Science.gov

Sample records for altered renal expression

  1. Altered glutamyl-aminopeptidase activity and expression in renal neoplasms.

    PubMed

    Blanco, Lorena; Sanz, Begoña; Perez, Itxaro; Sánchez, Clara E; Cándenas, M Luz; Pinto, Francisco M; Gil, Javier; Casis, Luis; López, José I; Larrinaga, Gorka

    2014-05-30

    Advances in the knowledge of renal neoplasms have demonstrated the implication of several proteases in their genesis, growth and dissemination. Glutamyl-aminopeptidase (GAP) (EC. 3.4.11.7) is a zinc metallopeptidase with angiotensinase activity highly expressed in kidney tissues and its expression and activity have been associated wtih tumour development. In this prospective study, GAP spectrofluorometric activity and immunohistochemical expression were analysed in clear-cell (CCRCC), papillary (PRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytoma (RO). Data obtained in tumour tissue were compared with those from the surrounding uninvolved kidney tissue. In CCRCC, classic pathological parameters such as grade, stage and tumour size were stratified following GAP data and analyzed for 5-year survival. GAP activity in both the membrane-bound and soluble fractions was sharply decreased and its immunohistochemical expression showed mild staining in the four histological types of renal tumours. Soluble and membrane-bound GAP activities correlated with tumour grade and size in CCRCCs. This study suggests a role for GAP in the neoplastic development of renal tumours and provides additional data for considering the activity and expression of this enzyme of interest in the diagnosis and prognosis of renal neoplasms.

  2. Altered glutamyl-aminopeptidase activity and expression in renal neoplasms

    PubMed Central

    2014-01-01

    Background Advances in the knowledge of renal neoplasms have demonstrated the implication of several proteases in their genesis, growth and dissemination. Glutamyl-aminopeptidase (GAP) (EC. 3.4.11.7) is a zinc metallopeptidase with angiotensinase activity highly expressed in kidney tissues and its expression and activity have been associated wtih tumour development. Methods In this prospective study, GAP spectrofluorometric activity and immunohistochemical expression were analysed in clear-cell (CCRCC), papillary (PRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytoma (RO). Data obtained in tumour tissue were compared with those from the surrounding uninvolved kidney tissue. In CCRCC, classic pathological parameters such as grade, stage and tumour size were stratified following GAP data and analyzed for 5-year survival. Results GAP activity in both the membrane-bound and soluble fractions was sharply decreased and its immunohistochemical expression showed mild staining in the four histological types of renal tumours. Soluble and membrane-bound GAP activities correlated with tumour grade and size in CCRCCs. Conclusions This study suggests a role for GAP in the neoplastic development of renal tumours and provides additional data for considering the activity and expression of this enzyme of interest in the diagnosis and prognosis of renal neoplasms. PMID:24885240

  3. Renal cell carcinoma alters endothelial receptor expression responsible for leukocyte adhesion.

    PubMed

    Juengel, Eva; Krueger, Geraldine; Rutz, Jochen; Nelson, Karen; Werner, Isabella; Relja, Borna; Seliger, Barbara; Fisslthaler, Beate; Fleming, Ingrid; Tsaur, Igor; Haferkamp, Axel; Blaheta, Roman A

    2016-04-12

    Renal cell carcinoma (RCC) escapes immune recognition. To elaborate the escape strategy the influence of RCC cells on endothelial receptor expression and endothelial leukocyte adhesion was evaluated. Human umbilical vein endothelial cells (HUVEC) were co-cultured with the RCC cell line, Caki-1, with and without tumor necrosis factor (TNF)-alpha. Intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial (E)-selectin, standard and variants (V) of CD44 were then analysed in HUVEC, using flow cytometry and Western blot analysis. To determine which components are responsible for HUVEC-Caki-1 interaction causing receptor alteration, Caki-1 membrane fragments versus cell culture supernatant were applied to HUVECS. Adhesion of peripheral blood lymphocytes (PBL) and polymorphonuclear neutrophils (PMN) to endothelium was evaluated by co-culture adhesion assays. Relevance of endothelial receptor expression for adhesion to endothelium was determined by receptor blockage. Co-culture of RCC and HUVECs resulted in a significant increase in endothelial ICAM-1, VCAM-1, E-selectin, CD44 V3 and V7 expression. Previous stimulation of HUVECs with TNF-alpha and co-cultivation with Caki-1 resulted in further elevation of endothelial CD44 V3 and V7 expression, whereas ICAM-1, VCAM-1 and E-selectin expression were significantly diminished. Since Caki-1 membrane fragments also caused these alterations, but cell culture supernatant did not, cell-cell contact may be responsible for this process. Blocking ICAM-1, VCAM-1, E-selectin or CD44 with respective antibodies led to a significant decrease in PBL and PMN adhesion to endothelium. Thus, exposing HUVEC to Caki-1 results in significant alteration of endothelial receptor expression and subsequent endothelial attachment of PBL and PMN.

  4. Prenatal Exposure to Lipopolysaccharide Alters Renal DNA Methyltransferase Expression in Rat Offspring

    PubMed Central

    Chen, Rui; Deng, Youcai; Liao, Xi; Wei, Yanling; Li, Xiaohui; Su, Min; Yu, Jianhua; Yi, Ping

    2017-01-01

    Prenatal exposure to inflammation results in hypertension during adulthood but the mechanisms are not well understood. Maternal exposure to lipopolysaccharide (LPS) alters interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels in the fetal environment. As reported in many recent studies, IL-6 regulates DNA methyltransferases (DNMTs) through the transcription factor friend leukemia virus integration 1 (Fli-1). The present study explores the role of intrarenal DNMTs during development of hypertension induced by prenatal exposure to LPS. Pregnant rats were randomly divided into four treatment groups: control, LPS, pyrrolidine dithiocarbamate (PDTC, a NF-κB inhibitor), and the combination of LPS and PDTC. Expression of IL-6, Fli-1, TNF-α, DNMT1 and DNMT3B was significantly increased in the offspring of LPS-treated rats. Global DNA methylation level of renal cortex also increased dramatically in rat offspring of the LPS group. Prenatal PDTC administration reversed the increases in gene expression and global DNA methylation level. These findings suggest that prenatal exposure to LPS may result in changes of intrarenal DNMTs through the IL-6/Fli-1 pathway and TNF-α, which probably involves hypertension in offspring due to maternal exposure to inflammation. PMID:28103274

  5. Smad7 suppresses renal fibrosis via altering expression of TGF-β/Smad3-regulated microRNAs

    PubMed Central

    Chung, Arthur C.K.; Dong, Yuan; Yang, Weiqin; Zhong, Xiang; Li, Rong; Lan, Hui Y.

    2013-01-01

    Blockade of transforming growth factor-β (TGF-β) signaling by Smad7 gene therapy is known to prevent experimental renal fibrosis. This study investigated whether Smad7 suppresses renal fibrosis via altering the renal expression of fibrosis-related microRNAs. Application of gene therapy into diseased kidneys of obstructive nephropathy and kidney cells by overexpressing Smad7 restored miR-29b but inhibited the expression of miR-192 and miR-21, resulting in blockade of renal fibrosis. Furthermore, Smad7 overexpression also suppressed advanced glycated end products- and angiotensin II-regulated expression of these microRNAs. In contrast, disruption of Smad7 gene in mice demonstrated opposite results by enhancing the loss of miR-29b and upregulation of miR-192 and miR-21, resulting in promotion of renal fibrosis in ligated kidneys of a model of obstructive nephropathy. More importantly, treatment with anti-miR-29b, miR-21 and miR-192 mimics in Smad7 overexpressing tubular epithelial cells abrogated the suppressive function of Smad7 on renal fibrosis, suggesting that these microRNAs act downstream of Smad7 to override the Smad7 function. In conclusion, Smad7 protects kidneys from fibrosis by regulating TGF-β/Smad3-mediated renal expression of miR-21, miR-192, and miR-29b. Restored renal miR-29b but suppressed miR-192 and miR-21 may be a mechanism by which gene therapy with Smad7 inhibits renal fibrosis. PMID:23207693

  6. Smad7 suppresses renal fibrosis via altering expression of TGF-β/Smad3-regulated microRNAs.

    PubMed

    Chung, Arthur C K; Dong, Yuan; Yang, Weiqin; Zhong, Xiang; Li, Rong; Lan, Hui Y

    2013-02-01

    Blockade of transforming growth factor-β (TGF-β) signaling by Smad7 gene therapy is known to prevent experimental renal fibrosis. This study investigated whether Smad7 suppresses renal fibrosis via altering the renal expression of fibrosis-related microRNAs. Application of gene therapy into diseased kidneys of obstructive nephropathy and kidney cells by overexpressing Smad7 restored miR-29b but inhibited the expression of miR-192 and miR-21, resulting in blockade of renal fibrosis. Furthermore, Smad7 overexpression also suppressed advanced glycated end products- and angiotensin II-regulated expression of these microRNAs. In contrast, disruption of Smad7 gene in mice demonstrated opposite results by enhancing the loss of miR-29b and upregulation of miR-192 and miR-21, resulting in promotion of renal fibrosis in ligated kidneys of a model of obstructive nephropathy. More importantly, treatment with anti-miR-29b, miR-21 and miR-192 mimics in Smad7 overexpressing tubular epithelial cells abrogated the suppressive function of Smad7 on renal fibrosis, suggesting that these microRNAs act downstream of Smad7 to override the Smad7 function. In conclusion, Smad7 protects kidneys from fibrosis by regulating TGF-β/Smad3-mediated renal expression of miR-21, miR-192, and miR-29b. Restored renal miR-29b but suppressed miR-192 and miR-21 may be a mechanism by which gene therapy with Smad7 inhibits renal fibrosis.

  7. Aromatase Deficient Female Mice Demonstrate Altered Expression of Molecules Critical for Renal Calcium Reabsorption

    NASA Astrophysics Data System (ADS)

    Öz, Orhan K.; Hajibeigi, Asghar; Cummins, Carolyn; van Abel, Monique; Bindels, René J.; Kuro-o, Makoto; Pak, Charles Y. C.; Zerwekh, Joseph E.

    2007-04-01

    The incidence of kidney stones increases in women after the menopause, suggesting a role for estrogen deficiency. In order to determine if estrogen may be exerting an effect on renal calcium reabsorption, we measured urinary calcium excretion in the aromatase-deficient female mouse (ArKO) before and following estrogen therapy. ArKO mice had hypercalciuria that corrected during estrogen administration. To evaluate the mechanism by which estrogen deficiency leads to hypercalciuria, we examined the expression of several proteins involved in distal tubule renal calcium reabsorption, both at the message and protein levels. Messenger RNA levels of TRPV5, TRPV6, calbindin-D28K, the Na+/Ca++ exchanger (NCX1), and the plasma membrane calcium ATPase (PMCA1b) were significantly decreased in kidneys of ArKO mice. On the other hand, klotho mRNA levels were elevated in kidneys of ArKO mice. ArKO renal protein extracts had lower levels of calbindin-D28K but higher levels of the klotho protein. Immunochemistry demonstrated increased klotho expression in ArKO kidneys. Estradiol therapy normalized the expression of TRPV5, calbindin-D28K, PMCA1b and klotho. Taken together, these results demonstrate that estrogen deficiency produced by aromatase inactivation is sufficient to produce a renal leak of calcium and consequent hypercalciuria. This may represent one mechanism leading to the increased incidence of kidney stones following the menopause in women.

  8. Oxidative stress induced by potassium bromate exposure results in altered tight junction protein expression in renal proximal tubule cells.

    PubMed

    Limonciel, Alice; Wilmes, Anja; Aschauer, Lydia; Radford, Robert; Bloch, Katarzyna M; McMorrow, Tara; Pfaller, Walter; van Delft, Joost H; Slattery, Craig; Ryan, Michael P; Lock, Edward A; Jennings, Paul

    2012-11-01

    Potassium bromate (KBrO(3)) is an oxidising agent that has been widely used in the food and cosmetic industries. It has shown to be both a nephrotoxin and a renal carcinogen in in vivo and in vitro models. Here, we investigated the effects of KBrO(3) in the human and rat proximal tubular cell lines RPTEC/TERT1 and NRK-52E. A genome-wide transcriptomic screen was carried out from cells exposed to a sub-lethal concentration of KBrO(3) for 6, 24 and 72 h. Pathway analysis identified "glutathione metabolism", "Nrf2-mediated oxidative stress" and "tight junction (TJ) signalling" as the most enriched pathways. TJ signalling was less impacted in the rat model, and further studies revealed low transepithelial electrical resistance (TEER) and an absence of several TJ proteins in NRK-52E cells. In RPTEC/TERT1 cells, KBrO(3) exposure caused a decrease in TEER and resulted in altered expression of several TJ proteins. N-Acetylcysteine co-incubation prevented these effects. These results demonstrate that oxidative stress has, in conjunction with the activation of the cytoprotective Nrf2 pathway, a dramatic effect on the expression of tight junction proteins. The further understanding of the cross-talk between these two pathways could have major implications for epithelial repair, carcinogenesis and metastasis.

  9. Altered expression profile of renal α(1D)-adrenergic receptor in diabetes and its modulation by PPAR agonists.

    PubMed

    Zhao, Xueying; Zhang, Yuanyuan; Leander, Michelle; Li, Lingyun; Wang, Guoshen; Emmett, Nerimiah

    2014-01-01

    Alpha(1D)-adrenergic receptor (α(1D)-AR) plays important roles in regulating physiological and pathological responses mediated by catecholamines, particularly in the cardiovascular and urinary systems. The present study was designed to investigate the expression profile of α(1D)-AR in the diabetic kidneys and its modulation by activation of peroxisome proliferator-activated receptors (PPARs). 12-week-old Zucker lean (ZL) and Zucker diabetic fatty (ZD) rats were treated with fenofibrate or rosiglitazone for 8-10 weeks. Gene microarray, real-time PCR, and confocal immunofluorescence microscopy were performed to assess mRNA and protein expression of α(1D)-AR in rat kidney tissue. Using microarray, we found that α(1D)-AR gene was dramatically upregulated in 22-week-old ZD rats compared to ZL controls. Quantitative PCR analysis verified a 16-fold increase in α(1D)-AR mRNA in renal cortex from ZD animals compared to normal controls. Chronic treatment with fenofibrate or rosiglitazone reduced renal cortical α(1D)-AR gene. Immunofluorescence staining confirmed that α(1D)-AR protein was induced in the glomeruli and tubules of diabetic rats. Moreover, dual immunostaining for α(1D)-AR and kidney injury molecule-1 indicated that α(1D)-AR was expressed in dedifferentiated proximal tubules of diabetic Zucker rats. Taken together, our results show that α(1D)-AR expression is upregulated in the diabetic kidneys. PPAR activation suppressed renal expression of α(1D)-AR in diabetic nephropathy.

  10. Altered expression of renal NHE3, TSC, BSC-1, and ENaC subunits in potassium-depleted rats.

    PubMed

    Elkjaer, Marie-Louise; Kwon, Tae-Hwan; Wang, Weidong; Nielsen, Jakob; Knepper, Mark A; Frøkiaer, Jørgen; Nielsen, Søren

    2002-12-01

    The purpose of this study was to examine whether hypokalemia is associated with altered abundance of major renal Na+ transporters that may contribute to the development of urinary concentrating defects. We examined the changes in the abundance of the type 3 Na+/H+ exchanger (NHE3), Na+ - K+-ATPase, the bumetanide-sensitive Na+ - K+ - 2Cl- cotransporter (BSC-1), the thiazide-sensitive Na+ - Cl- cotransporter (TSC), and epithelial sodium channel (ENaC) subunits in kidneys of hypokalemic rats. Semiquantitative immunoblotting revealed that the abundance of BSC-1 (57%) and TSC (46%) were profoundly decreased in the inner stripe of the outer medulla (ISOM) and cortex/outer stripe of the outer medulla (OSOM), respectively. These findings were confirmed by immunohistochemistry. Moreover, total kidney abundance of all ENaC subunits was significantly reduced in response to the hypokalemia: alpha-subunit (61%), beta-subunit (41%), and gamma-subunit (60%), and this was confirmed by immunohistochemistry. In contrast, the renal abundance of NHE3 in hypokalemic rats was dramatically increased in cortex/OSOM (736%) and ISOM (210%). Downregulation of BSC-1, TSC, and ENaC may contribute to the urinary concentrating defect, whereas upregulation of NHE3 may be compensatory to prevent urinary Na+ loss and/or to maintain intracellular pH levels.

  11. Distinct von Hippel-Lindau gene and hypoxia-regulated alterations in gene and protein expression patterns of renal cell carcinoma and their effects on metabolism.

    PubMed

    Leisz, Sandra; Schulz, Kristin; Erb, Susanne; Oefner, Peter; Dettmer, Katja; Mougiakakos, Dimitrios; Wang, Ena; Marincola, Francesco M; Stehle, Franziska; Seliger, Barbara

    2015-05-10

    During the last decade the knowledge about the molecular mechanisms of the cellular adaption to hypoxia and the function of the "von Hippel Lindau" (VHL) protein in renal cell carcinoma (RCC) has increased, but there exists little information about the overlap and differences in gene/protein expression of both processes. Therefore the aim of this study was to dissect VHL- and hypoxia-regulated alterations in the metabolism of human RCC using ome-based strategies. The effect of the VHL- and hypoxia-regulated altered gene/protein expression pattern on the cellular metabolism was analyzed by determination of glucose uptake, lactate secretion, extracellular pH, lactate dehydrogenase activity, amino acid content and ATP levels. By employing VHL-/VHL(+) RCC cells cultured under normoxic and hypoxic conditions, VHL-dependent, HIF-dependent as well as VHL-/HIF-independent alterations in the gene and protein expression patterns were identified and further validated in other RCC cell lines. The genes/proteins differentially expressed under these distinct conditions were mainly involved in the cellular metabolism, which was accompanied by an altered metabolism as well as changes in the abundance of amino acids in VHL-deficient cells. In conclusion, the study reveals similarities, but also differences in the genes and proteins controlled by VHL functionality and hypoxia thereby demonstrating differences in the metabolic switch of RCC under these conditions.

  12. Tuberous sclerosis complex protein 1 expression is affected by VHL Gene alterations and HIF-1α production in sporadic clear-cell renal cell carcinoma.

    PubMed

    Damjanovic, Svetozar S; Ilic, Bojana B; Beleslin Cokic, Bojana B; Antic, Jadranka A; Bankovic, Jovana Z; Milicevic, Ivana T; Rodic, Gordana S; Ilic, Dusan S; Todorovic, Vera N; Puskas, Nela; Tulic, Cane D

    2016-12-01

    Alterations in von Hippel-Lindau gene (VHL) do not determine deregulation of hypoxia-inducible factors (HIFs) in clear-cell renal carcinoma (ccRCC). Their effects on tuberous sclerosis proteins (TSC1/2) and heat shock protein 90 (Hsp90) expressions in sporadic ccRCC are unknown. Therefore, we analyze the impact of VHL alterations and HIF-α production on the expression of TSC proteins and Hsp90 in these tumors. Alterations in VHL gene region exhibited 37/47 (78.7%) tumors. Monoallelic inactivation (intragenic mutation or LOH) was found in 10 (21.3%) and biallelic inactivation (intragenic mutation plus LOH) in 27 (57.4%) ccRCCs. Tumorous expression of HIF-α mRNAs, HIF-α, Hsp90 and TSC2 were VHL independent; TSC2 was underexpressed in all tumors by immunostaining (P<0.001). Immunoblotting revealed that TSC1 production was lower in tumors with monoallelic VHL inactivation than in control (P=0.01) and tissues with biallelic VHL inactivation (P=0.019), while tumors lacking HIF-1α (16/47) concurrently overexpressed HIF-2α and underexpressed TSC1 in comparison to controls (P=0.01 for both) and HIF-1α positive tumors (P=0.015 and P=0.050). Significant portion of variability (56.4%) in tumor diameter was explained by oscillations in nuclear grade, and TSC1 and HIF-2α expression in VHL altered tumors. In conclusion, while TSC2 is broadly downregulated in sporadic ccRCC, TSC1 expression is reduced in two subsets of these tumors, those with monoallelic VHL gene inactivation and those with concurrent low HIF-1α and high HIF-2α expression. Hence, the involvement of nuclear grade, TSC1 and HIF-2α in the progression of VHL altered tumors, implies the interplay between pVHL and TSC1.

  13. Renal cells express different forms of vimentin: the independent expression alteration of these forms is important in cell resistance to osmotic stress and apoptosis.

    PubMed

    Buchmaier, Bettina S; Bibi, Asima; Müller, Gerhard A; Dihazi, Gry H; Eltoweissy, Marwa; Kruegel, Jenny; Dihazi, Hassan

    2013-01-01

    Osmotic stress has been shown to regulate cytoskeletal protein expression. It is generally known that vimentin is rapidly degraded during apoptosis by multiple caspases, resulting in diverse vimentin fragments. Despite the existence of the known apoptotic vimentin fragments, we demonstrated in our study the existence of different forms of vimentin VIM I, II, III, and IV with different molecular weights in various renal cell lines. Using a proteomics approach followed by western blot analyses and immunofluorescence staining, we proved the apoptosis-independent existence and differential regulation of different vimentin forms under varying conditions of osmolarity in renal cells. Similar impacts of osmotic stress were also observed on the expression of other cytoskeleton intermediate filament proteins; e.g., cytokeratin. Interestingly, 2D western blot analysis revealed that the forms of vimentin are regulated independently of each other under glucose and NaCl osmotic stress. Renal cells, adapted to high NaCl osmotic stress, express a high level of VIM IV (the form with the highest molecular weight), besides the three other forms, and exhibit higher resistance to apoptotic induction with TNF-α or staurosporin compared to the control. In contrast, renal cells that are adapted to high glucose concentration and express only the lower-molecular-weight forms VIM I and II, were more susceptible to apoptosis. Our data proved the existence of different vimentin forms, which play an important role in cell resistance to osmotic stress and are involved in cell protection against apoptosis.

  14. Renal Cells Express Different Forms of Vimentin: The Independent Expression Alteration of these Forms is Important in Cell Resistance to Osmotic Stress and Apoptosis

    PubMed Central

    Müller, Gerhard A.; Dihazi, Gry H.; Eltoweissy, Marwa; Kruegel, Jenny; Dihazi, Hassan

    2013-01-01

    Osmotic stress has been shown to regulate cytoskeletal protein expression. It is generally known that vimentin is rapidly degraded during apoptosis by multiple caspases, resulting in diverse vimentin fragments. Despite the existence of the known apoptotic vimentin fragments, we demonstrated in our study the existence of different forms of vimentin VIM I, II, III, and IV with different molecular weights in various renal cell lines. Using a proteomics approach followed by western blot analyses and immunofluorescence staining, we proved the apoptosis-independent existence and differential regulation of different vimentin forms under varying conditions of osmolarity in renal cells. Similar impacts of osmotic stress were also observed on the expression of other cytoskeleton intermediate filament proteins; e.g., cytokeratin. Interestingly, 2D western blot analysis revealed that the forms of vimentin are regulated independently of each other under glucose and NaCl osmotic stress. Renal cells, adapted to high NaCl osmotic stress, express a high level of VIM IV (the form with the highest molecular weight), besides the three other forms, and exhibit higher resistance to apoptotic induction with TNF-α or staurosporin compared to the control. In contrast, renal cells that are adapted to high glucose concentration and express only the lower-molecular-weight forms VIM I and II, were more susceptible to apoptosis. Our data proved the existence of different vimentin forms, which play an important role in cell resistance to osmotic stress and are involved in cell protection against apoptosis. PMID:23874579

  15. Age-dependent shifts in renal response to injury relate to altered BMP6/CTGF expression and signaling.

    PubMed

    Falke, Lucas L; Kinashi, Hiroshi; Dendooven, Amelie; Broekhuizen, Roel; Stoop, Reinout; Joles, Jaap A; Nguyen, Tri Q; Goldschmeding, Roel

    2016-11-01

    Age is associated with an increased prevalence of chronic kidney disease (CKD), which, through progressive tissue damage and fibrosis, ultimately leads to loss of kidney function. Although much effort is put into studying CKD development experimentally, age has rarely been taken into account. Therefore, we investigated the effect of age on the development of renal tissue damage and fibrosis in a mouse model of obstructive nephropathy (i.e., unilateral ureter obstruction; UUO). We observed that after 14 days, obstructed kidneys of old mice had more tubulointerstitial atrophic damage but less fibrosis than those of young mice. This was associated with reduced connective tissue growth factor (CTGF), and higher bone morphogenetic protein 6 (BMP6) expression and pSMAD1/5/8 signaling, while transforming growth factor-β expression and transcriptional activity were no different in obstructed kidneys of old and young mice. In vitro, CTGF bound to and inhibited BMP6 activity. In summary, our data suggest that in obstructive nephropathy atrophy increases and fibrosis decreases with age and that this relates to increased BMP signaling, most likely due to higher BMP6 and lower CTGF expression.

  16. Analysis of Altered MicroRNA Expression Profiles in Proximal Renal Tubular Cells in Response to Calcium Oxalate Monohydrate Crystal Adhesion: Implications for Kidney Stone Disease

    PubMed Central

    Wang, Bohan; Wu, Bolin; Liu, Jun; Yao, Weimin; Xia, Ding; Li, Lu; Chen, Zhiqiang; Ye, Zhangqun; Yu, Xiao

    2014-01-01

    Background Calcium oxalate monohydrate (COM) is the major crystalline component in kidney stones and its adhesion to renal tubular cells leads to tubular injury. However, COM-induced toxic effects in renal tubular cells remain ambiguous. MicroRNAs (miRNAs) play an important role in gene regulation at the posttranscriptional levels. Objective The present study aimed to assess the potential changes in microRNAs of proximal renal tubular cells in response to the adhesion of calcium oxalate monohydrate (COM) crystals. Methodology Lactate dehydrogenase (LDH) activity and DAPI staining were used to measure the toxic effects of HK-2 cells exposed to COM crystals. MicroRNA microarray and mRNA microarray were applied to evaluate the expression of HK-2 cells exposed to COM crystals. Quantitative real-time PCR (qRT-PCR) technology was used to validate the microarray results. Target prediction, Gene Ontology (GO) analysis and pathway analysis were applied to predict the potential roles of microRNAs in biological processes. Principal Findings Our study showed that COM crystals significantly altered the global expression profile of miRNAs in vitro. After 24 h treatment with a dose (1 mmol/L), 25 miRNAs were differentially expressed with a more than 1.5-fold change, of these miRNAs, 16 were up-regulated and 9 were down-regulated. A majority of these differentially expressed miRNAs were associated with cell death, mitochondrion and metabolic process. Target prediction and GO analysis suggested that these differentially expressed miRNAs potentially targeted many genes which were related to apoptosis, regulation of metabolic process, intracellular signaling cascade, insulin signaling pathway and type 2 diabetes. Conclusion Our study provides new insights into the role of miRNAs in the pathogenesis associated with nephrolithiasis. PMID:24983625

  17. Boldine Prevents Renal Alterations in Diabetic Rats

    PubMed Central

    Hernández-Salinas, Romina; Vielma, Alejandra Z.; Arismendi, Marlene N.; Boric, Mauricio P.; Sáez, Juan C.; Velarde, Victoria

    2013-01-01

    Diabetic nephropathy alters both structure and function of the kidney. These alterations are associated with increased levels of reactive oxygen species, matrix proteins, and proinflammatory molecules. Inflammation decreases gap junctional communication and increases hemichannel activity leading to increased membrane permeability and altering tissue homeostasis. Since current treatments for diabetic nephropathy do not prevent renal damage, we postulated an alternative treatment with boldine, an alkaloid obtained from boldo with antioxidant, anti-inflammatory, and hypoglycemic effects. Streptozotocin-induced diabetic and control rats were treated or not treated with boldine (50 mg/Kg/day) for ten weeks. In addition, mesangial cells were cultured under control conditions or in high glucose concentration plus proinflammatory cytokines, with or without boldine (100 µmol/L). Boldine treatment in diabetic animals prevented the increase in glycemia, blood pressure, renal thiobarbituric acid reactive substances and the urinary protein/creatinine ratio. Boldine also reduced alterations in matrix proteins and markers of renal damage. In mesangial cells, boldine prevented the increase in oxidative stress, the decrease in gap junctional communication, and the increase in cell permeability due to connexin hemichannel activity induced by high glucose and proinflammatory cytokines but did not block gap junction channels. Thus boldine prevented both renal and cellular alterations and could be useful for preventing tissue damage in diabetic subjects. PMID:24416726

  18. Tanshinone IIA attenuates renal fibrosis and inflammation via altering expression of TGF-β/Smad and NF-κB signaling pathway in 5/6 nephrectomized rats.

    PubMed

    Wang, Dong-Tao; Huang, Ren-Hua; Cheng, Xin; Zhang, Zhi-Hua; Yang, Ya-Jun; Lin, Xin

    2015-05-01

    In traditional Chinese medicine, Tanshinone IIA is used to treat chronic kidney disease (CKD). However, its biological activity and mechanism of action in renal fibrosis and inflammation are not fully identified. The current study was conducted to determine the effects of Tanshinone IIA treatment on CKD by assessing potential modulation of the TGF-β/Smad and NF-κB signaling pathway. CKD was produced in rats by 5/6 nephrectomy. They were then divided into the following groups: control (sham operation); CKD (5/6 nephrectomy); 5/6 nephrectomy+Tanshinone IIA (10mg/kg in average, once a day for 16 weeks). Serum and urine samples were obtained from animals in each group, and serum creatinine (Scr), blood urea nitrogen (BUN) levels and 24h urinary protein excretion were measured. Tissue samples from the kidney were used for morphometric studies (Masson's trichrome). The expression of fibronectin protein and collagen types I, III, IV, and TGF-β, TNF-α, CXCL-1, MCP-1, RANTES mRNA were evaluated using immunohistochemistry and RT-PCR analysis; the TGF-β/Smad and NF-κB signaling pathway was detected by immunohistochemistry and Western blot analysis. The following effects were observed in CKD rats treated with Tanshinone IIA: (1) marked improvements in Scr, and 24h urine protein excretion; (2) significant reductions in protein and mRNA levels of fibronectin, collagen III, and collagen IV and TNF-α, MCP-1, and CXCL-1; (3) significantly inhibited the TGF-β/Smad and NF-κB signaling activation. These results suggest that Tanshinone IIA suppresses renal fibrosis and inflammation via altering expression of TGF-β/Smad and NF-κB pathway in the remnant kidney, thus supporting the potential of Tanshinone IIA as a new therapeutic agent for slowing the progression of CKD. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Topoisomerase II α Status in Renal Medullary Carcinoma: Immuno-Expression and Gene Copy Alterations of a Potential Target of Therapy

    PubMed Central

    Albadine, Roula; Wang, Wenle; Brownlee, Noel A.; Toubaji, Antoun; Billis, Athanase; Argani, Perdram; Epstein, Jonathan I.; Garvin, A. Julian; Cousi, Rima; Schaeffer, Edward M.; Pavlovich, Christian; Netto, George J.

    2012-01-01

    Purpose Renal medullary carcinoma is an aggressive renal neoplasm without currently available effective therapy to our knowledge. Topoisomerase II α is a gyrase involved in cell proliferation, and DNA maintenance and repair. Topoisomerase II α is a target of inhibiting agents such as anthracyclines. Triggered by a recent response to topoisomerase II α inhibitors in a patient with renal medullary carcinoma, we evaluated topoisomerase II α expression in relation to the proliferation index and topoisomerase II α gene copy number status in a larger series of patients with renal medullary carcinoma. Materials and Methods Archival tissues from 14 renal medullary carcinomas were retrieved from our 3 institutions. Immunohistochemistry was performed using monoclonal antibodies for topoisomerase II α and Ki67. The percent of cells with positive nuclear staining was assessed in the highest area of expression for each marker. A previously suggested greater than 5% cutoff was used for topoisomerase II α over expression. The topoisomerase II α gene copy number was evaluated using fluorescence in situ hybridization. Locus specific topoisomerase II α gene and chromosome 17 centromere probes were used. The total number of topoisomerase II α and chromosome 17 centromere signals was counted in 150 cells per tumor and a topoisomerase II α-to-chromosome 17 centromere signal ratio was calculated in each tumor. A topoisomerase II α-to-chromosome 17 centromere ratio of 2.0 or greater and less than 0.8 was used as a cutoff for amplification and deletion, respectively. The percent of tumor cells with polysomic, eusomic or monosomic chromosome 17 status was also determined. Results On immuno-expression analysis topoisomerase II α immunohistochemistry was technically inconclusive in 1 renal medullary carcinoma. Topoisomerase II α was over expressed in 11 of 13 renal medullary carcinomas (85%) (median 50%, range 1% to 80%). As expected, a high Ki67 proliferation index was noted

  20. Metabolic alterations in renal cell carcinoma.

    PubMed

    Massari, Francesco; Ciccarese, Chiara; Santoni, Matteo; Brunelli, Matteo; Piva, Francesco; Modena, Alessandra; Bimbatti, Davide; Fantinel, Emanuela; Santini, Daniele; Cheng, Liang; Cascinu, Stefano; Montironi, Rodolfo; Tortora, Giampaolo

    2015-11-01

    Renal cell carcinoma (RCC) is a metabolic disease, being characterized by the dysregulation of metabolic pathways involved in oxygen sensing (VHL/HIF pathway alterations and the subsequent up-regulation of HIF-responsive genes such as VEGF, PDGF, EGF, and glucose transporters GLUT1 and GLUT4, which justify the RCC reliance on aerobic glycolysis), energy sensing (fumarate hydratase-deficient, succinate dehydrogenase-deficient RCC, mutations of HGF/MET pathway resulting in the metabolic Warburg shift marked by RCC increased dependence on aerobic glycolysis and the pentose phosphate shunt, augmented lipogenesis, and reduced AMPK and Krebs cycle activity) and/or nutrient sensing cascade (deregulation of AMPK-TSC1/2-mTOR and PI3K-Akt-mTOR pathways). We analyzed the key metabolic abnormalities underlying RCC carcinogenesis, highlighting those altered pathways that may represent potential targets for the development of more effective therapeutic strategies.

  1. Estrogen increases renal oxytocin receptor gene expression.

    PubMed

    Ostrowski, N L; Young, W S; Lolait, S J

    1995-04-01

    Estrogens have been implicated in the sodium and fluid imbalances associated with the menstrual cycle and late pregnancy. An estrogen-dependent role for renal oxytocin receptors in fluid homeostasis is suggested by the present findings which demonstrate that estradiol benzoate treatment increases the expression of the oxytocin receptor messenger ribonucleic acid and 125I-OTA binding to oxytocin receptors in the renal cortex and medullary collecting ducts of ovariectomized female rats. Moreover, estradiol induced high levels of oxytocin receptor expression in outer stripe proximal tubules of ovariectomized female and adrenalectomized male rats. Proximal tubule induction was inhibited in a dose-dependent manner by the antiestrogen tamoxifen, but cortical expression of oxytocin receptors in macula densa cells was unaffected by tamoxifen. These data demonstrate cell-specific regulation of oxytocin receptor expression in macula densa and proximal tubule cells, and suggest a important role for these receptors in mediating estrogen-induced alterations in renal fluid dynamics by possibly affecting glomerular filtration and water and solute reabsorption during high estrogen states.

  2. Lithium: thyroid effects and altered renal handling.

    PubMed

    Oakley, P W; Dawson, A H; Whyte, I M

    2000-01-01

    Lithium is frequently used in the treatment of bipolar affective disorder, and is widely known to affect thyroid function, most commonly resulting in hypothyroidism and goiter. Less well-known is the association between lithium therapy and hyperthyroidism and the potential for lithium to moderate the effects of thyroxine at a cellular level. Lithium excretion relates principally to glomerular filtration rate and proximal tubule function. Thyroxine, through its effects on tubular function, alters lithium clearance such that thyroid disease may cause retention of lithium and subsequent toxicity. We report 2 cases with lithium toxicity, both of whom were later found to be hyperthyroid. One patient developed thyroid storm following dialysis to remove lithium. The other received antithyroid medication early. Both suffered a protracted multifactorial delirium requiring intensive inpatient care. In addition to altering thyroid function, lithium therapy may mask the signs of hyperthyroidism by inducing cellular unresponsiveness. In some lithium-treated patients with biochemical hyperthyroidism, early antithyroid treatment may be appropriate. Altered renal tubular function induced by hyperthyroidism may result in retention of lithium and systemic toxicity. We propose induction of the proximal tubule sodium hydrogen antiporter as the relevant mechanism.

  3. A soy protein diet alters hepatic lipid metabolism gene expression and reduces serum lipids and renal fibrogenic cytokines in rats with chronic nephrotic syndrome.

    PubMed

    Tovar, Armando R; Murguía, Fernanda; Cruz, Cristino; Hernández-Pando, Rogelio; Aguilar-Salinas, Carlos A; Pedraza-Chaverri, José; Correa-Rotter, Ricardo; Torres, Nimbe

    2002-09-01

    Nephrotic syndrome (NS) is characterized by the presence of proteinuria and hyperlipidemia. However, ingestion of soy protein has a hypolipidemic effect. The present study was designed to determine whether the ingestion of a 20% soy protein diet regulates the expression of hepatic sterol regulatory element binding protein (SREBP)-1, fatty acid synthase (FAS), malic enzyme, beta-hydroxy-beta-methylglutaryl-CoA (HMG-CoA) reductase (r) and synthase (s), and LDL receptor (r), and to assess whether soy protein improves lipid and renal abnormalities in rats with chronic NS. Male Wistar rats were injected with vehicle or with puromycin aminonucleoside to induce NS and were fed either 20% casein or soy protein diets for 64 d. NS rats fed 20% soy protein had improved creatinine clearance and reduced proteinuria, hypercholesterolemia, hypertriglyceridemia, as well as VLDL-triglycerides and LDL cholesterol compared with NS rats fed the 20% casein diet. In addition, the soy protein diet decreased the incidence of glomerular sclerosis, and proinflammatory cytokines in kidney. Ingestion of the soy protein diet by control rats reduced the gene expression of SREBP-1, malic enzyme, FAS and increased HMG-CoAr, HMG-CoAs and LDLr. However, NS rats fed either casein or soy protein diets had low insulin concentrations with reductions in SREBP-1, FAS and malic enzyme expression compared with control rats fed the casein diet. NS rats fed the soy diet also had lower HMG-CoAr and LDLr mRNA levels than NS rats fed casein. In conclusion, the beneficial effects of soy protein on lipid metabolism are modulated in part by SREBP-1. However, in NS rats, the benefit may be through a direct effect of this protein on kidney rather than mediated by changes in expression of hepatic lipid metabolism genes.

  4. Differential Expression of Specific Dermatan Sulfate Domains in Renal Pathology.

    PubMed

    Lensen, Joost F M; van der Vlag, Johan; Versteeg, Elly M M; Wetzels, Jack F M; van den Heuvel, Lambert P W J; Berden, Jo H M; van Kuppevelt, Toin H; Rops, Angelique L W M M

    2015-01-01

    Dermatan sulfate (DS), also known as chondroitin sulfate (CS)-B, is a member of the linear polysaccharides called glycosaminoglycans (GAGs). The expression of CS/DS and DS proteoglycans is increased in several fibrotic renal diseases, including interstitial fibrosis, diabetic nephropathy, mesangial sclerosis and nephrosclerosis. Little, however, is known about structural alterations in DS in renal diseases. The aim of this study was to evaluate the renal expression of two different DS domains in renal transplant rejection and glomerular pathologies. DS expression was evaluated in normal renal tissue and in kidney biopsies obtained from patients with acute interstitial or vascular renal allograft rejection, patients with interstitial fibrosis and tubular atrophy (IF/TA), and from patients with focal segmental glomerulosclerosis (FSGS), membranous glomerulopathy (MGP) or systemic lupus erythematosus (SLE), using our unique specific anti-DS antibodies LKN1 and GD3A12. Expression of the 4/2,4-di-O-sulfated DS domain recognized by antibody LKN1 was decreased in the interstitium of transplant kidneys with IF/TA, which was accompanied by an increased expression of type I collagen, decorin and transforming growth factor beta (TGF-β), while its expression was increased in the interstitium in FSGS, MGP and SLE. Importantly, all patients showed glomerular LKN1 staining in contrast to the controls. Expression of the IdoA-Gal-NAc4SDS domain recognized by GD3A12 was similar in controls and patients. Our data suggest a role for the DS domain recognized by antibody LKN1 in renal diseases with early fibrosis. Further research is required to delineate the exact role of different DS domains in renal fibrosis.

  5. Differential Expression of Specific Dermatan Sulfate Domains in Renal Pathology

    PubMed Central

    Lensen, Joost F. M.; van der Vlag, Johan; Versteeg, Elly M. M.; Wetzels, Jack F. M.; van den Heuvel, Lambert P. W. J.; Berden, Jo H. M.; van Kuppevelt, Toin H.; Rops, Angelique L. W. M. M.

    2015-01-01

    Dermatan sulfate (DS), also known as chondroitin sulfate (CS)-B, is a member of the linear polysaccharides called glycosaminoglycans (GAGs). The expression of CS/DS and DS proteoglycans is increased in several fibrotic renal diseases, including interstitial fibrosis, diabetic nephropathy, mesangial sclerosis and nephrosclerosis. Little, however, is known about structural alterations in DS in renal diseases. The aim of this study was to evaluate the renal expression of two different DS domains in renal transplant rejection and glomerular pathologies. DS expression was evaluated in normal renal tissue and in kidney biopsies obtained from patients with acute interstitial or vascular renal allograft rejection, patients with interstitial fibrosis and tubular atrophy (IF/TA), and from patients with focal segmental glomerulosclerosis (FSGS), membranous glomerulopathy (MGP) or systemic lupus erythematosus (SLE), using our unique specific anti-DS antibodies LKN1 and GD3A12. Expression of the 4/2,4-di-O-sulfated DS domain recognized by antibody LKN1 was decreased in the interstitium of transplant kidneys with IF/TA, which was accompanied by an increased expression of type I collagen, decorin and transforming growth factor beta (TGF-β), while its expression was increased in the interstitium in FSGS, MGP and SLE. Importantly, all patients showed glomerular LKN1 staining in contrast to the controls. Expression of the IdoA-Gal-NAc4SDS domain recognized by GD3A12 was similar in controls and patients. Our data suggest a role for the DS domain recognized by antibody LKN1 in renal diseases with early fibrosis. Further research is required to delineate the exact role of different DS domains in renal fibrosis. PMID:26322947

  6. Splicing alterations in human renal allografts: detection of a new splice variant of protein kinase Par1/Emk1 whose expression is associated with an increase of inflammation in protocol biopsies of transplanted patients.

    PubMed

    Hueso, Miguel; Beltran, Violeta; Moreso, Francesc; Ciriero, Eva; Fulladosa, Xavier; Grinyó, Josep Maria; Serón, Daniel; Navarro, Estanis

    2004-05-24

    Protein kinase Emk1/Par1 (GenBank accession no. X97630) has been identified as a regulator of the immune system homeostasis. Since immunological factors are critical for the development of chronic allograft nephropathy (CAN), we reasoned that expression of Par1/Emk1 could be altered in kidney allografts undergoing CAN. In this paper, we have analysed the association among renal allograft lesions and expression of Par1/Emk1, studied by RT-PCR on total RNA from 51 protocol biopsies of transplanted kidneys, five normal kidneys, and five dysfunctional allografts. The most significant result obtained has been the detection of alterations in the normal pattern of alternative splicing of the Par1/Emk1 transcript, alterations that included loss of expression of constitutively expressed isoforms, and the inclusion of a cryptic exon to generate a new Emk1 isoform (Emk1C). Expression of Emk1C was associated with an increase in the extension of the interstitial infiltrate (0.88+/-0.33 in Emk1C([+]) vs. 0.41+/-0.50 in Emk1C([-]); P<0.011), and with a trend to display higher interstitial scarring (0.66+/-0.70 vs. 0.29+/-0.52; P=0.09) in protocol biopsies when evaluated according to the Banff schema. Moreover, a higher mean arterial pressure (MAP) was also observed (110+/-11 vs. 99+/-11 mm Hg; P=0.012). From these results we propose that Par1/Emk1 could have a role in the development of CAN in kidney allografts.

  7. Renal function alterations during skeletal muscle disuse in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Tucker, Bryan J.

    1992-01-01

    This project was to examine the alterations in renal functions during skeletal muscle disuse in simulated microgravity. Although this area could cover a wide range of investigative efforts, the limited funding resulted in the selection of two projects. These projects would result in data contributing to an area of research deemed high priority by NASA and would address issues of the alterations in renal response to vasoactive stimuli during conditions of skeletal muscle disuse as well as investigate the contribution of skeletal muscle disuse, conditions normally found in long term human exposure to microgravity, to the balance of fluid and macromolecules within the vasculature versus the interstitium. These two projects selected are as follows: investigate the role of angiotensin 2 on renal function during periods of simulated microgravity and skeletal muscle disuse to determine if the renal response is altered to changes in circulating concentrations of angiotensin 2 compared to appropriate controls; and determine if the shift of fluid balance from vasculature to the interstitium, the two components of extracellular fluid volume, that occur during prolonged exposure to microgravity and skeletal muscle disuse is a result, in part, to alterations in the fluid and macromolecular balance in the peripheral capillary beds, of which the skeletal muscle contains the majority of recruitment capillaries. A recruitment capillary bed would be most sensitive to alterations in Starling forces and fluid and macromolecular permeability.

  8. Effects of early overnutrition on the renal response to Ang II and expression of RAAS components in rat renal tissue.

    PubMed

    Granado, M; Amor, S; Fernández, N; Carreño-Tarragona, G; Iglesias-Cruz, M C; Martín-Carro, B; Monge, L; García-Villalón, A L

    2017-07-08

    The aim of this study was to analyze the effects of early overnutrition (EON) on the expression of the renin angiotensin aldosterone system (RAAS) components in renal cortex, renal arteries and renal perivascular adipose tissue (PVAT), as well as the vascular response of renal arteries to Angiotensin II (Ang II). On birth day litters were adjusted to twelve (L12-control) or three (L3-overfed) pups per mother. Half of the animals were sacrificed at weaning (21 days old) and the other half at 5 months of age. Ang II-induced vasoconstriction of renal artery segments increased in young overfed rats and decreased in adult overfed rats. EON decreased the gene expression of angiotensinogen (Agt), Ang II receptors AT1 and AT2 and eNOS in renal arteries of young rats, while it increased the mRNA levels of AT-2 and ET-1 in adult rats. In renal PVAT EON up-regulated the gene expression of COX-2 and TNF-α in young rats and the mRNA levels of renin receptor both in young and in adult rats. On the contrary, Ang II receptors mRNA levels were downregulated at both ages. Renal cortex of overfed rats showed increased gene expression of Agt in adult rats and of AT1 in young rats. However the mRNA levels of AT1 were decreased in the renal cortex of overfed adult rats. EON is associated with alterations in the vascular response of renal arteries to Ang II and changes in the gene expression of RAAS components in renal tissue. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  9. Growth and development alter susceptibility to acute renal injury.

    PubMed

    Zager, Richard A; Johnson, Ali C M; Naito, Masayo; Lund, Steve R; Kim, Nayeon; Bomsztyk, Karol

    2008-09-01

    Many of the studies of acute renal injury have been conducted in young mice usually during their rapid growth phase; yet, the impact of age or growth stage on the degree of injury is unknown. To address this issue, we studied three forms of injury (endotoxemic-, glycerol-, and maleate-induced) in mice ranging in age from adolescence (3 weeks) to maturity (16 weeks). The severity of injury within each model significantly correlated with weight and age. We also noticed a progressive age-dependent reduction in renal cholesterol content, a potential injury modifier. As the animals grew and aged they also exhibited stepwise decrements in the mRNAs of HMG CoA reductase and the low density lipoprotein receptor, two key cholesterol homeostatic genes. This was paralleled by decreased amounts of RNA polymerase II and the transcription factor SREBP1/2 at the reductase and lipoprotein receptor gene loci as measured by chromatin immunoprecipitation. Our study shows that the early phase of mouse growth can profoundly alter renal susceptibility to diverse forms of experimental acute renal injury.

  10. Diabetes-Induced Decrease in Renal Oxygen Tension: Effects of an Altered Metabolism

    NASA Astrophysics Data System (ADS)

    Palm, Fredrik; Carlsson, Per-Ola; Fasching, Angelica; Hansell, Peter; Liss, Per

    During conditions with experimental diabetes mellitus, it is evident that several alterations in renal oxygen metabolism occur, including increased mitochondrial respiration and increased lactate accumulation in the renal tissue. Consequently, these alterations will contribute to decrease the interstitial pO2, preferentially in the renal medulla of animals with sustained long-term hyperglycemia.

  11. Calponin h1 expression in renal tumor vessels: correlations with multiple pathological factors of renal cell carcinoma.

    PubMed

    Islam, A H M Manjurul; Ehara, Takashi; Kato, Haruaki; Hayama, Masayoshi; Kobayashi, Shinya; Igawa, Yasuhiko; Nishizawa, Osamu

    2004-03-01

    We determined whether the architecture of renal tumor vessels is immunohistochemically different from that of normal renal vessels and related to the various pathological factors that affect prognosis of renal cell carcinoma (RCC). A total of 52 cases of primary RCC were selected. Tissues from radical nephrectomy specimens were stained with antibody to alpha-smooth muscle actin (alpha-SMA) and calponin h1. Immunostaining was evaluated semiqualitatively as 0-no staining to 3+-strong staining. Tumor cell proliferation was observed using proliferating marker Ki-67. Data were statistically compared with pathological factors, such as tumor size, histological pattern, growth pattern, cell type, nuclear grade, pathological stage and presence or absence of venous invasion. In normal renal tissues smooth muscle cells of the blood vessels showed strong immunoreactions with antibody to calponin h1 and alpha-SMA. Although alpha-SMA antibody showed similar strong immunoreactions in all types of renal tumor vessels, we observed qualitative alterations in the expression of calponin h1 in different types of RCCs. Strong to moderate immunoreactions with calponin h1 were observed in tumors with expansive growth and an alveolar pattern. Small tumors without venous invasion and chromophobe cell carcinomas also showed strong to moderate expression of calponin h1. Weak or absent expression of calponin h1 was observed significantly in infiltrating tumors, sarcomatous type, large, high grade and high stage tumors associated with significantly higher proliferating indexes. Our results strongly suggest that the renal tumor vessels are immunohistochemically different from normal renal vessels in respect to calponin h1 expression. We speculate that due to the decrease in or absence of calponin h1 tumor vessels do not develop adequate maturity to maintain vascular integrity. In addition, the distribution of calponin h1 significantly correlated with multiple pathological factors of RCC

  12. Alterations of the growth plate in chronic renal failure.

    PubMed

    Santos, Fernando; Carbajo-Pérez, Eduardo; Rodríguez, Julián; Fernández-Fuente, Marta; Molinos, Inés; Amil, Benito; García, Enrique

    2005-03-01

    Chronic renal failure modifies the morphology and dynamics of the growth plate (GP) of long bones. In young uremic rats, the height of cartilage columns of GP may vary markedly. The reasons for this variation are unknown, although the severity and duration of renal failure and the type of renal osteodystrophy have been shown to influence the height of GP cartilage. Expansion of GP cartilage is associated with that of the hypertrophic stratum. The interference of uremia with the process of chondrocyte differentiation is suggested by some morphological features. However, analysis by immunohistochemistry and/or in situ hybridization of markers of chondrocyte maturation in the GP of uremic rats has yielded conflicting results. Thus, there have been reported normal and reduced mRNA levels for collagen X, parathyroid hormone/parathyroid hormone-related peptide receptor, and matrix metalloproteinase 9, as well as normal mRNA and protein expression for vascular endothelial growth factor and chondromodulin I, peptides related to the control of angiogenesis. In addition, a decreased immunohistochemical signal for growth hormone receptor and low insulin-like growth factor I mRNA in the proliferative zone of uremic GP are supportive of reduced chondrocyte proliferation. Growth hormone treatment improves chondrocyte maturation and activates bone metabolism in the primary spongiosa.

  13. Renal Alterations in Feline Immunodeficiency Virus (FIV)-Infected Cats: A Natural Model of Lentivirus-Induced Renal Disease Changes

    PubMed Central

    Poli, Alessandro; Tozon, Natasa; Guidi, Grazia; Pistello, Mauro

    2012-01-01

    Human immunodeficiency virus (HIV) is associated with several renal syndromes including acute and chronic renal failures, but the underlying pathogenic mechanisms are unclear. HIV and feline immunodeficiency virus (FIV) share numerous biological and pathological features, including renal alterations. We investigated and compared the morphological changes of renal tissue of 51 experimentally and 21 naturally infected cats. Compared to the latter, the experimentally infected cats exhibited some mesangial widening and glomerulonephritis, milder proteinuria, and lower tubular and interstitial alterations. The numbers of giant protein tubular casts and tubular microcysts were also lower. In contrast, diffuse interstitial infiltrates and glomerular and interstitial amyloidosis were detected only in naturally infected cats. Similar alterations are found in HIV infected patients, thus supporting the idea of a causative role of FIV infection in renal disease, and underlining the relevance of the FIV and its natural host as an animal model for investigating lentivirus-associated nephropathy. PMID:23170163

  14. Alterations in the growth plate cartilage of rats with renal failure receiving corticosteroid therapy.

    PubMed

    Sanchez, Cheryl P; He, Y-Z

    2002-05-01

    Growth retardation is a complication often associated with corticosteroid therapy. Corticosteroids are frequently used in the treatment of children with chronic renal failure. To examine the effects of corticosteroids on the growth plate cartilage in renal failure, selected markers of chondrocyte function and phenotype were evaluated in the proximal tibia of subtotally nephrectomized rats treated with corticosteroid. Serum parathyroid hormone (PTH), urea nitrogen, and creatinine levels were higher in the nephrectomized animals. Weight gain was less in the corticosteroid-treated animals; however, linear growth and tibial length did not differ among the groups after 10 days of corticosteroid therapy. The total width of the growth plate and the width of the proliferative zone were much smaller in corticosteroid-treated nephrectomized (Nx-MP) animals. Type II collagen mRNA expression was lower in animals treated with corticosteroids, and proliferating-cell nuclear antigen staining, histone-4, and insulin-like growth factor-1 (IGF-1)-receptor mRNA expression were further decreased in the Nx-MP group. There was an increase in TUNEL-positive cells in the corticosteroid-treated rats with normal renal function (intact-MP), associated with an increase in Bax and a decrease in Bcl-2 protein expression. In the Nx-MP group, both Bax and Bcl-2 protein staining was much less frequent, and TUNEL-positive cells were lower in number compared with the intact-MP group. Vascular endothelial growth factor expression in the hypertrophic chondrocytes was lower in corticosteroid-treated animals. There was less gelatinase B/matrix metalloproteinase-9 expression in the Nx-MP group, which was not associated with a decrease in tartrate-resistant acid phosphatase (TRAP) staining in the chondro-osseous junction. Inhibition of chondrocyte proliferation, diminishing of apoptosis, and lower angiogenic activity may contribute to the alterations in growth plate architecture and the significant

  15. Alterations in the renal elastin-elastase system in type 1 diabetic nephropathy identified by proteomic analysis.

    PubMed

    Thongboonkerd, Visith; Barati, Michelle T; McLeish, Kenneth R; Benarafa, Charaf; Remold-O'Donnell, Eileen; Zheng, Shirong; Rovin, Brad H; Pierce, William M; Epstein, Paul N; Klein, Jon B

    2004-03-01

    Diabetes now accounts for >40% of patients with ESRD. Despite significant progress in understanding diabetic nephropathy, the cellular mechanisms that lead to diabetes-induced renal damage are incompletely defined. For defining changes in protein expression that accompany diabetic nephropathy, the renal proteome of 120-d-old OVE26 transgenic mice with hypoinsulinemia, hyperglycemia, hyperlipidemia, and proteinuria were compared with those of background FVB nondiabetic mice (n = 5). Proteins derived from whole-kidney lysate were separated by two-dimensional PAGE and identified by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. Forty-one proteins from 300 visualized protein spots were differentially expressed in diabetic kidneys. Among these altered proteins, expression of monocyte/neutrophil elastase inhibitor was increased, whereas elastase IIIB was decreased, leading to the hypothesis that elastin expression would be increased in diabetic kidneys. Renal immunohistochemistry for elastin of 325-d-old FVB and OVE26 mice demonstrated marked accumulation of elastin in the macula densa, collecting ducts, and pelvicalyceal epithelia of diabetic kidneys. Elastin immunohistochemistry of human renal biopsies from patients with type 1 diabetes (n = 3) showed increased elastin expression in renal tubular cells and the interstitium but not glomeruli. These results suggest that coordinated changes in elastase inhibitor and elastase expression result in increased tubulointerstitial deposition of elastin in diabetic nephropathy. The identification of these coordinated changes in protein expression in diabetic nephropathy indicates the potential value of proteomic analysis in defining pathophysiology.

  16. Effect of reduced renal mass on renal ammonia transporter family, Rh C glycoprotein and Rh B glycoprotein, expression.

    PubMed

    Kim, Hye-Young; Baylis, Chris; Verlander, Jill W; Han, Ki-Hwan; Reungjui, Sirirat; Handlogten, Mary E; Weiner, I David

    2007-10-01

    Kidneys can maintain acid-base homeostasis, despite reduced renal mass, through adaptive changes in net acid excretion, of which ammonia excretion is the predominant component. The present study examines whether these adaptations are associated with changes in the ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg). We used normal Sprague-Dawley rats and a 5/6 ablation-infarction model of reduced renal mass; control rats underwent sham operation. After 1 wk, glomerular filtration rate, assessed as creatinine clearance, was decreased, serum bicarbonate was slightly increased, and Na(+) and K(+) were unchanged. Total urinary ammonia excretion was unchanged, but urinary ammonia adjusted for creatinine clearance, an index of per nephron ammonia metabolism, increased significantly. Although reduced renal mass did not alter total Rhcg protein expression, both light microscopy and immunohistochemistry with quantitative morphometric analysis demonstrated hypertrophy of both intercalated cells and principal cells in the cortical and outer medullary collecting duct that was associated with increased apical and basolateral Rhcg polarization. Rhbg expression, analyzed using immunoblot analysis, immunohistochemistry, and measurement of cell-specific expression, was unchanged. We conclude that altered subcellular localization of Rhcg contributes to adaptive changes in single-nephron ammonia metabolism and maintenance of acid-base homeostasis in response to reduced renal mass.

  17. HMGA2 Expression in Renal Carcinoma and its Clinical Significance

    PubMed Central

    Liu, Ying; Fu, Qi-Zhong; Pu, Lin; Meng, Qing-Guo; Liu, Xian-Feng; Dong, Sheng-Fang; Yang, Jian-Xun; Lv, Guang-Yao

    2015-01-01

    Summary Background The objective of this study is to detect HMGA2 expression in renal carcinoma to explore its relationship with clinicopathology and its significance in prognosis. Methods Expressions of HMGA2 mRNA and protein were detected in 50 renal carcinoma specimens, 50 corresponding adjacent normal kidney tissue samples and 40 renal benign tumour specimens via reverse transcription polymerase chain reaction and immunohistochemical assay. Expression analysis was performed along with clinical data analysis. Results The relative expression levels of HMGA2 mRNA in renal carcinoma, renal benign tumour tissues and adjacent normal renal tissues were 0.84±0.23, 0.19±0.06 and 0.08±0.04, respectively. HMGA2 protein positive rates were 68.0%, 7.5% and 2.0%, with a significant difference (P<0.05). HMGA2 expression was not significantly correlated with gender, age, tumour size and histological type (P>0.05), but was significantly correlated with TNM stages and lymph node metastasis (P<0.05). Conclusions The expressions of HMGA2 gene and protein in renal carcinoma were closely correlated with tumour formation, progression and metastasis. HMGA2 may become a powerful new pathological marker and prognostic factor for renal carcinoma. PMID:28356845

  18. Genetic alterations of HER genes in chromophobe renal cell carcinoma

    PubMed Central

    WENG, WEN HUI; CHEN, YING TZU; YU, KAI JIE; CHANG, YING HSU; CHUANG, CHENG KENG; PANG, SEE TONG

    2016-01-01

    Chromophobe (ch) renal cell carcinoma (RCC) is the 3rd most common subtype of RCC and occurs in 5% of all RCCs. Although chRCC generally demonstrates more favorable outcomes compared with other subtypes of RCC, there is a 6–7% probability of tumor progression and metastasis in this disease. The subclassification of a more aggressive subtype of chRCC may be useful for the management of this cancer. The Erb-B2 receptor tyrosine kinase 2 [also known as human epidermal growth factor receptor (HER) 2] gene has been reported to be important in chRCC. The present study aimed to further investigate the abnormalities of the HER family genes and their potential association with chRCC. Fluorescence in situ hybridization was performed on 11 chRCC tissue specimens, and the Spearman's rank correlation coefficient analysis was used to assess the results. The loss of one copy of the HER2 and HER4 genes was observed to be the major alteration of the tumor cells in all chRCC cases. Statistical data indicated that loss of the HER2 gene was strongly correlated with loss of the HER4 gene (P=0.019). The findings of previous studies were also combined for analysis, and were consistent with those of the present study. In addition, the amplification of HER1 was also strongly correlated with the amplification of HER4 (P=0.004). Furthermore, a high percentage of genetic structural rearrangements was observed in HER3 genes, which was significantly associated with amplification of HER2 (P=0.005). Certain alterations in the HER gene family were also noted as a phenomenom in chRCC. Therefore, the characterization of the underlying aberrant functions of HER genes may be of interest for additional studies in the context of using HER genes to distinguish between RCC subtypes in order to establish improved treatment guidelines. PMID:26998131

  19. Proteomic analysis reveals alterations in the renal kallikrein pathway during hypoxia-induced hypertension.

    PubMed

    Thongboonkerd, Visith; Gozal, Evelyne; Sachleben, Leroy R; Arthur, John M; Pierce, William M; Cai, Jian; Chao, Julie; Bader, Michael; Pesquero, Joao B; Gozal, David; Klein, Jon B

    2002-09-20

    Obstructive sleep apnea syndrome (OSAS), a disorder characterized by episodic hypoxia (EH) during sleep, is associated with systemic hypertension. We used proteomic analysis to examine differences in rat kidney protein expression during EH, and their potential relationship to EH-induced hypertension. Young male Sprague-Dawley rats were exposed to either EH or sustained hypoxia (SH) for 14 (EH14/SH14) and 30 (EH30/SH30) days. Mean arterial blood pressure was significantly increased only in EH30 (p < 0.0002). Kidney proteins were resolved by two-dimensional-PAGE and were identified by MALDI-MS. Renal expression of kallistatin, a potent vasodilator, was down-regulated in all animals. Expression of alpha-1-antitrypsin, an inhibitor of kallikrein activation, was up-regulated in EH but down-regulated in SH. Western blotting showed significant elevation of B(2)-bradykinin receptor expression in all normotensive animals but remained unchanged in hypertensive animals. Proteins relevant to vascular hypertrophy, such as smooth muscle myosin and protein-disulfide isomerase were up-regulated in EH30 but were down-regulated in SH30. These data indicate that EH induces changes in renal protein expression consistent with impairment of vasodilation mediated by the kallikrein-kallistatin pathway and vascular hypertrophy. In contrast, SH-induced changes suggest the kallikrein- and bradykinin-mediated compensatory mechanisms for prevention of hypertension and vascular remodeling. To test the hypothesis suggested by the proteomic data, we measured the effect of EH on blood pressure in transgenic hKLK1 rats that overexpress human kallikrein. Transgenic hKLK1 animals were protected from EH-induced hypertension. We conclude that EH-induced hypertension may result, at least in part, from altered regulation of the renal kallikrein system.

  20. Prenatal glucocorticoid exposure in the sheep alters renal development in utero: implications for adult renal function and blood pressure control.

    PubMed

    Moritz, Karen M; De Matteo, Robert; Dodic, Miodrag; Jefferies, Andrew J; Arena, Debbie; Wintour, E Marelyn; Probyn, Megan E; Bertram, John F; Singh, Reetu R; Zanini, Simone; Evans, Roger G

    2011-08-01

    Treatment of the pregnant ewe with glucocorticoids early in pregnancy results in offspring with hypertension. This study examined whether glucocorticoids can reduce nephron formation or alter gene expression for sodium channels in the late gestation fetus. Sodium channel expression was also examined in 2-mo-old lambs, while arterial pressure and renal function was examined in adult female offspring before and during 6 wk of increased dietary salt intake. Pregnant ewes were treated with saline (SAL), dexamethasone (DEX; 0.48 mg/h) or cortisol (CORT; 5 mg/h) over days 26-28 of gestation (term = 150 days). At 140 days of gestation, glomerular number in CORT and DEX animals was 40 and 25% less, respectively, compared with SAL controls. Real-time PCR showed greater gene expression for the epithelial sodium channel (α-, β-, γ-subunits) and Na(+)-K(+)-ATPase (α-, β-, γ-subunits) in both the DEX and CORT group fetal kidneys compared with the SAL group with some of these changes persisting in 2-mo-old female offspring. In adulthood, sheep treated with dexamethasone or cortisol in utero had elevated arterial pressure and an apparent increase in single nephron glomerular filtration rate, but global renal hemodynamics and excretory function were normal and arterial pressure was not salt sensitive. Our findings show that the nephron-deficit in sheep exposed to glucocorticoids in utero is acquired before birth, so it is a potential cause, rather than a consequence, of their elevated arterial pressure in adulthood. Upregulation of sodium channels in these animals could provide a mechanistic link to sustained increases in arterial pressure in cortisol- and dexamethasone-exposed sheep, since it would be expected to promote salt and water retention during the postnatal period.

  1. Renal formulas pretreated with medications alters the nutrient profile

    PubMed Central

    Oladitan, Leah; Carlson, Susan; Hamilton-Reeves, Jill M.

    2015-01-01

    Background Pretreating renal formulas with medications to lower the potassium and phosphorus content is common in clinical practice; however, the effect of this treatment on other nutrients is relatively unstudied. We examine whether nutrient composition is affected by pretreating renal formulas with sodium polystyrene sulfonate (SPS) suspension and sevelamer carbonate. Methods Fixed medication doses and treatment times were utilized to determine changes in the nutrient composition of Suplena® and Similac® PM 60/40. The effect of simultaneously adding both medications (co-administration) to the formula on the nutrient composition of Suplena® was also evaluated. Results Pretreatment of Suplena® with SPS reduced the concentrations of calcium (11–38 %), copper (3–11 %), manganese (3–16 %), phosphorus (0–7 %), potassium (6–34 %), and zinc (5–20 %) and increased those of iron (9–34 %), sodium (89–260 %), and sulfur (19–45 %) and the pH (0.20–0.50 units). Pretreatment of Similac® PM 60/40 with SPS reduced the concentrations of calcium (8–29 %), copper (5–19 %), magnesium (3–26 %), and potassium (33–63 %) and increased those of iron (13–87 %) and sodium (86–247 %) and the pH (0.40–0.81 units). Pretreatment of both formulas with the SPS suspension led to significant increases in the aluminum concentration in both formulas (507–3957 %). No differences in potassium concentration were observed between treatment times. Unexpectedly, the levels of neither phosphorus nor potassium were effectively reduced in Suplena® pretreated with sevelamer carbonate alone or when co-administered with SPS. Conclusions Pretreating formula with medications alters nutrients other than the intended target(s). Future studies should be aimed at predicting the loss of these nutrients or identifying alternative methods for managing serum potassium and phosphorus levels in formula-fed infants. The safety of pretreating formula with SPS suspension should also be

  2. Induction of type 1 iodothyronine deiodinase expression inhibits proliferation and migration of renal cancer cells.

    PubMed

    Poplawski, Piotr; Rybicka, Beata; Boguslawska, Joanna; Rodzik, Katarzyna; Visser, Theo J; Nauman, Alicja; Piekielko-Witkowska, Agnieszka

    2017-02-15

    Type 1 iodothyronine deiodinase (DIO1) regulates peripheral metabolism of thyroid hormones that control cellular proliferation, differentiation and metabolism. The significance of DIO1 in cancer is unknown. In this study we hypothesized that diminished expression of DIO1, observed in renal cancer, contributes to the carcinogenic process in the kidney. Here, we demonstrate that ectopic expression of DIO1 in renal cancer cells changes the expression of genes controlling cell cycle, including cyclin E1 and E2F5, and results in inhibition of proliferation. The expression of genes encoding collagens (COL1A1, COL4A2, COL5A1), integrins (ITGA4, ITGA5, ITGB3) and transforming growth factor-β-induced (TGFBI) is significantly altered in renal cancer cells with induced expression of DIO1. Finally, we show that overexpression of DIO1 inhibits migration of renal cancer cells. In conclusion, we demonstrate for the first time that loss of DIO1 contributes to renal carcinogenesis and that its induced expression protects cells against cancerous proliferation and migration.

  3. Increased hexokinase II expression in the renal glomerulus of mice in response to arsenic

    SciTech Connect

    Pysher, Michele D.; Sollome, James J.; Regan, Suzanne; Cardinal, Trevor R.; Hoying, James B.; Brooks, Heddwen L.; Vaillancourt, Richard R.

    2007-10-01

    Epidemiological studies link arsenic exposure to increased risks of cancers of the skin, kidney, lung, bladder and liver. Additionally, a variety of non-cancerous conditions such as diabetes mellitus, hypertension, and cardiovascular disease have been associated with chronic ingestion of low levels of arsenic. However, the biological and molecular mechanisms by which arsenic exerts its effects remain elusive. Here we report increased renal hexokinase II (HKII) expression in response to arsenic exposure both in vivo and in vitro. In our model, HKII was up-regulated in the renal glomeruli of mice exposed to low levels of arsenic (10 ppb or 50 ppb) via their drinking water for up to 21 days. Additionally, a similar effect was observed in cultured renal mesangial cells exposed to arsenic. This correlation between our in vivo and in vitro data provides further evidence for a direct link between altered renal HKII expression and arsenic exposure. Thus, our data suggest that alterations in renal HKII expression may be involved in arsenic-induced pathological conditions involving the kidney. More importantly, these results were obtained using environmentally relevant arsenic concentrations.

  4. Increased hexokinase II expression in the renal glomerulus of mice in response to arsenic

    PubMed Central

    Pysher, Michele D.; Sollome, James J.; Regan, Suzanne; Cardinal, Trevor R.; Hoying, James B.; Brooks, Heddwen L.; Vaillancourt, Richard R.

    2007-01-01

    Epidemiological studies link arsenic exposure to increased risks of cancers of the skin, kidney, lung, bladder and liver. Additionally, a variety of non-cancerous conditions such as diabetes mellitus, hypertension, and cardiovascular disease have been associated with chronic ingestion of low levels of arsenic. However, the biological and molecular mechanisms by which arsenic exerts its effects remain elusive. Here we report increased renal hexokinase II (HKII) expression in response to arsenic exposure both in vivo and in vitro. In our model, HKII was up-regulated in the renal glomeruli of mice exposed to low levels of arsenic (10 ppb or 50 ppb) via their drinking water for up to 21 days. Additionally, a similar effect was observed in cultured renal mesangial cells exposed to arsenic. This correlation between our in vivo and in vitro data provides further evidence for a direct link between altered renal HKII expression and arsenic exposure. Thus, our data suggest that alterations in renal HKII expression may be involved in arsenic-induced pathological conditions involving the kidney. More importantly, these results were obtained using environmentally relevant arsenic concentrations. PMID:17643460

  5. Atrial fibrillation down-regulates renal neutral endopeptidase expression and induces profibrotic pathways in the kidney.

    PubMed

    Bukowska, Alicja; Lendeckel, Uwe; Krohn, Alexander; Keilhoff, Gerburg; ten Have, Sara; Neumann, Klaus Hinrich; Goette, Andreas

    2008-10-01

    Recent studies suggest that atrial fibrillation (AF) substantially influences microvascular flow in ventricular myocardium. This process may contribute to the occurrence of heart failure in AF. In general, development of heart failure and renal dysfunction go hand-in-hand causing systemic fluid overload and oedema. So far, it is unknown whether AF itself influences renal function. The aim of the present study was to determine the impact of AF on renal gene expression in a closed chest rapid atrial pacing model. A total of 14 pigs were studied. In five pigs, rapid atrial pacing (AT) was performed for 7 h (600 bpm); in five additional animals, rapid atrial pacing was performed in the presence of irbesartan infusion (irbesartan group). Four pigs were instrumented without interventions (sham). After the pacing period, renal expression of collagen I alpha 1 and I alpha 3, transforming growth factor-beta (TGF-beta), neutral endopeptidase (NEP; the main enzyme involved in natriuretic protein metabolism), and atrial natriuretic peptide (ANP) were determined by RT-PCR and immunoblot analysis. Functional in vitro experiments were performed using HEK-293 kidney cells. Renal mRNA expression of NEP was substantially down-regulated during AT (AT: 12.7 +/- 9.3% vs. sham: 100 +/- 43.4%; P < 0.01). Results at the mRNA level were confirmed at the protein level. Irbesartan therapy did not prevent down-regulation of NEP. In contrast, TGF-beta1 mRNA expression was up-regulated (AT: 208.5 +/- 79.3% vs. sham: 100 +/- 34.6% P< 0.05). Collagen and angiotensin II type 1 receptor (AT1R) expression were not significantly altered by AT. HEK-293 cells were used to determine the potential humoral factors involved in down-regulation of NEP. Application of aldosterone, ANP, asymmetric dimethylarginine, and angiotensin peptides failed to cause down-regulation of renal NEP expression in vitro. AT reduces NEP expression and stimulates TGF-beta1 signalling in the kidneys. Thus, even brief episodes of

  6. Perinatally administered losartan augments renal ACE2 expression but not cardiac or renal Mas receptor in spontaneously hypertensive rats.

    PubMed

    Klimas, Jan; Olvedy, Michael; Ochodnicka-Mackovicova, Katarina; Kruzliak, Peter; Cacanyiova, Sona; Kristek, Frantisek; Krenek, Peter; Ochodnicky, Peter

    2015-08-01

    Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang-(1-7)/Mas receptor axis, renin-angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT-PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up-regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang-(1-7) in organ response to the developing hypertension in SHRs.

  7. Hypergravity upregulates renal inducible nitric oxide synthase expression and nitric oxide production

    PubMed Central

    Yoon, Gun; Oh, Choong Sik; Kim, Hyun-Soo

    2016-01-01

    Exposure to hypergravity severely decreases renal blood flow, potentially causing renal dysfunction. Nitric oxide (NO), which is endogenously synthesized by inducible NO synthase (iNOS), plays an important role in the regulation of renal function. The purpose of this study was to examine the effect of hypergravity exposure on the production of NO in kidneys. To determine whether hypergravity induces renal hypoxia and alters renal iNOS expression and NO production, mice were exposed to short-term hypergravity at +3Gz for 1 h. The time course of iNOS mRNA expression, hypoxia-inducible factor (HIF)-1α expression, and NO production was examined. Renal HIF-1α levels were significantly elevated immediately after centrifugation, and this increase was sustained for 3 h post-exposure. iNOS mRNA levels were also significantly increased immediately after exposure and were maintained during the reoxygenation period. Immunohistochemical staining for iNOS revealed that the cortical tubular epithelium exhibited moderate to strong cytoplasmic iNOS immunoreactivity immediately after hypergravity exposure and during the reoxygenation period. The time course of NO production was similar to that of iNOS expression. Our results suggest that both hypoxia and reoxygenation might be involved in the upregulation of HIF-1α in the kidneys of mice exposed to hypergravity. Significant increases in renocortical iNOS expression immediately after centrifugation and during the reoxygenation period suggest that iNOS expression induced by hypergravity exposure might play a protective role against hypoxia/reoxygenation injury in the renal cortex. Further investigations are necessary to clarify the role of iNOS and NO in kidneys exposed to hypergravity. PMID:27174912

  8. Renal Xenobiotic Transporters are Differentially Expressed In Mice Following Cisplatin Treatment

    PubMed Central

    Aleksunes, Lauren M; Augustine, Lisa M; Scheffer, George L; Cherrington, Nathan J; Manautou, José E

    2008-01-01

    The goal of this study was to identify alterations in mRNA and protein expression of various xenobiotic transport proteins in mouse kidney during cisplatin-induced acute renal failure. For this purpose, male C57BL/6J mice received a single dose of cisplatin (18 mg/kg, ip) or vehicle. Four days later, tissues were collected for assessment of plasma BUN, histopathological analysis of renal lesions, and mRNA and western blot analysis of renal transporters including organic anion and cation transporters (Oat, Oct), organic anion transporting polypeptides (Oatp), multidrug resistance-associated proteins (Mrp), multidrug resistance proteins (Mdr), breast cancer resistance protein (Bcrp) and multidrug and toxin extrusion proteins (Mate). Cisplatin treatment caused necrosis of renal proximal tubules along with elevated plasma BUN and renal kidney injury molecule-1 mRNA expression. Cisplatin-induced renal injury increased mRNA and protein levels of the efflux transporters Mrp2, Mrp4, Mrp5, Mdr1a and Mdr1b. Uptake transporters Oatp2a1 and Oatp2b1 mRNA were also up-regulated following cisplatin. By contrast, expression of Oat1, Oat2, Oct2 and Oatp1a1 mRNA was reduced in cisplatin-treated mice. Expression of several uptake and efflux transporters was unchanged in cisplatin-treated mice. Apical staining of Mrp2 and Mrp4 proteins was enhanced in proximal tubules from cisplatin-treated mice. Collectively, these expression patterns suggest coordinated regulation of uptake and efflux pathways during cisplatin-induced renal injury. Reduced expression of basolateral and apical uptake transporters along with enhanced transcription of export transporters likely represents an adaptation to lower intracellular accumulation of chemicals, prevent their reabsorption and enhance urinary clearance. PMID:18640236

  9. Dietary (-)-epicatechin mitigates oxidative stress, NO metabolism alterations, and inflammation in renal cortex from fructose-fed rats.

