcinoma has similar or increased frequency as children get older. Adrenal adenomas and carcinomas also occur in childhood; these tumours are indistinguishable on imaging but criteria for the diagnosis of adrenal carcinoma include size larger than 5 cm, a tendency to invade the inferior vena cava and to metastasise. The most topical dilemmas in the radiological assessment of renal and adrenal tumours are presented. Topics covered include a proposed revision to the staging of NBL, the problems inherent in distinguishing nephrogenic rests from Wilms' tumour and the current recently altered approach regarding small lung nodules in children with Wilms' tumour. PMID:17339140

  13. Association of abnormal morphology and altered gene expression in human preimplantation embryos.

    PubMed

    Wells, Dagan; Bermúdez, Mercedes G; Steuerwald, Nury; Malter, Henry E; Thornhill, Alan R; Cohen, Jacques

    2005-08-01

    We set out to characterize the expression of nine genes in human preimplantation embryos and determine whether abnormal morphology is associated with altered gene activity. Reverse transcription and real-time polymerase chain reaction were used to quantify the expression of multiple genes in each embryo. The genes studied have various important cellular roles (e.g., cell cycle regulation, DNA repair, and apoptosis). Research laboratory working closely with a clinical IVF practice. Over 50 embryos were donated by infertile patients (various etiologies). Among these, all major stages of preimplantation development and a variety of common morphologic abnormalities were represented. None. Quantification of mRNA transcripts. We detected an association between certain forms of abnormal morphology and disturbances of gene activity. Cellular fragmentation was associated with altered expression of several genes, including TP53, suggesting that fragmenting blastomeres are suffering stress of a type monitored by p53, possibly as a consequence of suboptimal culture conditions. Appropriate gene expression is vital for the regulation of metabolic pathways and key developmental events. Our data indicates a possible causal relationship between changes in gene expression and the formation of clinically relevant abnormal embryo morphologies. We hypothesize that embryos with expression profiles characteristic of good morphology and appropriate for their developmental stage have the greatest potential for implantation. If confirmed, this could lead to a new generation of preimplantation genetic diagnosis (PGD) tests for assessing embryo viability and predicting implantation potential.

  14. Inferring causal genomic alterations in breast cancer using gene expression data

    PubMed Central

    2011-01-01

    Background One of the primary objectives in cancer research is to identify causal genomic alterations, such as somatic copy number variation (CNV) and somatic mutations, during tumor development. Many valuable studies lack genomic data to detect CNV; therefore, methods that are able to infer CNVs from gene expression data would help maximize the value of these studies. Results We developed a framework for identifying recurrent regions of CNV and distinguishing the cancer driver genes from the passenger genes in the regions. By inferring CNV regions across many datasets we were able to identify 109 recurrent amplified/deleted CNV regions. Many of these regions are enriched for genes involved in many important processes associated with tumorigenesis and cancer progression. Genes in these recurrent CNV regions were then examined in the context of gene regulatory networks to prioritize putative cancer driver genes. The cancer driver genes uncovered by the framework include not only well-known oncogenes but also a number of novel cancer susceptibility genes validated via siRNA experiments. Conclusions To our knowledge, this is the first effort to systematically identify and validate drivers for expression based CNV regions in breast cancer. The framework where the wavelet analysis of copy number alteration based on expression coupled with the gene regulatory network analysis, provides a blueprint for leveraging genomic data to identify key regulatory components and gene targets. This integrative approach can be applied to many other large-scale gene expression studies and other novel types of cancer data such as next-generation sequencing based expression (RNA-Seq) as well as CNV data. PMID:21806811

  15. Effects of water immersion on renal hemodynamics in normal man

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Levinson, R.; Loutzenhiser, R.

    1976-01-01

    The present study was undertaken to delineate the effects of water immersion to the neck (NI) on renal plasma flow and glomerular filtration rate as assessed by the clearance of p-aminohippuric acid (PAH) and inulin, respectively. Nine normal male subjects were studied on two occasions, control and NI. The conditions of seated posture and time of day were identical. Immersion did not alter either clearance at a time when sodium excretion was increasing markedly. The constancy of PAH clearance during NI suggests that renal blood flow is unaltered and that the natriuresis of NI is mediated independently of alterations in overall renal perfusion. The sluggish decline of a natriuresis during recovery is consistent with the presence of a humoral factor contributing to the encountered natriuresis.

  16. Signaling Pathways Involved in Renal Oxidative Injury: Role of the Vasoactive Peptides and the Renal Dopaminergic System

    PubMed Central

    Rukavina Mikusic, N. L.; Kravetz, M. C.; Kouyoumdzian, N. M.; Della Penna, S. L.; Rosón, M. I.; Fernández, B. E.; Choi, M. R.

    2014-01-01

    The physiological hydroelectrolytic balance and the redox steady state in the kidney are accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Angiotensin II, atrial natriuretic peptide and intrarenal dopamine play a pivotal role in this interactive network. The balance between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide, by one side, and the prooxidant effect of the renin angiotensin system, by the other side, contributes to ensuring the normal function of the kidney. Different pathological scenarios, as nephrotic syndrome and hypertension, where renal sodium excretion is altered, are associated with an impaired interaction between two natriuretic systems as the renal dopaminergic system and atrial natriuretic peptide that may be involved in the pathogenesis of renal diseases. The aim of this review is to update and comment the most recent evidences about the intracellular pathways involved in the relationship between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide and the prooxidant effect of the renin angiotensin system in the pathogenesis of renal inflammation. PMID:25436148

  17. Signaling pathways involved in renal oxidative injury: role of the vasoactive peptides and the renal dopaminergic system.

    PubMed

    Rukavina Mikusic, N L; Kravetz, M C; Kouyoumdzian, N M; Della Penna, S L; Rosón, M I; Fernández, B E; Choi, M R

    2014-01-01

    The physiological hydroelectrolytic balance and the redox steady state in the kidney are accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Angiotensin II, atrial natriuretic peptide and intrarenal dopamine play a pivotal role in this interactive network. The balance between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide, by one side, and the prooxidant effect of the renin angiotensin system, by the other side, contributes to ensuring the normal function of the kidney. Different pathological scenarios, as nephrotic syndrome and hypertension, where renal sodium excretion is altered, are associated with an impaired interaction between two natriuretic systems as the renal dopaminergic system and atrial natriuretic peptide that may be involved in the pathogenesis of renal diseases. The aim of this review is to update and comment the most recent evidences about the intracellular pathways involved in the relationship between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide and the prooxidant effect of the renin angiotensin system in the pathogenesis of renal inflammation.

  18. Alterations in Inflammatory Cytokine Gene Expression in Sulfur Mustard-Exposed Mouse Skin

    DTIC Science & Technology

    2000-01-01

    4. TITLE AND SUBTITLE Alterations in Inflammatory Cytokine Gene Expression in Sulfur Mustard-exposed Mouse Skin 6. AUTHOR(S) Sabourin , C.L.K...in Inflammatory Cytokine Gene Expression in Sulfur Mustard-Exposed Mouse Skin Carol L. K. Sabourin ,1 John P. Petrali,2 and Robert P. Casillas2...inflammatory response following HD exposure by measuring ear swelling. Further studies using the 291 292 SABOURIN , PETRALI, AND CASILLAS Volume 14

  19. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria

    PubMed Central

    Chino, Yukihiro; Samukawa, Yoshishige; Sakai, Soichi; Nakai, Yasuhiro; Yamaguchi, Jun-ichi; Nakanishi, Takeo; Tamai, Ikumi

    2014-01-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors have been reported to lower the serum uric acid (SUA) level. To elucidate the mechanism responsible for this reduction, SUA and the urinary excretion rate of uric acid (UEUA) were analysed after the oral administration of luseogliflozin, a SGLT2 inhibitor, to healthy subjects. After dosing, SUA decreased, and a negative correlation was observed between the SUA level and the UEUA, suggesting that SUA decreased as a result of the increase in the UEUA. The increase in UEUA was correlated with an increase in urinary d-glucose excretion, but not with the plasma luseogliflozin concentration. Additionally, in vitro transport experiments showed that luseogliflozin had no direct effect on the transporters involved in renal UA reabsorption. To explain that the increase in UEUA is likely due to glycosuria, the study focused on the facilitative glucose transporter 9 isoform 2 (GLUT9ΔN, SLC2A9b), which is expressed at the apical membrane of the kidney tubular cells and transports both UA and d-glucose. It was observed that the efflux of [14C]UA in Xenopus oocytes expressing the GLUT9 isoform 2 was trans-stimulated by 10 mm d-glucose, a high concentration of glucose that existed under SGLT2 inhibition. On the other hand, the uptake of [14C]UA by oocytes was cis-inhibited by 100 mm d-glucose, a concentration assumed to exist in collecting ducts. In conclusion, it was demonstrated that the UEUA could potentially be increased by luseogliflozin-induced glycosuria, with alterations of UA transport activity because of urinary glucose. PMID:25044127

  20. Osthole Preconditioning Protects Rats Against Renal Ischemia-Reperfusion Injury.

    PubMed

    Xie, D-Q; Sun, G-Y; Zhang, X-G; Gan, H

    2015-01-01

    Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury. The pathogenetic mechanisms of renal I/R injury involve inflammation, oxidative stress, and apoptosis. Osthole, a natural coumarin derivative, has potential anti-inflammatory effects. This study investigated the effect of osthole on renal I/R injury and its potential mechanism. We induced renal I/R injury by clamping the left renal artery for 45 min followed by reperfusion, along with a contralateral nephrectomy. We randomly assigned 30 rats to 3 groups (n = 10): sham-operated, vehicle-treated I/R, and osthole-treated I/R. We treated rats intra-peritoneally with osthole (40 mg/kg) or vehicle (40 mg/kg) 45 min before renal ischemia. We harvested serum and kidneys at 24 h after reperfusion. Renal function and histological changes were assessed. The expression of tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), and interleukin-6 (IL-6) in renal tissue and serum were examined by means of RT-PCR and ELISA, respectively. The expression of p-p85, p85, p-Akt, Akt, p-p65, and p65 were measured by means of Western blotting. Osthole pre-treatment significantly attenuated renal dysfunction, renal histological changes, NF-κB activation, and the expression of TNF-α, IL-8, and IL-6 induced by I/R injury, but the activation of PI3K/Akt signaling was further increased. Osthole pre-treatment protects rats against renal I/R injury by suppressing NF-κB activation, which is involved in PI3K/Akt signaling activation. Thus, osthole may be a novel practical strategy to prevent renal I/R injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Cystine alters the renal and hepatic disposition of inorganic mercury and plasma thiol status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalups, Rudolfs K.; Lash, Lawrence H.

    2006-07-01

    In the present study, we determined whether cystine can inhibit, under certain conditions, the renal tubular uptake of inorganic mercury in vivo. We co-injected (i.v.) cystine with a non-toxic dose of mercuric chloride to rats and then studied the disposition of inorganic mercury during the next 24 h. We also determined if pretreatment with cystine influences the disposition of administered inorganic mercury. Moreover, plasma thiol status was examined after the intravenous administration of cystine with or without mercuric chloride. During the initial hour after co-injection, the renal tubular uptake of mercuric ions was diminished significantly relative to that in controlmore » rats. The inhibitory effects of cystine were evident in both the renal cortex and outer stripe of the outer medulla. In contrast, the renal accumulation of mercury increased significantly between the 1st and 12th hour after co-treatment. Urinary excretion and fecal excretion of mercury were greatly elevated in the rats co-treated with cystine and mercuric chloride. Thus, when cystine and mercury are administered simultaneously, cystine can serve as an inhibitor of the renal tubular uptake of mercury during the initial hour after co-treatment. In rats pretreated with cystine, the renal uptake of inorganic mercury was enhanced significantly relative to that in rats not pretreated with cystine. This enhanced accumulation of inorganic mercury correlated with the increased circulating concentrations of the reduced cysteine and glutathione. Additionally, the present findings indicate that thiol status is an important determinant of renal and hepatic disposition, and urinary and fecal excretion, of inorganic mercury.« less

  2. Altered JS-2 expression in colorectal cancers and its clinical pathological relevance.

    PubMed

    Lam, Alfred King-Yin; Gopalan, Vinod; Nassiri, Mohammad Reza; Kasim, Kais; Dissanayake, Jayampathy; Tang, Johnny Chuek-On; Smith, Robert Anthony

    2011-10-01

    JS-2 is a novel gene located at 5p15.2 and originally detected in primary oesophageal cancer. There is no study on the role of JS-2 in colorectal cancer. The aim of this study is to determine the gene copy number and expression of JS-2 in a large cohort of patients with colorectal tumours and correlate these to the clinicopathological features of the cancer patients. We evaluated the DNA copy number and mRNA expression of JS-2 in 176 colorectal tissues (116 adenocarcinomas, 30 adenomas and 30 non-neoplastic tissues) using real-time polymerase chain reaction. JS-2 expression was also evaluated in two colorectal cancer cell lines and a benign colorectal cell line. JS-2 amplification was noted in 35% of the colorectal adenocarcinomas. Significant differences in relative expression levels for JS-2 mRNA between different colorectal tissues were noted (p = 0.05). Distal colorectal adenocarcinoma had significantly higher copy number than proximal adenocarcinoma (p = 0.005). The relative expression level of JS-2 was different between colonic and rectal adenocarcinoma (p = 0.007). Mucinous adenocarcinoma showed higher JS-2 expression than non-mucinous adenocarcinoma (p = 0.02). Early T-stage cancers appear to have higher JS-2 copy number and lower expression of JS-2 mRNA than later stage cancers (p = 0.001 and 0.03 respectively). Colorectal cancer cell lines showed lower expression of JS-2 than the benign colorectal cell line. JS-2 copy number change and expression were shown for the first time to be altered in the carcinogenesis of colorectal cancer. In addition, genetic alteration of JS-2 was found to be related to location, pathological subtypes and staging of colorectal cancer. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Streptozotocin alters glucose transport, connexin expression and endoplasmic reticulum functions in neurons and astrocytes.

    PubMed

    Biswas, Joyshree; Gupta, Sonam; Verma, Dinesh Kumar; Singh, Sarika

    2017-07-25

    The study was undertaken to explore the cell-specific streptozotocin (STZ)-induced mechanistic alterations. STZ-induced rodent model is a well-established experimental model of Alzheimer's disease (AD) and in our previous studies we have established it as an in vitro screening model of AD by employing N2A neuronal cells. Therefore, STZ was selected in the present study to understand the STZ-induced cell-specific alterations by utilizing neuronal N2A and astrocytes C6 cells. Both neuronal and astrocyte cells were treated with STZ at 10, 50, 100 and 1000μM concentrations for 48h. STZ exposure caused significant decline in cellular viability and augmented cytotoxicity of cells involving astrocytes activation. STZ treatment also disrupted the energy metabolism by altered glucose uptake and its transport in both cells as reflected with decreased expression of glucose transporters (GLUT) 1/3. The consequent decrease in ATP level and decreased mitochondrial membrane potential was also observed in both the cells. STZ caused increased intracellular calcium which could cause the initiation of endoplasmic reticulum (ER) stress. Significant upregulation of ER stress-related markers were observed in both cells after STZ treatment. The cellular communication of astrocytes and neurons was altered as reflected by increased expression of connexin 43 along with DNA fragmentation. STZ-induced apoptotic death was evaluated by elevated expression of caspase-3 and PI/Hoechst staining of cells. In conclusion, study showed that STZ exert alike biochemical alterations, ER stress and cellular apoptosis in both neuronal and astrocyte cells. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Whole Blood mRNA Expression-Based Prognosis of Metastatic Renal Cell Carcinoma

    PubMed Central

    Sosa, Carlos P.; Hillman, David W.; Sanhueza, Cristobal; Dalpiaz, Candace L.; Costello, Brian A.; Quevedo, Fernando J.; Pitot, Henry C.; Dronca, Roxana S.; Ertz, Donna; Cheville, John C.; Donkena, Krishna Vanaja; Kohli, Manish

    2017-01-01

    The Memorial Sloan Kettering Cancer Center (MSKCC) prognostic score is based on clinical parameters. We analyzed whole blood mRNA expression in metastatic clear cell renal cell carcinoma (mCCRCC) patients and compared it to the MSKCC score for predicting overall survival. In a discovery set of 19 patients with mRCC, we performed whole transcriptome RNA sequencing and selected eighteen candidate genes for further evaluation based on associations with overall survival and statistical significance. In an independent validation of set of 47 patients with mCCRCC, transcript expression of the 18 candidate genes were quantified using a customized NanoString probeset. Cox regression multivariate analysis confirmed that two of the candidate genes were significantly associated with overall survival. Higher expression of BAG1 [hazard ratio (HR) of 0.14, p < 0.0001, 95% confidence interval (CI) 0.04–0.36] and NOP56 (HR 0.13, p < 0.0001, 95% CI 0.05–0.34) were associated with better prognosis. A prognostic model incorporating expression of BAG1 and NOP56 into the MSKCC score improved prognostication significantly over a model using the MSKCC prognostic score only (p < 0.0001). Prognostic value of using whole blood mRNA gene profiling in mCCRCC is feasible and should be prospectively confirmed in larger studies. PMID:29099775

  5. Lack of P4H-TM in mice results in age-related retinal and renal alterations.

    PubMed

    Leinonen, Henri; Rossi, Maarit; Salo, Antti M; Tiainen, Päivi; Hyvärinen, Jaana; Pitkänen, Marja; Sormunen, Raija; Miinalainen, Ilkka; Zhang, Chi; Soininen, Raija; Kivirikko, Kari I; Koskelainen, Ari; Tanila, Heikki; Myllyharju, Johanna; Koivunen, Peppi

    2016-09-01

    Age-related macular degeneration (AMD), affecting the retinal pigment epithelium (RPE), is the leading cause of blindness in middle-aged and older people in developed countries. Genetic and environmental risk factors have been identified, but no effective cure exists. Using a mouse model we show that a transmembrane prolyl 4-hydroxylase (P4H-TM), which participates in the oxygen-dependent regulation of the hypoxia-inducible factor (HIF), is a potential novel candidate gene for AMD. We show that P4h-tm had its highest expression levels in the mouse RPE and brain, heart, lung, skeletal muscle and kidney. P4h-tm -/- mice were fertile and had a normal life span. Lack of P4h-tm stabilized HIF-1α in cortical neurons under normoxia, while in hypoxia it increased the expression of certain HIF target genes in tissues with high endogenous P4h-tm expression levels more than in wild-type mice. Renal erythropoietin levels increased in P4h-tm -/- mice with aging, but the resulting ∼2-fold increase in erythropoietin serum levels did not lead to erythrocytosis. Instead, accumulation of lipid-containing lamellar bodies in renal tubuli was detected in P4h-tm -/- mice with aging, resulting in inflammation and fibrosis, and later glomerular sclerosis and albuminuria. Lack of P4h-tm was associated with retinal thinning, rosette-like infoldings and drusen-like structure accumulation in RPE with aging, as is characteristic of AMD. Photoreceptor recycling was compromised, and electroretinograms revealed functional impairment of the cone pathway in adult P4h-tm -/- mice and cone and rod deficiency in middle-aged mice. P4H-TM is therefore imperative for normal vision, and potentially a novel candidate for age-induced diseases, such as AMD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. The additive effects of atorvastatin and insulin on renal function and renal organic anion transporter 3 function in diabetic rats.

    PubMed

    Thongnak, Laongdao; Pongchaidecha, Anchalee; Jaikumkao, Krit; Chatsudthipong, Varanuj; Chattipakorn, Nipon; Lungkaphin, Anusorn

    2017-10-19

    Hyperglycemia-induced oxidative stress is usually found in diabetic condition. 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors, statins, are widely used as cholesterol-lowering medication with several "pleiotropic" effects in diabetic patients. This study aims to evaluate whether the protective effects of atorvastatin and insulin on renal function and renal organic anion transporter 3 (Oat3) function involve the modulation of oxidative stress and pancreatic function in type 1 diabetic rats. Type 1 diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg BW). Atorvastatin and insulin as single or combined treatment were given for 4 weeks after diabetic condition had been confirmed. Diabetic rats demonstrated renal function and renal Oat3 function impairment with an increased MDA level and decreased SOD protein expression concomitant with stimulation of renal Nrf2 and HO-1 protein expression. Insulin plus atorvastatin (combined) treatment effectively restored renal function as well as renal Oat3 function which correlated with the decrease in hyperglycemia and oxidative stress. Moreover, pancreatic inflammation and apoptosis in diabetic rats were ameliorated by the combined drugs treatment. Therefore, atorvastatin plus insulin seems to exert the additive effect in improving renal functionby alleviating hyperglycemiaand the modulation of oxidative stress, inflammation and apoptosis.

  7. Neural control of renal tubular sodium reabsorption of the dog.

    PubMed

    DiBona, G F

    1978-04-01

    The evidence supporting a role for direct neurogenic control of renal tubular sodium reabsorption is reviewed. Electron microscopic and fluorescence histochemical studies demonstrate adrenergic nerve terminals in direct contact with basement membranes of mammalian renal tubular epithelial cells. Low level direct or baroreceptor reflex stimulation of renal sympathetic nerves produces an increase in renal tubular sodium reabsorption without alterations in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. The antinatriuresis is prevented by prior treatment of the kidney with guanethidine or phenoxybenzamine. Possible indirect mediation of the antinatriuresis by other humoral agents known to be released from the kidney upon renal nerve stimulation (angiotensin II, prostaglandin) was excluded by experiments with appropriate blocking agents. Reflex diminutions in renal nerve activity (left atrial distention, stellate ganglion stimulation) produce a decrease in renal tubular sodium reabsorption independent of glomerular filtration rate or renal blood flow. The anatomically described adrenergic innervation of the renal tubules participates in the direct regulation of renal tubular sodium reabsorption.

  8. De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure.

    PubMed

    Jenkins, Dagan; Bitner-Glindzicz, Maria; Malcolm, Sue; Hu, Chih-Chi A; Allison, Jennifer; Winyard, Paul J D; Gullett, Ambrose M; Thomas, David F M; Belk, Rachel A; Feather, Sally A; Sun, Tung-Tien; Woolf, Adrian S

    2005-07-01

    Human renal adysplasia usually occurs sporadically, and bilateral disease is the most common cause of childhood end-stage renal failure, a condition that is lethal without intervention using dialysis or transplantation. De novo heterozygous mutations in Uroplakin IIIa (UPIIIa) are reported in four of 17 children with kidney failure caused by renal adysplasia in the absence of an overt urinary tract obstruction. One girl and one boy in unrelated kindreds had a missense mutation at a CpG dinucleotide in the cytoplasmic domain of UPIIIa (Pro273Leu), both of whom had severe vesicoureteric reflux, and the girl had persistent cloaca; two other patients had de novo mutations in the 3' UTR (963 T-->G; 1003 T-->C), and they had renal adysplasia in the absence of any other anomaly. The mutations were absent in all sets of parents and in siblings, none of whom had radiologic evidence of renal adysplasia, and mutations were absent in two panels of 192 ethnically matched control chromosomes. UPIIIa was expressed in nascent urothelia in ureter and renal pelvis of human embryos, and it is suggested that perturbed urothelial differentiation may generate human kidney malformations, perhaps by altering differentiation of adjacent smooth muscle cells such that the metanephros is exposed to a functional obstruction of urine flow. With advances in renal replacement therapy, children with renal failure, who would otherwise have died, are surviving to adulthood. Therefore, although the mechanisms of action of the UPIIIa mutations have yet to be determined, these findings have important implications regarding genetic counseling of affected individuals who reach reproductive age.

  9. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Kazuhiro; Wakino, Shu; Yoshioka, Kyoko

    2008-07-18

    NAD{sup +}-dependent protein deacetylase Sirt1 regulates cellular apoptosis. We examined the role of Sirt1 in renal tubular cell apoptosis by using HK-2 cells, proximal tubular cell lines with or without reactive oxygen species (ROS), H{sub 2}O{sub 2}. Without any ROS, Sirt1 inhibitors enhanced apoptosis and the expression of ROS scavenger, catalase, and Sirt1 overexpression downregulated catalase. When apoptosis was induced with H{sub 2}O{sub 2}, Sirt1 was upregulated with the concomitant increase in catalase expression. Sirt1 overexpression rescued H{sub 2}O{sub 2}-induced apoptosis through the upregulation of catalase. H{sub 2}O{sub 2} induced the nuclear accumulation of forkhead transcription factor, FoxO3a and themore » gene silencing of FoxO3a enhanced H{sub 2}O{sub 2}-induced apoptosis. In conclusion, endogenous Sirt1 maintains cell survival by regulating catalase expression and by preventing the depletion of ROS required for cell survival. In contrast, excess ROS upregulates Sirt1, which activates FoxO3a and catalase leading to rescuing apoptosis. Thus, Sirt1 constitutes a determinant of renal tubular cell apoptosis by regulating cellular ROS levels.« less

  10. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers

    PubMed Central

    2011-01-01

    Background RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs). These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA) mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter) the helper component-proteinase (HC-Pro) derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent). Results Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1) were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S-adenosyl-L-methionine (SAM) were

  11. Altered peroxisome-proliferator activated receptors expression in human endometrial cancer.

    PubMed

    Knapp, Paweł; Chabowski, Adrian; Błachnio-Zabielska, Agnieszka; Jarząbek, Katarzyna; Wołczyński, Sławomir

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) belong to a family of nuclear hormone receptors acting as transcriptional factors, recently involved also in carcinogenesis. Present study was undertaken to evaluate the presence and subcellular localization of different PPAR isoforms (α, β, γ) in healthy endometrial tissue (n = 10) and endometrial carcinoma (FIGO I, endometrioides type, G1, n = 35). We sought to analyze PPARs mRNA content as well as protein immunohistochemical expression that was further quantified by Western Blot technique. For both PPARα and PPARβ, protein expression was significantly higher in endometrial cancers compared to normal endometrial mucosa. In opposite, PPARγ protein expression was lower in endometrial cancer cells. In each case, immunohistochemical reaction was confined to the perinuclear and/or nuclear region. At the transcriptional level, the content of mRNA of all PPAR subunits did not follow the protein pattern of changes. These results provide evidence for altered PPAR's protein expression and disregulation of posttranslational processes in endometrial cancers.

  12. Efficacy of Intravenous Cyclophosphamide Pulse Therapy for P-Glycoprotein-expressing B Cell-associated Active True Renal Lupus Vasculitis in Lupus Nephritis

    PubMed Central

    Kawabe, Akio; Tsujimura, Shizuyo; Saito, Kazuyoshi; Tanaka, Yoshiya

    2017-01-01

    True renal lupus vasculitis (TRLV), a vascular lesion usually associated with proliferative lupus nephritis (LN), is resistant to conventional treatments. The expression of P-glycoprotein (P-gp) on activated lymphocytes causes drug resistance. We herein report a patient with TRLV, minimal change LN, overexpression of P-gp on peripheral B cells, and accumulation of P-gp+ B cells at the site of TRLV. High-dose corticosteroids combined with intravenous cyclophosphamide pulse therapy resulted in clinical remission and the long-term normal renal function. PMID:28626187

  13. Altered gene expression in early postnatal monoamine oxidase A knockout mice.

    PubMed

    Chen, Kevin; Kardys, Abbey; Chen, Yibu; Flink, Stephen; Tabakoff, Boris; Shih, Jean C

    2017-08-15

    We reported previously that monoamine oxidase (MAO) A knockout (KO) mice show increased serotonin (5-hydroxytryptamine, 5-HT) levels and autistic-like behaviors characterized by repetitive behaviors, and anti-social behaviors. We showed that administration of the serotonin synthesis inhibitor para-chlorophenylalanine (pCPA) from post-natal day 1 (P1) through 7 (P7) in MAO A KO mice reduced the serotonin level to normal and reverses the repetitive behavior. These results suggested that the altered gene expression at P1 and P7 may be important for the autistic-like behaviors seen in MAO A KO mice and was studied here. In this study, Affymetrix mRNA array data for P1 and P7 MAO A KO mice were analyzed using Partek Genomics Suite and Ingenuity Pathways Analysis to identify genes differentially expressed versus wild-type and assess their functions and relationships. The number of significant differentially expressed genes (DEGs) varied with age: P1 (664) and P7 (3307) [false discovery rate (FDR) <0.05, fold-change (FC) >1.5 for autism-linked genes and >2.0 for functionally categorized genes]. Eight autism-linked genes were differentially expressed in P1 (upregulated: NLGN3, SLC6A2; down-regulated: HTR2C, MET, ADSL, MECP2, ALDH5A1, GRIN3B) while four autism-linked genes were differentially expressed at P7 (upregulated: HTR2B; downregulated: GRIN2D, GRIN2B, CHRNA4). Many other genes involved in neurodevelopment, apoptosis, neurotransmission, and cognitive function were differentially expressed at P7 in MAO A KO mice. This result suggests that modulation of these genes by the increased serotonin may lead to neurodevelopmental alteration in MAO A KO mice and results in autistic-like behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Age-related pathophysiological changes in rats with unilateral renal agenesis.

    PubMed

    Amakasu, Kohei; Suzuki, Katsushi; Katayama, Kentaro; Suzuki, Hiroetsu

    2011-06-01

    Affected rats of the unilateral urogenital anomalies (UUA) strain show renal agenesis restricted to the left side. To determine whether unilateral renal agenesis is a risk factor for the progression of renal insufficiency, we studied age-related pathophysiological alterations in affected rats. Although body growth and food intake were normal, polydipsia and polyuria with low specific gravity were present at 10 weeks and deteriorated further with age. Blood hemoglobin concentrations were normal, though there was slight erythropenia with increased MCV and MCH. Although hypoalbuminemia, hypercholesterolemia, azotemia, and hypermagnesemia were manifested after age 20 weeks, neither hyperphosphatemia nor hypocalcemia was observed. Plasma Cre and UN concentrations gradually increased with age. Cre clearance was almost normal, whereas fractional UN excretion was consistently lower than normal. Proteinuria increased with age, and albumin was the major leakage protein. In addition to cortical lesions, dilated tubules, cast formation, and interstitial fibrosis were observed in the renal medulla of 50 week-old affected rats. Renal weight was increased 1.7-fold and glomerular number 1.2-fold compared with normal rats. These findings show that the remaining kidney in UUA rats is involved not only in compensatory reactions but experiences pathophysiological alterations associated with progressive renal insufficiency.