    PubMed

    Prince, Paula D; Lanzi, Cecilia Rodríguez; Toblli, Jorge E; Elesgaray, Rosana; Oteiza, Patricia I; Fraga, César G; Galleano, Monica

    2016-01-01

    High fructose consumption has been associated to deleterious metabolic conditions. In the kidney, high fructose causes renal alterations that contribute to the development of chronic kidney disease. Evidence suggests that dietary flavonoids have the ability to prevent/attenuate risk factors of chronic diseases. This work investigated the capacity of (-)-epicatechin to prevent the renal damage induced by high fructose consumption in rats. Male Sprague Dawley rats received 10% (w/v) fructose in the drinking water for 8 weeks, with or without supplementation with (-)-epicatechin (20mg/kg body weight/d) in the rat chow diet. Results showed that, in the presence of mild proteinuria, the renal cortex from fructose-fed rats exhibited fibrosis and decreases in nephrin, synaptopodin, and WT1, all indicators of podocyte function in association with: (i) increased markers of oxidative stress; (ii) modifications in the determinants of NO bioavailability, i.e., NO synthase (NOS) activity and expression; and (iii) development of a pro-inflammatory condition, manifested as NF-κB activation, and associated with high expression of TNFα, iNOS, and IL-6. Dietary supplementation with (-)-epicatechin prevented or ameliorated the adverse effects of high fructose consumption. These results suggest that (-)-epicatechin ingestion would benefit when renal alterations occur associated with inflammation or metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Heparanase expression and glycosaminoglycans profile in renal cell carcinoma.

    PubMed

    Batista, Lucas Teixeira E Aguiar; Matos, Leandro Luongo; Machado, Leopoldo Ruiz; Suarez, Eloah Rabello; Theodoro, Thérèse Rachell; Martins, João Roberto Maciel; Nader, Helena Bonciani; Pompeo, Antonio Carlos Lima; Pinhal, Maria Aparecida da Silva

    2012-11-01

    A better understanding of the molecular mechanisms of renal cell carcinogenesis could contribute to a decrease in the mortality rate of this disease. The aim of this study was to evaluate the glycosaminoglycans profile and heparanase expression in renal cell carcinoma. The study included 24 patients submitted to nephrectomy with confirmed pathological diagnosis of renal cell carcinoma. The majority of the samples (87.5%) were classified in the initial stage of renal cell carcinoma (clinical stages I and II). Heparanase messenger ribonucleic acid expression was evaluated by quantitative real-time reverse transcription polymerase chain reaction, and sulfated glycosaminoglycans were identified and quantified by agarose gel electrophoresis of renal cell carcinoma samples or non-neoplastic tissues obtained from the same patients (control group). The sulfated glycosaminoglycans and hyaluronic acid were analyzed in urine samples of the patients before and after surgery. The data showed a significant statistical increase in chondroitin sulfate, and a decrease in heparan sulfate and dermatan sulfate present in neoplastic tissues compared with non-neoplastic tissues. Higher heparanase messenger ribonucleic acid expression in the neoplastic tissues was also shown, compared with the non-neoplastic tissues. The urine glycosaminoglycans profile showed no significant difference between renal cell carcinoma and control samples. Extracellular matrix changes observed in the present study clarify that heparanase is possibly involved with heparan sulfate turnover, and that heparanase and the glycosaminoglycans can modulate initial events of renal cell carcinoma development.

  11. Alterations of Hepatic Metabolism in Chronic Kidney Disease via D-box-binding Protein Aggravate the Renal Dysfunction.

    PubMed

    Hamamura, Kengo; Matsunaga, Naoya; Ikeda, Eriko; Kondo, Hideaki; Ikeyama, Hisako; Tokushige, Kazutaka; Itcho, Kazufumi; Furuichi, Yoko; Yoshida, Yuya; Matsuda, Masaki; Yasuda, Kaori; Doi, Atsushi; Yokota, Yoshifumi; Amamoto, Toshiaki; Aramaki, Hironori; Irino, Yasuhiro; Koyanagi, Satoru; Ohdo, Shigehiro

    2016-03-04

    Chronic kidney disease (CKD) is associated with an increase in serum retinol; however, the underlying mechanisms of this disorder are poorly characterized. Here, we found that the alteration of hepatic metabolism induced the accumulation of serum retinol in 5/6 nephrectomy (5/6Nx) mice. The liver is the major organ responsible for retinol metabolism; accordingly, microarray analysis revealed that the hepatic expression of most CYP genes was changed in 5/6Nx mice. In addition, D-box-binding protein (DBP), which controls the expression of several CYP genes, was significantly decreased in these mice. Cyp3a11 and Cyp26a1, encoding key proteins in retinol metabolism, showed the greatest decrease in expression in 5/6Nx mice, a process mediated by the decreased expression of DBP. Furthermore, an increase of plasma transforming growth factor-β1 (TGF-β1) in 5/6Nx mice led to the decreased expression of the Dbp gene. Consistent with these findings, the alterations of retinol metabolism and renal dysfunction in 5/6Nx mice were ameliorated by administration of an anti-TGF-β1 antibody. We also show that the accumulation of serum retinol induced renal apoptosis in 5/6Nx mice fed a normal diet, whereas renal dysfunction was reduced in mice fed a retinol-free diet. These findings indicate that constitutive Dbp expression plays an important role in mediating hepatic dysfunction under CKD. Thus, the aggravation of renal dysfunction in patients with CKD might be prevented by a recovery of hepatic function, potentially through therapies targeting DBP and retinol.

  12. Evidence for altered renal tubule function in idiopathic calcium stone formers

    PubMed Central

    Worcester, Elaine M.; Coe, Fredric L.

    2013-01-01

    Patients who form calcium kidney stones often have metabolic disorders such as idiopathic hypercalciuria (IH) that reflect abnormalities in mineral handling in the kidney. Renal handling of calcium is altered by ingestion of nutrients such as carbohydrates, protein, and sodium, and patients with IH appear to be more sensitive to these stimuli. Studies using probes such as diuretics or lithium clearance have the ability to clarify which nephron segments are involved in the altered renal calcium transport with nutrient seen in IH. Studies in the genetic hypercalciuric rat demonstrate alterations in both proximal tubule and thick ascending limb calcium reabsorption. Similar studies in humans have begun to provide evidence about the corresponding abnormalities in stone formers with IH. A pattern of altered renal tubule transport in calcium stone formers is suggested by the frequency of such findings as decreased tubular maximal reabsorption of phosphate and abnormal urine acidification as well as hypercalciuria in such patients, not explained by monogenic transport abnormalities. PMID:20632168

  13. Shadows alter facial expressions of Noh masks.

    PubMed

    Kawai, Nobuyuki; Miyata, Hiromitsu; Nishimura, Ritsuko; Okanoya, Kazuo

    2013-01-01

    A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers' recognition of the emotional expressions. In Experiment 1, neutral-faced Noh masks having the attached shadows of the happy/sad masks were recognized as bearing happy/sad expressions, respectively. This was true for all four types of masks each of which represented a character differing in sex and age, even though the original characteristics of the masks also greatly influenced the evaluation of emotions. Experiment 2 further revealed that frontal Noh mask images having shadows of upward/downward tilted masks were evaluated as sad/happy, respectively. This was consistent with outcomes from preceding studies using actually tilted Noh mask images. Results from the two experiments concur that purely manipulating attached shadows of the different types of Noh masks significantly alters the emotion recognition. These findings go in line with the mysterious facial expressions observed in Western paintings, such as the elusive qualities of Mona Lisa's smile. They also agree with the aesthetic principle of Japanese traditional art "yugen (profound grace and subtlety)", which highly appreciates subtle emotional expressions in the darkness.

  14. Potential role of endurance training in altering renal sympathetic nerve activity in CKD?

    PubMed

    Howden, Erin J; Lawley, Justin S; Esler, Murray; Levine, Benjamin D

    2017-05-01

    Chronic kidney disease (CKD), is characterized by a progressive loss of renal function and increase in cardiovascular risk. In this review paper, we discuss the pathophysiology of increased sympathetic nerve activity in CKD patients and raise the possibility of endurance exercise being an effective countermeasure to address this problem. We specifically focus on the potential role of endurance training in altering renal sympathetic nerve activity as increased renal sympathetic nerve activity negatively impacts kidney function as well indirectly effects multiple other systems and organs. Recent technological advances in device based therapy have highlighted the detrimental effect of elevated renal sympathetic nerve activity in CKD patients, with kidney function and blood pressure being improved post renal artery nerve denervation in selected patients. These developments provide optimism for the development of alternative and/or complementary strategies to lower renal sympathetic nerve activity. However, appropriately designed studies are required to confirm preliminary observations, as the widespread use of the renal denervation approach to lower sympathetic activity presently has limited feasibility. Endurance training may be one alternative strategy to reduce renal sympathetic nerve activity. Here we review the role of endurance training as a potential alternative or adjunctive to current therapy in CKD patients. We also provide recommendations for future research to assist in establishing an evidence base for the use of endurance training to lower renal sympathetic activity in CKD patients.

  15. Clopidogrel attenuates lithium-induced alterations in renal water and sodium channels/transporters in mice.

    PubMed

    Zhang, Yue; Peti-Peterdi, János; Heiney, Kristina M; Riquier-Brison, Anne; Carlson, Noel G; Müller, Christa E; Ecelbarger, Carolyn M; Kishore, Bellamkonda K

    2015-12-01

    Lithium (Li) administration causes deranged expression and function of renal aquaporins and sodium channels/transporters resulting in nephrogenic diabetes insipidus (NDI). Extracellular nucleotides (ATP/ADP/UTP), via P2 receptors, regulate these transport functions. We tested whether clopidogrel bisulfate (CLPD), an antagonist of ADP-activated P2Y(12) receptor, would affect Li-induced alterations in renal aquaporins and sodium channels/transporters. Adult mice were treated for 14 days with CLPD and/or Li and euthanized. Urine and kidneys were collected for analysis. When administered with Li, CLPD ameliorated polyuria, attenuated the rise in urine prostaglandin E2 (PGE2), and resulted in significantly higher urinary arginine vasopressin (AVP) and aldosterone levels as compared to Li treatment alone. However, urine sodium excretion remained elevated. Semi-quantitative immunoblotting revealed that CLPD alone increased renal aquaporin 2 (AQP2), Na-K-2Cl cotransporter (NKCC2), Na-Cl cotransporter (NCC), and the subunits of the epithelial Na channel (ENaC) in medulla by 25-130 %. When combined with Li, CLPD prevented downregulation of AQP2, Na-K-ATPase, and NKCC2 but was less effective against downregulation of cortical α- or γ-ENaC (70 kDa band). Thus, CLPD primarily attenuated Li-induced downregulation of proteins involved in water conservation (AVP-sensitive), with modest effects on aldosterone-sensitive proteins potentially explaining sustained natriuresis. Confocal immunofluorescence microscopy revealed strong labeling for P2Y(12)-R in proximal tubule brush border and blood vessels in the cortex and less intense labeling in medullary thick ascending limb and the collecting ducts. Therefore, there is the potential for CLPD to be directly acting at the tubule sites to mediate these effects. In conclusion, P2Y(12)-R may represent a novel therapeutic target for Li-induced NDI.

  16. Alterations in renal stone risk factors after space flight

    NASA Technical Reports Server (NTRS)

    Whitson, P. A.; Pietrzyk, R. A.; Pak, C. Y.; Cintron, N. M.

    1993-01-01

    Exposure to the microgravity environment of space produces a number of physiological changes of metabolic and environmental origin that could increase the potential for renal stone formation. Metabolic, environmental and physicochemical factors that influence renal stone risk potential were examined in 24-hour urine samples from astronauts 10 days before launch and on landing day to provide an immediate postflight assessment of these factors. In addition, comparisons were made between male and female crewmembers, and between crewmembers on missions of less than 6 days and those on 6 to 10-day missions. Results suggest that immediately after space flight the risk of calcium oxalate and uric acid stone formation is increased as a result of metabolic (hypercalciuria, hypocitraturia, pH) and environmental (lower urine volume) derangements, some of which could reflect residual effects of having been exposed to microgravity.

  17. Alterations in renal stone risk factors after space flight

    NASA Technical Reports Server (NTRS)

    Whitson, P. A.; Pietrzyk, R. A.; Pak, C. Y.; Cintron, N. M.

    1993-01-01

    Exposure to the microgravity environment of space produces a number of physiological changes of metabolic and environmental origin that could increase the potential for renal stone formation. Metabolic, environmental and physicochemical factors that influence renal stone risk potential were examined in 24-hour urine samples from astronauts 10 days before launch and on landing day to provide an immediate postflight assessment of these factors. In addition, comparisons were made between male and female crewmembers, and between crewmembers on missions of less than 6 days and those on 6 to 10-day missions. Results suggest that immediately after space flight the risk of calcium oxalate and uric acid stone formation is increased as a result of metabolic (hypercalciuria, hypocitraturia, pH) and environmental (lower urine volume) derangements, some of which could reflect residual effects of having been exposed to microgravity.

  18. Shadows Alter Facial Expressions of Noh Masks

    PubMed Central

    Kawai, Nobuyuki; Miyata, Hiromitsu; Nishimura, Ritsuko; Okanoya, Kazuo

    2013-01-01

    Background A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers’ recognition of the emotional expressions. Methodology/Principal Findings In Experiment 1, neutral-faced Noh masks having the attached shadows of the happy/sad masks were recognized as bearing happy/sad expressions, respectively. This was true for all four types of masks each of which represented a character differing in sex and age, even though the original characteristics of the masks also greatly influenced the evaluation of emotions. Experiment 2 further revealed that frontal Noh mask images having shadows of upward/downward tilted masks were evaluated as sad/happy, respectively. This was consistent with outcomes from preceding studies using actually tilted Noh mask images. Conclusions/Significance Results from the two experiments concur that purely manipulating attached shadows of the different types of Noh masks significantly alters the emotion recognition. These findings go in line with the mysterious facial expressions observed in Western paintings, such as the elusive qualities of Mona Lisa’s smile. They also agree with the aesthetic principle of Japanese traditional art “yugen (profound grace and subtlety)”, which highly appreciates subtle emotional expressions in the darkness. PMID:23940748

  19. Notch Pathway Is Activated via Genetic and Epigenetic Alterations and Is a Therapeutic Target in Clear Cell Renal Cancer.

    PubMed

    Bhagat, Tushar D; Zou, Yiyu; Huang, Shizheng; Park, Jihwan; Palmer, Matthew B; Hu, Caroline; Li, Weijuan; Shenoy, Niraj; Giricz, Orsolya; Choudhary, Gaurav; Yu, Yiting; Ko, Yi-An; Izquierdo, María C; Park, Ae Seo Deok; Vallumsetla, Nishanth; Laurence, Remi; Lopez, Robert; Suzuki, Masako; Pullman, James; Kaner, Justin; Gartrell, Benjamin; Hakimi, A Ari; Greally, John M; Patel, Bharvin; Benhadji, Karim; Pradhan, Kith; Verma, Amit; Susztak, Katalin

    2017-01-20

    Clear cell renal cell carcinoma (CCRCC) is an incurable malignancy in advanced stages and needs newer therapeutic targets. Transcriptomic analysis of CCRCCs and matched microdissected renal tubular controls revealed overexpression of NOTCH ligands and receptors in tumor tissues. Examination of the TCGA RNA-seq data set also revealed widespread activation of NOTCH pathway in a large cohort of CCRCC samples. Samples with NOTCH pathway activation were also clinically distinct and were associated with better overall survival. Parallel DNA methylation and copy number analysis demonstrated that both genetic and epigenetic alterations led to NOTCH pathway activation in CCRCC. NOTCH ligand JAGGED1 was overexpressed and associated with loss of CpG methylation of H3K4me1-associated enhancer regions. JAGGED2 was also overexpressed and associated with gene amplification in distinct CCRCC samples. Transgenic expression of intracellular NOTCH1 in mice with tubule-specific deletion of VHL led to dysplastic hyperproliferation of tubular epithelial cells, confirming the procarcinogenic role of NOTCH in vivo Alteration of cell cycle pathways was seen in murine renal tubular cells with NOTCH overexpression, and molecular similarity to human tumors was observed, demonstrating that human CCRCC recapitulates features and gene expression changes observed in mice with transgenic overexpression of the Notch intracellular domain. Treatment with the γ-secretase inhibitor LY3039478 led to inhibition of CCRCC cells in vitro and in vivo In summary, these data reveal the mechanistic basis of NOTCH pathway activation in CCRCC and demonstrate this pathway to a potential therapeutic target.

  20. Anthropometric Renal Anatomic Alterations Between Supine and Prone Positions in Percutaneous Renal Ablation for Renal Cortical Neoplasms.

    PubMed

    Lusch, Achim; Fujimoto, Scott; Findeiss, Laura K; Okhunov, Zhamshid; McDougall, Elspeth M; Landman, Jaime

    2016-02-01

    To establish patterns of anatomic changes relevant to the kidney and colon during positional change between the supine and prone positions as noted on CT scans performed during percutaneous cryoablation for renal cortical neoplasms (RCN). Nineteen patients undergoing percutaneous cryoablation for RCN with abdominal CT scan in both the supine and prone positions were included in the study. We documented the anterior/posterior, medial/lateral, and cranial/caudal anatomic changes of the kidney, kidney rotation, and the proportion of the kidney whose access was limited by the liver, spleen, and lung. We also calculated the length of the percutaneous access tract and the distance between the colon and kidney in hilar position as well as the anterior/posterior location of the colon relative to the kidney. In the prone position, the kidney lies significantly more anteriorly on both sides: 4.7 cm vs 4.3 cm (L) and 4.4 cm vs 4.1 cm (R) (p = 0.02 and p = 0.03, respectively). On prone CT images, both kidneys are more cranial when compared with the supine position: 80.4 mm vs 60.8 mm (L) and 87.2 mm vs 57.4 mm (R) (p = 0.002 and p < 0.001, respectively). The skin to tumor distance is significantly shorter in the prone position (p < 0.0001 [L], p = 0.005 [R]). The colon lies closer to the hilum of the kidney and is more posteriorly located in the prone position: 1.21 cm vs 1.04 cm (L) and 0.80 cm vs 0.70 cm (R) (p = 0.005 and p = 0.005, respectively). In the prone position, the lung covers a significantly larger proportion of the right kidney (27.3 mm vs 6.05 mm, p = 0.0001). We documented clinically significant anatomic alterations between supine and prone CT imaging. The changes associated with the prone position modify percutaneous access, particularly for right upper pole tumors. Prone imaging before surgery may be helpful in selected cases.

  1. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells

    PubMed Central

    Belloy, Marcy; Saulnier-Blache, Jean-Sébastien; Casemayou, Audrey; Ducasse, Laure; Grès, Sandra; Bellière, Julie; Caubet, Cécile; Bascands, Jean-Loup; Schanstra, Joost P.; Buffin-Meyer, Bénédicte

    2015-01-01

    Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS) generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2) were subjected to FSS (0.5 Pa) for 48h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1), Par polarity complex (Pard6), adherens junctions (E-Cadherin, β-Catenin) and the primary cilium (α-acetylated Tubulin) were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months) mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium. PMID:26146837

  2. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells.

    PubMed

    Maggiorani, Damien; Dissard, Romain; Belloy, Marcy; Saulnier-Blache, Jean-Sébastien; Casemayou, Audrey; Ducasse, Laure; Grès, Sandra; Bellière, Julie; Caubet, Cécile; Bascands, Jean-Loup; Schanstra, Joost P; Buffin-Meyer, Bénédicte

    2015-01-01

    Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS) generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2) were subjected to FSS (0.5 Pa) for 48 h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1), Par polarity complex (Pard6), adherens junctions (E-Cadherin, β-Catenin) and the primary cilium (α-acetylated Tubulin) were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months) mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium.

  3. Metformin Ameliorates Podocyte Damage by Restoring Renal Tissue Podocalyxin Expression in Type 2 Diabetic Rats

    PubMed Central

    Zhai, Limin; Gu, Junfei; Yang, Di; Wang, Wei; Ye, Shandong

    2015-01-01

    Podocalyxin (PCX) is a signature molecule of the glomerular podocyte and of maintaining integrity of filtration function of glomerulus. The aim of this study was to observe the effect of different doses of metformin on renal tissue PCX expression in type 2 diabetic rats and clarify its protection on glomerular podocytes. Type 2 diabetic Sprague-Dawley (SD) rats in which diabetes was induced by high-fat diet/streptozotocin (HFD-STZ) were treated with different doses of metformin (150, 300, and 500 mg/kg per day, resp.) for 8 weeks. Various biochemical parameters, kidney histopathology, and renal tissue PCX expression levels were examined. In type 2 diabetic rats, severe hyperglycemia and hyperlipidemia were developed. Urinary albumin and PCX were markedly increased. Diabetes induced significant alterations in renal glomerular structure. In addition, protein and mRNA expression of renal tissue PCX were highly decreased. However, treatment of rats with different doses of metformin restored all these changes to a varying degree. These results suggested that metformin can ameliorate glomerular podocyte damage in type 2 diabetic rats, which may be partly associated with its role in restoring PCX expression and inhibiting urinary excretion of PCX with dose dependence. PMID:26075281

  4. Renal nerve ultrastructural alterations in short term and long term experimental diabetes

    PubMed Central

    2014-01-01

    Background Despite the evidence that renal hemodynamics is impaired in experimental diabetes, associated with glomeruli structural alterations, renal nerves were not yet investigated in experimental models of diabetes and the contribution of nerve alterations to the diabetic nephropathy remains to be investigated. We aimed to determine if ultrastructural morphometric parameters of the renal nerves are affected by short term and/or long term experimental diabetes and if insulin treatment reverses these alterations. Left renal nerves were evaluated 15 days or 12 weeks (N = 10 in each group) after induction of diabetes, with a single injection of streptozotocin (STZ). Control rats (N = 10 in each group) were injected with vehicle (citrate buffer). Treated animals (N = 10 in each group) received a single subcutaneous injection of insulin on a daily basis. Arterial pressure, together with the renal nerves activity, was recorded 15 days (short-term) or 12 weeks (long-term) after STZ injection. After the recordings, the renal nerves were dissected, prepared for light and transmission electron microscopy, and fascicle and fibers morphometry were carried out with computer software. Results The major diabetic alteration on the renal nerves was a small myelinated fibers loss since their number was smaller on chronic diabetic animals, the average morphometric parameters of the myelinated fibers were larger on chronic diabetic animals and distribution histograms of fiber diameter was significantly shifted to the right on chronic diabetic animals. These alterations began early, after 15 days of diabetes induction, associated with a severe mitochondrial damage, and were not prevented by conventional insulin treatment. Conclusions The experimental diabetes, induced by a single intravenous injection of STZ, in adult male Wistar rats, caused small fiber loss in the renal nerves, probably due to the early mitochondrial damage. Conventional treatment with insulin was able

  5. Alteration of renal function of rats following spaceflight.

    PubMed

    Wade, C E; Morey-Holton, E

    1998-10-01

    Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.

  6. Alterations in renal heme biosynthesis during metal nephrotoxicity.

    PubMed

    Oskarsson, A; Fowler, B A

    1987-01-01

    The regulation of the heme biosynthetic pathway in the kidney by various metals has been reviewed. In addition, a study on the effects of lead on renal heme biosynthesis after acute treatment of rats has been reported. Chronic low-level lead exposure in rats results in relatively small effects on renal heme biosynthetic pathway enzymes. After acute treatment of rats with lead, no effects on ALAD or UROS and mild, transitory effects on ALAS and ferrochelatase are observed. The intracellular binding of lead within intranuclear inclusion bodies in the proximal tubule cells and to high-affinity cytosolic lead-binding proteins probably protects sensitive subcellular systems, such as the heme pathway, from lead toxicity. Chronic exposure to methyl mercury results in increased urinary excretion of uro- and coproporphyrins in rats, mediated via inhibition of ferrochelatase and UROS and stimulation of ALAS. A tissue-specific inhibition of ALAD occurs in the kidney after treatment of rats with indium. Acute treatment of rats with nickel, platinum, tin, antimony, bismuth, and cobalt results in induction of heme oxygenase, followed by decreased microsomal heme content and ALAS stimulation in the kidney.

  7. Alteration of renal function of rats following spaceflight

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Morey-Holton, E.

    1998-01-01

    Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.

  8. Alteration of renal function of rats following spaceflight

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Morey-Holton, E.

    1998-01-01

    Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.

  9. Expression of histone methyltransferases as novel biomarkers for renal cell tumor diagnosis and prognostication

    PubMed Central

    Pires-Luís, Ana Sílvia; Vieira-Coimbra, Márcia; Vieira, Filipa Quintela; Costa-Pinheiro, Pedro; Silva-Santos, Rui; Dias, Paula C; Antunes, Luís; Lobo, Francisco; Oliveira, Jorge; Gonçalves, Céline S; Costa, Bruno M; Henrique, Rui; Jerónimo, Carmen

    2015-01-01

    Renal cell tumors (RCTs) are the most lethal of the common urological cancers. The widespread use of imaging entailed an increased detection of small renal masses, emphasizing the need for accurate distinction between benign and malignant RCTs, which is critical for adequate therapeutic management. Histone methylation has been implicated in renal tumorigenesis, but its potential clinical value as RCT biomarker remains mostly unexplored. Hence, the main goal of this study was to identify differentially expressed histone methyltransferases (HMTs) and histone demethylases (HDMs) that might prove useful for RCT diagnosis and prognostication, emphasizing the discrimination between oncocytoma (a benign tumor) and renal cell carcinoma (RCC), especially the chromophobe subtype (chRCC). We found that the expression levels of 3 genes—SMYD2, SETD3, and NO66—was significantly altered in a set of RCTs, which was further validated in a large independent cohort. Higher expression levels were found in RCTs compared to normal renal tissues (RNTs) and in chRCCs comparatively to oncocytomas. SMYD2 and SETD3 mRNA levels correlated with protein expression assessed by immunohistochemistry. SMYD2 transcript levels discriminated RCTs from RNT, with 82.1% sensitivity and 100% specificity [area under curve (AUC) = 0.959], and distinguished chRCCs from oncocytomas, with 71.0% sensitivity and 73.3% specificity (AUC = 0.784). Low expression levels of SMYD2, SETD3, and NO66 were significantly associated with shorter disease-specific and disease-free survival, especially in patients with non-organ confined tumors. We conclude that expression of selected HMTs and HDMs might constitute novel biomarkers to assist in RCT diagnosis and assessment of tumor aggressiveness. PMID:26488939

  10. Expression of S-100 protein in renal cell neoplasms.

    PubMed

    Lin, Fan; Yang, Wannian; Betten, Mark; Teh, Bin Tean; Yang, Ximing J

    2006-04-01

    Polyclonal antibody to S-100 protein has been routinely applied for initial screening of various types of tumors, including, melanocytic tumors and neurogenic tumors. S-100 protein has been shown to have a broad distribution in human tissues, including renal tubules. The potential utility of S-100 protein in renal cell neoplasms has not been extensively investigated. Using an EnVision-Horseradish Peroxidase (HRP; Dako, Carpinteria, Calif) kit, we evaluated the diagnostic value of S-100 protein on tissue microarray sections from 175 cases of renal epithelial neoplasm (145 primary renal neoplasms and 30 metastatic renal cell carcinomas) and 24 non-neoplastic renal tissues. Immunohistochemical stains for pancytokeratin, HMB-45, and Mart-1 were also performed. Western blot using the same antibody (anti-S-100 protein) was performed on 10 cases of renal cell neoplasm. The results demonstrated that nuclear and cytoplasmic staining pattern for S-100 protein was observed in 56 (69%) of 81 conventional (clear cell) renal cell carcinomas (RCCs), 10 (30%) of 33 papillary RCCs, 1 (6%) of 16 ChRCCs, and 13 (87%) of 15 oncocytomas. Among the 81 cases of CRCC, positivity for S-100 protein was seen in 41 (71%) of 58 and 15 (65%) of 23 cases with Furhman nuclear grade I/II and III/IV, respectively. Focal immunostaining was present in 22 (92%) of 24 normal renal tubules. Similar staining pattern was observed in 21 (70%) of 30 metastatic RCCs. Western blotting demonstrated the S-100 protein expression in both renal cell neoplasm and normal renal tissue. Overexpression of S-100 in oncocytomas compared with ChRCCs was confirmed by the data of Western blot and cDNA microarray analysis. Importantly, 14.8% (12/81) of clear cell RCC and 13.3% (4/30) of metastatic RCC revealed an immunostaining profile of pancytokeratin (-)/S-100 protein (+). These data indicate that caution should be taken in interpreting an unknown primary with S-100 positivity and cytokeratin negativity. In addition, it

  11. Metformin attenuates albumin-induced alterations in renal tubular cells in vitro.

    PubMed

    Allouch, Soumaya; Munusamy, Shankar

    2017-12-01

    Proteinuria (albuminuria) plays a crucial role in the etiology of chronic kidney disease (CKD) via alteration of multiple signaling pathways and cellular process in renal cells. The objectives of this study are to investigate the effects of activation of the energy-sensing molecule AMP-activated kinase (AMPK) in renal cells using metformin on endoplasmic reticulum (ER) stress, AKT, mTOR, epithelial-to-mesenchymal transition (EMT), autophagy, and apoptosis that are thought to mediate renal cell injury during proteinuria, and to dissect the AMPK- and non-AMPK mediated effects of metformin using an in vitro model of albumin-induced renal cell injury. Rat renal proximal tubular (NRK-52E) cells were exposed to 10 and 15 mg/ml of albumin for 72 h in the presence of 1 mM Metformin and/or 0.5 µM compound C, and assessed for alterations in the aforementioned pathways. Metformin treatment restored AMPK phosphorylation and augmented autophagy in renal cells exposed to albumin. In addition, metformin treatment attenuated the albumin-induced phosphorylation of AKT and the downstream targets of mTOR, and prevented albumin-mediated inductions of EMT marker (α-SMA), pro-apoptotic ER stress marker CHOP, and apoptotic caspases -12 and -3 in renal cells. Blockade of metformin-induced AMPK activation with compound C blunted the ER defense response and autophagy but had no effect on the markers of EMT and apoptosis in our model. Our studies suggest that metformin protects renal cells against proteinuric cytotoxicity via suppression of AKT and mTOR activation, inhibition of EMT and apoptosis, and augmentation of autophagy and ER defense response through AMPK-independent and AMPK-dependent mechanisms, respectively. © 2017 Wiley Periodicals, Inc.

  12. Adult sea lamprey tolerates biliary atresia by altering bile salt composition and renal excretion

    PubMed Central

    Cai, Shi-Ying; Lionarons, Daniël A.; Hagey, Lee; Soroka, Carol J.; Mennone, Albert; Boyer, James L.

    2012-01-01

    The sea lamprey (Petromyzon marinus) is a genetically programmed animal model for biliary atresia as it loses its bile ducts and gallbladder during metamorphosis. However, in contrast to patients with biliary atresia or other forms of cholestasis who develop progressive disease, the post-metamorphosis lampreys grow normally to adult size. To understand how the adult lamprey thrives without the ability to secrete bile, we examined bile salt homeostasis in larval and adult lampreys. Adult livers were severely cholestatic with levels of bile salts >1 mM, but no evidence of necrosis, fibrosis, or inflammation. Interestingly, both larvae and adults had normal plasma levels (~10 μM) of bile salts. In larvae, petromyzonol sulfate (PZS) was the predominant bile salt, whereas the major bile salts in adult liver were sulfated C27 bile alcohols. Cytotoxicity assays revealed that PZS was highly toxic. Pharmacokinetic studies in free-swimming adults revealed that ~35% of intravenously injected bromosulfophthalein (BSP) was eliminated over a 72 hr period. Collection of urine and feces demonstrated that both endogenous and exogenous organic anions, including biliverdin, bile salts and BSP, were predominantly excreted via the kidney with minor amounts also detected in feces. Gene expression analysis detected marked up-regulation of orthologs of known organic anion and bile salt transporters in the kidney with lesser effects in the intestine and gills in adults compared to larvae. These findings indicate that adult lampreys tolerate cholestasis by altering hepatic bile salt composition, while maintaining normal plasma bile salt levels predominantly through renal excretion of bile products. Therefore, we conclude that strategies to accelerate renal excretion of bile salt and other toxins should be beneficial for patients with cholestasis. PMID:23175353

  13. Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression

    PubMed Central

    Zaucke, Frank; Boehnlein, Joana M.; Steffens, Sarah; Polishchuk, Roman S.; Rampoldi, Luca; Fischer, Andreas; Pasch, Andreas; Boehm, Christoph W. A.; Baasner, Anne; Attanasio, Massimo; Hoppe, Bernd; Hopfer, Helmut; Beck, Bodo B.; Sayer, John A.; Hildebrandt, Friedhelm; Wolf, Matthias T. F.

    2010-01-01

    Uromodulin (UMOD) mutations are responsible for three autosomal dominant tubulo-interstitial nephropathies including medullary cystic kidney disease type 2 (MCKD2), familial juvenile hyperuricemic nephropathy and glomerulocystic kidney disease. Symptoms include renal salt wasting, hyperuricemia, gout, hypertension and end-stage renal disease. MCKD is part of the ‘nephronophthisis–MCKD complex’, a group of cystic kidney diseases. Both disorders have an indistinguishable histology and renal cysts are observed in either. For most genes mutated in cystic kidney disease, their proteins are expressed in the primary cilia/basal body complex. We identified seven novel UMOD mutations and were interested if UMOD protein was expressed in the primary renal cilia of human renal biopsies and if mutant UMOD would show a different expression pattern compared with that seen in control individuals. We demonstrate that UMOD is expressed in the primary cilia of renal tubules, using immunofluorescent studies in human kidney biopsy samples. The number of UMOD-positive primary cilia in UMOD patients is significantly decreased when compared with control samples. Additional immunofluorescence studies confirm ciliary expression of UMOD in cell culture. Ciliary expression of UMOD is also confirmed by electron microscopy. UMOD localization at the mitotic spindle poles and colocalization with other ciliary proteins such as nephrocystin-1 and kinesin family member 3A is demonstrated. Our data add UMOD to the group of proteins expressed in primary cilia, where mutations of the gene lead to cystic kidney disease. PMID:20172860

  14. Expression of nestin after renal transplantation in the rat.

    PubMed

    Skwirba, Michael; Zakrzewicz, Anna; Atanasova, Srebrena; Wilker, Sigrid; Fuchs-Moll, Gabriele; Müller, Dieter; Padberg, Winfried; Grau, Veronika

    2014-10-01

    Chronic allograft injury (CAI) limits the long-term success of renal transplantation. Nestin is a marker of progenitor cells, which probably contribute to its pathogenesis. We hypothesize that nestin is induced by ischemia/reperfusion injury and acute rejection, main risk factors for CAI. Syngeneic renal transplantation was performed in Lewis rats and allogeneic transplantation in the Fischer 344 to Lewis strain combination, which results in reversible acute rejection and in CAI in the long-run. The Dark Agouti to Lewis rat strain combination was used to study fatal acute rejection. In untreated kidneys, nestin immunoreactivity was detected in glomeruli and in very few interstitial or microvascular cells. Syngeneic transplantation induced nestin expression within 4 days, which decreased until day 9 and returned to control levels on day 42. Nestin expression was strong during acute rejection and still detected during the pathogenesis of CAI on day 42. Nestin-positive cells were identified as endothelial cells and interstitial fibroblast-like cells co-expressing alpha-smooth muscle actin. A sub-population of them expressed proliferating cell nuclear antigen. In conclusion, nestin is induced in renal grafts by ischemia/reperfusion injury and acute rejection. It is expressed by proliferating myofibroblasts and endothelial cells and probably contributes to the pathogenesis of CAI.

  15. Prenatal betamethasone exposure alters renal function in immature sheep: sex differences in effects

    PubMed Central

    Bi, Jianli; Valego, Nancy; Carey, Luke; Figueroa, Jorge; Chappell, Mark; Rose, James C.

    2010-01-01

    Synthetic glucocorticoids are commonly given to pregnant women when premature delivery threatens. Antenatal administration of clinically relevant doses of betamethasone to pregnant sheep causes sex-specific compromises of renal function and increases in blood pressure in adult offspring. However, it is unclear whether such effects are present in immature lambs. Therefore, the aims of the present study were to determine whether antenatal betamethasone at 80–81 days of gestation increases blood pressure and adversely impacts renal function in adolescent ewes and rams. Prenatal steroid exposure increased blood pressure significantly in the young male (84 ± 2 vs. 74 ± 3 mmHg) and female sheep (88 ± 5 vs. 79 ± 4), but it did not alter basal glomerular filtration rate, renal blood flow (RBF), or sodium excretion in either sex. However, antenatal betamethasone exposure blocked increases in RBF (P = 0.001), and enhanced excretion of an acute Na load (P < 0.05) in response to systemic infusions of angiotensin (ANG)-(1–7) at 10 pmol·kg−1·min−1 in males. In females, the natriuretic response to combined ANG-(1–7), and Na load was significantly altered by prenatal betamethasone exposure. These findings indicate that blood pressure is increased in immature animals in response to antenatal steroid exposure and that sex-specific effects on renal function also exist. These changes may reflect greater risk for further loss of renal function with age. PMID:20554936

  16. Early evaluation of renal hemodynamic alterations in type I diabetes mellitus with duplex ultrasound.

    PubMed

    Saif, Aasem; Soliman, Neveen A; Abdel-Hameed, Alaa

    2010-03-01

    To evaluate the role of renal duplex ultrasonography in the detection of early alteration of renal blood flow in type I diabetic patients, we studied with duplex ultrasound 32 patients with type I diabetes mellitus (19 males, 13 females, age range 8-19 years) and 35 age and sex-matched controls. The resistivity indices (RIs) and pulsatility indices (PIs) of the main renal as well as intra-renal arteries were calculated. Compared with the healthy control subjects, diabetic patients had significantly higher resistivity indices (RIs) in the intrarenal (segmental, arcuate and interlobar) arteries (P= 0.001). The study, also revealed a significantly positive correlation between the RIs in the intrarenal arteries in diabetics and the albumin/creatinine ratio (r= 0.54, 0.52 and 0.51 respectively), glycated hemoglobin (r= 0.61, 0.59 and 0.63 respectively), as well as the estimated GFR (e-GFR) (r= 0.53, 0.51 and 0.57 respectively). We conclude that the current study documented early intra-renal hemodynamic alterations in the form of pathologically elevated intrarenal RIs. This denotes the potential usefulness of duplex evaluation of the intrarenal arteries, as a noninvasive procedure, for monitoring type 1 diabetic patients to predict those at risk of diabetic nephropathy.

  17. Perinatal Na+ overload programs raised renal proximal Na+ transport and enalapril-sensitive alterations of Ang II signaling pathways during adulthood.

    PubMed

    Cabral, Edjair V; Vieira-Filho, Leucio D; Silva, Paulo A; Nascimento, Williams S; Aires, Regina S; Oliveira, Fabiana S T; Luzardo, Ricardo; Vieyra, Adalberto; Paixão, Ana D O

    2012-01-01

    High Na(+) intake is a reality in nowadays and is frequently accompanied by renal and cardiovascular alterations. In this study, renal mechanisms underlying perinatal Na(+) overload-programmed alterations in Na(+) transporters and the renin/angiotensin system (RAS) were investigated, together with effects of short-term treatment with enalapril in terms of reprogramming molecular alterations in kidney. Male adult Wistar rats were obtained from dams maintained throughout pregnancy and lactation on a standard diet and drinking water (control) or 0.17 M NaCl (saline group). Enalapril (100 mg/l), an angiotensin converting enzyme inhibitor, was administered for three weeks after weaning. Ninety day old offspring from dams that drank saline presented with proximal tubules exhibiting increased (Na(+)+K(+))ATPase expression and activity. Ouabain-insensitive Na(+)-ATPase activity remained unchanged but its response to angiotensin II (Ang II) was lost. PKC, PKA, renal thiobarbituric acid reactive substances (TBARS), macrophage infiltration and collagen deposition markedly increased, and AT(2) receptor expression decreased while AT(1) expression was unaltered. Early treatment with enalapril reduced expression and activity of (Na(+)+K(+))ATPase, partially recovered the response of Na(+)-ATPase to Ang II, and reduced PKC and PKA activities independently of whether offspring were exposed to high perinatal Na(+) or not. In addition, treatment with enalapril per se reduced AT(2) receptor expression, and increased TBARS, macrophage infiltration and collagen deposition. The perinatally Na(+)-overloaded offspring presented high numbers of Ang II-positive cortical cells, and significantly lower circulating Ang I, indicating that programming/reprogramming impacted systemic and local RAS. Maternal Na(+) overload programmed alterations in renal Na(+) transporters and in its regulation, as well as severe structural lesions in adult offspring. Enalapril was beneficial predominantly through

  18. Mechanisms of portal hypertension-induced alterations in renal hemodynamics, renal water excretion, and renin secretion.

    PubMed Central

    Anderson, R J; Cronin, R E; McDonald, K M; Schrier, R W

    1976-01-01

    Clinical states with portal venous hypertension are frequently associated with impairment in renal hemodynamics and water excretion, as well as increased renin secretion. In the present investigation, portal venous pressure (PVP) was increased in anesthetized dogs undergoing a water diuresis. Renal arterial pressure was maintained constant in all studies. As PVP was increased from 6 to 20 mm Hg, decreases in cardiac output (2.5-2.0 liter/min, P less than 0.05) and mean arterial pressure (140-131 mm Hg, P less than 0.05) were observed. Increases in PVP were also associated with decreases in glomerular filtration rate (GFR, 40-31 ml/min, P less than 0.001), renal blood flow (RBF, 276-193 ml/min, P less than 0.001), and increases in renin secretion (232-939 U/min, P less than 0.025) in innervated kidneys. No significant change in either GFR or RBF and a decrease in renin secretion occurred with increases in PVP in denervated kidneys. To dissociate the changes in cardiac output and mean arterial pressure induced by increase PVP from the observed decreases in GFR and RBF, studies were performed on animals undergoing constriction of the thoracic inferior vena cava. In these studies, similar decreases in cardiac output and mean arterial pressure were not associated with significant changes in GFR or RBF. Increases in PVP also were associated with an antidiuresis as urine osmolality increased from 101 to 446 mosmol/kg H2O (P less than 0.001). This antidiuresis was significantly blunted but not abolished by acute hypophysectomy. In hypophysectomized animals, changes in free water clearance and urine flow were linearly correlated as PVP was increased. These studies indicate that increases in PVP result in decreases in GFR and RBF and increases in renin secretion mediated by increased renal adrenergic tone. Increased PVP is also associated with antidiuresis; this antidiuresis is mediated both by vasopressin release and by diminished tubular fluid delivery to the distal

  19. Expression and function of renal and hepatic organic anion transporters in extrahepatic cholestasis

    PubMed Central

    Brandoni, Anabel; Hazelhoff, María Herminia; Bulacio, Romina Paula; Torres, Adriana Mónica

    2012-01-01

    Obstructive jaundice occurs in patients suffering from cholelithiasis and from neoplasms affecting the pancreas and the common bile duct. The absorption, distribution and elimination of drugs are impaired during this pathology. Prolonged cholestasis may alter both liver and kidney function. Lactam antibiotics, diuretics, non-steroidal anti-inflammatory drugs, several antiviral drugs as well as endogenous compounds are classified as organic anions. The hepatic and renal organic anion transport pathways play a key role in the pharmacokinetics of these compounds. It has been demonstrated that acute extrahepatic cholestasis is associated with increased renal elimination of organic anions. The present work describes the molecular mechanisms involved in the regulation of the expression and function of the renal and hepatic organic anion transporters in extrahepatic cholestasis, such as multidrug resistance-associated protein 2, organic anion transporting polypeptide 1, organic anion transporter 3, bilitranslocase, bromosulfophthalein/bilirubin binding protein, organic anion transporter 1 and sodium dependent bile salt transporter. The modulation in the expression of renal organic anion transporters constitutes a compensatory mechanism to overcome the hepatic dysfunction in the elimination of organic anions. PMID:23197884

  20. Expression of Renal Aquaporins in Aristolochic Acid I and Aristolactam I-Induced Nephrotoxicity.

    PubMed

    Li, Ji; Zhang, Liang; Jiang, ZhenZhou; He, XiuQin; Zhang, LuYong; Xu, Ming

    2016-01-01

    Exposure to aristolochic acid (AA) can cause AA nephropathy, which is characterized by extensive proximal tubular damage and polyuria. To test the hypothesis that polyuria might be induced by altered regulation of aquaporins (AQPs) in the kidney, different doses of AA-I or aristolactam I (AL-I) were administered intraperitoneally to Sprague-Dawley rats, and urine, blood, and kidney samples were analyzed. In addition, AQP1, AQP2, AQP4 and AQP6 expression in the kidney were determined. The results showed dose-dependent proximal tubular damage and polyuria in the AA-I- and AL-I-treated groups, and the nephrotoxicity of AL-I was higher than that of AA-I. The expression of renal AQP1, AQP2 and AQP4, but not AQP6 were significantly inhibited by AA-I and AL-I. Comparison of the inhibition potencies of AA-I and AL-I showed that AL-I was a stronger inhibitor of AQP1 expression than AA-I, while there was no difference in their effects on AQP2 and AQP4. These results suggested that AA induced renal damage and polyuria were associated with a specific decrease in the expression of renal AQP1 AQP2 and AQP4, and AL-I showed higher nephrotoxicity than AA-I, which might be attributable to the differences in their inhibition of AQP1. © 2016 S. Karger AG, Basel.

  1. Altered Nitric Oxide System in Cardiovascular and Renal Diseases

    PubMed Central

    Bae, Eun Hui; Ma, Seong Kwon; Kim, Soo Wan

    2016-01-01

    Nitric oxide (NO) is synthesized by a family of NO synthases (NOS), including neuronal, inducible, and endothelial NOS (n/i/eNOS). NO-mediated effects can be beneficial or harmful depending on the specific risk factors affecting the disease. In hypertension, the vascular relaxation response to acetylcholine is blunted, and that to direct NO donors is maintained. A reduction in the activity of eNOS is mainly responsible for the elevation of blood pressure, and an abnormal expression of iNOS is likely to be related to the progression of vascular dysfunction. While eNOS/nNOS-derived NO is protective against the development of atherosclerosis, iNOS-derived NO may be proatherogenic. eNOS-derived NO may prevent the progression of myocardial infarction. Myocardial ischemia/reperfusion injury is significantly enhanced in eNOS-deficient animals. An important component of heart failure is the loss of coronary vascular eNOS activity. A pressure-overload may cause severer left ventricular hypertrophy and dysfunction in eNOS null mice than in wild-type mice. iNOS-derived NO has detrimental effects on the myocardium. NO plays an important role in regulating the angiogenesis and slowing the interstitial fibrosis of the obstructed kidney. In unilateral ureteral obstruction, the expression of eNOS was decreased in the affected kidney. In triply n/i/eNOS null mice, nephrogenic diabetes insipidus developed along with reduced aquaporin-2 abundance. In chronic kidney disease model of subtotal-nephrectomized rats, treatment with NOS inhibitors decreased systemic NO production and induced left ventricular systolic dysfunction (renocardiac syndrome). PMID:27231671

  2. Mizoribine Ameliorates Renal Injury and Hypertension along with the Attenuation of Renal Caspase-1 Expression in Aldosterone-Salt-Treated Rats

    PubMed Central

    Doi, Toshiki; Doi, Shigehiro; Nakashima, Ayumu; Ueno, Toshinori; Yokoyama, Yukio; Kohno, Nobuoki; Masaki, Takao

    2014-01-01

    Aldosterone-salt treatment induces not only hypertension but also extensive inflammation that contributes to fibrosis in the rat kidney. However, the mechanism underlying aldosterone-salt-induced renal inflammation remains unclear. Pyroptosis has recently been identified as a new type of cell death that is accompanied by the activation of inflammatory cytokines. We hypothesized that aldosterone-salt treatment could induce inflammation through pyroptosis and that mizoribine, an effective immunosuppressant, would ameliorate the renal inflammation that would otherwise cause renal fibrosis. Ten days after recovery from left uninephrectomy, rats were given drinking water with 1% sodium chloride. The animals were divided into three groups (n = 7 per group): (1) vehicle infusion group, (2) aldosterone infusion group, or (3) aldosterone infusion plus oral mizoribine group. Aldosterone-salt treatment increased the expression of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 and caspase-1, and also increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. However, the oral administration of mizoribine attenuated these alterations. Furthermore, mizoribine inhibited hypertension and renal fibrosis, and also attenuated the aldosterone-induced expression of serum/glucocorticoid-regulated kinase and α epithelial sodium channel. These results suggest that caspase-1 activation plays an important role in the development of inflammation induced by aldosterone-salt treatment and that it functions as an anti-inflammatory strategy that protects against renal injury and hypertension. PMID:24695748

  3. Acute nephropathy induced by gold sodium thiomalate: alterations in renal heme metabolism and morphology.

    PubMed

    Eiseman, J L; Ribas, J L; Knight, E; Alvares, A P

    1987-11-01

    Gold compounds are used clinically in rheumatoid arthritis therapy. Acute renal toxicity is observed in some patients receiving chrysotherapy. The present study addresses morphofunctional and biochemical changes in rat kidneys during the first 8 days following a single ip injection of gold sodium thiomalate (AuTM), one of the gold compounds presently in clinical use. Compared to controls, AuTM pretreatment resulted in increased urine output and elevated serum creatinine and urea nitrogen concentrations. Also, by Day 8, treated rats had decreased body weights and increased kidney weights. Postmortem examination on Day 1 showed pale and mottled kidneys and diffusely pale inner cortex. Microscopically, there was severe coagulative necrosis of the proximal tubular epithelium. Epithelial regeneration was prominent by Day 4 and was nearly complete by Day 8. The regenerating epithelium was hyperplastic with basophilic cytoplasm and pleomorphic nuclei. Alterations in renal heme biosynthesis and drug metabolism paralleled the morphologic changes. The activity of delta-aminolevulinic acid dehydratase and benzo[a]pyrene hydroxylase were inhibited on Days 1, 2, and 4 following AuTM administration. Decreases in monooxygenase activity were accompanied by decreases in renal cytochrome P-450 levels. In contrast, renal microsomal heme oxygenase activity was elevated 9.5-fold on Day 1 and 2.5-fold on Day 2. By Day 8, all renal enzymatic activities assayed for were similar to those obtained with untreated rats.

  4. Differential expression of laminin isoforms in diabetic nephropathy and other renal diseases.

    PubMed

    Setty, Suman; Michael, Alfred A; Fish, Alfred J; Michael Mauer, S; Butkowski, Ralph J; Virtanen, Ismo; Kim, Youngki

    2012-06-01

    Laminin a non-collagenous glycoprotein is a major component of the renal glomerular basement membrane and mesangium. Thus far eleven distinct chains have been described, permutations of which make up 15 laminin isoforms. Laminin molecules interact with cells and other matrix molecules during organ development and differentiation. We studied the distribution of laminin isoforms in patients with type 1 diabetic nephropathy, membranous nephropathy, membranoproliferative glomerulonephritis and IgA nephropathy/ Henoch-Schönlein purpura. Immunofluorescence microscopic studies with laminin-chain-specific antibodies to the α1, α2, α5, β1, β2 and γ1 chains detected α2, β1 and γ1 chain expression in the normal mesangium and α5, β2 and γ1 in normal glomerular basement membrane. Significantly, constituents of the glomerular basement membrane, α5, β2 and γ1 chains were overexpressed in kidneys with diabetic nephropathy. Initially the constituents of the mesangium increased commensurate with the degree of mesangial expansion and degree of diabetic nephropathy. Reduction in α2 chain intensity was observed with severe mesangial expansion and in the areas of nodular glomerulosclerosis. In addition, with late disease aberrant expression of α2 and β2 chains was observed in the mesangium. Glomerular basement membrane in renal disease overexpressed molecules normally present in that location. In summary, the alterations in basement membrane composition in various renal diseases seem to not only reflect the balance between synthesis and degradation of normal basement membrane constituents, but also their aberrant expression.

  5. Increased levels of adenosine and ecto 5'-nucleotidase (CD73) activity precede renal alterations in experimental diabetic rats.

    PubMed

    Oyarzún, C; Salinas, C; Gómez, D; Jaramillo, K; Pérez, G; Alarcón, S; Podestá, L; Flores, C; Quezada, C; San Martín, R

    The pathogenesis of diabetic nephropathy (DN) has not been clearly established, making diagnosis and patient management difficult. Recent studies using experimental diabetic models have implicated adenosine signaling with renal cells dysfunction. Therefore, the study of the biochemical mechanisms that regulate extracellular adenosine availability during DN is of emerging interest. Using streptozotocin-induced diabetic rats we demonstrated that urinary levels of adenosine were early increased. Further analyses showed an increased expression of the ecto 5'-nucleotidase (CD73), which hydrolyzes AMP to adenosine, at the renal proximal tubules and a higher enzymatic activity in tubule extracts. These changes precede the signs of diabetic kidney injury recognized by significant proteinuria, morphological alterations and the presence of the renal fibrosis markers alpha smooth muscle actin and fibronectin, collagen deposits and thickening of the glomerular basement membrane. In the proximal tubule cell line HK2 we identified TGF-β as a key modulator of CD73 activity. Importantly, the increased activity of CD73 could be screened in urinary sediments from diabetic rats. In conclusion, the increase of CD73 activity is a key component in the production of high levels of adenosine and emerges as a new tool for the early diagnosis of tubular injury in diabetic kidney disease.

  6. Renal expression of advanced oxidative protein products predicts progression of renal fibrosis in patients with IgA nephropathy.

    PubMed

    Wang, Jun; Liang, Min; Xu, Jie; Cao, Wei; Wang, Guo B; Zhou, Zhan M; Tian, Jian W; Jia, Nan; Zhang, Zhenhai; Nie, Jing; Liu, Youhua; Hou, Fan F

    2014-09-01

    Predicting the risk of disease progression in IgA nephropathy (IgAN) remains a challenge. This study was conducted to test the hypothesis that renal accumulation of advanced oxidized protein products (AOPPs) is an early predictor for renal progression in IgAN. This was a single-center prospective cohort study. One hundred IgAN patients with eGFR>80 ml/min/1.73 m(2) were enrolled. Seventy-seven patients were followed for a mean of 4.2 years, and 30 patients received repeat renal biopsy at a mean of 42 months after diagnosis. The outcomes were the progression of renal fibrosis and rapid progression of CKD (>5 ml/min/1.73 m(2)/year) during follow-up. Immunoreactivity of AOPPs was detected predominantly in tubular epithelial cells and co-localized with expression of TGF-β1 and angiotensin II. Renal staining score of AOPPs at diagnosis was associated with the level of tissue cellular inflammation. Accumulation of AOPPs, particularly in interstitial-infiltrating cells, was negatively correlated with changes of eGFR during follow-up; those with expression scores greater than the median at diagnosis had significantly higher incidences of rapid decline of eGFR compared with those with the score less than or equal to the median. For patients who received repeat renal biopsy, renal AOPP levels greater than the median at diagnosis were associated with increase in renal fibrosis index at repeat biopsy. After multivariate adjustment, renal AOPP expression was an independent predictor for progression of renal fibrosis and rapid decline of eGFR. Taken together, these results demonstrate that renal AOPPs might be a predictor, detectable at the time of diagnosis, for renal progression in patients with early stage IgAN.

  7. WT1 expression induces features of renal epithelial differentiation in mesenchymal fibroblasts.

    PubMed

    Hosono, S; Luo, X; Hyink, D P; Schnapp, L M; Wilson, P D; Burrow, C R; Reddy, J C; Atweh, G F; Licht, J D

    1999-01-14

    The WT1 tumor suppressor gene, implicated in hereditofamilial and sporadic Wilms' tumor, is required for normal renal development and is up-regulated during the mesenchymal-epithelial transition. NIH3T3 fibroblasts overexpressing WT1 were less proliferative, larger in size and more firmly attached to tissue culture plastic, suggesting an alteration of their state of differentiation. These cells were studied in vivo by subcutaneous injection into nude mice. The resulting tumors exhibited epithelioid histopathology and formed desmosome-like structures. Molecular analyses of these WT1 expressing fibroblasts grown in culture and in nude mice revealed significant alterations in the expression of many kidney epithelial markers. These studies indicate that WT1 expression can initiate features of a program of epithelial differentiation consistent with a prominent role for WT1 in the mesenchymal epithelial transition that occurs during renal development. Through this work we identified a number of novel target genes for the WT1 transcription factor, including uvomorulin, integrin alpha8 and perlecan, and suggest that WTI may activate the IGF-II gene, also implicated in the development of Wilms' tumor.

  8. NBCe1 expression is required for normal renal ammonia metabolism.

    PubMed

    Handlogten, Mary E; Osis, Gunars; Lee, Hyun-Wook; Romero, Michael F; Verlander, Jill W; Weiner, I David

    2015-10-01

    The mechanisms regulating proximal tubule ammonia metabolism are incompletely understood. The present study addressed the role of the proximal tubule basolateral electrogenic Na(+)-coupled bicarbonate cotransporter (NBCe1; Slc4a4) in renal ammonia metabolism. We used mice with heterozygous and homozygous NBCe1 gene deletion and compared these mice with their wild-type littermates. Because homozygous NBCe1 gene deletion causes 100% mortality before day 25, we studied mice at day 8 (±1 day). Both heterozygous and homozygous gene deletion caused a gene dose-related decrease in serum bicarbonate. The ability to lower urinary pH was intact, and even accentuated, with NBCe1 deletion. However, in contrast to the well-known effect of metabolic acidosis to increase urinary ammonia excretion, NBCe1 deletion caused a gene dose-related decrease in ammonia excretion. There was no identifiable change in proximal tubule structure by light microscopy. Examination of proteins involved in renal ammonia metabolism showed decreased expression of phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase, key enzymes in proximal tubule ammonia generation, and increased expression of glutamine synthetase, which recycles intrarenal ammonia and regenerates glutamine. Expression of key proteins involved in ammonia transport outside of the proximal tubule (rhesus B glycoprotein and rhesus C glycoprotein) was not significantly changed by NBCe1 deletion. We conclude from these findings that NBCe1 expression is necessary for normal proximal tubule ammonia metabolism.

  9. NBCe1 expression is required for normal renal ammonia metabolism

    PubMed Central

    Handlogten, Mary E.; Osis, Gunars; Lee, Hyun-Wook; Romero, Michael F.; Verlander, Jill W.

    2015-01-01

    The mechanisms regulating proximal tubule ammonia metabolism are incompletely understood. The present study addressed the role of the proximal tubule basolateral electrogenic Na+-coupled bicarbonate cotransporter (NBCe1; Slc4a4) in renal ammonia metabolism. We used mice with heterozygous and homozygous NBCe1 gene deletion and compared these mice with their wild-type littermates. Because homozygous NBCe1 gene deletion causes 100% mortality before day 25, we studied mice at day 8 (±1 day). Both heterozygous and homozygous gene deletion caused a gene dose-related decrease in serum bicarbonate. The ability to lower urinary pH was intact, and even accentuated, with NBCe1 deletion. However, in contrast to the well-known effect of metabolic acidosis to increase urinary ammonia excretion, NBCe1 deletion caused a gene dose-related decrease in ammonia excretion. There was no identifiable change in proximal tubule structure by light microscopy. Examination of proteins involved in renal ammonia metabolism showed decreased expression of phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase, key enzymes in proximal tubule ammonia generation, and increased expression of glutamine synthetase, which recycles intrarenal ammonia and regenerates glutamine. Expression of key proteins involved in ammonia transport outside of the proximal tubule (rhesus B glycoprotein and rhesus C glycoprotein) was not significantly changed by NBCe1 deletion. We conclude from these findings that NBCe1 expression is necessary for normal proximal tubule ammonia metabolism. PMID:26224717

  10. Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models.

    PubMed

    Van der Hauwaert, Cynthia; Savary, Grégoire; Buob, David; Leroy, Xavier; Aubert, Sébastien; Flamand, Vincent; Hennino, Marie-Flore; Perrais, Michaël; Lo-Guidice, Jean-Marc; Broly, Franck; Cauffiez, Christelle; Glowacki, François

    2014-09-15

    Numerous xenobiotics have been shown to be harmful for the kidney. Thus, to improve our knowledge of the cellular processing of these nephrotoxic compounds, we evaluated, by real-time PCR, the mRNA expression level of 377 genes encoding xenobiotic-metabolizing enzymes (XMEs), transporters, as well as nuclear receptors and transcription factors that coordinate their expression in eight normal human renal cortical tissues. Additionally, since several renal in vitro models are commonly used in pharmacological and toxicological studies, we investigated their metabolic capacities and compared them with those of renal tissues. The same set of genes was thus investigated in HEK293 and HK2 immortalized cell lines in commercial primary cultures of epithelial renal cells and in proximal tubular cell primary cultures. Altogether, our data offers a comprehensive description of kidney ability to process xenobiotics. Moreover, by hierarchical clustering, we observed large variations in gene expression profiles between renal cell lines and renal tissues. Primary cultures of proximal tubular epithelial cells exhibited the highest similarities with renal tissue in terms of transcript profiling. Moreover, compared to other renal cell models, Tacrolimus dose dependent toxic effects were lower in proximal tubular cell primary cultures that display the highest metabolism and disposition capacity. Therefore, primary cultures appear to be the most relevant in vitro model for investigating the metabolism and bioactivation of nephrotoxic compounds and for toxicological and pharmacological studies.

  11. Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models

    SciTech Connect

    Van der Hauwaert, Cynthia; Savary, Grégoire; Buob, David; Leroy, Xavier; Aubert, Sébastien; Flamand, Vincent; Hennino, Marie-Flore; Perrais, Michaël; and others

    2014-09-15

    Numerous xenobiotics have been shown to be harmful for the kidney. Thus, to improve our knowledge of the cellular processing of these nephrotoxic compounds, we evaluated, by real-time PCR, the mRNA expression level of 377 genes encoding xenobiotic-metabolizing enzymes (XMEs), transporters, as well as nuclear receptors and transcription factors that coordinate their expression in eight normal human renal cortical tissues. Additionally, since several renal in vitro models are commonly used in pharmacological and toxicological studies, we investigated their metabolic capacities and compared them with those of renal tissues. The same set of genes was thus investigated in HEK293 and HK2 immortalized cell lines in commercial primary cultures of epithelial renal cells and in proximal tubular cell primary cultures. Altogether, our data offers a comprehensive description of kidney ability to process xenobiotics. Moreover, by hierarchical clustering, we observed large variations in gene expression profiles between renal cell lines and renal tissues. Primary cultures of proximal tubular epithelial cells exhibited the highest similarities with renal tissue in terms of transcript profiling. Moreover, compared to other renal cell models, Tacrolimus dose dependent toxic effects were lower in proximal tubular cell primary cultures that display the highest metabolism and disposition capacity. Therefore, primary cultures appear to be the most relevant in vitro model for investigating the metabolism and bioactivation of nephrotoxic compounds and for toxicological and pharmacological studies. - Highlights: • Renal proximal tubular (PT) cells are highly sensitive to xenobiotics. • Expression of genes involved in xenobiotic disposition was measured. • PT cells exhibited the highest similarities with renal tissue.

  12. Renal alterations of atrial natriuretic peptide receptors by chronic moderate ethanol treatment.

    PubMed

    Guillaume, P; Than, V D; Gianoulakis, C; Gutkowska, J

    1997-01-01

    Previous studies have shown that chronic moderate ethanol (EtOH) consumption prevents the age-dependent increase in blood pressure. However, the physiological systems mediating the antihypertensive effects of EtOH are not known. The objective of the present studies was to investigate the effects of chronic (8 mo) moderate EtOH consumption on renal natriuretic receptors of spontaneously hypertensive (SHR) and normotensive (WKY) rats, using competitive binding assay and autoradiographic techniques. In the renal glomeruli, the maximal binding capacity (Bmax) of the heterogeneous atrial natriuretic peptide (ANP) receptor population (NPR-A and NPR-C) was significantly lower in EtOH-treated SHR and WKY rats compared with water-treated controls. Quantification of receptor subtypes showed that this decrease was primarily the result of NPR-C down-regulation. The apparent dissociation constant (Kd) was also decreased by the EtOH treatment. In the renal papilla, the Bmax of the homogeneous receptor population (NPR-A) was significantly elevated by long-term EtOH consumption in both strains compared with water-treated controls. However, the Kd was unaltered by the EtOH administration. Thus EtOH treatment induced specific alterations in renal natriuretic receptors that may play a role in the "protective" effect of moderate EtOH consumption on the age-dependent increase in blood pressure.

  13. Antenatal betamethasone exposure alters renal responses to angiotensin-(1-7) in uninephrectomized adult male sheep.

    PubMed

    Bi, Jianli; Contag, Stephen A; Carey, Luke C; Tang, Lijun; Valego, Nancy K; Chappell, Mark C; Rose, James C

    2013-12-01

    Antenatal corticosteroid exposure reduces renal function and alters the intrarenal renin-angiotensin system to favor angiotensin activation of angiotensin type 1 receptor (AT1R) mediated responses in ovine offspring. This study aimed to assess whether antenatal steroid exposure would affect renal responses to the direct intrarenal infusion of angiotensin-(1-7) in rams and the angiotensin receptors involved in mediating responses to the peptide. Adult, uninephrectomized rams exposed to either betamethasone or vehicle before birth received intrarenal angiotensin-(1-7) infusions (1 ng/kg/min) alone or in combination with antagonists to angiotensin receptors for 3 h. Basal sodium excretion (UNa) was significantly lower and mean arterial pressure was significantly higher in betamethasone- compared to the vehicle-treated sheep. Angiotensin-(1-7) decreased UNa more in betamethasone- than in vehicle-treated sheep. Candesartan reversed the response to angiotensin-(1-7) but D-Ala(7)-angiotensin-(1-7) did not. Angiotensin-(1-7) infusion decreased effective renal plasma flow in both groups to a similar extent and the response was reversed by candesartan, but was not blocked by D-Ala(7)-angiotensin-(1-7). Glomerular filtration rate increased significantly in both groups after 3 h infusion of angiotensin-(1-7) plus candesartan. These results suggest that antenatal exposure to a clinically relevant dose of betamethasone impairs renal function in rams. Moreover, angiotensin-(1-7) appears capable of activating the AT1R in uninephrectomized rams.

  14. Antenatal Betamethasone Exposure Alters Renal Responses to Angiotensin-(1–7) in Uninephrectomized Adult Male Sheep

    PubMed Central

    Bi, Jianli; Contag, Stephen A.; Carey, Luke C.; Tang, Lijun; Valego, Nancy K.; Chappell, Mark C.; Rose, James C.

    2014-01-01

    Antenatal corticosteroid exposure reduces renal function and alters the intrarenal renin-angiotensin system to favor angiotensin activation of angiotensin type 1 receptor (AT1R) mediated responses in ovine offspring. This study aimed to assess whether antenatal steroid exposure would affect renal responses to the direct intrarenal infusion of angiotensin-(1–7) in rams and the Ang receptors involved in mediating responses to the peptide. Adult, uninephrectomized rams exposed to either betamethasone or vehicle before birth received intrarenal angiotensin-(1–7) infusions (1ng/kg/min) alone or in combination with antagonists to Ang receptors for 3 hours. Basal sodium excretion (UNa) was significantly lower and mean arterial pressure was significantly higher in betamethasone compared to the vehicle treated sheep. Angiotensin-(1–7) decreased UNa more in betamethasone than in vehicle treated sheep. Candesartan reversed the response to Angiotensin-(1–7) but D-Ala7-Angiotensin-(1–7) did not. Angiotensin-(1–7) infusion decreased effective renal plasma flow in both groups to a similar extent and the response was reversed by candesartan, but was not blocked by D-Ala7-Angiotensin-(1–7). Glomerular filtration rate increased significantly in both groups after 3h infusion of Angiotensin-(1–7) plus candesartan. These results suggest that antenatal exposure to a clinically relevant dose of betamethasone impairs renal function in rams. Moreover, Angiotensin-(1–7) appears capable of activating the AT1R in uninephrectomized rams. PMID:23161144

  15. Cellular mechanisms of renal adaptation of sodium dependent sulfate cotransport to altered dietary sulfate in rats.

    PubMed

    Sagawa, K; DuBois, D C; Almon, R R; Murer, H; Morris, M E

    1998-12-01

    The renal transport and fractional reabsorption of inorganic sulfate is altered under conditions of sulfate deficiency or excess. The objective of this study was to examine the cellular mechanisms of adaptation of renal sodium/sulfate cotransport after varying dietary intakes of a sulfur containing amino acid, methionine. Female Lewis rats were divided into four groups and fed diets containing various concentrations of methionine (0, 0.3, 0.82 and 2.46%) for 8 days. Urinary excretion rates and renal clearance of sulfate were significantly decreased in the animals fed a 0% methionine diet or a 0.3% methionine diet, and significantly increased in the animals fed a 2.46% methionine diet when evaluated on days 4 and 7. Serum sulfate concentrations were unchanged by diet treatment in all animals. The fractional reabsorption of sulfate was significantly increased in the animals fed the 0% methionine diet and the 0.3% methionine diets, and decreased in the animals fed the 2.46% methionine diet. Increased mRNA and protein levels for the sodium/sulfate transporter (NaSi-1) were found in the kidney cortex following treatment with the 0 and 0.3% methionine diet groups. Sulfate homeostasis by renal reabsorption is maintained by an up-regulation of steady state levels of NaSi-1 mRNA and protein when the diet is low in methionine.

  16. Renal

    MedlinePlus

    ... term "renal" refers to the kidney. For example, renal failure means kidney failure. Related topics: Kidney disease Kidney disease - diet Kidney failure Kidney function tests Renal scan Kidney transplant

  17. Modulation of sulfate renal transport by alterations in cell membrane fluidity.

    PubMed

    Lee, H J; Balasubramanian, S V; Murer, H; Biber, J; Morris, M E

    1999-10-01

    Changes in membrane fluidity have been shown to alter the sodium-dependent renal transport of glucose and phosphate; however, this has not been examined for sodium/sulfate cotransport in the renal proximal tubule. Sodium/sulfate cotransport regulates the homeostasis of sulfate in mammals. The objective of this study was to investigate the influence of alterations of membrane fluidity on sodium-coupled sulfate transport in the Madin-Darby canine kidney cells, which have been stably transfected with sodium/sulfate cotransporter (NaSi-1) cDNA (MDCK-Si). Preincubation of cells with 0. 2 mM cholesterol significantly decreased the V(max) for sodium/sulfate cotransport (13.69 +/- 1.11 vs 10.15 +/- 1.17 nmol/mg protein/5 min, mean +/- SD, n = 4, p < 0.01) with no significant alteration in K(m). The addition of benzyl alcohol (20 mM) to cells increased the V(max) of sulfate uptake by 20% (11.97 +/- 0.91 vs 14. 35 +/- 0.56 nmol/mg protein/5 min, mean +/- SD, n = 3, p < 0.05) with no significant change in K(m). Membrane fluidity, as measured by the fluorescence polarization of 1,6-diphenyl 1,3,5-hexatriene (DPH), was significantly increased in MDCK-Si cells treated with 20 mM benzyl alcohol and decreased in the cells preincubated with 0.2 mM cholesterol, compared with control cells. Our results suggest that alterations in membrane fluidity that may occur as a result of disease states, aging, and pregnancy may play an important role in the modulation of renal sodium/sulfate cotransport.

  18. Altered aquaporin expression in glaucoma eyes.

    PubMed

    Tran, Thuy Linh; Bek, Toke; la Cour, Morten; Nielsen, Søren; Prause, Jan Ulrik; Hamann, Steffen; Heegaard, Steffen

    2014-09-01

    Aquaporins (AQP) are channels in the cell membrane that mainly facilitate a passive transport of water. In the eye, AQPs are expressed in the ciliary body and retina and may contribute to the pathogenesis of glaucoma and optic neuropathy. We investigated the expression of AQP1, AQP3, AQP4, AQP5, AQP7 and AQP9 in human glaucoma eyes compared with normal eyes. Nine glaucoma eyes were examined. Of these, three eyes were diagnosed with primary open angle glaucoma; three eyes had neovascular glaucoma; and three eyes had chronic angle-closure glaucoma. Six eyes with normal intraocular pressure and without glaucoma were used as control. Immunohistochemistry was performed using antibodies against AQP1, AQP3, AQP4, AQP5, AQP7 and AQP9. For each specimen, optical densities of immunoprecipitates were measured using Photoshop and the staining intensities were calculated. Immunostaining showed labelling of AQP7 and AQP9 in the nonpigmented ciliary epithelium and the staining intensities were significantly decreased in glaucoma eyes (p = 0.003; p = 0.018). AQP7 expression in the Müller cell endfeet was increased (p = 0.046), and AQP9 labelling of the retinal ganglion cells (RGC) showed decreased intensity (p = 0.037). No difference in AQP1, AQP4 and AQP9 expression was found in the optic nerve fibres. This study is the first investigating AQPs in human glaucoma eyes. We found a reduced expression of AQP9 in the retinal ganglion cells of glaucoma eyes. Glaucoma also induced increased AQP7 expression in the Müller cell endfeet. In the ciliary body of glaucoma eyes, the expression of AQP7 and AQP9 was reduced. Therefore, the expression of AQPs seems to play a role in glaucoma.

  19. Expression of the multidrug transporter, P-glycoprotein, in renal and transitional cell carcinomas.

    PubMed

    Nishiyama, K; Shirahama, T; Yoshimura, A; Sumizawa, T; Furukawa, T; Ichikawa-Haraguchi, M; Akiyama, S; Ohi, Y

    1993-06-01

    Renal cell carcinomas (RCC) respond poorly to anthracyclines, Vinca alkaloids, and other agents. P-glycoprotein is overproduced in multidrug-resistant cells and thought to function as an energy-dependent drug efflux pump. The authors thus examined the expression level of P-glycoprotein in RCC and transitional cell carcinomas (TCC). P-glycoprotein was detected using immunoblotting with a monoclonal antibody against it, C219. Thirty-three of 38 patients with RCC and 3 of 17 patients with TCC had P-glycoprotein positive tumors. The expression level of P-glycoprotein in most of RCC was lower than that in the normal kidney tissues and that of P-glycoprotein in the TCC was very low. The size of P-glycoprotein in 14 RCC and 3 TCC was 5-10 kilodaltons smaller than in the normal renal tissues. The variation of P-glycoprotein size in the RCC was attributed to differential N-linked glycosylation. P-glycoprotein in a RCC was photolabeled by tritiated azidopine, and the labeling was inhibited by some organic agents. P-glycoprotein distributed on the apical or marginal cell surface of the RCC. These data show that P-glycoprotein was expressed in many RCC, and its expression level, glycosylation, and distribution were altered. These data also suggest that the P-glycoprotein in RCC had similar drug binding site(s) to that in multidrug-resistant cells.

  20. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations

    PubMed Central

    Blázquez-Medela, Ana M.; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M.; Romero, Miguel; Duarte, Juan M.; López-Hernández, Francisco J.; López-Novoa, José M.; Martínez-Salgado, Carlos

    2015-01-01

    Abstract Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys. We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage. Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments. The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening. KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage. PMID:26469898

  1. Altered lauric acid metabolism in renal microsomes from spontaneously hypertensive rats (SHR)

    SciTech Connect

    Shiverick, K.T.; Applewhite, J.; Okita, R.

    1986-03-01

    Studies investigated whether changes in omega- and (omega-1)-hydroxylation (OH) of lauric acid (LA) occurred in renal microsomes prepared from SHR compared to Wistar-Kyoto (WK) control rats. Systolic blood pressure in age-matched adult SHR and WKR were 189 +/- 3 and 123 +/- 4 mm Hg(anti X +/- SE) respectively (p < 0.001). No significant differences between SHR and WKR were seen in body weight, kidney weight or renal microsomal protein content. Renal microsomes, prepared from whole kidneys, were incubated with 10 mM NADPH and (/sup 14/C)LA at concentrations between 5-50 ..mu..M. The 11- and 12-OH metabolites of LA were separated by HPLC using a reverse phase column with a methanol:water:acetic acid (62:37.8:0.2) mobile phase. Apparent (app) V/sub max/ values for 12-OH in WKR and SHR were 0.87 +/- 0.19 vs 1.48 +/- .11 nmoles/mg protein/min (p < 0.05), respectively, while values for 11-OH were 0.51 +/- 0.12 vs 0.60 +/- .07, respectively. No significant differences were found in app K/sub m/ values for either 11- or 12-OH between the two strains. SDS-polyacrylamide gel electrophoresis of renal microsomes showed the increased prominence of a 52,000 dalton protein in SHR preparations. Thus data suggest that selective alterations in renal cytochrome P-450 monooxygenase reactions may be associated with the endogenous biochemical processes underlying hypertension.

  2. Brain Microstructural Abnormalities Are Related to Physiological Alterations in End-Stage Renal Disease

    PubMed Central

    Tian, Junzhang; Dong, Jianwei; He, Jinlong; Zhan, Wenfeng; Xu, Lijuan; Xu, Yikai; Jiang, Guihua

    2016-01-01

    Purpose To study whole-brain microstructural alterations in patients with end-stage renal disease (ESRD) and examine the relationship between brain microstructure and physiological indictors in the disease. Materials and Methods Diffusion tensor imaging data were collected from 35 patients with ESRD (28 men, 18–61 years) and 40 age- and gender-matched healthy controls (HCs, 32 men, 22–58 years). A voxel-wise analysis was then used to identify microstructural alterations over the whole brain in the ESRD patients compared with the HCs. Multiple biochemical measures of renal metabolin, vascular risk factors, general cognitive ability and dialysis duration were correlated with microstructural integrity for the patients. Results Compared to the HCs, the ESRD patients exhibited disrupted microstructural integrity in not only white matter (WM) but also gray matter (GM) regions, as characterized by decreased fractional anisotropy (FA) and increased mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). Further correlation analyses revealed that the in MD, AD and RD values showed significantly positive correlations with the blood urea nitrogen in the left superior temporal gyrus and significantly negative correlations with the calcium levels in the left superior frontal gyrus (orbital part) in the patients. Conclusion Our findings suggest that ESRD is associated with widespread diffusion abnormalities in both WM and GM regions in the brain, and microstructural integrity of several GM regions are related to biochemical alterations in the disease. PMID:27227649

  3. Expression of Epstein-Barr virus in renal cell carcinoma.

    PubMed

    Shimakage, Misuzu; Kawahara, Kunimitsu; Harada, Shizuko; Sasagawa, Toshiyuki; Shinka, Toshiaki; Oka, Toshitsugu

    2007-07-01

    There have been few studies regarding the etiology of renal cell carcinoma. To examine the possible involvement of Epstein-Barr virus (EBV) in this disease, 9 renal cell carcinoma (RCC), 2 nephroblastoma (Wilms' tumor) and 2 RCC cell lines were subjected to mRNA in situ hybridization and indirect immunofluorescence staining. Messenger RNA in situ hybridization using BamHIW, EBNA LP, EBNA 2 and EBER1 probes of EBV revealed signals in all the examined samples, although some samples showed weak signals using the EBNA LP probe. Indirect immunofluorescence staining using anti-EBNA LP, anti-EBNA2, anti-LMP1 and anti-BZLF1 antibodies showed definitive fluorescence. PCR also revealed EBV DNA in all 8 RCC specimens including 7 cases other than hybridization and fluorescence. EBV infected all the RCC and nephroblastoma irrespective of the histological or clinical stage. On the other hand, EBV expression was stronger in papillary and clear cell-type RCC than chromophobe cell-type, as well as being stronger in the higher grades of RCC. These results suggest that the expression of EBV may be involved in the pathogenesis of RCC and nephroblastoma.

  4. Strong Expression of Chemokine Receptor CXCR4 by Renal Cell Carcinoma Correlates with Advanced Disease

    PubMed Central

    Wehler, Thomas C.; Graf, Claudine; Biesterfeld, Stefan; Brenner, Walburgis; Schadt, Jörg; Gockel, Ines; Berger, Martin R.; Thüroff, Joachim W.; Galle, Peter R.; Moehler, Markus; Schimanski, Carl C.

    2008-01-01

    Diverse chemokines and their receptors have been associated with tumor growth, tumor dissemination, and local immune escape. In different tumor entities, the level of chemokine receptor CXCR4 expression has been linked with tumor progression and decreased survival. The aim of this study was to evaluate the influence of CXCR4 expression on the progression of human renal cell carcinoma. CXCR4 expression of renal cell carcinoma was assessed by immunohistochemistry in 113 patients. Intensity of CXCR4 expression was correlated with both tumor and patient characteristics. Human renal cell carcinoma revealed variable intensities of CXCR4 expression. Strong CXCR4 expression of renal cell carcinoma was significantly associated with advanced T-status (P = .039), tumor dedifferentiation (P = .0005), and low hemoglobin (P = .039). In summary, strong CXCR4 expression was significantly associated with advanced dedifferentiated renal cell carcinoma. PMID:19266088

  5. Expression of lactate dehydrogenase C correlates with poor prognosis in renal cell carcinoma.

    PubMed

    Hua, Yibo; Liang, Chao; Zhu, Jundong; Miao, Chenkui; Yu, Yajie; Xu, Aimin; Zhang, Jianzhong; Li, Pu; Li, Shuang; Bao, Meiling; Yang, Jie; Qin, Chao; Wang, Zengjun

    2017-03-01

    Lactate dehydrogenase C is an isoenzyme of lactate dehydrogenase and a member of the cancer-testis antigens family. In this study, we aimed to investigate the expression and functional role of lactate dehydrogenase C and its basic mechanisms in renal cell carcinoma. First, a total of 133 cases of renal cell carcinoma samples were analysed in a tissue microarray, and Kaplan-Meier survival curve analyses were performed to investigate the correlation between lactate dehydrogenase C expression and renal cell carcinoma progression. Lactate dehydrogenase C protein levels and messenger RNA levels were significantly upregulated in renal cell carcinoma tissues, and the patients with positive lactate dehydrogenase C expression had a shorter progression-free survival, indicating the oncogenic role of lactate dehydrogenase C in renal cell carcinoma. In addition, further cytological experiments demonstrated that lactate dehydrogenase C could prompt renal cell carcinoma cells to produce lactate, and increase metastatic and invasive potential of renal cell carcinoma cells. Furthermore, lactate dehydrogenase C could induce the epithelial-mesenchymal transition process and matrix metalloproteinase-9 expression. In summary, these findings showed lactate dehydrogenase C was associated with poor prognosis in renal cell carcinoma and played a pivotal role in the migration and invasion of renal cell carcinoma cells. Lactate dehydrogenase C may act as a novel biomarker for renal cell carcinoma progression and a potential therapeutic target for the treatment of renal cell carcinoma.

  6. Genomic expression and single-nucleotide polymorphism profiling discriminates chromophobe renal cell carcinoma and oncocytoma.

    PubMed

    Tan, Min-Han; Wong, Chin Fong; Tan, Hwei Ling; Yang, Ximing J; Ditlev, Jonathon; Matsuda, Daisuke; Khoo, Sok Kean; Sugimura, Jun; Fujioka, Tomoaki; Furge, Kyle A; Kort, Eric; Giraud, Sophie; Ferlicot, Sophie; Vielh, Philippe; Amsellem-Ouazana, Delphine; Debré, Bernard; Flam, Thierry; Thiounn, Nicolas; Zerbib, Marc; Benoît, Gérard; Droupy, Stéphane; Molinié, Vincent; Vieillefond, Annick; Tan, Puay Hoon; Richard, Stéphane; Teh, Bin Tean

    2010-05-12

    Chromophobe renal cell carcinoma (chRCC) and renal oncocytoma are two distinct but closely related entities with strong morphologic and genetic similarities. While chRCC is a malignant tumor, oncocytoma is usually regarded as a benign entity. The overlapping characteristics are best explained by a common cellular origin, and the biologic differences between chRCC and oncocytoma are therefore of considerable interest in terms of carcinogenesis, diagnosis and clinical management. Previous studies have been relatively limited in terms of examining the differences between oncocytoma and chromophobe RCC. Gene expression profiling using the Affymetrix HGU133Plus2 platform was applied on chRCC (n = 15) and oncocytoma specimens (n = 15). Supervised analysis was applied to identify a discriminatory gene signature, as well as differentially expressed genes. High throughput single-nucleotide polymorphism (SNP) genotyping was performed on independent samples (n = 14) using Affymetrix GeneChip Mapping 100 K arrays to assess correlation between expression and gene copy number. Immunohistochemical validation was performed in an independent set of tumors. A novel 14 probe-set signature was developed to classify the tumors internally with 93% accuracy, and this was successfully validated on an external data-set with 94% accuracy. Pathway analysis highlighted clinically relevant dysregulated pathways of c-erbB2 and mammalian target of rapamycin (mTOR) signaling in chRCC, but no significant differences in p-AKT or extracellular HER2 expression was identified on immunohistochemistry. Loss of chromosome 1p, reflected in both cytogenetic and expression analysis, is common to both entities, implying this may be an early event in histogenesis. Multiple regional areas of cytogenetic alterations and corresponding expression biases differentiating the two entities were identified. Parafibromin, aquaporin 6, and synaptogyrin 3 were novel immunohistochemical markers effectively discriminating

  7. PAX-8 expression in renal tumours and distant sites: A useful marker of primary and metastatic renal cell carcinoma?

    PubMed Central

    Barr, Meaghan L; Jilaveanu, Lucia B; Camp, Robert L; Adeniran, Adebowale J; Kluger, Harriet M; Shuch, Brian

    2015-01-01

    Aims Immunohistochemical stains have greatly improved the diagnostic accuracy of renal cell carcinoma (RCC) for primary and distant tumours. We evaluate a marker that has recently been incorporated in clinical practice, PAX-8, in primary and metastatic RCCs. Methods Two distinct tissue microarrays were used, one consisting of over 334 renal tumours, 294 with adjacent normal kidney and the other with 40 matched nephrectomy and metastatic sites of RCC. PAX-8 expression was assessed by a method of quantitative immunofluorescence. Results PAX-8 was positive in 96% (146/152) of normal renal tissue and 83% (227/272) of renal tumours. PAX-8 staining was positive in clear cell, papillary and chromophobe tumours in 80% (165/207), 95% (39/41) and 100% (6/6) of samples, respectively. Overall, intensity of PAX-8 expression was significantly higher in RCC metastatic sites than in the primary site (p=0.0047), however, in matched sites there was no statistically significant difference in the proportion of positive versus negative specimens (p=0.274). Conclusions As the role of molecular markers expands in the diagnostic algorithm, this study confirms that PAX-8 expression is a useful diagnostic marker for RCC. PAX-8 expression was found in the primary tumour and distant sites. Compared with normal tissue and other histological types, clear cell RCC has lower PAX-8 expression and is less frequently positive, therefore, the lack of expression does not exclude a tumour of renal origin. PMID:25315900

  8. Chronic noradrenaline increases renal expression of NHE-3, NBC-1, BSC-1 and aquaporin-2.

    PubMed

    Sonalker, Prajakta A; Tofovic, Stevan P; Bastacky, Sheldon I; Jackson, Edwin K

    2008-05-01

    1. Because chronic activation of the renal sympathetic nervous system promotes sodium and water retention, it is conceivable that long-term exposure of the kidney to the sympathetic neurotransmitter noradrenaline upregulates the expression of key renal epithelial transport systems. 2. To test this hypothesis, we used immunoblotting of renal cortical and medullary tissue to investigate the abundance of major transport systems expressed along the renal tubule in response to long-term (15 days) infusions of noradrenaline (600 ng/min) in rats. 3. Mean arterial blood pressure and heart rate were significantly elevated in rats receiving chronic infusions of noradrenaline (128 +/- 10 mmHg and 492 +/- 16 b.p.m., respectively) compared with animals treated with saline only (89 +/- 3 mmHg and 376 +/- 14 b.p.m., respectively). 4. Chronic infusions of noradrenaline also increased the protein abundance of the cortical Na(+)/H(+) exchanger isoform 3 (NHE-3; 2.5-fold; P = 0.0142), the cortical sodium-bicarbonate cotransporter NBC-1 (2.5-fold; P = 0.0067), the bumetanide-sensitive sodium-potassium-chloride cotransporter BSC-1/NKCC2 in the inner stripe of outer medulla (threefold; P = 0.0020) and aquaporin-2 in the inner medulla (twofold; P = 0.0039). 5. In contrast, noradrenaline did not significantly affect expression of the thiazide-sensitive Na(+)-Cl(-) cotransporter in the cortex, Na(+)/K(+)-ATPase-alpha(1) in the cortex and inner stripe of the outer or inner medulla, the inwardly rectifying K(+) channel (ROMK-1) in the inner stripe of the outer medulla or aquaporin-1 in the cortex or inner medulla. Noradrenaline did significantly, but modestly (less than twofold), increase aquaporin-1 in the inner stripe of the outer medulla. 6. We conclude that noradrenaline-induced increases in the expression of NHE-3, NBC-1, BSC-1 and aquaporin-2 are likely to play an important role in the regulation of salt and water transport by noradrenaline in the kidney and may explain, at least in

  9. Tetracycline Regulator Expression Alters the Transcriptional Program of Mammalian Cells

    PubMed Central

    Hackl, Hubert; Rommer, Anna; Konrad, Torsten A.; Nassimbeni, Christine; Wieser, Rotraud

    2010-01-01

    Background Tetracycline regulated ectopic gene expression is a widely used tool to study gene function. However, the tetracycline regulator (tetR) itself has been reported to cause certain phenotypic changes in mammalian cells. We, therefore, asked whether human myeloid U937 cells expressing the tetR in an autoregulated manner would exhibit alterations in gene expression upon removal of tetracycline. Methodology/Principal Findings Microarray analyses revealed that 172 and 774 unique genes were significantly differentially expressed by at least 2- or 1.5-fold, respectively, when tetR expressing U937 cells were maintained in media with or without the antibiotic. Conclusions/Significance These alterations in gene expression are likely to contribute to the phenotypic consequences of tetR expression. In addition, they need to be taken into consideration when using the tetR system for the identification of target genes of transcription factors or other genes of interest. PMID:20886048

  10. Prognostic significance of metallothionein expression in renal cell carcinoma

    PubMed Central

    Mitropoulos, Dionisios; Kyroudi-Voulgari, Aspasia; Theocharis, Stamatis; Serafetinides, Efraim; Moraitis, Epaminondas; Zervas, Anastasios; Kittas, Christos

    2005-01-01

    Background Metallothionein (MT) protein expression deficiency has been implicated in carcinogenesis while MT over expression in tumors is indicative of tumor resistance to anti-cancer treatment. The purpose of the study was to examine the expression of MT expression in human renal cell carcinoma (RCC) and to correlate MT positivity, the pattern and extent of MT expression with tumor histologic cell type and nuclear grade, pathologic stage and patients' survival. Patients and methods The immunohistochemical expression of MT was determined in 43 formalin-fixed and paraffin-embedded RCC specimens, using a mouse monoclonal antibody that reacts with both human MT-I and MT-II. Correlation was sought between immunohistochemical (MT positivity, intensity and extension of staining) and clinico-pathological data (histological cell type, tumor nuclear grade, pathologic stage and patients' survival). Results Positive MT staining was present in 21 cases (49%), being mild/moderate and intense in 8 and 13 cases, respectively. The pattern was cytoplasmic in 7 cases and was both cytoplasmic and nuclear in 14 cases. MT expression in a percentage of up to 25% of tumor cells (negative MT staining included) was observed in 31 cases, in a percentage 25–50% of tumor cells in 7 cases, and in a percentage of 50–75% of tumor cells in 5 cases. There was no significant correlation of MT intensity of staining to histological type, stage and patients' survival, while it was inversely correlated to higher tumor nuclear grade. MT extent of staining did not correlate with histological type, nuclear grade, and pathologic stage while a statistically significant association was found with patients' survival. Conclusions The inverse correlation between MT staining intensity and tumor nuclear grade in RCC suggests a role of MT in tumor differentiation process. Since extent of MT expression is inversely correlated with survival it may be possibly used as a clinical prognostic parameter. PMID

  11. Mild renal hypertension alters run training effects on the frequency response of rat cardiomyocyte mechanics.

    PubMed

    Palmer, Bradley M; Mokelke, Eric A; Thayer, Anne M; Moore, Russell L

    2003-11-01

    We examined the effects of run training on the frequency dependence of cardiomyocyte mechanics and intracellular calcium concentration ([Ca2+]i) dynamics in rats with mild renal hypertension. Male Fischer 344 rats aged 2-3 mo underwent a sham operation or stenosis of the left renal artery, which increased systolic blood pressure 20-30 mmHg. Half of the rats in each group underwent treadmill run training for >16 wk. Isolated cardiomyocytes were paced at 1.0 and 0.2 Hz in 2 mM external Ca2+ concentration at 29 degrees C. Under these conditions, negative frequency responses, i.e., decreased value with increased frequency, were recorded for peak shortening, shortening velocity, and the integral of the [Ca2+]i transient in both groups. Run training amplified the negative frequency response for the integral of the [Ca2+]i transient in both groups, but it amplified the negative frequency response for the shortening dynamics only in the normotensive sham-operated and not in the hypertensive rats. These results, as well as others for relaxation parameters, suggest that renal hypertension altered the effects of run training on the frequency response for cardiomyocyte contractile apparatus and/or passive mechanical properties, which respond to [Ca2+]i.

  12. Infrared spectroscopy indicates altered bone turnover and remodeling activity in renal osteodystrophy.

    PubMed

    Isaksson, Hanna; Turunen, Mikael J; Rieppo, Lassi; Saarakkala, Simo; Tamminen, Inari S; Rieppo, Jarno; Kröger, Heikki; Jurvelin, Jukka S

    2010-06-01

    Renal osteodystrophy alters metabolic activity and remodeling rate of bone and also may lead to different bone composition. The objective of this study was to characterize the composition of bone in high-turnover renal osteodystrophy patients by means of Fourier transform infrared spectroscopic imaging (FTIRI). Iliac crest biopsies from healthy bone (n = 11) and patients with renal osteodystrophy (ROD, n = 11) were used in this study. The ROD samples were from patients with hyperparathyroid disease. By using FTIRI, phosphate-to-amide I ratio (mineral-to-matrix ratio), carbonate-to-phosphate ratio, and carbonate-to-amide I ratio (turnover rate/remodeling activity), as well as the collagen cross-link ratio (collagen maturity), were quantified. Histomorphometric analyses were conducted for comparison. The ROD samples showed significantly lower carbonate-to-phosphate (p < .01) and carbonate-to-amide I (p < .001) ratios. The spatial variation across the trabeculae highlighted a significantly lower degree of mineralization (p < .05) at the edges of the trabeculae in the ROD samples than in normal bone. Statistically significant linear correlations were found between histomorphometric parameters related to bone-remodeling activity and number of bone cells and FTIRI-calculated parameters based on carbonate-to-phosphate and carbonate-to-amide I ratios. Hence the results suggested that FTIRI parameters related to carbonate may be indicative of turnover and remodeling rate of bone. (c) 2010 American Society for Bone and Mineral Research.

  13. Altered gene expression correlates with DNA structure.

    PubMed

    Kohwi, Y; Kohwi-Shigematsu, T

    1991-12-01

    We examined the participation of triplex DNA structure in gene regulation using a poly(dG)-poly(dC) sequence as a model. We show that a poly(dG)-poly(dC) sequence, which can adopt an intramolecular dG.dG.dC triplex under superhelical strain, strongly augments gene expression when placed 5' to a promoter. The activity of this sequence exhibits a striking length dependency: dG tracts of 27-30 bp augment the expression of a reporter gene to a level comparable to that observed with the polyoma enhancer in mouse LTK- cells, whereas tracts of 35 bp and longer have virtually no effect. A supercoiled plasmid containing a dG tract of 30 bp competes in vivo for a trans-acting factor as revealed by reduction in the reporter gene transcription driven by the (dG)29/promoter of the test plasmid, while dGs of 35 bp and longer in the competition plasmid failed to compete. In purified supercoiled plasmid DNA at a superhelical density of -0.05, dG tracts of 32 bp and longer form a triplex, whereas those of 30 bp and shorter remain double-stranded under a PBS solution. These results suggest that a localized superhelical strain can exist, at least transiently, in mouse LTK- cells, and before being relaxed by topoisomerases this rapidly induces dG tracts of 35 bp and longer to adopt a triplex preventing the factor from binding. Thus, these data suggest that a poly(dG)-poly(dC) sequence can function as a negative regulator by adopting an intramolecular triple helix structure in vivo.

  14. Role of Mitochondrial DNA Copy Number Alteration in Human Renal Cell Carcinoma †

    PubMed Central

    Lin, Chen-Sung; Lee, Hui-Ting; Lee, Ming-Huei; Pan, Siao-Cian; Ke, Chen-Yeh; Chiu, Allen Wen-Hsiang; Wei, Yau-Huei

    2016-01-01

    We investigated the role of mitochondrial DNA (mtDNA) copy number alteration in human renal cell carcinoma (RCC). The mtDNA copy numbers of paired cancer and non-cancer parts from five resected RCC kidneys after radical nephrectomy were determined by quantitative polymerase chain reaction (Q-PCR). An RCC cell line, 786-O, was infected by lentiviral particles to knock down mitochondrial transcriptional factor A (TFAM). Null target (NT) and TFAM-knockdown (TFAM-KD) represented the control and knockdown 786-O clones, respectively. Protein or mRNA expression levels of TFAM; mtDNA-encoded NADH dehydrogenase subunit 1 (ND1), ND6 and cytochrome c oxidase subunit 2 (COX-2); nuclear DNA (nDNA)-encoded succinate dehydrogenase subunit A (SDHA); v-akt murine thymoma viral oncogene homolog 1 gene (AKT)-encoded AKT and v-myc myelocytomatosis viral oncogene homolog gene (c-MYC)-encoded MYC; glycolytic enzymes including hexokinase II (HK-II), glucose 6-phosphate isomerase (GPI), phosphofructokinase (PFK), and lactate dehydrogenase subunit A (LDHA); and hypoxia-inducible factors the HIF-1α and HIF-2α, pyruvate dehydrogenase kinase 1 (PDK1), and pyruvate dehydrogenase E1 component α subunit (PDHA1) were analyzed by Western blot or Q-PCR. Bioenergetic parameters of cellular metabolism, basal mitochondrial oxygen consumption rate (mOCRB) and basal extracellular acidification rate (ECARB), were measured by a Seahorse XFe-24 analyzer. Cell invasiveness was evaluated by a trans-well migration assay and vimentin expression. Doxorubicin was used as a chemotherapeutic agent. The results showed a decrease of mtDNA copy numbers in resected RCC tissues (p = 0.043). The TFAM-KD clone expressed lower mtDNA copy number (p = 0.034), lower mRNA levels of TFAM (p = 0.008), ND1 (p = 0.007), and ND6 (p = 0.017), and lower protein levels of TFAM and COX-2 than did the NT clone. By contrast, the protein levels of HIF-2α, HK-II, PFK, LDHA, AKT, MYC and vimentin; trans-well migration activity (p = 0

  15. Role of Mitochondrial DNA Copy Number Alteration in Human Renal Cell Carcinoma.

    PubMed

    Lin, Chen-Sung; Lee, Hui-Ting; Lee, Ming-Huei; Pan, Siao-Cian; Ke, Chen-Yeh; Chiu, Allen Wen-Hsiang; Wei, Yau-Huei

    2016-05-25

    We investigated the role of mitochondrial DNA (mtDNA) copy number alteration in human renal cell carcinoma (RCC). The mtDNA copy numbers of paired cancer and non-cancer parts from five resected RCC kidneys after radical nephrectomy were determined by quantitative polymerase chain reaction (Q-PCR). An RCC cell line, 786-O, was infected by lentiviral particles to knock down mitochondrial transcriptional factor A (TFAM). Null target (NT) and TFAM-knockdown (TFAM-KD) represented the control and knockdown 786-O clones, respectively. Protein or mRNA expression levels of TFAM; mtDNA-encoded NADH dehydrogenase subunit 1 (ND1), ND6 and cytochrome c oxidase subunit 2 (COX-2); nuclear DNA (nDNA)-encoded succinate dehydrogenase subunit A (SDHA); v-akt murine thymoma viral oncogene homolog 1 gene (AKT)-encoded AKT and v-myc myelocytomatosis viral oncogene homolog gene (c-MYC)-encoded MYC; glycolytic enzymes including hexokinase II (HK-II), glucose 6-phosphate isomerase (GPI), phosphofructokinase (PFK), and lactate dehydrogenase subunit A (LDHA); and hypoxia-inducible factors the HIF-1α and HIF-2α, pyruvate dehydrogenase kinase 1 (PDK1), and pyruvate dehydrogenase E1 component α subunit (PDHA1) were analyzed by Western blot or Q-PCR. Bioenergetic parameters of cellular metabolism, basal mitochondrial oxygen consumption rate (mOCRB) and basal extracellular acidification rate (ECARB), were measured by a Seahorse XF(e)-24 analyzer. Cell invasiveness was evaluated by a trans-well migration assay and vimentin expression. Doxorubicin was used as a chemotherapeutic agent. The results showed a decrease of mtDNA copy numbers in resected RCC tissues (p = 0.043). The TFAM-KD clone expressed lower mtDNA copy number (p = 0.034), lower mRNA levels of TFAM (p = 0.008), ND1 (p = 0.007), and ND6 (p = 0.017), and lower protein levels of TFAM and COX-2 than did the NT clone. By contrast, the protein levels of HIF-2α, HK-II, PFK, LDHA, AKT, MYC and vimentin; trans-well migration activity (p = 0

  16. Renal tissue thawed for 30 minutes is still suitable for gene expression analysis.

    PubMed

    Ma, Yi; Kang, Xiao-Nan; Ding, Wen-Bin; Yang, Hao-Zheng; Wang, Ye; Zhang, Jin; Huang, Yi-Ran; Dai, Hui-Li

    2014-01-01

    Some biosamples obtained from biobanks may go through thawing before processing. We aim to evaluate the effects of thawing at room temperature for different time periods on gene expression analysis. A time course study with four time points was conducted to investigate the expression profiling on 10 thawed normal mice renal tissue samples through Affymetrix GeneChip mouse gene 2.0 st array. Microarray results were validated by quantitative real time polymerase chain reactions (qPCR) on 6 candidate reference genes and 11 target genes. Additionally, we used geNorm plus and NormFinder to identify the most stably expressed reference genes over time. The results showed RNA degraded more after longer incubation at room temperature. However, microarray results showed only 240 genes (0.91%) altered significantly in response to thawing at room temperature. The signal of majority altered probe sets decreased with thawing time, and the crossing point (Cp) values of all candidate reference genes correlated positively with the thawing time (p<0.05). The combination of B2M, ACTB and PPIA was identified as the best choice for qPCR normalization. We found most target genes were stable by using this normalization method. However, serious gene quantification errors were resulted from improper reference genes. In conclusion, thirty minutes of thawing at room temperature has a limited impact on microarray and qPCR analysis, gene expression variations due to RNA degradation in early period after thawing can be largely reduced by proper normalization.

  17. Renal Tissue Thawed for 30 Minutes Is Still Suitable for Gene Expression Analysis

    PubMed Central

    Ding, Wen-Bin; Yang, Hao-Zheng; Wang, Ye; Zhang, Jin; Huang, Yi-Ran; Dai, Hui-Li

    2014-01-01

    Some biosamples obtained from biobanks may go through thawing before processing. We aim to evaluate the effects of thawing at room temperature for different time periods on gene expression analysis. A time course study with four time points was conducted to investigate the expression profiling on 10 thawed normal mice renal tissue samples through Affymetrix GeneChip mouse gene 2.0 st array. Microarray results were validated by quantitative real time polymerase chain reactions (qPCR) on 6 candidate reference genes and 11 target genes. Additionally, we used geNorm plus and NormFinder to identify the most stably expressed reference genes over time. The results showed RNA degraded more after longer incubation at room temperature. However, microarray results showed only 240 genes (0.91%) altered significantly in response to thawing at room temperature. The signal of majority altered probe sets decreased with thawing time, and the crossing point (Cp) values of all candidate reference genes correlated positively with the thawing time (p<0.05). The combination of B2M, ACTB and PPIA was identified as the best choice for qPCR normalization. We found most target genes were stable by using this normalization method. However, serious gene quantification errors were resulted from improper reference genes. In conclusion, thirty minutes of thawing at room temperature has a limited impact on microarray and qPCR analysis, gene expression variations due to RNA degradation in early period after thawing can be largely reduced by proper normalization. PMID:24687048

  18. Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas

    PubMed Central

    Arai, Eri; Gotoh, Masahiro; Tian, Ying; Sakamoto, Hiromi; Ono, Masaya; Matsuda, Akio; Takahashi, Yoriko; Miyata, Sayaka; Totsuka, Hirohiko; Chiku, Suenori; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Matsumoto, Kenji; Yamada, Tesshi; Yoshida, Teruhiko

    2015-01-01

    CpG‐island methylator phenotype (CIMP)‐positive clear cell renal cell carcinomas (RCCs) are characterized by accumulation of DNA hypermethylation of CpG islands, clinicopathological aggressiveness and poor patient outcome. The aim of this study was to clarify the molecular pathways participating in CIMP‐positive renal carcinogenesis. Genome (whole‐exome and copy number), transcriptome and proteome (two‐dimensional image converted analysis of liquid chromatography‐mass spectrometry) analyses were performed using tissue specimens of 87 CIMP‐negative and 14 CIMP‐positive clear cell RCCs and corresponding specimens of non‐cancerous renal cortex. Genes encoding microtubule‐associated proteins, such as DNAH2, DNAH5, DNAH10, RP1 and HAUS8, showed a 10% or higher incidence of genetic aberrations (non‐synonymous single‐nucleotide mutations and insertions/deletions) in CIMP‐positive RCCs, whereas CIMP‐negative RCCs lacked distinct genetic characteristics. MetaCore pathway analysis of CIMP‐positive RCCs revealed that alterations of mRNA or protein expression were significantly accumulated in six pathways, all participating in the spindle checkpoint, including the “The metaphase checkpoint (p = 1.427 × 10−6),” “Role of Anaphase Promoting Complex in cell cycle regulation (p = 7.444 × 10−6)” and “Spindle assembly and chromosome separation (p = 9.260 × 10−6)” pathways. Quantitative RT‐PCR analysis revealed that mRNA expression levels for genes included in such pathways, i.e., AURKA, AURKB, BIRC5, BUB1, CDC20, NEK2 and SPC25, were significantly higher in CIMP‐positive than in CIMP‐negative RCCs. All CIMP‐positive RCCs showed overexpression of Aurora kinases, AURKA and AURKB, and this overexpression was mainly attributable to increased copy number. These data suggest that abnormalities of the spindle checkpoint pathway participate in CIMP‐positive renal carcinogenesis, and that AURKA and AURKB may be potential

  19. Maternal nutrient restriction alters renal development and blood pressure regulation of the offspring.

    PubMed

    Brennan, Kathryn A; Olson, David M; Symonds, Michael E

    2006-02-01

    Studies have shown that the risk of hypertension in adulthood can be affected by the in utero environment. It is established that hypertension is linked to compromised kidney function and that factors affecting organogenesis can increase the risk of later disease. Prostaglandins (PG) and growth factors are known to play an important role in regulating kidney function and renal organogenesis. The extent, however, to which global energy restriction (where all nutrients are reduced) of the mother can programme later blood pressure control or renal PG and growth factor status is unknown. A study is described that aimed to examine the long-term effects of maternal nutrient restriction (NR) and elucidate their relationship with compromised kidney development. First, it was necessary to establish animal models. A sheep model of 50% NR during specific stages of gestation was used to investigate fetal renal development, whilst a rat model of 50% NR throughout pregnancy was used to investigate postnatal kidney development and adult functioning. Molecular analysis has shown that expression of the growth hormone-insulin-like growth factor (GH-IGF) axis is affected by NR in the fetal sheep kidneys, and that changes are dependent on the timing of NR and whether the fetus is a singleton or a twin. Analysis of the kidneys from the rat model has shown nutritional differences in the expression of PG receptors and the enzymes responsible for PG synthesis and degradation that persist into adulthood. In conclusion, NR does affect the GH-IGF and PG axes, and these changes may be important in the nutritional programming of renal functioning and adult blood pressure control.

  20. Tuberous sclerosis complex: Hamartin and tuberin expression in renal cysts and its discordant expression in renal neoplasms.

    PubMed

    Bonsib, Stephen M; Boils, Christie; Gokden, Neriman; Grignon, David; Gu, Xin; Higgins, John P T; Leroy, Xavier; McKenney, Jesse K; Nasr, Samih H; Phillips, Carrie; Sangoi, Ankur R; Wilson, Jon; Zhang, Ping L

    2016-11-01

    Tuberous sclerosis complex (TSC) results from mutation of TSC1 or TSC2 that encode for hamartin and tuberin. It affects the kidneys often in advance of extra-renal stigmata. We studied 14 TSC cases, and 4 possible TSC cases with multiple angiomyolipomas (AMLs) for hamartin and tuberin protein expression to determine if the staining profile could predict mutation status or likelihood of TSC with renal-limited disease. The 18 cases included 15 nephrectomies and 1 section of 6 TSC-associated renal cell carcinomas (RCC). Controls included the non-neoplastic kidney in 5 tumor nephrectomies, 4 sporadic cases of AML and 6 clear cell RCCs. In the 14 TSC cases, 9 had AMLs, 9 had RCCs, 5 had polycystic kidney disease and 8 had eosinophilic cysts (EC) lined by large eosinophilic cells. The controls and study cases showed luminal staining of proximal tubules (PT) and peripheral membrane staining in distal tubules/collecting ducts for hamartin and cytoplasmic staining for tuberin. Eosinophilic cysts had a luminal PT-like stain with hamartin and a cytoplasmic reaction for tuberin. Hamartin stained myoid cells in all AMLs. Tuberin was negative in all but 1AML, an epithelioid AML. All but 1 RCC were positive for tuberin; 13 RCCs (7 TSC/6 non-TSC) were negative for hamartin and 4 showed a weak reaction. We conclude that the ECs of TSC are proximal tubule-derived. The hamartin and tuberin staining profiles of AMLs and most RCCs are reciprocal precluding prediction of the mutation in TSC, and fail to predict if a patient with multifocal AML has TSC. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  1. Deregulation of PAX2 expression in renal cell tumours: mechanisms and potential use in differential diagnosis

    PubMed Central

    Patrício, Patrícia; Ramalho-Carvalho, João; Costa-Pinheiro, Pedro; Almeida, Mafalda; Barros-Silva, João Diogo; Vieira, Joana; Dias, Paula Cristina; Lobo, Francisco; Oliveira, Jorge; Teixeira, Manuel R; Henrique, Rui; Jeronimo, Carmen

    2013-01-01

    Expression of PAX2 (Paired-box 2) is suppressed through promoter methylation at the later stages of embryonic development, but eventually reactivated during carcinogenesis. Pax-2 is commonly expressed in the most prevalent renal cell tumour (RCT) subtypes—clear cell RCC (ccRCC), papillary RCC (pRCC) and oncocytoma—but not in chromophobe RCC (chrRCC), which frequently displays chromosome 10 loss (to which PAX2 is mapped). Herein, we assessed the epigenetic and/or genetic alterations affecting PAX2 expression in RCTs and evaluated its potential as biomarker. We tested 120 RCTs (30 of each main subtype) and four normal kidney tissues. Pax-2 expression was assessed by immunohistochemistry and PAX2 mRNA expression levels were determined by quantitative RT-PCR. PAX2 promoter methylation status was assessed by methylation-specific PCR and bisulfite sequencing. Chromosome 10 and PAX2 copy number alterations were determined by FISH. Pax-2 immunoexpression was significantly lower in chrRCC compared to other RCT subtypes. Using a 10% immunoexpression cut-off, Pax-2 immunoreactivity discriminated chrRCC from oncocytoma with 67% sensitivity and 90% specificity. PAX2 mRNA expression was significantly lower in chrRCC, compared to ccRCC, pRCC and oncocytoma, and transcript levels correlated with immunoexpression. Whereas no promoter methylation was found in RCTs or normal kidney, 69% of chrRCC displayed chromosome 10 monosomy, correlating with Pax-2 immunoexpression. We concluded that Pax-2 expression might be used as an ancillary tool to discriminate chrRCC from oncocytomas with overlapping morphological features. The biological rationale lies on the causal relation between Pax-2 expression and chromosome 10 monosomy, but not PAX2 promoter methylation, in chrRCC. PMID:23890189

  2. Altered RECQ Helicase Expression in Sporadic Primary Colorectal Cancers.

    PubMed

    Lao, Victoria Valinluck; Welcsh, Piri; Luo, Yanxin; Carter, Kelly T; Dzieciatkowski, Slavomir; Dintzis, Suzanne; Meza, Jane; Sarvetnick, Nora E; Monnat, Raymond J; Loeb, Lawrence A; Grady, William M

    2013-08-01

    Deregulation of DNA repair enzymes occurs in cancers and may create a susceptibility to chemotherapy. Expression levels of DNA repair enzymes have been shown to predict the responsiveness of cancers to certain chemotherapeutic agents. The RECQ helicases repair damaged DNA including damage caused by topoisomerase I inhibitors, such as irinotecan. Altered expression levels of these enzymes in colorectal cancer (CRC) may influence the response of the cancers to irinotecan. Thus, we assessed RECQ helicase (WRN, BLM, RECQL, RECQL4, and RECQL5) expression in primary CRCs, matched normal colon, and CRC cell lines. We found that BLM and RECQL4 mRNA levels are significantly increased in CRC (P = .0011 and P < .0001, respectively), whereas RECQL and RECQL5 are significantly decreased (P = .0103 and P = .0029, respectively). RECQ helicase expression patterns varied between specific molecular subtypes of CRCs. The mRNA and protein expression of the majority of the RECQ helicases was closely correlated, suggesting that altered mRNA expression is the predominant mechanism for deregulated RECQ helicase expression. Immunohistochemistry localized the RECQ helicases to the nucleus. RECQ helicase expression is altered in CRC, suggesting that RECQ helicase expression has potential to identify CRCs that are susceptible to specific chemotherapeutic agents.

  3. Insights into the renal pathogenesis in Schimke immuno-osseous dysplasia: A renal histological characterization and expression analysis.

    PubMed

    Sarin, Sanjay; Javidan, Ashkan; Boivin, Felix; Alexopoulou, Iakovina; Lukic, Dusan; Svajger, Bruno; Chu, Stephanie; Baradaran-Heravi, Alireza; Boerkoel, Cornelius F; Rosenblum, Norman D; Bridgewater, Darren

    2015-01-01

    Schimke immuno-osseous dysplasia (SIOD) is a pleiotropic disorder caused by mutations in the SWI/SNF2-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like-1 (SMARCAL1) gene, with multiple clinical features, notably end-stage renal disease. Here we characterize the renal pathology in SIOD patients. Our analysis of SIOD patient renal biopsies demonstrates the tip and collapsing variants of focal segmental glomerulosclerosis (FSGS). Additionally, electron microscopy revealed numerous glomerular abnormalities most notably in the podocyte and Bowman's capsule. To better understand the role of SMARCAL1 in the pathogenesis of FSGS, we defined SMARCAL1 expression in the developing and mature kidney. In the developing fetal kidney, SMARCAL1 is expressed in the ureteric epithelium, stroma, metanephric mesenchyme, and in all stages of the developing nephron, including the maturing glomerulus. In postnatal kidneys, SMARCAL1 expression is localized to epithelial tubules of the nephron, collecting ducts, and glomerulus (podocytes and endothelial cells). Interestingly, not all cells within the same lineage expressed SMARCAL1. In renal biopsies from SIOD patients, TUNEL analysis detected marked increases in DNA fragmentation. Our results highlight the cells that may contribute to the renal pathogenesis in SIOD. Further, we suggest that disruptions in genomic integrity during fetal kidney development contribute to the pathogenesis of FSGS in SIOD patients. © The Author(s) 2014.

  4. Clear cell papillary renal cell carcinoma: micro-RNA expression profiling and comparison with clear cell renal cell carcinoma and papillary renal cell carcinoma.

    PubMed

    Munari, Enrico; Marchionni, Luigi; Chitre, Apurva; Hayashi, Masamichi; Martignoni, Guido; Brunelli, Matteo; Gobbo, Stefano; Argani, Pedram; Allaf, Mohamad; Hoque, Mohammad O; Netto, George J

    2014-06-01

    Clear cell papillary renal cell carcinoma (CCPRCC) is a low-grade renal neoplasm with morphological characteristics mimicking both clear cell renal cell carcinoma (CCRCC) and papillary renal cell carcinoma (PRCC). However, despite some overlapping features, their morphological, immunohistochemical, and molecular profiles are distinct. Micro-RNAs (miRNAs) are small noncoding RNAs that play a crucial role in regulating gene expression and are involved in various biological processes, including cancer development. To better understand the biology of this tumor, we aimed to analyze the miRNA expression profile of a set of CCPRCC using microarray and quantitative reverse transcription-polymerase chain reaction. A total of 15 cases diagnosed as CCPRCC were used in this study. Among the most differentially expressed miRNA in CCPRCC, we found miR-210, miR-122, miR-34a, miR-21, miR-34b*, and miR-489 to be up-regulated, whereas miR-4284, miR-1202, miR-135a, miR-1973, and miR-204 were down-regulated compared with normal renal parenchyma. To identify consensus of differentially regulated miRNA between CCPRCC, CCRCC, and PRCC, we additionally determined differential miRNA expression using 2 publically available microarray data sets from the NCBI Gene Expression Omnibus database (GSE41282 and GSE3798). This comparison revealed that the miRNA expression profile of CCPRCC shows some overlapping characteristics between CCRCC and PRCC. Moreover, CCPRCC lacks dysregulation of important miRNAs typically associated with aggressive behavior. In summary, we describe the miRNA expression profile of a relatively infrequent type of renal cancer. Our results may help in understanding the molecular underpinning of this newly recognized entity.

  5. Hepatic and renal Bcrp transporter expression in mice treated with perfluorooctanoic acid

    PubMed Central

    Eldasher, Lobna M.; Wen, Xia; Little, Michael S.; Bircsak, Kristin M.; Yacovino, Lindsay L.; Aleksunes, Lauren M.

    2013-01-01

    The breast cancer resistance protein (Bcrp) is an efflux transporter that participates in the biliary and renal excretion of drugs and environmental chemicals. Recent evidence suggests that pharmacological activation of the peroxisome proliferator activated receptor alpha (PPARα) can up-regulate the hepatic expression of Bcrp. The current study investigated the regulation of hepatic and renal Bcrp mRNA and protein in mice treated with the PPARα agonist perfluorooctanoic acid (PFOA) and the ability of PFOA to alter human BCRP function in vitro. Bcrp mRNA and protein expression were quantified in the livers and kidneys of male C57BL/6 mice treated with vehicle or PFOA (1 or 3 mg/kg/day oral gavage) for 7 days. PFOA treatment increased liver weights as well as the hepatic mRNA and protein expression of the PPARα target gene, cytochrome P450 4a14. Compared to vehicle-treated control mice, PFOA increased hepatic Bcrp mRNA and protein between 1.5- and 3-fold. Immunofluorescent staining confirmed enhanced canalicular Bcrp staining in liver sections from PFOA-treated mice. The kidney expression of cytochrome P450 4a14 mRNA, but not Bcrp, was increased in mice treated with PFOA. Micromolar concentrations of PFOA decreased human BCRP ATPase activity and inhibited BCRP-mediated transport in inverted membrane vesicles. Together, these studies demonstrate that PFOA induces hepatic Bcrp expression in mice and may inhibit human BCRP transporter function at concentrations that exceed levels observed in humans. PMID:23435180

  6. Carbonic anhydrase expression in kidney and renal cancer: implications for diagnosis and treatment.

    PubMed

    Oosterwijk, Egbert

    2014-01-01

    Four different carbonic anhydrases are expressed in the human nephron, the functional unit of the kidney. These are specifically expressed in different nephron segments, emphasizing the critical role carbonic anhydrases play in maintaining the homeostasis of this crucial organ.Whereas the localization of carbonic anhydrases in the kidney has been long established, interest in carbonic anhydrases has increased dramatically for renal cancer, in particular for the clear cell variant of renal cell carcinoma (ccRCC) because carbonic anhydrase IX is specifically expressed in ccRCC. Therefore carbonic anhydrase IX is being studied as potential diagnostic and therapeutic target, despite carbonic anhydrase IX expression in non-renal tissues.

  7. Organic Anion Transporter 5 Renal Expression and Urinary Excretion in Rats with Vascular Calcification

    PubMed Central

    Hazelhoff, María Herminia; Bulacio, Romina Paula; Torres, Adriana Mónica

    2013-01-01

    It has been described renal damage in rats with vascular calcification. The organic anion transporter 5 (Oat5) is only expressed in kidney, and its urinary excretion was proposed as potential early biomarker of renal injury. The aim of this study was to evaluate the Oat5 renal expression and its urinary excretion in an experimental model of vascular calcification in comparison with traditional markers of renal injury. Vascular calcification was obtained by the administration of an overdose of vitamin D3 (300,000 IU/kg, b.w., i.m.) to male Wistar rats. Oat5 urinary abundance was evaluated by Western blotting. Traditional markers of renal injury, such as creatinine and urea plasma levels, urinary protein levels, and urinary alkaline phosphatase (AP) activity, were determined using commercial kits. Histology was assessed by hematoxylin/eosin staining. Oat5 renal expression was evaluated by Western blotting and by immunohistochemistry. An increased expression of Oat5 in renal homogenates, in apical membranes, and in its urinary excretion was observed in rats with vascular calcification. The traditional parameters used to evaluate renal function were not modified, with the exception of histology. It is possible to postulate the urinary excretion of Oat5 as a potential noninvasive biomarker of renal injury associated with vascular calcification. PMID:24199190

  8. Caterpillar labial saliva alters tomato plant gene expression.

    PubMed

    Musser, Richard O; Hum-Musser, Sue M; Lee, Henry K; DesRochers, Brittany L; Williams, Spencer A; Vogel, Heiko

    2012-11-01

    We examined the effects of Helicoverpa zea caterpillar labial saliva on tomato plant gene expression. Caterpillars with labial salivary glands (mock-ablated) and without (ablated) were fed on tomato plants for 24 hr; then, the leaf mRNA was analyzed with tomato microarrays. Analysis of the transcript profiles revealed 384 expressed sequence tags (ESTs) that were significantly altered due to herbivory compared to the non-wounded plants. The majority of the ESTs were quantitatively altered more so by mock-ablated caterpillars with labial salivary glands than ablated caterpillars. Particularly notable, ESTs encoding acid phosphatase, arginase, acidic endochitinase, dehydrin, polyphenol oxidase, protease inhibitors, and threonine deaminase were more highly stimulated by mock-ablated caterpillars than ablated caterpillars. In addition, tomato leaves were mechanically wounded with scissors and painted with labial salivary gland extract, autoclaved salivary gland extract, or water, and compared to non-wounded tomato plants. After 4 hr, these leaves were collected and a tomato microarray analysis of the mRNA revealed correlation of the gene expression of these leaves altered by mechanical wounding and painted with salivary gland extract to the gene expression of leaves fed on by mock-ablated caterpillars. We show that caterpillar labial saliva is an important component of herbivory that can alter plant gene expression.

  9. Autonomic and Renal Alterations in the Offspring of Sleep-Restricted Mothers During Late Pregnancy

    PubMed Central

    Raimundo, Joyce R S; Bergamaschi, Cassia T; Campos, Ruy R; Palma, Beatriz D; Tufik, Sergio; Gomes, Guiomar N

    2016-01-01

    OBJECTIVES: Considering that changes in the maternal environment may result in changes in progeny, the aim of this study was to investigate the influence of sleep restriction during the last week of pregnancy on renal function and autonomic responses in male descendants at an adult age. METHODS: After confirmation of pregnancy, female Wistar rats were randomly assigned to either a control or a sleep restriction group. The sleep-restricted rats were subjected to sleep restriction using the multiple platforms method for over 20 hours per day between the 14th and 20th day of pregnancy. After delivery, the litters were limited to 6 offspring that were designated as offspring from control and offspring from sleep-restricted mothers. Indirect measurements of systolic blood pressure (BPi), renal plasma flow, glomerular filtration rate, glomerular area and number of glomeruli per field were evaluated at three months of age. Direct measurements of cardiovascular function (heart rate and mean arterial pressure), cardiac sympathetic tone, cardiac parasympathetic tone, and baroreflex sensitivity were evaluated at four months of age. RESULTS: The sleep-restricted offspring presented increases in BPi, glomerular filtration rate and glomerular area compared with the control offspring. The sleep-restricted offspring also showed higher basal heart rate, increased mean arterial pressure, increased sympathetic cardiac tone, decreased parasympathetic cardiac tone and reduced baroreflex sensitivity. CONCLUSIONS: Our data suggest that reductions in sleep during the last week of pregnancy lead to alterations in cardiovascular autonomic regulation and renal morpho-functional changes in offspring, triggering increases in blood pressure. PMID:27652834

  10. Effect of chronic salt loading on adenosine metabolism and receptor expression in renal cortex and medulla in rats.

    PubMed

    Zou, A P; Wu, F; Li, P L; Cowley, A W

    1999-01-01

    Previous studies have shown that chronic salt loading increased renal interstitial adenosine concentrations and desensitized renal effects of adenosine, a phenomenon that could facilitate sodium excretion. However, the mechanisms responsible for the increased adenosine production and decreased adenosine response are poorly understood. This study examined the effects of the dietary high salt intake on adenosine metabolism and receptor expression in the renal cortex and medulla in Sprague Dawley rats. Fluorescent high-performance liquid chromatography analyses were performed to determine adenosine levels in snap-frozen kidney tissues. Comparing rats fed a normal (1% NaCl) versus high salt (4% NaCl) diet, renal adenosine concentrations in rats fed a high salt diet were significantly higher (cortex: 43+/-3 versus 85+/-4, P<0.05; medulla: 183+/-4 versus 302+/-8 nmol/g wet tissue, P<0.05). Increased adenosine concentrations were not associated with changes in the 5'-nucleotidase or adenosine deaminase activity, as determined by quantitative isoelectric focusing and gel electrophoresis. Western blot analyses showed that a high salt diet (4% NaCl for 3 weeks) downregulated A1 receptors (antinatriuretic type), did not alter A2A and A2B receptors (natriuretic type), and upregulated A3 receptors (function unknown) in both renal cortex and medulla. The data show that stimulation of adenosine production and downregulation of A1 receptors with salt loading may play an important role in adaptation in the kidney to promote sodium excretion.

  11. Glutathione (GSH) depletion: Effect on chromate (Cr)-induced alterations of renal plasma membrane transport

    SciTech Connect

    Ansari, R.A.; Thakran, R.S.; Berndt, W.O. )

    1991-03-11

    In this study, renal membrane vesicles were isolated from control Sprague Dawley rats, and those treated with DEM DEM+BSO, DEM+Cr and DEM+BSO+Cr. GSH depletors were given 45 min before Cr and the rats sacrificed 3 hr later. Renal GSH was measured and membrane vesicles isolated by Percoll gradient centrifugation. GSH depletion by DEM alone had no effect on BL PAH transport or BB glucose transport. PAH overshoot was absent when Cr was given after DEM, as was true when Cr was given alone, and glucose transport was reduced modestly. GSH depletion by DEM+BSO did not markedly alter either PAH or glucose transport. When Cr was administered after DEM+BSO, the PAH overshoot was eliminated completely, and a reduced glucose transport was seen compared to Cr-DEM and Cr alone. These data suggest that the greater GSH depletion with DEM+BSO permitted an effect of Cr not seen in controls or DEM treated rats.

  12. Global Renal Gene Expression Profiling Analysis in B2-Kinin Receptor Null Mice: Impact of Diabetes

    PubMed Central

    Jaffa, Miran A.; Kobeissy, Firas; Al Hariri, Moustafa; Chalhoub, Hussein; Eid, Assaad; Ziyadeh, Fuad N.; Jaffa, Ayad A.

    2012-01-01

    Diabetic nephropathy (DN), the leading cause of end-stage renal failure, is clinically manifested by albuminuria and a progressive decline in glomerular filtration rate. The risk factors and mechanisms that contribute to the development and progression of DN are still incompletely defined. To address the involvement of bradykinin B2-receptors (B2R) in DN, we used a genome wide approach to study the effects of diabetes on differential renal gene expression profile in wild type and B2R knockout (B2R−/−) mice. Diabetes was induced with streptozotocin and plasma glucose levels and albumin excretion rate (AER) were measured at predetermined times throughout the 23 week study period. Longitudinal analysis of AER indicated that diabetic B2R−/−D null mice had a significantly decreased AER levels compared to wild type B2R+/+D mice (P = 0.0005). Results from the global microarray study comparing gene expression profiles among four groups of mice respectively: (B2R+/+C, B2R+/+D, B2R−/−C and B2R−/−D) highlighted the role of several altered pathological pathways in response to disruption of B2R and to the diabetic state that included: endothelial injury, oxidative stress, insulin and lipid metabolism and inflammatory process with a marked alteration in the pro-apoptotic genes. The findings of the present study provide a global genomics view of biomarkers that highlight the mechanisms and putative pathways involved in DN. PMID:23028588

  13. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    PubMed Central

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  14. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes.

    PubMed

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B; Rivkees, Scott A; Wendler, Christopher C

    2014-12-15

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20-60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3-65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes.

  15. Trans-10,cis-12-conjugated linoleic acid worsens renal pathology and alters cyclooxygenase derived oxylipins in obesity-associated nephropathy.

    PubMed

    Zhan, Yang; Shi, Hong; Caligiuri, Stephanie P B; Wu, Yinghong; Declercq, Vanessa; Taylor, Carla G; Zahradka, Peter; Ogborn, Malcolm R; Aukema, Harold M

    2015-02-01

    Dietary conjugated linoleic acid (CLA) reduces indicators of early renal disease progression and the associated elevated cyclooxygenase (COX) levels in young obese rats with obesity-associated nephropathy (OAN). Therefore, renal function and injury and COX and its metabolites were assessed in obese fa/fa Zucker rats with more advanced renal disease. Obese rats at 16 weeks of age were provided with either cis(c)9, trans(t)11 (fa/fa-9,11) or t10,c12 (fa/fa-10,12) CLA for 8 weeks, and compared to lean (lean-CTL) and obese (fa/fa-CTL) rats provided the control diet without CLA. Obese rats displayed significantly reduced renal function and increased renal injury compared to lean rats. In the obese rat groups, glomerular hypertrophy was reduced in both CLA-supplemented groups. While all other measures of renal function or injury were not different in fa/fa-9,11 compared to fa/fa-CTL rats, the fa/fa-10,12 rats had greater renal hypertrophy, glomerular fibrosis, fibrosis, tubular casts and macrophage infiltration compared to the fa/fa-CTL and fa/fa-9,11 groups. The fa/fa-10,12 group also had elevated levels of renal COX1, which was associated with increased levels of two oxylipins produced by this enzyme, 6-keto-prostaglandin F(1α), and thromboxane B₂. Renal linoleic acid and its lipoxygenase products also were lower in obese compared to lean rats, but CLA supplementation had no effect on these or any other lipoxygenase oxylipins. In summary, supplementation with c9,t11 CLA did not improve more advanced OAN and t10,c12 CLA worsened the renal pathology. Altered production of select COX1 derived oxylipins was associated with the detrimental effect of the t10,c12 isomer. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Expression and localization of rat NBC4c in liver and renal uroepithelium.

    PubMed

    Abuladze, Natalia; Pushkin, Alexander; Tatishchev, Sergei; Newman, Debra; Sassani, Pakan; Kurtz, Ira

    2004-09-01

    Previous studies provided functional evidence for electrogenic Na(+)-HCO(3)(-) cotransport in hepatocytes and in intrahepatic bile duct cholangiocytes. The molecular identity of the transporters mediating electrogenic sodium-bicarbonate cotransport in the liver is currently unknown. Of the known electrogenic Na(+)-HCO(3)(-) cotransporters (NBC1 and NBC4), we previously showed that NBC4 mRNA is highly expressed in the liver. In the present study, we performed RT-PCR, immunoblotting, and immunohistochemistry to characterize the expression pattern of NBC4 in rat liver and kidney. For immunodetection, a polyclonal antibody against rat NBC4 was generated and affinity purified. Of the known human NBC4 variants, only the rat NBC4c ortholog was detected by RT-PCR in rat liver, and the molecular mass of the NBC4c protein was approximately 145 kDa. NBC4c protein was expressed in hepatocytes and in the cholangiocytes lining the intrahepatic bile ducts. In hepatocytes, NBC4c was localized to the basolateral plasma membrane, whereas intrahepatic cholangiocytes stained apically. The NBC1 electrogenic sodium cotransporter variants kNBC1 and pNBC1 were not detected by immunoblotting and immunohistochemistry in rat liver. The pattern of localization of NBC4c in the liver suggests that the cotransporter plays a role in mediating Na(+)-HCO(3)(-) cotransport in hepatocytes and intrahepatic cholangiocytes. Unlike the liver, the rat kidney expressed electrogenic sodium-bicarbonate cotransporter proteins kNBC1 and NBC4c. In kidney, NBC4c also had a molecular mass of approximately 145 kDa and was immunolocalized to uroepithelial cells lining the renal pelvis, where the cotransporter may play an important role in protecting the renal parenchyma from alterations in urine pH.

  17. PAX-8 expression in renal tumours and distant sites: a useful marker of primary and metastatic renal cell carcinoma?

    PubMed

    Barr, Meaghan L; Jilaveanu, Lucia B; Camp, Robert L; Adeniran, Adebowale J; Kluger, Harriet M; Shuch, Brian

    2015-01-01

    Immunohistochemical stains have greatly improved the diagnostic accuracy of renal cell carcinoma (RCC) for primary and distant tumours. We evaluate a marker that has recently been incorporated in clinical practice, PAX-8, in primary and metastatic RCCs. Two distinct tissue microarrays were used, one consisting of over 334 renal tumours, 294 with adjacent normal kidney and the other with 40 matched nephrectomy and metastatic sites of RCC. PAX-8 expression was assessed by a method of quantitative immunofluorescence. PAX-8 was positive in 96% (146/152) of normal renal tissue and 83% (227/272) of renal tumours. PAX-8 staining was positive in clear cell, papillary and chromophobe tumours in 80% (165/207), 95% (39/41) and 100% (6/6) of samples, respectively. Overall, intensity of PAX-8 expression was significantly higher in RCC metastatic sites than in the primary site (p=0.0047), however, in matched sites there was no statistically significant difference in the proportion of positive versus negative specimens (p=0.274). As the role of molecular markers expands in the diagnostic algorithm, this study confirms that PAX-8 expression is a useful diagnostic marker for RCC. PAX-8 expression was found in the primary tumour and distant sites. Compared with normal tissue and other histological types, clear cell RCC has lower PAX-8 expression and is less frequently positive, therefore, the lack of expression does not exclude a tumour of renal origin. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Renal Expression of FGF23 in Progressive Renal Disease of Diabetes and the Effect of Ace Inhibitor

    PubMed Central

    Benigni, Ariela; Corna, Daniela; Tomasoni, Susanna; Rottoli, Daniela; Gaspari, Flavio; Remuzzi, Giuseppe; Zoja, Carlamaria

    2013-01-01

    Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone mainly produced by bone that acts in the kidney through FGF receptors and Klotho. Here we investigated whether the kidney was an additional source of FGF23 during renal disease using a model of type 2 diabetic nephropathy. Renal expression of FGF23 and Klotho was assessed in Zucker diabetic fatty (ZDF) and control lean rats at 2, 4, 6, 8 months of age. To evaluate whether the renoprotective effect of angiotensin converting enzyme (ACE) inhibitor in this model was associated with changes in FGF23 and Klotho, ZDF rats received ramipril from 4, when proteinuric, to 8 months of age. FGF23 mRNA was not detectable in the kidney of lean rats, nor of ZDF rats at 2 months of age. FGF23 became measurable in the kidney of diabetic rats at 4 months and significantly increased thereafter. FGF23 protein localized in proximal and distal tubules. Renal Klotho mRNA and protein decreased during time in ZDF rats. As renal disease progressed, serum phosphate levels increased in parallel with decline of fractional phosphorus excretion. Ramipril limited proteinuria and renal injury, attenuated renal FGF23 upregulation and ameliorated Klotho expression. Ramipril normalized serum phosphate levels and tended to increase fractional phosphorus excretion. These data indicate that during progressive renal disease the kidney is a site of FGF23 production which is limited by ACE inhibition. Interfering pharmacologically with the delicate balance of FGF23 and phosphorus in diabetes may have implications in clinics. PMID:23967103

  19. Expression and actions of heme oxygenase in the renal medulla of rats.

    PubMed

    Zou, A P; Billington, H; Su, N; Cowley, A W

    2000-01-01

    Recent studies have shown that the heme oxygenase (HO) product, carbon monoxide (CO), induces vasodilation and that inhibition of HO produces a sustained hypertension in rats. Given the importance of renal medullary blood flow (MBF) in the long-term control of arterial blood pressure, we hypothesized that the HO/CO system may play an important role in maintaining the constancy of blood flow to the renal medulla, which in turn contributes to the antihypertensive effects of the renal medulla. To test this hypothesis, we first determined the expression of 2 isoforms of HO (HO-1 and HO-2) in the different kidney regions. By Northern blot analyses, the abundance of both isozyme mRNAs was found highest in the renal inner medulla and lowest in the renal cortex. The transcripts for HO-1 in the renal outer medulla and inner medulla were 2.5 and 3.7 times that expressed in the renal cortex and those for HO-2 in the outer medulla and inner medulla were 1.3 and 1.6 times that expressed in the renal cortex, respectively. Western blot analyses of both enzymes showed the same expression pattern in these kidney regions as the mRNAs. To determine the role that HO plays in the control of renal MBF, we examined the effect of the HO inhibitor zinc deuteroporphyrin 2,4-bis glycol (ZnDPBG) on cortical blood flow and MBF in anesthetized rats. ZnDPBG was given by renal medullary interstitial infusion, and cortical blood flow and MBF were measured by laser Doppler flowmetry. Renal medullary interstitial infusion of ZnDPBG at a dose of 60 nmol/kg per minute produced a 31% decrease in MBF over a period of 60 minutes as measured by laser Doppler flow signal (0.62+/-0.02 vs 0.43+/-0.04 V in control vs ZnDPBG). With the use of an in vivo microdialysis technique, ZnDPBG was found to significantly reduce renal medullary cGMP concentrations when infused into the renal medullary interstitial space. These results suggest that both HO-1 and HO-2 are highly expressed in the renal medulla, that HO and

  20. Altering sensorimotor feedback disrupts visual discrimination of facial expressions.

    PubMed

    Wood, Adrienne; Lupyan, Gary; Sherrin, Steven; Niedenthal, Paula

    2016-08-01

    Looking at another person's facial expression of emotion can trigger the same neural processes involved in producing the expression, and such responses play a functional role in emotion recognition. Disrupting individuals' facial action, for example, interferes with verbal emotion recognition tasks. We tested the hypothesis that facial responses also play a functional role in the perceptual processing of emotional expressions. We altered the facial action of participants with a gel facemask while they performed a task that involved distinguishing target expressions from highly similar distractors. Relative to control participants, participants in the facemask condition demonstrated inferior perceptual discrimination of facial expressions, but not of nonface stimuli. The findings suggest that somatosensory/motor processes involving the face contribute to the visual perceptual-and not just conceptual-processing of facial expressions. More broadly, our study contributes to growing evidence for the fundamentally interactive nature of the perceptual inputs from different sensory modalities.

  1. Hyperoxia-Induced Protein Alterations in Renal Rat Tissue: A Quantitative Proteomic Approach to Identify Hyperoxia-Induced Effects in Cellular Signaling Pathways

    PubMed Central

    Hinkelbein, Jochen; Böhm, Lennert; Spelten, Oliver; Sander, David; Soltész, Stefan; Braunecker, Stefan

    2015-01-01

    Introduction. In renal tissue as well as in other organs, supranormal oxygen pressure may lead to deleterious consequences on a cellular level. Additionally, hyperoxia-induced effect in cells and related free radicals may potentially contribute to renal failure. The aim of this study was to analyze time-dependent alterations of rat kidney protein expression after short-term normobaric hyperoxia using proteomics and bioinformatic approaches. Material and Methods. N = 36 Wistar rats were randomized into six different groups: three groups with normobaric hyperoxia (exposure to 100% oxygen for 3 h) and three groups with normobaric normoxia (NN; room air). After hyperoxia exposure, kidneys were removed immediately, after 3 days and after 7 days. Kidney lysates were analyzed by two-dimensional gel electrophoresis followed by peptide mass fingerprinting using tandem mass spectrometry. Statistical analysis was performed with DeCyder 2D software (p < 0.01). Biological functions of differential regulated proteins were studied using functional network analysis (Ingenuity Pathways Analysis and PathwayStudio). Results. Expression of 14 proteins was significantly altered (p < 0.01): eight proteins (MEP1A_RAT, RSSA_RAT, F16P1_RAT, STML2_RAT, BPNT1_RAT, LGMN_RAT, ATPA_RAT, and VDAC1_RAT) were downregulated and six proteins (MTUS1_RAT, F16P1_RAT, ACTG_RAT, ACTB_RAT, 2ABA_RAT, and RAB1A_RAT) were upregulated. Bioinformatic analyses revealed an association of regulated proteins with inflammation. Conclusions. Significant alterations in renal protein expression could be demonstrated for up to 7 days even after short-term hyperoxia. The identified proteins indicate an association with inflammation signaling cascades. MEP1A and VDAC1 could be promising candidates to identify hyperoxic injury in kidney cells. PMID:26106253

  2. Dietary sodium modulates the interaction between efferent and afferent renal nerve activity by altering activation of α2-adrenoceptors on renal sensory nerves.

    PubMed

    Kopp, Ulla C; Cicha, Michael Z; Smith, Lori A; Ruohonen, Saku; Scheinin, Mika; Fritz, Nicolas; Hökfelt, Tomas

    2011-02-01

    Activation of efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which then reflexively decreases ERSNA via activation of the renorenal reflexes to maintain low ERSNA. The ERSNA-ARNA interaction is mediated by norepinephrine (NE) that increases and decreases ARNA by activation of renal α(1)-and α(2)-adrenoceptors (AR), respectively. The ERSNA-induced increases in ARNA are suppressed during a low-sodium (2,470 ± 770% s) and enhanced during a high-sodium diet (5,670 ± 1,260% s). We examined the role of α(2)-AR in modulating the responsiveness of renal sensory nerves during low- and high-sodium diets. Immunohistochemical analysis suggested the presence of α(2A)-AR and α(2C)-AR subtypes on renal sensory nerves. During the low-sodium diet, renal pelvic administration of the α(2)-AR antagonist rauwolscine or the AT1 receptor antagonist losartan alone failed to alter the ARNA responses to reflex increases in ERSNA. Likewise, renal pelvic release of substance P produced by 250 pM NE (from 8.0 ± 1.3 to 8.5 ± 1.6 pg/min) was not affected by rauwolscine or losartan alone. However, rauwolscine+losartan enhanced the ARNA responses to reflex increases in ERSNA (4,680 ± 1,240%·s), and renal pelvic release of substance P by 250 pM NE, from 8.3 ± 0.6 to 14.2 ± 0.8 pg/min. During a high-sodium diet, rauwolscine had no effect on the ARNA response to reflex increases in ERSNA or renal pelvic release of substance P produced by NE. Losartan was not examined because of low endogenous ANG II levels in renal pelvic tissue during a high-sodium diet. Increased activation of α(2)-AR contributes to the reduced interaction between ERSNA and ARNA during low-sodium intake, whereas no/minimal activation of α(2)-AR contributes to the enhanced ERSNA-ARNA interaction under conditions of high sodium intake.

  3. Dietary sodium modulates the interaction between efferent and afferent renal nerve activity by altering activation of α2-adrenoceptors on renal sensory nerves

    PubMed Central

    Cicha, Michael Z.; Smith, Lori A.; Ruohonen, Saku; Scheinin, Mika; Fritz, Nicolas; Hökfelt, Tomas

    2011-01-01

    Activation of efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which then reflexively decreases ERSNA via activation of the renorenal reflexes to maintain low ERSNA. The ERSNA-ARNA interaction is mediated by norepinephrine (NE) that increases and decreases ARNA by activation of renal α1-and α2-adrenoceptors (AR), respectively. The ERSNA-induced increases in ARNA are suppressed during a low-sodium (2,470 ± 770% s) and enhanced during a high-sodium diet (5,670 ± 1,260% s). We examined the role of α2-AR in modulating the responsiveness of renal sensory nerves during low- and high-sodium diets. Immunohistochemical analysis suggested the presence of α2A-AR and α2C-AR subtypes on renal sensory nerves. During the low-sodium diet, renal pelvic administration of the α2-AR antagonist rauwolscine or the AT1 receptor antagonist losartan alone failed to alter the ARNA responses to reflex increases in ERSNA. Likewise, renal pelvic release of substance P produced by 250 pM NE (from 8.0 ± 1.3 to 8.5 ± 1.6 pg/min) was not affected by rauwolscine or losartan alone. However, rauwolscine+losartan enhanced the ARNA responses to reflex increases in ERSNA (4,680 ± 1,240%·s), and renal pelvic release of substance P by 250 pM NE, from 8.3 ± 0.6 to 14.2 ± 0.8 pg/min. During a high-sodium diet, rauwolscine had no effect on the ARNA response to reflex increases in ERSNA or renal pelvic release of substance P produced by NE. Losartan was not examined because of low endogenous ANG II levels in renal pelvic tissue during a high-sodium diet. Increased activation of α2-AR contributes to the reduced interaction between ERSNA and ARNA during low-sodium intake, whereas no/minimal activation of α2-AR contributes to the enhanced ERSNA-ARNA interaction under conditions of high sodium intake. PMID:21106912

  4. Inhibition of monocyte chemoattractant protein-1 expression in tubular epithelium attenuates tubulointerstitial alteration in rat Goodpasture syndrome.

    PubMed

    Okada, H; Moriwaki, K; Kalluri, R; Imai, H; Ban, S; Takahama, M; Suzuki, H

    2000-03-01

    To examine the role of monocyte chemoattractant protein-1 (MCP-1) expressed by tubular epithelium in tubulointerstitial alterations in situ, the level of MCP-1 mRNA in tubular epithelium was lowered selectively in the rat model of Goodpasture syndrome (GPS). Intravenously administered antisense oligodeoxynucleotide (ODN) is taken up by renal tubular epithelium and has been found to block expression of target genes in rats. MCP-1 antisense ODN was injected into GPS rats every second day from days 27 to 35 after immunization (this represents the time when renal MCP-1 mRNA level was increased and interstitial mononuclear cell infiltration was aggravated). In addition to a reduction in the level of tubular MCP-1 mRNA, antisense ODN treatment attenuated monocyte infiltration significantly and preserved renal function in GPS rats. However, ODN injection did not affect glomerular MCP-1 expression and glomerular histopathology, and there were no significant changes in the urinary protein excretion rate. Our findings provide direct evidence that MCP-1, expressed by tubular epithelium, plays a pivotal role in mediating secondary tubulointerstitial alterations in the GPS model.

  5. Altered gene expression in human placenta after suspected preterm labour.

    PubMed

    Oros, D; Strunk, M; Breton, P; Paules, C; Benito, R; Moreno, E; Garcés, M; Godino, J; Schoorlemmer, J

    2017-07-01

    Suspected preterm labour occurs in around 9% of pregnancies. However, almost two-thirds of women admitted for threatened preterm labour ultimately deliver at term and are considered risk-free for fetal development. We examined placental and umbilical cord blood samples from preterm or term deliveries after threatened preterm labour as well as term deliveries without threatened preterm labour. We quantitatively analysed the mRNA expression of inflammatory markers (IL6, IFNγ, and TNFα) and modulators of angiogenesis (FGF2, PGF, VEGFA, VEGFB, and VEGFR1). A total of 132 deliveries were analysed. Preterm delivery and term delivery after suspected preterm labour groups showed similar increases in TNFα expression compared with the term delivery control group in umbilical cord blood samples. Placental samples from preterm and term deliveries after suspected preterm labour exhibited significantly increased expression of TNFα and IL6 and decreased expression of IFNγ. Suspected preterm labour was also associated with altered expression of angiogenic factors, although not all differences reached statistical significance. We found gene expression patterns indicative of inflammation in human placentas after suspected preterm labour regardless of whether the deliveries occurred preterm or at term. Similarly, a trend towards altered expression of angiogeneic factors was not limited to preterm birth. These findings suggest that the biological mechanisms underlying threatened preterm labour affect pregnancies independently of gestational age at birth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Alterations in VHL as potential biomarkers in renal-cell carcinoma.

    PubMed

    Gossage, Lucy; Eisen, Tim

    2010-05-01

    Germ line mutations in the VHL tumor-suppressor gene cause von Hippel-Lindau (VHL) disease, a hereditary neoplastic disease associated with clear-cell renal-cell carcinomas (ccRCCs), central nervous system hemangioblastomas and pheochromocytomas. Disruption of VHL, by somatic mutation, hypermethylation of its promoter or chromosomal loss, is also seen in the majority of cases of sporadic ccRCC. The protein product of VHL, pVHL, has multiple functions, the best-documented of which relates to its ability to target hypoxia-inducible factors (HIFs) for polyubiquitination and proteasomal degradation through its role in substrate recognition as part of a ubiquitin ligase complex. Consequently, pVHL-defective ccRCCs overexpress mRNAs that are under the transcriptional control of HIF. Drugs that modulate the downstream targets of the pVHL/HIF pathway, including sunitinib, sorafenib, temsirolimus and bevacizumab, have proven benefit in treating ccRCC. In VHL disease, clear evidence supports strong genotype-phenotype correlations, but the situation in sporadic ccRCC is less clear. Data indicate that VHL alterations have a potential role as prognostic and predictive markers in ccRCC. Future clinical trials should prospectively define the VHL alteration status of study participants so that the true utility of such markers can be determined.