  15. Altered LARK Expression Perturbs Development and Physiology of the Drosophila PDF Clock Neurons

    PubMed Central

    Huang, Yanmei; Howlett, Eric; Stern, Michael; Jackson, F. Rob

    2009-01-01

    The LARK RNA-binding protein (RBP) has well documented roles in the circadian systems of Drosophila and mammals. Recent studies have demonstrated that the Drosophila LARK RBP is associated with many mRNA targets, in vivo, including those that regulate either neurophysiology or development of the nervous system. In the present study, we have employed conditional expression techniques to distinguish developmental and physiological functions of LARK for a defined class of neurons: the Pigment Dispersing Factor (PDF)-containing LNv clock neurons. We found that increased LARK expression during development dramatically alters the small LNv class of neurons with no obvious effects on the large LNv cells. Conversely, conditional expression of LARK at the adult stage results in altered clock protein rhythms and circadian locomotor activity, even though neural morphology is normal in such animals. Electrophysiological analyses at the larval neuromuscular junction indicate a role for LARK in regulating neuronal excitability. Altogether, our results demonstrate that LARK activity is critical for neuronal development and physiology. PMID:19303442

  16. Maternal corticosterone exposure in the mouse programs sex-specific renal adaptations in the renin-angiotensin-aldosterone system in 6-month offspring.

    PubMed

    Cuffe, James S M; Burgess, Danielle J; O'Sullivan, Lee; Singh, Reetu R; Moritz, Karen M

    2016-04-01

    Short-term maternal corticosterone (Cort) administration at mid-gestation in the mouse reduces nephron number in both sexes while programming renal and cardiovascular dysfunction in 12-month male but not female offspring. The renal renin-angiotensin-aldosterone system (RAAS), functions in a sexually dimorphic manner to regulate both renal and cardiovascular physiology. This study aimed to identify if there are sex-specific differences in basal levels of the intrarenal RAAS and to determine the impact of maternal Cort exposure on the RAAS in male and female offspring at 6 months of age. While intrarenal renin concentrations were higher in untreated females compared to untreated males, renal angiotensin II concentrations were higher in males than females. Furthermore, basal plasma aldosterone concentrations were greater in females than males. Cort exposed male but not female offspring had reduced water intake and urine excretion. Cort exposure increased renal renin concentrations and elevated mRNA expression of Ren1, Ace2, and Mas1 in male but not female offspring. In addition, male Cort exposed offspring had increased expression of the aldosterone receptor, Nr3c2 and renal sodium transporters. In contrast, Cort exposure increased Agtr1a mRNA levels in female offspring only. This study demonstrates that maternal Cort exposure alters key regulators of renal function in a sex-specific manner at 6 months of life. These finding likely contribute to the disease outcomes in male but not female offspring in later life and highlights the importance of renal factors other than nephron number in the programming of renal and cardiovascular disease. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. Somatic Pairing of Chromosome 19 in Renal Oncocytoma Is Associated with Deregulated ELGN2-Mediated Oxygen-Sensing Response

    PubMed Central

    Petillo, David; Westphal, Michael; Koelzer, Katherine; Metcalf, Julie L.; Zhang, Zhongfa; Matsuda, Daisuke; Dykema, Karl J.; Houseman, Heather L.; Kort, Eric J.; Furge, Laura L.; Kahnoski, Richard J.; Richard, Stéphane; Vieillefond, Annick; Swiatek, Pamela J.; Teh, Bin Tean; Ohh, Michael; Furge, Kyle A.

    2008-01-01

    Chromosomal abnormalities, such as structural and numerical abnormalities, are a common occurrence in cancer. The close association of homologous chromosomes during interphase, a phenomenon termed somatic chromosome pairing, has been observed in cancerous cells, but the functional consequences of somatic pairing have not been established. Gene expression profiling studies revealed that somatic pairing of chromosome 19 is a recurrent chromosomal abnormality in renal oncocytoma, a neoplasia of the adult kidney. Somatic pairing was associated with significant disruption of gene expression within the paired regions and resulted in the deregulation of the prolyl-hydroxylase ELGN2, a key protein that regulates the oxygen-dependent degradation of hypoxia-inducible factor (HIF). Overexpression of ELGN2 in renal oncocytoma increased ubiquitin-mediated destruction of HIF and concomitantly suppressed the expression of several HIF-target genes, including the pro-death BNIP3L gene. The transcriptional changes that are associated with somatic pairing of chromosome 19 mimic the transcriptional changes that occur following DNA amplification. Therefore, in addition to numerical and structural chromosomal abnormalities, alterations in chromosomal spatial dynamics should be considered as genomic events that are associated with tumorigenesis. The identification of EGLN2 as a significantly deregulated gene that maps within the paired chromosome region directly implicates defects in the oxygen-sensing network to the biology of renal oncocytoma. PMID:18773095

  18. Altered Expression of Genes Implicated in Xylan Biosynthesis Affects Penetration Resistance against Powdery Mildew.

    PubMed

    Chowdhury, Jamil; Lück, Stefanie; Rajaraman, Jeyaraman; Douchkov, Dimitar; Shirley, Neil J; Schwerdt, Julian G; Schweizer, Patrick; Fincher, Geoffrey B; Burton, Rachel A; Little, Alan

    2017-01-01

    Heteroxylan has recently been identified as an important component of papillae, which are formed during powdery mildew infection of barley leaves. Deposition of heteroxylan near the sites of attempted fungal penetration in the epidermal cell wall is believed to enhance the physical resistance to the fungal penetration peg and hence to improve pre-invasion resistance. Several glycosyltransferase (GT) families are implicated in the assembly of heteroxylan in the plant cell wall, and are likely to work together in a multi-enzyme complex. Members of key GT families reported to be involved in heteroxylan biosynthesis are up-regulated in the epidermal layer of barley leaves during powdery mildew infection. Modulation of their expression leads to altered susceptibility levels, suggesting that these genes are important for penetration resistance. The highest level of resistance was achieved when a GT43 gene was co-expressed with a GT47 candidate gene, both of which have been predicted to be involved in xylan backbone biosynthesis. Altering the expression level of several candidate heteroxylan synthesis genes can significantly alter disease susceptibility. This is predicted to occur through changes in the amount and structure of heteroxylan in barley papillae.

  19. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.

    PubMed

    Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D

    2017-09-01

    Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. PRENATAL ALCOHOL EXPOSURE ALTERS STEADY-STATE AND ACTIVATED GENE EXPRESSION IN THE ADULT RAT BRAIN

    PubMed Central

    Stepien, Katarzyna A.; Lussier, Alexandre A.; Neumann, Sarah M.; Pavlidis, Paul; Kobor, Michael S.; Weinberg, Joanne

    2016-01-01

    Background Prenatal alcohol exposure (PAE) is associated with alterations in numerous physiological systems, including the stress and immune systems . We have previously shown that PAE increases the course and severity of arthritis in an adjuvant-induced arthritis (AA) model. While the molecular mechanisms underlying these effects are not fully known, changes in neural gene expression are emerging as important factors in the etiology of PAE effects. As the prefrontal cortex (PFC) and hippocampus (HPC) play key roles in neuroimmune function, PAE-induced alterations to their transcriptome may underlie abnormal steady-state functions and responses to immune challenge. The current study examined brains from adult PAE and control females from our recent AA study to determine whether PAE causes long-term alterations in gene expression and whether these mediate the altered severity and course of arthritis in PAE females Methods Adult females from PAE, pair-fed [PF], and ad libitum-fed control [C]) groups were injected with either saline or complete Freund’s adjuvant. Animals were terminated at the peak of inflammation or during resolution (days 16 and 39 post-injection, respectively); cohorts of saline-injected PAE, PF and C females were terminated in parallel. Gene expression was analyzed in the PFC and HPC using whole genome mRNA expression microarrays. Results Significant changes in gene expression in both the PFC and HPC were found in PAE compared to controls in response to ethanol exposure alone (saline-injected females), including genes involved in neurodevelopment, apoptosis, and energy metabolism. Moreover, in response to inflammation (adjuvant-injected females), PAE animals showed unique expression patterns, while failing to exhibit the activation of genes and regulators involved in the immune response observed in control and pair-fed animals. Conclusions These results support the hypothesis that PAE affects neuroimmune function at the level of gene expression

  1. Integrative Genome-Wide Gene Expression Profiling of Clear Cell Renal Cell Carcinoma in Czech Republic and in the United States

    PubMed Central

    Wozniak, Magdalena B.; Le Calvez-Kelm, Florence; Abedi-Ardekani, Behnoush; Byrnes, Graham; Durand, Geoffroy; Carreira, Christine; Michelon, Jocelyne; Janout, Vladimir; Holcatova, Ivana; Foretova, Lenka; Brisuda, Antonin; Lesueur, Fabienne; McKay, James; Brennan, Paul; Scelo, Ghislaine

    2013-01-01

    Gene expression microarray and next generation sequencing efforts on conventional, clear cell renal cell carcinoma (ccRCC) have been mostly performed in North American and Western European populations, while the highest incidence rates are found in Central/Eastern Europe. We conducted whole-genome expression profiling on 101 pairs of ccRCC tumours and adjacent non-tumour renal tissue from Czech patients recruited within the “K2 Study”, using the Illumina HumanHT-12 v4 Expression BeadChips to explore the molecular variations underlying the biological and clinical heterogeneity of this cancer. Differential expression analysis identified 1650 significant probes (fold change ≥2 and false discovery rate <0.05) mapping to 630 up- and 720 down-regulated unique genes. We performed similar statistical analysis on the RNA sequencing data of 65 ccRCC cases from the Cancer Genome Atlas (TCGA) project and identified 60% (402) of the downregulated and 74% (469) of the upregulated genes found in the K2 series. The biological characterization of the significantly deregulated genes demonstrated involvement of downregulated genes in metabolic and catabolic processes, excretion, oxidation reduction, ion transport and response to chemical stimulus, while simultaneously upregulated genes were associated with immune and inflammatory responses, response to hypoxia, stress, wounding, vasculature development and cell activation. Furthermore, genome-wide DNA methylation analysis of 317 TCGA ccRCC/adjacent non-tumour renal tissue pairs indicated that deregulation of approximately 7% of genes could be explained by epigenetic changes. Finally, survival analysis conducted on 89 K2 and 464 TCGA cases identified 8 genes associated with differential prognostic outcomes. In conclusion, a large proportion of ccRCC molecular characteristics were common to the two populations and several may have clinical implications when validated further through large clinical cohorts. PMID:23526956

  2. Deficiency in Aryl Hydrocarbon Receptor (AHR) Expression throughout Aging Alters Gene Expression Profiles in Murine Long-Term Hematopoietic Stem Cells

    PubMed Central

    Bennett, John A.; Singh, Kameshwar P.; Unnisa, Zeenath; Welle, Stephen L.; Gasiewicz, Thomas A.

    2015-01-01

    Dysregulation of hematopoietic stem cell (HSC) signaling can contribute to the development of diseases of the blood system. Lack of aryl hydrocarbon receptor (AhR) has been associated with alterations in gene expression related to HSC function and the subsequent development of a myeloproliferative disorder in aging female mice. We sorted the most primitive population of HSCs with the highest stem cell potential (Long-term, or LT-HSCs) from 18-month-old AhR-null-allele (AhR-KO) and WT mice and analyzed gene expression using microarray to determine alterations in gene expression and cell signaling networks in HSCs that could potentially contribute to the aging phenotype of AhR-KO mice. Comparisons with previous array data from 8-week old mice indicated that aging alone is sufficient to alter gene expression. In addition, a significant number of gene expression differences were observed in aged LT-HSCs that are dependent on both aging and lack of AhR. Pathway analysis of these genes revealed networks related to hematopoietic stem cell activity or function. qPCR was used to confirm the differential expression of a subset of these genes, focusing on genes that may represent novel AhR targets due to the presence of a putative AhR binding site in their upstream regulatory region. We verified differential expression of PDGF-D, Smo, Wdfy1, Zbtb37 and Zfp382. Pathway analysis of this subset of genes revealed overlap between cellular functions of the novel AhR targets and AhR itself. Lentiviral-mediated knockdown of AhR in lineage-negative hematopoietic cells was sufficient to induce changes in all five of the candidate AhR targets identified. Taken together, these data suggest a role for AhR in HSC functional regulation, and identify novel HSC AhR target genes that may contribute to the phenotypes observed in AhR-KO mice. PMID:26208102

  3. Renal Carcinogenesis After Uninephrectomy1

    PubMed Central

    Sui, Yi; Zhao, Hai-Lu; Lee, Heung Man; Guan, Jing; He, Lan; Lai, Fernand MM; Tong, Peter CY; Chan, Juliana CN

    2009-01-01

    Nephrectomized rats have widely been used to study chronic renal failure. Interestingly, renal cell carcinoma occurred in the remnant kidney after uninephrectomy (UNX). In this study, we probed insulin-like growth factor (IGF)-1 signaling pathway in UNX-induced renal cancer. Adult male Sprague-Dawley rats were randomized into two groups: UNX rats (n = 22) and sham-operated rats (n = 12). Rats were killed at 3, 7, and 10 months. After 7 months after nephrectomy, the UNX rats developed renal cell carcinoma with increased expression of proliferating cell nuclear antigen, and 68.2% (15/22) of the animals exhibited invasive carcinoma. Western blot demonstrated significant down-regulation of IGF binding protein 3 contrasting with the up-regulation of protein kinase Cζ and Akt/protein kinase B in the renal cancer tissues. These findings indicate a unique rat model of UNX-induced renal cancer associated with enhanced IGF-1 signaling pathway. PMID:19956387

  4. Proteomic analysis of differentially expressed proteins in kidneys of brain dead rabbits.

    PubMed

    Li, Ling; Li, Ning; He, Chongxiang; Huang, Wei; Fan, Xiaoli; Zhong, Zibiao; Wang, Yanfeng; Ye, Qifa

    2017-07-01

    A large number of previous clinical studies have reported a delayed graft function for brain dead donors, when compared with living relatives or cadaveric organ transplantations. However, there is no accurate method for the quality evaluation of kidneys from brain‑dead donors. In the present study, two‑dimensional gel electrophoresis and MALDI‑TOF MS‑based comparative proteomic analysis were conducted to profile the differentially‑expressed proteins between brain death and the control group renal tissues. A total of 40 age‑ and sex‑matched rabbits were randomly divided into donation following brain death (DBD) and control groups. Following the induction of brain death via intracranial progressive pressure, the renal function and the morphological alterations were measured 2, 6 and 8 h afterwards. The differentially expressed proteins were detected from renal histological evidence at 6 h following brain death. Although 904±19 protein spots in control groups and 916±25 in DBD groups were identified in the two‑dimensional gel electrophoresis, >2‑fold alterations were identified by MALDI‑TOF MS and searched by NCBI database. The authors successfully acquired five downregulated proteins, these were: Prohibitin (isoform CRA_b), beta-1,3‑N-acetylgalactosaminyltransferase 1, Annexin A5, superoxide dismutase (mitochondrial) and cytochrome b‑c1 complex subunit 1 (mitochondrial precursor). Conversely, the other five upregulated proteins were: PRP38 pre‑mRNA processing factor 38 (yeast) domain containing A, calcineurin subunit B type 1, V‑type proton ATPase subunit G 1, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 and peroxiredoxin‑3 (mitochondrial). Immunohistochemical results revealed that the expressions of prohibitin (PHB) were gradually increased in a time‑dependent manner. The results indicated that there were alterations in levels of several proteins in the kidneys of those with brain death, even if the primary

  5. Proteomic analysis of differentially expressed proteins in kidneys of brain dead rabbits

    PubMed Central

    Li, Ling; Li, Ning; He, Chongxiang; Huang, Wei; Fan, Xiaoli; Zhong, Zibiao; Wang, Yanfeng; Ye, Qifa

    2017-01-01

    A large number of previous clinical studies have reported a delayed graft function for brain dead donors, when compared with living relatives or cadaveric organ transplantations. However, there is no accurate method for the quality evaluation of kidneys from brain-dead donors. In the present study, two-dimensional gel electrophoresis and MALDI-TOF MS-based comparative proteomic analysis were conducted to profile the differentially-expressed proteins between brain death and the control group renal tissues. A total of 40 age- and sex-matched rabbits were randomly divided into donation following brain death (DBD) and control groups. Following the induction of brain death via intracranial progressive pressure, the renal function and the morphological alterations were measured 2, 6 and 8 h afterwards. The differentially expressed proteins were detected from renal histological evidence at 6 h following brain death. Although 904±19 protein spots in control groups and 916±25 in DBD groups were identified in the two-dimensional gel electrophoresis, >2-fold alterations were identified by MALDI-TOF MS and searched by NCBI database. The authors successfully acquired five downregulated proteins, these were: Prohibitin (isoform CRA_b), beta-1,3-N-acetylgalactosaminyltransferase 1, Annexin A5, superoxide dismutase (mitochondrial) and cytochrome b-c1 complex subunit 1 (mitochondrial precursor). Conversely, the other five upregulated proteins were: PRP38 pre-mRNA processing factor 38 (yeast) domain containing A, calcineurin subunit B type 1, V-type proton ATPase subunit G 1, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 and peroxiredoxin-3 (mitochondrial). Immunohistochemical results revealed that the expressions of prohibitin (PHB) were gradually increased in a time-dependent manner. The results indicated that there were alterations in levels of several proteins in the kidneys of those with brain death, even if the primary function and the morphological changes

  6. Beneficial effects of previous exercise training on renal changes in streptozotocin-induced diabetic female rats

    PubMed Central

    Amaral, Liliany S de Brito; Silva, Fernanda A; Correia, Vicente B; Andrade, Clara EF; Dutra, Bárbara A; Oliveira, Márcio V; de Magalhães, Amélia CM; Volpini, Rildo A; Seguro, Antonio C; Coimbra, Terezila M

    2016-01-01

    This study evaluated the effects of aerobic exercise performed both previously and after the induction of diabetes mellitus on changes of renal function and structure in streptozotocin-induced diabetic rats. Female wistar rats were divided into five groups: sedentary control (C + Se); trained control (C + Ex); sedentary diabetic (D + Se); trained diabetic (D + Ex) and previously trained diabetic (D + PEx). The previous exercise consisted of treadmill running for four weeks before the induction of diabetes mellitus. After induction of diabetes mellitus with streptozotocin, the D + PEx, D + Ex and C + Ex groups were submitted to eight weeks of aerobic exercise. At the end of the training protocol, we evaluate the serum glucose, insulin and 17β-estradiol levels, renal function and structure, proteinuria, and fibronectin, collagen IV and transforming growth factor beta 1 (TGF-β1) renal expressions. Induction of diabetes mellitus reduced the insulin and did not alter 17β-estradiol levels, and exercise did not affect any of these parameters. Previous exercise training attenuated the loss of body weight, the blood glucose, the increase of glomerular filtration rate and prevented the proteinuria in the D + PEx group compared to D + Se group. Previous exercise also reduced glomerular hypertrophy, tubular and glomerular injury, as well as the expressions of fibronectin and collagen IV. These expressions were associated with reduced expression of TGF-β1. In conclusion, our study shows that regular aerobic exercise especially performed previously to induction of diabetes mellitus improved metabolic control and has renoprotective action on the diabetic kidney. PMID:26490345

  7. Beneficial effects of previous exercise training on renal changes in streptozotocin-induced diabetic female rats.

    PubMed

    Amaral, Liliany S de Brito; Silva, Fernanda A; Correia, Vicente B; Andrade, Clara E F; Dutra, Bárbara A; Oliveira, Márcio V; de Magalhães, Amélia C M; Volpini, Rildo A; Seguro, Antonio C; Coimbra, Terezila M; Soares, Telma de J

    2016-02-01

    This study evaluated the effects of aerobic exercise performed both previously and after the induction of diabetes mellitus on changes of renal function and structure in streptozotocin-induced diabetic rats. Female wistar rats were divided into five groups: sedentary control (C + Se); trained control (C + Ex); sedentary diabetic (D + Se); trained diabetic (D + Ex) and previously trained diabetic (D + PEx). The previous exercise consisted of treadmill running for four weeks before the induction of diabetes mellitus. After induction of diabetes mellitus with streptozotocin, the D + PEx, D + Ex and C + Ex groups were submitted to eight weeks of aerobic exercise. At the end of the training protocol, we evaluate the serum glucose, insulin and 17β-estradiol levels, renal function and structure, proteinuria, and fibronectin, collagen IV and transforming growth factor beta 1 (TGF-β1) renal expressions. Induction of diabetes mellitus reduced the insulin and did not alter 17β-estradiol levels, and exercise did not affect any of these parameters. Previous exercise training attenuated the loss of body weight, the blood glucose, the increase of glomerular filtration rate and prevented the proteinuria in the D + PEx group compared to D + Se group. Previous exercise also reduced glomerular hypertrophy, tubular and glomerular injury, as well as the expressions of fibronectin and collagen IV. These expressions were associated with reduced expression of TGF-β1. In conclusion, our study shows that regular aerobic exercise especially performed previously to induction of diabetes mellitus improved metabolic control and has renoprotective action on the diabetic kidney. © 2016 by the Society for Experimental Biology and Medicine.

  8. Anthropometric Renal Anatomic Alterations Between Supine and Prone Positions in Percutaneous Renal Ablation for Renal Cortical Neoplasms.

    PubMed

    Lusch, Achim; Fujimoto, Scott; Findeiss, Laura K; Okhunov, Zhamshid; McDougall, Elspeth M; Landman, Jaime

    2016-02-01

    To establish patterns of anatomic changes relevant to the kidney and colon during positional change between the supine and prone positions as noted on CT scans performed during percutaneous cryoablation for renal cortical neoplasms (RCN). Nineteen patients undergoing percutaneous cryoablation for RCN with abdominal CT scan in both the supine and prone positions were included in the study. We documented the anterior/posterior, medial/lateral, and cranial/caudal anatomic changes of the kidney, kidney rotation, and the proportion of the kidney whose access was limited by the liver, spleen, and lung. We also calculated the length of the percutaneous access tract and the distance between the colon and kidney in hilar position as well as the anterior/posterior location of the colon relative to the kidney. In the prone position, the kidney lies significantly more anteriorly on both sides: 4.7 cm vs 4.3 cm (L) and 4.4 cm vs 4.1 cm (R) (p = 0.02 and p = 0.03, respectively). On prone CT images, both kidneys are more cranial when compared with the supine position: 80.4 mm vs 60.8 mm (L) and 87.2 mm vs 57.4 mm (R) (p = 0.002 and p < 0.001, respectively). The skin to tumor distance is significantly shorter in the prone position (p < 0.0001 [L], p = 0.005 [R]). The colon lies closer to the hilum of the kidney and is more posteriorly located in the prone position: 1.21 cm vs 1.04 cm (L) and 0.80 cm vs 0.70 cm (R) (p = 0.005 and p = 0.005, respectively). In the prone position, the lung covers a significantly larger proportion of the right kidney (27.3 mm vs 6.05 mm, p = 0.0001). We documented clinically significant anatomic alterations between supine and prone CT imaging. The changes associated with the prone position modify percutaneous access, particularly for right upper pole tumors. Prone imaging before surgery may be helpful in selected cases.

  9. Maximizing RNA yield from archival renal tumors and optimizing gene expression analysis.

    PubMed

    Glenn, Sean T; Head, Karen L; Teh, Bin T; Gross, Kenneth W; Kim, Hyung L

    2010-01-01

    Formalin-fixed, paraffin-embedded tissues are widely available for gene expression analysis using TaqMan PCR. Five methods, including 4 commercial kits, for recovering RNA from paraffin-embedded renal tumor tissue were compared. The MasterPure kit from Epicentre produced the highest RNA yield. However, the difference in RNA yield between the kit from Epicenter and Invitrogen's TRIzol method was not significant. Using the top 3 RNA isolation methods, the manufacturers' protocols were modified to include an overnight Proteinase K digestion. Overnight protein digestion resulted in a significant increase in RNA yield. To optimize the reverse transcription reaction, conventional reverse transcription with random oligonucleotide primers was compared to reverse transcription using primers specific for genes of interest. Reverse transcription using gene-specific primers significantly increased the quantity of cDNA detectable by TaqMan PCR. Therefore, expression profiling of formalin-fixed, paraffin-embedded tissue using TaqMan qPCR can be optimized by using the MasterPure RNA isolation kit modified to include an overnight Proteinase K digestion and gene-specific primers during the reverse transcription.

  10. Neural regulation of renal tubular sodium reabsorption and renin secretion: integrative aspects.

    PubMed

    DiBona, G F

    1987-01-01

    Efferent renal sympathetic nerve activity plays an important role in the regulation of renal function. Via its direct influence on renal tubular sodium reabsorption throughout the entire mammalian nephron, alterations in efferent renal sympathetic nerve activity represent an important physiological contribution to the overall role of the kidney in the regulation of external sodium balance and the defense against sodium deficit and surfeit. Abnormalities of this mechanism can lead to inappropriate renal sodium retention and augmentation of renin secretion, two factors which are capable of contributing to the development and maintenance of hypertension.

  11. Radiation Exposure Alters Expression of Metabolic Enzyme Genes In Mice

    NASA Technical Reports Server (NTRS)

    Wotring, Virginia E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2010-01-01

    Most pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Because of the importance of the liver in drug metabolism it is important to understand the effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. This study is an effort to examine the effects of adaptive mechanisms that may be triggered by early exposure to low radiation doses. Using procedures approved by the JSC Animal Care & Use Committee, C57 male mice were exposed to Cs-137 in groups: controls, low dose (50 mGy), high dose (6Gy) and a fourth group that received both radiation doses separated by 24 hours. Animals were anesthetized and sacrificed 4 hours after their last radiation exposure. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted and purified (Absolutely RNA, Agilent). Quality of RNA samples was evaluated (Agilent Bioanalyzer 2100). Complementary DNA was prepared from high-quality RNA samples, and used to run RT-qPCR screening arrays for DNA Repair and Drug Metabolism (SuperArray, SABiosciences/Qiagen; BioRad Cfx96 qPCR System). Of 91 drug metabolism genes examined, expression of 7 was altered by at least one treatment condition. Genes that had elevated expression include those that metabolize promethazine and steroids (4-8-fold), many that reduce oxidation products, and one that reduces heavy metal exposure (greater than 200-fold). Of the 91 DNA repair and general metabolism genes examined, expression of 14 was altered by at least one treatment condition. These gene expression changes are likely homeostatic and could lead to development of new radioprotective countermeasures.

  12. Adrenalectomy prevents renal ischemia-reperfusion injury.

    PubMed

    Ramírez, Victoria; Trujillo, Joyce; Valdes, Rafael; Uribe, Norma; Cruz, Cristino; Gamba, Gerardo; Bobadilla, Norma A

    2009-10-01

    Spironolactone treatment prevents renal damage induced by ischemia-reperfusion (I/R), suggesting that renoprotection conferred by spironolactone is mediated by mineralocorticoid receptor (MR) blockade. It is possible, however, that this effect is due to other mechanisms. Therefore, this study evaluated whether adrenalectomy prevented renal damage induced by I/R. Three groups of Wistar rats were studied: 1) a group subjected to a sham surgery, 2) a group subjected to bilateral I/R, and 3) a group of rats in which adrenal glands were removed 3 days before induction of I/R. As expected, I/R resulted in renal dysfunction and severe tubular injury that was associated with a significant increase in tubular damage markers. In contrast, there was no renal dysfunction or tubular injury in rats that were adrenalectomized before I/R. These effects were demonstrated by normalization of glomerular filtration rate, markers of oxidative stress, and tubular injury markers in adrenalectomized rats. The renoprotection observed was associated with the reestablishment of nitric oxide metabolites, increased endothelial nitric oxide synthase expression and its activating phosphorylation, as well as normalization of Rho-kinase expression and ET(A) mRNA levels. Our results show that aldosterone plays a central role in the pathogenesis of renal damage induced by I/R and that MR blockade may be a promising strategy that opens a new therapeutic option for preventing acute renal injury.

  13. Salivary markers in patients with chronic renal failure.

    PubMed

    Pallos, Debora; Leão, Mariella V P; Togeiro, Fernanda C F B; Alegre, Larissa; Ricardo, Lucilene Hernandes; Perozini, Caroline; Ruivo, Gilson Fernandes

    2015-12-01

    Chronic renal failure (CRF) is a progressive loss of renal function over a period of months or years. The major function of the kidneys is the removal of metabolic waste products, electrolytes and water. When this function is impaired, systemic changes, oral complications and alterations in salivary composition may occur. This study aimed to compare the levels of immunological and inflammatory components in the saliva samples from patients that undergo to hemodialysis treatment (HD), without HD and control. This study evaluated IgA, IgG, C reactive protein (CRP) and nitric oxide (NO) in saliva samples from 119 patients, who were divided into the control group (C), chronic renal failure (CRF) patient group and CRF patients on hemodialysis treatment (HD) group. IgA and IgG levels were analyzed by ELISA. Nitric oxide levels were determined indirectly by the nitrite concentration using Griess reagent; CRP by agglutination tests; and total proteins, by Bradford assay. The HD group showed significantly higher levels of IgG, IgA and CRP compared with the control and CRF groups. The CRF group presented the same amounts of IgG, IgA and CRP as the C group but significantly higher levels of NO similar to the HD group. Renal disease, particularly hemodialysis treatment during renal disease, seems to alter salivary immunological and inflammatory components. Thus, analyzing the levels of IgA, IgG, NO and CRP in saliva may be beneficial for monitoring renal disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Highly sensitivity adhesion molecules detection in hereditary haemochromatosis patients reveals altered expression.

    PubMed

    Norris, S; White, M; Mankan, A K; Lawless, M W

    2010-04-01

    Several abnormalities in the immune status of patients with hereditary haemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, altered immune signalling contributing to the pathogenesis of this disorder. Adhesion molecules L-, E- and P-Selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) are some of the major regulators of the immune processes and altered levels of these proteins have been found in pathological states including cardiovascular diseases, arthritis and liver cancer. The aim of this study was to assess L-, E- and P-Selectin, ICAM-1 and VCAM-1 expression in patients with HH and correlate these results with HFE mutation status and iron indexes. A total of 139 subjects were diagnosed with HH (C282Y homozygotes = 87, C282Y/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N/N), 18 normal subjects heterozygous for the H63D mutation served as age-sex-matched controls. We observed a significant decrease in L-selectin (P = 0.0002) and increased E-selectin and ICAM-1 (P = 0.0006 and P = 0.0059) expression in HH patients compared with healthy controls. This study observes for the first time that an altered adhesion molecules profile occurs in patients with HH that is associated with specific HFE genetic component for iron overload, suggesting that differential expression of adhesion molecules may play a role in the pathogenesis of HH.

  15. Elevated transcription factor specificity protein 1 in autistic brains alters the expression of autism candidate genes.

    PubMed

    Thanseem, Ismail; Anitha, Ayyappan; Nakamura, Kazuhiko; Suda, Shiro; Iwata, Keiko; Matsuzaki, Hideo; Ohtsubo, Masafumi; Ueki, Takatoshi; Katayama, Taiichi; Iwata, Yasuhide; Suzuki, Katsuaki; Minoshima, Shinsei; Mori, Norio

    2012-03-01

    Profound changes in gene expression can result from abnormalities in the concentrations of sequence-specific transcription factors like specificity protein 1 (Sp1). Specificity protein 1 binding sites have been reported in the promoter regions of several genes implicated in autism. We hypothesize that dysfunction of Sp1 could affect the expression of multiple autism candidate genes, contributing to the heterogeneity of autism. We assessed any alterations in the expression of Sp1 and that of autism candidate genes in the postmortem brain (anterior cingulate gyrus [ACG], motor cortex, and thalamus) of autism patients (n = 8) compared with healthy control subjects (n = 13). Alterations in the expression of candidate genes upon Sp1/DNA binding inhibition with mithramycin and Sp1 silencing by RNAi were studied in SK-N-SH neuronal cells. We observed elevated expression of Sp1 in ACG of autism patients (p = .010). We also observed altered expression of several autism candidate genes. GABRB3, RELN, and HTR2A showed reduced expression, whereas CD38, ITGB3, MAOA, MECP2, OXTR, and PTEN showed elevated expression in autism. In SK-N-SH cells, OXTR, PTEN, and RELN showed reduced expression upon Sp1/DNA binding inhibition and Sp1 silencing. The RNA integrity number was not available for any of the samples. Transcription factor Sp1 is dysfunctional in the ACG of autistic brain. Consequently, the expression of potential autism candidate genes regulated by Sp1, especially OXTR and PTEN, could be affected. The diverse downstream pathways mediated by the Sp1-regulated genes, along with the environmental and intracellular signal-related regulation of Sp1, could explain the complex phenotypes associated with autism.

  16. POTENTIAL ALTERATIONS IN GENE EXPRESSION ASSOCIATED WITH CARCINOGEN EXPOSURE IN MYA ARENARIA

    EPA Science Inventory

    Gonadal cancers in soft-shell clams (Mya arenaria) have been found at high prevalences (20-40%) in populations in eastern Maine. The aetiology of these tumours is unknown. We hypothesized that gene expression would be altered in gonadal tumours and that examination of gene expres...

  17. Altered expression of CmNRRa changes flowering time of Chrysanthemum morifolium.

    PubMed

    Zhang, Yuman; Lian, Lijuan; Liu, Qing; Xiao, Na; Fang, Rongxiang; Liu, Qinglin; Chen, Xiaoying

    2013-04-01

    Flowering time is an important ornamental trait for chrysanthemum (Chrysanthemum morifolium, Dendranthema x grandiflorum) floricultural production. In this study, CmNRRa, an orthologous gene of OsNRRa that regulates root growth in response to nutrient stress in rice, was identified from Chrysanthemum and its role in flowering time was studied. The entire CmNRRa cDNA sequence was determined using a combinatorial PCR approach along with 5' and 3' RACE methods. CmNRRa expression levels in various tissues were monitored by real-time RT-PCR. CmNRRa was strongly expressed in flower buds and peduncles, suggesting that CmNRRa plays a regulatory role in floral development. To investigate the biological function of CmNRRa in chrysanthemums, overexpression and knockdown of CmNRRa were carried out using transgenic Chrysanthemum plants generated through Agrobacterium-mediated transformation. CmNRRa expression levels in the transgenic plants were assayed by real-time RT-PCR and Northern blot analysis. The transgenic plants showed altered flowering times compared with nontransgenic plants. CmNRRa-RNAi transgenic plants flowered 40-64 days earlier, while CmNRRa-overexpressing plants exhibited a delayed flowering phenotype. These results revealed a negative effect of CmNRRa on flowering time modulation. Alteration of CmNRRa expression levels might be an effective means of controlling flowering time in Chrysanthemum. These results possess potential application in molecular breeding of chrysanthemums that production year-round, and may improve commercial chrysanthemum production in the flower industry. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  18. Neurogenic regulation of renal tubular sodium reabsorption.

    PubMed

    DiBona, G F

    1977-08-01

    The evidence supporting a role for direct neurogenic control of renal tubular sodium reabsorption is reviewed. Electron microscopic and fluorescence histochemical studies have demonstrated adrenergic nerve terminals in direct contact with basement membranes of mammalian (rat, dog, and monkey) renal tubular epithelial cells. Low-level direct or baroreceptor reflex stimulation of renal sympathetic nerves produces an increase in renal tubular sodium reabsorption without alterations in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. Antinatriuresis was prevented by prior treatment of the kidney with guanethidine or phenoxybenzamine. Rat kidney micropuncture studies have localized a site of enhanced tubular sodium reabsorption to the proximal tubule. Possible indirect mediation of the antinatriuresis by other humoral agents known to be released from the kidney on renal nerve stimulation (angiotensin II, prostaglandin) was excluded by experiments with appropriate blocking agents. The possible effects of anesthesia and uncertainties about the completeness of surgical renal denervation and other tubular segmental sites of action are critically analyzed. The clinical implications of this mechanism in pathologic conditions of sodium and water retention are discussed and and a prospectus for future work is presented.

  19. Resting Afferent Renal Nerve Discharge and Renal Inflammation: Elucidating the Role of Afferent and Efferent Renal Nerves in Deoxycorticosterone Acetate Salt Hypertension.

    PubMed

    Banek, Christopher T; Knuepfer, Mark M; Foss, Jason D; Fiege, Jessica K; Asirvatham-Jeyaraj, Ninitha; Van Helden, Dusty; Shimizu, Yoji; Osborn, John W

    2016-12-01

    Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA) salt rat model. Uninephrectomized male Sprague-Dawley rats (275-300 g) underwent afferent-selective RDNx (n=10), total RDNx (n=10), or Sham (n=10) and were instrumented for the measurement of mean arterial pressure and heart rate by radiotelemetry. Rats received 100-mg DOCA (SC) and 0.9% saline for 21 days. Resting afferent renal nerve activity in DOCA and vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting afferent renal nerve activity, expressed as a percent of peak afferent nerve activity, was substantially increased in DOCA than in vehicle (35.8±4.4 versus 15.3±2.8 %Amax). The DOCA-Sham hypertension (132±12 mm Hg) was attenuated by ≈50% in both total RDNx (111±8 mm Hg) and afferent-selective RDNx (117±5 mm Hg) groups. Renal inflammation induced by DOCA salt was attenuated by total RDNx and unaffected by afferent-selective RDNx. These data suggest that afferent renal nerve activity may mediate the hypertensive response to DOCA salt, but inflammation may be mediated primarily by efferent renal sympathetic nerve activity. Also, resting afferent renal nerve activity is elevated in DOCA salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension. © 2016 American Heart Association, Inc.

  20. Prostaglandin control of renal circulation in the unanesthetized dog and baboon

    NASA Technical Reports Server (NTRS)

    Swain, J. A.; Vatner, S. F.; Heyndrickx, G. R.; Boettcher, D. H.

    1975-01-01

    Effects of indomethacin and meclofenamate, inhibitors of prostaglandin synthesis, were evaluated in the regulation of renal blood flow in conscious and anesthetized dogs and in tranquilized baboons, instrumented with arterial pressure catheters and renal blood flow probes. Indomethacin, 10 mg/kg, did not alter renal blood flow or resistance significantly in the conscious dog. In the anesthetized dog, however, indomethacin caused a reduction in renal blood flow and an elevation of renal vascular resistance. Meclofenamate, 4 mg/kg, reduced renal flow and increased renal vascular resistance in conscious dogs. In conscious dogs and tranquilized primates, indomethacin and meclofenamate reduced the reactive hyperemia in the renal bed. Methoxamine and angiotensin II infused in graded doses induced significantly greater renal vasoconstriction in conscious dogs in the presence of indomethacin. Thus, in the conscious animal, prostaglandins appear to play only a minor part in the control of renal circulation at rest, but they are of greater importance in mediating the renal responses to reactive hyperemia and to vasoconstriction.

  1. [Volume Homeostasis and Renal Function in Rats Exposed to Simulated and Actual Microgravity

    NASA Technical Reports Server (NTRS)

    Tucker, Bryan J.

    1993-01-01

    This project has investigated mechanisms that influence alterations in compartmental fluid and electrolyte balance in microgravity and evaluates countermeasures to control renal fluid and electrolyte losses. Determining the alterations due to space flight in fluid compartments and renal function is an important component in understanding long term adaptation to spaceflight and the contribution to post-flight orthostatic intolerance. Four definition phase studies and two studies examining neuro-humoral and vascular mechanisms have been completed.

  2. Altered cortical expression of GABA-related genes in schizophrenia: illness progression vs developmental disturbance.

    PubMed

    Hoftman, Gil D; Volk, David W; Bazmi, H Holly; Li, Siyu; Sampson, Allan R; Lewis, David A

    2015-01-01

    Schizophrenia is a neurodevelopmental disorder with altered expression of GABA-related genes in the prefrontal cortex (PFC). However, whether these gene expression abnormalities reflect disturbances in postnatal developmental processes before clinical onset or arise as a consequence of clinical illness remains unclear. Expression levels for 7 GABA-related transcripts (vesicular GABA transporter [vGAT], GABA membrane transporter [GAT1], GABAA receptor subunit α1 [GABRA1] [novel in human and monkey cohorts], glutamic acid decarboxylase 67 [GAD67], parvalbumin, calretinin, and somatostatin [previously reported in human cohort, but not in monkey cohort]) were quantified in the PFC from 42 matched pairs of schizophrenia and comparison subjects and from 49 rhesus monkeys ranging in age from 1 week postnatal to adulthood. Levels of vGAT and GABRA1, but not of GAT1, messenger RNAs (mRNAs) were lower in the PFC of the schizophrenia subjects. As previously reported, levels of GAD67, parvalbumin, and somatostatin, but not of calretinin, mRNAs were also lower in these subjects. Neither illness duration nor age accounted for the levels of the transcripts with altered expression in schizophrenia. In monkey PFC, developmental changes in expression levels of many of these transcripts were in the opposite direction of the changes observed in schizophrenia. For example, mRNA levels for vGAT, GABRA1, GAD67, and parvalbumin all increased with age. Together with published reports, these findings support the interpretation that the altered expression of GABA-related transcripts in schizophrenia reflects a blunting of normal postnatal development changes, but they cannot exclude a decline during the early stages of clinical illness. © The Author 2013. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy

    PubMed Central

    Valera, Alexandra; López-Guillermo, Armando; Cardesa-Salzmann, Teresa; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Espinosa, Íñigo; Novelli, Silvana; Briones, Javier; Mate, José L.; Salamero, Olga; Sancho, Juan M.; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina; Martínez, Daniel; Castillo, Paola; Rovira, Jordina; Martínez, Antonio; Campo, Elias; Colomo, Luis

    2013-01-01

    MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rearrangements (MYC double/triple-hit) in 4%, MYC amplifications in 2% and MYC gains in 19%. MYC single-hit, MYC double/triple-hit and MYC amplifications, but not MYC gains or other gene rearrangements, were associated with unfavorable progression-free survival and overall survival. MYC protein expression, evaluated using computerized image analysis, captured the unfavorable prognosis of MYC translocations/amplifications and identified an additional subset of patients without gene alterations but with similar poor prognosis. Patients with tumors expressing both MYC/BCL2 had the worst prognosis, whereas those with double-negative tumors had the best outcome. High MYC expression was associated with shorter overall survival irrespectively of the International Prognostic Index and BCL2 expression. In conclusion, MYC protein expression identifies a subset of diffuse large B-cell lymphoma with very poor prognosis independently of gene alterations and other prognostic parameters. PMID:23716551

  4. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy.

    PubMed

    Valera, Alexandra; López-Guillermo, Armando; Cardesa-Salzmann, Teresa; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Espinosa, Iñigo; Novelli, Silvana; Briones, Javier; Mate, José L; Salamero, Olga; Sancho, Juan M; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina; Martínez, Daniel; Castillo, Paola; Rovira, Jordina; Martínez, Antonio; Campo, Elias; Colomo, Luis

    2013-10-01

    MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rearrangements (MYC double/triple-hit) in 4%, MYC amplifications in 2% and MYC gains in 19%. MYC single-hit, MYC double/triple-hit and MYC amplifications, but not MYC gains or other gene rearrangements, were associated with unfavorable progression-free survival and overall survival. MYC protein expression, evaluated using computerized image analysis, captured the unfavorable prognosis of MYC translocations/amplifications and identified an additional subset of patients without gene alterations but with similar poor prognosis. Patients with tumors expressing both MYC/BCL2 had the worst prognosis, whereas those with double-negative tumors had the best outcome. High MYC expression was associated with shorter overall survival irrespectively of the International Prognostic Index and BCL2 expression. In conclusion, MYC protein expression identifies a subset of diffuse large B-cell lymphoma with very poor prognosis independently of gene alterations and other prognostic parameters.

  5. Neural control of renal tubular solute and water transport.

    PubMed

    DiBona, G F

    1989-01-01

    The neural control of renal tubular solute and water transport is recognized as an important physiological mechanism in the overall regulation of solute and water homeostasis by the mammalian organism. Recent studies have expanded the understanding of this mechanism concerning the transport of diverse solutes with beginning insight into the precise nature of the cellular transport processes involved. The modulatory roles of both circulating and intrarenal hormonal systems on the responses to alterations in the magnitude of efferent renal sympathetic nerve activity are being understood from the nerve terminal release of neurotransmitter to influences on cellular transport processes which determine the overall effect. When dietary sodium intake is normal or only modestly reduced, intact renal innervation is not essential for normal renal sodium conservation. However, when dietary sodium intake is severely restricted, there is maximum engagement of all mechanisms known to participate in renal sodium conservation and, under these conditions, intact renal innervation is essential for normal renal sodium conservation.

  6. Cordyceps sinensis attenuates renal fibrosis and suppresses BAG3 induction in obstructed rat kidney.

    PubMed

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Zong, Zhi-Hong; Du, Zhen-Xian; Li, De-Tian; Wang, Hua-Qin; Liu, Bo; Miao, Jia-Ning; Bian, Xiao-Hui

    2015-01-01

    BAG3 regulates a number of cellular processes, including cell proliferation, apoptosis, adhesion and migration, and epithelial-mesenchymal transition (EMT). However, the role of BAG3 in renal tubular EMT and renal interstitial fibrosis remains elusive. This study aimed to examine the dynamic expression of BAG3 during renal fibrosis, and to investigate the efficacy of Cordyceps sinensis (C. sinensis) on renal fibrosis. A rat model of unilateral ureteral obstruction (UUO) was established, and the expression of BAG3 and α-SMA, and the efficacy of C. sinensis on renal fibrosis induced by UUO were examined. The results showed that UUO led to collagen accumulation, which was significantly suppressed by C. sinensis. UUO increased the expression of BAG3 and α-SMA, a mesenchymal marker, while UUO induced BAG3 and α-SMA expression was significantly inhibited by C. sinensis. In addition, immunohistochemical staining demonstrated that BAG3 immunoreactivity was restricted to tubular epithelium. In conclusion, BAG3 is a potential target for the prevention and/or treatment of renal fibrosis, and C. Sinensis is a promising agent for renal fibrosis.

  7. Interferon-γ biphasically regulates angiotensinogen expression via a JAK-STAT pathway and suppressor of cytokine signaling 1 (SOCS1) in renal proximal tubular cells

    PubMed Central

    Satou, Ryousuke; Miyata, Kayoko; Gonzalez-Villalobos, Romer A.; Ingelfinger, Julie R.; Navar, L. Gabriel; Kobori, Hiroyuki

    2012-01-01

    Renal inflammation modulates angiotensinogen (AGT) production in renal proximal tubular cells (RPTCs) via inflammatory cytokines, including interleukin-6, tumor necrosis factor α, and interferon-γ (IFN-γ). Among these, the effects of IFN-γ on AGT regulation in RPTCs are incompletely delineated. This study aimed to elucidate mechanisms by which IFN-γ regulates AGT expression in RPTCs. RPTCs were incubated with or without IFN-γ up to 48 h. AGT expression, STAT1 and STAT3 activities, and SOCS1 expression were evaluated. RNA interference studies against STAT1, SOCS1, and STAT3 were performed to elucidate a signaling cascade. IFN-γ decreased AGT expression at 6 h (0.61±0.05, ratio to control) and 12 h (0.47±0.03). In contrast, longer exposure for 24 and 48 h increased AGT expression (1.76±0.18, EC50=3.4 ng/ml, and 1.45±0.08, respectively). IFN-γ treatment for 6 h strongly induced STAT1 phosphorylation and SOCS1 augmentation, and decreased STAT3 activity. However, STAT1 phosphorylation and SOCS1 augmentation waned at 24 h, while STAT3 activity increased. RNA interference studies revealed that activation of STAT1-SOCS1 axis decreased STAT3 activity. Thus, IFN-γ biphasically regulates AGT expression in RPTCs via STAT3 activity modulated by STAT1-SOCS1 axis, suggesting the STAT1-SOCS1 axis is important in IFN-γ-induced activation of the intrarenal renin-angiotensin system.—Satou, R., Miyata, K., Gonzalez-Villalobos, R. A., Ingelfinger, J. R., Navar, L. G., Kobori, H. Interferon-γ biphasically regulates angiotensinogen expression via a JAK-STAT pathway and suppressor of cytokine signaling 1 (SOCS1) in renal proximal tubular cells. PMID:22302831

  8. Alterations of proteins in MDCK cells during acute potassium deficiency.

    PubMed

    Peerapen, Paleerath; Ausakunpipat, Nardtaya; Chanchaem, Prangwalai; Thongboonkerd, Visith

    2016-06-01

    Chronic K(+) deficiency can cause hypokalemic nephropathy associated with metabolic alkalosis, polyuria, tubular dilatation, and tubulointerstitial injury. However, effects of acute K(+) deficiency on the kidney remained unclear. This study aimed to explore such effects by evaluating changes in levels of proteins in renal tubular cells during acute K(+) deficiency. MDCK cells were cultivated in normal K(+) (NK) (K(+)=5.3 mM), low K(+) (LK) (K(+)=2.5 mM), or K(+) depleted (KD) (K(+)=0 mM) medium for 24 h and then harvested. Cellular proteins were resolved by two-dimensional gel electrophoresis (2-DE) and visualized by SYPRO Ruby staining (5 gels per group). Spot matching and quantitative intensity analysis revealed a total 48 protein spots that had significantly differential levels among the three groups. Among these, 46 and 30 protein spots had differential levels in KD group compared to NK and LK groups, respectively. Comparison between LK and NK groups revealed only 10 protein spots that were differentially expressed. All of these differentially expressed proteins were successfully identified by Q-TOF MS and/or MS/MS analyses. The altered levels of heat shock protein 90 (HSP90), ezrin, lamin A/C, tubulin, chaperonin-containing TCP1 (CCT1), and calpain 1 were confirmed by Western blot analysis. Global protein network analysis showed three main functional networks, including 1) cell growth and proliferation, 2) cell morphology, cellular assembly and organization, and 3) protein folding in which the altered proteins were involved. Further investigations on these networks may lead to better understanding of pathogenic mechanisms of low K(+)-induced renal injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Eupafolin enhances TRAIL-mediated apoptosis through cathepsin S-induced down-regulation of Mcl-1 expression and AMPK-mediated Bim up-regulation in renal carcinoma Caki cells.

    PubMed

    Han, Min Ae; Min, Kyoung-Jin; Woo, Seon Min; Seo, Bo Ram; Kwon, Taeg Kyu

    2016-10-04

    Eupafolin, a flavone found in Artemisia princeps, has been reported for its anti-tumor activity in several cancer cells. In this study, we examined whether eupafolin could sensitize TRAIL-mediated apoptosis in human renal carcinoma Caki cells. We found that eupafolin alone and TRAIL alone had no effect on apoptosis. However, combined treatment with eupafolin and TRAIL markedly induced apoptosis in human renal carcinoma (Caki) cells, glioma cells (U251MG), and prostate cancer cells (DU145), but not normal cells [mesangial cells (MC) and normal mouse kidney cells (TCMK-1)]. Eupafolin induced down-regulation of Mcl-1 expression at the post-translational levels in cathepsin S-dependent manner, and over-expression of Mcl-1 markedly blocked apoptosis induced by combined treatment with eupafolin and TRAIL. In addition, eupafolin increased Bim expression at the post-translational levels via AMP-activated protein kinase (AMPK)-mediated inhibition of proteasome activity. Knock-down of Bim expression by siRNA inhibited eupafolin plus TRAIL-induced apoptosis. Furthermore, combined treatment with eupafolin and TRAIL reduced tumor growth in xenograft models. Taken together, these results suggest that eupafolin enhanced TRAIL-mediated apoptosis via down-regulation of Mcl-1 and up-regulation of Bim in renal carcinoma Caki cells.

  10. Eupafolin enhances TRAIL-mediated apoptosis through cathepsin S-induced down-regulation of Mcl-1 expression and AMPK-mediated Bim up-regulation in renal carcinoma Caki cells

    PubMed Central

    Woo, Seon Min; Seo, Bo Ram; Kwon, Taeg Kyu

    2016-01-01

    Eupafolin, a flavone found in Artemisia princeps, has been reported for its anti-tumor activity in several cancer cells. In this study, we examined whether eupafolin could sensitize TRAIL-mediated apoptosis in human renal carcinoma Caki cells. We found that eupafolin alone and TRAIL alone had no effect on apoptosis. However, combined treatment with eupafolin and TRAIL markedly induced apoptosis in human renal carcinoma (Caki) cells, glioma cells (U251MG), and prostate cancer cells (DU145), but not normal cells [mesangial cells (MC) and normal mouse kidney cells (TCMK-1)]. Eupafolin induced down-regulation of Mcl-1 expression at the post-translational levels in cathepsin S-dependent manner, and over-expression of Mcl-1 markedly blocked apoptosis induced by combined treatment with eupafolin and TRAIL. In addition, eupafolin increased Bim expression at the post-translational levels via AMP-activated protein kinase (AMPK)-mediated inhibition of proteasome activity. Knock-down of Bim expression by siRNA inhibited eupafolin plus TRAIL-induced apoptosis. Furthermore, combined treatment with eupafolin and TRAIL reduced tumor growth in xenograft models. Taken together, these results suggest that eupafolin enhanced TRAIL-mediated apoptosis via down-regulation of Mcl-1 and up-regulation of Bim in renal carcinoma Caki cells. PMID:27582546

  11. [Tripeptides slow down aging process in renal cell culture].

    PubMed

    Khavinson, V Kh; Tarnovskaia, S I; Lin'kova, N S; Poliakova, V O; Durnova, A O; Nichik, T E; Kvetnoĭ, I M; D'iakonov, M M; Iakutseni, P P

    2014-01-01

    The mechanism of geroprotective effect of peptides AED and EDL was studied in ageing renal cell culture. Peptide AED and EDL increase cell proliferation, decreasing expression of marker of aging p16, p21, p53 and increasing expression of SIRT-6 in young and aged renal cell culture. The reduction of SIRT-6 synthesis in cell is one of the causes of cell senescence. On the basis of experimental data models of interaction of peptides with various sites of DNA were constructed. Both peptides form most energetically favorable complexes with d(ATATATATAT)2 sequences in minor groove of DNA. It is shown that interaction of peptides AED and EDL with DNA is the cause of gene expression, encoded marker of ageing in renal cells.

  12. Aquaporins: The renal water channels

    PubMed Central

    Agarwal, S. K.; Gupta, A.

    2008-01-01

    Water is the most abundant molecule in any cell. Specialized membrane channel, proteins called aquaporins, facilitate water transport across cell membranes. At least seven aquaporins (AQP): 1, 2, 3, 4, 6, 7, and 11 are expressed in the kidneys. Aquaporins play a role in both the short-term and long-term regulation of water balance as well as in the pathophysiology of water balance disorders. Aquaporin is composed of a single peptide chain consisting of approximately 270 amino acids. Inherited central and nephrogenic diabetes insipidus are primarily due to the decreased expression of AQP2 while mutation in the AQP2 molecule is responsible for inherited central diabetes insipidus. In acquired causes of nephrogenic diabetes insipidus, there is a downregulation of AQP2 expression in the inner medulla of the kidney. Nephrotic syndrome is characterized by excessive sodium and water reabsorption, although in spite of this, patients do not develop hyponatremia. There is a marked downregulation of both AQP2 and AQP3 expression, which could be a physiologic response to extracellular water reabsorption in patients with nephrotic syndrome. There are some conditions in which aquaporin expression has been found to increase such as experimentally induced heart failure, cirrhosis, and pregnancy. Some drugs such as cisplatin and cyclosporine, also alter the expression of aquaporins. The three-pore model of peritoneal transport depicts the importance of aquaporins. Thus, the understanding of renal water channels has solved the mystery behind many water balance disorders. Further insights into the molecular structure and biology of aquaporins will help to lay a foundation for the development of future drugs. PMID:20142913

  13. In an Ovine Model of Polycystic Ovary Syndrome (PCOS) Prenatal Androgens Suppress Female Fetal Renal Gluconeogenesis

    PubMed Central

    Connolly, Fiona; Rae, Michael T.; Späth, Katharina; Boswell, Lyndsey; McNeilly, Alan S.; Duncan, W. Colin

    2015-01-01

    Increased maternal androgen exposure during pregnancy programmes a polycystic ovary syndrome (PCOS)-like condition, with metabolic dysfunction, in adult female offspring. Other in utero exposures associated with the development of insulin resistance, such as intrauterine growth restriction and exposure to prenatal glucocorticoids, are associated with altered fetal gluconeogenesis. We therefore aimed to assess the effect of maternal androgenisation on the expression of PEPCK and G6PC in the ovine fetus. Pregnant Scottish Greyface sheep were treated with twice weekly testosterone propionate (TP; 100mg) or vehicle control from day 62 to day102 of gestation. At day 90 and day 112 fetal plasma and liver and kidney tissue was collected for analysis. PEPCK and G6PC expression were analysed by quantitative RT-PCR, immunohistochemistry and western blotting. PEPCK and G6PC were localised to fetal hepatocytes but maternal androgens had no effect on female or male fetuses. PEPCK and G6PC were also localised to the renal tubules and renal PEPCK (P<0.01) and G6PC (P = 0.057) were lower in females after prenatal androgenisation with no change in male fetuses. These tissue and sex specific observations could not be explained by alterations in fetal insulin or cortisol. The sexual dimorphism may be related to the increase in circulating estrogen (P<0.01) and testosterone (P<0.001) in females but not males. The tissue specific effects may be related to the increased expression of ESR1 (P<0.01) and AR (P<0.05) in the kidney when compared to the fetal liver. After discontinuation of maternal androgenisation female fetal kidney PEPCK expression normalised. These data further highlight the fetal and sexual dimorphic effects of maternal androgenisation, an antecedent to adult disease and the plasticity of fetal development. PMID:26148093

  14. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.).

    PubMed

    Ou, Xiufang; Long, Likun; Zhang, Yunhong; Xue, Yiqun; Liu, Jingchun; Lin, Xiuyun; Liu, Bao

    2009-03-09

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  15. Left ventricular wall stress and sarcoplasmic reticulum Ca(2+)-ATPase gene expression in renal hypertensive rats: dose-dependent effects of ACE inhibition and AT1-receptor blockade.

    PubMed

    Zierhut, W; Studer, R; Laurent, D; Kästner, S; Allegrini, P; Whitebread, S; Cumin, F; Baum, H P; de Gasparo, M; Drexler, H

    1996-05-01

    Cardiac hypertrophy is associated with altered Ca2+ handling and may predispose to the development of LV dysfunction and cardiac failure. At the cellular level, the re-expression of ANF represents a well-established marker of myocyte hypertrophy while the decreased expression of the sarcoplasmatic reticulum (SR) Ca(2+)-ATPase is thought o play a crucial role in the alterations of Ca2+ handling and LV function. We assessed the dose-dependent effect of chronic ACE inhibition or AT1 receptor blockade on cardiac function in relation to the cardiac expression of the SR Ca(2+)-ATPase and ANF. Renal hypertensive rats (2K-1C) were treated for 12 weeks with three different doses of the ACE inhibitor benazepril, the AT1-receptor antagonist valsartan (each drug 0.3, 3, and 10 mg/kg per day i.p.) or placebo. LV dimensions, hypertrophy and wall stress were determined in vivo by magnetic resonance imaging and the gene expressions of ANF and SR Ca(2+)-ATPase were quantified by Northern blot. Low doses of both drugs did not affect blood pressure, hypertrophy, systolic wall stress and the ANF and SR Ca(2+)-ATPase gene expression. High doses of each drug reduced systolic blood pressure, wall stress, and LV hypertrophy to a similar extent and to values comparable to normotensive, age-matched rats. In addition, high dose treatment reduced LV end-systolic and end-diastolic volume as compared to untreated 2K-1C animals and normalized the mRNA levels of both ANF and SR Ca(2+)-ATPase (as compared to normotensive animals). We conclude that in this model, high doses of ACE inhibition and AT1-receptor blockade are necessary to normalize systolic blood pressure, LV hypertrophy and systolic LV wall stress which, in turn, is associated with restoration of a normal cardiac phenotype with respect to SR Ca(2+)-ATPase and ANF and normalization of cardiac function.

  16. Altered expression of MUC2, MUC4, and MUC5 mucin genes in pancreas tissues and cancer cell lines.

    PubMed

    Balagué, C; Gambús, G; Carrato, C; Porchet, N; Aubert, J P; Kim, Y S; Real, F X

    1994-04-01

    Neoplastic transformation of epithelial cells is commonly associated with altered synthesis and structure of mucin glycoproteins. The aim of the study was to determine if altered mucin gene expression takes place in pancreas cancer. To examine mucin gene expression in normal pancreas and pancreas cancer, antibodies detecting the MUC1, MUC2, MUC5B, and MUC5C apomucins were used in immunohistochemical techniques and complementary DNA probes specific for the MUC1-MUC5 genes were used in Northern blots. MUC1 is the major apomucin expressed in normal pancreas, whereas MUC2-MUC5 are weakly expressed or undetectable. In pancreas cancer tissues and cell lines, increased expression of MUC2, MUC4, and MUC5C is shown. The cytoplasmic expression of MUC2 and MUC5C in tumor cells suggests that these apomucins are underglycosylated and abnormally compartmentalized. Enhanced expression of MUC2, MUC4, and MUC5C genes is a frequent event in pancreas cancer and may contribute to the alterations in the biochemical structure of pancreas cancer mucins.