  7. Suppression of microRNA-29 Expression by TGF-β1 Promotes Collagen Expression and Renal Fibrosis

    PubMed Central

    Wang, Bo; Komers, Radko; Carew, Rosemarie; Winbanks, Catherine E.; Xu, Bei; Herman-Edelstein, Michal; Koh, Philip; Thomas, Merlin; Jandeleit-Dahm, Karin; Gregorevic, Paul; Cooper, Mark E.

    2012-01-01

    Synthesis and deposition of extracellular matrix (ECM) within the glomerulus and interstitium characterizes renal fibrosis, but the mechanisms underlying this process are incompletely understood. The profibrotic cytokine TGF-β1 modulates the expression of certain microRNAs (miRNAs), suggesting that miRNAs may have a role in the pathogenesis of renal fibrosis. Here, we exposed proximal tubular cells, primary mesangial cells, and podocytes to TGF-β1 to examine its effect on miRNAs and subsequent collagen synthesis. TGF-β1 reduced expression of the miR-29a/b/c/family, which targets collagen gene expression, and increased expression of ECM proteins. In both resting and TGF-β1–treated cells, ectopic expression of miR-29 repressed the expression of collagens I and IV at both the mRNA and protein levels by targeting the 3′untranslated region of these genes. Furthermore, we observed low levels of miR-29 in three models of renal fibrosis representing early and advanced stages of disease. Administration of the Rho-associated kinase inhibitor fasudil prevented renal fibrosis and restored expression of miR-29. Taken together, these data suggest that TGF-β1 inhibits expression of the miR-29 family, thereby promoting expression of ECM components. Pharmacologic modulation of these miRNAs may have therapeutic potential for progressive renal fibrosis. PMID:22095944

  8. Microarray expression profiling identifies genes with altered expression in HDL-deficient mice

    SciTech Connect

    Callow, Matthew J.; Dudoit, Sandrine; Gong, Elaine L.; Speed, Terence P.; Rubin, Edward M.

    2000-05-05

    Based on the assumption that severe alterations in the expression of genes known to be involved in HDL metabolism may affect the expression of other genes we screened an array of over 5000 mouse expressed sequence tags (ESTs) for altered gene expression in the livers of two lines of mice with dramatic decreases in HDL plasma concentrations. Labeled cDNA from livers of apolipoprotein AI (apo AI) knockout mice, Scavenger Receptor BI (SR-BI) transgenic mice and control mice were co-hybridized to microarrays. Two-sample t-statistics were used to identify genes with altered expression levels in the knockout or transgenic mice compared with the control mice. In the SR-BI group we found 9 array elements representing at least 5 genes to be significantly altered on the basis of an adjusted p value of less than 0.05. In the apo AI knockout group 8 array elements representing 4 genes were altered compared with the control group (p < 0.05). Several of the genes identified in the SR-BI transgenic suggest altered sterol metabolism and oxidative processes. These studies illustrate the use of multiple-testing methods for the identification of genes with altered expression in replicated microarray experiments of apo AI knockout and SR-BI transgenic mice.

  9. Glutathione-S-transferase-pi (GST-pi) expression in renal cell carcinoma.

    PubMed

    Kaprilian, Christina; Horti, Maria; Kandilaris, Kosmas; Skolarikos, Andreas; Trakas, Nikolaos; Kastriotis, Ioannis; Deliveliotis, Charalambos

    2015-01-01

    Multidrug resistance correlates with unfavourable treatment outcomes in numerous cancers including renal cell carcinoma. The expression and clinical relevance of Glutathione-S-transferase-pi (GST-pi), a multidrug resistance factor, in kidney tumors remain controversial. We analyzed the expression of GST-pi in 60 formalin-fixed, paraffin-embedded renal cell carcinoma samples by immunohistochemistry and compared them with matched normal regions of the kidney. A significantly higher expression of GST-pi was observed in 87% of clear cell carcinoma and 50% of papillary subtypes. GST-pi expression did not correlate with tumor grade or patient survival. GST-pi is unlikely to be a prognostic factor for renal cell carcinoma. However, further studies with large number of samples are warranted to establish the role of GST-pi, if any, in intrinsic or acquired resistance of renal cell carcinoma to conventional treatments.

  10. Glutathione-S-transferase-pi (GST-pi) expression in renal cell carcinoma

    PubMed Central

    Horti, Maria; Kandilaris, Kosmas; Skolarikos, Andreas; Trakas, Nikolaos; Kastriotis, Ioannis; Deliveliotis, Charalambos

    2015-01-01

    Multidrug resistance correlates with unfavourable treatment outcomes in numerous cancers including renal cell carcinoma. The expression and clinical relevance of Glutathione-S-transferase-pi (GST-pi), a multidrug resistance factor, in kidney tumors remain controversial. We analyzed the expression of GST-pi in 60 formalin-fixed, paraffin-embedded renal cell carcinoma samples by immunohistochemistry and compared them with matched normal regions of the kidney. A significantly higher expression of GST-pi was observed in 87% of clear cell carcinoma and 50% of papillary subtypes. GST-pi expression did not correlate with tumor grade or patient survival. GST-pi is unlikely to be a prognostic factor for renal cell carcinoma. However, further studies with large number of samples are warranted to establish the role of GST-pi, if any, in intrinsic or acquired resistance of renal cell carcinoma to conventional treatments.

  11. N-acetylcysteine attenuates renal alterations induced by senescence in the rat.

    PubMed

    Shimizu, Maria Heloisa M; Volpini, Rildo A; de Bragança, Ana Carolina; Campos, Renata; Canale, Daniele; Sanches, Talita R; Andrade, Lúcia; Seguro, Antonio C

    2013-02-01

    The aim of this study was to evaluate the effects of N-acetylcysteine (NAC) on renal function, as well as on sodium and water transporters, in the kidneys of aged rats. Normal, 8-month-old male Wistar rats were treated (n=6) or not (n=6) with NAC (600 mg/L in drinking water) and followed for 16 months. At the end of the follow-up period, we determined inulin clearance, serum thiobarbituric acid reactive substances (TBARS), serum cholesterol, and urinary phosphate excretion. In addition, we performed immunohistochemical staining for p53 and for ED-1-positive cells (macrophages/monocytes), together with Western blotting of kidney tissue for NKCC2, aquaporin 2 (AQP2), urea transporter A1 (UT-A1) and Klotho protein. At baseline, the two groups were similar in terms of creatinine clearance, proteinuria, cholesterol, and TBARS. At the end of the follow-up period, NAC-treated rats presented greater inulin clearance and reduced proteinuria, as well as lower serum cholesterol, serum TBARS, and urinary phosphate excretion, in comparison with untreated rats. In addition, NAC-treated rats showed upregulated expression of NKCC2, AQP2, and UT-A1; elevated Klotho protein expression, low p53 expression, and few ED-1 positive cells. In conclusion, we attribute these beneficial effects of NAC (the significant improvements in inulin clearance and in the expression of NKCC2, AQP2, and UT-A1) to its ability to decrease oxidative stress, inhibit p53 expression, minimize kidney inflammation, and stimulate Klotho expression. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Preclinical renal chemo-protective potential of Prunus amygdalus Batsch seed coat via alteration of multiple molecular pathways.

    PubMed

    Pandey, Preeti; Bhatt, Prakash Chandra; Rahman, Mahfoozur; Patel, Dinesh Kumar; Anwar, Firoz; Al-Abbasi, Fahad; Verma, Amita; Kumar, Vikas

    2017-08-24

    Prunus amygdalus Batsch (almond) is a classical nutritive traditional Indian medicine. Along with nutritive with anti-oxidant properties, it is, clinically, used in the treatment of various diseases with underlying anti-oxidant mechanism. This study is an effort to scrutinise the renal protective effect of P. amygdalus Batsch or green almond (GA) seed coat extract and its underlying mechanism in animal model of Ferric nitrilotriacetate (Fe-NTA) induced renal cell carcinoma (RCC). RCC was induced in Swiss Albino Wistar rats by intraperitoneal injection of Fe-NTA. The rats were then treated with ethanolic extract of GA (25, 50 and 100 mg/kg per oral) for 22 weeks. Efficacy of GA administration was evaluated by change in biochemical, renal, macroscopical and histopathological parameters and alterations. Additionally, interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inflammatory mediator including prostaglandin E2 (PGE2), nuclear factor-kappa B (NF-κB) were also observed to explore the possible mechanisms. The oral administration of GA significantly (p < .001) altered the Fe-NTA induced RCC in rats by inhibition of renal nodules, decolourisation of tissues, tumour promoter marker including thymidine (3)[H] incorporation, ornithine decarboxylase, renal parameters and anti-oxidant parameters in serum. Additionally, GA treatment significantly (p < .001) down-regulated the IL-6, IL-1β, TNF-α, inflammatory mediators PGE2 and NF-κB in a dose-dependent manner. Histopathology observation supported the renal protective effect of GA by alteration in necrosis, size of Bowman capsules and inflammatory cells. Hence, it can be concluded that GA possesses observable chemo-protective action and effect on Fe-NTA induced RCC via dual inhibition mechanism one by inhibiting free radical generation and second by inhibiting inflammation.

  13. Altered gravity downregulates aquaporin-1 protein expression in choroid plexus.

    PubMed

    Masseguin, C; Corcoran, M; Carcenac, C; Daunton, N G; Güell, A; Verkman, A S; Gabrion, J

    2000-03-01

    Aquaporin-1 (AQP1) is a water channel expressed abundantly at the apical pole of choroidal epithelial cells. The protein expression was quantified by immunocytochemistry and confocal microscopy in adult rats adapted to altered gravity. AQP1 expression was decreased by 64% at the apical pole of choroidal cells in rats dissected 5.5-8 h after a 14-day spaceflight. AQP1 was significantly overexpressed in rats readapted for 2 days to Earth's gravity after an 11-day flight (48% overshoot, when compared with the value measured in control rats). In a ground-based model that simulates some effects of weightlessness and alters choroidal structures and functions, apical AQP1 expression was reduced by 44% in choroid plexus from rats suspended head down for 14 days and by 69% in rats suspended for 28 days. Apical AQP1 was rapidly enhanced in choroid plexus of rats dissected 6 h after a 14-day suspension (57% overshoot, in comparison with control rats) and restored to the control level when rats were dissected 2 days after the end of a 14-day suspension. Decreases in the apical expression of choroidal AQP1 were also noted in rats adapted to hypergravity in the NASA 24-ft centrifuge: AQP1 expression was reduced by 47% and 85% in rats adapted for 14 days to 2 G and 3 G, respectively. AQP1 is downregulated in the apical membrane of choroidal cells in response to altered gravity and is rapidly restored after readaptation to normal gravity. This suggests that water transport, which is partly involved in the choroidal production of cerebrospinal fluid, might be decreased during spaceflight and after chronic hypergravity.

  14. Neonatal hyperoxia induces alterations in neurotrophin gene expression.

    PubMed

    Sengoku, T; Murray, K M; Wilson, M E

    2016-02-01

    Each year in the United States, nearly 500,000 infants a year are born prematurely. Babies born before 35 weeks gestation are often placed on ventilators and/or given supplemental oxygen. This increase in oxygen, while critical for survival, can cause long-term damage to lungs, retinas and brains. In particular, hyperoxia causes apoptosis in neurons and alters glial activity. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) are members of the neurotrophin family of proteins that function to promote the growth, differentiation and development of the nervous system. We hypothesized that hyperoxia can alter the regulation of these genes and by doing so adversely affect the development of the brain. We predicted that mice exposed to hyperoxic conditions would have differences in BDNF and GDNF mRNA expression and relative level of methylated promoter regions coinciding with differences in the relative levels of DNMT1 and DNMT3a mRNA expression. To test this hypothesis, newborn C57Bl/6 mice and their littermates were placed in hyperoxic or normoxic conditions from postnatal day 7 to 12. There were significant decreases in BDNF mRNA expression in the prefrontal cortex following hyperoxia, but a significant increase in the isocortex. GDNF mRNA expression was significantly increased in both the isocortex and prefrontal cortex following hyperoxia. DNMT1 mRNA expression was significantly decreased in the isocortex but significantly increased in the prefrontal following hyperoxia. Together these data suggest that short-term exposure to hyperoxic conditions can affect the regulation and expression of BDNF and GDNF potentially leading to alterations in neural development. Published by Elsevier Ltd.

  15. Altered nestin expression in the cerebrum with periventricular leukomalacia.

    PubMed

    Okoshi, Yumi; Mizuguchi, Masashi; Itoh, Masayuki; Oka, Akira; Takashima, Sachio

    2007-03-01

    Nestin is a cytoskeletal protein expressed by neural stem cells, and by immature neurons and glial cells. In an effort to explore the potential of the infant brain for repair and plasticity, we immunohistochemically studied nestin expression in the human cerebral cortex of control subjects and of patients with periventricular leukomalacia. During normal development, nestin immunoreactivity of the cortical gray and white matter was detectable throughout the fetal period, and disappeared around birth. In brain with periventricular leukomalacia, nestin expression was altered in a time- and space-dependent manner. In the cortical gray matter, neuronal immunoreactivity was often reduced in the subacute stage, but was increased in chronic and remote stages. In the white matter near a lesion of periventricular leukomalacia, glial immunoreactivity was increased in all stages. In many cases, neurons and axons far from a lesion also showed an altered expression of nestin. These findings indicate that in brain with periventricular leukomalacia, neurons and glial cells may recapitulate nestin expression in response to ischemic brain injury, suggesting functional relevance in repair and plasticity.

  16. Periodontal therapy alters gene expression of peripheral blood monocytes.

    PubMed

    Papapanou, Panos N; Sedaghatfar, Michael H; Demmer, Ryan T; Wolf, Dana L; Yang, Jun; Roth, Georg A; Celenti, Romanita; Belusko, Paul B; Lalla, Evanthia; Pavlidis, Paul

    2007-09-01

    We investigated the effects of periodontal therapy on gene expression of peripheral blood monocytes. Fifteen patients with periodontitis gave blood samples at four time points: 1 week before periodontal treatment (#1), at treatment initiation (baseline, #2), 6-week (#3) and 10-week post-baseline (#4). At baseline and 10 weeks, periodontal status was recorded and subgingival plaque samples were obtained. Periodontal therapy (periodontal surgery and extractions without adjunctive antibiotics) was completed within 6 weeks. At each time point, serum concentrations of 19 biomarkers were determined. Peripheral blood monocytes were purified, RNA was extracted, reverse-transcribed, labelled and hybridized with AffymetrixU133Plus2.0 chips. Expression profiles were analysed using linear random-effects models. Further analysis of gene ontology terms summarized the expression patterns into biologically relevant categories. Differential expression of selected genes was confirmed by real-time reverse transcriptase-polymerase chain reaction in a subset of patients. Treatment resulted in a substantial improvement in clinical periodontal status and reduction in the levels of several periodontal pathogens. Expression profiling over time revealed more than 11,000 probe sets differentially expressed at a false discovery rate of <0.05. Approximately 1/3 of the patients showed substantial changes in expression in genes relevant to innate immunity, apoptosis and cell signalling. The data suggest that periodontal therapy may alter monocytic gene expression in a manner consistent with a systemic anti-inflammatory effect.

  17. Periodontal therapy alters gene expression of peripheral blood monocytes

    PubMed Central

    Papapanou, Panos N.; Sedaghatfar, Michael H.; Demmer, Ryan T.; Wolf, Dana L.; Yang, Jun; Roth, Georg A.; Celenti, Romanita; Belusko, Paul B.; Lalla, Evanthia; Pavlidis, Paul

    2009-01-01

    Aims We investigated the effects of periodontal therapy on gene expression of peripheral blood monocytes. Methods Fifteen patients with periodontitis gave blood samples at four time points: 1 week before periodontal treatment (#1), at treatment initiation (baseline, #2), 6-week (#3) and 10-week post-baseline (#4). At baseline and 10 weeks, periodontal status was recorded and subgingival plaque samples were obtained. Periodontal therapy (periodontal surgery and extractions without adjunctive antibiotics) was completed within 6 weeks. At each time point, serum concentrations of 19 biomarkers were determined. Peripheral blood monocytes were purified, RNA was extracted, reverse-transcribed, labelled and hybridized with AffymetrixU133Plus2.0 chips. Expression profiles were analysed using linear random-effects models. Further analysis of gene ontology terms summarized the expression patterns into biologically relevant categories. Differential expression of selected genes was confirmed by real-time reverse transcriptase-polymerase chain reaction in a subset of patients. Results Treatment resulted in a substantial improvement in clinical periodontal status and reduction in the levels of several periodontal pathogens. Expression profiling over time revealed more than 11,000 probe sets differentially expressed at a false discovery rate of <0.05. Approximately 1/3 of the patients showed substantial changes in expression in genes relevant to innate immunity, apoptosis and cell signalling. Conclusions The data suggest that periodontal therapy may alter monocytic gene expression in a manner consistent with a systemic anti-inflammatory effect. PMID:17716309

  18. Prolonged morphine administration alters protein expression in the rat myocardium

    PubMed Central

    2011-01-01

    Background Morphine is used in clinical practice as a highly effective painkiller as well as the drug of choice for treatment of certain heart diseases. However, there is lack of information about its effect on protein expression in the heart. Therefore, here we aimed to identify the presumed alterations in rat myocardial protein levels after prolonged morphine treatment. Methods Morphine was administered to adult male Wistar rats in high doses (10 mg/kg per day) for 10 days. Proteins from the plasma membrane- and mitochondria-enriched fractions or cytosolic proteins isolated from left ventricles were run on 2D gel electrophoresis, scanned and quantified with specific software to reveal differentially expressed proteins. Results Nine proteins were found to show markedly altered expression levels in samples from morphine-treaded rats and these proteins were identified by mass spectrometric analysis. They belong to different cell pathways including signaling, cytoprotective, and structural elements. Conclusions The present identification of several important myocardial proteins altered by prolonged morphine treatment points to global effects of this drug on heart tissue. These findings represent an initial step toward a more complex view on the action of morphine on the heart. PMID:22129148

  19. Alterations in Circulatory and Renal Angiotensin-Converting Enzyme and Angiotensin-Converting Enzyme 2 in Fetal Programmed Hypertension

    PubMed Central

    Shaltout, Hossam A.; Figueroa, Jorge P.; Rose, James C.; Diz, Debra I.; Chappell, Mark C.

    2009-01-01

    Antenatal betamethasone treatment is a widely accepted therapy to accelerate lung development and improve survival in preterm infants. However, there are reports that infants who receive antenatal glucocorticoids exhibit higher systolic blood pressure in their early adolescent years. We have developed an experimental model of programming whereby the offspring of pregnant sheep administered clinically relevant doses of betamethasone exhibit elevated blood pressure. We tested the hypothesis as to whether alterations in angiotensin-converting enzyme (ACE), ACE2, and neprilysin in serum, urine, and proximal tubules are associated with this increase in mean arterial pressure. Male sheep were administered betamethasone (2 doses of 0.17 mg/kg, 24 hours apart) or vehicle at the 80th day of gestation and delivered at term. Sheep were instrumented at adulthood (1.8 years) for direct conscious recording of mean arterial pressure. Serum and urine were collected and proximal tubules isolated from the renal cortex. Betamethasone-treated animals had elevated mean arterial pressure (97±3 versus 83±2 mm Hg; P<0.05) and a 25% increase in serum ACE activity (48.4±7.0 versus 36.0±2.7 fmol/mL per minute) but a 40% reduction in serum ACE2 activity (18.8±1.2 versus 31.4±4.4 fmol/mL per minute). In isolated proximal tubules, ACE2 activity and expression were 50% lower in the treated sheep with no significant change in ACE or neprilysin activities. We conclude that antenatal steroid treatment results in the chronic alteration of ACE and ACE2 in the circulatory and tubular compartments, which may contribute to the higher blood pressure in this model of fetal programming-induced hypertension. PMID:19047579

  20. Airway Epithelial miRNA Expression Is Altered in Asthma

    PubMed Central

    Solberg, Owen D.; Ostrin, Edwin J.; Love, Michael I.; Peng, Jeffrey C.; Bhakta, Nirav R.; Nguyen, Christine; Solon, Margaret; Nguyen, Cindy; Barczak, Andrea J.; Zlock, Lorna T.; Blagev, Denitza P.; Finkbeiner, Walter E.; Ansel, K. Mark; Arron, Joseph R.; Erle, David J.

    2012-01-01

    Rationale: Changes in airway epithelial cell differentiation, driven in part by IL-13, are important in asthma. Micro-RNAs (miRNAs) regulate cell differentiation in many systems and could contribute to epithelial abnormalities in asthma. Objectives: To determine whether airway epithelial miRNA expression is altered in asthma and identify IL-13–regulated miRNAs. Methods: We used miRNA microarrays to analyze bronchial epithelial brushings from 16 steroid-naive subjects with asthma before and after inhaled corticosteroids, 19 steroid-using subjects with asthma, and 12 healthy control subjects, and the effects of IL-13 and corticosteroids on cultured bronchial epithelial cells. We used quantitative polymerase chain reaction to confirm selected microarray results. Measurements and Main Results: Most (12 of 16) steroid-naive subjects with asthma had a markedly abnormal pattern of bronchial epithelial miRNA expression by microarray analysis. Compared with control subjects, 217 miRNAs were differentially expressed in steroid-naive subjects with asthma and 200 in steroid-using subjects with asthma (false discovery rate < 0.05). Treatment with inhaled corticosteroids had modest effects on miRNA expression in steroid-naive asthma, inducing a statistically significant (false discovery rate < 0.05) change for only nine miRNAs. qPCR analysis confirmed differential expression of 22 miRNAs that were highly differentially expressed by microarrays. IL-13 stimulation recapitulated changes in many differentially expressed miRNAs, including four members of the miR-34/449 family, and these changes in miR-34/449 family members were resistant to corticosteroids. Conclusions: Dramatic alterations of airway epithelial cell miRNA levels are a common feature of asthma. These alterations are only modestly corrected by inhaled corticosteroids. IL-13 effects may account for some of these alterations, including repression of miR-34/449 family members that have established roles in airway

  1. Heme oxygenase-1 modulates the expression of the anti-angiogenic chemokine CXCL-10 in renal tubular epithelial cells.

    PubMed

    Datta, Dipak; Dormond, Olivier; Basu, Aninda; Briscoe, David M; Pal, Soumitro

    2007-10-01

    The turnover and repair of peritubular capillaries is essential for the maintenance of normal renal tubular structure and function. Following injury, ineffective capillary repair/angiogenesis may result in chronic disease, whereas effective repair attenuates the injury process. Thus the process of healing in the kidney is likely dependent on an intricate balance between angiogenic and anti-angiogenic factors to maintain the renal microvasculature. We investigated the role of cytoprotective heme oxygenase-1 (HO-1) in the regulation of chemokines in human renal proximal tubular epithelial cells (RPTEC). Transfection of RPTEC with a HO-1 overexpression plasmid promoted a marked induction in the mRNA expression of the anti-angiogenic chemokine CXCL-10, along with angiogenic chemokines CXCL-8 and CCL-2. Utilizing a CXCL-10 promoter luciferase construct, we observed that HO-1-induced CXCL-10 expression is regulated at the transcriptional level. However, with increases in concentrations and time intervals of HO-1 induction, there was a marked decrease in CXCL-10 expression. Using pharmacological inhibitors, we found that HO-1-induced early robust CXCL-10 transcription is mediated through the PKC signaling pathway. To evaluate the functional significance of HO-1-induced CXCL-10 release, we cultured human vascular endothelial cells in the absence and presence of culture supernatants of the HO-1 plasmid-transfected RPTEC. We found that early (24 h) supernatants of the HO-1 plasmid-transfected cells (RPTEC) inhibited endothelial cell proliferation, and this effect was blocked by addition of a CXCL-10 neutralizing antibody. Thus HO-1 can regulate the expression of the anti-angiogenic CXCL-10 and may alter a critical balance between angiogenic vs. anti-angiogenic factors that are important to maintain renal microvasculature during injury.

  2. GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Expression

    PubMed Central

    Xiao, Yun; Liu, Jishi; Peng, Yu; Xiong, Xuan; Huang, Ling; Yang, Huixiang; Zhang, Jian; Tao, Lijian

    2016-01-01

    Tubular epithelial-mesenchymal transition (EMT) has been widely accepted as the underlying mechanisms of renal interstitial fibrosis (RIF). The production of reactive oxygen species (ROS) plays a vital role in tubular EMT process. The purpose of this study was to investigate the involved molecular mechanisms in TGF-beta-induced EMT and identify the potential role of glutathione S-transferase alpha 3 (GSTA3) in this process. The iTRAQ screening was performed to identify protein alterations of the rats underwent unilateral-ureteral obstruction (UUO). Protein expression of GSTA3 in patients with obstructive nephropathy and UUO rats was detected by immunohistochemistry. Protein and mRNA expression of GSTA3 in UUO rats and NRK-52E cells were determined by Western blot and RT-PCR. siRNA and overexpression plasmid were transfected specifically to assess the role of GSTA3 in RIF. The generation of ROS was measured by dichlorofluorescein fluorescence analysis. GSTA3 protein and mRNA expression was significantly reduced in UUO rats. Immunohistochemical analysis revealed that GSTA3 expression was reduced in renal cortex in UUO rats and patients with obstructive nephropathy. Treating with TGF-β1 down-regulated GSTA3 expression in NRK-52E cells, which have been found to be correlated with the decreased expression in E-cadherin and megalin and increased expression in α-smooth muscle actin. Furthermore, knocking down GSTA3 in NRK-52 cells led to increased production of ROS and tubular EMT, whereas overexpressing GSTA3 ameliorated ROS production and prevented the occurrence of tubular EMT. GSTA3 plays a protective role against tubular EMT in renal fibrosis, suggesting GSTA3 is a potential therapeutic target for RIF. PMID:27602565

  3. GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Expression.

    PubMed

    Xiao, Yun; Liu, Jishi; Peng, Yu; Xiong, Xuan; Huang, Ling; Yang, Huixiang; Zhang, Jian; Tao, Lijian

    2016-01-01

    Tubular epithelial-mesenchymal transition (EMT) has been widely accepted as the underlying mechanisms of renal interstitial fibrosis (RIF). The production of reactive oxygen species (ROS) plays a vital role in tubular EMT process. The purpose of this study was to investigate the involved molecular mechanisms in TGF-beta-induced EMT and identify the potential role of glutathione S-transferase alpha 3 (GSTA3) in this process. The iTRAQ screening was performed to identify protein alterations of the rats underwent unilateral-ureteral obstruction (UUO). Protein expression of GSTA3 in patients with obstructive nephropathy and UUO rats was detected by immunohistochemistry. Protein and mRNA expression of GSTA3 in UUO rats and NRK-52E cells were determined by Western blot and RT-PCR. siRNA and overexpression plasmid were transfected specifically to assess the role of GSTA3 in RIF. The generation of ROS was measured by dichlorofluorescein fluorescence analysis. GSTA3 protein and mRNA expression was significantly reduced in UUO rats. Immunohistochemical analysis revealed that GSTA3 expression was reduced in renal cortex in UUO rats and patients with obstructive nephropathy. Treating with TGF-β1 down-regulated GSTA3 expression in NRK-52E cells, which have been found to be correlated with the decreased expression in E-cadherin and megalin and increased expression in α-smooth muscle actin. Furthermore, knocking down GSTA3 in NRK-52 cells led to increased production of ROS and tubular EMT, whereas overexpressing GSTA3 ameliorated ROS production and prevented the occurrence of tubular EMT. GSTA3 plays a protective role against tubular EMT in renal fibrosis, suggesting GSTA3 is a potential therapeutic target for RIF.

  4. Intraoperative sonography during open partial nephrectomy for renal cell cancer: does it alter surgical management?

    PubMed

    Bhosale, Priya R; Wei, Wei; Ernst, Randy D; Bathala, Tharakeswara K; Reading, Rhoda M; Wood, Christopher G; Bedi, Deepak G

    2014-10-01

    The purpose of this study is to evaluate whether intraoperative ultrasound (IOUS) during open partial nephrectomy alters the surgical management for renal cell cancer (RCC). One hundred ninety-eight consecutive patients undergoing IOUS during open partial nephrectomy for RCC were selected for retrospective review of clinical and imaging data. Patient age and sex, the local extent of the primary lesion, and the presence of additional lesions were recorded. Ultrasound findings were compared with preoperative CT or MRI to determine whether the IOUS findings changed surgical management. Summary statistics were performed to assess what percentage of patients with additional IOUS findings had a change in their surgical management. The Kaplan-Meier method was used to estimate 5-year overall survival (OS) and event-free survival (EFS) rates for all patients. Patients were followed for 9-12 years to assess survival and measure recurrence rates. Twenty-one of 198 patients (10.6%; 95% CI, 6.7-15.8%) had additional findings on IOUS not seen on preoperative imaging. As a result, surgery was modified in 15 of these 21 patients (71.4%; 95% CI, 47.8-88.7%). The 5-year OS rate was 81%, and the EFS rate was 76% for the whole group; most deaths were due to unrelated causes. There was no statistically significant difference in OS (p = 0.867) and EFS (p = 0.069) rates among patients who had a change of management because of additional lesions seen by IOUS. IOUS performed during open partial nephrectomy for resection of RCC shows additional findings compared with preoperative cross-sectional imaging that may alter surgical management.

  5. Regulation of renal organic anion transporter 3 (SLC22A8) expression and function by the integrity of lipid raft domains and their associated cytoskeleton.

    PubMed

    Srimaroeng, Chutima; Cecile, Jennifer Perry; Walden, Ramsey; Pritchard, John B

    2013-01-01

    -β-cyclodextrin (MβCD) also led to a dose dependent reduction Oat3 expression and ES transport by rat renal cortical slices. Moreover, the up-regulation of rOat3-mediated transport seen following insulin stimulation was completely prevented by MβCD. We have demonstrated that renal Oat3 resides in LRD-rich membranes in proximity to cytoskeletal and signaling proteins. Disruption of LRD-rich membranes by cholesterol-binding agents or protein trafficking inhibitors altered Oat3 expression and regulation. These findings indicate that the integrity of LRD-rich membranes and their associated proteins are essential for Oat3 expression and function. Copyright © 2013 S. Karger AG, Basel.

  6. Regulation of Renal Organic Anion Transporter 3 (SLC22A8) Expression and Function by the Integrity of Lipid Raft Domains and their Associated Cytoskeleton

    PubMed Central

    Srimaroeng, Chutima; Cecile, Jennifer Perry; Walden, Ramsey; Pritchard, John B.

    2013-01-01

    depletion by methyl-β-cyclodextrin (MβCD) also led to a dose dependent reduction Oat3 expression and ES transport by rat renal cortical slices. Moreover, the up-regulation of rOat3-mediated transport seen following insulin stimulation was completely prevented by MβCD. Conclusion We have demonstrated that renal Oat3 resides in LRD-rich membranes in proximity to cytoskeletal and signaling proteins. Disruption of LRD-rich membranes by cholesterol-binding agents or protein trafficking inhibitors altered Oat3 expression and regulation. These findings indicate that the integrity of LRD-rich membranes and their associated proteins are essential for Oat3 expression and function. PMID:23615001

  7. Metformin ameliorates podocyte damage by restoring renal tissue nephrin expression in type 2 diabetic rats.

    PubMed

    Zhai, Limin; Gu, Junfei; Yang, Di; Hu, Wen; Wang, Wei; Ye, Shandong

    2017-05-01

    Previous studies found that metformin provided some renoprotection for diabetic renal damage. In the present study, we evaluated the effects of different doses of metformin on the expression of renal tissue nephrin in type 2 diabetes mellitus (T2DM) model rats and the possible mechanism underlying its protective effect in kidney podocytes. A high-fat diet combined with a low dose of streptozotocin was used to induce T2DM model rats. Diabetic rats were treated with 150, 300, or 500 mg/kg metformin for 8 weeks. At the end of the study, urine and blood samples were collected for measurement of different indices. Light microscopy and transmission electron microscopy were used to identify morphological changes. Renal expression of nephrin protein was assayed by immunohistochemical staining, whereas real-time polymerase chain reaction was used to detect renal nephrin (Nphs1) mRNA expression. Metformin treatment of T2DM rats produced dose-dependent significant reductions in urinary albumin and nephrin concentrations, glomerular basement membrane thickness (GBMT), and the foot process fusion rate (FPFR) compared with control T2DM model rats, whereas renal expression of nephrin protein and Nphs1 mRNA was dose-dependently increased by metformin treatment. Metformin protects kidney podocytes in T2DM model rats by dose-dependently adjusting renal nephrin expression. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  8. Encouraging Expressions Affect the Brain and Alter Visual Attention

    PubMed Central

    Martín-Loeches, Manuel; Sel, Alejandra; Casado, Pilar; Jiménez, Laura; Castellanos, Luis

    2009-01-01

    Background Very often, encouraging or discouraging expressions are used in competitive contexts, such as sports practice, aiming at provoking an emotional reaction on the listener and, consequently, an effect on subsequent cognition and/or performance. However, the actual efficiency of these expressions has not been tested scientifically. Methodology/Principal Findings To fill this gap, we studied the effects of encouraging, discouraging, and neutral expressions on event-related brain electrical activity during a visual selective attention task in which targets were determined by location, shape, and color. Although the expressions preceded the attentional task, both encouraging and discouraging messages elicited a similar long-lasting brain emotional response present during the visuospatial task. In addition, encouraging expressions were able to alter the customary working pattern of the visual attention system for shape selection in the attended location, increasing the P1 and the SP modulations while simultaneously fading away the SN. Conclusions/Significance This was interpreted as an enhancement of the attentional processes for shape in the attended location after an encouraging expression. It can be stated, therefore, that encouraging expressions, as those used in sport practice, as well as in many other contexts and situations, do seem to be efficient in exerting emotional reactions and measurable effects on cognition. PMID:19536283

  9. Simvastatin ameliorates renal lipidosis through the suppression of renal CXCL16 expression in mice with adriamycin-induced nephropathy

    PubMed Central

    Wang, Cong; Li, Qian; Zhen, Junhui; Xu, Yihuai; Sun, Shuzhen

    2015-01-01

    Aims: To investigate the roles of CXCL16 and ox-LDL in adriamycin (ADR)-induced nephropathy mice and to explore the mechanism of simvastatin on the renal protective effects of ADR nephropathy. Methods: Fifteen male Balb/c mice were randomly divided into normal control (NC), ADR nephropathy and simvastatin-treated ADR nephropathy (ADR-SIM) groups. ADR nephropathy was induced by a single intravenous injection of ADR into the tail vein. All mice were sacrificed at the end of the 7th week, with the blood, 24-h urine and kidneys collected. The levels of ox-LDL and total cholesterol in the serum, the serum CXCL16, ox-LDL and NF-κB expression were detected. Results: Compared with the NC group, the levels of serum total cholesterol and ox-LDL in the ADR and ADR-SIM groups were significantly higher, the level of serum albumin was significantly lower and the expression of CXCL16, ox-LDL and NF-κB in the renal tissue of ADR and ADR-SIM groups was significantly increased. Compared with the ADR group, the expressions of renal CXCL16, ox-LDL and NF-κB in the ADR-SIM group were significantly decreased. Levels of serum total cholesterol and ox-LDL were not significantly different between the two groups. Conclusions: Simvastatin exerts a protective effect on renal function and structure in mice with ADR nephropathy. The beneficial effects of simvastatin might be related to the decreasing expression of CXCL16 in glomerular podocytes followed by the decreasing endocytosis of ox-LDL in podocytes and inhibition of NF-κB pathway activation. PMID:26884839

  10. Alterations in renal cilium length during transient complete ureteral obstruction in the mouse

    PubMed Central

    Wang, Leanne; Weidenfeld, Raphael; Verghese, Elizabeth; Ricardo, Sharon D; Deane, James A

    2008-01-01

    The renal cilium is a non-motile sensory organelle that has been implicated in the control of epithelial phenotype in the kidney. The contribution of renal cilium defects to cystic kidney disease has been the subject of intense study. However, very little is known of the behaviour of this organelle during renal injury and repair. Here we investigate the distribution and dimensions of renal cilia in a mouse model of unilateral ureteral obstruction and reversal of ureteral obstruction. An approximate doubling in the length of renal cilia was observed throughout the nephron and collecting duct of the kidney after 10 days of unilateral ureteral obstruction. A normalization of cilium length was observed during the resolution of renal injury that occurs following the release of ureteral obstruction. Thus variations in the length of the renal cilium appear to be a previously unappreciated indicator of the status of renal injury and repair. Furthermore, increased cilium length following renal injury has implications for the specification of epithelial phenotype during repair of the renal tubule and duct. PMID:18537851

  11. Alteration of gene expression by alcohol exposure at early neurulation

    PubMed Central

    2011-01-01

    Background We have previously demonstrated that alcohol exposure at early neurulation induces growth retardation, neural tube abnormalities, and alteration of DNA methylation. To explore the global gene expression changes which may underline these developmental defects, microarray analyses were performed in a whole embryo mouse culture model that allows control over alcohol and embryonic variables. Result Alcohol caused teratogenesis in brain, heart, forelimb, and optic vesicle; a subset of the embryos also showed cranial neural tube defects. In microarray analysis (accession number GSM9545), adopting hypothesis-driven Gene Set Enrichment Analysis (GSEA) informatics and intersection analysis of two independent experiments, we found that there was a collective reduction in expression of neural specification genes (neurogenin, Sox5, Bhlhe22), neural growth factor genes [Igf1, Efemp1, Klf10 (Tieg), and Edil3], and alteration of genes involved in cell growth, apoptosis, histone variants, eye and heart development. There was also a reduction of retinol binding protein 1 (Rbp1), and de novo expression of aldehyde dehydrogenase 1B1 (Aldh1B1). Remarkably, four key hematopoiesis genes (glycophorin A, adducin 2, beta-2 microglobulin, and ceruloplasmin) were absent after alcohol treatment, and histone variant genes were reduced. The down-regulation of the neurospecification and the neurotrophic genes were further confirmed by quantitative RT-PCR. Furthermore, the gene expression profile demonstrated distinct subgroups which corresponded with two distinct alcohol-related neural tube phenotypes: an open (ALC-NTO) and a closed neural tube (ALC-NTC). Further, the epidermal growth factor signaling pathway and histone variants were specifically altered in ALC-NTO, and a greater number of neurotrophic/growth factor genes were down-regulated in the ALC-NTO than in the ALC-NTC embryos. Conclusion This study revealed a set of genes vulnerable to alcohol exposure and genes that were

  12. Altered choroid plexus gene expression in major depressive disorder

    PubMed Central

    Turner, Cortney A.; Thompson, Robert C.; Bunney, William E.; Schatzberg, Alan F.; Barchas, Jack D.; Myers, Richard M.; Akil, Huda; Watson, Stanley J.

    2014-01-01

    Given the emergent interest in biomarkers for mood disorders, we assessed gene expression in the choroid plexus (CP), the region that produces cerebrospinal fluid (CSF), in individuals with major depressive disorder (MDD). Genes that are expressed in the CP can be secreted into the CSF and may be potential biomarker candidates. Given that we have previously shown that fibroblast growth factor family members are differentially expressed in post-mortem brain of subjects with MDD and the CP is a known source of growth factors in the brain, we posed the question whether growth factor dysregulation would be found in the CP of subjects with MDD. We performed laser capture microscopy of the CP at the level of the hippocampus in subjects with MDD and psychiatrically normal controls. We then extracted, amplified, labeled, and hybridized the cRNA to Illumina BeadChips to assess gene expression. In controls, the most highly abundant known transcript was transthyretin. Moreover, half of the 14 most highly expressed transcripts in controls encode ribosomal proteins. Using BeadStudio software, we identified 169 transcripts differentially expressed (p < 0.05) between control and MDD samples. Using pathway analysis we noted that the top network altered in subjects with MDD included multiple members of the transforming growth factor-beta (TGFβ) pathway. Quantitative real-time PCR (qRT-PCR) confirmed downregulation of several transcripts that interact with the extracellular matrix in subjects with MDD. These results suggest that there may be an altered cytoskeleton in the CP in MDD subjects that may lead to a disrupted blood-CSF-brain barrier. PMID:24795602

  13. Plasmodium infection alters Anopheles gambiae detoxification gene expression

    PubMed Central

    2010-01-01

    Background Anopheles gambiae has been shown to change its global gene expression patterns upon Plasmodium infection. While many alterations are directly related to the mosquito's innate immune response, parasite invasion is also expected to generate toxic by-products such as free radicals. The current study aimed at identifying which loci coding for detoxification enzymes are differentially expressed as a function of Plasmodium berghei infection in midgut and fat body tissues. Results Using a custom-made DNA microarray, transcript levels of 254 loci primarily belonging to three major detoxification enzyme families (glutathione S-transferases, cytochrome P450 monooxygenases and esterases) were compared in infected and uninfected mosquitoes both during ookinete invasion and the release of sporozoites into the hemocoel. The greatest changes in gene expression were observed in the midgut in response to ookinete invasion. Interestingly, many detoxification genes including a large number of P450s were down-regulated at this stage. In the fat body, while less dramatic, gene expression alterations were also observed and occurred during the ookinete invasion and during the release of sporozoites into the hemocoel. While most gene expression changes were tissue-related, CYP6M2, a CYP previously associated with insecticide resistance, was over-expressed both in the midgut and fat body during ookinete invasion. Conclusions Most toxicity-related reactions occur in the midgut shortly after the ingestion of an infected blood meal. Strong up-regulation of CYP6M2 in the midgut and the fat body as well as its previous association with insecticide resistance shows its broad role in metabolic detoxification. PMID:20482856

  14. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria.

    PubMed

    Chino, Yukihiro; Samukawa, Yoshishige; Sakai, Soichi; Nakai, Yasuhiro; Yamaguchi, Jun-ichi; Nakanishi, Takeo; Tamai, Ikumi

    2014-10-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors have been reported to lower the serum uric acid (SUA) level. To elucidate the mechanism responsible for this reduction, SUA and the urinary excretion rate of uric acid (UE(UA)) were analysed after the oral administration of luseogliflozin, a SGLT2 inhibitor, to healthy subjects. After dosing, SUA decreased, and a negative correlation was observed between the SUA level and the UE(UA), suggesting that SUA decreased as a result of the increase in the UE(UA). The increase in UE(UA) was correlated with an increase in urinary D-glucose excretion, but not with the plasma luseogliflozin concentration. Additionally, in vitro transport experiments showed that luseogliflozin had no direct effect on the transporters involved in renal UA reabsorption. To explain that the increase in UE(UA) is likely due to glycosuria, the study focused on the facilitative glucose transporter 9 isoform 2 (GLUT9ΔN, SLC2A9b), which is expressed at the apical membrane of the kidney tubular cells and transports both UA and D-glucose. It was observed that the efflux of [(14) C]UA in Xenopus oocytes expressing the GLUT9 isoform 2 was trans-stimulated by 10 mm D-glucose, a high concentration of glucose that existed under SGLT2 inhibition. On the other hand, the uptake of [(14) C]UA by oocytes was cis-inhibited by 100 mm D-glucose, a concentration assumed to exist in collecting ducts. In conclusion, it was demonstrated that the UE(UA) could potentially be increased by luseogliflozin-induced glycosuria, with alterations of UA transport activity because of urinary glucose.

  15. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria

    PubMed Central

    Chino, Yukihiro; Samukawa, Yoshishige; Sakai, Soichi; Nakai, Yasuhiro; Yamaguchi, Jun-ichi; Nakanishi, Takeo; Tamai, Ikumi

    2014-01-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors have been reported to lower the serum uric acid (SUA) level. To elucidate the mechanism responsible for this reduction, SUA and the urinary excretion rate of uric acid (UEUA) were analysed after the oral administration of luseogliflozin, a SGLT2 inhibitor, to healthy subjects. After dosing, SUA decreased, and a negative correlation was observed between the SUA level and the UEUA, suggesting that SUA decreased as a result of the increase in the UEUA. The increase in UEUA was correlated with an increase in urinary d-glucose excretion, but not with the plasma luseogliflozin concentration. Additionally, in vitro transport experiments showed that luseogliflozin had no direct effect on the transporters involved in renal UA reabsorption. To explain that the increase in UEUA is likely due to glycosuria, the study focused on the facilitative glucose transporter 9 isoform 2 (GLUT9ΔN, SLC2A9b), which is expressed at the apical membrane of the kidney tubular cells and transports both UA and d-glucose. It was observed that the efflux of [14C]UA in Xenopus oocytes expressing the GLUT9 isoform 2 was trans-stimulated by 10 mm d-glucose, a high concentration of glucose that existed under SGLT2 inhibition. On the other hand, the uptake of [14C]UA by oocytes was cis-inhibited by 100 mm d-glucose, a concentration assumed to exist in collecting ducts. In conclusion, it was demonstrated that the UEUA could potentially be increased by luseogliflozin-induced glycosuria, with alterations of UA transport activity because of urinary glucose. PMID:25044127

  16. Osmolality and solute composition are strong regulators of AQP2 expression in renal principal cells.

    PubMed

    Storm, R; Klussmann, E; Geelhaar, A; Rosenthal, W; Maric, K

    2003-01-01

    The water permeability of the renal collecting duct is regulated by the insertion of aquaporin-2 (AQP2) into the apical plasma membrane of epithelial (principal) cells. Using primary cultured epithelial cells from the inner medulla of rat kidney (IMCD cells), we show that osmolality and solute composition are potent regulators of AQP2 mRNA and protein synthesis, as well as the classical cAMP-dependent pathway, but do not affect the arginine vasopressin-induced AQP2 shuttle. In the presence of the cAMP analog dibutyryl cAMP (DBcAMP, 500 microM), NaCl and sorbitol, but not urea, evoked a robust increase of AQP2 expression in IMCD cells, with NaCl being far more potent than sorbitol. cAMP-responsive element-binding protein phosphorylation increased with DBcAMP concentrations but was not altered by changes in osmolality. In the rat and human AQP2 promoter, we identified a putative tonicity-responsive element. We conclude that, in addition to the arginine vasopressin/cAMP-signaling cascade, a further pathway activated by elevated effective osmolality (tonicity) is crucial for the expression of AQP2 in IMCD cells, and we suggest that the effect is mediated via the tonicity-responsive element.

  17. [Alterations of teeth and jaws in children with chronic renal failure].

    PubMed

    Scheutzel, P; Ritter, W

    1989-02-01

    Dental examination of 50 children with chronic renal failure revealed enamel hypoplasia in 26 (52%), retardation of dental age in 18 (36%) and delay of dental eruption in 16 (32%) cases. In comparison to normal children the prevalence of caries was significantly lower. Half of the children showed radiologic changes in the jaw-bones already during preterminal stage of renal insufficiency. The possible role of the dentist concerning early diagnosis of renal failure is discussed.

  18. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    PubMed Central

    Lee, Kuei-Fang; Weng, Julia Tzu-Ya; Hsu, Paul Wei-Che; Chi, Yu-Hsiang; Chen, Ching-Kai; Liu, Ingrid Y.; Chen, Yi-Cheng; Wu, Lawrence Shih-Hsin

    2014-01-01

    Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders. PMID:25276823

  19. Decreased TCL6 expression is associated with poor prognosis in patients with clear cell renal cell carcinoma

    PubMed Central

    Shi, Guohai; Zhang, Hailiang; Sun, Fukang; Ye, Dingwei

    2017-01-01

    One-third of clear cell renal cell carcinoma (ccRCC) patients present with metastasis at the time of diagnosis. The prognosis of these patients is poor. To identify potential prognostic biomarkers and therapeutic targets for ccRCC, we re-evaluated published long non-coding RNA (lncRNA) expression profiling data from the Gene Expression Omnibus and ArrayExpress database. We found that five lncRNAs were differentially expressed in ccRCC and adjacent tissues. These lncRNAs were assessed in an independent cohort of 71 paired patient samples using real-time PCR. Differences in expression of three of the lncRNAs (ENSG00000177133, TCL6, and ENSG00000244020) were validated in this analysis. Kaplan-Meier analysis indicated that low expression of ENSG00000177133 and TCL6 was associated with a poor prognosis. Univariate and multivariate regression analyses demonstrated that TCL6 but not ENSG00000177133 expression was an independent predictor of ccRCC aggressiveness and had hazard ratios predictive of clinical outcome. TCL6 expression was negatively correlated with pTNM stage. Overexpression of TCL6 in 786-O and Caki-1 ccRCC cells decreased proliferation and increased apoptosis compared to controls. Our results indicate that lncRNA expression is altered in ccRCC and that decreased TCL6 expression may be an independent adverse prognostic factor in ccRCC patients. PMID:27494890

  20. Signaling pathway factors expression in renal tissue of apoE-knockout mice.

    PubMed

    Zhou, Tian-Biao

    2015-01-01

    Apolipoprotein E (apoE) is regarded as one of the major plasma lipoproteins, and it plays an important role in the transport and metabolism of lipids. apoE can be found in multiple tissues, such as liver, kidney, jejunum, urinary bladder, ileum, colon, brain, adrenal glands, lung, ovary, spleen, pancreas, and testis, etc. As a secreted protein, it plays an important role in the systemic lipoprotein metabolism and vascular wall homeostasis and in the pathogenesis of renal diseases. apoE-knockout (apoE(-/-)) mice is a classic model of atherosclerosis and renal diseases. However, no review summed up the signaling pathway factors expression in renal tissue of apoE-knockout mice. The literatures were searched extensively and this review was performed to review the signaling pathway factors expression in renal tissue of apoE-knockout mice.

  1. Expression alterations define unique molecular characteristics of spinal ependymomas

    PubMed Central

    Lourdusamy, Anbarasu; Rahman, Ruman; Grundy, Richard G.

    2015-01-01

    Ependymomas are glial tumors that originate in either intracranial or spinal regions. Although tumors from different regions are histologically similar, they are biologically distinct. We therefore sought to identify molecular characteristics of spinal ependymomas (SEPN) in order to better understand the disease biology of these tumors. Using gene expression profiles of 256 tumor samples, we identified increased expression of 1,866 genes in SEPN when compared to intracranial ependymomas. These genes are mainly related to anterior/posterior pattern specification, response to oxidative stress, glial cell differentiation, DNA repair, and PPAR signalling, and also significantly enriched with cellular senescence genes (P = 5.5 × 10−03). In addition, a high number of significantly down-regulated genes in SEPN are localized to chromosome 22 (81 genes from chr22: 43,325,255 – 135,720,974; FDR = 1.77 × 10−23 and 22 genes from chr22: 324,739 – 32,822,302; FDR = 2.07 × 10−09) including BRD1, EP300, HDAC10, HIRA, HIC2, MKL1, and NF2. Evaluation of NF2 co-expressed genes further confirms the enrichment of chromosome 22 regions. Finally, systematic integration of chromosome 22 genes with interactome and NF2 co-expression data identifies key candidate genes. Our results reveal unique molecular characteristics of SEPN such as altered expression of cellular senescence and chromosome 22 genes. PMID:25909290

  2. Metabolism-related enzyme alterations identified by proteomic analysis in human renal cell carcinoma

    PubMed Central

    Lu, Zejun; Yao, Yuqin; Song, Qi; Yang, Jinliang; Zhao, Xiangfei; Yang, Ping; Kang, Jingbo

    2016-01-01

    The renal cell carcinoma (RCC) is one of the most common types of kidney neoplasia in Western countries; it is relatively resistant to conventional chemotherapy and radiotherapy. Metabolic disorders have a profound effect on the degree of malignancy and treatment resistance of the tumor. However, the molecular characteristics related to impaired metabolism leading to the initiation of RCC are still not very clear. In this study, two-dimensional electrophoresis (2-DE) and mass spectra (MS) technologies were utilized to identify the proteins involved in energy metabolism of RCC. A total of 73 proteins that were differentially expressed in conventional RCC, in comparison with the corresponding normal kidney tissues, were identified. Bioinformatics analysis has shown that these proteins are involved in glycolysis, urea cycle, and the metabolic pathways of pyruvate, propanoate, and arginine/proline. In addition, some were also involved in the signaling network of p53 and FAS. These results provide some clues for new therapeutic targets and treatment strategies of RCC. PMID:27022288

  3. VHL-dependent alterations in the secretome of renal cell carcinoma: Association with immune cell response?

    PubMed Central

    Stehle, Franziska; Leisz, Sandra; Schulz, Kristin; Schwurack, Nicolle; Weber, Nico; Massa, Chiara; Kalich, Jana; Fahldieck, Corinna; Seliger, Barbara

    2015-01-01

    Secreted proteins could modulate the interaction between tumor, stroma and immune cells within the tumor microenvironment thereby mounting an immunosuppressive tumor microenvironment. In order to determine the secretome-mediated, von Hippel Lindau (VHL)-regulated cross-talk between tumor cells and T lymphocytes peripheral blood mononuclear cells (PBMC) from healthy donors were either cultured in conditioned media obtained from normoxic and hypoxic human VHL-deficient renal cell carcinoma (RCC) cell line (786-0VHL−) and its wild type (wt) VHL-transfected counterpart (786-0VHL+) or directly co-cultured with both cell lines. An increased T cell proliferation was detected in the presence of 786-0VHL+-conditioned medium. By applying a quantitative proteomic-based approach using differential gel electrophoresis followed by mass spectrometry fourteen proteins were identified to be differentially expressed within the secretome of 786-0VHL− cells when compared to that of 786-0VHL+ cells. All proteins identified were involved in multiple tumor-associated biological functions including immune responses. Functional studies on manganese superoxide dismutase 2 (MnSOD2) demonstrated that it was a regulator of T cell activation-induced oxidative signaling and cell death. Direct effects of soluble MnSOD2 on the growth properties and interleukin 2 (IL-2) secretion of T cells could be demonstrated underlining the critical role of extracellular MnSOD2 levels for T cell proliferation and activation. PMID:26486078

  4. VHL-dependent alterations in the secretome of renal cell carcinoma: Association with immune cell response?

    PubMed

    Stehle, Franziska; Leisz, Sandra; Schulz, Kristin; Schwurack, Nicolle; Weber, Nico; Massa, Chiara; Kalich, Jana; Fahldieck, Corinna; Seliger, Barbara

    2015-12-22

    Secreted proteins could modulate the interaction between tumor, stroma and immune cells within the tumor microenvironment thereby mounting an immunosuppressive tumor microenvironment. In order to determine the secretome-mediated, von Hippel Lindau (VHL)-regulated cross-talk between tumor cells and T lymphocytes peripheral blood mononuclear cells (PBMC) from healthy donors were either cultured in conditioned media obtained from normoxic and hypoxic human VHL-deficient renal cell carcinoma (RCC) cell line (786-0VHL-) and its wild type (wt) VHL-transfected counterpart (786-0VHL+) or directly co-cultured with both cell lines. An increased T cell proliferation was detected in the presence of 786-0VHL+-conditioned medium. By applying a quantitative proteomic-based approach using differential gel electrophoresis followed by mass spectrometry fourteen proteins were identified to be differentially expressed within the secretome of 786-0VHL- cells when compared to that of 786-0VHL+ cells. All proteins identified were involved in multiple tumor-associated biological functions including immune responses. Functional studies on manganese superoxide dismutase 2 (MnSOD2) demonstrated that it was a regulator of T cell activation-induced oxidative signaling and cell death. Direct effects of soluble MnSOD2 on the growth properties and interleukin 2 (IL-2) secretion of T cells could be demonstrated underlining the critical role of extracellular MnSOD2 levels for T cell proliferation and activation.

  5. Missense mutation T485S alters NBCe1-A electrogenicity causing proximal renal tubular acidosis.

    PubMed

    Zhu, Quansheng; Shao, Xuesi M; Kao, Liyo; Azimov, Rustam; Weinstein, Alan M; Newman, Debra; Liu, Weixin; Kurtz, Ira

    2013-08-15

    Mutations in SLC4A4, the gene encoding the electrogenic Na(+)-HCO3(-) cotransporter NBCe1, cause severe proximal renal tubular acidosis (pRTA), growth retardation, decreased IQ, and eye and teeth abnormalities. Among the known NBCe1 mutations, the disease-causing mechanism of the T485S (NBCe1-A numbering) mutation is intriguing because the substituted amino acid, serine, is structurally and chemically similar to threonine. In this study, we performed intracellular pH and whole cell patch-clamp measurements to investigate the base transport and electrogenic properties of NBCe1-A-T485S in mammalian HEK 293 cells. Our results demonstrated that Ser substitution of Thr485 decreased base transport by ~50%, and importantly, converted NBCe1-A from an electrogenic to an electroneutral transporter. Aqueous accessibility analysis using sulfhydryl reactive reagents indicated that Thr485 likely resides in an NBCe1-A ion interaction site. This critical location is also supported by the finding that G486R (a pRTA causing mutation) alters the position of Thr485 in NBCe1-A thereby impairing its transport function. By using NO3(-) as a surrogate ion for CO3(2-), our result indicated that NBCe1-A mediates electrogenic Na(+)-CO3(2-) cotransport when functioning with a 1:2 charge transport stoichiometry. In contrast, electroneutral NBCe1-T485S is unable to transport NO3(-), compatible with the hypothesis that it mediates Na(+)-HCO3(-) cotransport. In patients, NBCe1-A-T485S is predicted to transport Na(+)-HCO3(-) in the reverse direction from blood into proximal tubule cells thereby impairing transepithelial HCO3(-) absorption, possibly representing a new pathogenic mechanism for generating human pRTA.

  6. Altered electrolyte handling of the choroid plexus in rats with glycerol-induced acute renal failure.

    PubMed

    Ishikawa, Atsuko; Kono, Kentaro; Sakae, Rie; Aiba, Tetsuya; Kawasaki, Hiromu; Kurosaki, Yuji

    2010-11-01

    The altered electrolyte handling of the choroid plexus was investigated in rats with acute renal failure (ARF) using lithium and rubidium as surrogate markers for sodium and potassium, respectively. Firstly, the transport of these two markers from the plasma to cerebrospinal fluid (CSF) was evaluated after they were concurrently injected into the femoral vein. As a result, their disposition from the plasma to CSF was shown to decrease in ARF rats, but the relationship profile between those two markers was not different from that observed in normal rats, indicating that the decreased disposition of lithium and rubidium occurs without affecting the stoichiometric balance. To clarify the mechanisms accounting for the decreased disposition, an inhibition study was then performed. When bumetanide, an inhibitor of the Na(+) /K(+) /2Cl(-) co-transporter, was directly introduced into the cerebroventricle prior to lithium and rubidium being intravenously administered, a marked increase in the markers' disposition was observed. However, such an increased disposition did not occur when bumetanide was injected into the femoral vein. Other inhibitors, such as amiloride for the Na(+) /H(+) exchanger and ouabain for Na(+) /K(+) -ATPase, did not show any effects on marker disposition regardless of the inhibitor being administered into either the cerebroventricle or femoral vein. These findings suggest that the decreased marker disposition in ARF rats is due to an increased efflux process of the choroid plexus mediated by the Na(+) /K(+) /2Cl(-) co-transporter. That is, electrolyte efflux from the CSF to plasma increases, and thereby the electrolyte influx from the plasma to CSF is counteracted.

  7. Fibronectin 1 mRNA expression correlates with advanced disease in renal cancer

    PubMed Central

    2010-01-01

    Background Fibronectin 1 (FN1) is a glycoprotein involved in cellular adhesion and migration processes. The aim of this study was to elucidate the role of FN1 in development of renal cell cancer (RCC) and to determine a prognostic relevance for optimal clinical management. Methods 212 renal tissue samples (109 RCC, 86 corresponding tissues from adjacent normal renal tissue and 17 oncocytomas) were collected from patients undergoing surgery for renal tumors and subjected to total RNA extraction. Detection of FN1 mRNA expression was performed using quantitative real time PCR, three endogenous controls, renal proximal tubular epithelial cells (RPTEC) as biological control and the ΔΔCt method for calculation of relative quantities. Results Mean tissue specific FN1 mRNA expression was found to be increased approximately seven fold comparing RCC and corresponding kidney control tissues (p < 0.001; ANOVA). Furthermore, tissue specific mean FN1 expression was increased approx. 11 fold in clear cell compared to papillary RCC (p = 9×10-5; Wilcoxon rank sum test). Patients with advanced disease had higher FN1 expression when compared to organ-confined disease (p < 0.001; Wilcoxon rank sum test). Applying subgroup analysis we found a significantly higher FN1 mRNA expression between organ-confined and advanced disease in the papillary and not in the clear cell RCC group (p = 0.02 vs. p = 0.2; Wilcoxon rank sum test). There was an increased expression in RCC compared to oncocytoma (p = 0.016; ANOVA). Conclusions To our knowledge, this is the first study to show that FN1 mRNA expression is higher in RCC compared to normal renal tissue. FN1 mRNA expression might serve as a marker for RCC aggressiveness, indicating early systemic progression particularly for patients with papillary RCC. PMID:20860816

  8. Fibronectin 1 mRNA expression correlates with advanced disease in renal cancer.

    PubMed

    Waalkes, Sandra; Atschekzei, Faranaz; Kramer, Mario W; Hennenlotter, Jörg; Vetter, Gesa; Becker, Jan U; Stenzl, Arnulf; Merseburger, Axel S; Schrader, Andres J; Kuczyk, Markus A; Serth, Jürgen

    2010-09-22

    Fibronectin 1 (FN1) is a glycoprotein involved in cellular adhesion and migration processes. The aim of this study was to elucidate the role of FN1 in development of renal cell cancer (RCC) and to determine a prognostic relevance for optimal clinical management. 212 renal tissue samples (109 RCC, 86 corresponding tissues from adjacent normal renal tissue and 17 oncocytomas) were collected from patients undergoing surgery for renal tumors and subjected to total RNA extraction. Detection of FN1 mRNA expression was performed using quantitative real time PCR, three endogenous controls, renal proximal tubular epithelial cells (RPTEC) as biological control and the ΔΔCt method for calculation of relative quantities. Mean tissue specific FN1 mRNA expression was found to be increased approximately seven fold comparing RCC and corresponding kidney control tissues (p < 0.001; ANOVA). Furthermore, tissue specific mean FN1 expression was increased approx. 11 fold in clear cell compared to papillary RCC (p = 9×10-5; Wilcoxon rank sum test). Patients with advanced disease had higher FN1 expression when compared to organ-confined disease (p < 0.001; Wilcoxon rank sum test). Applying subgroup analysis we found a significantly higher FN1 mRNA expression between organ-confined and advanced disease in the papillary and not in the clear cell RCC group (p = 0.02 vs. p = 0.2; Wilcoxon rank sum test). There was an increased expression in RCC compared to oncocytoma (p = 0.016; ANOVA). To our knowledge, this is the first study to show that FN1 mRNA expression is higher in RCC compared to normal renal tissue. FN1 mRNA expression might serve as a marker for RCC aggressiveness, indicating early systemic progression particularly for patients with papillary RCC.

  9. Clinicopathological study of expression of lymphatic vessels in renal allograft biopsy after treatment for acute rejection.

    PubMed

    Oka, K; Namba, Y; Ichimaru, N; Moriyama, T; Kyo, M; Kokado, Y; Imai, E; Takahara, S

    2009-12-01

    Lymph vessel expression is related to inflammatory cell infiltration, around renal tubules in acute rejection episodes (ARE) of transplanted kidneys. However, there is little information on the lymph vessels after treatment of an ARE, particularly in relation to renal function and histological findings. We investigated 13 cases of ARE diagnosed by kidney transplant biopsy performed from 1997 to 2005 within 3 years of transplantation. Treatment of the ARE lead to an improved serum creatinine level in all cases. There was neither an ABO-incompatible nor an acute humoral rejection case. Lymphatic vessels in re-biopsies were examined using immunohistochemical staining with D2-40 antibody that detected lymphatic endothelium. Re-biopsy cases in which the baseline creatinine had increased by more than 20% despite treatment were considered the severe group; the others, as the stable group. The relation between lymphatic vessel density (LVD) and renal function was examined using Banff scores. LVD was significantly higher in the severe than the stable group. The expression of lymph vessels versus the Banff score showed a direct relation: greater Banff scores showed higher expressions of lymph vessels. The expression of lymph vessels in renal allograft specimens after treatment of an ARE was related to deterioration of renal function and inflammatory cell invasion. We plan a further examination of the relationship between the expression of lymph vessels and long-term prognosis.

  10. Hyperlipidemia-Associated Renal Damage Decreases Klotho Expression in Kidneys from ApoE Knockout Mice

    PubMed Central

    Sastre, Cristina; Rubio-Navarro, Alfonso; Buendía, Irene; Gómez-Guerrero, Carmen; Blanco, Julia; Mas, Sebastian; Egido, Jesús; Blanco-Colio, Luis Miguel; Ortiz, Alberto; Moreno, Juan Antonio

    2013-01-01

    Background Klotho is a renal protein with anti-aging properties that is downregulated in conditions related to kidney injury. Hyperlipidemia accelerates the progression of renal damage, but the mechanisms of the deleterious effects of hyperlipidemia remain unclear. Methods We evaluated whether hyperlipidemia modulates Klotho expression in kidneys from C57BL/6 and hyperlipidemic apolipoprotein E knockout (ApoE KO) mice fed with a normal chow diet (ND) or a Western-type high cholesterol-fat diet (HC) for 5 to 10 weeks, respectively. Results In ApoE KO mice, the HC diet increased serum and renal cholesterol levels, kidney injury severity, kidney macrophage infiltration and inflammatory chemokine expression. A significant reduction in Klotho mRNA and protein expression was observed in kidneys from hypercholesteromic ApoE KO mice fed a HC diet as compared with controls, both at 5 and 10 weeks. In order to study the mechanism involved in Klotho down-regulation, murine tubular epithelial cells were treated with ox-LDL. Oxidized-LDL were effectively uptaken by tubular cells and decreased both Klotho mRNA and protein expression in a time- and dose-dependent manner in these cells. Finally, NF-κB and ERK inhibitors prevented ox-LDL-induced Klotho downregulation. Conclusion Our results suggest that hyperlipidemia-associated kidney injury decreases renal expression of Klotho. Therefore, Klotho could be a key element explaining the relationship between hyperlipidemia and aging with renal disease. PMID:24386260

  11. Radiation Exposure Alters Expression of Metabolic Enzyme Genes In Mice

    NASA Technical Reports Server (NTRS)

    Wotring, Virginia E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2010-01-01

    Most pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Because of the importance of the liver in drug metabolism it is important to understand the effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. This study is an effort to examine the effects of adaptive mechanisms that may be triggered by early exposure to low radiation doses. Using procedures approved by the JSC Animal Care & Use Committee, C57 male mice were exposed to Cs-137 in groups: controls, low dose (50 mGy), high dose (6Gy) and a fourth group that received both radiation doses separated by 24 hours. Animals were anesthetized and sacrificed 4 hours after their last radiation exposure. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted and purified (Absolutely RNA, Agilent). Quality of RNA samples was evaluated (Agilent Bioanalyzer 2100). Complementary DNA was prepared from high-quality RNA samples, and used to run RT-qPCR screening arrays for DNA Repair and Drug Metabolism (SuperArray, SABiosciences/Qiagen; BioRad Cfx96 qPCR System). Of 91 drug metabolism genes examined, expression of 7 was altered by at least one treatment condition. Genes that had elevated expression include those that metabolize promethazine and steroids (4-8-fold), many that reduce oxidation products, and one that reduces heavy metal exposure (greater than 200-fold). Of the 91 DNA repair and general metabolism genes examined, expression of 14 was altered by at least one treatment condition. These gene expression changes are likely homeostatic and could lead to development of new radioprotective countermeasures.

  12. Mobile phone radiation might alter protein expression in human skin

    PubMed Central

    Karinen, Anu; Heinävaara, Sirpa; Nylund, Reetta; Leszczynski, Dariusz

    2008-01-01

    Background Earlier we have shown that the mobile phone radiation (radiofrequency modulated electromagnetic fields; RF-EMF) alters protein expression in human endothelial cell line. This does not mean that similar response will take place in human body exposed to this radiation. Therefore, in this pilot human volunteer study, using proteomics approach, we have examined whether a local exposure of human skin to RF-EMF will cause changes in protein expression in living people. Results Small area of forearm's skin in 10 female volunteers was exposed to RF-EMF (specific absorption rate SAR = 1.3 W/kg) and punch biopsies were collected from exposed and non-exposed areas of skin. Proteins extracted from biopsies were separated using 2-DE and protein expression changes were analyzed using PDQuest software. Analysis has identified 8 proteins that were statistically significantly affected (Anova and Wilcoxon tests). Two of the proteins were present in all 10 volunteers. This suggests that protein expression in human skin might be affected by the exposure to RF-EMF. The number of affected proteins was similar to the number of affected proteins observed in our earlier in vitro studies. Conclusion This is the first study showing that molecular level changes might take place in human volunteers in response to exposure to RF-EMF. Our study confirms that proteomics screening approach can identify protein targets of RF-EMF in human volunteers. PMID:18267023

  13. Altered glucocorticoid receptor expression and function during mouse skin carcinogenesis.

    PubMed

    Budunova, I V; Carbajal, S; Kang, H; Viaje, A; Slaga, T J

    1997-03-01

    Glucocorticoids are the most potent inhibitors of tumor promotion in mouse skin, when applied with a promoting agent at the early stages of promotion. However, established skin papillomas become resistant to growth inhibition by glucocorticoids. Glucocorticoid control of cellular functions is mediated by the glucocorticoid receptor (GR), a well-known transcription factor. Here we present data on GR expression and function in mouse papillomas and squamous cell carcinomas. Tumors were produced in SENCAR mice by a 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate two-stage protocol. In early papillomas (after 15-20 wk of promotion), northern blotting revealed a decrease in the GR mRNA level that was confirmed by a binding assay. However, in late papillomas (after 30-40 wk of promotion), and especially in squamous cell carcinomas, the level of GR in both assays was similar to or higher than the GR level in normal epidermis. To test the functional capability of GR in tumors, we compared the effect of the synthetic glucocorticoid fluocinolone acetonide (FA) on keratinocyte proliferation and on expression of glucocorticoid-responsive genes in normal epidermis, hyperplastic skin surrounding tumors, and mouse skin papillomas. FA strongly inhibited DNA synthesis in keratinocytes in normal skin and tumor-surrounding skin but had no effect on DNA synthesis in papillomas. In addition, FA strongly induced metallothionein 1 expression and inhibited connexin 26 expression in skin but did not affect expression of these genes in tumors. These data suggest that alteration of both the expression and function of GR may be an important mechanism of tumor promotion in skin.

  14. Nephron-Specific Deletion of Circadian Clock Gene Bmal1 Alters the Plasma and Renal Metabolome and Impairs Drug Disposition.

    PubMed

    Nikolaeva, Svetlana; Ansermet, Camille; Centeno, Gabriel; Pradervand, Sylvain; Bize, Vincent; Mordasini, David; Henry, Hugues; Koesters, Robert; Maillard, Marc; Bonny, Olivier; Tokonami, Natsuko; Firsov, Dmitri

    2016-10-01

    The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question, we performed a combined functional, transcriptomic, and metabolomic analysis in mice with inducible conditional knockout (cKO) of BMAL1, which is critically involved in the circadian clock system, in renal tubular cells (Bmal1(lox/lox)/Pax8-rtTA/LC1 mice). Induction of cKO in adult mice did not produce obvious abnormalities in renal sodium, potassium, or water handling. Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport in cKO mice compared with control littermates. Furthermore, kidneys from cKO mice exhibited a significant decrease in the NAD(+)-to-NADH ratio, which reflects the oxidative phosphorylation-to-glycolysis ratio and/or the status of mitochondrial function. Metabolome profiling showed significant changes in plasma levels of amino acids, biogenic amines, acylcarnitines, and lipids. In-depth analysis of two selected pathways revealed a significant increase in plasma urea level correlating with increased renal Arginase II activity, hyperargininemia, and increased kidney arginine content as well as a significant increase in plasma creatinine concentration and a reduced capacity of the kidney to secrete anionic drugs (furosemide) paralleled by an approximate 80% decrease in the expression level of organic anion transporter 3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at the intrarenal and systemic levels and are involved in drug disposition. Copyright © 2016 by the American Society of Nephrology.

  15. Prognostic and predictive value of VHL gene alteration in renal cell carcinoma: a meta-analysis and review.

    PubMed

    Kim, Bum Jun; Kim, Jung Han; Kim, Hyeong Su; Zang, Dae Young

    2017-01-17

    The von Hippel-Lindau (VHL) gene is often inactivated in sporadic renal cell carcinoma (RCC) by mutation or promoter hypermethylation. The prognostic or predictive value of VHL gene alteration is not well established. We conducted this meta-analysis to evaluate the association between the VHL alteration and clinical outcomes in patients with RCC. We searched PUBMED, MEDLINE and EMBASE for articles including following terms in their titles, abstracts, or keywords: 'kidney or renal', 'carcinoma or cancer or neoplasm or malignancy', 'von Hippel-Lindau or VHL', 'alteration or mutation or methylation', and 'prognostic or predictive'. There were six studies fulfilling inclusion criteria and a total of 633 patients with clear cell RCC were included in the study: 244 patients who received anti-vascular endothelial growth factor (VEGF) therapy in the predictive value analysis and 419 in the prognostic value analysis. Out of 663 patients, 410 (61.8%) had VHL alteration. The meta-analysis showed no association between the VHL gene alteration and overall response rate (relative risk = 1.47 [95% CI, 0.81-2.67], P = 0.20) or progression free survival (hazard ratio = 1.02 [95% CI, 0.72-1.44], P = 0.91) in patients with RCC who received VEGF-targeted therapy. There was also no correlation between the VHL alteration and overall survival (HR = 0.80 [95% CI, 0.56-1.14], P = 0.21). In conclusion, this meta-analysis indicates that VHL gene alteration has no prognostic or predictive value in patients with clear cell RCC.

  16. Activation of FXR protects against renal fibrosis via suppressing Smad3 expression

    PubMed Central

    Zhao, Kai; He, Jialin; Zhang, Yan; Xu, Zhizhen; Xiong, Haojun; Gong, Rujun; Li, Song; Chen, Shan; He, Fengtian

    2016-01-01

    Renal fibrosis is the common pathway of most chronic kidney disease progression to end-stage renal failure. The nuclear receptor FXR (farnesoid X receptor), a multiple functional transcription factor, plays an important role in protecting against fibrosis. The TGFβ-Smad signaling has a central role in kidney fibrosis. However, it remains unclear whether FXR plays direct anti-fibrotic effect in renal fibrosis via regulating TGFβ-Smad pathway. In this study, we found that the level of FXR was negatively correlated with that of Smad3 and fibronectin (a marker of fibrosis) in human fibrotic kidneys. Activation of FXR suppressed kidney fibrosis and downregulated Smad3 expression, which was markedly attenuated by FXR antagonist. Moreover, the FXR-mediated repression of fibrosis was significantly alleviated by ectopic expression of Smad3. Luciferase reporter assay revealed that FXR activation inhibited the transcriptional activity of Smad3 gene promoter. The in vivo experiments showed that FXR agonist protected against renal fibrosis and downregulated Smad3 expression in UUO mice. These results suggested that FXR may serve as an important negative regulator for manipulating Smad3 expression, and the FXR/Smad3 pathway may be a novel target for the treatment of renal fibrosis. PMID:27853248

  17. The plasma carnitine concentration regulates renal OCTN2 expression and carnitine transport in rats.

    PubMed

    Schürch, Regula; Todesco, Liliane; Novakova, Katarina; Mevissen, Meike; Stieger, Bruno; Krähenbühl, Stephan

    2010-06-10

    Previous findings in rats and in human vegetarians suggest that the plasma carnitine concentration and/or carnitine ingestion may influence the renal reabsorption of carnitine. We tested this hypothesis in rats with secondary carnitine deficiency following treatment with N-trimethyl-hydrazine-3-propionate (THP) for 2 weeks and rats treated with excess L-carnitine for 2 weeks. Compared to untreated control rats, treatment with THP was associated with an approximately 70% decrease in plasma carnitine and with a 74% decrease in the skeletal muscle carnitine content. In contrast, treatment with L-carnitine increased plasma carnitine levels by 80% and the skeletal muscle carnitine content by 50%. Treatment with L-carnitine affected neither the activity of carnitine transport into isolated renal brush border membrane vesicles, nor renal mRNA expression of the carnitine transporter OCTN2. In contrast, in carnitine deficient rats, carnitine transport into isolated brush border membrane vesicles was increased 1.9-fold compared to untreated control rats. Similarly, renal mRNA expression of OCTN2 increased by a factor of 1.7 in carnitine deficient rats, whereas OCTN2 mRNA expression remained unchanged in gut, liver or skeletal muscle. Our study supports the hypothesis that a decrease in the carnitine plasma and/or glomerular filtrate concentration increases renal expression and activity of OCTN2.