  17. Cpt1a gene expression in peripheral blood mononuclear cells as an early biomarker of diet-related metabolic alterations

    PubMed Central

    Díaz-Rúa, Rubén; Palou, Andreu; Oliver, Paula

    2016-01-01

    Background Research on biomarkers that provide early information about the development of future metabolic alterations is an emerging discipline. Gene expression analysis in peripheral blood mononuclear cells (PBMC) is a promising tool to identify subjects at risk of developing diet-related diseases. Objective We analysed PBMC expression of key energy homeostasis-related genes in a time-course analysis in order to find out early markers of metabolic alterations due to sustained intake of high-fat (HF) and high-protein (HP) diets. Design We administered HF and HP diets (4 months) to adult Wistar rats in isocaloric conditions to a control diet, mainly to avoid overweight associated with the intake of hyperlipidic diets and, thus, to be able to characterise markers of metabolically obese normal-weight (MONW) syndrome. PBMC samples were collected at different time points of dietary treatment and expression of relevant energy homeostatic genes analysed by real-time reverse transcription-polymerase chain reaction. Serum parameters related with metabolic syndrome, as well as fat deposition in liver, were also analysed. Results The most outstanding results were those obtained for the expression of the lipolytic gene carnitine palmitoyltransferase 1a (Cpt1a). Cpt1a expression in PBMC increased after only 1 month of exposure to both unbalanced diets, and this increased expression was maintained thereafter. Interestingly, in the case of the HF diet, Cpt1a expression was altered even in the absence of increased body weight but correlated with alterations such as higher insulin resistance, alteration of serum lipid profile and, particularly, increased fat deposition in liver, a feature characteristic of metabolic syndrome, which was even observed in animals fed with HP diet. Conclusions We propose Cpt1a gene expression analysis in PBMC as an early biomarker of metabolic alterations associated with MONW phenotype due to the intake of isocaloric HF diets, as well as a marker of

  18. Long-term expression of glomerular genes in diabetic nephropathy.

    PubMed

    Chittka, Dominik; Banas, Bernhard; Lennartz, Laura; Putz, Franz Josef; Eidenschink, Kathrin; Beck, Sebastian; Stempfl, Thomas; Moehle, Christoph; Reichelt-Wurm, Simone; Banas, Miriam C

    2018-01-11

    Although diabetic nephropathy (DN) is the most common cause for end-stage renal disease in western societies, its pathogenesis still remains largely unclear. A different gene pattern of diabetic and healthy kidney cells is one of the probable explanations. Numerous signalling pathways have emerged as important pathophysiological mechanisms for diabetes-induced renal injury. Glomerular cells, as podocytes or mesangial cells, are predominantly involved in the development of diabetic renal lesions. While many gene assays concerning DN are performed with whole kidney or renal cortex tissue, we isolated glomeruli from black and tan, brachyuric (BTBR) obese/obese (ob/ob) and wildtype mice at four different timepoints (4, 8, 16 and 24 weeks) and performed an mRNA microarray to identify differentially expressed genes (DEGs). In contrast to many other diabetic mouse models, these homozygous ob/ob leptin-deficient mice develop not only a severe type 2 diabetes, but also diabetic kidney injury with all the clinical and especially histologic features defining human DN. By functional enrichment analysis we were able to investigate biological processes and pathways enriched by the DEGs at different disease stages. Altered expression of nine randomly selected genes was confirmed by quantitative polymerase chain reaction from glomerular RNA. Ob/ob type 2 diabetic mice showed up- and downregulation of genes primarily involved in metabolic processes and pathways, including glucose, lipid, fatty acid, retinol and amino acid metabolism. Members of the CYP4A and ApoB family were found among the top abundant genes. But more interestingly, altered gene loci showed enrichment for processes and pathways linked to angioneogenesis, complement cascades, semaphorin pathways, oxidation and reduction processes and renin secretion. The gene profile of BTBR ob/ob type 2 diabetic mice we conducted in this study can help to identify new key players in molecular pathogenesis of diabetic kidney

  19. SMARCB1/INI1 inactivation in renal medullary carcinoma.

    PubMed

    Calderaro, Julien; Moroch, Julien; Pierron, Gaelle; Pedeutour, Florence; Grison, Camille; Maillé, Pascale; Soyeux, Pascale; de la Taille, Alexandre; Couturier, Jérome; Vieillefond, Annick; Rousselet, Marie Christine; Delattre, Olivier; Allory, Yves

    2012-09-01

    Renal medullary carcinoma (RMC), a rare and highly aggressive tumour which occurs in patients with sickle-cell disease, shares many clinicopathological features with collecting duct carcinoma (CDC). The molecular mechanisms underlying RMC and CDC are mainly unknown, and there is ongoing debate about their status as distinct entities. Loss of expression of SMARCB1/INI1, a chromatin remodelling regulator and repressor of cyclin D1 transcription, has been reported recently in RMC. The aim of our study was to investigate if such loss of expression is specific for RMC. SMARCB1/INI1 genetic alterations and cyclin D1 expression were also studied. Using immunochemistry, neoplastic cells showed complete loss of SMARCB1/INI1 expression in all six cases of RMC but in only one of 22 cases of CDC. In two RMC cases investigated, comparative genomic hybridization demonstrated complete loss of one SMARCB1/INI1 allele, with no other genomic imbalances, and no mutations were found on the remaining allele. Cyclin D1 was expressed in all RMCs, suggesting that SMARCB1/INI1 inactivation may result in increased cyclin D1 transcription. The specific SMARCB1/INI1 inactivation observed in RMCs suggests that RMC and CDC are different entities. © 2012 Blackwell Publishing Ltd.

  20. Cinnamaldehyde impairs high glucose-induced hypertrophy in renal interstitial fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Louis Kuoping; Chang, W.-T.; Shih, Y.-W.

    2010-04-15

    Cinnamaldehyde is a major and a bioactive compound isolated from the leaves of Cinnamomum osmophloeum kaneh. To explore whether cinnamaldehyde was linked to altered high glucose (HG)-mediated renal tubulointerstitial fibrosis in diabetic nephropathy (DN), the molecular mechanisms of cinnamaldehyde responsible for inhibition of HG-induced hypertrophy in renal interstitial fibroblasts were examined. We found that cinnamaldehyde caused inhibition of HG-induced cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, cleaved poly(ADP-ribose) polymerase (PARP) protein expression, and mitochondrial cytochrome c release in HG or cinnamaldehyde treatments in these cells. HG-induced extracellular signal-regulatedmore » kinase (ERK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) (but not the Janus kinase 2/signal transducers and activators of transcription) activation was markedly blocked by cinnamaldehyde. The ability of cinnamaldehyde to inhibit HG-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of collagen IV, fibronectin, and alpha-smooth muscle actin (alpha-SMA). The results obtained in this study suggest that cinnamaldehyde treatment of renal interstitial fibroblasts that have been stimulated by HG reduces their ability to proliferate and hypertrophy through mechanisms that may be dependent on inactivation of the ERK/JNK/p38 MAPK pathway.« less

  1. Type 2 Diabetes Mellitus and Impaired Renal Function Are Associated With Brain Alterations and Poststroke Cognitive Decline.

    PubMed

    Ben Assayag, Einor; Eldor, Roy; Korczyn, Amos D; Kliper, Efrat; Shenhar-Tsarfaty, Shani; Tene, Oren; Molad, Jeremy; Shapira, Itzhak; Berliner, Shlomo; Volfson, Viki; Shopin, Ludmila; Strauss, Yehuda; Hallevi, Hen; Bornstein, Natan M; Auriel, Eitan

    2017-09-01

    Type 2 diabetes mellitus (T2DM) is associated with diseases of the brain, kidney, and vasculature. However, the relationship between T2DM, chronic kidney disease, brain alterations, and cognitive function after stroke is unknown. We aimed to evaluate the inter-relationship between T2DM, impaired renal function, brain pathology on imaging, and cognitive decline in a longitudinal poststroke cohort. The TABASCO (Tel Aviv brain acute stroke cohort) is a prospective cohort of stroke/transient ischemic attack survivors. The volume and white matter integrity, ischemic lesions, and brain and hippocampal volumes were measured at baseline using 3-T MRI. Cognitive tests were performed on 507 patients, who were diagnosed as having mild cognitive impairment, dementia, or being cognitively intact after 24 months. At baseline, T2DM and impaired renal function (estimated creatinine clearance [eCCl] <60 mL/min) were associated with smaller brain and hippocampal volumes, reduced cortical thickness, and worse white matter microstructural integrity. Two years later, both T2DM and eCCl <60 mL/min were associated with poorer cognitive scores, and 19.7% of the participants developed cognitive decline (mild cognitive impairment or dementia). Multiple analysis, controlling for age, sex, education, and apolipoprotein E4, showed a significant association of both T2DM and eCCl <60 mL/min with cognitive decline. Having both conditions doubled the risk compared with patients with T2DM or eCCl <60 mL/min alone and almost quadrupled the risk compared with patients without either abnormality. T2DM and impaired renal function are independently associated with abnormal brain structure, as well as poorer performance in cognitive tests, 2 years after stroke. The presence of both conditions quadruples the risk for cognitive decline. T2DM and lower eCCl have an independent and additive effect on brain atrophy and the risk of cognitive decline. URL: http://www.clinicaltrials.gov. Unique identifier: NCT

  2. EYA1 mutations associated with the branchio-oto-renal syndrome result in defective otic development in Xenopus laevis

    PubMed Central

    Li, Youe; Manaligod, Jose M.; Weeks, Daniel L.

    2009-01-01

    Background information. The BOR (branchio-oto-renal) syndrome is a dominant disorder most commonly caused by mutations in the EYA1 (Eyes Absent 1) gene. Symptoms commonly include deafness and renal anomalies. Results. We have used the embryos of the frog Xenopus laevis as an animal model for early ear development to examine the effects of different EYA1 mutations. Four eya1 mRNAs encoding proteins correlated with congenital anomalies in human were injected into early stage embryos. We show that the expression of mutations associated with BOR, even in the presence of normal levels of endogenous eya1 mRNA, leads to morphologically abnormal ear development as measured by overall otic vesicle size, establishment of sensory tissue and otic innervation. The molecular consequences of mutant eya1 expression were assessed by QPCR (quantitative PCR) analysis and in situ hybridization. Embryos expressing mutant eya1 showed altered levels of multiple genes (six1, dach, neuroD, ngnr-1 and nt3) important for normal ear development. Conclusions. These studies lend support to the hypothesis that dominant-negative effects of EYA1 mutations may have a role in the pathogenesis of BOR. PMID:19951260

  3. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemoto, Kiyomitsu, E-mail: nemoto@u-shizuoka-ken.ac.jp; Ikeda, Ayaka; Yoshida, Chiaki

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitromore » and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum

  4. Mercury exposure induces cytoskeleton disruption and loss of renal function through epigenetic modulation of MMP9 expression.

    PubMed

    Khan, Hafizurrahman; Singh, Radha Dutt; Tiwari, Ratnakar; Gangopadhyay, Siddhartha; Roy, Somendu Kumar; Singh, Dhirendra; Srivastava, Vikas

    2017-07-01

    Mercury is one of the major heavy metal pollutants occurring in elemental, inorganic and organic forms. Due to ban on most inorganic mercury containing products, human exposure to mercury generally occurs as methylmercury (MeHg) by consumption of contaminated fish and other sea food. Animal and epidemiological studies indicate that MeHg affects neural and renal function. Our study is focused on nephrotoxic potential of MeHg. In this study, we have shown for the first time how MeHg could epigenetically modulate matrix metalloproteinase 9(MMP9) to promote nephrotoxicity using an animal model of sub chronic MeHg exposure. MeHg caused renal toxicity as was seen by increased levels of serum creatinine and expression of early nephrotoxicity markers (KIM-1, Clusterin, IP-10, and TIMP). MeHg exposure also correlated strongly with induction of MMP9 mRNA and protein in a dose dependent manner. Further, while induction of MMP9 promoted cytoskeleton disruption and loss of cell-cell adhesion (loss of F-actin, Vimentin and Fibronectin), inhibition of MMP9 was found to reduce these disruptions. Mechanistic studies by ChIP analysis showed that MeHg modulated MMP9 by promoting demethylation of its regulatory region to increase its expression. Bisulfite sequencing identified critical CpGs in the first exon of MMP9 which were demethylated following MeHg exposure. ChIP studies also showed loss of methyl binding protein, MeCP2 and transcription factor PEA3 at the demethylated site confirming decreased CpG methylation. Our studies thus show how MeHg could epigenetically modulate MMP9 to promote cytoskeleton disruption leading to loss of renal function. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Increased curvature of hollow fiber membranes could up-regulate differential functions of renal tubular cell layers.

    PubMed

    Shen, Chong; Meng, Qin; Zhang, Guoliang

    2013-08-01

    Tissue engineering devices as in vitro cell culture systems in scaffolds has encountered the bottleneck due to their much lower cell functions than real tissues/organs in vivo. Such situation has been improved in some extent by mimicking the cell microenvironments in vivo from either chemical or physical ways. However, microenvironmental curvature, commonly seen in real tissues/organs, has never been manipulated to regulate the cell performance in vitro. In this regard, this paper fabricated polysulfone membranes with or without polyethylene glycol modification to investigate the impact of curvature on two renal tubular cells. Regardless the varying membrane curvatures among hollow fiber membranes of different diameters and flat membrane of zero curvature, both renal cells could well attach at 4 h of seeding and form similar confluent layers at 6 days on each membrane. Nevertheless, the renal cells on hollow fibers, though showing confluent morphology as those on flat membranes, expressed higher renal functions and, moreover, the renal functions significantly increased with the membrane curvature among hollow fibers. Such upregulation on functions was unassociated with mass transport barrier of hollow fibers, because the cultures on lengthwise cut hollow fibers without mass transfer barrier showed same curvature effect on renal functions as whole hollow fibers. It could be proposed that the curvature of hollow fiber membrane approaching to the large curvature in kidney tubules increased the mechanical stress in the renal cells and thus might up-regulate the renal cell functions. In conclusion, the increase of substrate curvature could up-regulate the cell functions without altering the confluent cell morphology and this finding will facilitate the design of functional tissue engineering devices. Copyright © 2013 Wiley Periodicals, Inc.

  6. Comparison of gene expression profiles altered by comfrey and riddelliine in rat liver

    PubMed Central

    Guo, Lei; Mei, Nan; Dial, Stacey; Fuscoe, James; Chen, Tao

    2007-01-01

    Background Comfrey (Symphytum officinale) is a perennial plant and has been consumed by humans as a vegetable, a tea and an herbal medicine for more than 2000 years. It, however, is hepatotoxic and carcinogenic in experimental animals and hepatotoxic in humans. Pyrrolizidine alkaloids (PAs) exist in many plants and many of them cause liver toxicity and/or cancer in humans and experimental animals. In our previous study, we found that the mutagenicity of comfrey was associated with the PAs contained in the plant. Therefore, we suggest that carcinogenicity of comfrey result from those PAs. To confirm our hypothesis, we compared the expression of genes and processes of biological functions that were altered by comfrey (mixture of the plant with PAs) and riddelliine (a prototype of carcinogenic PA) in rat liver for carcinogenesis in this study. Results Groups of 6 Big Blue Fisher 344 rats were treated with riddelliine at 1 mg/kg body weight by gavage five times a week for 12 weeks or fed a diet containing 8% comfrey root for 12 weeks. Animals were sacrificed one day after the last treatment and the livers were isolated for gene expression analysis. The gene expressions were investigated using Applied Biosystems Rat Whole Genome Survey Microarrays and the biological functions were analyzed with Ingenuity Analysis Pathway software. Although there were large differences between the significant genes and between the biological processes that were altered by comfrey and riddelliine, there were a number of common genes and function processes that were related to carcinogenesis. There was a strong correlation between the two treatments for fold-change alterations in expression of drug metabolizing and cancer-related genes. Conclusion Our results suggest that the carcinogenesis-related gene expression patterns resulting from the treatments of comfrey and riddelliine are very similar, and PAs contained in comfrey are the main active components responsible for carcinogenicity of

  7. Persistent Alterations of Gene Expression Profiling of Human Peripheral Blood Mononuclear Cells From Smokers

    PubMed Central

    Weng, Daniel Y.; Chen, Jinguo; Taslim, Cenny; Hsu, Ping-Ching; Marian, Catalin; David, Sean P.; Loffredo, Christopher A.; Shields, Peter G.

    2016-01-01

    The number of validated biomarkers of tobacco smoke exposure is limited, and none exist for tobacco-related cancer. Additional biomarkers for smoke, effects on cellular systems in vivo are needed to improve early detection of lung cancer, and to assist the Food and Drug Administration in regulating exposures to tobacco products. We assessed the effects of smoking on the gene expression using human cell cultures and blood from a cross-sectional study. We profiled global transcriptional changes in cultured smokers’ peripheral blood mononuclear cells (PBMCs) treated with cigarette smoke condensate (CSC) in vitro (n = 7) and from well-characterized smokers’ blood (n = 36). ANOVA with adjustment for covariates and Pearson correlation were used for statistical analysis in this study. CSC in vitro altered the expression of 1 178 genes (177 genes with > 1.5-fold-change) at P < 0.05. In vivo, PBMCs of heavy and light smokers differed for 614 genes (29 with > 1.5-fold-change) at P < 0.05 (309 remaining significant after adjustment for age, race, and gender). Forty-one genes were persistently altered both in vitro and in vivo, 22 having the same expression pattern reported for non-small cell lung cancer. Our data provides evidence that persistent alterations of gene expression in vitro and in vivo may relate to carcinogenic effects of cigarette smoke, and the identified genes may serve as potential biomarkers for cancer. The use of an in vitro model to corroborate results from human studies provides a novel way to understand human exposure and effect. PMID:26294040

  8. Osthole ameliorates renal ischemia-reperfusion injury by inhibiting inflammatory response.

    PubMed

    Zheng, Yi; Lu, Min; Ma, Lulin; Zhang, Shudong; Qiu, Min; Ma, Xin

    2013-01-01

    Renal ischemia-reperfusion (I/R) injury is a primary cause of acute renal failure that results in high mortality. This study aimed to investigate the effect of osthole, a natural coumarin derivative, on renal I/R injury in a rat model. Rats were randomly allocated to the sham operation + vehicle, I/R + vehicle, and I/R + osthole groups. Renal I/R injury was induced by clamping the left renal artery for 45 min followed by 12 h of reperfusion and a contralateral nephrectomy. Osthole (40 mg/kg) was intraperitoneally injected 30 min before inducing I/R. Renal function and histological damage were determined subsequently. Myeloperoxidase activity, monocyte/macrophage infiltration, as well as tumor necrosis factor-α, IL-1β, and activated p38 mitogen-activated protein kinase expression in kidneys were also assessed. Osthole treatment significantly ameliorated I/R-induced renal functional and morphological injuries. Moreover, osthole treatment attenuated myeloperoxidase activity, monocyte/macrophage infiltration, and tumor necrosis factor-α, IL-1β, and activated p38 mitogen-activated protein kinase expression in kidneys. Osthole treatment ameliorates renal I/R injury by inhibiting inflammatory responses in kidneys. Thus, osthole may represent a novel practical strategy to prevent renal I/R injury. Copyright © 2013 S. Karger AG, Basel.

  9. Renal atrial natriuretic factor receptors in hamster cardiomyopathy.

    PubMed

    Mukaddam-Daher, S; Jankowski, M; Dam, T V; Quillen, E W; Gutkowska, J

    1995-12-01

    Hamsters with cardiomyopathy (CMO), an experimental model of congestive heart failure, display stimulated renin-angiotensin-aldosterone and enhanced sympathetic nervous activity, all factors that lead to sodium retention, volume expansion and subsequent elevation of plasma atrial natriuretic factor (ANF) by the cardiac atria. However, sodium and water retention persist in CMO, indicating hyporesponsiveness to endogenous ANF. These studies were undertaken to fully characterize renal ANF receptor subtypes in normal hamsters and to evaluate whether alterations in renal ANF receptors may contribute to renal resistance to ANF in cardiomyopathy. Transcripts of the guanylyl cyclase-A (GC-A) and guanylyl cyclase B (GC-B) receptors were detected by quantitative polymerase chain reaction (PCR) in renal cortex, and outer and inner medullas. Compared to normal controls, the cardiomyopathic hamster's GC-A mRNA was similar in cortex but significantly increased in outer and inner medulla. Levels of GC-B mRNA were not altered by the disease. On the other hand, competitive binding studies, autoradiography, and affinity cross-linking demonstrated the absence of functional GC-B receptors in the kidney glomeruli and inner medulla. Also, C-type natriuretic peptide (CNP), the natural ligand for the GC-B receptors, failed to stimulate glomerular production of its second messenger cGMP. In CMO, sodium and water excretion were significantly reduced despite elevated plasma ANF (50.5 +/- 11.1 vs. 309.4 +/- 32.6 pg/ml, P < 0.001). Competitive binding studies of renal glomerular ANF receptors revealed no change in total receptor density, Bmax (369.6 +/- 27.4 vs. 282.8 +/- 26.2 fmol/mg protein), nor in dissociation constant, Kd (647.4 +/- 79.4 vs. 648.5 +/- 22.9 pM). Also, ANF-C receptor density (254.3 +/- 24.8 vs. 233.8 +/- 23.5 fmol/mg protein), nor affinity were affected by heart failure. Inner medullary receptors were exclusively of the GC-A subtype with Bmax (153.2 +/- 26.4 vs. 134

  10. Renal Denervation Prevents Immune Cell Activation and Renal Inflammation in Angiotensin II–Induced Hypertension

    PubMed Central

    Xiao, Liang; Kirabo, Annet; Wu, Jing; Saleh, Mohamed A.; Zhu, Linjue; Wang, Feng; Takahashi, Takamune; Loperena, Roxana; Foss, Jason D.; Mernaugh, Raymond L.; Chen, Wei; Roberts, Jackson; Osborn, John W.; Itani, Hana A.; Harrison, David G.

    2015-01-01

    Rationale Inflammation and adaptive immunity plays a crucial role in the development of hypertension. Angiotensin II and likely other hypertensive stimuli activate the central nervous system and promote T cell activation and end-organ damage in peripheral tissues. Objective To determine if renal sympathetic nerves mediate renal inflammation and T cell activation in hypertension. Methods and Results Bilateral renal denervation (RDN) using phenol application to the renal arteries reduced renal norepinephrine (NE) levels and blunted angiotensin II induced hypertension. Bilateral RDN also reduced inflammation, as reflected by decreased accumulation of total leukocytes, T cells and both CD4+ and CD8+ T cells in the kidney. This was associated with a marked reduction in renal fibrosis, albuminuria and nephrinuria. Unilateral RDN, which partly attenuated blood pressure, only reduced inflammation in the denervated kidney, suggesting that this effect is pressure independent. Angiotensin II also increased immunogenic isoketal-protein adducts in renal dendritic cells (DCs) and increased surface expression of costimulation markers and production of IL-1α, IL-1β, and IL-6 from splenic dendritic cells. NE also dose dependently stimulated isoketal formation in cultured DCs. Adoptive transfer of splenic DCs from angiotensin II-treated mice primed T cell activation and hypertension in recipient mice. RDN prevented these effects of hypertension on DCs. In contrast to these beneficial effects of ablating all renal nerves, renal afferent disruption with capsaicin had no effect on blood pressure or renal inflammation. Conclusions Renal sympathetic nerves contribute to dendritic cell activation, subsequent T cell infiltration and end-organ damage in the kidney in the development of hypertension. PMID:26156232

  11. Impaired Lysosomal Function Underlies Monoclonal Light Chain–Associated Renal Fanconi Syndrome

    PubMed Central

    Luciani, Alessandro; Sirac, Christophe; Terryn, Sara; Javaugue, Vincent; Prange, Jenny Ann; Bender, Sébastien; Bonaud, Amélie; Cogné, Michel; Aucouturier, Pierre; Ronco, Pierre

    2016-01-01

    Monoclonal gammopathies are frequently complicated by kidney lesions that increase the disease morbidity and mortality. In particular, abnormal Ig free light chains (LCs) may accumulate within epithelial cells, causing proximal tubule (PT) dysfunction and renal Fanconi syndrome (RFS). To investigate the mechanisms linking LC accumulation and PT dysfunction, we used transgenic mice overexpressing human control or RFS-associated κLCs (RFS-κLCs) and primary cultures of mouse PT cells exposed to low doses of corresponding human κLCs (25 μg/ml). Before the onset of renal failure, mice overexpressing RFS-κLCs showed PT dysfunction related to loss of apical transporters and receptors and increased PT cell proliferation rates associated with lysosomal accumulation of κLCs. Exposure of PT cells to RFS-κLCs resulted in κLC accumulation within enlarged and dysfunctional lysosomes, alteration of cellular dynamics, defective proteolysis and hydrolase maturation, and impaired lysosomal acidification. These changes were specific to the RFS-κLC variable (V) sequence, because they did not occur with control LCs or the same RFS-κLC carrying a single substitution (Ala30→Ser) in the V domain. The lysosomal alterations induced by RFS-κLCs were reflected in increased cell proliferation, decreased apical expression of endocytic receptors, and defective endocytosis. These results reveal that specific κLCs accumulate within lysosomes, altering lysosome dynamics and proteolytic function through defective acidification, thereby causing dedifferentiation and loss of reabsorptive capacity of PT cells. The characterization of these early events, which are similar to those encountered in congenital lysosomal disorders, provides a basis for the reported differential LC toxicity and new perspectives on LC-induced RFS. PMID:26614382

  12. Dietary zinc modifies diabetic-induced renal pathology in rats

    PubMed Central

    Elsaed, Wael M.; Mohamed, Hazem Abdelhamid

    2017-01-01

    Abstract This study was conducted to investigate how far dietary zinc (Zn) modifies the histomorphological alterations induced by diabetes in rat kidneys. The animals were divided into negative control group (10 rats). Diabetes was induced in thirty animals by streptozotocin. After confirming diabetes, the animals were divided into three groups (n = 10). Group II served as the positive control group (fed on standard diet), group III was fed on Zn deficient diet, and group IV was fed on Zn supplemented diet. Caspase-3 immune staining was used to estimate the caspase activity. Stereological procedures were used to measure the quantity of the immune stain and the surface area of the Bowman’s space. The renal cortices of group II rats revealed apparent widening of Bowman’s spaces with few apoptotic figures. The filtration barrier showed thickening of the basement membrane. The proximal convoluted tubules showed patchy loss of the apical microvilli with swollen mitochondria. The distal convoluted tubules revealed area of irregular basal enfolding. The picture was aggravated by Zn deficiency in group III besides areas of cortical interstitial fibrosis. The histopathological alterations were minimal in the cortices of group IV. A significant increase of the Bowman’s space surface area in group II and IV while decrease in group III compared with group I. The expression of Caspase-3 density was significantly increased in group II and III compared with group I while in group IV was non significant. In conclusion, dietary Zn modulated renal cortical changes caused by diabetes in rats. PMID:27882813

  13. The distribution of renal hyaluronan and the expression of hyaluronan synthases during water deprivation in the Spinifex hopping mouse, Notomys alexis.

    PubMed

    Bartolo, Ray C; Donald, John A

    2007-12-01

    Hyaluronan (HA) is a glycosaminoglycan that is synthesized by a family of enzymes called hyaluronan synthases (HASs), of which there are three isoforms (HAS1, 2 and 3) in mammals. The HASs have different tissue expression patterns and function, indicating that synthesis of HA and formation of the HA matrix may be regulated by various factors. The HA matrix has an important role in renal water handling and the production of a concentrated urine. We investigated the distribution of HA and the expression of HAS1, HAS2 and HAS3 mRNAs in the kidney of the Spinifex hopping mouse, Notomys alexis, a native Australian desert rodent that is reported to produce the most concentrated urine of any mammal. After periods of three, seven and fourteen days of water deprivation, the distribution of renal HA changed considerably, and there was a general down-regulation of HAS mRNA expression. It is proposed that the regulation of HA synthesis by the different HAS isoforms during water deprivation in N. alexis, could be influenced by the molecular mass of the HA chains produced by each isoform, followed by the rate at which the individual HAS produces HA.

  14. Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α.

    PubMed

    Adil, Mohammad; Kandhare, Amit D; Visnagri, Asjad; Bodhankar, Subhash L

    2015-01-01

    Chronic exposure of a naturally occurring metal arsenic leads to renal and hepatic diseases. Naringin, a flavanone glycoside, possesses anti-inflammatory and anti-oxidant potential. The aim of this investigation was to evaluate the protective effect of naringin against arsenic-induced renal and hepatic toxicity in rats. Renal and hepatic toxicity was induced in rats by sodium arsenite (5 mg/kg, p.o.). Rats were treated orally with either vehicle or naringin (20, 40, and 80 mg/kg) or Coenzyme Q10 (10 mg/kg) for 28 days. Various biochemical, histological, and molecular biomarkers were assessed in kidney and liver. Treatment with naringin (40 and 80 mg/kg) significantly and dose-dependently restored (p < 0.01 and p < 0.001) altered levels of kidney (serum creatinine, urine creatinine, BUN, uric acid, and creatinine clearance) and liver function test (AST and ALT) induced by sodium arsenite. Elevated levels of oxido-nitrosative stress in renal and hepatic tissue was significantly and dose-dependently decreased (p < 0.01 and p < 0.001) by naringin (40 and 80 mg/kg) treatment. It significantly and dose-dependently down-regulated (p < 0.01 and p < 0.001) renal KIM-1, Caspase-3, TGF-β, and TNF-α mRNA expression. Histopathological alteration induced in kidney and liver by sodium arsenite was reduced by naringin (40 and 80 mg/kg) treatment. In conclusion, naringin treatment ameliorates arsenic-induced renal and hepatic damage in rats due its antioxidant and anti-inflammatory properties via down-regulation of elevated oxido-nitrosative stress, KIM-1, Caspase-3, TGF-β, and TNF-α levels.

  15. Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1.

    PubMed

    Vallon, Volker; Schroth, Jana; Lang, Florian; Kuhl, Dietmar; Uchida, Shinichi

    2009-09-01

    The Na-Cl cotransporter NCC is expressed in the distal convoluted tubule, activated by phosphorylation, and has been implicated in renal NaCl and K(+) homeostasis. The serum and glucocorticoid inducible kinase 1 (SGK1) contributes to renal NaCl retention and K(+) excretion, at least in part, by stimulating the epithelial Na(+) channel and Na(+)-K(+)-ATPase in the downstream segments of aldosterone-sensitive Na(+)/K(+) exchange. In this study we confirmed in wild-type mice (WT) that dietary NaCl restriction increases renal NCC expression and its phosphorylation at Thr(53), Thr(58), and Ser(71), respectively. This response, however, was attenuated in mice lacking SGK1 (Sgk1(-/-)), which may contribute to impaired NaCl retention in those mice. Total renal NCC expression and phosphorylation at Thr(53), Thr(58), and Ser(71) in WT were greater under low- compared with high-K(+) diet. This finding is consistent with a regulation of NCC to modulate Na(+) delivery to downstream segments of Na(+)/K(+) exchange, thereby modulating K(+) excretion. Dietary K(+)-dependent variation in renal expression of total NCC and phosphorylated NCC were not attenuated in Sgk1(-/-) mice. In fact, high-K(+) diet-induced NCC suppression was enhanced in Sgk1(-/-) mice. The hyperkalemia induced in Sgk1(-/-) mice by a high-K(+) diet may have augmented NCC suppression, thereby increasing Na(+) delivery and facilitating K(+) excretion in downstream segments of impaired Na(+)/K(+) exchange. In summary, changes in NaCl and K(+) intake altered NCC expression and phosphorylation, an observation consistent with a role of NCC in NaCl and K(+) homeostasis. The two maneuvers dissociated plasma aldosterone levels from NCC expression and phosphorylation, implicating additional regulators. Regulation of NCC expression and phosphorylation by dietary NaCl restriction appears to involve SGK1.

  16. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma.

    PubMed

    Miao, Diana; Margolis, Claire A; Gao, Wenhua; Voss, Martin H; Li, Wei; Martini, Dylan J; Norton, Craig; Bossé, Dominick; Wankowicz, Stephanie M; Cullen, Dana; Horak, Christine; Wind-Rotolo, Megan; Tracy, Adam; Giannakis, Marios; Hodi, Frank Stephen; Drake, Charles G; Ball, Mark W; Allaf, Mohamad E; Snyder, Alexandra; Hellmann, Matthew D; Ho, Thai; Motzer, Robert J; Signoretti, Sabina; Kaelin, William G; Choueiri, Toni K; Van Allen, Eliezer M

    2018-02-16

    Immune checkpoint inhibitors targeting the programmed cell death 1 receptor (PD-1) improve survival in a subset of patients with clear cell renal cell carcinoma (ccRCC). To identify genomic alterations in ccRCC that correlate with response to anti-PD-1 monotherapy, we performed whole-exome sequencing of metastatic ccRCC from 35 patients. We found that clinical benefit was associated with loss-of-function mutations in the PBRM1 gene ( P = 0.012), which encodes a subunit of the PBAF switch-sucrose nonfermentable (SWI/SNF) chromatin remodeling complex. We confirmed this finding in an independent validation cohort of 63 ccRCC patients treated with PD-1 or PD-L1 (PD-1 ligand) blockade therapy alone or in combination with anti-CTLA-4 (cytotoxic T lymphocyte-associated protein 4) therapies ( P = 0.0071). Gene-expression analysis of PBAF-deficient ccRCC cell lines and PBRM1 -deficient tumors revealed altered transcriptional output in JAK-STAT (Janus kinase-signal transducers and activators of transcription), hypoxia, and immune signaling pathways. PBRM1 loss in ccRCC may alter global tumor-cell expression profiles to influence responsiveness to immune checkpoint therapy. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Shared Gene Expression Alterations in Nasal and Bronchial Epithelium for Lung Cancer Detection.

    PubMed

    2017-07-01

    We previously derived and validated a bronchial epithelial gene expression biomarker to detect lung cancer in current and former smokers. Given that bronchial and nasal epithelial gene expression are similarly altered by cigarette smoke exposure, we sought to determine if cancer-associated gene expression might also be detectable in the more readily accessible nasal epithelium. Nasal epithelial brushings were prospectively collected from current and former smokers undergoing diagnostic evaluation for pulmonary lesions suspicious for lung cancer in the AEGIS-1 (n = 375) and AEGIS-2 (n = 130) clinical trials and gene expression profiled using microarrays. All statistical tests were two-sided. We identified 535 genes that were differentially expressed in the nasal epithelium of AEGIS-1 patients diagnosed with lung cancer vs those with benign disease after one year of follow-up ( P  < .001). Using bronchial gene expression data from the AEGIS-1 patients, we found statistically significant concordant cancer-associated gene expression alterations between the two airway sites ( P  < .001). Differentially expressed genes in the nose were enriched for genes associated with the regulation of apoptosis and immune system signaling. A nasal lung cancer classifier derived in the AEGIS-1 cohort that combined clinical factors (age, smoking status, time since quit, mass size) and nasal gene expression (30 genes) had statistically significantly higher area under the curve (0.81; 95% confidence interval [CI] = 0.74 to 0.89, P  = .01) and sensitivity (0.91; 95% CI = 0.81 to 0.97, P  = .03) than a clinical-factor only model in independent samples from the AEGIS-2 cohort. These results support that the airway epithelial field of lung cancer-associated injury in ever smokers extends to the nose and demonstrates the potential of using nasal gene expression as a noninvasive biomarker for lung cancer detection. © The Author 2017. Published by Oxford

  18. Rapamycin inhibition of mTORC1 reverses lithium-induced proliferation of renal collecting duct cells

    PubMed Central

    Gao, Yang; Romero-Aleshire, Melissa J.; Cai, Qi; Price, Theodore J.

    2013-01-01

    Nephrogenic diabetes insipidus (NDI) is the most common renal side effect in patients undergoing lithium therapy for bipolar affective disorders. Approximately 2 million US patients take lithium of whom ∼50% will have altered renal function and develop NDI (2, 37). Lithium-induced NDI is a defect in the urinary concentrating mechanism. Lithium therapy also leads to proliferation and abundant renal cysts (microcysts), commonly in the collecting ducts of the cortico-medullary region. The mTOR pathway integrates nutrient and mitogen signals to control cell proliferation and cell growth (size) via the mTOR Complex 1 (mTORC1). To address our hypothesis that mTOR activation may be responsible for lithium-induced proliferation of collecting ducts, we fed mice lithium chronically and assessed mTORC1 signaling in the renal medulla. We demonstrate that mTOR signaling is activated in the renal collecting ducts of lithium-treated mice; lithium increased the phosphorylation of rS6 (Ser240/Ser244), p-TSC2 (Thr1462), and p-mTOR (Ser2448). Consistent with our hypothesis, treatment with rapamycin, an allosteric inhibitor of mTOR, reversed lithium-induced proliferation of medullary collecting duct cells and reduced levels of p-rS6 and p-mTOR. Medullary levels of p-GSK3β were increased in the renal medullas of lithium-treated mice and remained elevated following rapamycin treatment. However, mTOR inhibition did not improve lithium-induced NDI and did not restore the expression of collecting duct proteins aquaporin-2 or UT-A1. PMID:23884148

  19. Effects of Renal Ischemic Postconditioning on Myocardial Ultrastructural Organization and Myocardial Expression of Bcl-2/Bax in Rabbits

    PubMed Central

    Zhang, Wen-zhong; Li, Rong; Liu, Song; Ning, Xian-feng; Cai, Shang-lang

    2016-01-01

    We investigated the cardioprotective effect of renal ischemic postconditioning (RI-PostC) and its mechanisms in a rabbit model. Rabbits underwent 60 min of left anterior descending coronary artery occlusion (LADO) and 6 h of reperfusion. The ischemia-reperfusion (IR) group underwent LADO and reperfusion only. In the RI-PostC group, the left renal artery underwent 3 cycles of occlusion for 30 seconds and release for 30 seconds, before the coronary artery was reperfused. In the RI-PostC + GF109203X group, the rabbits received 0.05 mg/kg GF109203X (protein kinase C inhibitor) intravenously for 10 min followed by RI-PostC. Light microscopy and electron microscopy demonstrated that the RI-PostC group showed less pronounced changes, a smaller infarct region, and less apoptosis than the other two groups. Bcl-2 and Bax protein expression did not differ between the IR and RI-PostC + GF109203X groups. However, in the RI-PostC group, Bcl-2 protein expression was significantly higher and Bax protein expression was significantly lower than in the other two groups (P < 0.05). Changes in heart rate and mean arterial pressure were also smaller in the RI-PostC group than in the other two groups. These results indicate that RI-PostC can ameliorate myocardial ischemia-reperfusion injury and increase the Bcl-2/Bax ratio through a mechanism involving protein kinase C. PMID:28097153

  20. Gene expression profiling to identify the toxicities and potentially relevant human disease outcomes associated with environmental heavy metal exposure.

    PubMed

    Korashy, Hesham M; Attafi, Ibraheem M; Famulski, Konrad S; Bakheet, Saleh A; Hafez, Mohammed M; Alsaad, Abdulaziz M S; Al-Ghadeer, Abdul Rahman M

    2017-02-01

    Heavy metals are the most commonly encountered toxic substances that increase susceptibility to various diseases after prolonged exposure. We have previously shown that healthy volunteers living near a mining area had significant contamination with heavy metals associated with significant changes in the expression of some detoxifying genes, xenobiotic metabolizing enzymes, and DNA repair genes. However, alterations of most of the molecular target genes associated with diseases are still unknown. Thus, the aims of this study were to (a) evaluate the gene expression profile and (b) identify the toxicities and potentially relevant human disease outcomes associated with long-term human exposure to environmental heavy metals in mining area using microarray analysis. For this purpose, 40 healthy male volunteers who were residents of a heavy metal-polluted area (Mahd Al-Dhahab city, Saudi Arabia) and 20 healthy male volunteers who were residents of a non-heavy metal-polluted area were included in the study. Total RNA was isolated from whole blood using PAXgene Blood RNA tubes and then reversed transcribed and hybridized to the gene array using the Affymetrix U219 GeneChip. Microarray analysis showed about 2129 genes were identified and differentially altered, among which a shared set of 425 genes was differentially expressed in the heavy metal-exposed groups. Ingenuity pathway analysis revealed that the most altered gene-regulated diseases in heavy metal-exposed groups included hematological and developmental disorders and mostly renal and urological diseases. Quantitative real-time polymerase chain reaction closely matched the microarray data for some genes tested. Importantly, changes in gene-related diseases were attributed to alterations in the genes encoded for protein synthesis. Renal and urological diseases were the diseases that were most frequently associated with the heavy metal-exposed group. Therefore, there is a need for further studies to validate these

  1. Stress and sodium intake in neural control of renal function in hypertension.

    PubMed

    DiBona, G F

    1991-04-01

    The interaction between genetic and environmental factors is important in the pathophysiology of hypertension. By examining the effects of two environmental factors--acute psychoemotional stress and dietary sodium intake--in rats with genetic hypertension, an important influence on central neural mechanisms governing the renal sympathetic neural control of renal function has been demonstrated. Additional studies of the central opioid systems have demonstrated an important role of opioid peptides in modulating the renal functional responses to acute psychoemotional stress. The observed renal functional alterations--antidiuresis, antinatriuresis, and renal vasoconstriction--are known to be capable of contributing to the initiation, development, and maintenance of the hypertensive process.

  2. Human renal adipose tissue induces the invasion and progression of renal cell carcinoma.

    PubMed

    Campo-Verde-Arbocco, Fiorella; López-Laur, José D; Romeo, Leonardo R; Giorlando, Noelia; Bruna, Flavia A; Contador, David E; López-Fontana, Gastón; Santiano, Flavia E; Sasso, Corina V; Zyla, Leila E; López-Fontana, Constanza M; Calvo, Juan C; Carón, Rubén W; Creydt, Virginia Pistone

    2017-11-07

    We evaluated the effects of conditioned media (CMs) of human adipose tissue from renal cell carcinoma located near the tumor (hRATnT) or farther away from the tumor (hRATfT), on proliferation, adhesion and migration of tumor (786-O and ACHN) and non-tumor (HK-2) human renal epithelial cell lines. Human adipose tissues were obtained from patients with renal cell carcinoma (RCC) and CMs from hRATnT and hRATfT incubation. Proliferation, adhesion and migration were quantified in 786-O, ACHN and HK-2 cell lines incubated with hRATnT-, hRATfT- or control-CMs. We evaluated versican, adiponectin and leptin expression in CMs from hRATnT and hRATfT. We evaluated AdipoR1/2, ObR, pERK, pAkt y pPI3K expression on cell lines incubated with CMs. No differences in proliferation of cell lines was found after 24 h of treatment with CMs. All cell lines showed a significant decrease in cell adhesion and increase in cell migration after incubation with hRATnT-CMs vs. hRATfT- or control-CMs. hRATnT-CMs showed increased levels of versican and leptin, compared to hRATfT-CMs. AdipoR2 in 786-O and ACHN cells decreased significantly after incubation with hRATfT- and hRATnT-CMs vs. control-CMs. We observed a decrease in the expression of pAkt in HK-2, 786-O and ACHN incubated with hRATnT-CMs. This result could partially explain the observed changes in migration and cell adhesion. We conclude that hRATnT released factors, such as leptin and versican, could enhance the invasive potential of renal epithelial cell lines and could modulate the progression of the disease.

  3. Human renal adipose tissue induces the invasion and progression of renal cell carcinoma

    PubMed Central

    Campo-Verde-Arbocco, Fiorella; López-Laur, José D.; Romeo, Leonardo R.; Giorlando, Noelia; Bruna, Flavia A.; Contador, David E.; López-Fontana, Gastón; Santiano, Flavia E.; Sasso, Corina V.; Zyla, Leila E.; López-Fontana, Constanza M.; Calvo, Juan C.; Carón, Rubén W.; Creydt, Virginia Pistone

    2017-01-01

    We evaluated the effects of conditioned media (CMs) of human adipose tissue from renal cell carcinoma located near the tumor (hRATnT) or farther away from the tumor (hRATfT), on proliferation, adhesion and migration of tumor (786-O and ACHN) and non-tumor (HK-2) human renal epithelial cell lines. Human adipose tissues were obtained from patients with renal cell carcinoma (RCC) and CMs from hRATnT and hRATfT incubation. Proliferation, adhesion and migration were quantified in 786-O, ACHN and HK-2 cell lines incubated with hRATnT-, hRATfT- or control-CMs. We evaluated versican, adiponectin and leptin expression in CMs from hRATnT and hRATfT. We evaluated AdipoR1/2, ObR, pERK, pAkt y pPI3K expression on cell lines incubated with CMs. No differences in proliferation of cell lines was found after 24 h of treatment with CMs. All cell lines showed a significant decrease in cell adhesion and increase in cell migration after incubation with hRATnT-CMs vs. hRATfT- or control-CMs. hRATnT-CMs showed increased levels of versican and leptin, compared to hRATfT-CMs. AdipoR2 in 786-O and ACHN cells decreased significantly after incubation with hRATfT- and hRATnT-CMs vs. control-CMs. We observed a decrease in the expression of pAkt in HK-2, 786-O and ACHN incubated with hRATnT-CMs. This result could partially explain the observed changes in migration and cell adhesion. We conclude that hRATnT released factors, such as leptin and versican, could enhance the invasive potential of renal epithelial cell lines and could modulate the progression of the disease. PMID:29212223

  4. CHESS (CgHExpreSS): a comprehensive analysis tool for the analysis of genomic alterations and their effects on the expression profile of the genome.

    PubMed

    Lee, Mikyung; Kim, Yangseok

    2009-12-16

    Genomic alterations frequently occur in many cancer patients and play important mechanistic roles in the pathogenesis of cancer. Furthermore, they can modify the expression level of genes due to altered copy number in the corresponding region of the chromosome. An accumulating body of evidence supports the possibility that strong genome-wide correlation exists between DNA content and gene expression. Therefore, more comprehensive analysis is needed to quantify the relationship between genomic alteration and gene expression. A well-designed bioinformatics tool is essential to perform this kind of integrative analysis. A few programs have already been introduced for integrative analysis. However, there are many limitations in their performance of comprehensive integrated analysis using published software because of limitations in implemented algorithms and visualization modules. To address this issue, we have implemented the Java-based program CHESS to allow integrative analysis of two experimental data sets: genomic alteration and genome-wide expression profile. CHESS is composed of a genomic alteration analysis module and an integrative analysis module. The genomic alteration analysis module detects genomic alteration by applying a threshold based method or SW-ARRAY algorithm and investigates whether the detected alteration is phenotype specific or not. On the other hand, the integrative analysis module measures the genomic alteration's influence on gene expression. It is divided into two separate parts. The first part calculates overall correlation between comparative genomic hybridization ratio and gene expression level by applying following three statistical methods: simple linear regression, Spearman rank correlation and Pearson's correlation. In the second part, CHESS detects the genes that are differentially expressed according to the genomic alteration pattern with three alternative statistical approaches: Student's t-test, Fisher's exact test and Chi square

  5. [Vascular trombosis of renal graft: 9 cases].

    PubMed

    Kaaroud, Hayet; Béji, Soumaya; Ben Hamida, Fethi; Rais, Lamia; Ben Abdallah, Taieb; El Younsi, Fethi; Ben Moussa, Fatma; Abderrahim, Ezzedine; Bardi, Rafika; Ayed, Khaled; Chebil, Mohamed; Kheder, Adel

    2008-04-01

    Allograft renal thrombosis can occur in 1 to 6% of cases. Many predisposing factors has been identified especially alteration of coagulation. We analyzed in this study frequency and predisposing factors of renal graft thrombosis. We report a retrospective study including 319 renal transplant recipients. Nine patients (2.8%) presented veinous graft thrombosis in 5 cases and arterial thombosis in 4 cases. There were 6 men and 3 women aged of 30.6 years meanly (10-56) which developed the thrombosis 6 days (1-48) after the transplantation. All patients were detransplanted after 16.2 days and 1 patient died. Thrombosis constitute an important cause of graft loss. A perfect surgical technic and prophylactic treatment in high risk patients are necessary to reduce this complication.

  6. GENE EXPRESSION PROFILING OF THE RAT KIDNEY FOLLOWING CHRONIC EXPOSURE (100 WKS) TO THE WATER DISINFECTANT BYPRODUCT AND RENAL CARCINOGEN, POTASSIUM BROMATE.

    EPA Science Inventory

    Gene expression profiling of the rat kidney following chronic exposure (100 wks) to the water
    disinfectant byproduct and renal carcinogen, potassium bromate.

    Don Delker, James Allen, Gail Nelson, Tanya Moore, Barbara Roop, Russell Owen, and Anthony DeAngelo. Environment...

  7. Diabetic rats present higher urinary loss of proteins and lower renal expression of megalin, cubilin, ClC-5, and CFTR.

    PubMed

    Figueira, Miriam F; Castiglione, Raquel C; de Lemos Barbosa, Carolina M; Ornellas, Felipe M; da Silva Feltran, Geórgia; Morales, Marcelo M; da Fonseca, Rodrigo N; de Souza-Menezes, Jackson

    2017-07-01

    Diabetic nephropathy (DN) occurs in around 40% of those with diabetes. Proteinuria is the main characteristic of DN and develops as a result of increased permeability of the glomerulus capillary wall and/or decreased proximal tubule endocytosis. The goal of this work was to evaluate renal function and the expression of megalin, cubilin, CFTR (cystic fibrosis transmembrane conductance regulator), and ClC-5 in the proximal tubule and renal cortex of rats with type 1 diabetes. Male Wistar rats were randomly assigned to control (CTRL) and diabetic (DM) groups for 4 weeks. Renal function was assessed in 24-h urine sample by calculating clearance and fractional excretion of solutes. The RNA and protein contents of ClC-5, CFTR, megalin, and cubilin were determined in the renal proximal tubule and cortex using real-time polymerase chain reaction and western blotting techniques, respectively. The results showed higher creatinine clearance and higher urinary excretion of proteins, albumin, and transferrin in the DM group than in the CTRL group. Furthermore, the renal cortex and proximal tubule of diabetic animals showed downregulation of megalin, cubilin, ClC-5, and CFTR, critical components of the endocytic apparatus. These data suggest dysfunction in proximal tubule low-molecular-weight endocytosis and protein glomerulus filtration in the kidney of diabetic rats. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  8. [Pleural metastases of renal carcinoma].

    PubMed

    Giigoruk, O G; Lazarev, A F; Doroshenko, V S

    2007-01-01

    Metastases in renal carcinoma are diagnosed at initial diagnosis in 25% examinees. Traditional renal carcinoma has higher metastatic potential, is associated with worse survival of the patients compared to papillary cancer. We studied cytological characteristics of renal carcinoma metastases to the pleura in comparison with histological studies of the primary lesion using immunohistochemical findings. We examined cytologically pleural liquid in renal carcinoma metastases to the pleura in 6 patients (2.3% of carcinomatous pleuricies). High efficacy was shown by a cytocentrifuge CYTOSPIN-4. In 3 cases initial cancer was renal cell carcinoma, pleural exudation developed 2 years later, clear cell carcinoma appeared 6 years later and papillary cancer--10 years later. In the other 3 cases malignant cells were detected in new-onset cases. Renal carcinoma was diagnosed in one case. Cytological preparations were studied with identification of cytological signs typical for classic clear cell, granulocell and papillary renal cancer. Immunohistochemical examination of primary tumor lesion in the kidney discovered high proliferative activity of tumor cells by Ki-67 index to 5.28%. The tumors had solitary Bcl-2 positive cells. Expression of mutant p-53 took place in 0.93%. Her-2/neu hyperexpression was not found in the tumors of the above patients. Such immunohistochemical parameters point to poor prognosis. This is confirmed by renal carcinoma metastases to the pleura.

  9. Structures of Rotavirus Reassortants Demonstrate Correlation of Altered Conformation of the VP4 Spike and Expression of Unexpected VP4-Associated Phenotypes

    PubMed Central

    Pesavento, Joseph B.; Billingsley, Angela M.; Roberts, Ed J.; Ramig, Robert F.; Prasad, B. V. Venkataram

    2003-01-01

    Numerous prior studies have indicated that viable rotavirus reassortants containing structural proteins of heterologous parental origin may express unexpected phenotypes, such as changes in infectivity and immunogenicity. To provide a structural basis for alterations in phenotypic expression, a three-dimensional structural analysis of these reassortants was conducted. The structures of the reassortants show that while VP4 generally maintains the parental structure when moved to a heterologous protein background, in certain reassortants, there are subtle alterations in the conformation of VP4. The alterations in VP4 conformation correlated with expression of unexpected VP4-associated phenotypes. Interactions between heterologous VP4 and VP7 in reassortants expressing unexpected phenotypes appeared to induce the conformational alterations seen in VP4. PMID:12584352

  10. RASSF1A protein expression and correlation with clinicopathological parameters in renal cell carcinoma

    PubMed Central

    Tezval, Hossein; Merseburger, Axel S; Matuschek, Ira; Machtens, Stefan; Kuczyk, Markus A; Serth, Jürgen

    2008-01-01

    Background Epigenetic silencing of RAS association family 1A (RASSF1A) tumor suppressor gene occurs in various histological subtypes of renal cell carcinoma (RCC) but RASSF1A protein expression in clear cell RCC as well as a possible correlation with clinicopathological parameters of patients has not been analyzed at yet. Methods 318 primary clear cell carcinomas were analyzed using tissue microarray analysis and immunohistochemistry. Survival analysis was carried out for 187 patients considering a follow-up period of 2–240 month. Results Expression of RASSF1A was found to be significantly decreased in tumoral cells when compared to normal tubular epithelial cells. RASSF1A immunopositivity was significantly associated with pT stage, group stage and histological grade of tumors and showed a tendency for impaired survival in Kaplan-Meier analysis. Conclusion While most tumors demonstrate a loss of RASSF1A protein, a subset of tumors was identified to exhibit substantial RASSF1A protein expression and show increased tumor progression. Thus RCC tumorigenesis without depletion of RASSF1A may be associated with an adverse clinical outcome. PMID:18822131

  11. The pharmacokinetics and extracorporeal removal of N-acetylcysteine during renal replacement therapies.

    PubMed

    Hernandez, Stephanie H; Howland, Maryann; Schiano, Thomas D; Hoffman, Robert S

    2015-01-01

    Acetaminophen-induced fulminant hepatic failure is associated with acute kidney injury, metabolic acidosis, and fluid and electrolyte imbalances, requiring treatment with renal replacement therapies. Although antidote, acetylcysteine, is potentially extracted by renal replacement therapies, pharmacokinetic data are lacking to guide potential dosing alterations. We aimed to determine the extracorporeal removal of acetylcysteine by various renal replacement therapies. Simultaneous urine, plasma and effluent specimens were serially collected to measure acetylcysteine concentrations in up to three stages: before, during and upon termination of renal replacement therapy. Alterations in pharmacokinetics were determined by applying standard pharmacokinetic equations. Over 2 years, 10 critically ill patients in fulminant hepatic failure requiring renal replacement therapy coincident with acetylcysteine were consecutively enrolled. All 10 patients required continuous venovenous hemofiltration (n = 10) and 2 of the 10 also required hemodialysis (n = 2). There was a significant alteration in the pharmacokinetics of acetylcysteine during hemodialysis; the area under the curve (AUC) decreased 41%, the mean extraction ratio was 51%, the mean hemodialytic clearance was 114.01 ml/kg/h, and a mean 166.75 mg/h was recovered in the effluent or 41% of the hourly dose. Alteration in the pharmacokinetics of acetylcysteine during continuous venovenous hemofiltration did not appear to be significant: the AUC decreased 13%, the mean clearance was 31.77 ml/kg/h and a mean 62.12 mg/h was recovered in the effluent or 14% of the hourly dose. There was no significant extraction of acetylcysteine from continuous venovenous hemofiltration. In contrast, there was significant extracorporeal removal of acetylcysteine during hemodialysis. A reasonable dose adjustment may be to double the IV infusion rate or possibly supplement with oral acetylcysteine during hemodialysis.

  12. [Effect of fluorofenidone on renal interstitial fibrosis in rats with unilateral ureteral obstruction].

    PubMed

    Tan, Wenqing; Wang, Wei; Zheng, Xuan; Chen, Jiying; Yuan, Xiangning; Zhang, Fangfang; Wang, Shuting; Tao, Lijian

    2018-05-28

    To investigate the effect of fluorofenidone on renal interstitial fibrosis in rats with unilateral ureteral obstruction (UUO) and to observe the effect of fluorofenidone on the expressions of collagen type I (Col I), collagen type III (Col III), α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), platelet derived growth factor (PDGF) in the renal tissues of UUO rats.
 Methods: Male Sprague-Dawley (SD) rats were randomly divided into a sham-operated group, a UUO group, and a flurofenidone group (n=5). UUO model was induced by ligating the left ureter in rats. The rats were treated with 125 mg/(kg.d) fluorofenidone by gastric gavage in the fluorofenidone group at 24 h before the operation, and the rats were treated with the identical dose of 0.5% sodium carboxyl methyl cellulose (CMC-Na) in the other 2 groups. The rats were sacrificed at 14 days after UUO. Pathological changes of the renal tissue were observed by HE and Masson staining, the mRNA expressions of Col I, Col III, α-SMA, PDGF and CTGF were detected by real-time PCR, and the protein expressions of Col I, Col III, PDGF and CTGF were detected by immunohistochemical staining.
 Results: The renal interstitial damage index, relative collagen area and mRNA and protein expressions of Col I and Col III in the renal tissues of the rats in the UUO group significantly increased (P<0.05), and fluorofenidone could reduce these indexes (P<0.05). Compared with the sham-operated group, the protein expressions of α-SMA, PDGF, CTGF and the mRNA expressions of PDGF and CTGF in the renal tissues of the rats in the UUO group were increased, but fluorofenidone could decrease the protein expressions of α-SMA, PDGF, CTGF and the mRNA expressions of PDGF and CTGF (P<0.05).
 Conclusion: Fluorofenidone (125 mg/kg.d) could attenuate renal interstitial fibrosis through inhibition of fibroblast proliferation, myofibroblastic activation, PDGF and CTGF expression.

  13. Inhibition effect of small interfering RNA of connective tissue growth factor on the expression of extracellular matrix molecules in cultured human renal proximal tubular cells.

    PubMed

    Liu, Yuyuan; Li, Weiwei; Liu, Hong; Peng, Youming; Yang, Qiu; Xiao, Li; Liu, Yinghong; Liu, Fuyou

    2014-03-01

    In this study, we investigated the effect of small interfering RNA (siRNA) of connective tissue growth factor (CTGF) by pRetro-Super (PRS) retrovirus vector on the expression of CTGF and related extracellular matrix molecules in human renal proximal tubular cells (HKCs) induced by high glucose, to provide help for renal tubulointerstitial fibrosis therapy. HKCs were exposed to d-glucose to observe their dose and time effect, while the mannitol as osmotic control. Retrovirus producing CTGF siRNA were constructed from the inverted oligonucleotides and transferred into packaging cell line PT67 with lipofectamine, and the virus supernatant was used to infect HKC. The expression of CTGF, fibronectin (FN) and collagen-type I (col1) were measured by semi-quantitative RT-PCR and Western blot. In response to high glucose, CTGF expression in HKCs was increased in a dose- and time-dependent manner, whereas the increase did not occur in the osmotic control. Introduction of PRS-CTGF-siRNA resulted in the significant reduction of CTGF, FN, col1 mRNA (p < 0.01, respectively) and CTGF, col1 protein (p < 0.05, respectively) expression, while PRS void vector group did not have these effects (p > 0.05). CTGF siRNA therapy can effectively reduce the levels of CTGF, FN and col1 induced by high glucose in cultured HKCs, which suggested that it may be a potential therapeutic strategy to prevent the renal interstitial fibrosis in the future.

  14. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma

    PubMed Central

    Grosso, Ana R; Leite, Ana P; Carvalho, Sílvia; Matos, Mafalda R; Martins, Filipa B; Vítor, Alexandra C; Desterro, Joana MP; Carmo-Fonseca, Maria; de Almeida, Sérgio F

    2015-01-01

    Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. DOI: http://dx.doi.org/10.7554/eLife.09214.001 PMID:26575290

  15. Gastrin stimulates renal dopamine production by increasing the renal tubular uptake of l-DOPA.

    PubMed

    Jiang, Xiaoliang; Zhang, Yanrong; Yang, Yu; Yang, Jian; Asico, Laureano D; Chen, Wei; Felder, Robin A; Armando, Ines; Jose, Pedro A; Yang, Zhiwei

    2017-01-01

    Gastrin is a peptide hormone that is involved in the regulation of sodium balance and blood pressure. Dopamine, which is also involved in the regulation of sodium balance and blood pressure, directly or indirectly interacts with other blood pressure-regulating hormones, including gastrin. This study aimed to determine the mechanisms of the interaction between gastrin and dopamine and tested the hypothesis that gastrin produced in the kidney increases renal dopamine production to keep blood pressure within the normal range. We show that in human and mouse renal proximal tubule cells (hRPTCs and mRPTCs, respectively), gastrin stimulates renal dopamine production by increasing the cellular uptake of l-DOPA via the l-type amino acid transporter (LAT) at the plasma membrane. The uptake of l-DOPA in RPTCs from C57Bl/6J mice is lower than in RPTCs from normotensive humans. l-DOPA uptake in renal cortical slices is also lower in salt-sensitive C57Bl/6J than in salt-resistant BALB/c mice. The deficient renal cortical uptake of l-DOPA in C57Bl/6J mice may be due to decreased LAT-1 activity that is related to its decreased expression at the plasma membrane, relative to BALB/c mice. We also show that renal-selective silencing of Gast by the renal subcapsular injection of Gast siRNA in BALB/c mice decreases renal dopamine production and increases blood pressure. These results highlight the importance of renal gastrin in stimulating renal dopamine production, which may give a new perspective in the prevention and treatment of hypertension. Copyright © 2017 the American Physiological Society.

  16. Exposure to a high-fat diet during development alters leptin and ghrelin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits.