  18. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma

    PubMed Central

    Ambrosio, Maria R.; Rocca, Bruno J.; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T.; Tripodi, Sergio A.; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis. PMID:26425551

  19. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma.

    PubMed

    Ambrosio, Maria R; Rocca, Bruno J; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T; Tripodi, Sergio A; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis.

  20. Improper hydration induces global gene expression changes associated with renal development in infant mice.

    PubMed

    Kim, Chong-Su; Shin, Dong-Mi

    2016-01-01

    The kidney is a major organ in which fluid balance and waste excretion is regulated. For the kidney to achieve maturity with functions, normal renal developmental processes need to occur. Comprehensive genetic programs underlying renal development during the prenatal period have been widely studied. However, postnatal renal development, from infancy to the juvenile period, has not been studied yet. Here, we investigated whether structural and functional kidney development was still ongoing in early life by analyzing the renal transcriptional networks of infant (4 weeks old) and juvenile (7 weeks old) mice. We further examined the effects of dehydration on kidney development to unravel the mechanistic bases underlying deteriorative impact of pediatric dehydration on renal development. 3-week-old infant mice that just finished weaning period were provided limited access to a water for fifteen minutes per day for one week (RES 1W) and four weeks (RES 4W) to induce dehydration while control group consumed water ad libitum with free access to the water bottle. Transcriptome analysis was conducted to understand physiological changes during postnatal renal development and dehydration. Kidneys in 4-week- and 7-week-old mice showed significantly distinctive functional gene networks. Gene sets related to cell cycle regulators, fetal kidney patterning molecules, and immature basement membrane integrity were upregulated in infantile kidneys while heightened expressions of genes associated with ion transport and drug metabolism were observed in juvenile kidneys. Dehydration during infancy suppressed renal growth by interrupting the SHH signaling pathway, which targets cell cycle regulators. Importantly, it is likely that disruption of the developmental program ultimately led to a decline in gene expression associated with basement membrane integrity. Altogether, we demonstrate transcriptional events during renal development in infancy and show that the impacts of inadequate

  1. Altered metabolic pathways in clear cell renal cell carcinoma: A meta-analysis and validation study focused on the deregulated genes and their associated networks.

    PubMed

    Zaravinos, Apostolos; Pieri, Myrtani; Mourmouras, Nikos; Anastasiadou, Natassa; Zouvani, Ioanna; Delakas, Dimitris; Deltas, Constantinos

    2014-01-01

    Clear cell renal cell carcinoma (ccRCC) is the predominant subtype of renal cell carcinoma (RCC). It is one of the most therapy-resistant carcinomas, responding very poorly or not at all to radiotherapy, hormonal therapy and chemotherapy. A more comprehensive understanding of the deregulated pathways in ccRCC can lead to the development of new therapies and prognostic markers. We performed a meta- analysis of 5 publicly available gene expression datasets and identified a list of co- deregulated genes, for which we performed extensive bioinformatic analysis coupled with experimental validation on the mRNA level. Gene ontology enrichment showed that many proteins are involved in response to hypoxia/oxygen levels and positive regulation of the VEGFR signaling pathway. KEGG analysis revealed that metabolic pathways are mostly altered in ccRCC. Similarly, Ingenuity Pathway Analysis showed that the antigen presentation, inositol metabolism, pentose phosphate, glycolysis/gluconeogenesis and fructose/mannose metabolism pathways are altered in the disease. Cellular growth, proliferation and carbohydrate metabolism, were among the top molecular and cellular functions of the co-deregulated genes. qRT-PCR validated the deregulated expression of several genes in Caki-2 and ACHN cell lines and in a cohort of ccRCC tissues. NNMT and NR3C1 increased expression was evident in ccRCC biopsies from patients using immunohistochemistry. ROC curves evaluated the diagnostic performance of the top deregulated genes in each dataset. We show that metabolic pathways are mostly deregulated in ccRCC and we highlight those being most responsible in its formation. We suggest that these genes are candidate predictive markers of the disease.

  2. Vibrational force alters mRNA expression in osteoblasts.

    PubMed

    Tjandrawinata, R R; Vincent, V L; Hughes-Fulford, M

    1997-05-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  3. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  4. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  5. Systematic Comparative Protein Expression Profiling of Clear Cell Renal Cell Carcinoma

    PubMed Central

    Lichtenfels, Rudolf; Dressler, Sven P.; Zobawa, Monica; Recktenwald, Christian V.; Ackermann, Angelika; Atkins, Derek; Kersten, Michael; Hesse, Andrea; Puttkammer, Maria; Lottspeich, Friedrich; Seliger, Barbara

    2009-01-01

    Proteome-based technologies represent powerful tools for the analysis of protein expression profiles, including the identification of potential cancer candidate biomarkers. Thus, here we provide a comprehensive protein expression map for clear cell renal cell carcinoma established by systematic comparative two-dimensional gel electrophoresis-based protein expression profiling of 16 paired tissue systems comprising clear cell renal cell carcinoma lesions and corresponding tumor-adjacent renal epithelium using overlapping narrow pH gradients. This approach led to the mapping of 348 distinct spots corresponding to 248 different protein identities. By implementing restriction criteria concerning their detection frequency and overall regulation mode, 28 up- and 56 down-regulated single target spots were considered as potential candidate biomarkers. Based on their gene ontology information, these differentially expressed proteins were classified into distinct functional groups and according to their cellular distribution. Moreover, three representative members of this group, namely calbindin, gelsolin, and heart fatty acid-binding protein, were selected, and their expression pattern was analyzed by immunohistochemistry using tissue microarrays. Thus, this pilot study provides a significant update of the current renal cell carcinoma map and defines a number of differentially expressed proteins, but both their potential as candidate biomarkers and clinical relevance has to be further explored in tissues and for body fluids like serum and urine. PMID:19752005

  6. Expression of adrenergic and cholinergic receptors in murine renal intercalated cells.

    PubMed

    Jun, Jin-Gon; Maeda, Seishi; Kuwahara-Otani, Sachi; Tanaka, Koichi; Hayakawa, Tetsu; Seki, Makoto

    2014-11-01

    Neurons influence renal function and help to regulate fluid homeostasis, blood pressure and ion excretion. Intercalated cells (ICCs) are distributed throughout the renal collecting ducts and help regulate acid/base equilibration. Because ICCs are located among principal cells, it has been difficult to determine the effects that efferent nerve fibers have on this cell population. In this study, we examined the expression of neurotransmitter receptors on the murine renal epithelial M-1 cell line. We found that M-1 cells express a2 and b2 adrenergic receptor mRNA and the b2 receptor protein. Further, b2 receptor-positive cells in the murine cortical collecting ducts also express AQP6, indicating that these cells are ICCs. M-1 cells were found to express m1, m4 and m5 muscarinic receptor mRNAs and the m1 receptor protein. Cells in the collecting ducts also express the m1 receptor protein, and some m1-positive cells express AQP6. Acetylcholinesterase was detected in cortical collecting duct cells. Interestingly, acetylcholinesterase-positive cells neighbored AQP6-positive cells, suggesting that principal cells may regulate the availability of acetylcholine. In conclusion, our data suggest that ICCs in murine renal collecting ducts may be regulated by the adrenergic and cholinergic systems.

  7. Expression of Adrenergic and Cholinergic Receptors in Murine Renal Intercalated Cells

    PubMed Central

    JUN, Jin-Gon; MAEDA, Seishi; KUWAHARA-OTANI, Sachi; TANAKA, Koichi; HAYAKAWA, Tetsu; SEKI, Makoto

    2014-01-01

    ABSTRACT Neurons influence renal function and help to regulate fluid homeostasis, blood pressure and ion excretion. Intercalated cells (ICCs) are distributed throughout the renal collecting ducts and help regulate acid/base equilibration. Because ICCs are located among principal cells, it has been difficult to determine the effects that efferent nerve fibers have on this cell population. In this study, we examined the expression of neurotransmitter receptors on the murine renal epithelial M-1 cell line. We found that M-1 cells express a2 and b2 adrenergic receptor mRNA and the b2 receptor protein. Further, b2 receptor-positive cells in the murine cortical collecting ducts also express AQP6, indicating that these cells are ICCs. M-1 cells were found to express m1, m4 and m5 muscarinic receptor mRNAs and the m1 receptor protein. Cells in the collecting ducts also express the m1 receptor protein, and some m1-positive cells express AQP6. Acetylcholinesterase was detected in cortical collecting duct cells. Interestingly, acetylcholinesterase-positive cells neighbored AQP6-positive cells, suggesting that principal cells may regulate the availability of acetylcholine. In conclusion, our data suggest that ICCs in murine renal collecting ducts may be regulated by the adrenergic and cholinergic systems. PMID:25069412

  8. Expression of hygromycin phosphotransferase alters virulence of Histoplasma capsulatum.

    PubMed

    Smulian, A George; Gibbons, Reta S; Demland, Jeffery A; Spaulding, Deborah T; Deepe, George S

    2007-11-01

    The Escherichia coli hygromycin phosphotransferase (hph) gene, which confers hygromycin resistance, is commonly used as a dominant selectable marker in genetically modified bacteria, fungi, plants, insects, and mammalian cells. Expression of the hph gene has rarely been reported to induce effects other than those expected. Hygromycin B is the most common dominant selectable marker used in the molecular manipulation of Histoplasma capsulatum in the generation of knockout strains of H. capsulatum or as a marker in mutant strains. hph-expressing organisms appear to have no defect in long-term in vitro growth and survival and have been successfully used to exploit host-parasite interaction in short-term cell culture systems and animal experiments. We introduced the hph gene as a selectable marker together with the gene encoding green fluorescent protein into wild-type strains of H. capsulatum. Infection of mice with hph-expressing H. capsulatum yeast cells at sublethal doses resulted in lethality. The lethality was not attributable to the site of integration of the hph construct into the genomes or to the method of integration and was not H. capsulatum strain related. Death of mice was not caused by altered cytokine profiles or an overwhelming fungal burden. The lethality was dependent on the kinase activity of hygromycin phosphotransferase. These results should raise awareness of the potential detrimental effects of the hph gene.

  9. Magnetic resonance spectroscopy and chromatographic methods identify altered lipid composition in human renal neoplasms.

    PubMed

    Tosi, M R; Rodriguez-Estrada, M T; Lercker, G; Poerio, A; Trinchero, A; Reggiani, A; Tugnoli, V

    2004-07-01

    We report on the characterization of the lipid obtained from cortical and medullary normal human kidney tissue, benign renal neoplasms (oncocytoma) and 2 different types of malignant renal neoplasms (chromophobic cell carcinoma and clear cell carcinoma). The total lipid fractions were analyzed by 13C magnetic resonance spectroscopy and thin-layer chromatography, whereas the composition of the total fatty acids and the content of total cholesterol were determined by gas chromatography. alpha-Tocopherol was detected and quantified by high-performance liquid chromatography. The spectroscopic and chromatographic analysis revealed significant differences in the renal tissues examined. It was confirmed that cholesteryl esters (mainly oleate) are typical of clear cell renal carcinomas. Their potential role as prognostic and diagnostic factors is discussed, with particular emphasis on its capability to indicate the tumor diffusion in healthy renal parenchyma. alpha-Tocopherol is prevalent in clear cell carcinoma and it is present in nearly the same low amounts in cortex, medulla and chromophobic cell renal carcinoma. Q10 coenzyme and dolichols were detected by thin-layer chromatography and they are present in significant amounts in the cortex and the benign oncocytoma. Great variations were found in the distribution of saturated and unsaturated fatty acids, especially in the docosapentaenoic, docosahexaenoic and arachidonic acids and the corresponding omega-6/omega-3 fatty acids ratio.

  10. Celecoxib does not alter cardiovascular and renal function during dietary salt loading.

    PubMed

    Wenner, Megan M; Edwards, David G; Ray, Chester A; Rose, William C; Gardner, Timothy J; Stillabower, Michael; Farquhar, William B

    2011-08-01

    1. Cyclo-oxygenase-2 (COX-2)-derived prostaglandins are important in controlling sodium excretion and renin release. In the present study, we tested the hypothesis that a clinical dose of celecoxib would impair urinary sodium excretion and elevate blood pressure (BP) during dietary salt loading. 2. Twelve normotensive individuals (mean (± SEM) age 35 ± 2 years) completed two separate 17 day dietary perturbations, one taking 200 mg/day celecoxib (CX2) and the other taking placebo (PL), randomized with a 1 month wash out. The controlled 17 day diet consisted of a 3 day run-in diet, 7 days of a low-salt (LS, 20 mmol sodium/day) diet and 7 days of a high-salt diet (HS, 350 mmol sodium/day) diet. The order in which the diets were applied was randomized. Data were collected on the last day of the LS and HS diets. 3. Plasma and urinary prostaglandins were modestly lower during celecoxib (P < 0.05). Urinary sodium excretion was greater (P < 0.01) during the HS diet (253 ± 10 vs 281 ± 27 mmol/24 h for PL vs CX2, respectively) compared with the LS diet (14 ± 3 vs 17 ± 7 mmol/24 h for PL vs CX2, respectively; P(drug) = 0.26). Celecoxib did not alter creatinine clearance (P > 0.50). Twenty-four hour mean arterial BP was similar during PL (87 ± 2 vs 87 ± 2 mmHg for LS and HS, respectively) and CX2 (88 ± 2 vs 87 ± 2 mmHg for LS and HS, respectively; P = 0.85), with no effect of dietary salt (P > 0.80). Plasma renin activity, angiotensin II and aldosterone were all suppressed with dietary salt loading (P < 0.05), with no effect of drug (P > 0.35). 4. In conclusion, blood pressure and renal function were not adversely affected by celecoxib, even during dietary salt loading. These findings support current guidelines suggesting minimal cardiovascular risks associated with short-term, low-dose use of celecoxib in young to middle-aged adults. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  11. Klotho expression in long bones regulates FGF23 production during renal failure.

    PubMed

    Kaludjerovic, Jovana; Komaba, Hirotaka; Sato, Tadatoshi; Erben, Reinhold G; Baron, Roland; Olauson, Hannes; Larsson, Tobias E; Lanske, Beate

    2017-05-01

    Circulating levels of bone-derived fibroblast growth factor 23 (FGF23) increase early during acute and chronic kidney disease and are associated with adverse outcomes. Membrane-bound Klotho acts as a permissive coreceptor for FGF23, and its expression was recently found in osteoblasts/osteocytes. We hypothesized that Klotho in bone cells is part of an autocrine feedback loop that regulates FGF23 expression during renal failure. Thus, we induced renal failure in mice with targeted deletion of Klotho in long bones. Uremic wild-type (KL(fl/fl) ) and knockout (Prx1-Cre;KL(fl/fl) ) mice both responded with reduced body weight, kidney atrophy, hyperphosphatemia, and increased bone turnover. Importantly, long bones of Prx1-Cre;KL(fl/fl) mice but not their axial skeleton failed to increase FGF23 expression as observed in uremic KL(fl/fl) mice. Consequently, Prx1-Cre;KL(fl/fl) mice had significantly lower serum FGF23 and parathyroid hormone levels, and higher renal 1-α-hydroxylase expression, serum 1,25-dihydroxyvitamin D, and calcium levels than KL(fl/fl) mice. These results were confirmed in two independent models of renal failure, adenine diet induced and 5/6 nephrectomy. Moreover, FGF23-treated bone cells required Klotho to increase FGF23 mRNA and ERK phosphorylation. In summary, our novel findings show that Klotho in bone is crucial for inducing FGF23 production upon renal failure. We propose the presence of an autocrine feedback loop in which Klotho senses the need for FGF23.-Kaludjerovic, J., Komaba, H., Sato, T., Erben, R. G., Baron, R., Olauson, H., Larsson, T. E., Lanske, B. Klotho expression in long bones regulates FGF23 production during renal failure. © FASEB.

  12. Sevoflurane pretreatment enhance HIF-2α expression in mice after renal ischemia/reperfusion injury

    PubMed Central

    Zheng, Beijie; Zhan, Qionghui; Chen, Jue; Xu, Huan; He, Zhenzhou

    2015-01-01

    Ischemia/reperfusion (I/R) injury often occurs, which is one of the major causes of acute kidney injury, thus increasing in-hospital mortality. HIF-2α has a protective role against ischemia of the kidney. Renal ischemia/reperfusion under sevoflurane anesthesia resulted in drastic improvements in renal function. We hypothesized that underlying mechanism responsible for renal protection from sevoflurane pretreatment involves the upregulation of HIF-2α. Sevoflurane pretreatment were performed on WT and HIF-2α knockout mice before renal ischemia/reperfusion. Levels of blood urea nitrogen (BUN) and serum creatinine (Cr) were determined with a standard clinical automatic analyzer. The left kidneys were taken for morphological examination. Expression of HIF-2α in kidney tissue was examined by western blotting. In WT mice, group I/R injury had significantly higher BUN and Cr levels than group control, whereas group I/R + Sev had significantly lower BUN and Cr levels than group I/R injury. Renal HIF-2α expression levels were significantly higher in WT mice of group I/R + Sev than group control and group I/R. In HIF-2α-/- mice, group I/R + Sev showed much higher BUN and Cr levels and severer histological damage than group I/R and group control. Renal HIF-2α expression levels were significantly higher in WT mice of group I/R + Sev than group control and group I/R. Our findings suggested that HIF-2α might contribute to the beneficial effect of sevoflurane in renal ischemia/reperfusion injury. PMID:26722509

  13. Cystine alters the renal and hepatic disposition of inorganic mercury and plasma thiol status

    SciTech Connect

    Zalups, Rudolfs K. . E-mail: zalups_rk@mercer.edu; Lash, Lawrence H.

    2006-07-01

    In the present study, we determined whether cystine can inhibit, under certain conditions, the renal tubular uptake of inorganic mercury in vivo. We co-injected (i.v.) cystine with a non-toxic dose of mercuric chloride to rats and then studied the disposition of inorganic mercury during the next 24 h. We also determined if pretreatment with cystine influences the disposition of administered inorganic mercury. Moreover, plasma thiol status was examined after the intravenous administration of cystine with or without mercuric chloride. During the initial hour after co-injection, the renal tubular uptake of mercuric ions was diminished significantly relative to that in control rats. The inhibitory effects of cystine were evident in both the renal cortex and outer stripe of the outer medulla. In contrast, the renal accumulation of mercury increased significantly between the 1st and 12th hour after co-treatment. Urinary excretion and fecal excretion of mercury were greatly elevated in the rats co-treated with cystine and mercuric chloride. Thus, when cystine and mercury are administered simultaneously, cystine can serve as an inhibitor of the renal tubular uptake of mercury during the initial hour after co-treatment. In rats pretreated with cystine, the renal uptake of inorganic mercury was enhanced significantly relative to that in rats not pretreated with cystine. This enhanced accumulation of inorganic mercury correlated with the increased circulating concentrations of the reduced cysteine and glutathione. Additionally, the present findings indicate that thiol status is an important determinant of renal and hepatic disposition, and urinary and fecal excretion, of inorganic mercury.

  14. Constitutive renal Rel/nuclear factor-κB expression in Lewis polycystic kidney disease rats

    PubMed Central

    Ta, Michelle H T; Schwensen, Kristina G; Liuwantara, David; Huso, David L; Watnick, Terry; Rangan, Gopala K

    2016-01-01

    AIM: To determine the temporal expression and pattern of Rel/nuclear factor (NF)-κB proteins in renal tissue in polycystic kidney disease (PKD). METHODS: The renal expression of Rel/NF-κB proteins was determined by immunohistochemistry, immunofluorescence and immunoblot analysis in Lewis polycystic kidney rats (LPK, a genetic ortholog of human nephronopthsis-9) from postnatal weeks 3 to 20. At each timepoint, renal disease progression and the mRNA expression of NF-κB-dependent genes (TNFα and CCL2) were determined. NF-κB was also histologically assessed in human PKD tissue. RESULTS: Progressive kidney enlargement in LPK rats was accompanied by increased renal cell proliferation and interstitial monocyte accumulation (peaking at weeks 3 and 10 respectively), and progressive interstitial fibrosis (with α smooth muscle actin and Sirius Red deposition significantly increased compared to Lewis kidneys from weeks 3 to 6 onwards). Rel/NF-κB proteins (phosphorylated-p105, p65, p50, c-Rel and RelB) were expressed in cystic epithelial cells (CECs) of LPK kidneys as early as postnatal week 3 and sustained until late-stage disease at week 20. From weeks 10 to 20, nuclear p65, p50, RelB and cytoplasmic IκBα protein levels, and TNFα and CCL2 expression, were upregulated in LPK compared to Lewis kidneys. NF-κB proteins were consistently expressed in CECs of human PKD. The DNA damage marker γ-H2AX was also identified in the CECs of LPK and human polycystic kidneys. CONCLUSION: Several NF-κB proteins are consistently expressed in CECs in human and experimental PKD. These data suggest that the upregulation of both the canonical and non-canonical pathways of NF-κB signaling may be a constitutive and early pathological feature of cystic renal diseases. PMID:27458563

  15. Constitutive renal Rel/nuclear factor-κB expression in Lewis polycystic kidney disease rats.

    PubMed

    Ta, Michelle H T; Schwensen, Kristina G; Liuwantara, David; Huso, David L; Watnick, Terry; Rangan, Gopala K

    2016-07-06

    To determine the temporal expression and pattern of Rel/nuclear factor (NF)-κB proteins in renal tissue in polycystic kidney disease (PKD). The renal expression of Rel/NF-κB proteins was determined by immunohistochemistry, immunofluorescence and immunoblot analysis in Lewis polycystic kidney rats (LPK, a genetic ortholog of human nephronopthsis-9) from postnatal weeks 3 to 20. At each timepoint, renal disease progression and the mRNA expression of NF-κB-dependent genes (TNFα and CCL2) were determined. NF-κB was also histologically assessed in human PKD tissue. Progressive kidney enlargement in LPK rats was accompanied by increased renal cell proliferation and interstitial monocyte accumulation (peaking at weeks 3 and 10 respectively), and progressive interstitial fibrosis (with α smooth muscle actin and Sirius Red deposition significantly increased compared to Lewis kidneys from weeks 3 to 6 onwards). Rel/NF-κB proteins (phosphorylated-p105, p65, p50, c-Rel and RelB) were expressed in cystic epithelial cells (CECs) of LPK kidneys as early as postnatal week 3 and sustained until late-stage disease at week 20. From weeks 10 to 20, nuclear p65, p50, RelB and cytoplasmic IκBα protein levels, and TNFα and CCL2 expression, were upregulated in LPK compared to Lewis kidneys. NF-κB proteins were consistently expressed in CECs of human PKD. The DNA damage marker γ-H2AX was also identified in the CECs of LPK and human polycystic kidneys. Several NF-κB proteins are consistently expressed in CECs in human and experimental PKD. These data suggest that the upregulation of both the canonical and non-canonical pathways of NF-κB signaling may be a constitutive and early pathological feature of cystic renal diseases.

  16. Effect of carbon nanoparticles on renal epithelial cell structure, barrier function, and protein expression

    PubMed Central

    BLAZER-YOST, BONNIE L.; BANGA, AMIRAJ; AMOS, ADAM; CHERNOFF, ELLEN; LAI, XIANYIN; LI, CHENG; MITRA, SOMENATH; WITZMANN, FRANK A.

    2011-01-01

    To assess effects of carbon nanoparticle (CNP) exposure on renal epithelial cells, fullerenes (C60), single-walled carbon nanotubes (SWNT), and multi-walled carbon nanotubes (MWNT) were incubated with a confluent renal epithelial line for 48 h. At low concentrations, CNP-treated cells exhibited significant decreases in transepithelial electrical resistance (TEER) but no changes in hormone-stimulated ion transport or CNP-induced toxicity or stress responses as measured by lactate dehydrogenase or cytokine release. The changes in TEER, manifested as an inverse relationship with CNP concentration, were mirrored by an inverse correlation between dose and changes in protein expression. Lower, more physiologically relevant, concentrations of CNP have the most profound effects on barrier cell function and protein expression. These results indicate an impact of CNPs on renal epithelial cells at concentrations lower than have been previously studied and suggest caution with regard to increasing CNP levels entering the food chain due to increasing environmental pollution. PMID:21067278

  17. Changes of PBP5 Gene Expression in Enterococcal Isolates from Renal Transplantation Recipients

    PubMed Central

    Jarzembowski, T.; Daca, A.; Witkowski, J.; Rutkowski, B.; Gołębiewska, J.; Dębska-Ślizień, A.

    2013-01-01

    The aim of the study was to evaluate changes in expression of PBP5 gene associated with immunosuppression. A linear locked nucleic acid (LNA) probe was used to measure resistance gene expression by the Flow-FISH method. Expression of the PBP5 gene measured by Flow-FISH was higher in enterococcal strains isolated from renal transplantation (RTx) recipients than in commensal strains. Additionally, in contrast to commensal strains in isolates from RTx patients, PBP5 gene expression was 17.45% higher in biofilms than in planktonic cells. Detailed comparison also showed that cyclosporine seemed to induce higher expression of PBP5 as compared to tacrolimus. PMID:23862151

  18. Alterations of ubiquitylation and sumoylation in conventional renal cell carcinomas after the Chernobyl accident: a comparison with Spanish cases.

    PubMed

    Morell-Quadreny, Luisa; Romanenko, Alina; Lopez-Guerrero, Jose Antonio; Calabuig, Silvia; Vozianov, Alexander; Llombart-Bosch, Antonio

    2011-09-01

    We determined whether ubiquitylation and sumoylation processes are involved in conventional renal cell carcinogenesis associated with chronic, long-term, persistent low doses of ionizing radiation (IR) in patients living for more than 20 years in cesium-137 ((137)Cs)-contaminated areas after the Chernobyl accident in Ukraine. To this end, we assessed the immunohistochemical expression of ubiquitin (Ub), SUMO1, SUMO E2 conjugating enzyme Ubc9, and the cell cycle regulators p53, mdm2, and p14(ARF) in 38 conventional renal cell carcinomas from Ukrainian patients with different degrees of radiation exposure after the Chernobyl accident. As control cases, 18 conventional renal carcinoma (cRCC) tissues from a Spanish cohort were analyzed. No significant differences between the Ukrainian and Spanish groups were found regarding Ub overexpression, although being higher in the Ukrainian cases. Furthermore, this expression was inversely associated with SUMO1 and Ubc9, with no correlation with tumor nuclear grade. There was also a direct relationship between Ubc9 and inflammatory response. These findings do not allow us to consider the immunohistochemical expression of ubiquitylation and sumoylation as valuable markers for discriminating the effects of long-term, low-dose IR exposure in cRCC carcinogenesis.

  19. Altered representation of facial expressions after early visual deprivation

    PubMed Central

    Gao, Xiaoqing; Maurer, Daphne; Nishimura, Mayu

    2013-01-01

    We investigated the effects of early visual deprivation on the underlying representation of the six basic emotions. Using multi-dimensional scaling (MDS), we compared the similarity judgments of adults who had missed early visual input because of bilateral congenital cataracts to control adults with normal vision. Participants made similarity judgments of the six basic emotional expressions, plus neutral, at three different intensities. Consistent with previous studies, the similarity judgments of typical adults could be modeled with four underlying dimensions, which can be interpreted as representing pleasure, arousal, potency and intensity of expressions. As a group, cataract-reversal patients showed a systematic structure with dimensions representing pleasure, potency, and intensity. However, an arousal dimension was not obvious in the patient group's judgments. Hierarchical clustering analysis revealed a pattern in patients seen in typical 7-year-olds but not typical 14-year-olds or adults. There was also more variability among the patients than among the controls, as evidenced by higher stress values for the MDS fit to the patients' data and more dispersed weightings on the four dimensions. The findings suggest an important role for early visual experience in shaping the later development of the representations of emotions. Since the normal underlying structure for emotion emerges postnatally and continues to be refined until late childhood, the altered representation of emotion in adult patients suggests a sleeper effect. PMID:24312071

  20. Phorbol esters alter the expression of lymphocyte membrane proteins

    SciTech Connect

    Reder, A.T.; Antel, J.P.

    1986-03-01

    T cell activation via the T cell receptor (T3-Ti complex) by OKT3 results in modulation of the T3-Ti complex, but does not affect T4, T8, or T11 antigen expression. To study the effect of other T cell activators on these T cell membrane antigens, the authors incubated mononuclear cells for 0-3 days with lectins or pharmacologic agents and stained with monoclonal antibodies to their antigens. The median fluorescence intensity (MFI) was measured with a fluorescence activated cell sorter. Activation of PBL with Con A, PHA, calcium ionophore A23187, or with dbcAMP, isoproterenol, or theophyllin had minimal effects on the MFI of T3, T4, T8, or T11. Phorbol myristate acetate (PMA), a protein kinase C activator which stimulates PBL though an alternate pathway, caused a 90-100% reduction of T3 and T4 MFI, a 25% reduction in T8 MFI, and a 400% increase in T11 MFI after 2 days. Addition of A23187 slightly increased these effects. PMA induced a 2-3-fold increase in cell diameter concomitant with the alterations in membrane antigens. These data suggest that T cell activation through pathways not directly linked to the T cell antigen receptor can result in surface antigen expression different from that which follows activation via the T cell receptor.

  1. Tangshen formula attenuates diabetic renal injuries by upregulating autophagy via inhibition of PLZF expression

    PubMed Central

    Zhao, Tingting; Zhang, Haojun; Yan, Meihua; Dong, Xi; Chen, Pengmin; Ma, Liang; Li, Ping

    2017-01-01

    The Chinese herbal granule Tangshen Formula (TSF) has been proven to decrease proteinuria and improve estimated glomerular filtration rate (eGFR) in diabetic kidney disease (DKD) patients. However, the underlying mechanism of TSF on treatment of diabetic nephropathy (DN) remains unclear. The present study aimed to identify the therapeutic target of TSF in diabetic renal injuries through microarray-based gene expression profiling and establish its underlying mechanism. TSF treatment significantly attenuated diabetic renal injuries by inhibiting urinary excretion of albumin and renal histological injuries in diabetic (db/db) mice. We found that PLZF might be the molecular target of TSF in DN. In vivo, the db/db mice showed a significant increase in renal protein expression of PLZF and collagen III, and decrease in renal autophagy levels (downregulated LC3 II and upregulated p62/SQSTM1) compared to db/m mice. The application of TSF resulted in the downregulation of PLZF and collagen III and upregulation of autophagy level in the kidneys of db/db mice. In vitro, TSF reduced high glucose (HG)-induced cell proliferation for NRK52E cells. Further studies indicated that the exposure of NRK52E cells to high levels of glucose resulted in the downregulation of cellular autophagy and upregulation of collagen III protein, which was reversed by TSF treatment by decreasing PLZF expression. In conclusion, TSF might have induced cellular autophagy by inhibiting PLZF expression, which in turn resulted in an increase in autophagic degradation of collagen III that attenuated diabetic renal injuries. PMID:28182710

  2. Endotoxin-induced basal respiration alterations of renal HK-2 cells: a sign of pathologic metabolism down-regulation.

    PubMed

    Quoilin, C; Mouithys-Mickalad, A; Duranteau, J; Gallez, B; Hoebeke, M

    2012-06-29

    To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  3. The Inflammatory Cytokines TWEAK and TNFα Reduce Renal Klotho Expression through NFκB

    PubMed Central

    Moreno, Juan A.; Izquierdo, Maria C.; Sanchez-Niño, Maria D.; Suárez-Alvarez, Beatriz; Lopez-Larrea, Carlos; Jakubowski, Aniela; Blanco, Julia; Ramirez, Rafael; Selgas, Rafael; Ruiz-Ortega, Marta; Egido, Jesus; Sanz, Ana B.

    2011-01-01

    Proinflammatory cytokines contribute to renal injury, but the downstream effectors within kidney cells are not well understood. One candidate effector is Klotho, a protein expressed by renal cells that has antiaging properties; Klotho-deficient mice have an accelerated aging-like phenotype, including vascular injury and renal injury. Whether proinflammatory cytokines, such as TNF and TNF-like weak inducer of apoptosis (TWEAK), modulate Klotho is unknown. In mice, exogenous administration of TWEAK decreased expression of Klotho in the kidney. In the setting of acute kidney injury induced by folic acid, the blockade or absence of TWEAK abrogated the injury-related decrease in renal and plasma Klotho levels. TWEAK, TNFα, and siRNA-mediated knockdown of IκBα all activated NFκB and reduced Klotho expression in the MCT tubular cell line. Furthermore, inhibition of NFκB with parthenolide prevented TWEAK- or TNFα-induced downregulation of Klotho. Inhibition of histone deacetylase reversed TWEAK-induced downregulation of Klotho, and chromatin immunoprecipitation showed that TWEAK promotes RelA binding to the Klotho promoter, inducing its deacetylation. In conclusion, inflammatory cytokines, such as TWEAK and TNFα, downregulate Klotho expression through an NFκB-dependent mechanism. These results may partially explain the relationship between inflammation and diseases characterized by accelerated aging of organs, including CKD. PMID:21719790

  4. Renal Expression and Urinary Excretion of Na-K-2Cl Cotransporter in Obstructive Nephropathy

    PubMed Central

    2017-01-01

    Renal damage due to urinary tract obstruction accounts for up to 30% of acute kidney injury in paediatrics and adults. Bilateral ureteral obstruction (BUO) is associated with polyuria and reduced urinary concentrating capacity. We investigated the renal handling of water and electrolytes together with the renal expression and the urinary excretion of the Na-K-Cl cotransporter (NKCC2) after 1 (BUO-1), 2 (BUO-2), and 7 (BUO-7) days of release of BUO. Immunoblotting and immunohistochemical studies showed that NKCC2 expression was upregulated in apical membranes both from BUO-2 and from BUO-7 rats. The apical membrane expression, where NKCC2 is functional, may be sufficient to normalize water, potassium, sodium, and osmolytes tubular handling. NKCC2 abundance in homogenates and mRNA levels of NKCC2 was significantly decreased in almost all groups suggesting a decrease in the synthesis of the transporter. Urinary excretion of NKCC2 was increased in BUO-7 groups. These data suggest that the upregulation in the expression of NKCC2 in apical membranes during the postobstructive phase of BUO could contribute to improving the excretion of sodium and consequently also the excretion of potassium, osmolytes, and water. Moreover, the increase in urinary excretion of NKCC2 in BUO-7 group could be a potential additional biomarker of renal function recovery. PMID:28164127

  5. Interstitial tonicity controls TonEBP expression in the renal medulla.

    PubMed

    Sheen, Mee R; Kim, Jeong-Ah; Lim, Sun W; Jung, Ju-Y; Han, Ki-H; Jeon, Un S; Park, Soo-H; Kim, Jin; Kwon, H Moo

    2009-03-01

    Cells in the hyperosmotic kidney medulla, express a transcriptional activator termed tonicity responsive enhancer binding protein (TonEBP). Genes targeted by TonEBP protect kidney cells from the deleterious effects of hyperosmolality by inducing the expression of organic osmolytes and molecular chaperones, and other genes that mediate urine concentration such as aquaporin-2 and urea transporters. We tested here the effect of hypertonicity and hyperosmotic salt in the renal medullary interstitium on the expression TonEBP. When massive water diuresis was induced in rats the medullary sodium concentrations did not change, neither did TonEBP expression. In these animals the medullary tonicity was unchanged despite the production of dilute urine. On the other hand, treatment with the loop diurectic furosemide resulted in a dose-dependent decrease in the medullary sodium concentration causing a reduction in interstitial tonicity. Here, TonEBP expression was blunted in the outer and inner medulla which was due, in part, to decreased mRNA abundance. As expected, the expression of TonEBP target genes in the renal medulla also decreased in response to furosemide. Hence TonEBP expression in the renal medulla is stimulated by interstitial hypertonicity.

  6. Reduced expression of CXCR4, a novel renal cancer stem cell marker, is associated with high-grade renal cell carcinoma.

    PubMed

    Rasti, Arezoo; Abolhasani, Maryam; Zanjani, Leili Saeednejad; Asgari, Mojgan; Mehrazma, Mitra; Madjd, Zahra

    2017-01-01

    Cancer stem cells (CSCs) represent a population with tumour-initiating, self-renewal, and differentiation potential. This study aimed to evaluate the expression patterns and clinical significance of chemokine receptor type 4 (CXCR4) as a novel CSC marker in renal cell carcinoma (RCC). The expression of CXCR4 was examined in 173 well-defined renal tumour tissues, including 106 (61.5 %) clear cell renal cell carcinomas (ccRCCs), 35 (20 %) papillary renal cell carcinomas (pRCCs), and 32 (18.5 %) chromophobe renal cell carcinomas (ChRCCs), by immunohistochemistry on a tissue microarray. The association between expression of this marker and clinicopathologic parameters was then analysed. There was a significant difference in the expression levels of CXCR4 in the ccRCC samples compared to the ChRCC and pRCC samples (P < 0.001). Increased expression of CXCR4 was significantly correlated with higher-grade tumours (P < 0.001) and worse stage (P = 0.001). A significant association was also found between expression of CXCR4 and microvascular invasion (P = 0.018). Among RCC subtypes, comparison of the differences between CXCR4 expression in low- and high-grade tumours demonstrated that pRCC tumours had a significantly higher expression of CXCR4 (P < 0.001) than ccRCC tumours (P = 0.01). Significantly higher expression levels of CXCR4 were found in pRCC and ccRCC samples. Increased CXCR4 expression was associated with more aggressive tumour behaviour in RCC patients, especially in pRCC and ccRCC subtypes due to their more metastatic behaviour. These findings suggest that CXCR4 can be considered as a novel diagnostic and therapeutic marker for targeted therapy of renal carcinoma.

  7. Differential expression of proteins in renal cortex and medulla: a proteomic approach.

    PubMed

    Arthur, John M; Thongboonkerd, Visith; Scherzer, Janice A; Cai, Jian; Pierce, William M; Klein, Jon B

    2002-10-01

    Western blotting has previously been used to identify changes in protein expression in renal tissue. However, only a few proteins can be studied in each experiment by Western blot. We have used proteomic tools to construct protein maps of rat kidney cortex and medulla. Expression of proteins was determined by silver stain after two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Protein spots were excised and digested with trypsin. Peptide masses were identified by MALDI-TOF mass spectrometry. The Mascot search engine was used to analyze the peptide masses and identify the proteins. Seventy-two proteins were identified (54 unique proteins) out of approximately 1000 spots visualized on each gel. Most of the spots were expressed both in cortex and medulla. Of the identified proteins, three were expressed only in medulla and one only in cortex. Nine proteins were expressed in both regions but to a greater extent in cortex and three proteins were expressed more in medulla. Differential expression was confirmed for three proteins by Western blot. A large group of proteins and their relative expression levels from cortical and medullary portions of rat kidneys were found. Sixteen proteins are differentially expressed. Proteomics can be used to identify differential expression of proteins in the kidney on a large scale. Proteomics should be useful to detect changes in renal protein expression in response to a large range of physiological and pathophysiological stimuli.

  8. Expression of a functional asialoglycoprotein receptor in human renal proximal tubular epithelial cells.

    PubMed

    Seow, Ying-ying T; Tan, Michelle G K; Woo, Keng Thye

    2002-07-01

    The asialoglycoprotein receptor (ASGPR) is a C lectin which binds and endocytoses serum glycoproteins. In humans, the ASGPR is shown mainly to occur in hepatocytes, but does occur extrahepatically in thyroid, in small and large intestines, and in the testis. In the kidney, there has been evidence both for and against its existence in mesangial cells. Standard light microscopy examination of renal tissue stained with an antibody against the ASGPR was performed. The mRNA expression for the ASGPR H1 and H2 subunits in primary human renal proximal tubular epithelial cells (RPTEC), in the human proximal tubular epithelial cell line HK2, and in human renal cortex was investigated using reverse-transcribed nested polymerase chain reaction. ASGPR protein expression as well as ligand binding and uptake were also examined using confocal microscopy and flow cytometry (fluorescence-activated cell sorting). Light microscopy of paraffin renal biopsy sections stained with a polyclonal antibody against the ASGPR showed proximal tubular epithelial cell staining of the cytoplasm and particularly in the basolateral region. Renal cortex and RPTEC specifically have mRNA for both H1 and H2 subunits of the ASGPR, but HK2 only expresses mRNA for H1. Using a monoclonal antibody, the presence of the ASGPR in RPTEC was shown by fluorescence-activated cell sorting and immunofluorescent staining. Specific binding and uptake of fluorescein isothiocyanate labelled asialofetuin which is a specific ASGPR ligand was also demonstrated in RPTEC. Primary renal proximal tubular epithelial cells have a functional ASGPR, consisting of the H1 and H2 subunits, that is capable of specific ligand binding and uptake. Copyright 2002 S. Karger AG, Basel

  9. Systematic Analysis of a Novel Human Renal Glomerulus-Enriched Gene Expression Dataset

    PubMed Central

    Lindenmeyer, Maja T.; Eichinger, Felix; Sen, Kontheari; Anders, Hans-Joachim; Edenhofer, Ilka; Mattinzoli, Deborah; Kretzler, Matthias; Rastaldi, Maria P.; Cohen, Clemens D.

    2010-01-01

    Glomerular diseases account for the majority of cases with chronic renal failure. Several genes have been identified with key relevance for glomerular function. Quite a few of these genes show a specific or preferential mRNA expression in the renal glomerulus. To identify additional candidate genes involved in glomerular function in humans we generated a human renal glomerulus-enriched gene expression dataset (REGGED) by comparing gene expression profiles from human glomeruli and tubulointerstitium obtained from six transplant living donors using Affymetrix HG-U133A arrays. This analysis resulted in 677 genes with prominent overrepresentation in the glomerulus. Genes with ‘a priori’ known prominent glomerular expression served for validation and were all found in the novel dataset (e.g. CDKN1, DAG1, DDN, EHD3, MYH9, NES, NPHS1, NPHS2, PDPN, PLA2R1, PLCE1, PODXL, PTPRO, SYNPO, TCF21, TJP1, WT1). The mRNA expression of several novel glomerulus-enriched genes in REGGED was validated by qRT-PCR. Gene ontology and pathway analysis identified biological processes previously not reported to be of relevance in glomeruli of healthy human adult kidneys including among others axon guidance. This finding was further validated by assessing the expression of the axon guidance molecules neuritin (NRN1) and roundabout receptor ROBO1 and -2. In diabetic nephropathy, a prevalent glomerulopathy, differential regulation of glomerular ROBO2 mRNA was found. In summary, novel transcripts with predominant expression in the human glomerulus could be identified using a comparative strategy on microdissected nephrons. A systematic analysis of this glomerulus-specifc gene expression dataset allows the detection of target molecules and biological processes involved in glomerular biology and renal disease. PMID:20634963

  10. Chemokine expression in renal ischemia/reperfusion injury is most profound during the reparative phase.

    PubMed

    Stroo, Ingrid; Stokman, Geurt; Teske, Gwen J D; Raven, Anje; Butter, Loes M; Florquin, Sandrine; Leemans, Jaklien C

    2010-06-01

    Chemokines are important players in the migration of leukocytes to sites of injury and are also involved in angiogenesis, development and wound healing. In this study, we performed microarray analyses to identify chemokines that play a role during the inflammatory and repair phase after renal ischemia/reperfusion (I/R) injury and investigated the temporal relationship between chemokine expression, leukocyte accumulation and renal damage/repair. C57Bl/6 mice were subjected to unilateral ischemia for 45 min and sacrificed 3 h, 1 day and 7 days after reperfusion. From ischemic and contralateral kidney, RNA was isolated and hybridized to a microarray. Microarray results were validated with quantitative real-time reverse transcription-PCR (QRT-PCR) on RNA from an independent experiment. (Immuno)histochemical analyses were performed to determine renal damage/repair and influx of leukocytes. Twenty out of 114 genes were up-regulated at one or more reperfusion periods. All these genes were up-regulated 7 days after I/R. Up-regulated genes included CC chemokines MCP-1 and TARC, CXC chemokines KC and MIP-2alpha, chemokine receptors Ccr1 and Cx3cr1 and related genes like matrix metalloproteinases. Microarray data of 1 and 7 days were confirmed for 17 up-regulated genes by QRT-PCR. (Immuno)histochemical analysis showed that the inflammatory and repair phase after renal I/R injury take place after, respectively, 1 and 7 days. Interestingly, chemokine expression was highest during the repair phase. In addition, expression profiles showed a biphasic expression of all up-regulated CXC chemokines coinciding with the early inflammatory and late repair phase. In conclusion, we propose that temporal expression of chemokines is a crucial factor in the regulation of renal I/R injury and repair.

  11. Can intensive treatment alter the progress of established diabetic nephropathy to end-stage renal failure?

    PubMed

    Feest, T G; Dunn, E J; Burton, C J

    1999-05-01

    Diabetic nephropathy is now the leading cause of end-stage renal disease in the Western world, and is associated with a higher patient morbidity and mortality than other causes of renal failure, largely because of associated cardiovascular disease. Numerous studies have elucidated the factors which influence its onset and progression. The St Vincent Declaration in 1994 proposed standards for the appropriate management of patients with diabetic nephropathy. We assessed whether referral to a nephrology clinic attempting to apply these standards influenced the progression of diabetic nephropathy. The results show a significant improvement in blood pressure, glycosylated haemoglobin and serum cholesterol following referral. There was a significant reduction in the rate of decline of renal function following referral in 39% of patients. With the possible exception of diabetic control there were no significant differences in the management of those that did and did not show improvement. The results show that with intensive out-patient clinic monitoring it is possible to improve the quality of patient care, and that even in established diabetic nephropathy it is possible to slow the rate of progression to end-stage renal failure.

  12. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression

    PubMed Central

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de los Angeles

    2016-01-01

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation. PMID:27677351

  13. Altered Epithelial Gene Expression in Peripheral Airways of Severe Asthma

    PubMed Central

    Singhania, Akul; Rupani, Hitasha; Jayasekera, Nivenka; Lumb, Simon; Hales, Paul; Gozzard, Neil; Davies, Donna E.

    2017-01-01

    Management of severe asthma remains a challenge despite treatment with glucocorticosteroid therapy. The majority of studies investigating disease mechanisms in treatment-resistant severe asthma have previously focused on the large central airways, with very few utilizing transcriptomic approaches. The small peripheral airways, which comprise the majority of the airway surface area, remain an unexplored area in severe asthma and were targeted for global epithelial gene expression profiling in this study. Differences between central and peripheral airways were evaluated using transcriptomic analysis (Affymetrix HG U133 plus 2.0 GeneChips) of epithelial brushings obtained from severe asthma patients (N = 17) and healthy volunteers (N = 23). Results were validated in an independent cohort (N = 10) by real-time quantitative PCR. The IL-13 disease signature that is associated with an asthmatic phenotype was upregulated in severe asthmatics compared to healthy controls but was predominantly evident within the peripheral airways, as were genes related to mast cell presence. The gene expression response associated with glucocorticosteroid therapy (i.e. FKBP5) was also upregulated in severe asthmatics compared to healthy controls but, in contrast, was more pronounced in central airways. Moreover, an altered epithelial repair response (e.g. FGFBP1) was evident across both airway sites reflecting a significant aspect of disease in severe asthma unadressed by current therapies. A transcriptomic approach to understand epithelial activation in severe asthma has thus highlighted the need for better-targeted therapy to the peripheral airways in severe asthma, where the IL-13 disease signature persists despite treatment with currently available therapy. PMID:28045928

  14. Altered Epithelial Gene Expression in Peripheral Airways of Severe Asthma.

    PubMed

    Singhania, Akul; Rupani, Hitasha; Jayasekera, Nivenka; Lumb, Simon; Hales, Paul; Gozzard, Neil; Davies, Donna E; Woelk, Christopher H; Howarth, Peter H

    2017-01-01

    Management of severe asthma remains a challenge despite treatment with glucocorticosteroid therapy. The majority of studies investigating disease mechanisms in treatment-resistant severe asthma have previously focused on the large central airways, with very few utilizing transcriptomic approaches. The small peripheral airways, which comprise the majority of the airway surface area, remain an unexplored area in severe asthma and were targeted for global epithelial gene expression profiling in this study. Differences between central and peripheral airways were evaluated using transcriptomic analysis (Affymetrix HG U133 plus 2.0 GeneChips) of epithelial brushings obtained from severe asthma patients (N = 17) and healthy volunteers (N = 23). Results were validated in an independent cohort (N = 10) by real-time quantitative PCR. The IL-13 disease signature that is associated with an asthmatic phenotype was upregulated in severe asthmatics compared to healthy controls but was predominantly evident within the peripheral airways, as were genes related to mast cell presence. The gene expression response associated with glucocorticosteroid therapy (i.e. FKBP5) was also upregulated in severe asthmatics compared to healthy controls but, in contrast, was more pronounced in central airways. Moreover, an altered epithelial repair response (e.g. FGFBP1) was evident across both airway sites reflecting a significant aspect of disease in severe asthma unadressed by current therapies. A transcriptomic approach to understand epithelial activation in severe asthma has thus highlighted the need for better-targeted therapy to the peripheral airways in severe asthma, where the IL-13 disease signature persists despite treatment with currently available therapy.

  15. Expression of prorenin receptor in renal biopsies from patients with IgA nephropathy.

    PubMed

    Miyazaki, Nagisa; Murata, Ichijiro; Takemura, Genzou; Okada, Hideshi; Kanamori, Hiromitsu; Matsumoto-Miyazaki, Jun; Yoshida, Gakuro; Izumi, Kumiko; Kashi, Hitomi; Niimi, Kaori; Nishiwaki, Ayuko; Miyazaki, Tatsuhiko; Ohno, Michiya; Ohashi, Hiroshige; Suzuki, Fumiaki; Minatoguchi, Shinya

    2014-01-01

    Prorenin receptor (PRR) has been implicated in the onset and progression of various renal diseases, though its possible association with immunoglobulin A (IgA) nephropathy remains unclear. In the present study, we tried to clarify expression and pathophysiological significance of PRR in IgA nephropathy. We immunohistochemically assessed PRR levels in renal biopsy specimens from 48 patients with IgA nephropathy and evaluated its relevance to the clinical and pathological features of the disease. PRR was detected mainly in renal tubular cells, which was confirmed at the subcellular level using immunoelectron microscopy. The PRR-positive area (%PRR area) correlated with daily urinary protein, which is known to reflect disease severity (r=0.286, P=0.049). PRR levels were weaker in tubular cells bordering areas of severe interstitial fibrosis, where α-smooth muscle actin-positive myofibroblasts were present. We also used immunohistochemical detection of microtubule-associated protein-1 light chain 3 (LC3) and electron microscopy to assess autophagy, a cytoprotective mechanism downstream of PRR. We noted an apparent coincidence between autophagy activation in tubular cells and PRR expression in the same cells. Taken together, our findings suggest that renal expression of PRR in IgA nephropathy may be a compensatory response slowing disease progression by preventing tubular cell death and subsequent fibrosis through activation of cytoprotective autophagic machinery. Further studies using different type of kidney diseases could draw conclusion if the present finding is a generalized observation beyond IgA nephropathy.

  16. Differential expression of renal proteins in a rodent model of Meckel syndrome.

    PubMed

    Mason, Stephen B; Lai, Xianyin; Ringham, Heather N; Bacallao, Robert L; Harris, Peter C; Witzmann, Frank A; Gattone, Vincent H

    2011-01-01

    Meckel syndrome (MKS) is a fatal autosomal recessive condition with prominent renal cystic pathology. Renal protein misexpression was evaluated in the Wpk rat model of human MKS3 gene disease to identify biomarkers for the staging of renal cystic progression. Misexpressed proteins were compared between early and late stages of MKS renal cystic disease using proteomic analysis (two-dimensional gel electrophoresis with LC-MS/MS identification) followed by Western blot analysis. A proteomic analysis identified 76 proteins with statistically different, normalized abundance in at least one group. Subsequently, Western blot was used to confirm differential expression in several of these and polycystic kidney disease (PKD)-associated proteins. Galectin-1 and vimentin were identified as overexpressed proteins, which have been previously found in the jck mouse model of nephronophthisis 9. Ciliopathic PKD proteins, polycystins 1 & 2, and fibrocystin were also differentially expressed in Wpk kidney. In the Wpk rat, misexpressed proteins were identified that were also implicated in other forms of cystic disease. Numerous proteins were either over- or underexpressed in late-stage disease. Differences in protein expression may serve as biomarkers of cystic disease and its progression. Copyright © 2010 S. Karger AG, Basel.

  17. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    SciTech Connect

    Quoilin, C.; Mouithys-Mickalad, A.; Duranteau, J.; Gallez, B.; Hoebeke, M.

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  18. Sex-Specificity of Mineralocorticoid Target Gene Expression during Renal Development, and Long-Term Consequences

    PubMed Central

    Dumeige, Laurence; Storey, Caroline; Decourtye, Lyvianne; Nehlich, Melanie; Lhadj, Christophe; Viengchareun, Say; Kappeler, Laurent; Lombès, Marc; Martinerie, Laetitia

    2017-01-01

    Sex differences have been identified in various biological processes, including hypertension. The mineralocorticoid signaling pathway is an important contributor to early arterial hypertension, however its sex-specific expression has been scarcely studied, particularly with respect to the kidney. Basal systolic blood pressure (SBP) and heart rate (HR) were measured in adult male and female mice. Renal gene expression studies of major players of mineralocorticoid signaling were performed at different developmental stages in male and female mice using reverse transcription quantitative PCR (RT-qPCR), and were compared to those of the same genes in the lung, another mineralocorticoid epithelial target tissue that regulates ion exchange and electrolyte balance. The role of sex hormones in the regulation of these genes was also investigated in differentiated KC3AC1 renal cells. Additionally, renal expression of the 11 β-hydroxysteroid dehydrogenase type 2 (11βHSD2) protein, a regulator of mineralocorticoid specificity, was measured by immunoblotting and its activity was indirectly assessed in the plasma using liquid-chromatography coupled to mass spectrometry in tandem (LC-MSMS) method. SBP and HR were found to be significantly lower in females compared to males. This was accompanied by a sex- and tissue-specific expression profile throughout renal development of the mineralocorticoid target genes serum and glucocorticoid-regulated kinase 1 (Sgk1) and glucocorticoid-induced leucine zipper protein (Gilz), together with Hsd11b2, Finally, the implication of sex hormones in this sex-specific expression profile was demonstrated in vitro, most notably for Gilz mRNA expression. We demonstrate a tissue-specific, sex-dependent and developmentally-regulated pattern of expression of the mineralocorticoid pathway that could have important implications in physiology and pathology. PMID:28230786

  19. The effect of biological sealants and adhesive treatments on matrix metalloproteinase expression during renal injury healing

    PubMed Central

    2017-01-01

    Background Renal injuries are relatively common in cases of abdominal trauma. Adhesives and sealants can be used to repair and preserve damaged organs. Using a rat model, this study explores the activity of different matrix metalloproteinases (MMP) during the healing of renal injuries treated by two biological adhesives (TachoSil and GelitaSpon) and a new synthetic elastic cyanoacrylate (Adhflex). Methods Renal traumatic injuries were experimentally induced in 90 male Wistar rats by a Stiefel Biopsy Punch in the anterior aspect of the left kidney. Animals were divided into five groups: 1, sham non-injured (n = 3); 2, non-treated standard punch injury (n = 6); 3, punch injury treated with TachoSil (n = 27); 4, punch injury treated with GelitaSpon (n = 27); and, 5, punch injury treated with Adhflex (n = 27). Wound healing was evaluated 2, 6, and 18 days after injury by determining the expression of MMPs, and the histopathological evolution of lesions. Findings Histologically, the wound size at 6 days post-injury was larger in Adhflex-treated samples than in the other treatments, but the scarring tissue was similar at 18 days post-injury. Only the MMPs subtypes 1, 2, 8, 9, and 13 were sufficiently expressed to be quantifiable. Both time since injury and treatment type had a significant influence on MMPs expression. Two days after injury, the expression of MMP8 and MMP9 was predominant. MMP2 expression was greater 6 days after injury. The Adhflex-treated group had a significantly higher MMPs expression than the other treatment groups at all healing stages. Conclusions All three sealant treatments induced almost similar expression of MMPs than untreated animals indicating a physiological healing process. Given that all renal trauma injuries must be considered emergencies, both biological and synthetic adhesives, such as Adhflex, should be considered as a treatment options. PMID:28494022

  20. α-Synuclein Alters Toll-Like Receptor Expression

    PubMed Central

    Béraud, Dawn; Twomey, Margaret; Bloom, Benjamin; Mittereder, Andrew; Ton, Vy; Neitzke, Katherine; Chasovskikh, Sergey; Mhyre, Timothy R.; Maguire-Zeiss, Kathleen A.

    2011-01-01

    Parkinson's disease, an age-related neurodegenerative disorder, is characterized by the loss of dopamine neurons in the substantia nigra, the accumulation of α-synuclein in Lewy bodies and neurites, and neuroinflammation. While the exact etiology of sporadic Parkinson's disease remains elusive, a growing body of evidence suggests that misfolded α-synuclein promotes inflammation and oxidative stress resulting in neurodegeneration. α-Synuclein has been directly linked to microglial activation in vitro and increased numbers of activated microglia have been reported in an α-synuclein overexpressing mouse model prior to neuronal loss. However, the mechanism by which α-synuclein incites microglial activation has not been fully described. Microglial activation is governed in part, by pattern recognition receptors that detect foreign material and additionally recognize changes in homeostatic cellular conditions. Upon proinflammatory pathway initiation, activated microglia contribute to oxidative stress through release of cytokines, nitric oxide, and other reactive oxygen species, which may adversely impact adjacent neurons. Here we show that microglia are directly activated by α-synuclein in a classical activation pathway that includes alterations in the expression of toll-like receptors. These data suggest that α-synuclein can act as a danger-associated molecular pattern. PMID:21747756

  1. Gene expression of 5-lipoxygenase and LTA4 hydrolase in renal tissue of nephrotic syndrome patients

    PubMed Central

    Menegatti, E; Roccatello, D; Fadden, K; Piccoli, G; De Rosa, G; Sena, L M; Rifai, A

    1999-01-01

    Leukotrienes (LT) of the 5-lipoxygenase pathway constitute a class of potent biological lipid mediators of inflammation implicated in the pathogenesis of different models of experimental glomerulonephritis. The key enzyme, 5-lipoxygenase (5-LO), catalyses oxygenation of arachidonic acid to generate the primary leukotriene LTA4. This LT, in turn, serves as a substrate for either LTA4 hydrolase, to form the potent chemoattractant LTB4, or LTC4 synthase, to produce the powerful vasoconstrictor LTC4. To investigate the potential role of LT in the pathogenesis of human glomerulonephritis with nephrotic syndrome, we examined the gene expression of 5-LO and LTA4 hydrolase in renal tissue of 21 adult patients with nephrotic syndrome and 11 controls. The patients consisted of 11 cases of membranous nephropathy (MN), seven focal and segmental glomerulosclerosis (FSGS), two non-IgA mesangial glomerulonephritis and one minimal change disease. Total RNA purified from renal tissue was reverse transcribed into cDNA and amplified with specific primers in a polymerase chain reaction (RT-PCR). Eight patients' renal tissue, four MN and four FSGS, co-expressed 5-LO and LTA4 hydrolase. In situ hybridization analysis revealed 5-LO expression and distribution limited to the interstitial cells surrounding the peritubular capillaries. Comparative clinical and immunohistological data showed that these eight patients had impaired renal function and interstitial changes that significantly correlated with 5-LO expression. These findings suggest that leukotrienes may play an important role in the pathogenesis of MN and FSGS. These results are also relevant to elucidating the pathophysiologic mechanisms which underlie progression to renal failure in these diseases. PMID:10337029

  2. High Salt Diet Affects Renal Sodium Excretion and ERRα Expression.

    PubMed

    Wang, Dan; Wang, Yang; Liu, Fu-Qiang; Yuan, Zu-Yi; Mu, Jian-Jun

    2016-04-01

    Kidneys regulate the balance of water and sodium and therefore are related to blood pressure. It is unclear whether estrogen-related receptor α (ERRα), an orphan nuclear receptor and transcription factor highly expressed in kidneys, affects the reabsorption of water and sodium. The aim of this study was to determine whether changes in the expressions of ERRα, Na⁺/K⁺-ATPase and epithelial sodium channel (ENaC) proteins affected the reabsorption of water and sodium in kidneys of Dahl salt-sensitive (DS) rats. SS.13BN rats, 98% homologous to the DS rats, were used as a normotensive control group. The 24 h urinary sodium excretion of the DS and SS.13BN rats increased after the 6-week high salt diet intervention, while sodium excretion was increased in DS rats with daidzein (agonist of ERRα) treatment. ERRα expression was decreased, while β- and γ-ENaC mRNA expressions were increased upon high sodium diet treatment in the DS rats. In the chromatin immunoprecipitation (CHIP) assay, positive PCR signals were obtained in samples treated with anti-ERRα antibody. The transcriptional activity of ERRα was decreased upon high salt diet intervention. ERRα reduced the expressions of β- and γ-ENaC by binding to the ENaC promoter, thereby increased Na+ reabsorption. Therefore, ERRα might be one of the factors causing salt-sensitive hypertension.

  3. High Salt Diet Affects Renal Sodium Excretion and ERRα Expression

    PubMed Central

    Wang, Dan; Wang, Yang; Liu, Fu-Qiang; Yuan, Zu-Yi; Mu, Jian-Jun

    2016-01-01

    Kidneys regulate the balance of water and sodium and therefore are related to blood pressure. It is unclear whether estrogen-related receptor α (ERRα), an orphan nuclear receptor and transcription factor highly expressed in kidneys, affects the reabsorption of water and sodium. The aim of this study was to determine whether changes in the expressions of ERRα, Na+/K+-ATPase and epithelial sodium channel (ENaC) proteins affected the reabsorption of water and sodium in kidneys of Dahl salt-sensitive (DS) rats. SS.13BN rats, 98% homologous to the DS rats, were used as a normotensive control group. The 24 h urinary sodium excretion of the DS and SS.13BN rats increased after the 6-week high salt diet intervention, while sodium excretion was increased in DS rats with daidzein (agonist of ERRα) treatment. ERRα expression was decreased, while β- and γ-ENaC mRNA expressions were increased upon high sodium diet treatment in the DS rats. In the chromatin immunoprecipitation (CHIP) assay, positive PCR signals were obtained in samples treated with anti-ERRα antibody. The transcriptional activity of ERRα was decreased upon high salt diet intervention. ERRα reduced the expressions of β- and γ-ENaC by binding to the ENaC promoter, thereby increased Na+ reabsorption. Therefore, ERRα might be one of the factors causing salt-sensitive hypertension. PMID:27043552

  4. Metallothionein gene expression in peripheral lymphocytes and renal dysfunction in a population environmentally exposed to cadmium

    SciTech Connect

    Lu Jian; Jin Taiyi . E-mail: tyjin@smhu.edu.cn; Nordberg, Gunnar; Nordberg, Monica . E-mail: monica.nordberg@imm.ki.se

    2005-08-07

    In order to study the validity of metallothionein (MT) gene expression in peripheral blood lymphocytes (PBLs) as a biomarker of cadmium exposure and susceptibility to renal dysfunction, MT mRNA levels were measured using reverse transcription polymerase chain reaction (RT-PCR) in PBLs from residents living in a cadmium-contaminated area. MT mRNA levels were found to increase with the increase of blood cadmium (BCd) and urinary cadmium (UCd) levels. Basal MT mRNA levels were significantly correlated with the logarithm of BCd levels and the logarithm of UCd levels confirming that MT expression in PBLs is a biomarker of cadmium exposure and internal dose. An inverse relationship was observed between in vitro induced MT-mRNA level in PBLs and urinary N-acetyl-{beta}-d-glucosaminidase (UNAG) suggesting that MT gene expression in PBLs may be used as a biomarker of susceptibility to renal toxicity of cadmium.

  5. Molecular sub-classification of renal epithelial tumors using meta-analysis of gene expression microarrays.

    PubMed

    Sanford, Thomas; Chung, Paul H; Reinish, Ariel; Valera, Vladimir; Srinivasan, Ramaprasad; Linehan, W Marston; Bratslavsky, Gennady

    2011-01-01

    To evaluate the accuracy of the sub-classification of renal cortical neoplasms using molecular signatures. A search of publicly available databases was performed to identify microarray datasets with multiple histologic sub-types of renal cortical neoplasms. Meta-analytic techniques were utilized to identify differentially expressed genes for each histologic subtype. The lists of genes obtained from the meta-analysis were used to create predictive signatures through the use of a pair-based method. These signatures were organized into an algorithm to sub-classify renal neoplasms. The use of these signatures according to our algorithm was validated on several independent datasets. We identified three Gene Expression Omnibus datasets that fit our criteria to develop a training set. All of the datasets in our study utilized the Affymetrix platform. The final training dataset included 149 samples represented by the four most common histologic subtypes of renal cortical neoplasms: 69 clear cell, 41 papillary, 16 chromophobe, and 23 oncocytomas. When validation of our signatures was performed on external datasets, we were able to correctly classify 68 of the 72 samples (94%). The correct classification by subtype was 19/20 (95%) for clear cell, 14/14 (100%) for papillary, 17/19 (89%) for chromophobe, 18/19 (95%) for oncocytomas. Through the use of meta-analytic techniques, we were able to create an algorithm that sub-classified renal neoplasms on a molecular level with 94% accuracy across multiple independent datasets. This algorithm may aid in selecting molecular therapies and may improve the accuracy of subtyping of renal cortical tumors.

  6. The diagnostic value of cytokeratins expression in the renal parenchyma tumors.

    PubMed

    Alexa, Aurora; Baderca, Flavia; Lighezan, Rodica; Izvernariu, D; Raica, M

    2010-01-01

    Renal carcinomas are a heterogeneous group of tumors, difficult to classify and identify precisely. Since their prognosis depends very much upon their type, precise diagnosis might mean the difference between therapeutic success and patient death. Cytokeratins are particularly useful for the identification of the epithelial nature of the tumors, because their expression is maintained even in poorly differentiated tumors. Monoclonal cytokeratins such as CK7 and CK20 stain different components of the renal tubular system and are a useful duo for the identification of the origin of the different tumors that might arise in the kidney. Along with polyclonal cytokeratins such as AE1/AE3 and high molecular weight cytokeratin antibodies (34betaE12, Cam 5.2), epithelial membrane antigen (EMA) and vimentin, they are included in every diagnostic panel for renal tumors. We have selected 138 renal parenchyma tumor specimens, performed morphological diagnosis and then stained them with polyclonal cytokeratin antibody AE1/AE3, and monoclonal antibodies to CK7 and CK20. AE1/AE3 was expressed in 61.7% of the renal parenchyma tumors, with high intensity and percentage of positive cases in the papillary carcinomas (100%), and with rare and weakly positive cells in chromophobic cells carcinomas, clear cells carcinomas and sarcomatous carcinomas. CK7 was positive in 68% of the renal parenchyma tumors, with positive reaction in 100% of the cases of chromophobic cells and sarcomatous carcinomas. Clear cells carcinomas had the less percentage of positive cells, whereas papillary carcinomas were positive in seven out of eight cases. No difference in the staining pattern was noticed between type I and type II papillary carcinomas. CK20 was negative in all cases studied.

  7. Inactivation of the von Hippel-Lindau tumour suppressor gene induces Neuromedin U expression in renal cancer cells.

    PubMed

    Harten, Sarah K; Esteban, Miguel A; Shukla, Deepa; Ashcroft, Margaret; Maxwell, Patrick H

    2011-07-26

    209 000 new cases of renal carcinoma are diagnosed each year worldwide and new therapeutic targets are urgently required. The great majority of clear cell renal cancer involves inactivation of VHL, which acts as a gatekeeper tumour suppressor gene in renal epithelial cells. However how VHL exerts its tumour suppressor function remains unclear. A gene expression microarray comparing RCC10 renal cancer cells expressing either VHL or an empty vector was used to identify novel VHL regulated genes. NMU (Neuromedin U) is a neuropeptide that has been implicated in energy homeostasis and tumour progression. Here we show for the first time that VHL loss-of-function results in dramatic upregulation of NMU expression in renal cancer cells. The effect of VHL inactivation was found to be mediated via activation of Hypoxia Inducible Factor (HIF). Exposure of VHL expressing RCC cells to either hypoxia or dimethyloxalylglycine resulted in HIF activation and increased NMU expression. Conversely, suppression of HIF in VHL defective RCC cells via siRNA of HIF-α subunits or expression of Type 2C mutant VHLs reduced NMU expression levels. We also show that renal cancer cells express a functional NMU receptor (NMUR1), and that NMU stimulates migration of renal cancer cells. These findings suggest that NMU may act in an autocrine fashion, promoting progression of kidney cancer. Hypoxia and HIF expression are frequently observed in many non-renal cancers and are associated with a poor prognosis. Our study raises the possibility that HIF may also drive NMU expression in non-renal tumours.

  8. Defective renal water handling in transgenic mice over-expressing human CD39/NTPDase1

    PubMed Central

    Zhang, Yue; Morris, Kaiya L.; Sparrow, Shannon K.; Dwyer, Karen M.; Enjyoji, Keiichi; Robson, Simon C.

    2012-01-01

    Ectonucleoside triphosphate diphosphohydrolase-1 hydrolyzes extracellular ATP and ADP to AMP. Previously, we showed that CD39 is expressed at several sites within the kidney and thus may impact the availability of type 2 purinergic receptor (P2-R) ligands. Because P2-Rs appear to regulate urinary concentrating ability, we have evaluated renal water handling in transgenic mice (TG) globally overexpressing hCD39. Under basal conditions, TG mice exhibited significantly impaired urinary concentration and decreased protein abundance of AQP2 in the kidney compared with wild-type (WT) mice. Urinary excretion of total nitrates/nitrites was significantly higher in TG mice, but the excretion of AVP or PGE2 was equivalent to control WT mice. There were no significant differences in electrolyte-free water clearance or fractional excretion of sodium. Under stable hydrated conditions (gelled diet feeding), the differences between the WT and TG mice were negated, but the decrease in urine osmolality persisted. When water deprived, TG mice failed to adequately concentrate urine and exhibited impaired AVP responses. However, the increases in urinary osmolalities in response to subacute dDAVP or chronic AVP treatment were similar in TG and WT mice. These observations suggest that TG mice have impaired urinary concentrating ability despite normal AVP levels. We also note impaired AVP release in response to water deprivation but that TG kidneys are responsive to exogenous dDAVP or AVP. We infer that heightened nucleotide scavenging by increased levels of CD39 altered the release of endogenous AVP in response to dehydration. We propose that ectonucleotidases and modulated purinergic signaling impact urinary concentration and indicate potential utility of targeted therapy for the treatment of water balance disorders. PMID:22622462

  9. Pregnancy induced changes in Cox-1, Cox-2 and NOSIII vascular and renal expression.

    PubMed

    Bobadilla, Rosa A; Bracho, Ismael; Alvarez, Victor M Pérez; Anguiano, Liliana; López, Pedro

    2004-01-01

    In order to establish if there is a mutual regulation between COX and NOS in vascular and renal tissue during pregnancy, we measured the protein expression of COX-1, COX-2 and NOSIII by Western blot comparing the thoracic and abdominal aorta and the renal cortex and medulla of non pregnant and pregnant (21st day) Wistar rats. We found there was no difference in the quantity of protein of any of the two isoforms of COX between the two segments of the aorta of non pregnant animals while an increased expression of both COX-1 And COX-2 was found in the abdominal compared to the thoracic segment of the pregnant rats. An increased expression of NOS III was found in the abdominal segment of the aorta form pregnant rats. No changes were found between pregnant and no pregnant animals in the expression of COX-1 and COX-2 in the renal cortex or medulla while an increased expression of NOS III was found in the cortex from pregnant compared to non pregnant animals. These results suggest the influence of pregnancy is not homogeneous along the aorta and also that a balance between prostaglandins and nitric oxide is responsible of the blunted vascular reactivity during pregnancy in the rat.

  10. Expression of CD44 isoforms in renal cell tumors. Positive correlation to tumor differentiation.

    PubMed Central

    Terpe, H. J.; Störkel, S.; Zimmer, U.; Anquez, V.; Fischer, C.; Pantel, K.; Günthert, U.

    1996-01-01

    CD44 isoforms have been implicated in tumor progression and embryogenesis. Primary renal cell tumors (n = 100) of various histopathological differentiation and grading stages were analyzed for expression of CD44 isoforms in comparison with nonmalignant adult and fetal renal tissues. Evaluations were performed by immunohistochemistry using CD44 isoform-specific monoclonal antibodies and by reverse transcriptase polymerase chain reactions (RT-PCR). In the nonmalignant kidney no CD44 variant isoforms were detected. There was a significant increase in expression of CD44 standard (CD44s) and several variant isoforms (CD44v) in the course of tumor differentiation in clear cell carcinomas (n = 68) from stages G1 to G3 (P < 0.0001 for CD44s and isoforms containing CD44-6v, and P < 0.007 for those containing CD44-9v). Also, in chromophilic cell carcinomas (n = 13), CD44 isoform expression correlated with grading; ie, no CD44 expression was detected in G1 tumors, whereas in approximately 50% of the G2 tumors, CD44s, CD44-6v, and CD44-9v isoforms were present. Oncocytomas (n = 8), which are benign renal cell tumors, did not express CD44 isoforms, whereas invasive chromophobe cell carcinomas (n = 11) were positive for CD44s and CD44v isoforms. Transcript analyses by RT-PCR revealed that the upregulated isoforms in the carcinoma cells contained exons 8 to 10 and 3, 8 to 10 in combination from the variant region. In conclusion, expression of variant CD44 isoforms was strongly correlated with grading and appears to mediate a more aggressive phenotype to renal cell tumors. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8579108

  11. Altered renal sodium handling and risk of incident hypertension: Results of the Olivetti Heart Study

    PubMed Central

    D’Elia, Lanfranco; Cappuccio, Francesco P.; Iacone, Roberto; Russo, Ornella; Galletti, Ferruccio; Strazzullo, Pasquale

    2017-01-01

    Renal tubular sodium (Na) handling plays a key role in blood pressure (BP) regulation. Several cross-sectional studies reported a positive association between higher proximal tubule fractional reabsorption of Na and BP, but no prospective investigation has been reported of this possible association. Hence, the purpose of this study was to estimate the predictive role of renal Na handling on the risk of incident hypertension and the changes in BP occurring in the 8-year follow-up observation of a sample of initially normotensive men (The Olivetti Heart Study). The study included 294 untreated normotensive non-diabetic men with normal renal function examined twice (1994–95 and 2002–04). Renal tubular Na handling was estimated by exogenous lithium clearance. Fractional reabsorption of Na in proximal and distal tubules was calculated and included in the analysis. At baseline, there was no association between BP and either proximal or distal fractional reabsorption of Na. At the end of the 8-year follow-up, direct associations were observed between baseline proximal (but not distal) Na fractional reabsorption and the changes occurred in systolic and diastolic BP over time (+2.79 and +1.53 mmHg, respectively, per 1SD difference in proximal Na-FR; p<0.01). Also multivariable analysis showed a direct association between baseline proximal Na fractional reabsorption and risk of incident hypertension, independently of potential confounders (OR: 1.34, 95%CI:1.06–1.70). The results of this prospective investigation strongly suggest a causal relationship between an enhanced rate of Na reabsorption in the proximal tubule and the risk of incident hypertension in initially normotensive men. PMID:28196131

  12. Effects of tempol on altered metabolism and renal vascular responsiveness in fructose-fed rats.

    PubMed

    Abdulla, Mohammed H; Sattar, Munavvar A; Johns, Edward J

    2016-02-01

    This study investigated the effect of tempol (a superoxide dismutase mimetic) on renal vasoconstrictor responses to angiotensin II (Ang II) and adrenergic agonists in fructose-fed Sprague-Dawley rats (a model of metabolic syndrome). Rats were fed 20% fructose in drinking water (F) for 8 weeks. One fructose-fed group received tempol (FT) at 1 mmol·L(-1) in drinking water for 8 weeks or as an infusion (1.5 mg·kg(-1)·min(-1)) intrarenally. At the end of the treatment regimen, the renal responses to noradrenaline, phenylephrine, methoxamine, and Ang II were determined. F rats exhibited hyperinsulinemia, hyperuricemia, hypertriglyceridemia, and hypertension. Tempol reduced blood glucose and insulin levels (all p < 0.05) in FT rats compared with their untreated counterparts. The vasoconstriction response to all agonists was lower in F rats than in control rats by about 35%-65% (all p < 0.05). Vasoconstrictor responses to noradrenaline, phenylephrine, and methoxamine but not Ang II were about 41%-75% higher in FT rats compared with F rats (all p < 0.05). Acute tempol infusion blunted responses to noradrenaline, methoxamine, and Ang II in control rats by 32%, 33%, and 62%, while it blunted responses to noradrenaline and Ang II in F rats by 26% and 32%, respectively (all p < 0.05), compared with their untreated counterparts. Superoxide radicals play a crucial role in controlling renal vascular responses to adrenergic agonists in insulin-resistant rats. Chronic but not acute tempol treatment enhances renal vascular responsiveness in fructose-fed rats.

  13. Alteration of renal baroreceptor by salt intake in control of plasma renin activity in conscious dogs.

    PubMed

    Farhi, E R; Cant, J R; Barger, A C

    1983-07-01

    We investigated the relationship between renal arterial pressure (RAP) and systemic plasma renin activity (PRA) in five uninephrectomized conscious dogs on normal salt (80 meq Na+/day) and low salt (10 meq Na+/day) diets. The RAP was controlled by an inflatable cuff placed around the origin of the renal artery. In both salt states the PRA was an exponential function of the RAP: log (PRA) = (-0.026 X RAP) + 2 on the normal salt diet (r = 0.96) and log (PRA) = (-0.026 X RAP) + 2.5 on the low salt diet (r = 0.99). At any RAP, the value of the low salt PRA was 3 times that of the normal salt PRA. Accordingly, a reduction in salt intake increases the sensitivity of the renal baroreceptor so that the absolute value of PRA increases at any RAP, but the percentage change in PRA caused by any change in RAP is the same in both normal and low salt states.

  14. Different expression patterns of renal Na(+)/K(+)-ATPase α-isoform-like proteins between tilapia and milkfish following salinity challenges.

    PubMed

    Yang, Wen-Kai; Chung, Chang-Hung; Cheng, Hui Chen; Tang, Cheng-Hao; Lee, Tsung-Han

    2016-12-01

    Euryhaline teleosts can survive in a broad range of salinity via alteration of the molecular mechanisms in certain osmoregulatory organs, including in the gill and kidney. Among these mechanisms, Na(+)/K(+)-ATPase (NKA) plays a crucial role in triggering ion-transporting systems. The switch of NKA isoforms in euryhaline fish gills substantially contributes to salinity adaptation. However, there is little information about switches in the kidneys of euryhaline teleosts. Therefore, the responses of the renal NKA α-isoform protein switch to salinity challenge in euryhaline tilapia (Oreochromis mossambicus) and milkfish (Chanos chanos) with different salinity preferences were examined and compared in this study. Immunohistochemical staining in tilapia kidneys revealed the localization of NKA in renal tubules rather than in the glomeruli, similar to our previous findings in milkfish kidneys. Protein abundance in the renal NKA pan α-subunit-like, α1-, and α3-isoform-like proteins in seawater-acclimated tilapia was significantly higher than in the freshwater group, whereas the α2-isoform-like protein exhibited the opposite pattern of expression. In the milkfish, higher protein abundance in the renal NKA pan α-subunit-like and α1-isoform-like proteins was found in freshwater-acclimated fish, whereas no difference was found in the protein abundance of α2- and α3-isoform-like proteins between groups. These findings suggested that switches for renal NKA α-isoforms, especially the α1-isoform, were involved in renal osmoregulatory mechanisms of euryhaline teleosts. Moreover, differences in regulatory responses of the renal NKA α-subunit to salinity acclimation between tilapia and milkfish revealed that divergent mechanisms for maintaining osmotic balance might be employed by euryhaline teleosts with different salinity preferences.

  15. Increased Dietary Sodium Induces COX2 Expression by activating NFκB in Renal Medullary Interstitial Cells

    PubMed Central

    Zhao, Min; Davis, Linda S.; Blackwell, Timothy S.; Yull, Fiona; Breyer, Matthew D.; Hao, Chuan-Ming

    2013-01-01

    High salt diet induces renal medullary COX2 expression. Selective blockade of renal medullary COX2 activity in rats causes salt sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8% NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6J mice. Co-immunofluorescence using a COX2 antibody and antibodies against AQP2, ClC-K, AQP1 and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a 7 fold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of EGFP expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet fed C57Bl/6J mice with selective IκB kinase inhibitor IMD-0354 (8mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary PGE2. These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium. PMID:23900806

  16. Increased dietary sodium induces COX2 expression by activating NFκB in renal medullary interstitial cells.

    PubMed

    He, Wenjuan; Zhang, Min; Zhao, Min; Davis, Linda S; Blackwell, Timothy S; Yull, Fiona; Breyer, Matthew D; Hao, Chuan-Ming

    2014-02-01

    High salt diet induces renal medullary cyclooxygenase 2 (COX2) expression. Selective blockade of renal medullary COX2 activity in rats causes salt-sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8 % NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6 J mice. Co-immunofluorescence using a COX2 antibody and antibodies against aquaporin-2, ClC-K, aquaporin-1, and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a sevenfold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of enhanced green fluorescent protein (EGFP) expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet-fed C57Bl/6 J mice with selective IκB kinase inhibitor IMD-0354 (8 mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary prostaglandin E2 (PGE2). These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium.

  17. Targeted next-generation sequencing and non-coding RNA expression analysis of clear cell papillary renal cell carcinoma suggests distinct pathological mechanisms from other renal tumour subtypes.

    PubMed

    Lawrie, Charles H; Larrea, Erika; Larrinaga, Gorka; Goicoechea, Ibai; Arestin, María; Fernandez-Mercado, Marta; Hes, Ondrej; Cáceres, Francisco; Manterola, Lorea; López, José I

    2014-01-01

    Clear cell tubulopapillary renal cell carcinoma (CCPRCC) is a recently described rare renal malignancy that displays characteristic gross, microscopic and immunohistochemical differences from other renal tumour types. However, CCPRCC remains a very poorly understood entity. We therefore sought to elucidate some of the molecular mechanisms involved in this neoplasm by carrying out targeted next-generation sequencing (NGS) to identify associated mutations, and in addition examined the expression of non-coding (nc) RNAs. We identified multiple somatic mutations in CCPRCC cases, including a recurrent [3/14 cases (21%)] non-synonymous T992I mutation in the MET proto-oncogene, a gene associated with epithelial-to-mesenchymal transition (EMT). Using a microarray approach, we found that the expression of mature (n = 1105) and pre-miRNAs (n = 1105), as well as snoRNA and scaRNAs (n = 2214), in CCPRCC cases differed from that of clear cell renal cell carcinoma (CCRCC) or papillary renal cell carcinoma (PRCC) tumours. Surprisingly, and unlike other renal tumour subtypes, we found that all five members of the miR-200 family were over-expressed in CCPRCC cases. As these miRNAs are intimately involved with EMT, we stained CCPRCC cases for E-cadherin, vimentin and β-catenin and found that the tumour cells of all cases were positive for all three markers, a combination rarely reported in other renal tumours that could have diagnostic implications. Taken together with the mutational analysis, these data suggest that EMT in CCPRCC tumour cells is incomplete or blocked, consistent with the indolent clinical course typical of this malignancy. In summary, as well as describing a novel pathological mechanism in renal carcinomas, this study adds to the mounting evidence that CCPRCC should be formally considered a distinct entity. Microarray data have been deposited in the GEO database [GEO accession number (GSE51554)]. Copyright © 2013 Pathological Society of Great Britain and Ireland

  18. Sex hormones induce a gender-related difference in renal expression of a novel prostaglandin transporter, OAT-PG, influencing basal PGE2 concentration.

    PubMed

    Hatano, Ryo; Onoe, Kimitaka; Obara, Masaya; Matsubara, Mitsunobu; Kanai, Yoshikatsu; Muto, Shigeaki; Asano, Shinji

    2012-02-01

    Based on the nucleotide sequence of a mouse prostaglandin-specific transporter (mOAT-PG), we identified a rat homolog (rOAT-PG) which shares 80% identity with mOAT-PG in a deduced amino acid sequence. rOAT-PG transports PGE(2) and colocalizes with 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a metabolic enzyme for PGs, in proximal tubules, suggesting that rOAT-PG is involved in PGE(2) clearance to regulate its physiological function in the renal cortex. We found that the expression level of rOAT-PG in the renal cortex was much higher in male rats than in female rats whereas there was no gender difference in the expression level of cyclooxygenase-2, a key enzyme producing PGE(2), and 15-PGDH in the renal cortex. Tissue PGE(2) concentration in the renal cortex was lower in male rats than in female rats, suggesting that renocortical PGE(2) concentration is primarily determined by the expression level of OAT-PG, which is regulated differently between male and female rats. Castration of male rat led to a remarkable reduction in OAT-PG expression and a significant increase in renocortical PGE(2) concentration. These alterations were recovered by testosterone supplementation. These results suggest that OAT-PG is involved in local PGE(2) clearance in the renal cortex. Although the physiological importance of the gender difference in local PGE(2) clearance is still unclear, these findings might be a key to clarifying the physiological roles of PGE(2) in the kidney.

  19. Expression of MMP-2 and TIMP-1 in Renal Tissue of Patients with Chronic Active Antibody-mediated Renal Graft Rejection

    PubMed Central

    2012-01-01

    Objective To investigate the expression of matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metallopropteinase-1 (TIMP-1) in the renal allografts of patients with chronic active antibody-mediated rejection (AMR), and to explore their role in the pathogenesis of AMR. Methods Immunohistochemistry assay and computer-assisted image analysis were used to detect the expression of MMP-2 and TIMP-1 in the renal allografts with interstitial fibrosis and tubular atrophy (IF/TA) in 46 transplant recipients and 15 normal renal tissue specimens as the controls. The association of the expression level of either MMP-2 or TIMP-1 with the pathological grade of IF/TA in AMR was analyzed. Results The expression of either MMP-2 or TIMP-1 was significantly increased in the renal allografts of the recipients as compared with the normal renal tissue (P < 0.05). MMP-2 expression tended to decrease, while TIMP-1 and serum creatinine increased along with the increase of pathological grade of IF/TA (P < 0.05). In IF/TA groups, the expression of TIMP-1 was positively correlated to serum creatinine level (r = 0.718, P < 0.05). Conclusions It is suggested by the results that abnormal expressions of MMP-2 and TIMP-1 might play roles in the development of renal fibrosis in chronic AMR. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1128474926172838 PMID:23057632

  20. Expression and Regulatory Effects of Murine Schlafen (Slfn) Genes in Malignant Melanoma and Renal Cell Carcinoma*

    PubMed Central

    Mavrommatis, Evangelos; Arslan, Ahmet Dirim; Sassano, Antonella; Hua, Youjia; Kroczynska, Barbara; Platanias, Leonidas C.

    2013-01-01

    There is emerging evidence that the IFN-inducible family of Slfn genes and proteins play important roles in cell cycle progression and control of cellular proliferation, but the precise functional roles of different Slfn members in the regulation of tumorigenesis remain unclear. In the present study, we undertook a systematic analysis on the expression and functional relevance of different mouse Slfn genes in malignant melanoma and renal cell carcinoma cells. Our studies demonstrate that several mouse Slfn genes are up-regulated in response to IFN treatment of mouse melanoma and renal cell carcinoma cells, including Slfn1, Slfn2, Slfn4, Slfn5, and Slfn8. Our data show that Slfn2 and Slfn3 play essential roles in the control of mouse malignant melanoma cell proliferation and/or anchorage-independent growth, suggesting key and non-overlapping roles for these genes in the control of malignant melanoma tumorigenesis. In renal cell carcinoma cells, in addition to Slfn2 and Slfn3, Slfn5 also exhibits important antineoplastic effects. Altogether, our findings indicate important functions for distinct mouse Slfn genes in the control of tumorigenesis and provide evidence for differential involvement of distinct members of this gene family in controlling tumorigenesis. They also raise the potential of future therapeutic approaches involving modulation of expression of members of this family of genes in malignant melanoma and renal cell carcinoma. PMID:24089532

  1. Expression and regulatory effects of murine Schlafen (Slfn) genes in malignant melanoma and renal cell carcinoma.

    PubMed

    Mavrommatis, Evangelos; Arslan, Ahmet Dirim; Sassano, Antonella; Hua, Youjia; Kroczynska, Barbara; Platanias, Leonidas C

    2013-11-15

    There is emerging evidence that the IFN-inducible family of Slfn genes and proteins play important roles in cell cycle progression and control of cellular proliferation, but the precise functional roles of different Slfn members in the regulation of tumorigenesis remain unclear. In the present study, we undertook a systematic analysis on the expression and functional relevance of different mouse Slfn genes in malignant melanoma and renal cell carcinoma cells. Our studies demonstrate that several mouse Slfn genes are up-regulated in response to IFN treatment of mouse melanoma and renal cell carcinoma cells, including Slfn1, Slfn2, Slfn4, Slfn5, and Slfn8. Our data show that Slfn2 and Slfn3 play essential roles in the control of mouse malignant melanoma cell proliferation and/or anchorage-independent growth, suggesting key and non-overlapping roles for these genes in the control of malignant melanoma tumorigenesis. In renal cell carcinoma cells, in addition to Slfn2 and Slfn3, Slfn5 also exhibits important antineoplastic effects. Altogether, our findings indicate important functions for distinct mouse Slfn genes in the control of tumorigenesis and provide evidence for differential involvement of distinct members of this gene family in controlling tumorigenesis. They also raise the potential of future therapeutic approaches involving modulation of expression of members of this family of genes in malignant melanoma and renal cell carcinoma.

  2. The effects of valsartan on renal glutathione peroxidase expression in alleviation of cyclosporine nephrotoxicity in rats

    PubMed Central

    Raeisi, Sina; Ghorbanihaghjo, Amir; Argani, Hassan; Dastmalchi, Siavoush; Ghasemi, Babollah; Ghazizadeh, Teimour; Rashtchizadeh, Nadereh; Mesgari Abbasi, Mehran; Bargahi, Nasrin; Nemati, Mahboob; Mota, Ali; Vatankhah, Amir Mansour

    2016-01-01

    Introduction: Nephrotoxicity as a side effect caused by the immunosuppressive drug, cyclosporine-A (CsA), can be a major problem in transplant medicine. Oxidative stress may play an important role in the CsA-induced nephrotoxicity. It has been shown that the antihypertensive drug, valsartan (Val), has also renoprotective effects but, its molecular mechanism is largely unknown. In the present study, it was aimed to evaluate the Val effect in the alleviation of CsA nephrotoxicity via probable renal glutathione peroxidase (GPx) upregulation and oxidative stress decrease. Methods: Thirty-two Sprague-Dawley rats were divided into four groups based on CsA and/or Val administration: group A (Control, 1 mL/kg/day of olive oil as vehicle), group B (CsA, 30 mg/kg/day), group C (CsA+Val, 30+30 mg/kg/day), and group D (Val, 30 mg/kg/day). After the administration period (six weeks), renal GPx expression was evaluated by real-time polymerase chain reaction (PCR). Plasma levels of GPx and 8-Hydroxydeoxyguanosine (8-OHdG) were measured by enzyme-linked immunosorbent assay (ELISA). Malondialdehyde (MDA) and protein carbonyl groups (PCG) were measured by spectrophotometer. Plasma levels of urea and creatinine were measured by an autoanalyzer. Results: CsA treatment led to the decrease in renal expression and plasma levels of GPx in comparison to other study groups. Rats received CsA were detected to have significantly (p<0.05) higher plasma 8-OHdG, MDA, PCG, urea, and creatinine levels in comparison to other groups. Plasma urea and creatinine levels were negatively correlated with renal GPx expression and positively correlated with the oxidative stress markers. Conclusion:Administration of Val may result in attenuating the nephrotoxic side effect of CsA via probable renal GPx upregulation, and subsequently oxidative stress decrease. PMID:27853675

  3. Serotonin 1A receptors alter expression of movement representations.

    PubMed

    Scullion, Kathleen; Boychuk, Jeffery A; Yamakawa, Glenn R; Rodych, Justin T G; Nakanishi, Stan T; Seto, Angela; Smith, Victoria M; McCarthy, Ryan W; Whelan, Patrick J; Antle, Michael C; Pittman, Quentin J; Teskey, G Campbell

    2013-03-13

    Serotonin has a myriad of central functions involving mood, appetite, sleep, and memory and while its release within the spinal cord is particularly important for generating movement, the corresponding role on cortical movement representations (motor maps) is unknown. Using adult rats we determined that pharmacological depletion of serotonin (5-HT) via intracerebroventricular administration of 5,7 dihydroxytryptamine resulted in altered movements of the forelimb in a skilled reaching task as well as higher movement thresholds and smaller maps derived using high-resolution intracortical microstimulation (ICMS). We ruled out the possibility that reduced spinal cord excitability could account for the serotonin depletion-induced changes as we observed an enhanced Hoffman reflex (H-reflex), indicating a hyperexcitable spinal cord. Motor maps derived in 5-HT1A receptor knock-out mice also showed higher movement thresholds and smaller maps compared with wild-type controls. Direct cortical application of the 5-HT1A/7 agonist 8-OH-DPAT lowered movement thresholds in vivo and increased map size in 5-HT-depleted rats. In rats, electrical stimulation of the dorsal raphe lowered movement thresholds and this effect could be blocked by direct cortical application of the 5-HT1A antagonist WAY-100135, indicating that serotonin is primarily acting through the 5-HT1A receptor. Next we developed a novel in vitro ICMS preparation that allowed us to track layer V pyramidal cell excitability. Bath application of WAY-100135 raised the ICMS current intensity to induce action potential firing whereas the agonist 8-OH-DPAT had the opposite effect. Together our results demonstrate that serotonin, acting through 5-HT1A receptors, plays an excitatory role in forelimb motor map expression.

  4. Differential extra-renal expression of the mouse renin genes.

    PubMed Central

    Miller, C C; Carter, A T; Brooks, J I; Lovell-Badge, R H; Brammar, W J

    1989-01-01

    We have used RNase-protection analyses to study renin gene expression in one- and two-gene mouse strains. The RNase-protection assay is capable of discriminating between the transcripts from the different renin genes. In a two-gene strain containing Ren-1D and Ren-2, we demonstrate transcriptional activity from Ren-1D in kidney, submandibular gland (SMG), testes, liver, brain and heart. Ren-2 is clearly expressed in kidney, SMG and testes. Similar analyses of one gene strains (containing Ren-1C only) show expression in kidney, SMG, testes, brain and heart. We cannot detect renin mRNA in the liver of these mice. Ren-1C and Ren-1D thus display quite different tissue-specificities. In order to determine whether the different tissue-specificities of the highly homologous Ren-1C and Ren-1D genes are due to different trans-acting factors in the different mouse strains or to different cis-acting DNA elements inherent to the genes, we introduced a Ren-1D transgene (Ren-1*) into a background strain containing only the Ren-1C gene. The transgene exhibits the same tissue-specificity as the Ren-1D gene of two-gene strains suggesting the presence of different cis-acting DNA elements in Ren-1C and Ren-1D. Images PMID:2657654

  5. Compartment-specific quantitative gene expression analysis after laser microdissection from archival renal allograft biopsies.

    PubMed

    Serinsöz, E; Bock, O; Kirsch, T; Haller, H; Lehmann, U; Kreipe, H; Mengel, M

    2005-03-01

    Various immunological and non-immunological pathomechanisms are responsible for the cellular damage in renal allografts. Since the kidney is an anatomically complex organ with functional and morphological heterogeneous compartments (interstitium, tubuli, vessels, glomeruli), the local response to injury maybe variable, therefore, the identification of local pathomechanisms is important. To elucidate any discrepancies in quantitative mRNA expression profiles between a total specimen analysis and a cell-specific evaluation after laser microdissection. Real-time RT-PCR was performed for complement component C3 and heme oxygenase-1 (HO-1) genes compared to the housekeeping gene beta-actin using whole section RNA extracted from formalin-fixed and paraffin-embedded archival material of 16 explanted, rejected renal allografts. Ten non-transplant nephrectomies served as controls. For five cases from each group, five different compartments of the organs (interstitium, proximal tubuli, distal tubuli, vessels, glomeruli) were microdissected and quantitative analysis for C3 and HO-1 was performed identically. Whole section mRNA expression analysis: the data showed a constant expression of the housekeeping gene beta-actin, a 7-fold increased expression of C3 and a 3-fold decreased expression of HO-1 in the allograft group as compared to the control group. mRNA expression results from microdissected compartments: in the control group, C3 and HO-1 expression could only be detected in the proximal tubuli of all cases whereas all five compartments analyzed from the rejecting kidneys showed expression of the two genes. In the allografts, expression levels of the investigated genes varied considerably not only among the different compartments but between individual cases as well. Laser microdissection combined with real-time RT-PCR is a feasible approach for retrospective quantitative gene expression analysis in formalin-fixed and paraffin-embedded renal allograft specimens. As shown

  6. DC-SIGN reacts with TLR4 and regulates inflammatory cytokine expression via NF-κB activation in renal tubular epithelial cells during acute renal injury.

    PubMed

    Feng, Danying; Wang, Yanping; Liu, Yan; Wu, Liping; Li, Xiao; Chen, Yufan; Chen, Yuanyuan; Chen, Yafeng; Xu, Chundi; Yang, Ke; Zhou, Tong

    2017-09-12

    In the pathological process of acute kidney injury (AKI), innate immune receptors are essential in inflammatory response modulation; however, the precise molecular mechanisms are still unclear. Our study sought to demonstrate the inflammatory response mechanisms in renal tubular epithelial cells via Toll-like receptor 4 (TLR4) and dendritic cell-specific ICAM-3-grabbing non-integrin 1 (DC-SIGN) signaling. We found that DC-SIGN exhibited strong expression in renal tubular epithelial cells of human acute renal injury tissues. DC-SIGN protein expression was significantly increased when renal tubular epithelial cells were exposed to lipopolysaccharide (LPS) for a short period. Furthermore, DC-SIGN was involved in the activation of p65 by TLR4, which excluded p38 and JNK. Interleukin 6 (IL-6) and tumor necrosis factor-α (TNFα) expression were decreased after DC-SIGN knockdown. Furthermore, LPS induced endogenous interactions and plasma membrane co-expression between TLR4 and DC-SIGN. These results showed that DC-SIGN and TLR4 interactions regulate inflammatory responses in renal tubular epithelial cells and participate in AKI pathogenesis. This article is protected by copyright. All rights reserved. © 2017 British Society for Immunology.

  7. A human novel gene DERPC on 16q22.1 inhibits prostate tumor cell growth and its expression is decreased in prostate and renal tumors.

    PubMed Central

    Sun, Mei; Ma, Lanfeng; Xu, Linda; Li, Jia; Zhang, Wei; Petrovics, Gyorgy; Makarem, Mazen; Sesterhenn, Isabell; Zhang, Mei; Blanchette-Mackie, E. Joan; Moul, Judd; Srivastava, Shiv; Zou, Zhiqiang

    2002-01-01

    BACKGROUND: Deletion of chromosome 16q is frequently associated with diverse tumors. Numerous studies strongly suggest the presence of one or more tumor suppressor genes on chromosome 16q22 to 16qter including the widely studied cadherin gene family. However, the specific tumor suppressor genes residing in this region need better definition and characterization. MATERIAL AND METHODS: Standard molecular biology approaches have been used to clone and characterize the DERPC cDNA and its protein product on chromosome 16q22.1. Northern blotting was used to define the expression pattern in a multiple human tissue blots. DERPC expression was examined in multi-tumor array (Clontech, CA, USA) dot blot as well as in laser capture microdissection (LCM) derived prostate cancer (CaP) specimens by quantitative RT-PCR. Western blot analysis and a fluorescent microscopy were used to characterize the molecular size and the cellular location of green fluorescent protein (GFP)-tagged DERPC fusion proteins. A colony formation assay was conducted to determine the effects of DERPC expression on tumor cell growth. RESULTS: A novel gene DERPC (Decreased Expression in Renal and Prostate Cancer) was identified and characterized. DERPC encoded a strong basic, proline- and glycine-rich nuclear protein. DERPC was ubiquitously expressed, with abundant expression in kidney, skeletal muscle, testis, liver, ovary, and heart and moderate expression in prostate. DERPC expression was reduced in renal (67%) and prostate tumors (33%). Expression of DERPC has inhibitory potential on CaP cell growth. Further, overexpression of DERPC in LNCaP cells caused alterations of nuclear morphology. CONCLUSION: This study suggests that decreased expression of DERPC may be implicated in tumorigenesis of renal and CaPs. PMID:12477976

  8. Effect of hypokalemia on renal expression of the ammonia transporter family members, Rh B Glycoprotein and Rh C Glycoprotein, in the rat kidney

    PubMed Central

    Han, Ki-Hwan; Lee, Hyun-Wook; Handlogten, Mary E.; Bishop, Jesse M.; Levi, Moshe; Kim, Jin; Verlander, Jill W.

    2011-01-01

    Hypokalemia is a common electrolyte disorder that increases renal ammonia metabolism and can cause the development of an acid-base disorder, metabolic alkalosis. The ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg), are expressed in the distal nephron and collecting duct and mediate critical roles in acid-base homeostasis by facilitating ammonia secretion. In the current studies, the effect of hypokalemia on renal Rhbg and Rhcg expression was examined. Normal Sprague-Dawley rats received either K+-free or control diets for 2 wk. Rats receiving the K+-deficient diet developed hypokalemia and metabolic alkalosis associated with significant increases in both urinary ammonia excretion and urine pH. Rhcg expression increased in the outer medullary collecting duct (OMCD). In OMCD intercalated cells, hypokalemia resulted in more discrete apical Rhcg expression and a marked increase in apical plasma membrane immunolabel. In principal cells, in the OMCD, hypokalemia increased both apical and basolateral Rhcg immunolabel intensity. Cortical Rhcg expression was not detectably altered by immunohistochemistry, although there was a slight decrease in total expression by immunoblot analysis. Rhbg protein expression was decreased slightly in the cortex and not detectably altered in the outer medulla. We conclude that in rat OMCD, hypokalemia increases Rhcg expression, causes more polarized apical expression in intercalated cells, and increases both apical and basolateral expression in the principal cell. Increased plasma membrane Rhcg expression in response to hypokalemia in the rat, particularly in the OMCD, likely contributes to the increased ammonia excretion and thereby to the development of metabolic alkalosis. PMID:21753075

  9. Fetal growth restriction alters transcription factor binding and epigenetic mechanisms of renal 11β-hydroxysteroid dehydrogenase type 2 in a sex-specific manner

    PubMed Central

    Kaur, Rajwinderjit; Hale, Merica A.; Bares, Allyson; Yu, Xing; Callaway, Christopher W.; McKnight, Robert A.; Lane, Robert H.

    2010-01-01

    Intrauterine growth restriction (IUGR) increases the risk of serious adult morbidities such as hypertension. In an IUGR rat model of hypertension, we reported a persistent decrease in kidney 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) mRNA and protein levels from birth through postnatal (P) day 21. This enzyme deficiency can lead to hypertension by limiting renal glucocorticoid deactivation. In the present study, we hypothesized that IUGR affects renal 11β-HSD2 epigenetic determinants of chromatin structure and alters key transcription factor binding to the 11β-HSD2 promoter in association with persistent downregulation of its mRNA expression. To test this hypothesis, we performed bilateral uterine artery ligation on embryonic day 19.5 pregnant rats and harvested kidneys at day 0 (P0) and P21. Key transcription factors that can affect 11β-HSD2 expression include transcriptional enhancers specificity protein 1 (SP1) and NF-κB p65 and transcriptional repressors early growth response factor (Egr-1) and NF-κB p50. Our most important findings were as follows: 1) IUGR significantly decreased SP1 and NF-κB (p65) binding to the 11β-HSD2 promoter in males, while it increased Egr-1 binding in females and NF-κB (p50) binding in males; 2) IUGR increased CpG methylation status, as well as modified the pattern of methylation in several CpG sites of 11β-HSD2 promoter at P0 also in a sex-specific manner; and 3) IUGR decreased trimethylation of H3K36 in exon 5 of 11β-HSD2 at P0 and P21 in both genders. We conclude that IUGR is associated with altered transcriptional repressor/activator binding in connection with increased methylation in the 11β-HSD2 promoter region in a sex-specific manner, possibly leading to decreased transcriptional activity. Furthermore, IUGR decreased trimethylation of H3K36 of the 11β-HSD2 gene in both genders, which is associated with decreased transcriptional elongation. We speculate that alterations in transcription factor binding and

  10. Correlation between BOLD-MRI and HIF expression level in renal carcinoma.

    PubMed

    Li, Dong; Wang, Xingming; Wang, Shuai; Cheng, Jie

    2015-01-01

    Occupying about 2%~3% of all malignant tumors, renal carcinoma is the most common primary cancer in kidney. The oxidative level of tumor cells is of vital role for optimizing treatment plan, evaluating efficacy and predicting prognosis. This study thus investigated the R2(*) value in mouse renal carcinoma model and the correlation between tumor hypoxia and expression level of hypoxia inducible factor-1 (HIF-1). A total of 20 BALB/C nude mice (4~6 weeks old) were inoculated with human ACHN renal carcinoma cells to generate renal cancer model. After the tumor diameter reached 0.5 cm, all animals were examined by BOLD-MRI, both under normal inhalation (R2a(*)) and carbogen treatment (R2b(*)). The alternation of R2(*) values (ΔR2(*)=R2a(*) - R2b(*)) was calculated. Mice were then sacrificed for Immunohistochemical (IHC) staining targeting HIF-1α and HIF-2α. The positive score of HIF was then analyzed for its correlation with R2(*) value. In 18 mice finished both experiments, Pearson correlation analysis revealed significant negative correlation between R2a(*) and ΔR2(*) (r=-0.48, P<0.05) and positive relationship between ΔR2(*) and HIF-2α (r=0.38, P<0.05). HIF-1α level, however, did not correlated with tumor R(*) values. The positive correlation between ΔR2(*) and HIF-2α, but not HIF-1α, suggested potential role of combined BOLD-MRI technique and HIF-1α staining in clinical diagnosis of renal carcinoma. HIF-2α may work as biological marker for renal cancer.

  11. Expression of insulin-like growth factor family genes in clear cell renal cell carcinoma

    PubMed Central

    Białożyt, Michał; Plato, Marta; Mazurek, Urszula; Braczkowska, Bogumiła

    2016-01-01

    Aim of the study Despite significant progress in the pathology of clear cell renal cell carcinoma (ccRCC), diagnostic and predictive factors of major importance have not been discovered. Some hopes are associated with insulin-like growth factors. The aim of the study was to compare the expression of genes for insulin-like growth factor family in tumours and in tissue of kidneys without cancer. Material and methods Fifty-two patients years with clear cell renal cell cancer were qualified to the study group; patients nephrectomised because of hydronephrosis were included in the control group. Expression of genes were evaluated by RT-PCR. Results Expression of IGFR-1 gene in tumour accounts for about 60% of cases. The incidence is higher than in corresponding adjacent non-cancerous kidney tissues and higher (but with no statistical significance) than in kidney without cancer. Expression of IGFR-2 gene in tumours has not been established. The incidence of the expression in corresponding adjacent non-cancerous kidney tissues is small. Expression of this gene has been present in all specimens from kidneys without cancer. Expression of IGFBP-3 gene ascertained in all (except four) cases of ccRCC and in the majority of clippings from adjacent tissue. It was not found in kidneys from the control group. IGF-1, IGF-2, and IGFR-1 mRNA copy numbers in ccRCC were higher than in the material from the control group PMID:27358591

  12. Functions of the Renal Nerves.

    ERIC Educational Resources Information Center

    Koepke, John P.; DiBona, Gerald F.

    1985-01-01

    Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…

  13. Functions of the Renal Nerves.

    ERIC Educational Resources Information Center

    Koepke, John P.; DiBona, Gerald F.

    1985-01-01

    Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…

  14. Expression studies and functional characterization of renal human organic anion transporter 1 isoforms.

    PubMed

    Bahn, Andrew; Ebbinghaus, Christian; Ebbinghaus, Diana; Ponimaskin, Evgeni G; Fuzesï, Laszlo; Burckhardt, Gerhard; Hagos, Yohannes

    2004-04-01

    The human organic anion transporter 1 (hOAT1) facilitates the basolateral entry of organic anions such as endogenous metabolites, xenobiotics, and drugs into the proximal tubule cells. In the present study we investigated the general occurrence of hOAT1 isoforms in the kidneys and performed functional characterizations. Kidney specimens of 10 patients were analyzed by reverse transcription-polymerase chain reaction. We detected hOAT1-2 as the main transcript in almost all patients, and weak transcripts of hOAT1-1, hOAT1-3, and hOAT1-4 in many of them. An evaluation of the renal distribution showed all four mRNAs mostly restricted to the cortex. Western blot analysis of membrane fractions from two kidney specimens yielded two bands corresponding to the observed mRNA expression, suggesting hOAT1-3 and hOAT1-4 to be expressed on the protein level in vivo. This observation is further supported by immunofluorescence analyses of all four cloned hOAT1 isoforms transiently transfected in COS 7 cells. Functional characterizations did not show any transport activity of hOAT1-3 and hOAT1-4 for the tested substrates. Cotransfection studies of each of them with hOAT1-1 did not alter fluorescein uptake indicating no regulatory impact of these isoforms. Further functional comparisons of hOAT1-1 and hOAT1-2 in fluorescein uptake studies exhibited almost identical affinities for fluorescein with Michaelis constants of 11.6 +/- 3.7 microM (hOAT1-1) and 11.9 +/- 6.4 microM (hOAT1-2), and similar sensitivities to inhibition by p-aminohippurate [IC(50): 16 microM (hOAT1-1), 10 microM (hOAT1-2)], urate [IC(50): 440 microM (hOAT1-1), 385 microM (hOAT1-2)], and furosemide (IC(50): 14 microM (hOAT1-1), 20 microM (hOAT1-2)], implying functional equivalence.

  15. Regulation of renal sodium calcium exchange by PTH: Alteration with age

    SciTech Connect

    Liang, C.T.; Hanai, Hiroyuki; Ishida, Makoto; Cheng, L.; Sacktor, Bertram )

    1990-03-01

    Parathyroid hormone, when incubated with renal cells acting in vivo and in vitro, increased Na{sup +}/Ca{sup 2+} exchange activity. The effect of parathyroid hormone was specific for biologically active analogs and could be mimicked by cAMP and forskolin. Parathyroid hormone-sensitive Na{sup +}/Ca{sup 2+} exchange activity was markedly blunted in cells from senescent rats. Parathyroid hormone-stimulated adenylate cyclase was also decreased in aging. In contrast, forskolin-stimulated Na{sup +}-dependent {sup 45}Ca{sup 2+} efflux and adenylate cyclase did not change with senescence. Decrease of PTH binding sites was observed in cells from old rats. Further, cells from 24-month-old rats had decreased Gs and Gi proteins, as detected by ADP-ribosylation. Since serum iPTH level was elevated in the old rat and could contribute to the desensitization to PTH, the authors tested this hypothesis by comparing sham-operated and PTX animals. In conclusion, the results suggested that the age related blunting in responses of renal cells to PTH was due, at least in part, to the elevated serum iPTH level in old rats.

  16. Curcumin Ameliorates Lead (Pb(2+))-Induced Hemato-Biochemical Alterations and Renal Oxidative Damage in a Rat Model.

    PubMed

    Abdel-Moneim, Ashraf M; El-Toweissy, Mona Y; Ali, Awatef M; Awad Allah, Abd Allah M; Darwish, Hanaa S; Sadek, Ismail A

    2015-11-01

    This study aims to evaluate the protective role of curcumin (Curc) against hematological and biochemical changes, as well as renal pathologies induced by lead acetate [Pb (CH3COO)2·3H2O] treatment. Male albino rats were intraperitoneally treated with Pb(2+) (25 mg of lead acetate/kg b.w., once a day) alone or in combination with Curc (30 mg of Curc/kg b.w., twice a day) for 7 days. Exposure of rats to Pb(2+) caused significant decreases in hemoglobin (Hb) content, hematocrit (Ht) value, and platelet (Plt) count, while Pb(2+)-related leukocytosis was accompanied by absolute neutrophilia, monocytosis, lymphopenia, and eosinopenia. A significant rise in lipid peroxidation (LPO) and a marked drop of total antioxidant capacity (TAC) were evident in the kidney, liver, and serum of Pb(2+) group compared to that of control. Furthermore, significantly high levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C), and a sharp drop in serum high-density lipoprotein (HDL-C) level were also seen in blood after injection of Pb(2+). Additionally, hepatorenal function tests were enhanced. Meanwhile, Pb(2+) produced marked histo-cytological alterations in the renal cortex. Co-administration of Curc to the Pb(2+)-treated animals restored most of the parameters mentioned above to near-normal levels/features. In conclusion, Curc appeared to be a promising agent for protection against Pb(2+)-induced toxicity.

  17. Altered muscle energy metabolism in post-absorptive patients with chronic renal failure.

    PubMed

    Pastoris, O; Aquilani, R; Foppa, P; Bovio, G; Segagni, S; Baiardi, P; Catapano, M; Maccario, M; Salvadeo, A; Dossena, M

    1997-06-01

    Skeletal muscle biopsies were performed on 12 healthy sedentary subjects and on 22 non-dyalized chronic renal failure patients (CRF) on a free diet and after overnight fasting. Parathormone, glucagon and insulin were determined at the same time of biopsies. CRF patients showed significantly low ATP and creatine phosphate levels. Regarding enzyme activities, a high hexokinase Vmax was found, while the pyruvate kinase activity was lower than in the control group. For the tricarboxylic acid cycle, citrate synthase, succinate dehydrogenase and malate dehydrogenase activities were higher; total NADH cytochrome c reductase activity was also high, while cytochrome oxidase activity was slightly lower. Both alanine aminotransferase and aspartate aminotransferase activities were considerably high in comparison with the control group. In conclusion, our study revealed a hypermetabolic TCA cycle, but impaired oxidative phosphorylation, which partly explained the reduced ATP concentration. Excessive protein intake and hormonal derangements may play a role in these metabolic changes.

  18. Impact of thawing on reference gene expression stability in renal cell carcinoma samples.

    PubMed

    Ma, Yi; Dai, HuiLi; Kong, XianMing; Wang, LiMin

    2012-09-01

    More and more samples are obtained from biobanks for biomedical research; however, some of these samples may undergo thawing before processing. We aim to evaluate the reference gene expression stability in thawed renal cell carcinoma samples. Sixteen matched malignant and nonmalignant renal tissue samples were obtained and each sample was divided into 4 aliquots before being snap frozen and stored at -80°C. By quantitative real-time polymerase chain reaction, a time-course study was conducted on the thawed tissue to evaluate the expression stability of a panel of the 10 most frequently used reference genes in renal cell carcinom samples: ACTB, ALAS1, B2M, GAPDH, HMBS, HPRT, PPIA, RPLP0,TBP, and TUBB. As shown by geNorm M values, PPIA was the most stable gene at the 0-, 15-, and 30-minute time points (M=0.82, 0.85, and 0.76, respectively), whereas GAPDH was ranked last at the 5-, 15-, and 30-minute time points (M=1.38, 1.44, and 1.39, respectively). A positive correlation was found by linear regression between the thawing time and 2 to the power of crossing point values of all candidate reference genes (P<0.05). The mean coefficient of variance of all reference genes increased significantly at time points 5, 15, and 30 minutes compared with 0 minutes (P<0.01). In conclusion, using the geNorm algorithm, PPIA was identified as the most stably expressed gene between malignant and nonmalignant renal tissue samples that were thawed for similar time periods. All the reference genes showed high variations along with the thawing time; it should be recommended to use a combination of several candidate reference genes when comparing samples thawed for different time periods.

  19. [Expression of LIM and SH3 protein 1 in renal clear cell carcinoma and its effects on invasion and migration of renal clear cell carcinoma 786-O cells].

    PubMed

    Jin, B; Gao, L; Li, W; Chen, J C; Wen, R M; Wang, J Q

    2017-03-23

    Objective: To investigate the expression of LIM and SH3 protein 1 (LASP1) in renal cell carcinoma and its significance in the invasion and migration of renal clear cell carcinoma 786-O cell line. Methods: The expression level of LASP1 in 41 cases of renal cell carcinoma tissues and normal renal tissues was analyzed by immunohistochemistry. The relationship between the expression level of LASP1 and clinical characteristics was further analyzed. Expression of LASP1 in 10 cases of tumor tissues with or without lymph node metastasis was analyzed by Western blot. Furthermore, small interfering RNA (siRNA) targeting LASP1 was constructed and transfected into 786-O cells to downregulate LASP1 expression. The interference effect of LASP1 siRNA on LASP1 protein and the expression of related proteins in epithelial mesenchymal transition (EMT) pathway were detected by Western blot. The effects of LASP1 knockdown on cell proliferation, migration and invasion and gene expression were then assessed using CCK8 assay, transwell cell migration system and western blot analysis, respectively. Results: The positive rate of LASP1 expression in renal clear cell carcinoma tissues was 90.2% (37/41), which was significantly higher than that in the adjacent tissues (29.3%, P=0.002). The expression of LASP1 in renal cell carcinoma was positively correlated with lymph node metastasis and TNM stage of renal cell carcinoma (P<0.05). The results of Western blot showed that LASP1 (0.696±0.053) was highly expressed in renal cell carcinoma (1.459±0.628), especially in cases with lymph node metastasis (2.692±0.186, P<0.05). The LASP1 siRNA remarkably down-regulated the expression of LASP1 protein in 786-O cells. The abilities of proliferation, invasion and migration of 786-O cells were decreased significantly in the LASP1 siRNA groups.The relative expression of E-cadherin protein in the siRNA group (0.848±0.020) was significantly higher than those in the siRNA-NC group (0.671±0.018) and control

  20. Oxygen-dependent expression of hypoxia-inducible factor-1alpha in renal medullary cells of rats.

    PubMed

    Zou, A P; Yang, Z Z; Li, P L; Cowley AW, J R

    2001-08-28

    Hypoxia-inducible factor-1alpha (HIF-1alpha) is a transcription factor that regulates the oxygen-dependent expression of a number of genes. This transcription factor may contribute to the abundant expression of many genes in renal medullary cells that function normally under hypoxic conditions. The present study was designed to determine the characteristics of HIF-1alpha cDNA cloned from the rat kidney and the expression profile of HIF-1alpha in different kidney regions and to explore the mechanism activating or regulating HIF-1alpha expression in renal medullary cells. A 3,718-bp HIF-1alpha cDNA from the rat kidney was first cloned and sequenced using RT-PCR and TA cloning technique. It was found that 823 amino acids deduced from this renal HIF-1alpha cDNA had 99%, 96%, and 90% identity with rat, mouse, or human HIF-1alpha deposited in GenBank, respectively. The 3'-untranslated region of HIF-1alpha mRNA from the rat kidney contained seven AUUUA instability elements, five of which were found to be conserved among rat, mouse, and human HIF-1alpha. Northern blot analyses demonstrated a corticomedullary gradient of HIF-1alpha mRNA expression in the kidney, with the greatest abundance in the renal inner medulla. Western blot analyses also detected a higher HIF-1alpha protein level in the nuclear extracts from the renal medulla than the renal cortex. A classic loop diuretic, furosemide (10 mg/kg ip), markedly increased renal medullary Po(2) levels from 22.5 to 52.2 mmHg, which was accompanied by a significant reduction of HIF-1alpha transcripts in renal medullary tissue. In in vitro experiments, low Po(2), but not elevated osmolarity, was found to significantly increase HIF-1alpha mRNA in renal medullary interstitial cells and inner medullary collecting duct cells. These results indicate that HIF-1alpha is more abundantly expressed in the renal medulla compared with the renal cortex. Increased abundance of HIF-1alpha mRNA in the renal medulla may represent an adaptive

  1. Effects of angiotensin-converting enzyme inhibition on altered renal hemodynamics induced by low protein diet in the rat.

    PubMed Central

    Fernández-Repollet, E; Tapia, E; Martínez-Maldonado, M

    1987-01-01

    We assessed the role of angiotensin II in mediating the alterations in renal hemodynamics known to result from low protein feeding to normal rats by examining the effect of the angiotensin-converting enzyme (ACE) inhibitor captopril. 2 wk of low protein (6% casein) diet resulted in decreased glomerular filtration rate (normal protein [NP], 1.82 +/- 0.17 vs. low protein [LP], 0.76 +/- 0.01 ml/min; P less than 0.05) and renal plasma flow (NP, 6.7 +/- 0.2 vs. LP, 3.3 +/- 0.3 ml/min; P less than 0.05); renal vascular resistance rose (NP, 8.7 +/- 0.4 vs. LP, 19.8 +/- 1.4 dyn . s per cm5; P less than 0.05). These changes were accompanied by a significant decrease in plasma renin activity (NP, 7.0 +/- 0.7 vs. LP, 4.4 +/- 0.8 ng A I/ml per h; P less than 0.05), plasma aldosterone concentration (NP, 7.0 +/- 0.6 vs. LP, 4.1 +/- 0.7 ng/dl; P less than 0.05), and urinary PGE2 excretion (NP, 3,120 +/- 511 vs. LP, 648 +/- 95 pg/mgCr; P less than 0.05); by contrast renal renin content was significantly increased (NP, 2,587 +/- 273 vs. LP, 7,032 +/- 654 ng A I/mg protein; P less than 0.05). Treatment with captopril (30 mg/kg per d) raised glomerular filtration rate (GFR; LP + capt, 1.6 +/- 0.2 ml/min) and renal plasma flow (RPF; LP + capt, 6.7 +/- 0.7 ml/min), and reduced renal vascular resistance (LP + capt, 9.2 +/- 0.5 dyn/s per cm5) in low protein-fed animals. These values were not different from those measured in untreated and captopril-treated rats fed a normal (23%) protein diet. There were no changes in systemic mean arterial pressure in any group of rats. These data provide evidence that intrarenal angiotensin II mediates the changes in intrarenal hemodynamics induced by protein deprivation. The effects of low protein feeding may be partly potentiated by the reduction in PGE2 synthesis. However, the normalization of GFR and RPF in view of only modest increases in PGE2 excretion after captopril (LP, 648 +/- 95 vs. LP + capt, 1,131 +/- 82 pg/mgCr; P less than 0.05) suggests

  2. Expression of growth arrest-specific gene 6 and its receptors in dysfunctional human renal allografts.

    PubMed

    Yin, Jian L; Hambly, Brett D; Bao, Shi S; Painter, Dorothy; Bishop, G Alex; Eris, Josette M

    2003-09-01

    Growth arrest-specific gene 6 (Gas6) and its receptors Rse, Axl and Mer have recently been found to be involved in a rat model of chronic allograft nephropathy (CAN). Thus, in this study we investigated the function of Gas6 and its receptors in human renal allograft dysfunction. Expression of Gas6 and its receptors was detected by immunohistochemical staining. Gas6 and its receptors were widely expressed in glomeruli, tubules and vessels of renal allografts. Gas6 expression was detected in normal-functioning allografts and was increased in acute rejection ( P<0.05), acute tubular necrosis ( P<0.05) and CAN ( P<0.01). Gas6 receptors were not upregulated in any of the allograft groups, except for the Axl receptor, which increased only in acute tubular necrosis ( P<0.01). Gas6 expression was also found to correspond with the expression of alpha-smooth muscle actin, a general marker of CAN ( r(2)=0.21, P<0.01). These findings suggest that Gas6, acting as a growth factor, is increased in the process of kidney allograft dysfunction and in CAN.

  3. Renal cortical complement C3 gene expression in IgA nephropathy.

    PubMed

    Montinaro, V; Gesualdo, L; Ranieri, E; Monno, R; Grandaliano, G; Schena, F P

    1997-03-01

    Glomerular C3 deposits are commonly found in immunoglobulin A (IgA) nephropathy. Renal gene expression and protein synthesis of complement components have been shown in settings of tissue inflammation. In this study, the pathogenetic involvement of locally produced C3 in IgA nephropathy was analyzed. C3 gene expression was analyzed by reverse transcription, polymerase chain reaction, and in situ hybridization techniques. C3 mRNA was detected in 56% of cases, with a significantly higher percentage in patients with moderate-to-severe lesions than in those with mild lesions (P < 0.01). By in situ hybridization, C3 transcript was predominantly expressed by tubular cells and some interstitial cells. C3 mRNA was also observed on glomerular parietal epithelial cells. Immunoreactive native C3 was detected on cortical tubuli by an anti-C3c immunoalkaline-phosphatase technique. A significant correlation was found between renal C3 transcription and glomerulosclerosis, intracapillary proliferation (both P < 0.005) and markers of interstitial damage, including tubular atrophy (P < 0.05), interstitial infiltration (P < 0.05), and fibrosis (P < 0.005). Proteinuria (P < 0.05), but not serum creatinine, at the time of renal biopsy correlated with C3 mRNA. In conclusion, it was demonstrated that the C3 gene was expressed primarily in proximal tubular cells and occasionally in glomerular crescents, and that its expression correlated with clinical and histologic markers of severity and poor outcome of IgA nephropathy. Thus, a pathogenetic involvement of the local transcription and translation of the C3 gene in IgA nephropathy was suggested.

  4. Expression of the rat renal PiT-2 phosphate transporter.

    PubMed

    Leung, J C; Barac-Nieto, M; Hering-Smith, K; Silverstein, D M

    2005-05-01

    NaPi-2a is the main sodium-dependent Pi (Na+-Pi) transporter in the apical membrane of the renal proximal tubule. Another group of Pi transporters, Glvr-1 (PiT-1) and Ram-1 (PiT-2), was identified. The PiT-2 cRNA induces Na+-dependent Pi uptake into Xenopus laevis oocytes. Prior studies have revealed the presence of the Pit-2 transporter in the kidney. Further characterization of the PiT-2 transporter in the kidney and assessment of its developmental regulation. Using primers specific for the PiT-2 mRNA and an antibody specific for the PiT-2 protein, we assessed the expression and developmental regulation of the renal PiT-2 mRNA and protein. RT-PCR analysis revealed that a 182 bp product was evident in the total kidney (TK), cortex (C), and medulla (M). Northern blots demonstrated a PiT-2 mRNA of approximately 4 kb (expected size) in the TK, C, and M. PiT-2 mRNA expression was similar in all kidney regions. RT-PCR and Northern blot analysis revealed that the PiT-2 cDNA was highly abundant in OK and MDCK culture cells. RT-PCR and Northern blot analysis revealed expected products at all ages studied. Densitometry demonstrated similar levels of expression of PiT-2 mRNA in the kidneys of older versus younger animals, and persistent expression in elderly rats. The PiT-2 protein was present in the TK, C, and M, and in OK and MDCK cells. PiT-2 protein abundance was similar at all ages studied. These studies further characterize the renal PiT-2 transporter and show that its expression is stable throughout development and ageing.

  5. Aliskiren restores renal AQP2 expression during unilateral ureteral obstruction by inhibiting the inflammasome

    PubMed Central

    Wang, Weidong; Luo, Renfei; Lin, Yu; Wang, Feifei; Zheng, Peili; Levi, Moshe; Yang, Tianxin

    2015-01-01

    Ureteral obstruction is associated with reduced expression of renal aquaporins (AQPs), urinary concentrating defects, and an enhanced inflammatory response, in which the renin-angiotensin system (RAS) may play an important role. We evaluated whether RAS blockade by a direct renin inhibitor, aliskiren, would prevent the decreased renal protein expression of AQPs in a unilateral ureteral obstruction (UUO) model and what potential mechanisms may be involved. UUO was performed for 3 days (3UUO) and 7 days (7UUO) in C57BL/6 mice with or without aliskiren injection. In 3UUO and 7UUO mice, aliskiren abolished the reduction of AQP2 protein expression but not AQP1, AQP3, and AQP4. mRNA levels of renal AQP2 and vasopressin type 2 receptor were decreased in obstructed kidneys of 7UUO mice, which were prevented by aliskiren treatment. Aliskiren treatment was also associated with a reduced inflammatory response in obstructed kidneys of UUO mice. Aliskiren significantly decreased mRNA levels of several proinflammatory factors, such as transforming growth factor-β and tumor necrosis factor-α, seen in obstructed kidneys of UUO mice. Interestingly, mRNA and protein levels of the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome components apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1, and IL-1β were dramatically increased in obstructed kidneys of 7UUO mice, which were significantly suppressed by aliskiren. In primary cultured inner medullary collecting duct cells, IL-1β significantly decreased AQP2 expression. In conclusions, RAS blockade with the direct renin inhibitor aliskiren increased water channel AQP2 expression in obstructed kidneys of UUO mice, at least partially by preventing NLRP3 inflammasome activation in association with ureteral obstruction. PMID:25694485

  6. Type of Renal Replacement Therapy (Hemodialysis versus Peritoneal Dialysis) Does Not Affect Cytokine Gene Expression or Clinical Parameters of Renal Transplant Candidates.

    PubMed

    Kamińska, Dorota; Kościelska-Kasprzak, Katarzyna; Chudoba, Paweł; Mazanowska, Oktawia; Banasik, Mirosław; Żabinska, Marcelina; Boratyńska, Maria; Lepiesza, Agnieszka; Korta, Krzysztof; Gomółkiewicz, Agnieszka; Dzięgiel, Piotr; Klinger, Marian

    2015-01-01

    Patients with renal failure suffer from immune disturbances, caused by uremic toxins and influenced by dialysis treatment. The aim of the present study was to reveal whether type of dialysis modality (hemodialysis, HD, versus peritoneal dialysis, PD) differentially affects the immunocompetence, particularly the expression of genes involved in the immune response. 87 renal transplant candidates (66 HD, 21 PD) were included in the study. The peripheral blood RNA samples were obtained with the PAXgene Blood system just before transplantation. The gene expression of CASP3, FAS, TP53, FOXP3, IFNG, IL2, IL6, IL8, IL10, IL17, IL18, LCN2, TGFB1, and TNF was assessed with real-time PCR on custom-designed low density arrays (TaqMan). Gene expression data were analyzed in relation to pretransplant clinical parameters. The mean expression of examined genes showed no significant differences between PD and HD with the exception of FAS, expression of which was 30% higher in PD patients compared to the HD group. There was nonsignificantly higher expression of proinflammatory cytokines in the PD group. The clinical inflammatory parameters (CRP, albumin, cholesterol, and hemoglobin levels) did not differ between the groups. Type of renal replacement therapy exerts no differential effect on cytokine gene expression or inflammatory clinical parameters.

  7. Varying expression of major histocompatibility complex antigens on human renal endothelium and epithelium.

    PubMed Central

    Evans, P. R.; Trickett, L. P.; Smith, J. L.; MacIver, A. G.; Tate, D.; Slapak, M.

    1985-01-01

    Pre-anastomosis wedge biopsies from 14 cadaveric donor kidneys were examined for the expression of class I (HLA-ABC) and class II (HLA-DR) antigens in renal tissue. Two monoclonal antibodies to class I antigens and four to class II antigens were used in an indirect immunoperoxidase technique. Consistent expression of both antigens was demonstrated on the surface of glomerular, peritubular capillary and venous endothelial cells. Renal arteries contained only class I antigens. Proximal tubules contained varying amounts of each antigen in their cytoplasm. Sixteen human lymphocytotoxic allo-antisera showed marked variation in their ability to detect HLA antigens on the kidney. The selection of donors for recipients of renal allografts involves the complement-dependent cytotoxicity test and the failure of some lymphocytotoxic antisera to bind to the kidney indicates that some suitable patients may be incorrectly excluded. The use of a binding assay using an immunoperoxidase technique should be included in cross-match techniques particularly for patients who have high levels of circulating cytotoxic antibodies. Images Fig. 1 Fig. 2 Fig. 3 PMID:3855644

  8. Expression of Von Hippel – Lindau (VHL) gene mutation in diagnosed cases of renal cell carcinoma

    PubMed Central

    Shahzad, Humera; Kehar, Shahnaz Imdad; Ali, Shahzad; Tariq, Naila

    2014-01-01

    Objective: To evaluate the expression of Von Hippel Lindau (VHL) gene in diagnosed cases of renal cell carcinoma. Methods: This cross sectional study was conducted in department of Pathology, Basic Medical Sciences Institute, JPMC, Karachi, from January 2007 to December 2012. Paraffin embedded blocks of 30 cases of radical nephrectomy specimens diagnosed as renal cell carcinoma including CCRCC 21 (70%) CCPRCC, 3 (10%), PRCC 2 (6.79%), hybrid tumor 4 (13.3%), chromophobe tumor (0%) processed for VHL gene expression on Polymerase Chain Reaction. Results: All the 30 cases previously diagnosed as renal cell carcinoma were processed on PCR, VHL gene mutations were seen in 20 (95.23%) of CCRCC while a single case was negative for VHL mutations. All CCPRCC were negative for VHL mutation. Among the hybrid tumor 03 cases with foci of clear cells show VHL mutation while a single case showing combination of clear cells and chromophobe cells was negative for mutation. Both the cases of PRCC were positive for mutation. Exon 3 mutation at base pair 194 seen in 8 (32%) cases and Exon 2 mutation at base pair 150-159 seen in 17 (68%) cases. None of the cases showed Exon 1 mutation. Conclusion: The present study shows that majority of CCRCC showed VHL mutation including the hybrid tumor with clear cell component in our population. PMID:25097537

  9. All-Trans Retinoic Acid Treatment Is Associated with Prohibitin Expression in Renal Interstitial Fibrosis Rats

    PubMed Central

    Zhou, Tian-Biao; Qin, Yuan-Han; Li, Zheng-Yi; Xu, Hui-Ling; Zhao, Yan-Jun; Lei, Feng-Ying

    2012-01-01

    This study was performed to investigate the association of prohibitin with renal interstitial fibrosis (RIF) lesion and to explore the association of all-trans retinoic acid (ATRA) treatment with prohibitin expression in RIF rats. Rats were divided into three groups: the sham operation group (SHO), the model group subjected to unilateral ureteral obstruction (UUO), and the model group treated with ATRA (GA). Renal tissues were collected at 14 and 28 days after surgery, and the relevant indicators were detected. In comparison with the SHO group, the RIF index in the UUO group was markedly elevated (p < 0.01), and the RIF index in the GA group was alleviated compared with that in the UUO group (p < 0.01). Compared with the SHO group, the expression of prohibitin (protein or mRNA) in the UUO group was significantly reduced (each p < 0.01). Prohibitin expression in the GA group was markedly increased when compared with that in the UUO (p < 0.01). The expression of TGF-β1 (protein and mRNA), protein expressions of Col-IV, fibronectin, α-SMA and cleaved Caspase-3, ROS generation and cell apoptosis index in the UUO group were markedly higher than those in the SHO group (all p < 0.01), and their expressions in the GA group were markedly down-regulated compared to those in the UUO group (all p < 0.01, respectively). The protein expression of prohibitin was negatively correlated with the RIF index, protein expression of TGF-β1, Col-IV, fibronectin, α-SMA or cleaved Caspase-3, ROS generation and the cell apoptosis index (each p < 0.01). In conclusion, lower expression of prohibitin is associated with the RIF, and ATRA treatment is associated with increased prohibitin, which can prevent the progression of RIF. PMID:22489124

  10. Thyroid hormone modulates ClC-2 chloride channel gene expression in rat renal proximal tubules.

    PubMed

    Santos Ornellas, D; Grozovsky, R; Goldenberg, R C; Carvalho, D P; Fong, P; Guggino, W B; Morales, M

    2003-09-01

    Thyroid hormones has its main role in controlling metabolism, but it can also modulate extracellular fluid Volume (ECFV) through its action on the expression and activity of Na(+) transporters. Otherwise, chloride is the main anion in the ECFV and the influence of thyroid hormones in the regulation of chloride transporters is not yet understood. In this work, we studied the effect of thyroid hormones in the expression of ClC-2, a cell Volume-, pH- and voltage-sensitive Cl(-) channel, in rat kidney. To analyze the modulation of ClC-2 gene expression by thyroid hormones, we used hypothyroid (Hypo) rats with or without thyroxine (T(4)) replacement and hyperthyroid (Hyper) rats as our experimental models. Total RNA was isolated and the expression of ClC-2 mRNA was evaluated by a ribonuclease protection assay, and/or semi-quantitative RT-PCR. Renal ClC-2 expression decreased in Hypo rats and increased in Hyper rats. In addition, semi-quantitative RT-PCR of different nephron segments showed that these changes were due exclusively to the modulation of ClC-2 mRNA expression by thyroid hormone in convoluted and straight proximal tubules. To investigate whether thyroid hormones action was direct or indirect, renal proximal tubule primary culture cells were prepared and subjected to different T(4) concentrations. ClC-2 mRNA expression was increased by T(4) in a dose-dependent fashion, as analyzed by RT-PCR. Western blotting demonstrated that ClC-2 protein expression followed the same profile of mRNA expression.

  11. Effects of potassium on expression of renal sodium transporters in salt-sensitive hypertensive rats induced by uninephrectomy.

    PubMed

    Jung, Ji Yong; Kim, Sejoong; Lee, Jay Wook; Jung, Eun Sook; Heo, Nam Ju; Son, Min-Jeong; Oh, Yun Kyu; Na, Ki Young; Han, Jin Suk; Joo, Kwon Wook

    2011-06-01

    Dietary potassium is an important modulator of systemic blood pressure (BP). The purpose of this study was to determine whether dietary potassium is associated with an altered abundance of major renal sodium transporters that may contribute to the modulation of systemic BP. A unilateral nephrectomy (uNx) was performed in male Sprague-Dawley rats, and the rats were fed a normal-salt diet (0.3% NaCl) for 4 wk. Thereafter, the rats were fed a high-salt (HS) diet (3% NaCl) for the entire experimental period. The potassium-repleted (HS+KCl) group was given a mixed solution of 1% KCl as a substitute for drinking water. We examined the changes in the abundance of major renal sodium transporters and the expression of mRNA of With-No-Lysine (WNK) kinases sequentially at 1 and 3 wk. The systolic BP of the HS+KCl group was decreased compared with the HS group (140.3 ± 2.97 vs. 150.9 ± 4.04 mmHg at 1 wk; 180.3 ± 1.76 vs. 207.7 ± 6.21 mmHg at 3 wk). The protein abundances of type 3 Na(+)/H(+) exchanger (NHE3) and Na(+)-Cl(-) cotransporter (NCC) in the HS+KCl group were significantly decreased (53 and 45% of the HS group at 1 wk, respectively; 19 and 8% of HS group at 3 wk). WNK4 mRNA expression was significantly increased in the HS+KCl group (1.4-fold of control at 1 wk and 1.9-fold of control at 3 wk). The downregulation of NHE3 and NCC may contribute to the BP-attenuating effect of dietary potassium associated with increased urinary sodium excretion.

  12. In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology.

    PubMed

    Aragon, Andrea C; Kopf, Phillip G; Campen, Matthew J; Huwe, Janice K; Walker, Mary K

    2008-02-01

    The mouse heart is a target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during fetal development, and microarray analysis demonstrates significant changes in expression of cardiac genes involved in extracellular matrix (ECM) remodeling. We tested the hypothesis that developmental TCDD exposure would disrupt cardiac ECM expression and be associated with changes in cardiac morphology in adulthood. In one study, time-pregnant C57BL/6 mice were dosed with corn oil or 1.5, 3.0, or 6.0 microg TCDD/kg on gestation day (GD) 14.5 and sacrificed on GD 17.5, when changes in fetal cardiac mRNA expression were analyzed using quantitative PCR. TCDD induced mRNA expression of genes associated with ECM remodeling (matrix metalloproteinase 9 and 13, preproendothelin-1 [preproET-1]), cardiac hypertrophy (atrial natriuretic peptide, beta-myosin heavy chain, osteopontin), and aryl hydrocarbon receptor (AHR) activation (cytochrome P4501A1, AHR repressor). Further, all TCDD-induced changes required the AHR since gene expression was not altered in AHR knockout fetuses. In a second study, time-pregnant mice were treated with corn oil or 6.0 microg TCDD/kg on GD 14.5, and male offspring were assessed for changes in cardiac gene expression and cardiac and renal morphology at 3 months. All TCDD-induced changes in cardiac gene expression observed fetally, except for preproET-1, remained induced in the hearts of adult male offspring. Adult male offspring of TCDD-exposed dams also displayed cardiac hypertrophy, decreased plasma volume, and mild hydronephrosis. These results demonstrate that in utero and lactational TCDD exposures alter cardiac gene expression and cardiac and renal morphology in adulthood, which may increase the susceptibility to cardiovascular dysfunction.

  13. The Beneficial Effects of Renal Transplantation on Altered Oxidative Status of ESRD Patients

    PubMed Central

    Cerrillos-Gutiérrez, José Ignacio; Preciado-Rojas, Priscila; Gómez-Navarro, Benjamín; Sifuentes-Franco, Sonia; Carrillo-Ibarra, Sandra; Andrade-Sierra, Jorge; Rojas-Campos, Enrique; Cueto-Manzano, Alfonso Martín

    2016-01-01

    Renal transplantation (RT), has been considered the best therapeutic option for end stage renal disease (ESRD). Objective. To determine the effect of RT on the evolution of oxidative DNA status. Methods. Prospective cohort (N = 50 receptors of RT); genotoxic damage, 8-hydroxy-2′-deoxyguanosine (8-OHdG), and DNA repair enzyme, human 8-oxoguanine-DNA-N- glycosylase-1 (hOGG1); and antioxidants, superoxide dismutase (SOD) and glutathione peroxidase (GPx), were evaluated. Results. Before RT, 8-OHdG were significantly elevated (11.04 ± 0.90 versus 4.73 ± 0.34 ng/mL) compared to healthy controls (p = 0.001), with normalization after 6 months of 4.78 ± 0.34 ng/mL (p < 0.001). The same phenomenon was observed with hOGG1 enzyme before RT with 2.14 ± 0.36 ng/mL (p = 0.01) and decreased significantly at the end of the study to 1.20 ng/mL (p < 0.001) but was higher than controls, 0.51 ± 0.07 ng/mL (p < 0.03). Antioxidant SOD was elevated at 24.09 ± 1.6 IU/mL versus healthy controls (p = 0.001) before RT; however, 6 months after RT it decreased significantly to 16.9 ± 1.6 IU/mL (p = 0.002), without achieving the levels of healthy controls (p = 0.01). The GPx, before RT, was significantly diminished with 24.09 ± 1.6 IU/mL versus healthy controls (39.0 ± 1.58) (p = 0.01), while, in the final results, levels increased significantly to 30.38 ± 3.16 IU/mL (p = 0.001). Discussion. Patients with ESRD have important oxidative damage before RT. The RT significantly reduces oxidative damage and partially regulates the antioxidant enzymes (SOD and GPx). PMID:27547292

  14. Evaluation of the therapeutic effect of percutaneous nephroureterolithotomy by Tc-99m diethylenetiaminepentaacetic acid (DTPA) renal scintigraphy--alteration of the renal fraction of blood flow, split-GFR, and renal mean transit time.

    PubMed

    Ishibashi, M; Morita, S; Rabito, C A; Umezaki, N; Matsuoka, K; Noda, S; Eto, K; Ohtake, H

    1990-01-01

    To evaluate the therapeutic effects of percutaneous nephroureterolithotomy, the renal function of eleven patients with renal calculi was studied, pre- and post-intervention. Renal function was determined, by renal scintigraphy with the renal agent, Tc-99m diethylenetriaminepentaacetic acid (DTPA). In each renal scintigram the renogram curve was analyzed and the following were determined by deconvolution analysis; the renal fraction of blood flow (RFBF), DTPA-glomerular filtration ratio (GFR), and the renal mean transit time (MTT). The successful results in percutaneous nephroureterolithotomy (PNL) was proven using the radionuclide technique in most cases. From these results it can be concluded that renal scintigraphy is an effective procedure to evaluate the effect of PNL for treating renal calculi and secondary hydronephrosis.

  15. Activation of PI3K-Akt-GSK3{beta} pathway mediates hepatocyte growth factor inhibition of RANTES expression in renal tubular epithelial cells

    SciTech Connect

    Gong Rujun . E-mail: rgong@Brown.edu; Rifai, Abdalla; Dworkin, Lance D.

    2005-04-29

    Hepatocyte growth factor (HGF) was recently reported to ameliorate renal inflammation in a rat model of chronic renal failure. HGF exerted its action through suppression of RANTES expression in renal tubules. In the present study, we utilized an in vitro model of human kidney proximal tubule epithelial cells (HKC) to elucidate the mechanisms of RANTES suppression by HGF. HGF significantly suppressed basal and TNF-{alpha}-induced mRNA and protein expression of RANTES in a time and dose dependent fashion. HGF elicited PI3K-Akt activation and inhibited GSK3, a downstream transducer of PI3K-Akt, by inhibitory phosphorylation at Ser-9. When the PI3K-Akt pathway was blocked by wortmannin, HGF inhibition of RANTES was abrogated, demonstrating that the PI3K-Akt pathway is necessary for HGF action. In addition, specific inhibition of GSK3 activity by lithium ion suppressed basal and TNF-{alpha}-induced RANTES expression, reminiscent of the action of HGF. To further investigate the role of GSK3 in modulating RANTES expression, we examined the effect of forced expression of wild type GSK3{beta} or an uninhibitable mutant GSK3{beta}, in which the regulatory Ser-9 residue is changed to alanine (S9A-GSK3{beta}) in HKC. Overexpression of wild type GSK3{beta} did not alter the inhibitory action of HGF on RANTES. In contrast, expression of S9A-GSK3{beta} abolished HGF inhibition of basal and TNF-{alpha} stimulated RANTES expression. These findings suggest that PI3K-Akt activation and subsequent inhibitory phosphorylation of GSK3{beta} are required for HGF-induced suppression of RANTES in HKC.

  16. Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic.

    PubMed

    Ortega-Domínguez, Bibiana; Aparicio-Trejo, Omar Emiliano; García-Arroyo, Fernando E; León-Contreras, Juan Carlos; Tapia, Edilia; Molina-Jijón, Eduardo; Hernández-Pando, Rogelio; Sánchez-Lozada, Laura Gabriela; Barrera-Oviedo, Diana; Pedraza-Chaverri, José

    2017-09-01

    Cisplatin is widely used as chemotherapeutic agent for treatment of diverse types of cancer, however, acute kidney injury (AKI) is an important side effect of this treatment. Diverse mechanisms have been involved in cisplatin-induced AKI, such as oxidative stress, apoptosis and mitochondrial damage. On the other hand, curcumin is a polyphenol extracted from the rhizome of Curcuma longa L. Previous studies have shown that curcumin protects against the cisplatin-induced AKI; however, it is unknown whether curcumin can reduce alterations in mitochondrial bioenergetics and dynamic in this model. It was found that curcumin prevents cisplatin-induced: (a) AKI and (b) alterations in the following mitochondrial parameters: bioenergetics, ultrastructure, hydrogen peroxide production and dynamic. In fact, curcumin prevented the increase of mitochondrial fission 1 protein (FIS1), the decrease of optic atrophy 1 protein (OPA1) and the decrease of NAD(+)-dependent deacetylase sirtuin-3 (SIRT3), a mitochondrial dynamic regulator as well as the increase in the mitophagy associated proteins parkin and phosphatase and tensin homologue (PTEN)-induced putative kinase protein 1 (PINK1). In conclusion, the protective effect of curcumin in cisplatin-induced AKI was associated with the prevention of the alterations in mitochondrial bioenergetics, ultrastructure, redox balance, dynamic, and SIRT3 levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Involvement of ABC transporters in chemosensitivity of human renal cell carcinoma, and regulation of MRP2 expression by conjugated bilirubin.

    PubMed

    Nomura, Masaaki; Matsunami, Toshio; Kobayashi, Kayoko; Uchibayashi, Tadao; Koshida, Kiyoshi; Tanaka, Motohiro; Namiki, Mikio; Mizuhara, Yasuharu; Akiba, Tetsuo; Yokogawa, Koichi; Moritani, Shuzo; Miyamoto, Ken-Ichi

    2005-01-01

    In this study, the involvement of ATP-binding cassette (ABC) transporters in in vitro chemosensitivity of surgically removed human renal cell carcinomas was investigated. The relative expression levels of transporter mRNAs in the renal tumors from 13 patients were similar to those in the surrounding normal kidney tissues. Five renal cell carcinomas cultured successfully in vitro for 14 days showed significantly decreased expression of multi-drug resistance-associated proteins 2 and 6 (MRP2 and MRP6) mRNAs. In vitro chemosensitivity testing of the same specimens using the collagen-gel matrix assay indicated that some anticancer drugs were effective, especially cisplatin, which is an MRP2 substrate. MRP2 mRNA expression in renal carcinoma was significantly increased when cells were cultured in the presence of conjugated bilirubin. In an established renal proximal tubule epithelial cell line (RPTEC), conjugated bilirubin increased MRP2 expression at the mRNA and protein levels, and decreased the cisplatin sensitivity of the cells. These results indicate that MRP2 expression in renal cell carcinoma may be regulated by conjugated bilirubin in the body and decreased during in vitro culture. Thus, the effectiveness of anticancer drugs selected on the basis of in vitro chemosensitivity testing of clinical cancers may be overestimated.

  18. Altered Endoplasmic Reticulum Calcium Pump Expression during Breast Tumorigenesis

    PubMed Central

    Papp, Béla; Brouland, Jean-Philippe

    2011-01-01

    Endoplasmic reticulum calcium homeostasis is involved in several essential cell functions including cell proliferation, protein synthesis, stress responses or secretion. Calcium uptake into the endoplasmic reticulum is performed by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes). In order to study endoplasmic reticulum calcium homeostasis in situ in mammary tissue, in this work SERCA3 expression was investigated in normal breast and in its benign and malignant lesions in function of the cell type, degree of malignancy, and histological and molecular parameters of the tumors. Our data indicate, that although normal breast acinar epithelial cells express SERCA3 abundantly, its expression is strongly decreased already in very early non-malignant epithelial lesions such as adenosis, and remains low in lobular carcinomas. Whereas normal duct epithelium expresses significant amounts of SERCA3, its expression is decreased in several benign ductal lesions, as well as in ductal adenocarcinoma. The loss of SERCA3 expression is correlated with Elston-Ellis grade, negative hormone receptor expression or triple negative status in ductal carcinomas. The concordance between decreased SERCA3 expression and several histological, as well as molecular markers of ductal carcinogenesis indicates that endoplasmic reticulum calcium homeostasis is remodeled during tumorigenesis in the breast epithelium. PMID:21863130

  19. [Effects of alpha-keto acid on the expression of neuropeptide Y in malnutrition rats with chronic renal failure].

    PubMed

    Zhou, Wei-Dong; Deng, Cong; Long, Hai-Bo; Xiao, Wei; Hu, Hai-Yan

    2009-07-01

    To investigate the effects of alpha-keto acid on the expression of neuropeptide Y in malnutrition rats with chronic renal failure. SD rats received 5/6 nephrectomy and were fed with 4% casein to establish models of malnutrition with chronic renal failure. Serum albumin, urea nitrogen, serum creatinine, type-1 insulin like growth factor and body weight of the rats were measured. The rat models were randomized into chronic renal failure group, alpha-keto acid group and normal control group, and after a 4-week treatment as indicated, neuropeptide Y mRNA levels in the hypothalamus were measured by RT-PCR in rats with surgically induced renal failure (two-stage subtotal nephrectomy). The blood neuropeptide Y of the rats were analyzed by radioimmunoassay. Malnutrition occurred in chronic renal failure rats at the end of 10 weeks. Compared with those in the chronic renal failure group, the plasma neuropeptide Y concentrations in alpha-keto acid group were significantly lowered with substantially elevated neuropeptide Y mRNA expression in the hypothalamus. alpha-keto acid capsule can improve malnutrition in rats with renal insufficiency possibly by up-regulating neuropeptide Y mRNA expression in the hypothalamus and reducing the level of blood neuropeptide Y.