    PubMed

    Prior, Larissa J; Davern, Pamela J; Burke, Sandra L; Lim, Kyungjoon; Armitage, James A; Head, Geoffrey A

    2014-02-01

    Exposure to maternal obesity or a maternal diet rich in fat during development may have adverse outcomes in offspring, such as the development of obesity and hypertension. The present study examined the effect of a maternal high-fat diet (m-HFD) on offspring blood pressure and renal sympathetic nerve activity, responses to stress, and sensitivity to central administration of leptin and ghrelin. Offspring of New Zealand white rabbits fed a 13% HFD were slightly heavier than offspring from mothers fed a 4% maternal normal fat diet (P<0.05) but had 64% greater fat pad mass (P=0.015). Mean arterial pressure, heart rate, and renal sympathetic nerve activity at 4 months of age were 7%, 7%, and 24% greater, respectively (P<0.001), in m-HFD compared with maternal normal fat diet rabbits, and the renal sympathetic nerve activity response to airjet stress was enhanced in the m-HFD group. m-HFD offspring had markedly elevated pressor and renal sympathetic nerve activity responses to intracerebroventricular leptin (5-100 µg) and enhanced sympathetic responses to intracerebroventricular ghrelin (1-5 nmol). In contrast, there was resistance to the anorexic effects of intracerebroventricular leptin and less neuronal activation as detected by Fos immunohistochemistry in the arcuate (-57%; P<0.001) and paraventricular (-37%; P<0.05) nuclei of the hypothalamus in m-HFD offspring compared with maternal normal fat diet rabbits. We conclude that offspring from mothers consuming an HFD exhibit an adverse cardiovascular profile in adulthood because of altered central hypothalamic sensitivity to leptin and ghrelin.

  17. Knockdown of RhoA expression alters ovarian cancer biological behavior in vitro and in nude mice.

    PubMed

    Wang, Xiaoxia; Jiang, Wenyan; Kang, Jiali; Liu, Qicai; Nie, Miaoling

    2015-08-01

    RhoA regulates cell proliferation, migration, angiogenesis and gene expression. Altered RhoA activity contributes to cancer progression. The present study investigated the effects of RhoA knockdown on the regulation of ovarian cancer biological behavior in vitro and in nude mice. The expression of RhoA was knocked down using a lentivirus carrying RhoA short hairpin RNA (shRNA) in ovarian cancer cells and was confirmed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The altered ovarian cancer biological behaviors were assayed by cell viability, terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL), migration, invasion, and nude mice tumorigenicity assays, while the altered gene expression was detected by RT-qPCR and western blot analysis. The results showed that lentivirus-carrying RhoA shRNA significantly suppressed RhoA expression in ovarian cancer cells, which suppressed tumor cell viability, migration, invasion and adhesion in vitro. RhoA silencing also inhibited the tumorigenicity of ovarian cancer cells in nude mice, which was characterized by the suppression of tumor xenograft formation and growth and induction of tumor cell apoptosis. The results of the present study demonstrated that knockdown of RhoA expression had a significant antitumor effect on ovarian cancer cells in vitro and in nude mice, suggesting that RhoA may be a target for the development of a novel therapeutic strategy in the control of ovarian cancer.

  18. Resting afferent renal nerve discharge and renal inflammation: Elucidating the role of afferent and efferent renal nerves in DOCA-salt hypertension

    PubMed Central

    Banek, Christopher T.; Knuepfer, Mark M.; Foss, Jason D.; Fiege, Jessica K.; Asirvatham-Jeyaraj, Ninitha; Van Helden, Dusty; Shimizu, Yoji; Osborn, John W.

    2016-01-01

    Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity (RSNA) has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA)-salt rat model. Uninephrectomized male Sprague Dawley rats (275–300g) underwent selective afferent-selective RDNx (A-RDNx; n=10), total RDNx (T-RDNx; n=10), or Sham (n=10) and were instrumented for measurement of mean arterial pressure (MAP) and heart rate (HR) by radiotelemetry. Rats received 100mg DOCA (s.c.) and 0.9% saline for 21 days. Resting afferent renal nerve activity (ARNA) in DOCA and Vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting ARNA, expressed as a percent of peak afferent nerve activity (%Amax), was substantially increased in DOCA vs. Vehicle (35.8±4.4 vs. 15.3±2.8%Amax). The DOCA-Sham hypertension (132±12 mmHg) was attenuated by ~50% in both T-RDNx (111±8) and A-RDNx (117±5mmHg) groups. Renal inflammation induced by DOCA-salt was attenuated by T-RDNx, and unaffected by A-RDNx. These data suggest ARNA may mediate the hypertensive response to DOCA-salt, but inflammation may be mediated primarily by efferent RSNA. Also, resting ARNA is elevated in DOCA-salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension. PMID:27698066

  19. Contributions of nuclear magnetic resonance to renal biochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, B.; Freeman, D.; Chan, L.

    /sup 31/P NMR as a descriptive technique is of interest to nephrologists. Particular contributions of /sup 31/P NMR to our understanding of renal function may be enumerated.: Free metabolite levels are different from those classically accepted; in particular, ADP and Pi are low with implications for the control of renal metabolism and Pi transport, and, via the phosphorylation potential, for Na+ transport. Renal pH is heterogeneous; between cortex, outer medulla, and papilla, and between cell and lumen, a large pH gradient exists. Also, quantitation between cytosol and mitochondrion of the pH gradient is now feasible. In acute renal failure ofmore » either ischemic or nonischemic origin, both ATP depletion and acidification of the renal cell result in damage, with increasing evidence for the importance of the latter. Measurements of renal metabolic rate in vivo suggest the existence of a prodromal phase of acute renal failure, which could lead to its detection at an earlier and possibly reversible stage. Human renal cancers show a unique /sup 31/P NMR spectrum and a very acidic environment. Cancer chemotherapy may alter this and detection of such changes with NMR offers a method of therapeutic monitoring with significance beyond nephrology. Renal cortex and medulla have a different T1 relaxation time, possibly due to differences in lipid composition. It seems that NMR spectroscopy has much to offer to the future understanding of the relationship between renal biochemistry and function. 56 references.« less

  20. Role of TGF-β in a Mouse Model of High Turnover Renal Osteodystrophy†

    PubMed Central

    Liu, Shiguang; Song, Wenping; Boulanger, Joseph H; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C; Bellido, Teresita M; Ledbetter, Steven R; Schiavi, Susan C

    2014-01-01

    Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-β1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-β1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystropy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-βs role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. μCT confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum PTH levels indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore

  1. Renal ammonium production--une vue canadienne.

    PubMed

    Brosnan, J T; Lowry, M; Vinay, P; Gougoux, A; Halperin, M L

    1987-04-01

    The purpose of this review is to examine the factors regulating ammonium production in the kidney and to place these factors in the perspective of acid-base balance. Renal ammonium production and excretion are required to maintain acid-base balance. However, only a portion of renal ammonium production is specifically stimulated by metabolic acidosis. One should examine urinary ammonium excretion at three levels: distribution of ammonium between blood and urine, augmented glutamine metabolism, and an energy constraint due to ATP balance considerations. With respect to the biochemical regulation of acid-base renal ammonium production, an acute stimulation of alpha-ketoglutarate dehydrogenase by a fall in pH seems to be important but this may not be the entire story. In chronic metabolic acidosis augmented glutamine entry into mitochondria (dog) or increased phosphate-dependent glutaminase activity (rat) become critical to support a high flux rate. Metabolic alterations, which diminish the rate of oxidation of alternate fuels, might also be important. The above principles are discussed in the ketoacidosis of fasting, the clinically important situation of high rates of renal ammonium production.

  2. Effect of endogenous angiotensin II on renal nerve activity and its cardiac baroreflex regulation.

    PubMed

    Dibona, G F; Jones, S Y; Sawin, L L

    1998-11-01

    The effects of physiologic alterations in endogenous angiotensin II activity on basal renal sympathetic nerve activity and its cardiac baroreflex regulation were studied. The effect of angiotensin II type 1 receptor blockade with intracerebroventricular losartan was examined in conscious rats consuming a low, normal, or high sodium diet that were instrumented for the simultaneous measurement of right atrial pressure and renal sympathetic nerve activity. The gain of cardiac baroreflex regulation of renal sympathetic nerve activity (% delta renal sympathetic nerve activity/mmHg mean right atrial pressure) was measured during isotonic saline volume loading. Intracerebroventricular losartan did not decrease arterial pressure but significantly decreased renal sympathetic nerve activity in low (-36+/-6%) and normal (-24+/-5%), but not in high (-2+/-3%) sodium diet rats. Compared with vehicle treatment, losartan treatment significantly increased cardiac baroreflex gain in low (-3.45+/-0.20 versus -2.89+/-0.17) and normal (-2.89+/-0.18 versus -2.54+/-0.14), but not in high (-2.27+/-0.15 versus -2.22+/-0.14) sodium diet rats. These results indicate that physiologic alterations in endogenous angiotensin II activity tonically influence basal levels of renal sympathetic nerve activity and its cardiac baroreflex regulation.

  3. Analysis of microdissected neurons by 18O mass spectrometry reveals altered protein expression in Alzheimer's disease

    PubMed Central

    Hashimoto, Masakazu; Bogdanovic, Nenad; Nakagawa, Hiroyuki; Volkmann, Inga; Aoki, Mikio; Winblad, Bengt; Sakai, Jun; Tjernberg, Lars O

    2012-01-01

    Abstract It is evident that the symptoms of Alzheimer's disease (AD) are derived from severe neuronal damage, and especially pyramidal neurons in the hippocampus are affected pathologically. Here, we analysed the proteome of hippocampal neurons, isolated from post-mortem brains by laser capture microdissection. By using 18O labelling and mass spectrometry, the relative expression levels of 150 proteins in AD and controls were estimated. Many of the identified proteins are involved in transcription and nucleotide binding, glycolysis, heat-shock response, microtubule stabilization, axonal transport or inflammation. The proteins showing the most altered expression in AD were selected for immunohistochemical analysis. These analyses confirmed the altered expression levels, and showed in many AD cases a pathological pattern. For comparison, we also analysed hippocampal sections by Western blot. The expression levels found by this method showed poor correlation with the neuron-specific analysis. Hence, we conclude that cell-specific proteome analysis reveals differences in the proteome that cannot be detected by bulk analysis. PMID:21883897

  4. Leptin Induces Oxidative Stress Through Activation of NADPH Oxidase in Renal Tubular Cells: Antioxidant Effect of L-Carnitine.

    PubMed

    Blanca, Antonio J; Ruiz-Armenta, María V; Zambrano, Sonia; Salsoso, Rocío; Miguel-Carrasco, José L; Fortuño, Ana; Revilla, Elisa; Mate, Alfonso; Vázquez, Carmen M

    2016-10-01

    Leptin is a protein involved in the regulation of food intake and in the immune and inflammatory responses, among other functions. Evidences demonstrate that obesity is directly associated with high levels of leptin, suggesting that leptin may directly link obesity with the elevated cardiovascular and renal risk associated with increased body weight. Adverse effects of leptin include oxidative stress mediated by activation of NADPH oxidase. The aim of this study was to evaluate the effect of L-carnitine (LC) in rat renal epithelial cells (NRK-52E) exposed to leptin in order to generate a state of oxidative stress characteristic of obesity. Leptin increased superoxide anion (O2 (•) -) generation from NADPH oxidase (via PI3 K/Akt pathway), NOX2 expression and nitrotyrosine levels. On the other hand, NOX4 expression and hydrogen peroxide (H2 O2 ) levels diminished after leptin treatment. Furthermore, the expression of antioxidant enzymes, catalase, and superoxide dismutase, was altered by leptin, and an increase in the mRNA expression of pro-inflammatory factors was also found in leptin-treated cells. LC restored all changes induced by leptin to those levels found in untreated cells. In conclusion, stimulation of NRK-52E cells with leptin induced a state of oxidative stress and inflammation that could be reversed by preincubation with LC. Interestingly, LC induced an upregulation of NOX4 and restored the release of its product, hydrogen peroxide, which suggests a protective role of NOX4 against leptin-induced renal damage. J. Cell. Biochem. 117: 2281-2288, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Quantitative analysis of the renal aging in rats. Stereological study.

    PubMed

    Melchioretto, Eduardo Felippe; Zeni, Marcelo; Veronez, Djanira Aparecida da Luz; Martins, Eduardo Lopes; Fraga, Rogério de

    2016-05-01

    To evaluate the renal function and the renal histological alterations through the stereology and morphometrics in rats submitted to the natural process of aging. Seventy two Wistar rats, divided in six groups. Each group was sacrificed in a different age: 3, 6, 9, 12, 18 and 24 months. It was performed right nephrectomy, stereological and morphometric analysis of the renal tissue (renal volume and weight, density of volume (Vv[glom]) and numerical density (Nv[glom]) of the renal glomeruli and average glomerular volume (Vol[glom])) and also it was evaluated the renal function for the dosage of serum creatinine and urea. There was significant decrease of the renal function in the oldest rats. The renal volume presented gradual increase during the development of the rats with the biggest values registered in the group of animals at 12 months of age and significant progressive decrease in older animals. Vv[glom] presented statistically significant gradual reduction between the groups and the Nv[glom] also decreased significantly. The renal function proved to be inferior in senile rats when compared to the young rats. The morphometric and stereological analysis evidenced renal atrophy, gradual reduction of the volume density and numerical density of the renal glomeruli associated to the aging process.

  6. Pokemon/miR-137 auto-regulatory circuit promotes the progression of renal carcinoma.

    PubMed

    Wang, Lihui; Li, Qi; Ye, Zhuo; Qiao, Baoping

    2018-04-19

    Renal carcinoma greatly threatens human health, but the involved molecular mechanisms are far from complete understanding. As a master oncogene driving the initiation of many other cancers, Pokemon has not been established to be associated with renal cancer. Our data revealed that Pokemon is highly expressed in renal carcinoma specimen and cell lines, compared with normal cells. The silencing of Pokemon suppressed the proliferation and invasion of renal cancer cells. Pokemon overexpression rendered normal cells with higher proliferation rates and invasiveness. Animal study further confirmed the role of Pokemon in the growth of renal carcinoma. Moreover, miR-137 was identified to negatively regulate the expression of Pokemon, and its abundance is inversely correlated with that of Pokemon in renal carcinoma specimen and cell lines. Pokemon overexpression may be induced by miR-137 downregulation. Interestingly, Pokemon can also suppress miR-137 expression by binding to its recognition site within miR-137 promoter region. Taken together, we identified an autoregulatory loop consisting of Pokemon and miR-137 in gastric cancers, and targeting this pathway may be an effective strategy for renal carcinoma cancer therapy.

  7. Intestinal absorption and renal reabsorption of calcium throughout postnatal development

    PubMed Central

    Beggs, Megan R

    2017-01-01

    Calcium is vital for many physiological functions including bone mineralization. Postnatal deposition of calcium into bone is greatest in infancy and continues through childhood and adolescence until peek mineral density is reached in early adulthood. Thereafter, bone mineral density remains static until it eventually declines in later life. A positive calcium balance, i.e. more calcium absorbed than excreted, is crucial to bone deposition during growth and thus to peek bone mineral density. Dietary calcium is absorbed from the intestine into the blood. It is then filtered by the renal glomerulus and either reabsorbed by the tubule or excreted in the urine. Calcium can be (re)absorbed across intestinal and renal epithelia via both transcellular and paracellular pathways. Current evidence suggests that significant intestinal and renal calcium transport changes occur throughout development. However, the molecular details of these alterations are incompletely delineated. Here we first briefly review the current model of calcium transport in the intestine and renal tubule in the adult. Then, we describe what is known with regard to calcium handling through postnatal development, and how alterations may aid in mediating a positive calcium balance. The role of transcellular and paracellular calcium transport pathways and the contribution of specific intestinal and tubular segments vary with age. However, the current literature highlights knowledge gaps in how specifically intestinal and renal calcium (re)absorption occurs early in postnatal development. Future research should clarify the specific changes in calcium transport throughout early postnatal development including mediators of these alterations enabling appropriate bone mineralization. Impact statement This mini review outlines the current state of knowledge pertaining to the molecules and mechanisms maintaining a positive calcium balance throughout postnatal development. This process is essential to achieving

  8. WNK kinases and renal sodium transport in health and disease: an integrated view

    PubMed Central

    McCormick, James; Yang, Chao-Ling; Ellison, David H.

    2011-01-01

    The with no lysine (WNK) kinases comprise a novel branch of the human kinome that plays a central role in regulating renal sodium, potassium, and chloride transport, and, therefore, blood pressure. Mutations of two WNK kinases, WNK1 and WNK4, cause familial hyperkalemic hypertension (Gordon’s syndrome or Type II pseudohypoaldosteronism), a rare monogenic disease. Many aspects of WNK action have been elucidated during the past seven years. WNKs are all expressed along a short segment of renal distal tubule, where they modulate the activity of a wide variety of transport proteins. These diverse effects, however, make it difficult to describe an integrated model of WNK function within the kidney. Recently, work in vivo and in vitro has begun to clarify this picture. The present review emphasizes recent insights into mechanism by which WNK kinases interact to modulate sodium and potassium transport along the aldosterone-sensitive distal nephron. We describe a potential mechanism by which WNK4 mutations convert the action of WNK4 from inhibiting renal sodium chloride retention to stimulating it, thereby affecting both blood pressure and potassium balance. An explanation for how WNK kinases can alter the effects of aldosterone from primarily kaliuretic to primarily sodium chloride retentive, according to physiological need, is also described. PMID:18212265

  9. Physiology and pathophysiology of renal erythropoietin-producing cells.

    PubMed

    Shih, Hong-Mou; Wu, Chih-Jen; Lin, Shuei-Liong

    2018-04-11

    Anemia is a common complication and contributes to increased morbidity and mortality in chronic kidney disease (CKD) patients. Whereas there has been a significant improvement of understanding the underlying mechanism of erythropoiesis, the treatment of renal anemia is still restricted to erythropoietin (EPO)-stimulating agents. The purpose of this article is to review the physiology of erythropoiesis, functional role of EPO and underlying molecular and cellular basis that regulate EPO production. Regulation of EPO production is at mRNA level. When anemia or hypoxia occurs, transcriptional factor, hypoxia-inducible factor (HIF), binds to EPO 5' hypoxic response element and EPO gene transcription increases. The renal EPO is mainly produced by pericytes. In CKD, pericytes transdifferentiate to myofibroblasts, and subsequently the ability of EPO production decreases, leading to renal anemia. Recent experimental and clinical studies show the promising efficacy of prolyl hydroxylase inhibitors in renal anemia through increasing EPO production by stabilizing HIF. Recent advances on epigenetics create a new field to study EPO gene expression at chromatin level. We will discuss the role of demethylating agent on restoring EPO expression, providing a novel approach to the treatment of renal anemia. Copyright © 2018. Published by Elsevier B.V.

  10. Expression of small heat shock proteins from pea seedlings under gravity altered conditions

    NASA Astrophysics Data System (ADS)

    Talalaev, Alexandr S.

    2005-08-01

    A goal of our study was to evaluate the stress gene expression in Pisum sativum seedlings exposed to altered gravity and temperature elevation. We investigate message for the two inducible forms of the cytosolic small heat shock proteins (sHsp), sHsp 17.7 and sHsp 18.1. Both proteins are able to enhance the refolding of chemically denatured proteins in an ATP- independent manner, in other words they can function as molecular chaperones. We studied sHsps expression in pea seedlings cells by Western blotting. Temperature elevation, as the positive control, significantly increased PsHsp 17.7 and PsHsp 18.1 expression. Expression of the housekeeping protein, actin was constant and comparable to unstressed controls for all treatments. We concluded that gravitational perturbations incurred by clinorotation did not change sHsp genes expression.

  11. Prenatal Bisphenol A Exposure Alters Sex-Specific Estrogen Receptor Expression in the Neonatal Rat Hypothalamus and Amygdala

    PubMed Central

    Patisaul, Heather B.

    2013-01-01

    Bisphenol A (BPA) exposure is ubiquitous, and in laboratory animals, early-life BPA exposure has been shown to alter sex-specific neural organization, neuroendocrine physiology, and behavior. The specific mechanisms underlying these brain-related outcomes, however, remain largely unknown, constraining the capacity to ascertain the potential human relevance of neural effects observed in animal models. In the perinatal rat brain, estrogen is masculinizing, suggesting that BPA-induced perturbation of estrogen receptor (ESR) expression may underpin later in-life neuroendocrine effects. We hypothesized that prenatal BPA exposure alters sex-specific ESR1 (ERα) and ESR2 (ERβ) expression in postnatal limbic nuclei. Sprague Dawley rats were mated and gavaged on gestational days (GDs) 6–21 with vehicle, 2.5 or 25 μg/kg bw/day BPA, or 5 or 10 μg/kg bw/day ethinyl estradiol. An additional group was restrained but not gavaged (naïve control). Offspring were sacrificed the day after birth to quantify ESR gene expression throughout the hypothalamus and amygdala by in situ hybridization. Relative to the vehicle group, significant effects of BPA were observed on ESR1 and ESR2 expression throughout the mediobasal hypothalamus and amygdala in both sexes. Significant differences in ESR expression were also observed in the mediobasal hypothalamus and amygdala of the naïve control group compared with the vehicle group, highlighting the potential for gavage to influence gene expression in the developing brain. These results indicate that ESR expression in the neonatal brain of both sexes can be altered by low-dose prenatal BPA exposure. PMID:23457122

  12. Expression patterns of the aquaporin gene family during renal development: influence of genetic variability.

    PubMed

    Parreira, Kleber S; Debaix, Huguette; Cnops, Yvette; Geffers, Lars; Devuyst, Olivier

    2009-08-01

    High-throughput analyses have shown that aquaporins (AQPs) belong to a cluster of genes that are differentially expressed during kidney organogenesis. However, the spatiotemporal expression patterns of the AQP gene family during tubular maturation and the potential influence of genetic variation on these patterns and on water handling remain unknown. We investigated the expression patterns of all AQP isoforms in fetal (E13.5 to E18.5), postnatal (P1 to P28), and adult (9 weeks) kidneys of inbred (C57BL/6J) and outbred (CD-1) mice. Using quantitative polymerase chain reaction (PCR), we evidenced two mRNA patterns during tubular maturation in C57 mice. The AQPs 1-7-11 showed an early (from E14.5) and progressive increase to adult levels, similar to the mRNA pattern observed for proximal tubule markers (Megalin, NaPi-IIa, OAT1) and reflecting the continuous increase in renal cortical structures during development. By contrast, AQPs 2-3-4 showed a later (E15.5) and more abrupt increase, with transient postnatal overexpression. Most AQP genes were expressed earlier and/or stronger in maturing CD-1 kidneys. Furthermore, adult CD-1 kidneys expressed more AQP2 in the collecting ducts, which was reflected by a significant delay in excreting a water load. The expression patterns of proximal vs. distal AQPs and the earlier expression in the CD-1 strain were confirmed by immunoblotting and immunostaining. These data (1) substantiate the clustering of important genes during tubular maturation and (2) demonstrate that genetic variability influences the regulation of the AQP gene family during tubular maturation and water handling by the mature kidney.

  13. Osthole enhances TRAIL-mediated apoptosis through downregulation of c-FLIP expression in renal carcinoma Caki cells.

    PubMed

    Min, Kyoung-Jin; Han, Min Ae; Kim, Shin; Park, Jong-Wook; Kwon, Taeg Kyu

    2017-04-01

    Osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, has been shown to induce various beneficial biochemical effects such as anti-inflammatory and antitumor. In the present study, we examined whether osthole could sensitize TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human renal carcinoma Caki cells. We found that osthole and TRAIL alone, had no effect on apoptosis, but combined treatment with osthole and TRAIL markedly induced apoptosis in Caki (renal carcinoma), U251MG (glioma) and MDA-MB-231 (breast carcinoma) cells. In contrast, combined treatment with osthole and TRAIL did not induce apoptosis in normal human skin fibroblast cells. Osthole induced downregulation of cellular FLICE-like inhibitory protein (c-FLIP) expression, and overexpression of c-FLIP markedly blocked apoptosis induced by the combined treatment with osthole and TRAIL. In addition, osthole markedly reduced mitochondrial membrane potential levels, and increased cytosolic cytochrome c release in combined treatment with osthole and TRAIL. Therefore, these data suggest that osthole may be an efficient TRAIL sensitizer.

  14. [Study on the relationship between renal apoptosis and expression of caspase protein in fluoride induced rat].

    PubMed

    Gao, Jiping; Song, Guohua; Liu, Maolin; Wang, Yu; Yang, Xia

    2014-01-01

    To study the relationship between death receptor pathway, mitochondrion pathway and fluoride-induced apoptosis of renal cell. Male Sprague-Dawley rats were divided randomly into four groups (control, low-fluoride, medium-fluoride,and high-fluoride) and administered 0, 50, 100, and 200 mg/L of sodium fluoride, respectively, via drinking water for 120 days. The incidence of dental fluorosis were observed, the body weights and urine fluoride levels were measured. Apoptosis was detected by the Flow Cytometry (FCM). The expressions of protein of Caspase-3, Caspase-8, Caspase-9, Cyt C were detectedby immunohistoehemistry. The apoptosis rate in the fluoride exposed low does group,middle dose group and high dose group increased significantly as compared with control group. The average optical density value of Caspase-3, Caspase-8, Caspase-9 and Cyt C were higher in the fluoride exposed middle dose group and high dose group than those in the control group (P < 0.05). Death receptor pathway and mitochondrion pathway may participate in the process of fluoride-induced apoptosis of renal cell.

  15. Epstein-Barr virus growth/latency III program alters cellular microRNA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, Jennifer E.; Tulane Cancer Center, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL79, New Orleans, LA 70112; Fewell, Claire

    The Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cancers. Initial EBV infection alters lymphocyte gene expression, inducing cellular proliferation and differentiation as the virus transitions through consecutive latency transcription programs. Cellular microRNAs (miRNAs) are important regulators of signaling pathways and are implicated in carcinogenesis. The extent to which EBV exploits cellular miRNAs is unknown. Using micro-array analysis and quantitative PCR, we demonstrate differential expression of cellular miRNAs in type III versus type I EBV latency including elevated expression of miR-21, miR-23a, miR-24, miR-27a, miR-34a, miR-146a and b, and miR-155. In contrast, miR-28 expression was found to be lowermore » in type III latency. The EBV-mediated regulation of cellular miRNAs may contribute to EBV signaling and associated cancers.« less

  16. GDF-15 gene expression alterations in human lymphoblastoid cells and peripheral blood lymphocytes following exposure to ionizing radiation

    PubMed Central

    Li, Shuang; Zhang, Qing-Zhao; Zhang, De-Qin; Feng, Jiang-Bin; Luo, Qun; Lu, Xue; Wang, Xin-Ru; Li, Kun-Peng; Chen, De-Qing; Mu, Xiao-Feng; Gao, Ling; Liu, Qing-Jie

    2017-01-01

    The identification of rapid, sensitive and high-throughput biomarkers is imperative in order to identify individuals harmed by radiation accidents, and accurately evaluate the absorbed doses of radiation. DNA microarrays have previously been used to evaluate the alterations in growth/differentiation factor 15 (GDF15) gene expression in AHH-1 human lymphoblastoid cells, following exposure to γ-rays. The present study aimed to characterize the relationship between the dose of ionizing radiation and the produced effects in GDF-15 gene expression in AHH-1 cells and human peripheral blood lymphocytes (HPBLs). GDF-15 mRNA and protein expression levels following exposure to γ-rays and neutron radiation were assessed by reverse transcription-quantitative polymerase chain reaction and western blot analysis in AHH-1 cells. In addition, alterations in GDF-15 gene expression in HPBLs following ex vivo irradiation were evaluated. The present results demonstrated that GDF-15 mRNA and protein expression levels in AHH-1 cells were significantly upregulated following exposure to γ-ray doses ranging between 1 and 10 Gy, regardless of the dose rate. A total of 48 h following exposure to neutron radiation, a dose-response relationship was identified in AHH-1 cells at γ-ray doses between 0.4 and 1.6 Gy. GDF-15 mRNA levels in HPBLs were significantly upregulated following exposure to γ-ray doses between 1 and 8 Gy, within 4–48 h following irradiation. These results suggested that significant time- and dose-dependent alterations in GDF-15 mRNA and protein expression occur in AHH-1 cells and HPBLs in the early phases following exposure to ionizing radiation. In conclusion, alterations in GDF-15 gene expression may have potential as a biomarker to evaluate radiation exposure. PMID:28440431

  17. Defective renal water handling in transgenic mice over-expressing human CD39/NTPDase1

    PubMed Central

    Zhang, Yue; Morris, Kaiya L.; Sparrow, Shannon K.; Dwyer, Karen M.; Enjyoji, Keiichi; Robson, Simon C.

    2012-01-01

    Ectonucleoside triphosphate diphosphohydrolase-1 hydrolyzes extracellular ATP and ADP to AMP. Previously, we showed that CD39 is expressed at several sites within the kidney and thus may impact the availability of type 2 purinergic receptor (P2-R) ligands. Because P2-Rs appear to regulate urinary concentrating ability, we have evaluated renal water handling in transgenic mice (TG) globally overexpressing hCD39. Under basal conditions, TG mice exhibited significantly impaired urinary concentration and decreased protein abundance of AQP2 in the kidney compared with wild-type (WT) mice. Urinary excretion of total nitrates/nitrites was significantly higher in TG mice, but the excretion of AVP or PGE2 was equivalent to control WT mice. There were no significant differences in electrolyte-free water clearance or fractional excretion of sodium. Under stable hydrated conditions (gelled diet feeding), the differences between the WT and TG mice were negated, but the decrease in urine osmolality persisted. When water deprived, TG mice failed to adequately concentrate urine and exhibited impaired AVP responses. However, the increases in urinary osmolalities in response to subacute dDAVP or chronic AVP treatment were similar in TG and WT mice. These observations suggest that TG mice have impaired urinary concentrating ability despite normal AVP levels. We also note impaired AVP release in response to water deprivation but that TG kidneys are responsive to exogenous dDAVP or AVP. We infer that heightened nucleotide scavenging by increased levels of CD39 altered the release of endogenous AVP in response to dehydration. We propose that ectonucleotidases and modulated purinergic signaling impact urinary concentration and indicate potential utility of targeted therapy for the treatment of water balance disorders. PMID:22622462

  18. Activation of D4 dopamine receptor decreases AT1 angiotensin II receptor expression in rat renal proximal tubule cells

    PubMed Central

    Chen, Ken; Deng, Kun; Wang, Xiaoyan; Wang, Zhen; Zheng, Shuo; Ren, Hongmei; He, Duofen; Han, Yu; Asico, Laureano D.; Jose, Pedro A.; Zeng, Chunyu

    2014-01-01

    The dopaminergic and renin angiotensin systems interact to regulate blood pressure. Disruption of the D4 dopamine receptor gene in mice produces hypertension that is associated with increased renal AT1 receptor expression. We hypothesize that the D4 receptor can inhibit AT1 receptor expression and function in renal proximal tubules (RPTs) cells from Wistar-Kyoto (WKY) rats but the D4 receptor regulation of AT1 receptor is aberrant in RPT cells from spontaneously hypertensive rats (SHRs). The D4 receptor agonist, PD168077, decreased AT1 receptor protein expression in a time and concentration-dependent manner in WKY cells. By contrast, in SHR cells, PD168077 increased AT1 receptor protein expression. The inhibitory effect of D4 receptor on AT1 receptor expression in WKY cells was blocked by a calcium channel blocker, nicardipine, or calcium-free medium, indicating that calcium is involved in the D4 receptor-mediated signaling pathway. Angiotensin II increased Na+-K+ ATPase activity in WKY cells. Pretreatment with PD168077 decreased the stimulatory effect of angiotensin II on Na+-K+ ATPase activity in WKY cells. In SHR cells, the inhibitory effect of D4 receptor on angiotensin II-mediated stimulation of Na+-K+ ATPase activity was aberrant; pretreatment with PD168077 augmented the stimulatory effect of AT1 receptor on Na+-K+ ATPase activity in SHR cells. This was confirmed in vivo; pre-treatment with PD128077 for one week augmented the anti-hypertensive and natriuretic effect of losartan in SHRs but not in WKY rats. We suggest that an aberrant interaction between D4 and AT1 receptors may play a role in the abnormal regulation of sodium excretion in hypertension. PMID:25368031

  19. Heparan sulfate proteoglycans undergo differential expression alterations in right sided colorectal cancer, depending on their metastatic character.

    PubMed

    Fernández-Vega, Iván; García-Suárez, Olivia; García, Beatriz; Crespo, Ainara; Astudillo, Aurora; Quirós, Luis M

    2015-10-20

    Heparan sulfate proteoglycans (HSPGs) are complex molecules involved in the growth, invasion and metastatic properties of cancerous cells. This study analyses the alterations in the expression patterns of these molecules in right sided colorectal cancer (CRC), both metastatic and non-metastatic. Twenty right sided CRCs were studied. A transcriptomic approach was used, employing qPCR to analyze both the expression of the enzymes involved in heparan sulfate (HS) chains biosynthesis, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate (CS) chains, we include the study of the genes involved in the biosynthesis of these glycosaminoglycans. Immunohistochemical techniques were also used to analyze tissue expression of particular genes showing significant expression differences, of potential interest. Changes in proteoglycan core proteins differ depending on their location; those located intracellularly or in the extracellular matrix show very similar alteration patterns, while those located on the cell surface vary greatly depending on the nature of the tumor: glypicans 1, 3, 6 and betaglycan are affected in the non-metastatic tumors, whereas in the metastatic, only glypican-1 and syndecan-1 are modified, the latter showing opposing alterations in levels of RNA and of protein, suggesting post-transcriptional regulation in these tumors. Furthermore, in non-metastatic tumors, polymerization of glycosaminoglycan chains is modified, particularly affecting the synthesis of the tetrasaccharide linker and the initiation and elongation of CS chains, HS chains being less affected. Regarding the enzymes responsible for the modificaton of the HS chains, alterations were only found in non-metastatic tumors, affecting N-sulfation and the isoforms HS6ST1, HS3ST3B and HS3ST5. In contrast, synthesis of the CS chains suggests changes in epimerization and sulfation of the C4 and C2 in both types of tumor. Right sided CRCs show

  20. Renal-protective and ameliorating impacts of omega-3 fatty acids against aspartame damaged MDCK cells.

    PubMed

    Pandurangan, Muthuraman; Enkhtaivan, Gansukh; Veerappan, Muthuviveganandavel; Mistry, Bhupendra; Patel, Rahul; Moon, So Hyun; Nagajyothi, Patnamsetty Chidanandha; Kim, Doo Hwan

    2017-11-01

    Aspartame is widely used artificial sweeteners as food additives. Several researchers have pointed that the controversial report on the use of aspartame over more than decades. Omega-3 fatty acids are essential and unsaturated fatty acids, and it plays a remarkable role in vision, intelligence, neural development, and metabolism of neurotransmitters. Therefore, the present study was aimed to investigate the effect of omega-3 fatty acids on aspartame treated renal cells. Experimental groups were divided into three such as sham control, aspartame treated, and aspartame with omega-3 fatty acids. Cell viability was determined by sulforhodamine-b assay and flow cytometric analysis. The experimental results showed that the aspartame induced altered cell viability were reduced following treatment of aspartame with omega-3 fatty acids. Altered cell morphology was recovered by omega-3 fatty acids. DNA damage appeared in the highest concentration of aspartame used in this study. DNA damage characteristics such as comet tail and tiny head sections did not appear in the omega-3 fatty acids treated cells. Several microvilli and vesicular structures were found in aspartame treated cells. Altered morphology such as rounding, microvilli, and formation of dome-like structures did not appear in the omega-3 fatty acids with aspartame treated cells. Caspase-3 mRNA and protein expression were increased in aspartame treated cells, and these levels were reduced following omega-3 fatty acids treatment. Taking all these data together, it is suggested that the omega-3 fatty acids may be a therapeutic agent to reduce the aspartame induced biochemical and morphological alterations in normal renal cells. © 2017 BioFactors, 43(6):847-857, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  1. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  2. Dysregulation of miRNAs in bladder cancer: altered expression with aberrant biogenesis procedure

    PubMed Central

    Dong, Fan; Xu, Tianyuan; Shen, Yifan; Zhong, Shan; Chen, Shanwen; Ding, Qiang; Shen, Zhoujun

    2017-01-01

    Aberrant expression profiles of miRNAs are widely observed in the clinical tissue specimens and urine samples as well as the blood samples of bladder cancer patients. These profiles are closely related to the pathological features of bladder cancer, such as the tumour stage/grade, metastasis, recurrence and chemo-sensitivity. MiRNA biogenesis forms the basis of miRNA expression and function, and its dysregulation has been shown to be essential for variations in miRNA expression profiles as well as tumourigenesis and cancer progression. In this review, we summarize the up-to-date and widely reported miRNAs in bladder cancer that display significantly altered expression. We then compare the miRNA expression profiles among three different sample types (tissue, urine and blood) from patients with bladder cancer. Moreover, for the first time, we outline the dysregulated miRNA biogenesis network in bladder cancer from different levels and analyse its possible relationship with aberrant miRNA expression and the pathological characteristics of the disease. PMID:28187437

  3. Head-to-head comparison of structurally unrelated dipeptidyl peptidase 4 inhibitors in the setting of renal ischemia reperfusion injury.

    PubMed

    Reichetzeder, Christoph; von Websky, Karoline; Tsuprykov, Oleg; Mohagheghi Samarin, Azadeh; Falke, Luise Gabriele; Dwi Putra, Sulistyo Emantoko; Hasan, Ahmed Abdallah; Antonenko, Viktoriia; Curato, Caterina; Rippmann, Jörg; Klein, Thomas; Hocher, Berthold

    2017-07-01

    Results regarding protective effects of dipeptidyl peptidase 4 (DPP4) inhibitors in renal ischaemia-reperfusion injury (IRI) are conflicting. Here we have compared structurally unrelated DPP4 inhibitors in a model of renal IRI. IRI was induced in uninephrectomized male rats by renal artery clamping for 30 min. The sham group was uninephrectomized but not subjected to IRI. DPP4 inhibitors or vehicle were given p.o. once daily on three consecutive days prior to IRI: linagliptin (1.5 mg·kg -1 ·day -1 ), vildagliptin (8 mg·kg -1 ·day -1 ) and sitagliptin (30 mg·kg -1 ·day -1 ). An additional group received sitagliptin until study end (before IRI: 30 mg·kg -1 ·day -1 ; after IRI: 15 mg·kg -1 ·day -1 ). Plasma-active glucagon-like peptide type 1 (GLP-1) increased threefold to fourfold in all DPP4 inhibitor groups 24 h after IRI. Plasma cystatin C, a marker of GFR, peaked 48 h after IRI. Compared with the placebo group, DPP4 inhibition did not reduce increased plasma cystatin C levels. DPP4 inhibitors ameliorated histopathologically assessed tubular damage with varying degrees of drug-specific efficacies. Renal osteopontin expression was uniformly reduced by all DPP4 inhibitors. IRI-related increased renal cytokine expression was not decreased by DPP4 inhibition. Renal DPP4 activity at study end was significantly inhibited in the linagliptin group, but only numerically reduced in the prolonged/dose-adjusted sitagliptin group. Active GLP-1 plasma levels at study end were increased only in the prolonged/dose-adjusted sitagliptin treatment group. In rats with renal IRI, DPP4 inhibition did not alter plasma cystatin C, a marker of glomerular function, but may protect against tubular damage. © 2017 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  4. Functional significance of the pattern of renal sympathetic nerve activation.

    PubMed

    Dibona, G F; Sawin, L L

    1999-08-01

    To assess the renal functional significance of the pattern of renal sympathetic nerve activation, computer-generated stimulus patterns (delivered at constant integrated voltage) were applied to the decentralized renal sympathetic nerve bundle and renal hemodynamic and excretory responses determined in anesthetized rats. When delivered at the same integrated voltage, stimulus patterns resembling those observed in in vivo multifiber recordings of renal sympathetic nerve activity (diamond-wave patterns) produced greater renal vasoconstrictor responses than conventional square-wave patterns. Within diamond-wave patterns, increasing integrated voltage by increasing amplitude produced twofold greater renal vasoconstrictor responses than by increasing duration. With similar integrated voltages that were subthreshold for renal vasoconstriction, neither diamond- nor square-wave pattern altered glomerular filtration rate, whereas diamond- but not square-wave pattern reversibly decreased urinary sodium excretion by 25 +/- 3%. At the same number of pulses per second, intermittent stimulation produced faster and greater renal vasoconstriction than continuous stimulation. At the same number of pulses per second, increases in rest period during intermittent stimulation proportionally augmented the renal vasoconstrictor response compared with that observed with continuous stimulation; the maximum augmentation of 55% occurred at a rest period of 500 ms. These results indicate that the pattern of renal sympathetic nerve stimulation (activity) significantly influences the rapidity, magnitude, and selectivity of the renal vascular and tubular responses.

  5. Altered β-catenin expression related to cancer progression on actinic cheilitis and squamous cell carcinoma of the lip.

    PubMed

    Schussel, Juliana L; Pinto, Décio Dos Santos; Martins, Marília Trierveiler

    2011-02-01

    β-Catenin is a bifunctional protein related to cell adhesion and gene transcription when activated by Wnt pathway. Altered expression of β-catenin was related to loss of differentiation, more aggressive phenotype, increase of tumor invasion, and poor prognosis in a number of different cancers. Actinic cheilitis is caused by excessive exposure to ultraviolet radiation and has a high potential to suffer malignant transformation into squamous cell carcinoma (SCC) of the lip, the most frequent oral malignancy. Studies of oral cancer have shown the correlation of β-catenin expression and oral SCC prognosis, and loss of membrane expression may be considered as a potential marker for early tumor recurrence. Thirty-five cases of actinic cheilitis and 12 cases of SCC of the lip were select and submitted to immunohistochemical staining using β-catenin antibody. β-Catenin was positive on the membrane for all cases. Eighty-five percent of actinic cheilitis cases showed cytoplasmatic staining, and 22% nuclear staining. Eighty-three percent of SCC was positive for β-catenin, and none of them had nuclear staining. Cytoplasmatic and nuclear staining of β-catenin on studied cases point to pathway alterations. Results demonstrated that β-catenin expression is altered on epithelial dysplasia, and it is related to degree of alterations. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. [Pulmonary-renal crosstalk in the critically ill patient].

    PubMed

    Donoso F, Alejandro; Arriagada S, Daniela; Cruces R, Pablo

    2015-01-01

    Despite advances in the development of renal replacement therapy, mortality of acute renal failure remains high, especially when occurring simultaneously with distant organic failure as it is in the case of the acute respiratory distress syndrome. In this update, birideccional deleterious relationship between lung and kidney on the setting of organ dysfunction is reviewed, which presents important clinical aspects of knowing. Specifically, the renal effects of acute respiratory distress syndrome and the use of positive-pressure mechanical ventilation are discussed, being ventilator induced lung injury one of the most common models for studying the lung-kidney crosstalk. The role of renal failure induced by mechanical ventilation (ventilator-induced kidney injury) in the pathogenesis of acute renal failure is emphasized. We also analyze the impact of the acute renal failure in the lung, recognizing an increase in pulmonary vascular permeability, inflammation, and alteration of sodium and water channels in the alveolar epithelial. This conceptual model can be the basis for the development of new therapeutic strategies to use in patients with multiple organ dysfunction syndrome. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Gia-Ming; Present address: The University of Chicago, Section of Hematology/Oncology, 900 E. 57th Street, Room 7134, Chicago, IL 60637; Bain, Lisa J., E-mail: lbain@clemson.edu

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site ofmore » myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells

  8. Identifying biomarkers of papillary renal cell carcinoma associated with pathological stage by weighted gene co-expression network analysis.

    PubMed

    He, Zhongshi; Sun, Min; Ke, Yuan; Lin, Rongjie; Xiao, Youde; Zhou, Shuliang; Zhao, Hong; Wang, Yan; Zhou, Fuxiang; Zhou, Yunfeng

    2017-04-25

    Although papillary renal cell carcinoma (PRCC) accounts for 10%-15% of renal cell carcinoma (RCC), no predictive molecular biomarker is currently applicable to guiding disease stage of PRCC patients. The mRNASeq data of PRCC and adjacent normal tissue in The Cancer Genome Atlas was analyzed to identify 1148 differentially expressed genes, on which weighted gene co-expression network analysis was performed. Then 11 co-expressed gene modules were identified. The highest association was found between blue module and pathological stage (r = 0.45) by Pearson's correlation analysis. Functional enrichment analysis revealed that biological processes of blue module focused on nuclear division, cell cycle phase, and spindle (all P < 1e-10). All 40 hub genes in blue module can distinguish localized (pathological stage I, II) from non-localized (pathological stage III, IV) PRCC (P < 0.01). A good molecular biomarker for pathological stage of RCC must be a prognostic gene in clinical practice. Survival analysis was performed to reversely validate if hub genes were associated with pathological stage. Survival analysis unveiled that all hub genes were associated with patient prognosis (P < 0.01).The validation cohort GSE2748 verified that 30 hub genes can differentiate localized from non-localized PRCC (P < 0.01), and 18 hub genes are prognosis-associated (P < 0.01).ROC curve indicated that the 17 hub genes exhibited excellent diagnostic efficiency for localized and non-localized PRCC (AUC > 0.7). These hub genes may serve as a biomarker and help to distinguish different pathological stages for PRCC patients.

  9. The kidney in the pathogenesis of hypertension: the role of renal nerves.

    PubMed

    DiBona, G F

    1985-04-01

    The intrinsic efferent innervation of the kidney consists of exclusively noradrenergic fibers that innervate the preglomerular and postgomerular vasculature, all elements of the juxtagomerular apparatus and virtually all segments of the nephron in both cortical and medullo-papillary regions. Increases in efferent renal sympathetic nerve activity produce renal vasoconstriction, release of renin, catecholamines, prostaglandins and other vasoactive substances, and increases in renal tubular sodium reabsorption; these responses are graded and differentiated. The intrinsic afferent innervation of the kidney consists of mechanoreceptors and chemoreceptors which participate in reno-renal and reno-systemic reflexes that modulate sympathetic neural outflow in an organ-specific differentiated pattern. Therefore, alterations in efferent and afferent renal nerve activity produce changes in several important renal functions known to contribute to the development and maintenance of hypertension.

  10. Acute renal failure requiring renal replacement therapy in the intensive care unit: impact on prognostic assessment for shared decision making.

    PubMed

    Johnson, Robert F; Gustin, Jillian

    2011-07-01

    A 69-year-old female was receiving renal replacement therapy (RRT) for acute renal failure (ARF) in an intensive care unit (ICU). Consultation was requested from the palliative medicine service to facilitate a shared decision-making process regarding goals of care. Clinician responsibility in shared decision making includes the formulation and expression of a prognostic assessment providing the necessary perspective for a spokesperson to match patient values with treatment options. For this patient, ARF requiring RRT in the ICU was used as a focal point for preparing a prognostic assessment. A prognostic assessment should include the outcomes of most importance to a discussion of goals of care: mortality risk and survivor functional status, in this case including renal recovery. A systematic review of the literature was conducted to document published data regarding these outcomes for adult patients receiving RRT for ARF in the ICU. Forty-one studies met the inclusion criteria. The combined mean values for short-term mortality, long-term mortality, renal-function recovery of short-term survivors, and renal-function recovery of long-term survivors were 51.7%, 68.6%, 82.0%, and 88.4%, respectively. This case example illustrates a process for formulating and expressing a prognostic assessment for an ICU patient requiring RRT for ARF. Data from the literature review provide baseline information that requires adjustment to reflect specific patient circumstances. The nature of the acute primary process, comorbidities, and severity of illness are key modifiers. Finally, the prognostic assessment is expressed during a family meeting using recommended principles of communication.

  11. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals.

    PubMed

    Wang, Kefeng; Sun, Yin; Tao, Wei; Fei, Xiang; Chang, Chawnshang

    2017-05-28

    Increasing evidence has demonstrated that the androgen receptor (AR) plays important roles to promote the metastasis of clear cell renal cell carcinoma (ccRCC). The detailed mechanisms, especially how AR functions via altering the circular RNAs (circRNAs) remain unclear. Here we identified a new circRNA (named as circHIAT1) whose expression was lower in ccRCCs than adjacent normal tissues. Targeting AR could suppress ccRCC cell progression via increasing circHIAT1 expression. ChIP assay and luciferase assay demonstrated that AR suppressed circHIAT1 expression via regulating its host gene, Hippocampus Abundant Transcript 1 (HIAT1) expression at the transcriptional level. The consequences of AR-suppressed circHIAT1 resulted in deregulating miR-195-5p/29a-3p/29c-3p expressions, which increased CDC42 expression to enhance ccRCC cell migration and invasion. Increasing this newly identified signal via circHIAT1 suppressed AR-enhanced ccRCC cell migration and invasion. Together, these results suggested that circHIAT1 functioned as a metastatic inhibitor to suppress AR-enhanced ccRCC cell migration and invasion. Targeting this newly identified AR-circHIAT1-mediated miR-195-5p/29a-3p/29c-3p/CDC42 signals may help us develop potential new therapies to better suppress ccRCC metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin

    PubMed Central

    Liu, Qingdu; Binns, Thomas C.; Davidoff, Olena; Kapitsinou, Pinelopi P.; Pfaff, Andrew S.; Olauson, Hannes; Fogo, Agnes B.; Fong, Guo-Hua; Gross, Kenneth W.

    2016-01-01

    Renal peritubular interstitial fibroblast-like cells are critical for adult erythropoiesis, as they are the main source of erythropoietin (EPO). Hypoxia-inducible factor 2 (HIF-2) controls EPO synthesis in the kidney and liver and is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3, which function as cellular oxygen sensors. Renal interstitial cells with EPO-producing capacity are poorly characterized, and the role of the PHD/HIF-2 axis in renal EPO-producing cell (REPC) plasticity is unclear. Here we targeted the PHD/HIF-2/EPO axis in FOXD1 stroma-derived renal interstitial cells and examined the role of individual PHDs in REPC pool size regulation and renal EPO output. Renal interstitial cells with EPO-producing capacity were entirely derived from FOXD1-expressing stroma, and Phd2 inactivation alone induced renal Epo in a limited number of renal interstitial cells. EPO induction was submaximal, as hypoxia or pharmacologic PHD inhibition further increased the REPC fraction among Phd2–/– renal interstitial cells. Moreover, Phd1 and Phd3 were differentially expressed in renal interstitium, and heterozygous deficiency for Phd1 and Phd3 increased REPC numbers in Phd2–/– mice. We propose that FOXD1 lineage renal interstitial cells consist of distinct subpopulations that differ in their responsiveness to Phd2 inactivation and thus regulation of HIF-2 activity and EPO production under hypoxia or conditions of pharmacologic or genetic PHD inactivation. PMID:27088801

  13. Frequency response of the renal vasculature in congestive heart failure.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2003-04-29

    The renal vasoconstrictor response to renal nerve stimulation is greater in congestive heart failure (CHF) rats than in control rats. This study tested the hypothesis that the enhanced renal vasoconstrictor response to renal nerve stimulation in CHF is a result of an impairment in the low-pass filter function of the renal vasculature. In response to conventional graded-frequency renal nerve stimulation, the reductions in renal blood flow at each stimulation frequency were greater in CHF rats than control rats. A pseudorandom binary sequence pattern of renal nerve stimulation was used to examine the frequency response of the renal vasculature. Although this did not affect the renal blood flow power spectrum in control rats, there was a 10-fold increase in renal blood flow power over the frequency range of 0.01 to 1.0 Hz in CHF rats. On analysis of transfer function gain, attenuation of the renal nerve stimulation input signal was similar in control and CHF rats over the frequency range of 0.001 to 0.1 Hz. However, over the frequency range of 0.1 to 1.0 Hz, although there was progressive attenuation of the input signal (-30 to -70 dB) in control rats, CHF rats exhibited a flat gain response (-20 dB) without progressive attenuation. The enhanced renal vasoconstrictor response to renal nerve stimulation in CHF rats is caused by an alteration in the low-pass filter function of the renal vasculature, resulting in a greater transfer of input signals into renal blood flow in the 0.1 to 1.0 Hz range.

  14. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats.

    PubMed

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects.

  15. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats

    PubMed Central

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects. PMID:28824301

  16. The food contaminant and nephrotoxin ochratoxin A enhances Wnt1 inducible signaling protein 1 and tumor necrosis factor-α expression in human primary proximal tubule cells.

    PubMed

    Hennemeier, Isabell; Humpf, Hans-Ulrich; Gekle, Michael; Schwerdt, Gerald

    2012-09-01

    The underlying molecular mechanisms of nanomolar ochratoxin A (OTA) concentrations, especially those on pathophysiological relevant gene expression in target tissue and underlying signaling mechanisms are unknown. qPCR arrays showed that 14 days exposure of human primary proximal tubule cells to 10 nM OTA influences the expression of genes that are related to inflammation, malignant transformation, and epithelial-to-mesenchymal transition. Wnt1 inducible signaling protein 1 (WISP1), an oncogenic, and profibrotic growth factor, turned out to be the gene with the strongest upregulation. Its expression, and that of TNF-α, an important inflammatory mediator, was further investigated in human renal cells and in primary human lung fibroblasts. OTA-induced upregulation of WISP1 and TNF-α occurs only in renal cells. Inhibition of ERK1/2 activation reverses the effect of OTA on WISP1 and TNF-α expression. Wnt or other signaling pathways were not involved. Upregulation of WISP1 and TNF-α occured independently of each other. Long-term exposure of human kidney cells with OTA concentrations expectable in renal tissue due to average dietary intake leads in an ERK1/2-dependent manner to pathogenetic alterations of gene expression, notably WISP1 and TNF-α. Renal long-term risk by OTA is actually not excludable and argues for low but rational safety levels. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Uric acid upregulates the adiponectin-adiponectin receptor 1 pathway in renal proximal tubule epithelial cells

    PubMed Central

    Yang, Qingmei; Fu, Chensheng; Xiao, Jing; Ye, Zhibin

    2018-01-01

    Adiponectin (APN) is a protein hormone that is primarily derived from adipocytes. It can also be secreted by renal cells. Hypoadiponectinemia has been documented in patients with hyperuricemia, however, whether soluble uric acid (SUA) regulates the expression of APN and APN receptor 1 (AdipoR1) in renal proximal tubule epithelial cells (PTECs) remains to be elucidated. The present study investigated the expression of APN and AdipoR1 in cultured PTECs that were exposed to SUA through immunofluorescence and western blot analysis. In addition, Sprague-Dawley rats with oxonic acid-induced hyperuricemia (HUA) with or without febuxostat treatment were employed as an animal model to measure 24 h urine protein, serum creatinine, urea nitrogen, uric acid and homeostasis model assessment of insulin resistance. Renal pathology was evaluated using hematoxylin and eosin and immunohistochemical staining. APN and AdipoR1 expression in the renal cortex were evaluated by western blotting. The results demonstrated that, in PTECs, the expression of APN and AdipoR1 was constant and increased upon SUA exposure. Similar observations were made within the proximal renal tubules of rats, and the oxonic acid-induced increases in APN and AdipoR1 were offset by febuxostat treatment. Furthermore, SUA-treated PTECs exhibited an increase in the expression of NLR family pyrin domain-containing (NLRP) 3, which was dose-dependent. NLRP3 expression was also significantly increased in the renal cortex of HUA rats compared with control and febuxostat-treated rats. In conclusion, SUA enhanced the expression of APN and AdipoR1 in PTECs, which was associated with an increase in NLRP3 expression. The APN-AdipoR1 pathway was demonstrated to have an important role in in vitro and in vivo models of renal proximal tubule inflammatory injury. Therefore, this pathway may be a potential therapy target in urate nephropathy. PMID:29359786

  18. Glucocorticoid receptor contributes to the altered expression of hepatic cytochrome P450 upon cigarette smoking.

    PubMed

    Li, Xue; Yan, Zhongfang; Wu, Qi; Sun, Xin; Li, Fan; Zhang, Subei; Li, Kuan; Li, Li; Wu, Junping; Xu, Long; Feng, Jing; Ning, Wen; Liu, Zhixue; Chen, Huaiyong

    2016-12-01

    Cigarette smoking has been shown to cause pathological alterations in the liver. However, how hepatic metabolism is altered during cigarette smoking‑induced inflammation remains to be fully elucidated. In the present study, a rat model of smoking was established to examine the effects of cigarette smoking on inflammation, autophagy activity, and the expression of nuclear receptor and CYP in the liver. Elevated expression of interleukin 1β and activation of autophagy in the liver were observed upon smoking exposure in rats. Cigarette smoking induced a significant reduction in the mRNA expression levels of cytochromes, including cytochrome P450 (Cyp)1A2, Cyp2D4 and Cyp3A2. Accordingly, a decrease was also observed in glucocorticoid receptor (GR), a regulator of the expression of Cyp. Activation of the GR signal in human hepatic LO2 cells did not affect autophagic genes, however, it led to the upregulation of hCYP1A2, hCYP2C19 and hCYP3A4, and the downregulation of hCYP2C9. The GR antagonist, RU486, eliminated this effect, suggesting the importance of GR in liver metabolism upon cigarette smoking.

  19. Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis.

    PubMed

    Ishikawa, Ken; Calzavacca, Paolo; Bellomo, Rinaldo; Bailey, Michael; May, Clive N

    2012-08-01

    Nitric oxide plays an important role in the control of renal blood flow and renal function. In sepsis, increased levels of inducible nitric oxide synthase produce excessive nitric oxide, which may contribute to the development of acute kidney injury. We, therefore, examined the effects of intrarenal infusion of selective inducible nitric oxide synthase inhibitors in a large animal model of hyperdynamic sepsis in which acute kidney injury occurs in the presence of increased renal blood flow. Prospective crossover randomized controlled interventional studies. University-affiliated research institute. Twelve unilaterally nephrectomized Merino ewes. Infusion of a selective (1400W) and a partially selective inducible nitric oxide synthase inhibitor (aminoguanidine) into the renal artery for 2 hrs after the induction of sepsis, and comparison with a nonselective inhibitor (Nω-nitro-L-arginine methyl ester). In sheep with nonhypotensive hyperdynamic sepsis, creatinine clearance halved (32 to 16 mL/min, ratio [95% confidence interval] 0.51 [0.28-0.92]) despite increased renal blood flow (241 to 343 mL/min, difference [95% confidence interval] 102 [78-126]). Infusion of 1400W did not change renal blood flow, urine output, or creatinine clearance, whereas infusion of Nω-nitro-L-arginine methyl ester and a high dose of aminoguanidine normalized renal blood flow, but did not alter creatinine clearance. In hyperdynamic sepsis, intrarenal infusion of a highly selective inducible nitric oxide synthase inhibitor did not reduce the elevated renal blood flow or improve renal function. In contrast, renal blood flow was reduced by infusion of a nonselective NOS inhibitor or a high dose of a partially selective inducible nitric oxide synthase inhibitor. The renal vasodilatation in septic acute kidney injury may be due to nitric oxide derived from the endothelial and neural isoforms of nitric oxide synthase, but their blockade did not restore renal function.

  20. Conversion to Sirolimus Ameliorates Cyclosporine-Induced Nephropathy in the Rat: Focus on Serum, Urine, Gene, and Protein Renal Expression Biomarkers

    PubMed Central

    Sereno, José; Nunes, Sara; Rodrigues-Santos, Paulo; Rocha-Pereira, Petronila; Fernandes, João; Teixeira, Frederico; Reis, Flávio

    2014-01-01

    Protocols of conversion from cyclosporin A (CsA) to sirolimus (SRL) have been widely used in immunotherapy after transplantation to prevent CsA-induced nephropathy, but the molecular mechanisms underlying these protocols remain nuclear. This study aimed to identify the molecular pathways and putative biomarkers of CsA-to-SRL conversion in a rat model. Four animal groups (n = 6) were tested during 9 weeks: control, CsA, SRL, and conversion (CsA for 3 weeks followed by SRL for 6 weeks). Classical and emergent serum, urinary, and kidney tissue (gene and protein expression) markers were assessed. Renal lesions were analyzed in hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome stains. SRL-treated rats presented proteinuria and NGAL (serum and urinary) as the best markers of renal impairment. Short CsA treatment presented slight or even absent kidney lesions and TGF-β, NF-κ β, mTOR, PCNA, TP53, KIM-1, and CTGF as relevant gene and protein changes. Prolonged CsA exposure aggravated renal damage, without clear changes on the traditional markers, but with changes in serums TGF-β and IL-7, TBARs clearance, and kidney TGF-β and mTOR. Conversion to SRL prevented CsA-induced renal damage evolution (absent/mild grade lesions), while NGAL (serum versus urine) seems to be a feasible biomarker of CsA replacement to SRL. PMID:24971338

  1. Endoplasmic Reticulum Chaperon Tauroursodeoxycholic Acid Attenuates Aldosterone-Infused Renal Injury

    PubMed Central

    Guo, Honglei; Li, Hongmei; Ling, Lilu

    2016-01-01

    Aldosterone (Aldo) is critically involved in the development of renal injury via the production of reactive oxygen species and inflammation. Endoplasmic reticulum (ER) stress is also evoked in Aldo-induced renal injury. In the present study, we investigated the role of ER stress in inflammation-mediated renal injury in Aldo-infused mice. C57BL/6J mice were randomized to receive treatment for 4 weeks as follows: vehicle infusion, Aldo infusion, vehicle infusion plus tauroursodeoxycholic acid (TUDCA), and Aldo infusion plus TUDCA. The effect of TUDCA on the Aldo-infused inflammatory response and renal injury was investigated using periodic acid-Schiff staining, real-time PCR, Western blot, and ELISA. We demonstrate that Aldo leads to impaired renal function and inhibition of ER stress via TUDCA attenuates renal fibrosis. This was indicated by decreased collagen I, collagen IV, fibronectin, and TGF-β expression, as well as the downregulation of the expression of Nlrp3 inflammasome markers, Nlrp3, ASC, IL-1β, and IL-18. This paper presents an important role for ER stress on the renal inflammatory response to Aldo. Additionally, the inhibition of ER stress by TUDCA negatively regulates the levels of these inflammatory molecules in the context of Aldo. PMID:27721575

  2. The lymphotoxin β receptor is a potential therapeutic target in renal inflammation.

    PubMed

    Seleznik, Gitta; Seeger, Harald; Bauer, Judith; Fu, Kai; Czerkowicz, Julie; Papandile, Adrian; Poreci, Uriana; Rabah, Dania; Ranger, Ann; Cohen, Clemens D; Lindenmeyer, Maja; Chen, Jin; Edenhofer, Ilka; Anders, Hans J; Lech, Maciej; Wüthrich, Rudolf P; Ruddle, Nancy H; Moeller, Marcus J; Kozakowski, Nicolas; Regele, Heinz; Browning, Jeffrey L; Heikenwalder, Mathias; Segerer, Stephan

    2016-01-01

    Accumulation of inflammatory cells in different renal compartments is a hallmark of progressive kidney diseases including glomerulonephritis (GN). Lymphotoxin β receptor (LTβR) signaling is crucial for the formation of lymphoid tissue, and inhibition of LTβR signaling has ameliorated several non-renal inflammatory models. Therefore, we tested whether LTβR signaling could also have a role in renal injury. Renal biopsies from patients with GN were found to express both LTα and LTβ ligands, as well as LTβR. The LTβR protein and mRNA were localized to tubular epithelial cells, parietal epithelial cells, crescents, and cells of the glomerular tuft, whereas LTβ was found on lymphocytes and tubular epithelial cells. Human tubular epithelial cells, mesangial cells, and mouse parietal epithelial cells expressed both LTα and LTβ mRNA upon stimulation with TNF in vitro. Several chemokine mRNAs and proteins were expressed in response to LTβR signaling. Importantly, in a murine lupus model, LTβR blockade improved renal function without the reduction of serum autoantibody titers or glomerular immune complex deposition. Thus, a preclinical mouse model and human studies strongly suggest that LTβR signaling is involved in renal injury and may be a suitable therapeutic target in renal diseases. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  3. Gene expression alterations associated with outcome in aromatase inhibitor-treated ER+ early-stage breast cancer patients.