  20. Combined Paracrine and Endocrine AAV9 mediated Expression of Hepatocyte Growth Factor for the Treatment of Renal Fibrosis

    PubMed Central

    Schievenbusch, Stephanie; Strack, Ingo; Scheffler, Melanie; Nischt, Roswitha; Coutelle, Oliver; Hösel, Marianna; Hallek, Michael; Fries, Jochen WU; Dienes, Hans-Peter; Odenthal, Margarete; Büning, Hildegard

    2010-01-01

    In chronic renal disease, tubulointerstitial fibrosis is a leading cause of renal failure. Here, we made use of one of the most promising gene therapy vector platforms, the adeno-associated viral (AAV) vector system, and the COL4A3-deficient mice, a genetic mouse model of renal tubulointerstitial fibrosis, to develop a novel bidirectional treatment strategy to prevent renal fibrosis. By comparing different AAV serotypes in reporter studies, we identified AAV9 as the most suitable delivery vector to simultaneously target liver parenchyma for endocrine and renal tubular epithelium for paracrine therapeutic expression of the antifibrogenic cytokine human hepatocyte growth factor (hHGF). We used transcriptional targeting to drive hHGF expression from the newly developed CMV-enhancer-Ksp-cadherin-promoter (CMV-Ksp) in renal and hepatic tissue following tail vein injection of rAAV9-CMV-Ksp-hHGF into COL4A3-deficient mice. The therapeutic efficiency of our approach was demonstrated by a remarkable attenuation of tubulointerstitial fibrosis and repression of fibrotic markers such as collagen1α1 (Col1A1), platelet-derived growth factor receptor-β (PDGFR-β), and α-smooth muscle actin (SMA). Taken together, our results show the great potential of rAAV9 as an intravenously applicable vector for the combined paracrine and endocrine expression of antifibrogenic factors in the treatment of renal failure caused by tubulointerstitial fibrosis. PMID:20424598

  1. Analysis of long non-coding RNA expression profiles in clear cell renal cell carcinoma.

    PubMed

    Yang, Fei Yan; Wang, Yan; Wu, Jian Guo; Song, Shao Li; Huang, Gang; Xi, Wei Min; Tan, Li Ling; Wang, Jian; Cao, Qing

    2017-09-01

    To investigate the expression patterns of long non-coding RNAs (lncRNAs) in clear cell renal cell carcinoma (ccRCC) and in metastatic renal cell carcinoma (RCC), the present study downloaded three human exon arrays available from the public Gene Expression Omnibus. The probes of the human exon arrays were re-annotated and the probes uniquely mapping to lncRNAs were retained at the gene level. Following the analysis of GSE53757 and GSE46699, which contained paired ccRCC cancer and normal adjacent tissue samples, 32 differentially expressed lncRNAs (adjusted P<0.01) in ccRCC were identified. Various lncRNAs, including ENSG00000177133, NR_024418, T-cell leukemia/lymphoma 6 (TCL6), growth arrest-specific transcript 5, deleted in lymphocytic leukemia 2, colorectal neoplasia differentially expressed (CRNDE) and MIR155HG, have been reported to be abnormally expressed in cancers. Of these genes, NR_24418 and TCL6 have been reported to be associated with ccRCC. Following analysis of GSE47352, which contained 4 primary metastatic and 5 non-metastatic tumor samples, the 50 top differentially expressed lncRNAs were identified in metastatic ccRCC (Mann-Whitney U test, P<0.05). Comparison with the ccRCC associated lncRNAs revealed that the lncRNA CRNDE demonstrated an increased expression in ccRCC and metastatic ccRCC samples, which suggested that CRNDE is important in the progression of ccRCC. The lncRNA ENSG00000244020 was decreased in ccRCC and metastatic ccRCC, suggesting that silencing of ENSG00000244020 may be important in ccRCC development. Overall, a set of lncRNAs was identified as differentially expressed in ccRCC and metastatic ccRCC, providing potential candidates for the discovery of novel cancer biomarkers and therapeutic targets to improve diagnosis and therapy in RCC.

  2. PD-1/PD-L1 expression in chromophobe renal cell carcinoma: An immunological exception?

    PubMed

    Erlmeier, Franziska; Hartmann, Arndt; Autenrieth, Michael; Wiedemann, Max; Ivanyi, Philipp; Steffens, Sandra; Weichert, Wilko

    2016-11-01

    Immune checkpoint inhibitors targeting the inhibitory cross talk between tumor and immune cells have been approved for therapy in renal cell carcinoma (RCC). In contrast to clear cell RCC, little is known on PD-1/PD-L1 expression patterns in rarer RCC subtypes. The aim of this study was to evaluate the prevalence, distribution and prognostic impact of PD-1 and PD-L1 expression in chromophobe (ch)RCC. Patients who underwent renal surgery due to chRCC were retrospectively evaluated. Tumor specimen was analyzed for PD-1 and PD-L1 expression by immunohistochemistry. Expression data were correlated with clinic-pathological parameters including patient survival. Eighty-one chRCC patients were eligible for analysis, thereof 25 (30.9 %) and 11 (13.6 %) patients were positive for PD-1(+) tumor-infiltrating mononuclear cells (TIMCs) and tumoral PD-L1(+) expression, respectively. No significant associations were found for PD-1(+) TIMC or tumoral PD-L1(+) expression and clinical attributes. In addition, no differences in 5- and 10-year overall survival for PD-1(-) TIMC compared to PD-1(+) TIMC (90.5 and 72.2 vs. 100 and 75 %; p = 0.41) and for PD-L1(-) tumors compared to PD-L1(+) tumors (91.9 and 76.4 vs. 100 and 50 %; p = 0.48) were observed. In conclusion, to our knowledge this is the first study to evaluate the prognostic impact of PD-1 and PD-L1 in chRCC. PD-L1 does seem to be expressed in a minority of all chRCC, likewise only a minority of chRCC was infiltrated by PD-1-positive inflammatory cells. Neither PD-1(+) TIMC nor tumoral PD-L1(+) expression was associated with parameters of aggressiveness or survival.

  3. High expression of HMGA2 predicts poor survival in patients with clear cell renal cell carcinoma

    PubMed Central

    Na, Ning; Si, Tujie; Huang, Zhengyu; Miao, Bin; Hong, Liangqing; Li, Heng; Qiu, Jiang; Qiu, Jianguang

    2016-01-01

    High-mobility group AT-hook 2 (HMGA2) is involved in a wide spectrum of biological processes and is upregulated in several tumors, but its role in renal carcinoma remains unclear. The aim of this study was to examine the expression of HMGA2 and its relationship to the overall survival (OS) of patients with non-metastatic clear cell renal cell carcinoma (ccRCC) following surgery. The expression of HMGA2 was evaluated retrospectively by immunohistochemistry (IHC) in 162 patients with ccRCC who underwent nephrectomy in 2003 and 2004. An IHC analysis revealed that HMGA2 was expressed in the nuclei of tumor cells in 146 (90.1%) patients with ccRCC. The level of HMGA2 was positively correlated with tumor size, lymph node metastasis, and Fuhrman Grade. A Kaplan–Meier analysis with log-rank test found that patients with high HMGA2 expression had a poor outcome and that patients with low HMGA2 expression had better survival. Cox regression analysis showed that HMGA2 expression could serve as an independent prognostic factor for ccRCC patients. The efficacy of the following prognostic models was improved when HMGA2 expression was added: tumor node metastasis stage, UCLA Integrated Scoring System, Mayo Clinic stage, size, grade, and necrosis score. In summary, this study showed that HMGA2 expression is an independent prognostic factor for OS in patients with ccRCC. HMGA2 was found to be a valuable biomarker for ccRCC progression. PMID:27932890

  4. Nuclear hormone receptor expression in mouse kidney and renal cell lines.

    PubMed

    Ogawa, Daisuke; Eguchi, Jun; Wada, Jun; Terami, Naoto; Hatanaka, Takashi; Tachibana, Hiromi; Nakatsuka, Atsuko; Horiguchi, Chikage Sato; Nishii, Naoko; Makino, Hirofumi

    2014-01-01

    Nuclear hormone receptors (NHRs) are transcription factors that regulate carbohydrate and lipid metabolism, immune responses, and inflammation. Although several NHRs, including peroxisome proliferator-activated receptor-γ (PPARγ) and PPARα, demonstrate a renoprotective effect in the context of diabetic nephropathy (DN), the expression and role of other NHRs in the kidney are still unrecognized. To investigate potential roles of NHRs in the biology of the kidney, we used quantitative real-time polymerase chain reaction to profile the expression of all 49 members of the mouse NHR superfamily in mouse kidney tissue (C57BL/6 and db/m), and cell lines of mesangial (MES13), podocyte (MPC), proximal tubular epithelial (mProx24) and collecting duct (mIMCD3) origins in both normal and high-glucose conditions. In C57BL/6 mouse kidney cells, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) and COUP-TFIII were highly expressed. During hyperglycemia, the expression of the NHR 4A subgroup including neuron-derived clone 77 (Nur77), nuclear receptor-related factor 1, and neuron-derived orphan receptor 1 significantly increased in diabetic C57BL/6 and db/db mice. In renal cell lines, PPARδ was highly expressed in mesangial and proximal tubular epithelial cells, while COUP-TFs were highly expressed in podocytes, proximal tubular epithelial cells, and collecting duct cells. High-glucose conditions increased the expression of Nur77 in mesangial and collecting duct cells, and liver x receptor α in podocytes. These data demonstrate NHR expression in mouse kidney cells and cultured renal cell lines and suggest potential therapeutic targets in the kidney for the treatment of DN.

  5. Up-regulation of NPY gene expression in hypothalamus of rats with experimental chronic renal failure.

    PubMed

    Sucajtys-Szulc, Elzbieta; Karbowska, Joanna; Kochan, Zdzislaw; Wolyniec, Wojciech; Chmielewski, Michal; Rutkowski, Boleslaw; Swierczynski, Julian

    2007-01-01

    Anorexia is possibly one of the most important causes of malnutrition in uremic patients. The cause of this abnormality is still unknown. Considering that: (a) NPY is one of the most important stimulants of food intake; (b) eating is a central nervous system regulated process and (c) NPY is expressed in hypothalamus, we hypothesized that the decrease of NPY gene expression in the hypothalamus could be an important factor contributing to anorexia associated with uremic state. In contrast to the prediction, the results presented in this paper indicate that the NPY gene expression in the hypothalamus of chronic renal failure (CRF) rats was significantly higher than in the hypothalamus of control (pair-fed) rats. Moreover, we found that serum NPY concentration in CRF rats was higher than in control (pair-fed) animals. The increase of plasma NPY concentration in CRF rats may be due to the greater synthesis of the neuropeptide in liver, since higher level of NPY mRNA was found in liver of CRF rats. The results obtained revealed that experimental chronic renal failure is associated with the increase of NPY gene expression in hypothalamus and liver of rats.

  6. Rat renal arcade segment expresses vasopressin-regulated water channel and vasopressin V2 receptor.

    PubMed Central

    Kishore, B K; Mandon, B; Oza, N B; DiGiovanni, S R; Coleman, R A; Ostrowski, N L; Wade, J B; Knepper, M A

    1996-01-01

    The arcades are long, branched renal tubules which connect deep and mid-cortical nephrons to cortical collecting ducts in the renal cortex. Because they are inaccessible by standard physiological techniques, their functions are poorly understood. In this paper, we demonstrate that the arcades are a site of expression of two proteins, aquaporin-2 (the vasopressin-regulated water channel) and the V2 vasopressin receptor, that are important to regulated water transport in the kidney. Using a peptide-derived polyclonal antibody to aquaporin-2, quantitative ELISA in microdissected segments showed that aquaporin-2 is highly expressed in arcades and that the expression is increased in response to restriction of fluid intake. Immunocytochemistry revealed abundant aquaporin-2 labeling of structures in the cortical labyrinth in a pattern similar to that of the Na(+)-Ca2+ exchanger and kallikrein, marker proteins expressed in arcades but not in cortical collecting ducts. RT-PCR experiments demonstrated substantial aquaporin-2 and V2 receptor mRNA in microdissected arcades. In situ hybridization, using 35S-labeled antisense cRNA probes for the V2 receptor demonstrated strong labeling of both arcades and cortical collecting ducts. Thus, these results indicate that the arcades contain the specific proteins associated with vasopressin-regulated water transport, and may be a heretofore unrecognized site of free water absorption. PMID:8675687

  7. Association between FBP1 and hypoxia-related gene expression in clear cell renal cell carcinoma

    PubMed Central

    NING, XIANG-HUI; LI, TENG; GONG, YAN-QING; HE, QUN; SHEN, QI; PENG, SHUANG-HE; WANG, JIANG-YI; CHEN, JIN-CHAO; GUO, YING-LU; GONG, KAN

    2016-01-01

    Fructose-1,6-bisphosphatase 1 (FBP1) is a rate-limiting enzyme in gluconeogenesis. Recently, the catalytic activity-independent function of FBP1, hypoxia-induced factor (HIF) repression in the nucleus, was identified. The aim of the present study was to investigate the association between FBP1 and hypoxia-related gene expression in clear cell renal cell carcinoma (ccRCC). The protein expression levels of FBP1, HIF-1α, HIF-2α, erythropoietin (EPO) and carbonic anhydrase IX (CA9) were assessed by immunohistochemical staining of ccRCC paraffin blocks from 123 patients using the tissue microarray technique. The expression level of FBP1 was then correlated with various clinicopathological factors, and the protein expression levels of HIF-1α, HIF-2α, EPO and CA9. Clinicopathological factors, including age, gender, T stage and Fuhrman grade, were not significantly different between patients with low and high FBP1 expression in ccRCC (P>0.05). FBP1 protein expression level was significantly correlated with the expression levels of HIF-1α (P=0.005) and EPO (P=0.010), but not significantly correlated with the expression levels of HIF-2α (P=0.123) and CA9 (P=0.513) in ccRCC tissues. The current findings confirm the association between FBP1 and hypoxia-related gene expression, and may facilitate understanding of the mechanisms of ccRCC tumorigenesis. PMID:27313747

  8. Altered expression of KLC3 may affect semen parameters

    PubMed Central

    Kargar- Dastjerdy, Pegah; Tavalaee, Marziyeh; Salehi, Mansoor; Falahati, Mojtaba; Izadi, Tayebeh; Nasr Esfahani, Mohammad Hossein

    2016-01-01

    Background: KLC3 protein as a member of the kinesin light-chain protein family plays an important role in spermatogenesis, during formation of mitochondrial sheath in the mid piece of the sperm tail. Objective: This study for the first time aims to compare the expression of the KLC3 gene between fertile and infertile individuals. Materials and Methods: Semen samples were collected from 19 fertile individuals who were selected from embryo-donor volunteers and 57 infertile individuals who had abnormal sperm parameters according to world health organization criteria. Sperm parameters using computer assisted sperm analysis and the quantitative KLC3-gene expression using the real-time PCR method were measured. Results: Our results revealed a significant correlations between sperm concentration with relative expression of KLC3 only in infertile groups (r=0.45, p=0.00). A significant correlation was not found between KLC3 expression and sperm motility; however, the relative expression of KLC3 was significantly higher in asthenozoospermic compared to non-asthenozoospermic individuals. Conclusion: Low expression of KLC3 may result in improper function of midpiece, which has important function in sperm motility. The results of this study show that aberrant expression of KLC3 might be associated with phenomena like oligozoospermia and asthenozoospermia. This article is extracted from student’s thesis. PMID:27141544

  9. PBRM1 Regulates the Expression of Genes Involved in Metabolism and Cell Adhesion in Renal Clear Cell Carcinoma

    PubMed Central

    Chowdhury, Basudev; Porter, Elizabeth G.; Stewart, Jane C.; Ferreira, Christina R.; Schipma, Matthew J.; Dykhuizen, Emily C.

    2016-01-01

    Polybromo-1 (PBRM1) is a component of the PBAF (Polybromo-associated-BRG1- or BRM-associated factors) chromatin remodeling complex and is the second most frequently mutated gene in clear-cell renal cell Carcinoma (ccRCC). Mutation of PBRM1 is believed to be an early event in carcinogenesis, however its function as a tumor suppressor is not understood. In this study, we have employed Next Generation Sequencing to profile the differentially expressed genes upon PBRM1 re-expression in a cellular model of ccRCC. PBRM1 re-expression led to upregulation of genes involved in cellular adhesion, carbohydrate metabolism, apoptotic process and response to hypoxia, and a downregulation of genes involved in different stages of cell division. The decrease in cellular proliferation upon PBRM1 re-expression was confirmed, validating the functional role of PBRM1 as a tumor suppressor in a cell-based model. In addition, we identified a role for PBRM1 in regulating metabolic pathways known to be important for driving ccRCC, including the regulation of hypoxia response genes, PI3K signaling, glucose uptake, and cholesterol homeostasis. Of particular novelty is the identification of cell adhesion as a major downstream process uniquely regulated by PBRM1 expression. Cytoskeletal reorganization was induced upon PBRM1 reexpression as evidenced from the increase in the number of cells displaying cortical actin, a hallmark of epithelial cells. Genes involved in cell adhesion featured prominently in our transcriptional dataset and overlapped with genes uniquely regulated by PBRM1 in clinical specimens of ccRCC. Genes involved in cell adhesion serve as tumor suppressor and maybe involved in inhibiting cell migration. Here we report for the first time genes linked to cell adhesion serve as downstream targets of PBRM1, and hope to lay the foundation of future studies focusing on the role of chromatin remodelers in bringing about these alterations during malignancies. PMID:27100670

  10. Alterations of erythrocyte rheology and cellular susceptibility in end stage renal disease: Effects of peritoneal dialysis

    PubMed Central

    Ertan, Nesrin Zeynep; Bozfakioglu, Semra; Ugurel, Elif; Sinan, Mukaddes; Yalcin, Ozlem

    2017-01-01

    In this study, we investigated the effects of peritoneal dialysis on hemorheological and hematological parameters and their relations with oxidant and antioxidant status of uremic patients. Hemorheological parameters (erythrocyte deformability, erythrocyte aggregation, osmotic deformability, blood and plasma viscosity) were measured in patients with renal insufficiency undergoing peritoneal dialysis (PD) and volunteers. Erythrocyte deformability, osmotic deformability and aggregation in both autologous plasma and 3% dextran 70 were measured by laser diffraction ektacytometry. Enzyme activities of glutathione peroxidase, superoxide dismutase and catalase were studied in erythrocytes; lipid peroxidation was studied by measuring the amount of malondialdehyde in both erythrocytes and plasma samples. Blood viscosity at native hematocrit was significantly lower in PD patients at all measured shear rates compared to controls, but it was high in PD patients at corrected (45%) hematocrit. Erythrocyte deformability did not show any difference between the two groups. Osmotic deformability was significantly lower in PD patients compared to controls. Aggregation index values were significantly high in PD patients in plasma Catalase and glutathione peroxidase activities in erythrocytes were decreased in PD patients whereas superoxide dismutase activity was increased compared to controls. Malondialdehyde was significantly increased in erythrocytes and plasma samples of PD patients which also shows correlations with aggregation parameters. It has been concluded that erythrocytes in PD patients are more prone to aggregation and this tendency could be influenced by lipid peroxidation activity in patient’s plasma. These results imply that uremic conditions, loss of plasma proteins and an increased risk of oxidative stress because of decreasing levels of antioxidant enzymes affect erythrocyte rheology during peritoneal dialysis. This level of distortion may have crucial effects

  11. Alterations of erythrocyte rheology and cellular susceptibility in end stage renal disease: Effects of peritoneal dialysis.

    PubMed

    Ertan, Nesrin Zeynep; Bozfakioglu, Semra; Ugurel, Elif; Sinan, Mukaddes; Yalcin, Ozlem

    2017-01-01

    In this study, we investigated the effects of peritoneal dialysis on hemorheological and hematological parameters and their relations with oxidant and antioxidant status of uremic patients. Hemorheological parameters (erythrocyte deformability, erythrocyte aggregation, osmotic deformability, blood and plasma viscosity) were measured in patients with renal insufficiency undergoing peritoneal dialysis (PD) and volunteers. Erythrocyte deformability, osmotic deformability and aggregation in both autologous plasma and 3% dextran 70 were measured by laser diffraction ektacytometry. Enzyme activities of glutathione peroxidase, superoxide dismutase and catalase were studied in erythrocytes; lipid peroxidation was studied by measuring the amount of malondialdehyde in both erythrocytes and plasma samples. Blood viscosity at native hematocrit was significantly lower in PD patients at all measured shear rates compared to controls, but it was high in PD patients at corrected (45%) hematocrit. Erythrocyte deformability did not show any difference between the two groups. Osmotic deformability was significantly lower in PD patients compared to controls. Aggregation index values were significantly high in PD patients in plasma Catalase and glutathione peroxidase activities in erythrocytes were decreased in PD patients whereas superoxide dismutase activity was increased compared to controls. Malondialdehyde was significantly increased in erythrocytes and plasma samples of PD patients which also shows correlations with aggregation parameters. It has been concluded that erythrocytes in PD patients are more prone to aggregation and this tendency could be influenced by lipid peroxidation activity in patient's plasma. These results imply that uremic conditions, loss of plasma proteins and an increased risk of oxidative stress because of decreasing levels of antioxidant enzymes affect erythrocyte rheology during peritoneal dialysis. This level of distortion may have crucial effects

  12. Arabidopsis gene expression patterns are altered during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, Anna-Lisa; Popp, Michael P.; Gurley, William B.; Guy, Charles; Norwood, Kelly L.; Ferl, Robert J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments results in differential gene expression. A 5-day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β-Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on gene expression patterns initially by using the Adh/GUS transgene to address specifically the possibility that spaceflight induces a hypoxic stress response (Paul, A.L., Daugherty, C.J., Bihn, E.A., Chapman, D.K., Norwood, K.L., Ferl, R.J., 2001. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis, Plant Physiol. 126, 613-621). As a follow-on to the reporter gene analysis, we report here the evaluation of genome-wide patterns of native gene expression within Arabidopsis shoots utilizing the Agilent DNA array of 21,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes was further characterized with quantitative Real-Time RT PCR (ABI - Taqman®). Comparison of the patterns of expression for arrays probed with RNA isolated from plants exposed to spaceflight compared to RNA isolated from ground control plants revealed 182 genes that were differentially expressed in response to the spaceflight mission by more than 4-fold, and of those only 50 genes were expressed at levels chosen to support a conservative change call. None of the genes that are hallmarks of hypoxic stress were induced to this level. However, genes related to heat shock were dramatically induced - but in a pattern and under growth conditions that are not easily explained by elevated temperatures. These gene expression data are discussed in light of current models for plant responses to the spaceflight environment and with regard to potential future spaceflight experiment

  13. Type 2 Diabetes Mellitus and Impaired Renal Function Are Associated With Brain Alterations and Poststroke Cognitive Decline.

    PubMed

    Ben Assayag, Einor; Eldor, Roy; Korczyn, Amos D; Kliper, Efrat; Shenhar-Tsarfaty, Shani; Tene, Oren; Molad, Jeremy; Shapira, Itzhak; Berliner, Shlomo; Volfson, Viki; Shopin, Ludmila; Strauss, Yehuda; Hallevi, Hen; Bornstein, Natan M; Auriel, Eitan

    2017-09-01

    Type 2 diabetes mellitus (T2DM) is associated with diseases of the brain, kidney, and vasculature. However, the relationship between T2DM, chronic kidney disease, brain alterations, and cognitive function after stroke is unknown. We aimed to evaluate the inter-relationship between T2DM, impaired renal function, brain pathology on imaging, and cognitive decline in a longitudinal poststroke cohort. The TABASCO (Tel Aviv brain acute stroke cohort) is a prospective cohort of stroke/transient ischemic attack survivors. The volume and white matter integrity, ischemic lesions, and brain and hippocampal volumes were measured at baseline using 3-T MRI. Cognitive tests were performed on 507 patients, who were diagnosed as having mild cognitive impairment, dementia, or being cognitively intact after 24 months. At baseline, T2DM and impaired renal function (estimated creatinine clearance [eCCl] <60 mL/min) were associated with smaller brain and hippocampal volumes, reduced cortical thickness, and worse white matter microstructural integrity. Two years later, both T2DM and eCCl <60 mL/min were associated with poorer cognitive scores, and 19.7% of the participants developed cognitive decline (mild cognitive impairment or dementia). Multiple analysis, controlling for age, sex, education, and apolipoprotein E4, showed a significant association of both T2DM and eCCl <60 mL/min with cognitive decline. Having both conditions doubled the risk compared with patients with T2DM or eCCl <60 mL/min alone and almost quadrupled the risk compared with patients without either abnormality. T2DM and impaired renal function are independently associated with abnormal brain structure, as well as poorer performance in cognitive tests, 2 years after stroke. The presence of both conditions quadruples the risk for cognitive decline. T2DM and lower eCCl have an independent and additive effect on brain atrophy and the risk of cognitive decline. URL: http://www.clinicaltrials.gov. Unique identifier: NCT

  14. Alteration of type I collagen in the radial artery of patients with end-stage renal disease.

    PubMed

    Bai, Yaling; Zhang, Junxia; Xu, Jinsheng; Cui, Liwen; Zhang, Huiran; Zhang, Shenglei

    2015-04-01

    Cardiovascular disease is the leading cause of death in chronic kidney disease. Extracellular matrix remodeling is implicated in atherosclerosis development. This study investigated the effects and possible mechanism of type I collagen expression on radial artery elasticity in patients with end-stage renal disease (ESRD). Sixty-five patients receiving forearm arteriovenous fistula in the Fourth Hospital of Hebei Medical University from January 2010 to December 2012 were enrolled in the study. The echo-tracking technique was used to measure radial artery 1-point pulse wave velocity (PWVβ), and immunohistochemical staining was used to detect the expression of type I collagen and transcription factor CBFA1, a marker for calcification, in the radial artery. Uremic serum and serum from healthy volunteers of different concentrations were then used to treat the rat aortic vascular smooth muscle cells (VSMCs), reverse transcription polymerase chain reaction (PCR) was used to measure COL1A1 and CBFA1 transcription and a Western blot was performed to detect type I collagen expression in the rat aortic VSMCs. In patients with ESRD, increased COL1A1 expression was an independent risk factor for radial artery PWVβ (P < 0.05) and was positively associated with that of CBFA1 (r = 0.573, P < 0.001). In the rat aortic VSMCs, serum from patients with ESRD upregulated COL1A1 and CBFA1 transcription as well as type I collagen expression in a concentration-dependent manner (P < 0.05). Type I collagen expression is an essential factor for radial artery elasticity dysfunction in patients with ESRD. Uremic toxins apparently induced a phenotypic transition of the rat aortic VSMCs, leading to increased type I collagen secretion and subsequent extracellular matrix remodeling.

  15. Origanum Majoranum Extract Modulates Gene Expression, Hepatic and Renal Changes in a Rat Model of Type 2 Diabetes

    PubMed Central

    Soliman, Mohamed Mohamed; Abdo Nassan, Mohamed; Ismail, Tamer Ahmed

    2016-01-01

    The present study was conducted to test the effect of Origanum Majoranum Extract (OME) of leaves on alterations induced in a model of type 2 diabetic rats. Adult male Wistar rats were fed high fat diet for 3 weeks and injected a single dose of streptozotocin (35 mg/kg) intraperitoneally to induce type 2 diabetic rats. Diabetic rats were given aqueous extract of OME in a dose of 20 mg/kg orally for 3 weeks. Changes in lipid profiles, glucose, insulin, expression of some genes related to glucose metabolism and histopathological changes in liver and kidney were examined. Administration of OME improved and normalized dyslipidemia recorded in type 2 diabetic rats together with reduction in glucose and insulin levels. OME induced up-regulation in gene expression of glucose [adiponectin and glucose transporter-2 (GLUT-2)] and lipid metabolism [lipoprotein lipase (LPL)]. Moreover, OME normalized histopathological changes occurred in liver and kidney of diabetic rats. OME decreased lipids accumulation in liver and kidney and increased regeneration of hepatic parenchyma and restored normal renal architecture with disappearance of fat droplets. In conclusion, OME improved dyslipidemia associated with type 2 diabetes through regulation of genes related to glucose and lipid metabolism. PMID:28228803

  16. Altered Signal Transduction in Renal Cell Injury Following Hemorrhagic Shock or Anoxia

    DTIC Science & Technology

    1989-07-01

    Cell Isolation. Kidneys from 150-200 g male Fischer 344 rats were surgically removed and placed in HBSS at 0-40C. Whole kidneys were washed 3X in HBSS...262, 6308-6312. Schmetterer, G., Wolk, C.P., and Elhai, J. (1986), Expression of luciferases from Vibrio harveyi and Vibrio fischeri in filamentous

  17. Non-myogenic tumors display altered expression of dystrophin (DMD) and a high frequency of genetic alterations

    PubMed Central

    Luce, Leonela N.; Abbate, Mercedes

    2017-01-01

    DMD gene mutations have been associated with the development of Dystrophinopathies. Interestingly, it has been recently reported that DMD is involved in the development and progression of myogenic tumors, assigning DMD a tumor suppressor activity in these types of cancer. However, there are only few reports that analyze DMD in non-myogenic tumors. Our study was designed to examine DMD expression and genetic alterations in non-myogenic tumors using public repositories. We also evaluated the overall survival of patients with and without DMD mutations. We studied 59 gene expression microarrays (GEO database) and RNAseq (cBioPortal) datasets that included 9817 human samples. We found reduced DMD expression in 15/27 (56%) pairwise comparisons performed (Fold-Change (FC) ≤ 0.70; p-value range = 0.04-1.5×10−20). The analysis of RNAseq studies revealed a median frequency of DMD genetic alterations of 3.4%, higher or similar to other well-known tumor suppressor genes. In addition, we observed significant poorer overall survival for patients with DMD mutations. The analyses of paired tumor/normal tissues showed that the majority of tumor specimens had lower DMD expression compared to their normal adjacent counterpart. Interestingly, statistical significant over-expression of DMD was found in 6/27 studies (FC ≥ 1.4; p-value range = 0.03-3.4×10−15). These results support that DMD expression and genetic alterations are frequent and relevant in non-myogenic tumors. The study and validation of DMD as a new player in tumor development and as a new prognostic factor for tumor progression and survival are warranted. PMID:27391342

  18. Canonical transforming growth factor-β signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29.

    PubMed

    Ramdas, Vasudev; McBride, Martin; Denby, Laura; Baker, Andrew H

    2013-12-01

    Fibrosis pathophysiology is critically regulated by Smad 2- and Smad 3-mediated transforming growth factor-β (TGF-β) signaling. Disintegrin metalloproteases (Adam) can manipulate the signaling environment, however, the role and regulation of ADAMs in renal fibrosis remain unclear. TGF-β stimulation of renal cells results in a significant up-regulation of Adams 10, 17, 12, and 19. The selective Smad2/3 inhibitor SB 525334 reversed these TGF-β-induced changes. In vivo, using ureteral obstruction to model renal fibrosis, we observed increased Adams gene expression that was blocked by oral administration of SB 525334. Similar increases in Adam gene expression also occurred in preclinical models of hypertension-induced renal damage and glomerulonephritis. miRNAs are a recently discovered second level of regulation of gene expression. Analysis of 3' untranslated regions of Adam12 and Adam19 mRNAs showed multiple binding sites for miR-29a, miR-29b, and miR-29c. We show that miR-29 family expression is decreased after unilateral ureter obstruction and this significant decrease in miR-29 family expression was observed consistently in preclinical models of renal dysfunction and correlated with an increase in Adam12 and Adam19 expression. Exogenous overexpression of the miR-29 family blocked TGF-β-mediated up-regulation of Adam12 and Adam19 gene expression. This study shows that Adams are involved in renal fibrosis and are regulated by canonical TGF-β signaling and miR-29. Therefore, both Adams and the miR-29 family represent therapeutic targets for renal fibrosis. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Canonical Transforming Growth Factor-β Signaling Regulates Disintegrin Metalloprotease Expression in Experimental Renal Fibrosis via miR-29

    PubMed Central

    Ramdas, Vasudev; McBride, Martin; Denby, Laura; Baker, Andrew H.

    2014-01-01

    Fibrosis pathophysiology is critically regulated by Smad 2– and Smad 3–mediated transforming growth factor-β (TGF-β) signaling. Disintegrin metalloproteases (Adam) can manipulate the signaling environment, however, the role and regulation of ADAMs in renal fibrosis remain unclear. TGF-β stimulation of renal cells results in a significant up-regulation of Adams 10, 17, 12, and 19. The selective Smad2/3 inhibitor SB 525334 reversed these TGF-β–induced changes. In vivo, using ureteral obstruction to model renal fibrosis, we observed increased Adams gene expression that was blocked by oral administration of SB 525334. Similar increases in Adam gene expression also occurred in preclinical models of hypertension-induced renal damage and glomerulonephritis. miRNAs are a recently discovered second level of regulation of gene expression. Analysis of 3′ untranslated regions of Adam12 and Adam19 mRNAs showed multiple binding sites for miR-29a, miR-29b, and miR-29c. We show that miR-29 family expression is decreased after unilateral ureter obstruction and this significant decrease in miR-29 family expression was observed consistently in preclinical models of renal dysfunction and correlated with an increase in Adam12 and Adam19 expression. Exogenous overexpression of the miR-29 family blocked TGF-β–mediated up-regulation of Adam12 and Adam19 gene expression. This study shows that Adams are involved in renal fibrosis and are regulated by canonical TGF-β signaling and miR-29. Therefore, both Adams and the miR-29 family represent therapeutic targets for renal fibrosis. PMID:24103556

  20. miR-21-5p renal expression is associated with fibrosis and renal survival in patients with IgA nephropathy

    PubMed Central

    Hennino, Marie-Flore; Buob, David; Van der Hauwaert, Cynthia; Gnemmi, Viviane; Jomaa, Zacharie; Pottier, Nicolas; Savary, Grégoire; Drumez, Elodie; Noël, Christian; Cauffiez, Christelle; Glowacki, François

    2016-01-01

    IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis, whose prognosis is highly variable. Interstitial fibrosis is a strong independent prognosis factor. Among microRNA involved in renal fibrogenesis, only few have been investigated in IgAN. In the context of IgAN, we aimed to analyze the role of miR-21-5p, miR-214-3p and miR-199a-5p, three established “fibromiRs” involved in renal fibrosis. Fifty-six IgAN biopsy specimens were retrospectively scored according to Oxford classification. Renal expression of miR-21-5p, miR-214-3p and miR-199a-5p were significantly associated with T score (miR-21-5p T0 RQ median = 1.23, T1 RQ = 3.01, T2 RQ = 3.90; miR-214-5p T0 RQ = 1.39, T1 RQ = 2.20, T2 RQ = 2.48; miR-199a-5p T0 RQ = 0.76, T1 RQ = 1.41, T2 RQ = 1.87). miR-21-5p expression was associated with S score (S0 RQ median = 1.31, S1 RQ = 2.65), but not miR-214-3p nor miR-199a-5p. In our cohort, poor renal survival was associated with high blood pressure, proteinuria and elevated creatininemia, as well as T and S scores. Moreover, renal expression of miR-21-5p, miR-214-3p were associated with renal survival. In conclusion, miR-21-5p, miR-214-3p and miR-199a-5p are three “fibromiRs” involved in renal fibrosis in the course of IgAN and miR-21-5p and miR-214-3p are associated with renal survival. PMID:27264483

  1. miR-21-5p renal expression is associated with fibrosis and renal survival in patients with IgA nephropathy.

    PubMed

    Hennino, Marie-Flore; Buob, David; Van der Hauwaert, Cynthia; Gnemmi, Viviane; Jomaa, Zacharie; Pottier, Nicolas; Savary, Grégoire; Drumez, Elodie; Noël, Christian; Cauffiez, Christelle; Glowacki, François

    2016-06-06

    IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis, whose prognosis is highly variable. Interstitial fibrosis is a strong independent prognosis factor. Among microRNA involved in renal fibrogenesis, only few have been investigated in IgAN. In the context of IgAN, we aimed to analyze the role of miR-21-5p, miR-214-3p and miR-199a-5p, three established "fibromiRs" involved in renal fibrosis. Fifty-six IgAN biopsy specimens were retrospectively scored according to Oxford classification. Renal expression of miR-21-5p, miR-214-3p and miR-199a-5p were significantly associated with T score (miR-21-5p T0 RQ median = 1.23, T1 RQ = 3.01, T2 RQ = 3.90; miR-214-5p T0 RQ = 1.39, T1 RQ = 2.20, T2 RQ = 2.48; miR-199a-5p T0 RQ = 0.76, T1 RQ = 1.41, T2 RQ = 1.87). miR-21-5p expression was associated with S score (S0 RQ median = 1.31, S1 RQ = 2.65), but not miR-214-3p nor miR-199a-5p. In our cohort, poor renal survival was associated with high blood pressure, proteinuria and elevated creatininemia, as well as T and S scores. Moreover, renal expression of miR-21-5p, miR-214-3p were associated with renal survival. In conclusion, miR-21-5p, miR-214-3p and miR-199a-5p are three "fibromiRs" involved in renal fibrosis in the course of IgAN and miR-21-5p and miR-214-3p are associated with renal survival.

  2. Changes in skeletal muscle gene expression consequent to altered weight bearing

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Kirby, C. R.

    1992-01-01

    Skeletal muscle is a dynamic organ that adapts to alterations in weight bearing. This brief review examines changes in muscle gene expression resulting from the removal of weight bearing by hindlimb suspension and from increased weight bearing due to eccentric exercise. Acute (less than or equal to 2 days) non-weight bearing of adult rat soleus muscle alters only the translational control of muscle gene expression, while chronic (greater than or equal to 7 days) removal of weight bearing appears to influence pretranslational, translational, and posttranslational mechanisms of control. Acute and chronic eccentric exercise are associated with alterations of translational and posttranslational control, while chronic eccentric training also alters the pretranslational control of muscle gene expression. Thus alterations in weight bearing influence multiple sites of gene regulation.

  3. TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity

    PubMed Central

    Ramesh, Ganesan; Reeves, W. Brian

    2002-01-01

    The purpose of these studies was to examine the role of cytokines in the pathogenesis of cisplatin nephrotoxicity. Injection of mice with cisplatin (20 mg/kg) led to severe renal failure. The expression of cytokines, chemokines, and ICAM-1 in kidney was measured by ribonuclease protection assays and RT-PCR. We found significant upregulation of TNF-α, TGF-β, RANTES, MIP-2, MCP-1, TCA3, IL-1β, and ICAM-1 in kidneys from cisplatin-treated animals. In addition, serum, kidney, and urine levels of TNF-α measured by ELISA were increased by cisplatin. Inhibitors of TNF-α production (GM6001, pentoxifylline) and TNF-α Ab’s reduced serum and kidney TNF-α protein levels and also blunted the cisplatin-induced increases in TNF-α, TGF-β, RANTES, MIP-2, MCP-1, and IL-1β, but not ICAM-1, mRNA. In addition, the TNF-α inhibitors also ameliorated cisplatin-induced renal dysfunction and reduced cisplatin-induced structural damage. Likewise, TNF-α–deficient mice were resistant to cisplatin nephrotoxicity. These results indicate cisplatin nephrotoxicity is characterized by activation of proinflammatory cytokines and chemokines. TNF-α appears to play a central role in the activation of this cytokine response and also in the pathogenesis of cisplatin renal injury. PMID:12235115

  4. Alteration in follistatin gene expression detected in prenatally androgenized rats.

    PubMed

    Salehi Jahromi, Marziyeh; Ramezani Tehrani, Fahimeh; Hill, Jennifer W; Noroozzadeh, Mahsa; Zarkesh, Maryam; Ghasemi, Asghar; Zadeh-Vakili, Azita

    2017-02-26

    Impaired ovarian follicle development, the hallmark of polycystic ovarian syndrome (PCOS), is believed to be due to the changes in expression of related genes such as follistatin (FST). Expression of FST gene and methylation level of its promoter in theca cells from adult female rats, prenatally exposed to androgen excess, during different phases of the estrus cycle was determined and compared with controls. Eight pregnant Wistar rats (experimental group) were treated by subcutaneous injection of 5 mg free testosterone on day 20 of pregnancy, while controls (n = 8) received 500 ml solvent. Based on observed vaginal smear, adult female offspring of mothers were divided into three groups. Levels of serum steroidogenic sexual hormones and gonadotropins, expression and promoter methylation of the FST gene were measured using ELISA, cyber-green real-time PCR and bisulfite sequence PCR (BSP), respectively. Compared to controls, the relative expression of FST gene in the treated group decreased overall by 0.85 fold; despite significant changes in different phases, but no significant differences in methylation of FST promoter. Our results reveal that manifestation of PCOS-like phenotype following prenatal exposure to excess androgen is associated with irregularity in expression of the FST gene during the estrus cycle.

  5. Expression of Pax2 in Human Renal Tumor-Derived Endothelial Cells Sustains Apoptosis Resistance and Angiogenesis

    PubMed Central

    Fonsato, Valentina; Buttiglieri, Stefano; Deregibus, Maria Chiara; Puntorieri, Valeria; Bussolati, Benedetta; Camussi, Giovanni

    2006-01-01

    The transcription factor Pax2 is known to play a key role during renal development and to act as an oncogene favoring renal tumor growth. We recently showed that endothelial cells derived from human renal carcinomas display abnormal characteristics of survival and angiogenic properties. In the present study we found that renal tumor-derived endothelial cells, but not normal endothelial cells, expressed Pax2 protein and mRNA. To down-regulate Pax2 expression, we transfected tumor-derived endothelial cells with an anti-sense PAX2 vector whereas we transfected normal human microvascular endothelial cells with a sense PAX2 vector to induce Pax2 expression. The inhibition of Pax2 expression in tumor-derived endothelial cells induced an increase in tumor suppressor PTEN expression and a decrease in Akt phosphorylation. In addition, decreased apoptosis resistance, adhesion, invasion, and in vitro and in vivo angiogenesis were observed. Conversely, Pax2 induction in normal endothelial cells conferred to these cells a proinvasive, proangiogenic phenotype similar to that of tumor-derived endothelial cells. These results indicate that Pax2 is involved in renal tumor angiogenesis and its expression may antagonize that of the PTEN tumor suppressor gene, affecting the Akt-survival pathway and promoting angiogenesis. PMID:16436683

  6. Cardiac remodelling and functional alterations in mild-to-moderate renal dysfunction: comparison with healthy subjects

    PubMed Central

    Asp, Anna M; Wallquist, Carin; Rickenlund, Anette; Hylander, Britta; Jacobson, Stefan H; Caidahl, Kenneth; Eriksson, Maria J

    2015-01-01

    Introduction Left ventricular (LV) hypertrophy (LVH) and reduced LV function correlate with poor prognosis in patients with chronic kidney disease (CKD). Our aim is to investigate whether mild-to-moderate CKD is associated with cardiac abnormalities. Methods Echocardiography, including tissue Doppler imaging, was performed in 103 patients with CKD at stages 2–3 and 4–5, and in 53 healthy controls. The systolic (s′) and diastolic myocardial velocity (e′), and the transmitral diastolic flow velocity (E) were measured, and E/e′ was calculated. Results Patients with chronic kidney disease had higher mean E/e′ than controls (mean E/e′: controls 5·00 ± 1·23 versus CKD 4–5 6·36 ± 1·71, P<0·001 and versus CKD 2–3 5·69 ± 1·47, P = 0·05), indicating altered diastolic function in the patients. The CKD groups showed lower longitudinal systolic function than controls, as assessed by atrio-ventricular plane displacement and s′ (mean s′: controls 11·5 ± 1·9 cm s−1 versus CKD 4–5 10·4 ± 2·1 cm s−1, P = 0·03 and versus CKD 2–3 10·4 ± 2·1 cm s−1, P = 0·02). The prevalence of LVH was higher in patients with CKD than in controls (controls 13% versus CKD 4–5 37%, P = 0·006 and versus CKD 2–3 30%, P = 0·03). Conclusion Alterations in systolic and diastolic myocardial function can be seen in mild-to-moderate CKD compared with controls, indicating that cardiac involvement starts early in CKD, which may be a precursor of premature cardiac morbidity. PMID:24750894

  7. Macrophage and epithelial cell H-ferritin expression regulates renal inflammation.

    PubMed

    Bolisetty, Subhashini; Zarjou, Abolfazl; Hull, Travis D; Traylor, Amie M; Perianayagam, Anjana; Joseph, Reny; Kamal, Ahmed I; Arosio, Paolo; Soares, Miguel P; Jeney, Viktoria; Balla, Jozsef; George, James F; Agarwal, Anupam

    2015-07-01

    Inflammation culminating in fibrosis contributes to progressive kidney disease. Cross-talk between the tubular epithelium and interstitial cells regulates inflammation by a coordinated release of cytokines and chemokines. Here we studied the role of heme oxygenase-1 (HO-1) and the heavy subunit of ferritin (FtH) in macrophage polarization and renal inflammation. Deficiency in HO-1 was associated with increased FtH expression, accumulation of macrophages with a dysregulated polarization profile, and increased fibrosis following unilateral ureteral obstruction in mice: a model of renal inflammation and fibrosis. Macrophage polarization in vitro was predominantly dependent on FtH expression in isolated bone marrow-derived mouse monocytes. Using transgenic mice with conditional deletion of FtH in the proximal tubules (FtH(PT-/-)) or myeloid cells (FtH(LysM-/-)), we found that myeloid FtH deficiency did not affect polarization or accumulation of macrophages in the injured kidney compared with wild-type (FtH(+/+)) controls. However, tubular FtH deletion led to a marked increase in proinflammatory macrophages. Furthermore, injured kidneys from FtH(PT-/-) mice expressed significantly higher levels of inflammatory chemokines and fibrosis compared with kidneys from FtH(+/+) and FtH(LysM-/-) mice. Thus, there are differential effects of FtH in macrophages and epithelial cells, which underscore the critical role of FtH in tubular-macrophage cross-talk during kidney injury.

  8. Renal denervation attenuates aldosterone expression and associated cardiovascular pathophysiology in angiotensin II-induced hypertension

    PubMed Central

    Chen, Dong-Rui; Ruan, Cheng-Chao; Xu, Jian-Zhong; Chen, Jing; Wu, Yong-Jie; Ma, Yu; Zhu, Ding-Liang; Gao, Ping-Jin

    2016-01-01

    The sympathetic nervous system interacts with the renin-angiotensin-aldosterone system (RAAS) contributing to cardiovascular diseases. In this study, we sought to determine if renal denervation (RDN) inhibits aldosterone expression and associated cardiovascular pathophysiological changes in angiotensin II (Ang II)-induced hypertension. Bilateral RDN or SHAM operation was performed before chronic 14-day Ang II subcutaneous infusion (200ng/kg/min) in male Sprague-Dawley rats. Bilateral RDN blunted Ang II-induced hypertension and ameliorated the mesenteric vascular dysfunction. Cardiovascular hypertrophy in response to Ang II was significantly attenuated by RDN as shown by histopathology and transthoracic echocardiography. Moreover, Ang II-induced vascular and myocardial inflammation and fibrosis were suppressed by RDN with concurrent decrease in fibronectin and collagen deposition, macrophage infiltration, and MCP-1 expression. Interestingly, RDN also inhibited Ang II-induced aldosterone expression in the plasma, kidney and heart. This was associated with the reduction of calcitonin gene-related peptide (CGRP) in the adrenal gland. Ang II promoted aldosterone secretion which was partly attenuated by CGRP in the adrenocortical cell line, suggesting a protective role of CGRP in this model. Activation of transforming growth factor-β (TGF-β)/Smad and mitogen-activated protein kinases (MAPKs) signaling pathway was both inhibited by RDN especially in the heart. These results suggest that the regulation of the renal sympathetic nerve in Ang II-induced hypertension and associated cardiovascular pathophysiological changes is likely mediated by aldosterone, with CGRP involvement. PMID:27661131

  9. Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes

    PubMed Central

    Naesens, Maarten; Khatri, Purvesh; Li, Li; Sigdel, Tara K.; Vitalone, Matthew J.; Chen, Rong; Butte, Atul J.; Salvatierra, Oscar; Sarwal, Minnie M.

    2015-01-01

    The degree of progressive chronic histological damage is associated with long-term renal allograft survival. In order to identify promising molecular targets for timely intervention, we examined renal allograft protocol and indication biopsies from 120 low-risk pediatric and adolescent recipients by whole-genome microarray expression profiling. In data-driven analysis, we found a highly regulated pattern of adaptive and innate immune gene expression that correlated with established or ongoing histological chronic injury, and also with development of future chronic histological damage, even in histologically pristine kidneys. Hence, histologically unrecognized immunological injury at a molecular level sets the stage for the development of chronic tissue injury, while the same molecular response is accentuated during established and worsening chronic allograft damage. Irrespective of the hypothesized immune or nonimmune trigger for chronic allograft injury, a highly orchestrated regulation of innate and adaptive immune responses was found in the graft at the molecular level. This occurred months before histologic lesions appear, and quantitatively below the diagnostic threshold of classic T-cell or antibody-mediated rejection. Thus, measurement of specific immune gene expression in protocol biopsies may be warranted to predict the development of subsequent chronic injury in histologically quiescent grafts and as a means to titrate immunosuppressive therapy. PMID:21881554

  10. Hemodynamics in Transplant Renal Artery Stenosis and its Alteration after Stent Implantation Based on a Patient-specific Computational Fluid Dynamics Model

    PubMed Central

    Wang, Hong-Yang; Liu, Long-Shan; Cao, Hai-Ming; Li, Jun; Deng, Rong-Hai; Fu, Qian; Zhang, Huan-Xi; Fei, Ji-Guang; Wang, Chang-Xi

    2017-01-01

    Background: Accumulating studies on computational fluid dynamics (CFD) support the involvement of hemodynamic factors in artery stenosis. Based on a patient-specific CFD model, the present study aimed to investigate the hemodynamic characteristics of transplant renal artery stenosis (TRAS) and its alteration after stent treatment. Methods: Computed tomography angiography (CTA) data of kidney transplant recipients in a single transplant center from April 2013 to November 2014 were reviewed. The three-dimensional geometry of transplant renal artery (TRA) was reconstructed from the qualified CTA images and categorized into three groups: the normal, stenotic, and stented groups. Hemodynamic parameters including pressure distribution, velocity, wall shear stress (WSS), and mass flow rate (MFR) were extracted. The data of hemodynamic parameters were expressed as median (interquartile range), and Mann–Whitney U-test was used for analysis. Results: Totally, 6 normal, 12 stenotic, and 6 stented TRAs were included in the analysis. TRAS presented nonuniform pressure distribution, adverse pressure gradient across stenosis throat, flow vortex, and a separation zone at downstream stenosis. Stenotic arteries had higher maximal velocity and maximal WSS (2.94 [2.14, 3.30] vs. 1.06 [0.89, 1.15] m/s, 256.5 [149.8, 349.4] vs. 41.7 [37.8, 45.3] Pa at end diastole, P = 0.001; 3.25 [2.67, 3.56] vs. 1.65 [1.18, 1.72] m/s, 281.3 [184.3, 364.7] vs. 65.8 [61.2, 71.9] Pa at peak systole, P = 0.001) and lower minimal WSS and MFRs (0.07 [0.03, 0.13] vs. 0.52 [0.45, 0.67] Pa, 1.5 [1.0, 3.0] vs. 11.0 [8.0, 11.3] g/s at end diastole, P = 0.001; 0.08 [0.03, 0.19] vs. 0.70 [0.60, 0.81] Pa, 2.0 [1.3, 3.3] vs. 16.5 [13.0, 20.3] g/s at peak systole, P = 0.001) as compared to normal arteries. Stent implantation ameliorated all the alterations of the above hemodynamic factors except low WSS. Conclusions: Hemodynamic factors were significantly changed in severe TRAS. Stent implantation can restore or

  11. Hemodynamics in Transplant Renal Artery Stenosis and its Alteration after Stent Implantation Based on a Patient-specific Computational Fluid Dynamics Model.

    PubMed

    Wang, Hong-Yang; Liu, Long-Shan; Cao, Hai-Ming; Li, Jun; Deng, Rong-Hai; Fu, Qian; Zhang, Huan-Xi; Fei, Ji-Guang; Wang, Chang-Xi

    Accumulating studies on computational fluid dynamics (CFD) support the involvement of hemodynamic factors in artery stenosis. Based on a patient-specific CFD model, the present study aimed to investigate the hemodynamic characteristics of transplant renal artery stenosis (TRAS) and its alteration after stent treatment. Computed tomography angiography (CTA) data of kidney transplant recipients in a single transplant center from April 2013 to November 2014 were reviewed. The three-dimensional geometry of transplant renal artery (TRA) was reconstructed from the qualified CTA images and categorized into three groups: the normal, stenotic, and stented groups. Hemodynamic parameters including pressure distribution, velocity, wall shear stress (WSS), and mass flow rate (MFR) were extracted. The data of hemodynamic parameters were expressed as median (interquartile range), and Mann-Whitney U-test was used for analysis. Totally, 6 normal, 12 stenotic, and 6 stented TRAs were included in the analysis. TRAS presented nonuniform pressure distribution, adverse pressure gradient across stenosis throat, flow vortex, and a separation zone at downstream stenosis. Stenotic arteries had higher maximal velocity and maximal WSS (2.94 [2.14, 3.30] vs. 1.06 [0.89, 1.15] m/s, 256.5 [149.8, 349.4] vs. 41.7 [37.8, 45.3] Pa at end diastole, P= 0.001; 3.25 [2.67, 3.56] vs. 1.65 [1.18, 1.72] m/s, 281.3 [184.3, 364.7] vs. 65.8 [61.2, 71.9] Pa at peak systole, P= 0.001) and lower minimal WSS and MFRs (0.07 [0.03, 0.13] vs. 0.52 [0.45, 0.67] Pa, 1.5 [1.0, 3.0] vs. 11.0 [8.0, 11.3] g/s at end diastole, P= 0.001; 0.08 [0.03, 0.19] vs. 0.70 [0.60, 0.81] Pa, 2.0 [1.3, 3.3] vs. 16.5 [13.0, 20.3] g/s at peak systole, P= 0.001) as compared to normal arteries. Stent implantation ameliorated all the alterations of the above hemodynamic factors except low WSS. Hemodynamic factors were significantly changed in severe TRAS. Stent implantation can restore or ameliorate deleterious change of hemodynamic

  12. Ultrastructural changes and nestin expression accompanying compensatory renal growth after unilateral nephrectomy in adult rats

    PubMed Central

    Eladl, Mohamed Ahmed; M Elsaed, Wael; Atef, Hoda; El-Sherbiny, Mohamed

    2017-01-01

    Background Several renal disorders affect the glomerular podocytes. Compensatory structural and functional changes have been observed in animals that have undergone unilateral renal ablation. These changes occur as a pliant response to quench the increased functional demand to maintain homeostasis of fluid and solutes. Nestin is an intermediate filament protein present in the glomerular podocytes of the adult kidney and is linked with the maintenance of its foot process structure. Structural changes in the podocytes ultimately restructure the filtration barrier. Very few studies related to the ultrastructural and histopathologic changes of the podocytes are documented. The present study aimed to assess the histopathologic changes at the ultrastructural level in the adapted kidney at different time intervals following unilateral renal ablation in adult rats and its relation with nestin. Methods Forty-eight rats were divided into four groups (n=12 in each group). The animals of Group A were control naïve rats, while the group B, group C and group D animals underwent left unilateral nephrectomy and the remaining right kidney was removed on days 10, 20 and 30, respectively. Each group included four sham-operated rats, which were sacrificed at the same time as the naïve rats. Each nephrectomized sample was weighed and its sections were subjected to hematoxylin and eosin examination, transmission electron microscopic study as well as immunostaining using the intermediate filament protein nestin. Results No difference was found between the kidney sections from the control group and the sham-operated groups. A significant increase in the weight of the right kidneys was noted in groups B, C and D (P<0.001). The ultrastructural adaptive changes seen in the glomeruli of group B were subsequently reduced in groups C and D. This finding corresponded to a similar pattern of nestin expression in the podocytes, which showed significant increase in group B followed by reduced

  13. Integrin-linked kinase (ILK) expression correlates with tumor severity in clear cell renal carcinoma.

    PubMed

    Engelman, Míriam de Fátima Brasil; Grande, Rogério Mendes; Naves, Marcelo Andery; de Franco, Marcello Fabiano; de Paulo Castro Teixeira, Vicente

    2013-01-01

    Integrin-linked kinase (ILK) is an unique intracellular serine/threonine kinase and adapter protein. When dysregulated, it has been associated with increased cell proliferation, anchorage-independent cell growth, evasion of apoptosis, angiogenesis, invasion of surrounding tissues, downregulation of E-cadherin expression, nuclear translocation of β-catenin and metastasis, all features of tumoral malignancy. The objective of the present work was to evaluate the expression of ILK in clear cell renal carcinomas (CCRC) as a possible prognostic indicator. ILK immunoexpression was evaluated in a tissue microarray (TMA) with 45 human CCRCs. In addition, the apoptotic and proliferative indices and the immuno-expression of β-catenin and E-cadherin were also evaluated. E-cadherin expression was significantly decreased in tumors with positive ILK expression in relation to those with negative immunoexpression (p = 0.011). ILK immunostaining was significantly increased in high-grade in comparison to low-grade CCRCs (p = 0.0008). ILK expression was also associated with increased proliferative index (p = 0.020), tumor size >7.0 cm (p = 0.018) and with renal vein and capsule invasion (p = 0.003 and p = 0.00). Finally, tumors stage I and II (noninvasive) presented significantly reduced ILK immunoexpression when compared to stage III (locally invasive) (p = 0.0028). ILK immunoexpression in CCRC increases with loss of intercellular adhesion, nuclear grading, increased proliferative index and Robson stage. Altogether, our data suggest a possible role for ILK in the progression of CRCC.

  14. Stratification of clear cell renal cell carcinoma (ccRCC) genomes by gene-directed copy number alteration (CNA) analysis.

    PubMed

    Thiesen, H-J; Steinbeck, F; Maruschke, M; Koczan, D; Ziems, B; Hakenberg, O W

    2017-01-01

    Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs) presented in 48 clear cell renal cell carcinoma (ccRCC) genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25) and 20 G3 (ratio 0.58). Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes) has been successfully validated on published Swiss data (GSE19949) leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and predictive value.

  15. Stratification of clear cell renal cell carcinoma (ccRCC) genomes by gene-directed copy number alteration (CNA) analysis

    PubMed Central

    Thiesen, H.-J.; Steinbeck, F.; Maruschke, M.; Koczan, D.; Ziems, B.; Hakenberg, O. W.

    2017-01-01

    Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs) presented in 48 clear cell renal cell carcinoma (ccRCC) genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25) and 20 G3 (ratio 0.58). Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes) has been successfully validated on published Swiss data (GSE19949) leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and predictive value. PMID

  16. Altered gene expression profiles in mouse tetraploid blastocysts.

    PubMed

    Park, Mi-Ryung; Hwang, Kyu-Chan; Bui, Hong-Thuy; Cho, Ssang-Goo; Park, Chankyu; Song, Hyuk; Oh, Jae-Wook; Kim, Jin-Hoi

    2012-01-01

    In this study, it was demonstrated that tetraploid-derived blastocyst embryos had very few Oct4-positive cells at the mid-blastocyst stage and that the inner cell mass at biomarkers Oct4, Sox2 and Klf4 was expressed at less than 10% of the level observed in diploid blastocysts. In contrast, trophectoderm-related gene transcripts showed an approximately 10 to 40% increase. Of 32,996 individual mouse genes evaluated by microarray, 50 genes were differentially expressed between tetraploid or diploid and parthenote embryos at the blastocyst stage (P<0.05). Of these 50 genes, 28 were more highly expressed in tetraploid-derived blastocysts, whereas 22 were more highly downregulated. However, some genes involved in receptor activity, cell adhesion molecule, calcium ion binding, protein biosynthesis, redox processes, transport, and transcription showed a significant decrease or increase in gene expression in the tetraploid-derived blastocyst embryos. Thus, microarray analysis can be used as a tool to screen for underlying defects responsible for the development of tetraploid-derived embryos.

  17. Transposon-induced nuclear mutations that alter chloroplast gene expression

    SciTech Connect

    Barkan, A.

    1992-01-01

    The goal of this project is to use mutant phenotypes as a guide to nuclear genes that determine the timing and localization of chloroplast development The immediate goals are to identify nuclear mutants with defects in chloroplast gene expression from maize lines harboring active Mu transposons; characterize their phenotypes to determine the precise defect in gene expression; clone several of the most interesting mutations by exploiting the transposon tag; and use the clones to further define the roles of these genes in modulating chloroplast gene expression. Three mutants were described earlier that had global defects in chloroplast gene expression. We have found that two of these mutations are allelic. Both alleles have global defects in chloroplast translation initiation, as revealed by the failure to assemble chloroplast mRNAs into polysomes. We have isolated and characterized three new mutants from Mu lines that have novel defects in chloroplast RNA metabolism. We are now ready to begin the task of cloning several of these genes, by using the Mu transposon tag.

  18. Correlation analysis of VHL and Jade-1 gene expression in human renal cell carcinoma

    PubMed Central

    Xiao-fen, Wu; Ting, Chen; Jie, Li; Deng-yang, Ma; Qing-feng, Zhu

    2016-01-01

    Abstract Objective The aim of this study was to investigate the correlation of von Hippel-Lindau tumor suppressor (VHL) mRNA expression and jade family PHD finger 1 (Jade-1) gene expression in patients with renal cell carcinoma (RCC). Another aim of this study was to analyze the relationship of these two genes with clinicalpathological features of the RCC patients. Methods A total of 75 RCC patients who received surgically therapy in our hospital were included. All patients had complete pathological data. The expression of VHL/Jade-1 was determined by real-time polymerase chain reaction (RT-PCR). Results VHL and Jade-1 were both obviously downregulated in RCC tissues than that of the matched normal tissues, and both negatively correlated with tumor size as well as tumor grade. And we found a fine association of VHL gene expression with Jade-1. Conclusion VHL/Jade-1 exhibited significantly decreased expression in RCC tissues and was closely related to the clinical prognosis of patients. The finding of VHL expression positively correlated with Jade-1 expression shed light and provided crucial evidence on the connection of VHL protein with Wnt/b-catenin pathway. PMID:28352799

  19. Correlation analysis of VHL and Jade-1 gene expression in human renal cell carcinoma.

    PubMed

    Xiao-Fen, Wu; Ting, Chen; Jie, Li; Deng-Yang, Ma; Qing-Feng, Zhu; Xin, Lian

    2016-01-01

    The aim of this study was to investigate the correlation of von Hippel-Lindau tumor suppressor (VHL) mRNA expression and jade family PHD finger 1 (Jade-1) gene expression in patients with renal cell carcinoma (RCC). Another aim of this study was to analyze the relationship of these two genes with clinicalpathological features of the RCC patients. A total of 75 RCC patients who received surgically therapy in our hospital were included. All patients had complete pathological data. The expression of VHL/Jade-1 was determined by real-time polymerase chain reaction (RT-PCR). VHL and Jade-1 were both obviously downregulated in RCC tissues than that of the matched normal tissues, and both negatively correlated with tumor size as well as tumor grade. And we found a fine association of VHL gene expression with Jade-1. VHL/Jade-1 exhibited significantly decreased expression in RCC tissues and was closely related to the clinical prognosis of patients. The finding of VHL expression positively correlated with Jade-1 expression shed light and provided crucial evidence on the connection of VHL protein with Wnt/b-catenin pathway.

  20. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles

    PubMed Central

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Objectives: Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. Methods: MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. Results: A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. Conclusions: We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may

  1. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles.

    PubMed

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may be related to acute renal allograft

  2. Macrophage polarization alters the expression and sulfation pattern of glycosaminoglycans.

    PubMed

    Martinez, Pierre; Denys, Agnès; Delos, Maxime; Sikora, Anne-Sophie; Carpentier, Mathieu; Julien, Sylvain; Pestel, Joël; Allain, Fabrice

    2015-05-01

    Macrophages are major cells of inflammatory process and take part in a large number of physiological and pathological processes. According to tissue environment, they can polarize into pro-inflammatory (M1) or alternative (M2) cells. Although many evidences have hinted to a potential role of cell-surface glycosaminoglycans (GAGs) in the functions of macrophages, the effect of M1 or M2 polarization on the biosynthesis of these polysaccharides has not been investigated so far. GAGs are composed of repeat sulfated disaccharide units. Heparan (HS) and chondroitin/dermatan sulfates (CS/DS) are the major GAGs expressed at the cell membrane. They are involved in numerous biological processes, which rely on their ability to selectively interact with a large panel of proteins. More than 20 genes encoding sulfotransferases have been implicated in HS and CS/DS biosynthesis, and the functional repertoire of HS and CS/DS has been related to the expression of these isoenzymes. In this study, we analyzed the expression of sulfotransferases as a response to macrophage polarization. We found that M1 and M2 activation drastically modified the profiles of expression of numerous HS and CS/DS sulfotransferases. This was accompanied by the expression of GAGs with distinct structural features. We then demonstrated that GAGs of M2 macrophages were efficient to present fibroblast growth factor-2 in an assay of tumor cell proliferation, thus indicating that changes in GAG structure may contribute to the functions of polarized macrophages. Altogether, our findings suggest a regulatory mechanism in which fine modifications in GAG biosynthesis may participate to the plasticity of macrophage functions. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Integrin expression is altered after acute and chronic cocaine.

    PubMed

    Wiggins, Armina T; Pacchioni, Alejandra M; Kalivas, Peter W

    2009-02-06

    Cocaine addiction is associated with an increase in actin cycling and alterations in dendritic spines in the nucleus accumbens. Both actin polymerization and spine morphology are regulated in part by beta-(beta) integrins. Mice were administered acute or daily injections of cocaine or saline for 7 days. After 3 weeks of withdrawal, the level of beta-integrins in the postsynaptic density enriched subfraction from nucleus accumbens tissue was quantified by immunoblotting at 0, 30 or 120min following an a cocaine challenge injection. After chronic treatment and withdrawal the basal level of beta1-integrin was increased while beta3-integrin was unaltered. However, following a cocaine challenge in chronic cocaine, but not saline-treated animals, beta3-integrin was transiently up-regulated while beta1-integrin was transiently downregulated. These data demonstrate a bidirectional regulation of beta-integrins by chronic cocaine treatment that may contribute to cocaine-induced changes in actin cycling and dendrite morphology.

  4. Locomotion in Lymphocytes is Altered by Differential PKC Isoform Expression

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    1999-01-01

    Lymphocyte locomotion is critical for proper elicitation of the immune response. Locomotion of immune cells via the interstitium is essential for optimal immune function during wound healing, inflammation and infection. There are conditions which alter lymphocyte locomotion and one of them is spaceflight. Lymphocyte locomotion is severely inhibited in true spaceflight (true microgravity) and in rotating wall vessel culture (modeled microgravity). When lymphocytes are activated prior to culture in modeled microgravity, locomotion is not inhibited and the levels are comparable to those of static cultured lymphocytes. When a phorbol ester (PMA) is used in modeled microgravity, lymphocyte locomotion is restored by 87%. This occurs regardless if PMA is added after culture in the rotating wall vessel or during culture. Inhibition of DNA synthesis also does not alter restoration of lymphocyte locomotion by PMA. PMA is a direct activator of (protein kinase C) PKC . When a calcium ionophore, ionomycin is used it does not possess any restorative properties towards locomotion either alone or collectively with PMA. Since PMA brings about restoration without help from calcium ionophores (ionomycin), it is infer-red that calcium independent PKC isoforms are involved. Changes were perceived in the protein levels of PKC 6 where levels of the protein were downregulated at 24,72 and 96 hours in untreated rotated cultures (modeled microgravity) compared to untreated static (1g) cultures. At 48 hours there is an increase in the levels of PKC & in the same experimental set up. Studies on transcriptional and translational patterns of calcium independent isoforms of PKC such as 8 and E are presented in this study.

  5. Locomotion in Lymphocytes is Altered by Differential PKC Isoform Expression

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    1999-01-01

    Lymphocyte locomotion is critical for proper elicitation of the immune response. Locomotion of immune cells via the interstitium is essential for optimal immune function during wound healing, inflammation and infection. There are conditions which alter lymphocyte locomotion and one of them is spaceflight. Lymphocyte locomotion is severely inhibited in true spaceflight (true microgravity) and in rotating wall vessel culture (modeled microgravity). When lymphocytes are activated prior to culture in modeled microgravity, locomotion is not inhibited and the levels are comparable to those of static cultured lymphocytes. When a phorbol ester (PMA) is used in modeled microgravity, lymphocyte locomotion is restored by 87%. This occurs regardless if PMA is added after culture in the rotating wall vessel or during culture. Inhibition of DNA synthesis also does not alter restoration of lymphocyte locomotion by PMA. PMA is a direct activator of (protein kinase C) PKC . When a calcium ionophore, ionomycin is used it does not possess any restorative properties towards locomotion either alone or collectively with PMA. Since PMA brings about restoration without help from calcium ionophores (ionomycin), it is infer-red that calcium independent PKC isoforms are involved. Changes were perceived in the protein levels of PKC 6 where levels of the protein were downregulated at 24,72 and 96 hours in untreated rotated cultures (modeled microgravity) compared to untreated static (1g) cultures. At 48 hours there is an increase in the levels of PKC & in the same experimental set up. Studies on transcriptional and translational patterns of calcium independent isoforms of PKC such as 8 and E are presented in this study.

  6. Gene expression profiling of chromophobe renal cell carcinomas and renal oncocytomas by Affymetrix GeneChip using pooled and individual tumours.

    PubMed

    Yusenko, Maria V; Zubakov, Dmitry; Kovacs, Gyula

    2009-07-29

    Due to overlapping morphology, malignant chromophobe renal cell carcinomas (RCC) and benign renal oncocytomas (RO) may pose a diagnostic problem. In the present study, we have applied different algorithms to evaluate the data sets obtained by hybridisation of pooled and also individual samples of renal cell tumours (RCT) onto two different gene expression platforms. The two approaches revealed high similarities in the gene expression profiles of chromophobe RCCs and ROs but also some differences. After identifying the differentially expressed genes by statistic analyses, the candidate genes were further selected by a real time and normal RT-PCR and their products were analysed by immunohistochemistry. We have identified CD82 and S100A1 as valuable markers for chromophobe RCC as well as AQP6 for ROs. However, these genes are expressed at the protein level in other types of RCTs as well albeit at a low frequency and low intensity. As none of the selected genes marks exclusively one type of RCTs, for the differential diagnosis of chromophobe RCCs and ROs, a set of markers such as CD82, S100A1 and AQP6 as well as some others would be an option in routine histological laboratories.

  7. Gene expression profiling of chromophobe renal cell carcinomas and renal oncocytomas by Affymetrix GeneChip using pooled and individual tumours

    PubMed Central

    Yusenko, Maria V.; Zubakov, Dmitry; Kovacs, Gyula

    2009-01-01

    Due to overlapping morphology, malignant chromophobe renal cell carcinomas (RCC) and benign renal oncocytomas (RO) may pose a diagnostic problem. In the present study, we have applied different algorithms to evaluate the data sets obtained by hybridisation of pooled and also individual samples of renal cell tumours (RCT) onto two different gene expression platforms. The two approaches revealed high similarities in the gene expression profiles of chromophobe RCCs and ROs but also some differences. After identifying the differentially expressed genes by statistic analyses, the candidate genes were further selected by a real time and normal RT-PCR and their products were analysed by immunohistochemistry. We have identified CD82 and S100A1 as valuable markers for chromophobe RCC as well as AQP6 for ROs. However, these genes are expressed at the protein level in other types of RCTs as well albeit at a low frequency and low intensity. As none of the selected genes marks exclusively one type of RCTs, for the differential diagnosis of chromophobe RCCs and ROs, a set of markers such as CD82, S100A1 and AQP6 as well as some others would be an option in routine histological laboratories. PMID:19680475

  8. Renal expression of the C3a receptor and functional responses of primary human proximal tubular epithelial cells.

    PubMed

    Braun, Michael C; Reins, Rose Y; Li, Tong-Bin; Hollmann, Travis J; Dutta, Ranjan; Rick, Wetsel A; Teng, Ba-Bie; Ke, Baozhen

    2004-09-15

    Although complement activation and deposition have been associated with a variety of glomerulopathies, the pathogenic mechanisms by which complement directly mediates renal injury remain to be fully elucidated. Renal parenchymal tissues express a limited repertoire of receptors that directly bind activated complement proteins. We report the renal expression of the receptor for the C3 cleavage product C3a, a member of the anaphylatoxin family. C3aR is highly expressed in normal human and murine kidney, as demonstrated by immunohistochemistry and in situ hybridization. Its distribution is limited to epithelial cells only, as glomerular endothelial and mesangial cells showed no evidence of C3aR expression. The C3aR is also expressed by primary renal proximal tubular epithelial cells in vitro as demonstrated by FACS, Western blot, and RT-PCR. In vitro C3aR is functional in terms of its capacity to bind 125I-labeled C3a and generate inositol triphosphate. Finally, using microarray analysis, four novel genes were identified and confirmed as transcriptionally regulated by C3aR activation in proximal tubular cells. These studies define a new pathway by which complement activation may directly modulate the renal response to immunologic injury.

  9. Significance of COX-2 expression in human renal cell carcinoma cell lines.

    PubMed

    Chen, Qinzhong; Shinohara, Nobuo; Abe, Takashige; Watanabe, Takafumi; Nonomura, Katsuya; Koyanagi, Tomohiko

    2004-03-01

    Accumulating evidences indicate that cyclooxygenase (COX)-2 plays an important role in tumorigenesis in many human cancers. Yet the relationship between COX-2 and human renal cell carcinoma (RCC) remains unclear. The aim of our study was to evaluate COX-2 expression in human RCC cell lines and its role in tumorigenesis of human RCC. Among the human RCC cell lines (SMKT-R4, OS-RC-2, ACHN) and normal renal cell line RPTEC, COX-2 overexpression was found in OS-RC-2 cells both at mRNA and protein levels. COX-2 sense- and antisense-orientated vectors were constructed and transferred into RCC cells. Significant suppression of cellular proliferation was demonstrated in OS-RC-2 antisense transfectants, whereas promotion was found in SMKT-R4 sense transfectants by colony-forming assay despite the observation that COX-2 specific inhibitor NS398 exhibited similar IC50 among RCC cell lines by MTT assay. In comparison with parent cells and sense transfectants, significant suppression of COX-2 expression and PGE2 production and increase in butyrate-induced apoptosis were observed in OS-RC-2 antisense transfectants by Western blot, ELISA assay and FACS analysis, respectively. Furthermore, tumor growth and angiogenesis of OS-RC-2 antisense transfectants in nude mice was significantly suppressed and the survival time of these mice was significantly prolonged. Our study demonstrates that COX-2 is overexpressed in OS-RC-2 RCC cell line and plays an important role in tumorigenesis of the cells in vivo, which implies that COX-2 may be a therapeutic target for COX-2-expressing RCC, and that suppression of COX-2 expression by antisense-based strategy may have potential utility in treatment of COX-2-expressing RCC. Copyright 2003 Wiley-Liss, Inc.

  10. Fluid compartment and renal function alterations in the rat during 7 and 14 day head down tilt

    NASA Technical Reports Server (NTRS)

    Tucker, Bryan J.