    PubMed

    Thomsen, Karina G; Lyng, Maria B; Elias, Daniel; Vever, Henriette; Knoop, Ann S; Lykkesfeldt, Anne E; Lænkholm, Anne-Vibeke; Ditzel, Henrik J

    2015-12-01

    Aromatase inhibitors (AI), either alone or together with chemotherapy, have become the standard adjuvant treatment for postmenopausal, estrogen receptor-positive (ER+) breast cancer. Although AIs improve overall survival, resistance is still a major clinical problem, thus additional biomarkers predictive of outcome of ER+ breast cancer patients treated with AIs are needed. Global gene expression analysis was performed on ER+ primary breast cancers from patients treated with adjuvant AI monotherapy; half experienced recurrence (median follow-up 6.7 years). Gene expression alterations were validated by qRT-PCR, and functional studies evaluating the effect of siRNA-mediated gene knockdown on cell growth were performed. Twenty-six genes, including TFF3, DACH1, RGS5, and GHR, were shown to exhibit altered expression in tumors from patients with recurrence versus non-recurrent (fold change ≥1.5, p < 0.05), and the gene expression alterations were confirmed using qRT-PCR. Ten of these 26 genes could be linked in a network associated with cellular proliferation, growth, and development. TFF3, which encodes for trefoil factor 3 and is an estrogen-responsive oncogene shown to play a functional role in tamoxifen resistance and metastasis of ER+ breast cancer, was also shown to be upregulated in an AI-resistant cell line model, and reduction of TFF3 levels using TFF3-specific siRNAs decreased the growth of both the AI-resistant and -sensitive parental cell lines. Moreover, overexpression of TFF3 in parental AI-sensitive MCF-7/S0.5 cells resulted in reduced sensitivity to the AI exemestane, whereas TFF3 overexpression had no effect on growth in the absence of exemestane, indicating that TFF3 mediates growth and survival signals that abrogate the growth inhibitory effect of exemestane. We identified a panel of 26 genes exhibiting altered expression associated with disease recurrence in patients treated with adjuvant AI monotherapy, including TFF3, which was shown to

  4. MiR-30c regulates cisplatin-induced apoptosis of renal tubular epithelial cells by targeting Bnip3L and Hspa5

    PubMed Central

    Du, Bin; Dai, Xiao-meng; Li, Shuang; Qi, Guo-long; Cao, Guang-xu; Zhong, Ying; Yin, Pei-di; Yang, Xue-song

    2017-01-01

    As a common anticancer drug, cisplatin has been widely used for treating tumors in the clinic. However, its side effects, especially its nephrotoxicity, noticeably restrict the application of cisplatin. Therefore, it is imperative to investigate the mechanism of renal injury and explore the corresponding remedies. In this study, we showed the phenotypes of the renal tubules and epithelial cell death as well as elevated cleaved-caspase3- and TUNEL-positive cells in rats intraperitoneally injected with cisplatin. Similar cisplatin-induced cell apoptosis was found in HK-2 and NRK-52E cells exposed to cisplatin as well. In both models of cisplatin-induced apoptosis in vivo and in vitro, quantitative PCR data displayed reductions in miR-30a-e expression levels, indicating that miR-30 might be involved in regulating cisplatin-induced cell apoptosis. This was further confirmed when the effects of cisplatin-induced cell apoptosis were found to be closely correlated with alterations in miR-30c expression, which were manipulated by transfection of either the miR-30c mimic or miR-30c inhibitor in HK-2 and NRK-52E cells. Using bioinformatics tools, including TargetScan and a gene expression database (Gene Expression Omnibus), Adrb1, Bnip3L, Hspa5 and MAP3K12 were predicted to be putative target genes of miR-30c in cisplatin-induced apoptosis. Subsequently, Bnip3L and Hspa5 were confirmed to be the target genes after determining the expression of these putative genes following manipulation of miR-30c expression levels in HK-2 cells. Taken together, our current experiments reveal that miR-30c is certainly involved in regulating the renal tubular cell apoptosis induced by cisplatin, which might supply a new strategy to minimize cisplatin-induced nephrotoxicity. PMID:28796263

  5. MiR-30c regulates cisplatin-induced apoptosis of renal tubular epithelial cells by targeting Bnip3L and Hspa5.

    PubMed

    Du, Bin; Dai, Xiao-Meng; Li, Shuang; Qi, Guo-Long; Cao, Guang-Xu; Zhong, Ying; Yin, Pei-di; Yang, Xue-Song

    2017-08-10

    As a common anticancer drug, cisplatin has been widely used for treating tumors in the clinic. However, its side effects, especially its nephrotoxicity, noticeably restrict the application of cisplatin. Therefore, it is imperative to investigate the mechanism of renal injury and explore the corresponding remedies. In this study, we showed the phenotypes of the renal tubules and epithelial cell death as well as elevated cleaved-caspase3- and TUNEL-positive cells in rats intraperitoneally injected with cisplatin. Similar cisplatin-induced cell apoptosis was found in HK-2 and NRK-52E cells exposed to cisplatin as well. In both models of cisplatin-induced apoptosis in vivo and in vitro, quantitative PCR data displayed reductions in miR-30a-e expression levels, indicating that miR-30 might be involved in regulating cisplatin-induced cell apoptosis. This was further confirmed when the effects of cisplatin-induced cell apoptosis were found to be closely correlated with alterations in miR-30c expression, which were manipulated by transfection of either the miR-30c mimic or miR-30c inhibitor in HK-2 and NRK-52E cells. Using bioinformatics tools, including TargetScan and a gene expression database (Gene Expression Omnibus), Adrb1, Bnip3L, Hspa5 and MAP3K12 were predicted to be putative target genes of miR-30c in cisplatin-induced apoptosis. Subsequently, Bnip3L and Hspa5 were confirmed to be the target genes after determining the expression of these putative genes following manipulation of miR-30c expression levels in HK-2 cells. Taken together, our current experiments reveal that miR-30c is certainly involved in regulating the renal tubular cell apoptosis induced by cisplatin, which might supply a new strategy to minimize cisplatin-induced nephrotoxicity.

  6. Renal mechanoreceptor dysfunction: an intermediate phenotype in spontaneously hypertensive rats.

    PubMed

    DiBona, G F; Jones, S Y; Kopp, U C

    1999-01-01

    This study tested the hypothesis that decreased responsiveness of renal mechanosensitive neurons constitutes an intermediate phenotype in spontaneously hypertensive rats (SHR). Decreased responsiveness of these sensory neurons would contribute to increased renal sympathetic nerve activity and sodium retention, characteristic findings in hypertension. A backcross population, developed by mating borderline hypertensive rats with Wistar-Kyoto rats (WKY) (the F1 of a cross between an SHR and a normotensive WKY), was fed 8% NaCl food for 12 weeks from age 4 to 16 weeks. Responses to increases in ureteral pressure to 20 and 40 mm Hg in 80 backcross rats instrumented for measurement of mean arterial pressure and afferent renal nerve activity were determined. Mean arterial pressure ranged from 110 to 212 mm Hg and was inversely correlated with the magnitude of the increase in afferent renal nerve activity during increased ureteral pressure. Thus, decreased responsiveness of renal mechanosensitive neurons cosegregated with hypertension in this backcross population. This aspect of the complex quantitative trait of altered renal sympathetic neural control of renal function, ie, decreased renal mechanoreceptor responsiveness, is part of an intermediate phenotype in SHR.

  7. Wnt6 regulates epithelial cell differentiation and is dysregulated in renal fibrosis.

    PubMed

    Beaton, Hayley; Andrews, Darrell; Parsons, Martin; Murphy, Mary; Gaffney, Andrew; Kavanagh, David; McKay, Gareth J; Maxwell, Alexander P; Taylor, Cormac T; Cummins, Eoin P; Godson, Catherine; Higgins, Debra F; Murphy, Paula; Crean, John

    2016-07-01

    Diabetic nephropathy is the most common microvascular complication of diabetes mellitus, manifesting as mesangial expansion, glomerular basement membrane thickening, glomerular sclerosis, and progressive tubulointerstitial fibrosis leading to end-stage renal disease. Here we describe the functional characterization of Wnt6, whose expression is progressively lost in diabetic nephropathy and animal models of acute tubular injury and renal fibrosis. We have shown prominent Wnt6 and frizzled 7 (FzD7) expression in the mesonephros of the developing mouse kidney, suggesting a role for Wnt6 in epithelialization. Importantly, TCF/Lef reporter activity is also prominent in the mesonephros. Analysis of Wnt family members in human renal biopsies identified differential expression of Wnt6, correlating with severity of the disease. In animal models of tubular injury and fibrosis, loss of Wnt6 was evident. Wnt6 signals through the canonical pathway in renal epithelial cells as evidenced by increased phosphorylation of GSK3β (Ser9), nuclear accumulation of β-catenin and increased TCF/Lef transcriptional activity. FzD7 was identified as a putative receptor of Wnt6. In vitro Wnt6 expression leads to de novo tubulogenesis in renal epithelial cells grown in three-dimensional culture. Importantly, Wnt6 rescued epithelial cell dedifferentiation in response to transforming growth factor-β (TGF-β); Wnt6 reversed TGF-β-mediated increases in vimentin and loss of epithelial phenotype. Wnt6 inhibited TGF-β-mediated p65-NF-κB nuclear translocation, highlighting cross talk between the two pathways. The critical role of NF-κB in the regulation of vimentin expression was confirmed in both p65(-/-) and IKKα/β(-/-) embryonic fibroblasts. We propose that Wnt6 is involved in epithelialization and loss of Wnt6 expression contributes to the pathogenesis of renal fibrosis. Copyright © 2016 the American Physiological Society.

  8. Successful treatment by pembrolizumab in a patient with end-stage renal disease with advanced non-small cell lung cancer and high PD-L1 expression.

    PubMed

    Ishizuka, Shiho; Sakata, Shinya; Yoshida, Chieko; Takaki, Akira; Saeki, Sho; Nakamura, Kazuyoshi; Fujii, Kazuhiko

    2018-05-10

    We report a 66-year-old Japanese male with end-stage renal disease (ESRD) and advanced non-small cell lung cancer (NSCLC) who was on hemodialysis. The patient harbored high programmed death ligand 1 (PD-L1) expression and was successfully treated with pembrolizumab. Laboratory examination upon diagnosis showed elevated serum creatinine (6.58 mg/dL). We administered pembrolizumab (200 mg/body) and repeated every 3 weeks. His renal dysfunction gradually progressed, hemodialysis was initiated after eight courses of pembrolizumab, and the antitumor effect was maintained at five months after hemodialysis initiation. Therefore, pembrolizumab can be administered for patients with ESRD and advanced NSCLC, who harbor high PD-L1 expression, during preparation for hemodialysis. Copyright © 2018 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  9. Biophysical properties of normal and diseased renal glomeruli.

    PubMed

    Wyss, Hans M; Henderson, Joel M; Byfield, Fitzroy J; Bruggeman, Leslie A; Ding, Yaxian; Huang, Chunfa; Suh, Jung Hee; Franke, Thomas; Mele, Elisa; Pollak, Martin R; Miner, Jeffrey H; Janmey, Paul A; Weitz, David A; Miller, R Tyler

    2011-03-01

    The mechanical properties of tissues and cells including renal glomeruli are important determinants of their differentiated state, function, and responses to injury but are not well characterized or understood. Understanding glomerular mechanics is important for understanding renal diseases attributable to abnormal expression or assembly of structural proteins and abnormal hemodynamics. We use atomic force microscopy (AFM) and a new technique, capillary micromechanics, to measure the elastic properties of rat glomeruli. The Young's modulus of glomeruli was 2,500 Pa, and it was reduced to 1,100 Pa by cytochalasin and latunculin, and to 1,400 Pa by blebbistatin. Cytochalasin or latrunculin reduced the F/G actin ratios of glomeruli but did not disrupt their architecture. To assess glomerular biomechanics in disease, we measured the Young's moduli of glomeruli from two mouse models of primary glomerular disease, Col4a3(-/-) mice (Alport model) and Tg26(HIV/nl) mice (HIV-associated nephropathy model), at stages where glomerular injury was minimal by histopathology. Col4a3(-/-) mice express abnormal glomerular basement membrane proteins, and Tg26(HIV/nl) mouse podocytes have multiple abnormalities in morphology, adhesion, and cytoskeletal structure. In both models, the Young's modulus of the glomeruli was reduced by 30%. We find that glomeruli have specific and quantifiable biomechanical properties that are dependent on the state of the actin cytoskeleton and nonmuscle myosins. These properties may be altered early in disease and represent an important early component of disease. This increased deformability of glomeruli could directly contribute to disease by permitting increased distension with hemodynamic force or represent a mechanically inhospitable environment for glomerular cells.

  10. Integrative analysis of copy number alteration and gene expression profiling in ovarian clear cell adenocarcinoma.

    PubMed

    Sung, Chang Ohk; Choi, Chel Hun; Ko, Young-Hyeh; Ju, Hyunjeong; Choi, Yoon-La; Kim, Nyunsu; Kang, So Young; Ha, Sang Yun; Choi, Kyusam; Bae, Duk-Soo; Lee, Jeong-Won; Kim, Tae-Joong; Song, Sang Yong; Kim, Byoung-Gie

    2013-05-01

    Ovarian clear cell adenocarcinoma (Ov-CCA) is a distinctive subtype of ovarian epithelial carcinoma. In this study, we performed array comparative genomic hybridization (aCGH) and paired gene expression microarray of 19 fresh-frozen samples and conducted integrative analysis. For the copy number alterations, significantly amplified regions (false discovery rate [FDR] q <0.05) were 1q21.3 and 8q24.3, and significantly deleted regions were 3p21.31, 4q12, 5q13.2, 5q23.2, 5q31.1, 7p22.1, 7q11.23, 8p12, 9p22.1, 11p15.1, 12p13.31, 15q11.2, 15q21.2, 18p11.31, and 22q11.21 using the Genomic Identification of Significant Targets in Cancer (GISTIC) analysis. Integrative analysis revealed 94 genes demonstrating frequent copy number alterations (>25% of samples) that correlated with gene expression (FDR <0.05). These genes were mainly located on 8p11.21, 8p21.2-p21.3, 8q22.1, 8q24.3, 17q23.2-q23.3, 19p13.3, and 19p13.11. Among the regions, 8q24.3 was found to contain the most genes (30 of 94 genes) including PTK2. The 8q24.3 region was indicated as the most significant region, as supported by copy number, GISTIC, and integrative analysis. Pathway analysis using differentially expressed genes on 8q24.3 revealed several major nodes, including PTK2. In conclusion, we identified a set of 94 candidate genes with frequent copy number alterations that correlated with gene expression. Specific chromosomal alterations, such as the 8q24.3 gain containing PTK2, could be a therapeutic target in a subset of Ov-CCAs. Copyright © 2013. Published by Elsevier Inc.

  11. Sirolimus Induced Phosphaturia is Not Caused by Inhibition of Renal Apical Sodium Phosphate Cotransporters

    PubMed Central

    Haller, Maria; Amatschek, Stefan; Wilflingseder, Julia; Kainz, Alexander; Bielesz, Bernd; Pavik, Ivana; Serra, Andreas; Mohebbi, Nilufar; Biber, Jürg; Wagner, Carsten A.; Oberbauer, Rainer

    2012-01-01

    The vast majority of glomerular filtrated phosphate is reabsorbed in the proximal tubule. Posttransplant phosphaturia is common and aggravated by sirolimus immunosuppression. The cause of sirolimus induced phosphaturia however remains elusive. Male Wistar rats received sirolimus or vehicle for 2 or 7 days (1.5mg/kg). The urine phosphate/creatinine ratio was higher and serum phosphate was lower in sirolimus treated rats, fractional excretion of phosphate was elevated and renal tubular phosphate reabsorption was reduced suggesting a renal cause for hypophosphatemia. PTH was lower in sirolimus treated rats. FGF 23 levels were unchanged at day 2 but lower in sirolimus treated rats after 7 days. Brush border membrane vesicle phosphate uptake was not altered in sirolimus treated groups or by direct incubation with sirolimus. mRNA, protein abundance, and subcellular transporter distribution of NaPi-IIa, Pit-2 and NHE3 were not different between groups but NaPi-IIc mRNA expression was lower at day 7. Transcriptome analyses revealed candidate genes that could be involved in the phosphaturic response. Sirolimus caused a selective renal phosphate leakage, which was not mediated by NaPi-IIa or NaPi-IIc regulation or localization. We hypothesize that another mechanism such as a basolateral phosphate transporter may be responsible for the sirolimus induced phosphaturia. PMID:22859939

  12. Homer W. Smith's contribution to renal physiology.

    PubMed

    Giebisch, Gerhard

    2004-01-01

    Homer Smith was, for three decades, from the 1930s until his death in 1962, one of the leaders in the field of renal physiology. His contributions were many: he played a major role in introducing and popularizing renal clearance methods, introduced non-invasive methods for the measurement of glomerular filtration rate, of renal blood flow and tubular transport capacity, and provided novel insights into the mechanisms of excretion of water and electrolytes. Homer Smith's contributions went far beyond his personal investigations. He was a superb writer of several inspiring textbooks of renal physiology that exerted great and lasting influence on the development of renal physiology. Smith's intellectual insights and ability for critical analysis of data allowed him to create broad concepts that defined the functional properties of glomeruli, tubules and the renal circulation. A distinguishing feature of Homer Smith's career was his close contact and collaboration, over many years, with several clinicians of his alma mater, New York University. For initiating these pathophysiological investigations, he is justly credited to have advanced, in a major way, our understanding of altered renal function in disease. Smith's lasting scientific impact is also reflected by a whole school of investigators that trained with him and who applied his methods, analyses and concepts to the study of renal function all over the world. So great was his influence and preeminence that Robert Pitts, in his excellent tribute to Homer Smith in the Memoirs of the National Academy of Science states that his death brought an end to what might be aptly called the Smithian Era of renal physiology.

  13. Hyperammonemia associated with distal renal tubular acidosis or urinary tract infection: a systematic review.

    PubMed

    Clericetti, Caterina M; Milani, Gregorio P; Lava, Sebastiano A G; Bianchetti, Mario G; Simonetti, Giacomo D; Giannini, Olivier

    2018-03-01

    Hyperammonemia usually results from an inborn error of metabolism or from an advanced liver disease. Individual case reports suggest that both distal renal tubular acidosis and urinary tract infection may also result in hyperammonemia. A systematic review of the literature on hyperammonemia secondary to distal renal tubular acidosis and urinary tract infection was conducted. We identified 39 reports on distal renal tubular acidosis or urinary tract infections in association with hyperammonemia published between 1980 and 2017. Hyperammonemia was detected in 13 children with distal renal tubular acidosis and in one adult patient with distal renal tubular acidosis secondary to primary hyperparathyroidism. In these patients a negative relationship was observed between circulating ammonia and bicarbonate levels (P < 0.05). In 31 patients (19 children, 12 adults), an acute urinary tract infection was complicated by acute hyperammonemia and symptoms and signs of acute neuronal dysfunction, such as an altered level of consciousness, convulsions and asterixis, often associated with signs of brain edema, such as anorexia and vomiting. Urea-splitting bacteria were isolated in 28 of the 31 cases. The urinary tract was anatomically or functionally abnormal in 30 of these patients. This study reveals that both altered distal renal tubular acidification and urinary tract infection may be associated with relevant hyperammonemia in both children and adults.

  14. Expression of Hygromycin Phosphotransferase Alters Virulence of Histoplasma capsulatum▿

    PubMed Central

    Smulian, A. George; Gibbons, Reta S.; Demland, Jeffery A.; Spaulding, Deborah T.; Deepe, George S.

    2007-01-01

    The Escherichia coli hygromycin phosphotransferase (hph) gene, which confers hygromycin resistance, is commonly used as a dominant selectable marker in genetically modified bacteria, fungi, plants, insects, and mammalian cells. Expression of the hph gene has rarely been reported to induce effects other than those expected. Hygromycin B is the most common dominant selectable marker used in the molecular manipulation of Histoplasma capsulatum in the generation of knockout strains of H. capsulatum or as a marker in mutant strains. hph-expressing organisms appear to have no defect in long-term in vitro growth and survival and have been successfully used to exploit host-parasite interaction in short-term cell culture systems and animal experiments. We introduced the hph gene as a selectable marker together with the gene encoding green fluorescent protein into wild-type strains of H. capsulatum. Infection of mice with hph-expressing H. capsulatum yeast cells at sublethal doses resulted in lethality. The lethality was not attributable to the site of integration of the hph construct into the genomes or to the method of integration and was not H. capsulatum strain related. Death of mice was not caused by altered cytokine profiles or an overwhelming fungal burden. The lethality was dependent on the kinase activity of hygromycin phosphotransferase. These results should raise awareness of the potential detrimental effects of the hph gene. PMID:17873086

  15. Expression of hygromycin phosphotransferase alters virulence of Histoplasma capsulatum.

    PubMed

    Smulian, A George; Gibbons, Reta S; Demland, Jeffery A; Spaulding, Deborah T; Deepe, George S

    2007-11-01

    The Escherichia coli hygromycin phosphotransferase (hph) gene, which confers hygromycin resistance, is commonly used as a dominant selectable marker in genetically modified bacteria, fungi, plants, insects, and mammalian cells. Expression of the hph gene has rarely been reported to induce effects other than those expected. Hygromycin B is the most common dominant selectable marker used in the molecular manipulation of Histoplasma capsulatum in the generation of knockout strains of H. capsulatum or as a marker in mutant strains. hph-expressing organisms appear to have no defect in long-term in vitro growth and survival and have been successfully used to exploit host-parasite interaction in short-term cell culture systems and animal experiments. We introduced the hph gene as a selectable marker together with the gene encoding green fluorescent protein into wild-type strains of H. capsulatum. Infection of mice with hph-expressing H. capsulatum yeast cells at sublethal doses resulted in lethality. The lethality was not attributable to the site of integration of the hph construct into the genomes or to the method of integration and was not H. capsulatum strain related. Death of mice was not caused by altered cytokine profiles or an overwhelming fungal burden. The lethality was dependent on the kinase activity of hygromycin phosphotransferase. These results should raise awareness of the potential detrimental effects of the hph gene.

  16. [Knockdown of ATG5 enhances the sensitivity of human renal carcinoma cells to sunitinib].

    PubMed

    Li, Peng; Han, Qi; Tang, Ming; Zhang, Keqin

    2017-03-01

    Objective To investigate the expression levels of autophagy-related gene 5 (ATG5) and microtubule-associated protein 1 light chain 3 (LC3) and their effects on sunitinib resistance in human renal carcinoma cells. Methods After clinic-pathologic feature and survival analysis, 99 renal clear cell carcinoma tissues with different histological grades were used to detect the expression of ATG5 and LC3 by immunohistochemistry. Renal carcinoma cell line A-498 was infected with lentivirus-mediated ATG5 shRNA. Western blot analysis was performed to confirm the efficiency of ATG5 knockdown. Proliferation rate of A-498 cells in control group and ATG5 low expression group was determined by flow cytometry. Finally, the survival rate was detected by MTT assay after A-498 cells were treated with different concentrations of sunitinib. Results The expression levels of ATG5 and LC3 in renal clear cell carcinoma tissues were significantly higher than those in para-tumor tissues. The expression levels of ATG5 and LC3 were associated with classification, histological grade, TNM stage and survival rate, rather than gender, age, location, tumor size. Compared with the control group, the protein expressions of ATG5 and LC3 significantly decreased in A-498 cells with ATG5 low expression. The cell proliferation rate in ATG5 downregulation group was lower than that in the control group. Compared with control group, the survival rate in ATG5 low expression group were significantly reduced in a dose-dependent manner after sunitinib treatment. Conclusion Autophagy is active in renal clear cell carcinoma, and the drug sensitivity to sunitinib in renal cancer cells can be enhanced by the downregulation of ATG5.

  17. Renalase Protects against Renal Fibrosis by Inhibiting the Activation of the ERK Signaling Pathways

    PubMed Central

    Wu, Yiru; Wang, Liyan; Deng, Dai; Zhang, Qidong; Liu, Wenhu

    2017-01-01

    Renal interstitial fibrosis is a common pathway for the progression of chronic kidney disease (CKD) to end-stage renal disease. Renalase, acting as a signaling molecule, has been reported to have cardiovascular and renal protective effects. However, its role in renal fibrosis remains unknown. In this study, we evaluated the therapeutic efficacy of renalase in rats with complete unilateral ureteral obstruction (UUO) and examined the inhibitory effects of renalase on transforming growth factor-β1 (TGF-β1)-induced epithelial–mesenchymal transition (EMT) in human proximal renal tubular epithelial (HK-2) cells. We found that in the UUO model, the expression of renalase was markedly downregulated and adenoviral-mediated expression of renalase significantly attenuated renal interstitial fibrosis, as evidenced by the maintenance of E-cadherin expression and suppressed expression of α-smooth muscle actin (α-SMA), fibronectin and collagen-I. In vitro, renalase inhibited TGF-β1-mediated upregulation of α-SMA and downregulation of E-cadherin. Increased levels of Phospho-extracellular regulated protein kinases (p-ERK1/2) in TGF-β1-stimulated cells were reversed by renalase cotreatment. When ERK1 was overexpressed, the inhibition of TGF-β1-induced EMT and fibrosis mediated by renalase was attenuated. Our study provides the first evidence that renalase can ameliorate renal interstitial fibrosis by suppression of tubular EMT through inhibition of the ERK pathway. These results suggest that renalase has potential renoprotective effects in renal interstitial fibrosis and may be an effective agent for slowing CKD progression. PMID:28448446

  18. [Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].

    PubMed

    Maroto Rey, José Pablo; Cillán Narvaez, Elena

    2013-06-01

    There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.

  19. Gender Difference in Renal Blood Flow Response to Angiotensin II Administration after Ischemia/Reperfusion in Rats: The Role of AT2 Receptor.

    PubMed

    Maleki, Maryam; Nematbakhsh, Mehdi

    2016-01-01

    Background. Renal ischemia/reperfusion (I/R) is one of the major causes of kidney failure, and it may interact with renin angiotensin system while angiotensin II (Ang II) type 2 receptor (AT2R) expression is gender dependent. We examined the role of AT2R blockade on vascular response to Ang II after I/R in rats. Methods. Male and female rats were subjected to 30 min renal ischemia followed by reperfusion. Two groups of rats received either vehicle or AT2R antagonist, PD123319. Mean arterial pressure (MAP), and renal blood flow (RBF) responses were assessed during graded Ang II (100, 300, and 1000 ng/kg/min, i.v.) infusion at controlled renal perfusion pressure (RPP). Results. Vehicle or antagonist did not alter MAP, RPP, and RBF levels significantly; however, 30 min after reperfusion, RBF decreased insignificantly in female treated with PD123319 (P = 0.07). Ang II reduced RBF and increased renal vascular resistance (RVR) in a dose-related fashion (P dose < 0.0001), and PD123319 intensified the reduction of RBF response in female (P group < 0.005), but not in male rats. Conclusion. The impact of the AT2R on vascular responses to Ang II in renal I/R injury appears to be sexually dimorphic. PD123319 infusion promotes these hemodynamic responses in female more than in male rats.

  20. Chronic diabetes alters function and expression of ryanodine receptor calcium-release channels in rat hearts.

    PubMed

    Bidasee, Keshore R; Nallani, Karuna; Henry, Bruce; Dincer, U Deniz; Besch, Henry R

    2003-07-01

    Alteration in cardiac function is one of the hallmarks of diabetes and in late stage is manifested as a decrease in contractility. While it is established that the release of calcium ions from internal sarcoplasmic reticulum via type 2 ryanodine receptor calcium-release channels (RyR2) is vital for efficient contraction, the relationship between diabetes-induced decrease in cardiac performance and alterations in expression and/or function of RyR2 is not well delineated. The present study was designed to address this question and to determine whether changes to RyR2 induced by chronic diabetes could be minimized with insulin-treatment. When paced at 3.3 Hz (200 beats per minute), hearts from 8-week streptozotocin-induced diabetic rats showed decreased responsiveness to isoproterenol stimulation; +dT/dt and -dT/dt were 56.5 +/- 11.4% and 42.1 +/- 12.1% that of control, respectively. Hearts from 8-week diabetic rats expressed 51.2% less RyR2 than controls, In addition, RyR2 from diabetic rats also showed decreased ability to bind the specific ligand [3H]ryanodine (22.4 +/- 1.8% less [3H]ryanodine per microg of RyR2 protein), suggesting dysfunction. Two-weeks of insulin treatment, initiated after 6 weeks of untreated diabetes was able to minimize loss in function and expression of RyR2. Taken collectively, these data suggest that the decrease in cardiac contractility induced by chronic diabetes results in part from decreases in expression and alteration in function of RyR2 and these changes could be attenuated with insulin treatment.