    1991-01-01

    Exposure to conditions of microgravity for any extended duration can modify the distribution of fluid within the vascular and interstitial spaces, and eventually intracellular volume. Whether the redistribution of fluid and resetting of volume homeostasis mechanisms is appropriate for the long term environmental requirements of the body in microgravity remains to be fully defined. The event that initiates the change in fluid volume homeostasis is the cephalad movement of fluid which potentially triggers volume sensors and stretch receptors (atrial stretch with the resulting release of atrial natriuretic peptide) and suppresses adrenergic activity via the carotid and aortic arch baroreceptors. All these events act in concert to reset blood and interstitial volume to new levels, which in turn modify the renin-angiotensin system. All these factors have an influence on the kidney, the end organ for fluid volume control. How the fluid compartment volume changes interrelate with alterations in renal functions under conditions of simulated microgravity is the focus of the present investigation which utilizes 25-30 deg head-down tilt in the rat.

  11. Altered expression profile of micrornas in gastric stromal tumor.

    PubMed

    Xiao, Jun; Wang, Qi-xian; Zhu, You-qing

    2015-12-01

    MicroRNAs (miRNAs) play important roles in carcinogenesis, but the global miRNA expression profile in gastric stromal tumor tissues remains unclear. This study was to examine the miRNA expression profile in gastric stromal tumor tissues and explore the function of dysregulated miRNAs by performing gene ontology (GO) and pathway enrichment analysis. Total RNA was extracted and purified from 3 pairs of frozen gastric stromal tumor tissues and the adjacent non-tumor tissues by using mirVana™ miRNA isolation kit. The miRNA expression was analyzed with Affymetrix microarrays (version 4.0) containing 2578 human mature microRNA probes. The dysregulated microRNAs were validated by quantitative RT-PCR in 30 pairs of gastric stromal tumor tissues. The target gene of the dysregulated microRNAs was predicted by miRanda, TargetScan and PicTar. GO and pathway enrichment analysis was conducted to examine the potential function of miR-3178 and miR-193a-5p. The results showed that there were 12 differently expressed microRNAs in gastric stromal tumor tissues, among which 10 miRNAs were down-regulated, and 2 were up-regulated (P<0.05). The validation results by RT-PCR were in accordance with those by microRNA microarry. GO analysis found that the target genes of miR-3178 were involved in 5 GO terms and those of miR-193a-5p in 7 GO terms in level 2. Pathway enrichment analysis suggested that miR-3178 and miR-193a-5p were related to 57 and 122 signaling pathways, respectively. It was concluded that gastric stromal tumor displays a unique miRNA signature. This specific expression may become a new diagnostic and prognostic biomarker for gastric stromal tumor. miR-3178 and miR-193a-5p function as suppressive microRNAs, and they may also become diagnosis and treatment targets for gastric stromal tumor.

  12. Collecting duct-specific Rh C glycoprotein deletion alters basal and acidosis-stimulated renal ammonia excretion

    PubMed Central

    Lee, Hyun-Wook; Verlander, Jill W.; Bishop, Jesse M.; Igarashi, Peter; Handlogten, Mary E.; Weiner, I. David

    2009-01-01

    NH3 movement across plasma membranes has traditionally been ascribed to passive, lipid-phase diffusion. However, ammonia-specific transporters, Mep/Amt proteins, are present in primitive organisms and mammals express orthologs of Mep/Amt proteins, the Rh glycoproteins. These findings suggest that the mechanisms of NH3 movement in mammalian tissues should be reexamined. Rh C glycoprotein (Rhcg) is expressed in the collecting duct, where NH3 secretion is necessary for both basal and acidosis-stimulated ammonia transport. To determine whether the collecting duct secretes NH3 via Rhcg or via lipid-phase diffusion, we generated mice with collecting duct-specific Rhcg deletion (CD-KO). CD-KO mice had loxP sites flanking exons 5 and 9 of the Rhcg gene (Rhcgfl/fl) and expressed Cre-recombinase under control of the Ksp-cadherin promoter (Ksp-Cre). Control (C) mice were Rhcgfl/fl but Ksp-Cre negative. We confirmed kidney-specific genomic recombination using PCR analysis and collecting duct-specific Rhcg deletion using immunohistochemistry. Under basal conditions, urinary ammonia excretion was less in KO vs. C mice; urine pH was unchanged. After acid-loading for 7 days, CD-KO mice developed more severe metabolic acidosis than did C mice. Urinary ammonia excretion did not increase significantly on the first day of acidosis in CD-KO mice, despite an intact ability to increase urine acidification, whereas it increased significantly in C mice. On subsequent days, urinary ammonia excretion slowly increased in CD-KO mice, but was always significantly less than in C mice. We conclude that collecting duct Rhcg expression contributes to both basal and acidosis-stimulated renal ammonia excretion, indicating that collecting duct ammonia secretion is, at least in part, mediated by Rhcg and not solely by lipid diffusion. PMID:19321595

  13. Expression of alpha-smooth muscle actin and fibronectin in tubulointerstitial lesions of cats with chronic renal failure.

    PubMed

    Sawashima, K; Mizuno, S; Mizuno-Horikawa, Y; Shimada, A; Kudo, T; Kurosawa, T

    2000-09-01

    To examine renal expression of alpha-smooth muscle actin (alpha-SMA) and fibronectin in cats with tubulointerstitial nephritis (TIN) for use in predicting progression to renal fibrosis. 19 cats with TIN and 9 cats without nephritis. Serum creatinine and BUN concentrations were measured. Indices for glomerular extra-cellular matrix (ECM), tubular injury (TI), and fibronectin were determined in renal specimens to quantify the extent of injury and fibrotic lesions. Expression of alpha-SMA in renal tissue was immunohistochemically detected, and correlations were evaluated between the alpha-SMA index and other histologic and clinical variables. The alpha-SMA index in tubulointerstitial areas (1.63 +/- 0.78) was significantly higher in cats with TIN, especially in the periglomerular and peritubular areas, than in cats without nephritis (0.20 +/- 0.14). The alpha-SMA index was significantly associated with the TI index (r2 = 0.70), fibronectin index (r2 = 0.95), BUN concentration (r = 0.64), and serum creatinine concentration () = 0.66). Of special interest was that interstitial alpha-SMA expression appeared evident in the kidneys at an early stage of TIN, prior to the onset of ECM deposition. Analysis of results of histologic and clinical examinations revealed that interstitial alpha-SMA expression may have clinical importance and may be a useful early histologic marker for development of chronic renal failure in cats. An immunohistochemical examination for fibrogenic molecules (such as alpha-SMA expression) may provide fundamental information on the pathogenesis of early-stage renal disease and aid clinical management of cats with chronic renal failure, including TIN.

  14. Regulated Expression of a Calmodulin Isoform Alters Growth and Development in Potato

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Takezawa, D.; An, G.; Han, T.-J.

    1996-01-01

    A transgene approach was taken to study the consequences of altered expression of a calmodutin iso-form on plant growth and development. Eight genomic clones of potato calmodulin (PCM 1 to 8) have been isolated and characterized. Among the potato calmodulin isoforms studied, PCM 1 differs from the other isoforms because of its unique amino acid substitutions. Transgenic potato plants were produced carrying sense construct of PCM 1 fused to the CAMV 35S promoter. Transgenic plants showing a moderate increase in PCM 1 MRNA exhibited strong apical dominance, produced elongated tubers, and were taller than the controls. Interestingly, the plants expressing the highest level of PCM 1 MRNA did not form underground tubers. Instead, these transgenic plants produced aerial tubers when allowed to grow for longer periods. The expression of different calmodulin isoforms (PCM 1, 5, 6, and 8) was studied in transgenic plants. Among the four potato calmodulin isoforms, only the expression of PCM 1 MRNA was altered in transgenic plants, while the expression of other isoforms was not significantly altered. Western analysis revealed increased PCM 1 protein in transgenic plants, indicating that the expression of both MRNA and protein are altered in transgenic plants. These results suggest that increasing the expression of PCM 1 alters growth and development in potato plants.

  15. Defective Major Histocompatibility Complex Class I Expression in a Sarcomatoid Renal Cell Carcinoma Cell Line

    PubMed Central

    Jakobsen, Michael K.; Restifo, Nicholas P.; Cohen, Peter A.; Marincola, Francesco M.; Cheshire, L. Bryan; Linehan, W. Marston; Rosenberg, Steven A.; Alexander, Richard B.

    2008-01-01

    Summary We studied major histocompatibility complex (MHC) class I expression in 12 tumor cell culture lines established from patients with metastatic renal cell carcinoma (RCC). In one of these cell culture lines, UOK 123, we found no surface expression of β2-microglobulin (β2m) and MHC class I by flow cytometry. Immunofluorescence staining using three different monoclonal antibodies to β2m revealed no detectable β2m in the endoplasmic reticulum (ER), Golgi apparatus, cytoplasm, or on the cell surface. There was no evidence of folded class I molecules inside or on the surface of the cells; however, the ER stained intensively for unfolded class I molecules. Transient expression of β2m by UOK 123 after infection with a recombinant vaccinia virus containing the gene for β2m resulted in normal expression of both β2m and class I (HLA-A, B, C) determinants assessed by flow cytometry analysis. No expression of class I or β2m was seen with the recombinant vaccinia vector carrying a control gene. The inability of class I molecules to reach the cell surface is due to the requirement of β2m for proper folding and presentation of the class I MHC complex. The failure to assemble and express MHC class I complex on the cell surface renders these cells incapable of antigen presentation to cyto-toxic T cells and provides a mechanism for escape from immune recognition by the tumor. PMID:7582258

  16. The diagnostic value of EMA expression in the renal parenchyma tumors.

    PubMed

    Alexa, Aurora; Baderca, Flavia; Lighezan, Rodica; Zăhoi, Delia Elena; Izvernariu, D

    2011-01-01

    Renal parenchyma tumors are a heterogeneous group of malignancies that are difficult to diagnose and classify. Immunohistochemistry begun to be routinely used for the diagnosis of these tumors. Panels of antibodies are developed for the diagnostic assessment of these tumors, which include cytokeratins, epithelial membrane antigen and vimentin. Epithelial membrane antigen (EMA) is expressed by most of the tumor cell types. Forty-seven specimens of renal parenchyma tumors were studied immunohistochemically for the expression of EMA. In the majority of the cases, clear cells carcinoma was positive for EMA (25/33, 75.70%). All of the papillary carcinomas were positive, with different staining patterns between the two subtypes. The two cases of chromophobe cells carcinomas were intensely positive with a granular cytoplasmic staining pattern. The mixed epithelial-stromal tumor was negative for EMA in both of the components. Out of the three cases of sarcomatoid carcinomas, one was negative, one was weakly positive (+1) and the last was positive (+2). Intensely positive normal tubes were caught by the tumor proliferation in the negative case and in the negative stained areas of the weakly positive case.

  17. Nickel-induced heritable alterations in retroviral transforming gene expression.

    PubMed Central

    Biggart, N W; Gallick, G E; Murphy, E C

    1987-01-01

    Determination of the mutagenic effects of carcinogenic nickel compounds has been difficult because, like many metals, nickel is poorly or nonmutagenic in procaryotic mutagenicity assays. We attempted to characterize nickel-induced genetic lesions by assessing the effect of nickel chloride on the conditionally defective expression of the v-mos transforming gene in normal rat kidney cells infected with the Murine sarcoma virus mutant ts110 (MuSVts110) retrovirus. MuSVts110 contains an out-of-frame gag gene-mos gene junction that prevents the expression of the v-mos gene at the nonpermissive temperature (39 degrees C). In MuSVts110-infected cells (6m2 cells) grown at 33 degrees C, however, this defect can be suppressed by a splicing event that restores the mos reading frame, allowing the expression of a gag-mos fusion protein which induces the transformed phenotype. The capacity to splice the viral transcript at 33 degrees C, but not at 39 degrees C, is an intrinsic property of the viral RNA. This property allowed us to target the MuSVts110 genome using a positive selection scheme whereby nickel was used to induce genetic changes which resulted in expression of the transformed phenotype at 39 degrees C. We treated 6m2 cells with NiCl2 and isolated foci consisting of cells which had reverted to the transformed phenotype at 39 degrees C. We found that brief nickel treatment increased the reversion frequency of 6m2 cells grown at 39 degrees C sevenfold over the spontaneous reversion frequency. The nickel-induced revertants displayed the following heritable characteristics: They stably maintained the transformed phenotype at 39 degrees C; unlike the MuSVts110 RNA in 6m2 cells, the nickel-induced revertant viral RNA could be spliced efficiently at 39 degrees C; as a consequence of the enhanced accumulation of spliced viral RNA, the nickel-induced revertants produced substantial amounts of the transforming v-mos protein P85gag-mos at 39 degrees C; the nickel

  18. [Expression and significance of neutrophil surface adhesion molecules in renal transplant recipients with cytomegalovirus infection].

    PubMed

    Xiao, L; Bai, J; He, X Y; Han, Y; Xu, X G; Fan, W M; Bi, L L; Gao, Y; Kong, X R; Wei, Y X; Shi, B Y

    2016-05-31

    To study the expression and its diagnostic significance of neutrophil surface adhesion molecules including CD11b, CD15 and CD62L after renal transplantation in recipients with cytomegalovirus (CMV) infection. Blood samples were collected from 142 kidney transplant recipients, including 95 males and 47 females, who received allogeneic renal transplantation between September 2009 and January 2015 in 309th Hospital of the PLA. Healthy volunteers (22 males and 9 females) were recruited from physical examination center in 309th Hospital of the PLA from September 2009 to January 2015 as healthy control group. Renal transplant recipients were divided into high active CMV infection group, active CMV infection group and CMV negative control group according to CMV-pp65 antigen detection. Neutrophil surface adhesion molecules CD11b, CD15 and CD62L were detected by flow cytometry and their mean fluorescence intensity compared among the groups. Receiver operating characteristic (ROC) curves of CD11b, CD15 and CD62L in detecting active infection in renal transplant recipients were made. The mean fluorescence intensity of CD15 in high active CMV infection group(n=17) and active CMV infection group(n=65)were 776.31±89.53 and 554.39±67.89, respectively, with significant differences compared with CMV negative control group (n=60, 334.92±44.69) and healthy control group (n=31, 310.56±39.67) (all P<0.05); the expression proportions of CD11b and CD62L in high active CMV infection group and were 42.31%±6.11% and 40.35%±6.47%, respectively, with significant differences compared with active CMV infection group(62.45%±5.67% and 65.65%±5.33%), CMV negative control group(70.74%±6.55% and 70.37%±6.71%) and healthy control group(72.52%±6.48% and 72.43%±6.51%) (all P<0.05). The optimal cut-off values of CD11b and CD62L in diagnosing active CMV infection group were 56.61% and 44.35%, respectively, with the sensitivity being both 100.00%, the specificity being 76.67% and 58

  19. Knockdown of Leptin A Expression Dramatically Alters Zebrafish Development

    PubMed Central

    Liu, Qin; Dalman, Mark; Chen, Yun; Akhter, Mashal; Brahmandam, Sravya; Patel, Yesha; Lowe, Josef; Thakkar, Mitesh; Gregory, Akil-Vuai; Phelps, Daryllanae; Riley, Caitlin; Londraville, Richard L.

    2012-01-01

    Using morpholino antisense oligonucleotide (MO) technology, we blocked leptin A or leptin receptor expression in embryonic zebrafish, and analyzed consequences of leptin knock-down on fish development. Embryos injected with leptin A or leptin receptor MOs (leptin A or leptin receptor morphants) had smaller bodies and eyes, undeveloped inner ear, enlarged pericardial cavity, curved body and/or tail and larger yolk compared to control embryos of the same stages. The defects persisted in 6-9 day old larvae. We found that blocking leptin A function had little effect on the development of early brain (1 day old), but differentiation of both the morphant dorsal brain and retinal cells was severely disrupted in older (2 day old) embryos. Despite the enlarged pericardial cavity, differentiation of cardiac cells appeared to be similar to control embryos. Formation of the morphants’ inner ear is also severely disrupted, which corroborates existing reports of leptin receptor expression in inner ear of both zebrafish and mammals. Co-injection of leptin A MO and recombinant leptin results in partial rescue of the wild-type phenotype. Our results suggest that leptin A plays distinct roles in zebrafish development. PMID:22841760

  20. α(E)-Catenin Regulates BMP-7 Expression and Migration in Renal Epithelial Cells

    PubMed Central

    Nichols, LaNita A.; Slusarz, Anna; Grunz-Borgmann, Elizabeth A.; Parrish, Alan R.

    2014-01-01

    Background The aging kidney has a decreased ability to repair following injury. We have shown a loss in expression of α-catenin in the aging rat kidney and hypothesize that decreased α-catenin expression in tubular epithelial cells results in diminished repair capacity. Methods In an effort to elucidate alterations due to the loss of α-catenin, we generated NRK-52E cell lines with stable knockdown of α(E)-catenin. Results α(E)-catenin knockdown resulted in decreased wound repair due to alterations in cell migration. Analysis of gene expression in the α(E)-catenin knockdown cells demonstrated almost a complete loss of bone morphogenetic protein-7 (BMP-7) expression that was associated with decreased phospho-Smad1/5/8 staining. However, addition of exogenous BMP-7 increased phosph-Smad1/5/8, suggesting that the BMP-7 pathway remained intact in C2 cells. Given the potential role of BMP-7 in repair, we investigated its role in wound repair. Inhibition of BMP-7 decreased repair in non-targeted control cells; conversely, exogenous BMP-7 restored repair in α(E)-catenin knockdown cells to control levels. Conclusions Taken together, the data suggests that the loss of α(E)-catenin expression and subsequent down-regulation of BMP-7, is a mechanism underlying the altered migration of tubular epithelial cells that contributes to the inability of the aging kidney to repair following injury. PMID:24818804

  1. Ras modulation of superoxide activates ERK-dependent fibronectin expression in diabetes-induced renal injuries.

    PubMed

    Lin, C-L; Wang, F-S; Kuo, Y-R; Huang, Y-T; Huang, H-C; Sun, Y-C; Kuo, Y-H

    2006-05-01

    Although previous studies have demonstrated that diabetic nephropathy is attributable to early extracellular matrix accumulation in glomerular mesangial cells, the molecular mechanism by which high glucose induces matrix protein deposition remains not fully elucidated. Rat mesangial cells pretreated with or without inhibitors were cultured in high-glucose or advanced glycation end product (AGE) conditions. Streptozotocin-induced diabetic rats were given superoxide dismutase (SOD)-conjugated propylene glycol to scavenge superoxide. Transforming growth factor (TGF)-beta1, fibronectin expression, Ras, ERK, p38, and c-Jun activation of glomerular mesangial cells or urinary albumin secretion were assessed. Superoxide, not nitric oxide or hydrogen peroxide, mediated high glucose- and AGE-induced TGF-beta1 and fibronectin expression. Pretreatment with diphenyliodonium, not allopurinol or rotenone, reduced high-glucose and AGE augmentation of superoxide synthesis and fibronection expression. High glucose and AGEs rapidly enhanced Ras activation and progressively increased cytosolic ERK and nuclear c-Jun activation. Inhibiting Ras by manumycin A reduced the stimulatory effects of high glucose and AGEs on superoxide and fibronectin expression. SOD or PD98059 pretreatment reduced high-glucose and AGE promotion of ERK and c-Jun activation. Exogenous SOD treatment in diabetic rats significantly attenuated diabetes induction of superoxide, urinary albumin excretion, 8-hydroxy-2'-deoxyguanosine, TGF-beta1, and fibronectin immunoreactivities in renal glomerular mesangial cells. Ras induction of superoxide activated ERK-dependent fibrosis-stimulatory factor and extracellular matrix gene transcription of mesangial cells. Reduction of oxidative stress by scavenging superoxide may provide an alternative strategy for controlling diabetes-induced early renal injury.

  2. PAH clearance after renal ischemia and reperfusion is a function of impaired expression of basolateral Oat1 and Oat3.

    PubMed

    Bischoff, Ariane; Bucher, Michael; Gekle, Michael; Sauvant, Christoph

    2014-02-01

    Determination of renal plasma flow (RPF) by para-aminohippurate (PAH) clearance leads to gross underestimation of this respective parameter due to impaired renal extraction of PAH after renal ischemia and reperfusion injury. However, no mechanistic explanation for this phenomenon is available. Based on our own previous studies we hypothesized that this may be due to impairment of expression of the basolateral rate limiting organic anion transporters Oat1 and Oat3. Thus, we investigated this phenomenon in a rat model of renal ischemia and reperfusion by determining PAH clearance, PAH extraction, PAH net secretion, and the expression of rOat1 and rOat3. PAH extraction was seriously impaired after ischemia and reperfusion which led to a threefold underestimation of RPF when PAH extraction ratio was not considered. PAH extraction directly correlated with the expression of basolateral Oat1 and Oat3. Tubular PAH secretion directly correlated with PAH extraction. Consequently, our data offer an explanation for impaired renal PAH extraction by reduced expression of the rate limiting basolateral organic anion transporters Oat1 and Oat3. Moreover, we show that determination of PAH net secretion is suitable to correct PAH clearance for impaired extraction after ischemia and reperfusion in order to get valid results for RPF.

  3. Osteopontin expression in vascular smooth muscle cells in patients with end-stage renal disease.

    PubMed

    Nakamura, Hironori; Honda, Hirokazu; Inada, Yoshifumi; Kato, Noriyuki; Kato, Kenichi; Kitazawa, Kozo; Sugisaki, Tetsuzo

    2006-06-01

    beta-glycerophosphate, a phosphate donor, and uremic sera induce osteopontin (OPN) expression in bovine vascular smooth muscle cells (VSMCs). However, the correlations of serum phosphorus level with OPN expression, and blood urea nitrogen (BUN) level with OPN expression in humans have not previously been reported. The purpose of the current study is to compare the expression of OPN in VSMCs with clinical data in patients with end-stage renal disease (ESRD). The radial arteries of 33 patients (21 male and 12 female patients) were examined to determine the expression of OPN and collagen type I (Col I) by immunohistochemistry. The correlation of the expression of bone matrix proteins with clinical data was analyzed. Between the low-serum phosphorus (<6 mg/dL) group and high-serum phosphorus (> or =6 mg/dL) group, significant differences were detected in the expression of OPN (P = 0.0049) and the levels of BUN (P = 0.0005), serum phosphorus (P < 0.0001) and calcium x phosphorus products (P < 0.0001). Moreover, between the low-BUN (<70 mg/dL, N = 19) group and high-BUN (> or =70 mg/dL) group, significant differences were detected in the expression of OPN (P = 0.0039) and the levels of BUN (P = 0.0002), serum phosphorus (P = 0.0002) and calcium x phosphorus products (P = 0.0003). We have shown that hyperphosphatemia or azotemia is associated with the expression of OPN in VSMCs in patients with ESRD.

  4. FLI1 Levels Impact CXCR3 Expression and Renal Infiltration of T Cells and Renal Glycosphingolipid Metabolism in the MRL/lpr Lupus Mouse Strain.

    PubMed

    Sundararaj, Kamala P; Thiyagarajan, Thirumagal; Molano, Ivan; Basher, Fahmin; Powers, Thomas W; Drake, Richard R; Nowling, Tamara K

    2015-12-15

    The ETS factor Friend leukemia virus integration 1 (FLI1) is a key modulator of lupus disease expression. Overexpressing FLI1 in healthy mice results in the development of an autoimmune kidney disease similar to that observed in lupus. Lowering the global levels of FLI1 in two lupus strains (Fli1(+/-)) significantly improved kidney disease and prolonged survival. T cells from MRL/lpr Fli1(+/-) lupus mice have reduced activation and IL-4 production, neuraminidase 1 expression, and the levels of the glycosphingolipid lactosylceramide. In this study, we demonstrate that MRL/lpr Fli1(+/-) mice have significantly decreased renal neuraminidase 1 and lactosylceramide levels. This corresponds with a significant decrease in the number of total CD3(+) cells, as well as CD4(+) and CD44(+)CD62L(-) T cell subsets in the kidney of MRL/lpr Fli1(+/-) mice compared with the Fli1(+/+) nephritic mice. We further demonstrate that the percentage of CXCR3(+) T cells and Cxcr3 message levels in T cells are significantly decreased and correspond with a decrease in renal CXCR3(+) cells and in Cxcl9 and Cxcl10 expression in the MRL/lpr Fli1(+/-) compared with the Fli1(+/+) nephritic mice. Our results suggest that reducing the levels of FLI1 in MRL/lpr mice may be protective against development of nephritis in part through downregulation of CXCR3, reducing renal T cell infiltration and glycosphingolipid levels.

  5. Nursing frequency alters circadian patterns of mammary gene expression in lactating mice

    USDA-ARS?s Scientific Manuscript database

    Milking frequency impacts lactation in dairy cattle and in rodent models of lactation. The role of circadian gene expression in this process is unknown. The hypothesis tested was that changing nursing frequency alters the circadian patterns of mammary gene expression. Mid-lactation CD1 mice were stu...

  6. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

  7. Identification of Reference Genes in Human Myelomonocytic Cells for Gene Expression Studies in Altered Gravity

    PubMed Central

    Thiel, Cora S.; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E.

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098

  8. Altered pharmacokinetics of cimetidine caused by down-regulation of renal rat organic cation transporter 2 (rOCT2) after liver ischemia-reperfusion injury.

    PubMed

    Ikemura, Kenji; Nakagawa, Erika; Kurata, Tomohiko; Iwamoto, Takuya; Okuda, Masahiro

    2013-01-01

    The renal tubular secretion of cationic drugs is dominated by basolateral organic cation transporter 2 (rOCT2/SLC22A2) and luminal multidrug and toxin extrusion 1 (rMATE1/SLC47A1). Little is known about the variation in the expression of these renal transporters after liver ischemia-reperfusion (I/R) injury. Here, we examined the pharmacokinetics of a cationic drug, cimetidine, and renal rOCT2 and rMATE1 levels as well as their regulation after liver I/R. Rats were subjected to 60 min of liver ischemia followed by 12 h of reperfusion. The antioxidant Trolox was administered intravenously 5 min before reperfusion. The systemic and tubular secretory clearances of cimetidine (78% and 55%) as well as renal rOCT2 and rMATE1 levels (67% and 61%) in I/R rats were decreased compared with those in sham-operated rats, respectively. However, the renal tissue-to-plasma concentration ratio but not the renal tissue-to-urine clearance ratio of cimetidine was decreased after liver I/R. Moreover, Trolox prevented the decreases in renal rOCT2 levels and systemic clearance of cimetidine after liver I/R. These results demonstrate that liver I/R decreases the tubular secretion of cimetidine, mainly because of the decreased rOCT2 level in the kidney, and that oxidative stress should be responsible in part for decreased renal rOCT2 after liver I/R injury.

  9. Alterations of the renal function and oxidative stress in renal tissue from rats chronically treated with aluminium during the initial phase of hepatic regeneration.

    PubMed

    Mahieu, Stella; Millen, Néstor; González, Marcela; Contini, María del Carmen; Elías, María Mónica

    2005-09-01

    Various indices of renal functions during the early stage of hepatic injury were studied in rats chronically treated with aluminum (Al) lactate. Tubular and hemodynamic parameters were analyzed four days after producing a 65% partial hepatectomy (PH). Water and sodium balances were also studied. Oxidative stress and the activity of Na-K-ATPase were determined in renal tissue. The rats were distributed in four groups: control, Al, PH, Al+PH. Al did not modify the hemodynamic renal functions and the PH-group reduced the glomerular filtrate rate (GFR). The Al + PH group presented a decrease in the renal blood flow and accentuated the GFR fall as compared with PH. The fractional excretion (FE) of water and sodium increased in the PH group. The rats chronically treated with Al and then submitted to the PH protocol developed a further increase in FE of water but a reduction in FE of sodium. Both PH and Al promoted an increase in the aldosterone. PH and Al induced a similar increase of the lipoperoxidation status with reduction of glutathione (GSH) and the activity of glutathione peroxidase (GSH-Px). The data indicated that Al is an inhibitor of catalase. The GSH and GSH-Px activity in the Al + PH group demonstrated a synergic effect of Al and PH. This work demonstrates that rats treated chronically with Al and submitted to another injury (such as hepatic damage) can aggravate renal functions, probably by increasing the oxidative state, at least in kidneys.

  10. Finasteride reduces microvessel density and expression of vascular endothelial growth factor in renal tissue of diabetic rats.

    PubMed

    Tian, He-lin; Zhao, Chao-xian; Wu, Hai-ying; Xu, Zhong-xin; Wei, Li-shun; Zhao, Ru-tong; Jin, Dong-ling

    2015-06-01

    Vascular endothelial growth factor (VEGF) plays a critical role in the pathogenesis of diabetic microvascular complications. Finasteride has been confirmed to decrease VEGF expression in prostate and prostatic suburethral tissue resulting in limiting hematuria from human benign prostatic hyperplasia. The purpose of this study was to evaluate the effects of finasteride on microvessel density (MVD), VEGF protein and mRNA expressions in the renal tissue of diabetic rats. Diabetic rats induced by streptozotocin were intragastrically given finasteride at 30 mg/kg body weight once a day for 4 weeks. Histomorphologic changes in kidney were observed under light microscope. Immunohistochemistry for CD34 and VEGF on kidney sections was performed to assess MVD and VEGF protein expression in glomeruli of rats, respectively. The VEGF mRNA expression in the renal tissue was examined using reverse transcription polymerase chain reaction analysis. The glomerular tuft area, glomerular volume, MVD, VEGF protein expression in glomeruli and VEGF mRNA expression in the renal cortex tissue were significantly increased in diabetic rats and finasteride-treated rats when compared with controls (P < 0.01, P < 0.05). When compared with diabetic rats, the glomerular tuft area, glomerular volume, MVD, VEGF protein expression in glomeruli and VEGF mRNA expression in the renal cortex tissue of finasteride-treated rats were significantly decreased (P < 0.05, P < 0.01). Finasteride reduces the VEGF expression and decreases the MVD in the renal tissue of diabetic rats, suggesting the therapeutic potential of finasteride on diabetic microvascular complications.

  11. Increased activity and expression of Ca2+-dependent NOS in renal cortex of ANG II-infused hypertensive rats

    PubMed Central

    CHIN, SO YEON; PANDEY, KAILASH N.; SHI, SHANG-JIN; KOBORI, HIROYUKI; MORENO, CAROL; NAVAR, L. GABRIEL

    2008-01-01

    We have previously demonstrated that nitric oxide (NO) exerts a greater modulatory influence on renal cortical blood flow in ANG II-infused hypertensive rats compared with normotensive rats. In the present study, we determined nitric oxide synthase (NOS) activities and protein levels in the renal cortex and medulla of normotensive and ANG II-infused hypertensive rats. Enzyme activity was determined by measuring the rate of formation of l-[14C]citrulline from l-[14C]arginine. Western blot analysis was performed to determine the regional expression of endothelial (eNOS), neuronal (nNOS), and inducible (iNOS) isoforms in the renal cortex and medulla of control and ANG II-infused rats. Male Sprague-Dawley rats were prepared by the infusion of ANG II at a rate of 65 ng/min via osmotic minipumps implanted subcutaneously for 13 days and compared with sham-operated rats. Systolic arterial pressures were 127 ± 2 and 182 ± 3 mmHg in control (n = 13) and ANG II-infused rats (n = 13), respectively. The Ca2+-dependent NOS activity, expressed as picomoles of citrulline formed per minute per gram wet weight, was higher in the renal cortex of ANG II-infused rats (91 ± 11) than in control rats (42 ± 12). Likewise, both eNOS and nNOS were markedly elevated in the renal cortex of the ANG II-treated rats. In both groups of rats, Ca2+-dependent NOS activity was higher in the renal medulla than in the cortex; however, no differences in medullary NOS activity were observed between the groups. Also, no differences in medullary eNOS levels were observed between the groups; however, medullary nNOS was decreased by 45% in the ANG II-infused rats. For the Ca2+-independent NOS activities, the renal cortex exhibited a greater activity in the control rats (174 ± 23) than in ANG II-infused rats (101 ± 10). Similarly, cortical iNOS was greater by 47% in the control rats than in ANG II-treated rats. No differences in the activity were found for the renal medulla between the groups. There was

  12. Renal Dnase1 Enzyme Activity and Protein Expression Is Selectively Shut Down in Murine and Human Membranoproliferative Lupus Nephritis

    PubMed Central

    Rekvig, Ole Petter

    2010-01-01

    Background Deposition of chromatin-IgG complexes within glomerular membranes is a key event in the pathogenesis of lupus nephritis. We recently reported an acquired loss of renal Dnase1 expression linked to transformation from mild to severe membranoproliferative lupus nephritis in (NZBxNZW)F1 mice. As this may represent a basic mechanism in the progression of lupus nephritis, several aspects of Dnase1 expression in lupus nephritis were analyzed. Methodology/Principal Findings Total nuclease activity and Dnase1 expression and activity was evaluated using in situ and in vitro analyses of kidneys and sera from (NZBxNZW)F1 mice of different ages, and from age-matched healthy controls. Immunofluorescence staining for Dnase1 was performed on kidney biopsies from (NZBxNZW)F1 mice as well as from human SLE patients and controls. Reduced serum Dnase1 activity was observed in both mesangial and end-stage lupus nephritis. A selective reduction in renal Dnase1 activity was seen in mice with massive deposition of chromatin-containing immune complexes in glomerular capillary walls. Mice with mild mesangial nephritis showed normal renal Dnase1 activity. Similar differences were seen when comparing human kidneys with severe and mild lupus nephritis. Dnase1 was diffusely expressed within the kidney in normal and mildly affected kidneys, whereas upon progression towards end-stage renal disease, Dnase1 was down-regulated in all renal compartments. This demonstrates that the changes associated with development of severe nephritis in the murine model are also relevant to human lupus nephritis. Conclusions/Significance Reduction in renal Dnase1 expression and activity is limited to mice and SLE patients with signs of membranoproliferative nephritis, and may be a critical event in the development of severe forms of lupus nephritis. Reduced Dnase1 activity reflects loss in the expression of the protein and not inhibition of enzyme activity. PMID:20856893

  13. Expression of TLR-4 and -2 in peripheral mononuclear cells in renal transplant patients with TLR-4 gene polymorphism.

    PubMed

    Nogueira, Eliana; Salomao, Reinaldo; Brunialti, Milena Karina Colló; Ozaki, Kikumi S; Marques, Geórgia D M; Cenedeze, Marcos A; Câmara, Niels Olsen Saraiva; Pacheco-Silva, Alvaro

    2010-12-01

    TLR-4 has also been identified as a receptor for endogenous alarmins, which are increased post transplantation. TLR-4 has also been associated with a polymorphism that could impact graft outcome. To assess the expression of TLR-4 in kidney transplant patients carrying or not a polymorphism. TLR-4 polymorphism (A299G/T399I) was studied in 200 renal transplant patients. Healthy volunteers were also enrolled as control group. The polymorphism analysis was performed using restriction enzymes technique (RFLP). Functionality of TLR-4 polymorphism was assessed in samples from controls by quantification of TNF-α after LPS stimulus. TLR-4 and -2 expressions were also analyzed by flow cytometry. TLR-4 polymorphism was present in 8.5% of renal transplant patients. This polymorphism was associated with impairment in TNF-α secretion. In general, in renal transplant patients, TLR-4 expression in monocytes and in neutrophils was lower than in health volunteers. TLR-2 and TLR-4 expressions in healthy volunteers with A299G/T399I TLR-4 polymorphism was higher than in wild-type genotype healthy volunteers (p<0.01 and p<0.05, respectively), and also higher than A299G/T399I TLR-4 polymorphism renal transplant patients (p<0.05). TLR-2 expression on neutrophils in wild-type genotype renal transplant patients was higher compared to wild-type genotype healthy volunteers, and was also higher in relation to A299G/T399I kidney transplanted patients (p<0.01). Stable renal transplant patients with TLR-4 polymorphism have a lower expression of TLR-4 and TLR-2 receptors in peripheral mononuclear cells, which ultimately indicate a less responsiveness for alarmins. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Altered Kinematics of Facial Emotion Expression and Emotion Recognition Deficits Are Unrelated in Parkinson's Disease.

    PubMed

    Bologna, Matteo; Berardelli, Isabella; Paparella, Giulia; Marsili, Luca; Ricciardi, Lucia; Fabbrini, Giovanni; Berardelli, Alfredo

    2016-01-01

    Altered emotional processing, including reduced emotion facial expression and defective emotion recognition, has been reported in patients with Parkinson's disease (PD). However, few studies have objectively investigated facial expression abnormalities in PD using neurophysiological techniques. It is not known whether altered facial expression and recognition in PD are related. To investigate possible deficits in facial emotion expression and emotion recognition and their relationship, if any, in patients with PD. Eighteen patients with PD and 16 healthy controls were enrolled in this study. Facial expressions of emotion were recorded using a 3D optoelectronic system and analyzed using the facial action coding system. Possible deficits in emotion recognition were assessed using the Ekman test. Participants were assessed in one experimental session. Possible relationship between the kinematic variables of facial emotion expression, the Ekman test scores, and clinical and demographic data in patients were evaluated using the Spearman's test and multiple regression analysis. The facial expression of all six basic emotions had slower velocity and lower amplitude in patients in comparison to healthy controls (all Ps < 0.05). Patients also yielded worse Ekman global score and disgust, sadness, and fear sub-scores than healthy controls (all Ps < 0.001). Altered facial expression kinematics and emotion recognition deficits were unrelated in patients (all Ps > 0.05). Finally, no relationship emerged between kinematic variables of facial emotion expression, the Ekman test scores, and clinical and demographic data in patients (all Ps > 0.05). The results in this study provide further evidence of altered emotional processing in PD. The lack of any correlation between altered facial emotion expression kinematics and emotion recognition deficits in patients suggests that these abnormalities are mediated by separate pathophysiological mechanisms.

  15. Recovery from renal ischemia-reperfusion injury is associated with altered renal hemodynamics, blunted pressure natriuresis, and sodium-sensitive hypertension.

    PubMed

    Pechman, Kimberly R; De Miguel, Carmen; Lund, Hayley; Leonard, Ellen C; Basile, David P; Mattson, David L

    2009-11-01

    The present studies evaluated intrarenal hemodynamics, pressure natriuresis, and arterial blood pressure in rats following recovery from renal ischemia-reperfusion (I/R) injury. Acute I/R injury, induced by 40 min of bilateral renal arterial occlusion, resulted in an increase in plasma creatinine that resolved within a week. Following 5 wk of recovery on a 0.4% NaCl diet, the pressure-natriuresis response was assessed in anesthetized rats in which the kidney was denervated and extrarenal hormones were administered intravenously. Increasing renal perfusion pressure (RPP) from 107 to 141 mmHg resulted in a fourfold increase in urine flow and sodium excretion in sham control rats. In comparison, pressure diuresis and natriuresis were significantly attenuated in post-I/R rats. In sham rats, glomerular filtration rate (GFR) averaged 1.6 +/- 0.2 mlxmin(-1)xg kidney weight(-1) and renal blood flow (RBF) averaged 7.8 +/- 0.7 mlxmin(-1)xg kidney weight(-1) at RPP of 129 mmHg. Renal cortical blood flow, measured by laser-Doppler flowmetry, was well autoregulated whereas medullary blood flow and renal interstitial hydrostatic pressure increased directly with elevated RPP in sham rats. In contrast, GFR and RBF were significantly reduced whereas medullary perfusion and interstitial pressure demonstrated an attenuated response to RPP in post-I/R rats. Further experiments demonstrated that conscious I/R rats develop hypertension when sodium intake is increased. The present data indicate that the pressure-natriuretic-diuretic response in I/R rats is blunted because of a decrease in GFR and RBF and the depressed pressure-dependent increase in medullary blood flow and interstitial pressure.

  16. Altered Activity and Expression of Cytosolic Peptidases in Colorectal Cancer

    PubMed Central

    Perez, Itxaro; Blanco, Lorena; Sanz, Begoña; Errarte, Peio; Ariz, Usue; Beitia, Maider; Fernández, Ainhoa; Loizate, Alberto; Candenas, M Luz; Pinto, Francisco M; Gil, Javier; López, José I.; Larrinaga, Gorka

    2015-01-01

    Background and Objective: The role of peptidases in carcinogenic processes and their potential usefulness as tumor markers in colorectal cancer (CRC) have been classically attributed to cell-surface enzymes. The objective of the present study was to analyze the activity and mRNA expression of three cytosolic peptidases in the CRC and to correlate the obtained results with classic histopathological parameters for tumor prognosis and survival. Methods: The activity and mRNA levels of puromycin-sensitive aminopeptidase (PSA), aminopeptidase B (APB) and pyroglutamyl-peptidase I (PGI) were measured by fluorimetric and quantitative RT-PCR methods in colorectal mucosa and tumor tissues and plasma samples from CRC patients (n=81). Results: 1) PSA and APB activity was higher in adenomas and carcinomas than in the uninvolved mucosa. 2) mRNA levels of PSA and PGI was lower in tumors. 3) PGI activity in CRC tissue correlated negatively with histological grade, tumor size and 5-year overall suvival of CRC patients. 4) Higher plasmatic APB activity was independently associated with better 5-year overall survival. Conclusions: Data suggest that cytosolic peptidases may be involved in colorectal carcinogenesis and point to the determination of this enzymes as a valuable method in the determination of CRC prognosis. PMID:26078706

  17. Renal NHE expression and activity in neonatal NHE3- and NHE8-null mice.

    PubMed

    Pirojsakul, Kwanchai; Gattineni, Jyothsna; Dwarakanath, Vangipuram; Baum, Michel

    2015-01-01

    Na(+)/H(+) exchanger (NHE)3 is the predominant NHE on the brush-border membrane of the proximal tubule in adult animals. NHE8 has been localized to the brush-border membrane of proximal tubules and is more highly expressed in neonates than in adult animals. However, the relative role of NHE8 in neonatal renal acidification is unclear. The present study examined if there was a compensatory increase in NHE3 in NHE8-null neonatal mice and whether there was a compensatory increase in NHE8 in NHE3-null neonatal mice. In addition, we examined whether wild-type, NHE3-null, and NHE8-null mice had an increase in NHE activity in response to metabolic acidosis. We found that at baseline, there was comparable renal NHE3 mRNA, total protein, and brush-border membrane protein abundance as in neonatal control and NHE8-null mice. There was comparable renal NHE8 mRNA, total protein, and brush-border membrane protein abundance in NHE3-null neonatal and control mice. Both NHE3- and NHE8-null mice had a comparable but lower rate of NHE activity than control mice. We next imposed metabolic acidosis in wild-type, NHE3-null, and NHE8-null mice. Acidemic NHE8-null mice had an increase in brush-border membrane vesicle NHE3 protein abundance and NHE activity compared with vehicle-treated mice. Likewise, NHE3-null mice had an increase in NHE8 brush-border membrane protein abundance and NHE activity in response to metabolic acidosis. In conclusion, both NHE3 and NHE8 likely play a role in neonatal acidification.

  18. Changes in expression of renal Oat1, Oat3 and Mrp2 in cisplatin-induced acute renal failure after treatment of JBP485 in rats

    SciTech Connect

    Liu, Tao; Meng, Qiang; Wang, Changyuan; Liu, Qi; Guo, Xinjin; Sun, Huijun; Peng, Jinyong; and others

    2012-11-01

    The purpose of this study is to investigate whether the effect of cyclo-trans-4-L-hydroxyprolyl-L-serine (JBP485) on acute renal failure (ARF) induced by cisplatin is related to change in expression of renal Oat1, Oat3 and Mrp2 in rats. JBP485 reduced creatinine, blood urea nitrogen (BUN) and indoxyl sulfate (IS) in plasma and malondialdehyde (MDA) in kidney, and recovered the glomerular filtration rate (GFR) and the activity of superoxide dismutase (SOD) in cisplatin-treated rats. The plasma concentration of PAH (para-aminohippurate) determined by LC–MS/MS was increased markedly after intravenous administration of cisplatin, whereas cumulative urinary excretion of PAH and the uptake of PAH in kidney slices were significantly decreased. qRT-PCR and Western-blot showed a decrease in mRNA and protein of Oat1 and Oat3, an increase in mRNA and protein of Mrp2 in cisplatin-treated rats, and an increase in IS (a uremic toxin) after co-treatment with JBP485. It indicated that JBP485 promoted urinary excretion of toxins by upregulating renal Mrp2. This therefore gives in part the explanation about the mechanism by which JBP485 improves ARF induced by cisplatin in rats. -- Highlights: ► Cisplatin induces acute renal failure (ARF). ► The expression of Oat1, Oat3 and Mrp2 were changed during ARF. ► The regulated expression of Oat1, Oat3 and Mrp2 is an adaptive protected response. ► JBP485 could facilitate the adaptive protective action.

  19. Relationship between expression of drug-resistance factors and drug sensitivity in normal human renal proximal tubular epithelial cells in comparison with renal cell carcinoma.

    PubMed

    Asakura, Tadashi; Imai, Akiko; Ohkubo-Uraoka, Noriko; Kuroda, Mayuko; Iidaka, Yoko; Uchida, Kumiko; Shibasaki, Toshiaki; Ohkawa, Kiyoshi

    2005-09-01

    The relationship between the expression level of putative drug resistance factors and sensitivity to anticancer drugs in human normal renal proximal tubule epithelial cells (RPTEC) and 3 kinds of renal cell carcinoma (RCC) cells, VMRC-RCW (RCW), OS-RC-2 (OS2), TUHR14TKB (14TKB), was examined. RPTEC exhibited high expression of P-glycoprotein (Pgp), gamma-glutamyl cysteine synthetase (gammaGCS) and cis-diamminedichloroplatinum (II) (CDDP) resistance-related gene 9 (CRR9), low expression of vacuolar ATPase (V-ATPase) and no expression of multidrug resistance-associated protein 1 (MRP1). 14TKB exhibited high expression of gammaGCS and CRR9, low expression of Pgp and V-ATPase, and no expression of MRP1. OS2 showed high expression of CRR9, low expression of Pgp, gammaGCS and MRP1, and no expression of V-ATPase. RCW exhibited high expression of Pgp, MRP1 and CRR9 and low expression of gammaGCS and V-ATPase. The level of expression of the resistance factors varied among the cells. GST activity and GST-pi expression level of each cell were correlated, and there were high levels in OS2 and RPTEC. When the cytotoxicity of anticancer drugs against each cell was measured at 96 h, the sensitivity to CDDP and Doxorubicin (DXR) in RPTEC and RCW was lower than that in the other cells. Sensitivity to DXR was enhanced by treatment with the Pgp inhibitor, Verapamil, in proportion to the Pgp expression level, and the sensitivity to CDDP was increased by the gammaGCS inhibitor, Buthionine sulfoximine, in proportion to the gammaGCS expression level (corresponding to GSH content). Although a significant increase in sensitivity to CDDP was not observed by treatment of RCC with the V-ATPase inhibitor, Bafilomycin, the sensitivity to DXR in Bafilomycin-treated cells increased about 2-fold. However, no relation between drug sensitivity and V-ATPase expression was observed. The features (such as degree of resistance) varied among the RCC cell lines manifesting many resistance factors or to

  20. Collagen XVIII/endostatin expression in experimental endotoxemic acute renal failure.

    PubMed

    Cichy, M C; Rocha, F G G; Tristão, V R; Pessoa, E A; Cenedeze, M A; Nürmberg Junior, R; Schor, N; Bellini, M H

    2009-12-01

    Acute renal failure (ARF) is a frequent complication of Gram-negative sepsis, with a high risk of mortality. Lipopolysaccharide (LPS)-induced ARF is associated with hemodynamic changes that are strongly influenced by the overproduction of nitric oxide (NO) through the cytokine-mediated up-regulation of inducible NO synthase. LPS-induced reductions in systemic vascular resistance paradoxically culminate in renal vasoconstriction. Collagen XVIII is an important component of the extracellular matrix expressed in basement membranes. Its degradation by matrix metalloproteases, cathepsins and elastases results in the formation of endostatin, claimed to have antiangiogenic activity and to be a prominent vasorelaxing agent. We evaluated the expression of endostatin/collagen XVIII in an endotoxemic ARF model. ARF was induced in C57BL/6 mice by intraperitoneal injection of LPS (10 mg/kg) followed by sacrifice 4 and 12 h later. Kidney tissue was the source of RNA and protein and the subject of histological analysis. As early as 4 h after LPS administration, blood urea, creatinine and NO levels were significantly increased compared to control. Endostatin/collagen XVIII mRNA levels were 0.71 times lower than sham-inoculated mice 4 h after LPS inoculation, returning to normal levels 12 h after LPS inoculation. Immunohistological examination revealed that acute injury caused by LPS leads to an increase of endostatin basement membrane staining in association with the decrease of CD31 endothelial basement membrane staining. These results indicate that in the early phase of endotoxemic ARF the endostatin levels were not regulated by gene expression, but by the metabolism of collagen XVIII.

  1. Altered expression of ALDP in X-linked adrenoleukodystrophy.

    PubMed

    Watkins, P A; Gould, S J; Smith, M A; Braiterman, L T; Wei, H M; Kok, F; Moser, A B; Moser, H W; Smith, K D

    1995-08-01

    X-linked adrenoleukodystrophy (ALD) is a neurodegenerative disorder with variable phenotypic expression that is characterized by elevated plasma and tissue levels of very long-chain fatty acids. However, the product of the gene defective in ALD (ALDP) is a membrane transporter of the ATP-binding cassette family of proteins and is not related to enzymes known to activate or oxidize fatty acids. We generated an antibody that specifically recognizes the C-terminal 18 amino acids of ALDP and can detect ALDP by indirect immunofluorescence. To better understand the mechanism by which mutations in ALDP lead to disease, we used this antibody to examine the subcellular distribution and relative abundance of ALDP in skin fibroblasts from normal individuals and ALD patients. Punctate immunoreactive material typical of fibroblast peroxisomes was observed in cells from seven normal controls and eight non-ALD patients. Of 35 ALD patients tested, 17 had the childhood-onset cerebral form of the disease, 13 had the milder adult phenotype adrenomyeloneuropathy, 3 had adrenal insufficiency only, and 2 were affected fetuses. More than two-thirds (69%) of all patients studied showed no punctate immunoreactive material. There was no correlation between the immunofluorescence pattern and clinical phenotype. We determined the mutation in the ALD gene in 15 of these patients. Patients with either a deletion or frameshift mutation lacked ALDP immunoreactivity, as expected. Four of 11 patients with missense mutations were also immunonegative, indicating that these mutations affected the stability or localization of ALDP. In the seven immunopositive patients with missense mutations, correlation of the location and nature of the amino acid substitution may provide new insights into the function of this peroxisomal membrane protein. Furthermore, the study of female relatives of immunonegative ALD probands may aid in the assessment of heterozygote status.

  2. Altered expression of ALDP in X-linked adrenoleukodystrophy

    SciTech Connect

    Watkins, P.A.; Smith, M.A.; Moser, H.W.

    1995-08-01

    X-linked adrenoleukodystrophy (ALD) is a neurodegenerative disorder with variable phenotypic expression that is characterized by elevated plasma and tissue levels of very long-chain fatty acids. However, the product of the gene defective in ALD (ALDP) is a membrane transporter of the ATP-binding cassette family of proteins and is not related to enzymes known to activate or oxidize fatty acids. We generated an antibody that specifically recognizes the C-terminal 18 amino acids of ALDP and can detect ALDP by indirect immunofluorecence. To better understand the mechanism by which mutations in ALDP lead to disease, we used this antibody to examine the subcellular distribution and relative abundance of ALDP in skin fibroblasts from normal individuals and ALD patients. Punctate immunoreactive material typical of fibroblast peroxisomes was observed in cells from seven normal controls and eight non-ALD patients. Of 35 ALD patients tested, 17 had the childhood-onset cerebral form of the disease, 13 had the milder adult phenotype adrenomyeloneuropathy, 3 had adrenal insufficiency only, and 2 were affected fetuses. More than two-thirds (69%) of all patients studied showed no punctate immunoreactive material. There was no correlation between the immunofluorescence pattern and clinical phenotype. We determined the mutation in the ALD gene in 15 of these patients. Patients with either a deletion or frameshift mutation lacked ALDP immunoreactivity, as expected. Four of 11 patients with misense mutations were also immunonegative, indicating that these mutations affected the stability or localization of ALDP. In the seven immunopositive patients with missense mutations, correlation of the location and nature of the amino acid substitution may provide new insights into the function of this peroxisomal membrane protein. Furthermore, the study of female relatives of immunonegative ALD probands may aid in the assessment of heterozygote status. 32 refs., 4 figs., 3 tabs.

  3. Altered expression of ALDP in X-linked adrenoleukodystrophy.

    PubMed Central

    Watkins, P A; Gould, S J; Smith, M A; Braiterman, L T; Wei, H M; Kok, F; Moser, A B; Moser, H W; Smith, K D

    1995-01-01

    X-linked adrenoleukodystrophy (ALD) is a neurodegenerative disorder with variable phenotypic expression that is characterized by elevated plasma and tissue levels of very long-chain fatty acids. However, the product of the gene defective in ALD (ALDP) is a membrane transporter of the ATP-binding cassette family of proteins and is not related to enzymes known to activate or oxidize fatty acids. We generated an antibody that specifically recognizes the C-terminal 18 amino acids of ALDP and can detect ALDP by indirect immunofluorescence. To better understand the mechanism by which mutations in ALDP lead to disease, we used this antibody to examine the subcellular distribution and relative abundance of ALDP in skin fibroblasts from normal individuals and ALD patients. Punctate immunoreactive material typical of fibroblast peroxisomes was observed in cells from seven normal controls and eight non-ALD patients. Of 35 ALD patients tested, 17 had the childhood-onset cerebral form of the disease, 13 had the milder adult phenotype adrenomyeloneuropathy, 3 had adrenal insufficiency only, and 2 were affected fetuses. More than two-thirds (69%) of all patients studied showed no punctate immunoreactive material. There was no correlation between the immunofluorescence pattern and clinical phenotype. We determined the mutation in the ALD gene in 15 of these patients. Patients with either a deletion or frameshift mutation lacked ALDP immunoreactivity, as expected. Four of 11 patients with missense mutations were also immunonegative, indicating that these mutations affected the stability or localization of ALDP. In the seven immunopositive patients with missense mutations, correlation of the location and nature of the amino acid substitution may provide new insights into the function of this peroxisomal membrane protein. Furthermore, the study of female relatives of immunonegative ALD probands may aid in the assessment of heterozygote status. Images Figure 1 Figure 2 Figure 3 Figure

  4. Febuxostat Prevents Renal Interstitial Fibrosis by the Activation of BMP-7 Signaling and Inhibition of USAG-1 Expression in Rats.

    PubMed

    Cao, Jing; Li, Yong; Peng, Yingxian; Zhang, Yaqian; Li, Huanhuan; Li, Ran; Xia, Anzhou

    2015-01-01

    Renal interstitial fibrosis (RIF) is a common pathology associated with end-stage renal diseases. The activation of bone morphogenetic protein-7 (BMP-7)-Smad1/5/8 pathway seems to alleviate RIF. Uterine sensitization-associated gene-1 (USAG-1), a kidney-specific BMPs antagonist, is associated with the development and prognosis of several renal diseases. Febuxostat is a xanthine oxidase inhibitor that can attenuate the renal dysfunction of patients. The purpose of this study was to investigate the effects of febuxostat on renal fibrosis and to clarify the mechanisms underlying these effects. Rats were randomly divided into 6 groups termed a sham-operated group, a unilateral ureteral obstruction (UUO) group, 3 doses of febuxostat groups (low, intermediate and high doses) and a sham group treated with high-dose febuxostat. After 14 days, renal function, relative kidney weight, accumulation of glycogen and collagens were examined by different methods. Expression of α-SMA, transforming growth factor-β1 (TGF-β1), BMP-7 and USAG-1 was detected by western blotting and RT-PCR, respectively. The phosphorylation level of Smad1/5/8 was also quantified by western blotting. The renal function was declined, and large amounts of glycogen and collagens were deposited in the kidneys of UUO rats compared with the rats in the sham group. Besides, expression of α-SMA and USAG-1 in these kidneys was elevated, and the TGF-β1 was also activated, while the BMP-7-Smad1/5/8 pathway was inhibited. Febuxostat reversed the changes stated earlier, exhibiting protective effects on RIF induced by UUO. Febuxostat was able to attenuate RIF caused by UUO, which was associated with the activation of BMP-7-Smad1/5/8 pathway and the inhibition of USAG-1 expression in the kidneys of UUO rats. © 2015 S. Karger AG, Basel.

  5. Renal disease in pregnancy.

    PubMed

    Thorsen, Martha S; Poole, Judith H

    2002-03-01

    Anatomic and physiologic adaptations within the renal system during pregnancy are significant. Alterations are seen in renal blood flow and glomerular filtration, resulting in changes in normal renal laboratory values. When these normal renal adaptations are coupled with pregnancy-induced complications or preexisting renal dysfunction, the woman may demonstrate a reduction of renal function leading to an increased risk of perinatal morbidity and mortality. This article will review normal pregnancy adaptations of the renal system and discuss common pregnancy-related renal complications.

  6. Functional expression of pig renal organic anion transporter 3 (pOAT3).

    PubMed

    Hagos, Yohannes; Braun, Isabella M; Krick, Wolfgang; Burckhardt, Gerhard; Bahn, Andrew

    2005-05-01

    With the cloning of pig renal organic anion transporter 1 (pOAT1) (Biochimie 84 (2002) 1219) we set up a model system for comparative studies of cloned and natively isolated membrane located transport proteins. Meanwhile, another transport protein involved in p-aminohippurate (PAH) uptake on the basolateral side of the proximal tubule cells was identified, designated organic anion transporter 3 (OAT3). To explore the contribution of pOAT1 to the PAH clearance in comparison to OAT3, it was the aim of this study to extend our model by cloning of the pig ortholog of OAT3. Sequence comparisons of human organic anion transporter 3 (hOAT3) with the expressed sequence tag (EST) database revealed a clone and partial sequence of the pig renal organic anion transporter 3 (pOAT3) ortholog. Sequencing of the entire open reading frame resulted in a protein of 543 amino acid residues encoded by 1632 base pairs (EMBL Acc. No. AJ587003). It showed high homologies of 81%, 80%, 76%, and 77% to the human, rabbit, rat, and mouse OAT3, respectively. A functional characterization of pOAT3 in Xenopus laevis oocytes yielded an apparent Km (Kt) for [3H]estrone sulfate of 7.8 +/- 1.3 microM. Moreover, pOAT3 mediated [3H]estrone sulfate uptake was almost abolished by 0.5 mM of glutarate, dehydroepiandosterone sulfate, or probenecid consistent with the hallmarks of OAT3 function.

  7. VHL-dependent regulation of a β-dystroglycan glycoform and glycogene expression in renal cancer

    PubMed Central

    AGGELIS, VASSILIS; CRAVEN, RACHEL A.; PENG, JIANHE; HARNDEN, PATRICIA; SCHAFFER, LANA; HERNANDEZ, GILBERTO E.; HEAD, STEVEN R.; MAHER, EAMONN R.; TONGE, ROBERT; SELBY, PETER J.; BANKS, ROSAMONDE E.

    2013-01-01

    Identification of novel biomarkers and targets in renal cell carcinoma (RCC) remains a priority and one cellular compartment that is a rich potential source of such molecules is the plasma membrane. A shotgun proteomic analysis of cell surface proteins enriched by cell surface biotinylation and avidin affinity chromatography was explored using the UMRC2- renal cancer cell line, which lacks von Hippel-Lindau (VHL) tumour suppressor gene function, to determine whether proteins of interest could be detected. Of the 814 proteins identified ∼22% were plasma membrane or membrane-associated, including several with known associations with cancer. This included β-dystroglycan, the transmembrane subunit of the DAG1 gene product. VHL-dependent changes in the form of β-dystroglycan were detected in UMRC2−/+VHL transfectants. Deglycosylation experiments showed that this was due to differential sialylation. Analysis of normal kidney cortex and conventional RCC tissues showed that a similar change also occurred in vivo. Investigation of the expression of genes involved in glycosylation in UMRC2−/+VHL cells using a focussed microarray highlighted a number of enzymes involved in sialylation; upregulation of bifunctional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) was validated in UMRC2− cells compared with their +VHL counterparts and also found in conventional RCC tissue. These results implicate VHL in the regulation of glycosylation and raise interesting questions regarding the extent and importance of such changes in RCC. PMID:23970118

  8. Total Sulfur Amino Acid Requirements Are Not Altered in Children with Chronic Renal Insufficiency, but Minimum Methionine Needs Are Increased.

    PubMed

    Elango, Rajavel; Humayun, Mohammad A; Turner, Justine M; Rafii, Mahroukh; Langos, Veronika; Ball, Ronald O; Pencharz, Paul B

    2017-08-30

    Background: The total sulfur amino acid (TSAA) and minimum Met requirements have been previously determined in healthy children. TSAA metabolism is altered in kidney disease. Whether TSAA requirements are altered in children with chronic renal insufficiency (CRI) is unknown.Objective: We sought to determine the TSAA (Met in the absence of Cys) requirements and minimum Met (in the presence of excess Cys) requirements in children with CRI.Methods: Five children (4 boys, 1 girl) aged 10 ± 2.6 y with CRI were randomly assigned to receive graded intakes of Met (0, 5, 10, 15, 25, and 35 mg ⋅ kg(-1) ⋅ d(-1)) with no Cys in the diet. Four of the children (3 boys, 1 girl) were then randomly assigned to receive graded dietary intakes of Met (0, 2.5, 5, 7.5, 10, and 15 mg ⋅ kg(-1) ⋅ d(-1)) with 21 mg ⋅ kg(-1) ⋅ d(-1) Cys. The mean TSAA and minimum Met requirements were determined by measuring the oxidation of l-[1-(13)C]Phe to (13)CO2 (F(13)CO2). A 2-phase linear-regression crossover analysis of the F(13)CO2 data identified a breakpoint at minimal F(13)CO2 Urine samples collected from all study days and from previous studies of healthy children were measured for sulfur metabolites.Results: The mean and population-safe (upper 95% CI) intakes of TSAA and minimum Met in children with CRI were determined to be 12.6 and 15.9 mg ⋅ kg(-1) ⋅ d(-1) and 7.3 and 10.9 mg ⋅ kg(-1) ⋅ d(-1), respectively. In healthy school-aged children the mean and upper 95% CI intakes of TSAA and minimum Met were determined to be 12.9 and 17.2 mg ⋅ kg(-1) ⋅ d(-1) and 5.8 and 7.3 mg ⋅ kg(-1) ⋅ d(-1), respectively. A comparison of the minimum Met requirements between healthy children and children with CRI indicated significant (P < 0.05) differences.Conclusion: These results suggest that children with CRI have a similar mean and population-safe TSAA to that of healthy children, suggesting adequate Cys synthesis via transsulfuration, but higher minimum Met requirement, suggesting

  9. HLA-E expression and its clinical relevance in human renal cell carcinoma

    PubMed Central

    Seliger, Barbara; Jasinski-Bergner, Simon; Quandt, Dagmar; Stoehr, Christine; Bukur, Juergen; Wach, Sven; Legal, Wolfgang; Taubert, Helge; Wullich, Bernd; Hartmann, Arndt

    2016-01-01

    The non-classical human leukocyte antigen E (HLA-E) expression is frequently overexpressed in tumor diseases, transplants and virus-infected cells and represents an immunomodulatory molecule by binding to the receptors CD94/NKG2A, -B and –C on NK and T cells. Due to its immune suppressive features HLA-E expression might represent an important mechanism of tumors to escape immune surveillance. While an aberrant expression of the non-classical HLA-G antigen in human renal cell carcinoma (RCC) has been demonstrated to be associated with a worse outcome of patients and reduced sensitivity to immune effector cell-mediated cytotoxicity, the expression and function of HLA-E has not yet been analyzed in this tumor entity. Higher levels of HLA-E transcripts were detected in all RCC cell lines and tumor lesions, which were tested in comparison to normal kidney epithelium. Immunohistochemical staining of a tissue microarray (TMA) using the HLA-E-specific monoclonal antibody TFL-033 recognizing the cytoplasmic HLA-E α-chain as monomer revealed a heterogeneous HLA-E expression in RCC lesions with the highest frequency in chromophobe RCC when compared to other RCC subtypes. HLA-E expression did not correlate with the frequency of CD3+, CD4+, CD8+ and FoxP3+ immune cell infiltrations, but showed an inverse correlation with infiltrating CD56+ cells. In contrast to HLA-G, HLA-E expression in RCCs was not statistically significant associated with a decreased disease specific survival. These data suggest that HLA-E overexpression frequently occurs in RCC and correlates with reduced immunogenicity. PMID:27589686

  10. Inverse relationship between insulin receptor expression and progression in renal cell carcinoma.

    PubMed

    Takahashi, Makoto; Inoue, Takamitsu; Huang, Mingguo; Numakura, Kazuyuki; Tsuruta, Hiroshi; Saito, Mitsuru; Maeno, Atsushi; Nakamura, Eijiro; Narita, Shintaro; Tsuchiya, Norihiko; Habuchi, Tomonori

    2017-05-01

    We investigated the relationship among serum insulin level, insulin receptor (IR) expression in renal cell carcinoma (RCC), and outcomes in patients with RCC who underwent nephrectomy. We also explored the role of insulin signaling in RCC progression in a murine RCC allograft RENCA model using metformin to treat hyperinsulinemia induced by a high-carbohydrate diet. Clinically, the IR expression level in RCC tissue was significantly lower in patients with tumor stage pT2-4 and/or distant metastases. The IR expression level in RCC tissue was significantly lower in patients with preoperative serum C-peptide levels greater than or equal to the median than in patients with levels less than the median. High IR expression level was significantly associated with better disease-free and overall survival after nephrectomy. The IR expression level was significantly higher in murine subcutaneous flank tumors of the low-carbohydrate diet group and high-carbohydrate diet plus metformin group than of the high‑carbohydrate diet group. In vivo progression of murine tumors was not significantly enhanced by hyperinsulinemia induced by a high-carbohydrate diet and was significantly inhibited by metformin in both the low- and high‑carbohydrate diet groups. IR expression in RCC tissue was inversely associated with cancer progression in the clinical and murine experimental model studies. The clinical and murine allograft model study results suggested that hyperinsulinemia does not promote RCC progression. Decreased IR expression in high‑stage RCC tumors with poor prognosis may be the result of downregulation induced by the host's hyperinsulinemia.

  11. Gene expression-based biomarkers for discriminating early and late stage of clear cell renal cancer

    PubMed Central

    Bhalla, Sherry; Chaudhary, Kumardeep; Kumar, Ritesh; Sehgal, Manika; Kaur, Harpreet; Sharma, Suresh; Raghava, Gajendra P. S.

    2017-01-01

    In this study, an attempt has been made to identify expression-based gene biomarkers that can discriminate early and late stage of clear cell renal cell carcinoma (ccRCC) patients. We have analyzed the gene expression of 523 samples to identify genes that are differentially expressed in the early and late stage of ccRCC. First, a threshold-based method has been developed, which attained a maximum accuracy of 71.12% with ROC 0.67 using single gene NR3C2. To improve the performance of threshold-based method, we combined two or more genes and achieved maximum accuracy of 70.19% with ROC of 0.74 using eight genes on the validation dataset. These eight genes include four underexpressed (NR3C2, ENAM, DNASE1L3, FRMPD2) and four overexpressed (PLEKHA9, MAP6D1, SMPD4, C11orf73) genes in the late stage of ccRCC. Second, models were developed using state-of-art techniques and achieved maximum accuracy of 72.64% and 0.81 ROC using 64 genes on validation dataset. Similar accuracy was obtained on 38 genes selected from subset of genes, involved in cancer hallmark biological processes. Our analysis further implied a need to develop gender-specific models for stage classification. A web server, CancerCSP, has been developed to predict stage of ccRCC using gene expression data derived from RNAseq experiments. PMID:28349958

  12. Expression of the PTTG1 oncogene is associated with aggressive clear cell renal cell carcinoma.

    PubMed

    Wondergem, Bill; Zhang, Zhongfa; Huang, Dachuan; Ong, Choon Kiat; Koeman, Julie; Hof, David Van't; Petillo, David; Ooi, Aikseng; Anema, John; Lane, Brian; Kahnoski, Richard J; Furge, Kyle A; Teh, Bin Tean

    2012-09-01

    The pituitary tumor transforming gene (PTTG1) is a recently discovered oncogene implicated in malignant progression of both endocrine and nonendocrine malignancies. Clear cell renal cell carcinoma (ccRCC) is cytogenetically characterized by chromosome 3p deletions that harbor the ccRCC-related von Hippel-Lindau, PBRM1, BAP1, and SETD2 tumor suppressor genes, along with chromosome 5q amplifications where the significance has been unclear. PTTG1 localizes to the chromosome 5q region where amplifications occur in ccRCC. In this study, we report a functional role for PTTG1 in ccRCC tumorigenesis. PTTG1 was amplified in ccRCC, overexpressed in tumor tissue, and associated with high-grade tumor cells and poor patient prognosis. In preclinical models, PTTG1 ablation reduced tumorigenesis and invasion. An analysis of gene expression affected by PTTG1 indicated an association with invasive and metastatic disease. PTTG1-dependent expression of the RhoGEF proto-oncogene ECT2 was observed in a number of ccRCC cell lines. Moreover, ECT2 expression correlated with PTTG1 expression and poor clinical features. Together, our findings reveal features of PTTG1 that are consistent with its identification of an oncogene amplified on chromsome 5q in ccRCC, where it may offer a novel therapeutic target of pathologic significance in this disease. ©2012 AACR.

  13. Perinatal Taurine Imbalance Followed by High Sugar Intake Alters the Effects of Estrogen on Renal Excretory Function in Adult Female Rats.

    PubMed

    Roysommuti, Sanya; Lerdweeraphon, Wichaporn; Michael Wyss, J

    2017-01-01

    This study tests the hypothesis that perinatal taurine imbalance impairs renal function in adult female rats via alterations in estrogen activity. Female Sprague-Dawley rats were fed normal rat chow and water containing 3% beta-alanine (TD), 3% taurine (TS) or water alone (C) from conception until weaning. Then, female offspring received normal rat chow and water with (CG, TDG, TSG) or without (CW, TDW, TSW) 5% glucose. At 7-8 weeks of age, renal function at rest and after acute saline load was tested in conscious, restrained female rats treated with non-selective estrogen receptor blocker tamoxifen for a week. Compared to control, TD or TS did not affect mean arterial pressure (MAP). Tamoxifen significantly increased resting MAP only in TDG compared to TDW groups. Although renal blood flow did not significantly differ among the groups, renal vascular resistance increased in TSG compared to CW, CG, and TSW groups. Glomerular filtration rate and water and sodium excretion were not significantly different among the groups. Compared to CW, saline load significantly depressed fractional water excretion in CG, TDW, TDG, and TSW, and fractional sodium excretion in CG, TDW, TDG, TSW, and the TSG groups. Potassium excretion was not significantly different among the corresponding groups. Fractional potassium excretion significantly increased in TDW compared to CG and in TSG compared to CG and TSW groups. These differences were abolished by tamoxifen treatment. These data indicate that in adult female rats, perinatal taurine imbalance, particularly followed by high sugar intake, alters renal function via an estrogenic mechanism.

  14. Expression and functional activity of bitter taste receptors in primary renal tubular epithelial cells and M-1 cells.

    PubMed

    Liang, Jie; Chen, Fuxue; Gu, Fu; Liu, Xin; Li, Feng; Du, Dongshu

    2017-04-01

    The kidney is essential in the maintenance of in vivo homeostasis by body fluid and electrolyte conservation and metabolic waste removal. Previously, we reported the expression of a novel G protein family (Tas2rs), which includes bitter taste receptors, in the kidney tubule system, including the nephrons and the collecting duct system. Bitter taste receptors could affect kidney function via Ca(2+) intake. Alkaloids such as phenylthiocarbamide stimulate these receptors and cause an increase in Ca(2+) intake. In this study, we determined the expression of bitter taste receptors in the immature kidney and small intestine and in primary renal epithelial cells and M-1 (collecting tubule cell line) cells, by using QPCR and immunostaining. We found no expression of bitter taste receptors in the immature kidney and small intestine several days after birth; the relative abundance of Tas2rs transcripts varied depending on the developmental stage. Tas2rs were expressed in primary renal epithelial cells and M-1 cells. The traditional Chinese medicinal plant extracts phellodendrine and coptisine caused a rapid rise in intracellular Ca(2+) concentration, which was inhibited by the phospholipase C (PLC) inhibitor U-73122. Thus, phellodendrine and coptisine could change the physiological status of renal cells in vitro by mediation of bitter taste receptors in a PLC-dependent manner. Our results provide new insights on the expression and role of bitter taste receptors in renal development and function.

  15. Steviol stabilizes polycystin 1 expression and promotes lysosomal degradation of CFTR and β-catenin proteins in renal epithelial cells.

    PubMed

    Yuajit, Chaowalit; Muanprasat, Chatchai; Homvisasevongsa, Sureeporn; Chatsudthipong, Varanuj

    2017-08-09

    Malfunction of polycystin 1 (PC1) is linked to abnormally high epithelial cell proliferation and fluid secretion, eventually leading to renal cyst development and declined renal function as found in autosomal dominant polycystic kidney disease (ADPKD). Currently, there is no effective therapy for ADPKD. Recent studies report PC1 regulates CFTR chloride channels and β-catenin levels in normal renal epithelial cells. Concurrently, our previous study found steviol retarded renal cyst enlargement in an in vitro and in an in vivo models by reducing CFTR expression and activity. Therefore, a potential relationship between steviol and PC1 is worthy of exploration. The present study was aimed to determine the effect of steviol on PC1, CFTR, and β-catenin levels in renal epithelial cells with defective PC1 biogenesis and expression (Prkcsh(-/-) cell) and postnatal Pkd1 homozygous cell (Pkd1(-/-) cells). Using western blot analysis, it was found that steviol treatment at 100μM for 24-48h substantially enhanced and stabilized PC1 C-terminal expression, while decreasing CFTR and β-catenin protein expression in both Prkcsh(-/-) and Pkd1(-/-) cells. In addition, steviol promoted LAMP2 expression, a lysosomal enzyme marker. Interestingly, hydroxychloroquine (a lysosome inhibitor) treatment abolished steviol's effect in reducing CFTR and β-catenin protein expression. Taken together, these findings suggest steviol slows cyst progression in cells and animal models of PKD, in part, by enhancing and stabilizing PC1 protein expression as well as by promoting lysosomal degradation of CFTR and β-catenin. Therefore, steviol may represent a promising compound for treatment of polycystic kidney disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Sodium depletion enhances renal expression of (pro)renin receptor via cyclic GMP-protein kinase G signaling pathway.

    PubMed

    Huang, Jiqian; Siragy, Helmy M

    2012-02-01

    (Pro)renin receptor (PRR) is expressed in renal vasculature, glomeruli, and tubules. The physiological regulation of this receptor is not well established. We hypothesized that sodium depletion increases PRR expression through cGMP- protein kinase G (PKG) signaling pathway. Renal PRR expressions were evaluated in Sprague-Dawley rats on normal sodium or low-sodium diet (LS) and in cultured rat proximal tubular cells and mouse renal inner medullary collecting duct cells exposed to LS concentration. LS augmented PRR expression in renal glomeruli, proximal tubules, distal tubules, and collecting ducts. LS also increased cGMP production and PKG activity. In cells exposed to normal sodium, cGMP analog increased PKG activity and upregulated PRR expression. In cells exposed to LS, blockade of guanylyl cyclase with 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one decreased PKG activity and downregulated PRR expression. PKG inhibition decreased phosphatase protein phosphatase 2A activity; suppressed LS-mediated phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, c-Jun, and nuclear factor-κB p65; and attenuated LS-mediated PRR upregulation. LS also enhanced DNA binding of cAMP response element binding protein 1 to cAMP response elements, nuclear factor-κB p65 to nuclear factor-κB elements, and c-Jun to activator protein 1 elements in PRR promoter in proximal tubular cells. We conclude that sodium depletion upregulates renal PRR expression via the cGMP-PKG signaling pathway by enhancing binding of cAMP response element binding protein 1, nuclear factor-κB p65, and c-Jun to PRR promotor.

  17. Expression and activity of angiotensin-regulating enzymes is associated with prognostic outcome in clear cell renal cell carcinoma patients.

    PubMed

    Errarte, Peio; Beitia, Maider; Perez, Itxaro; Manterola, Lorea; Lawrie, Charles H; Solano-Iturri, Jon Danel; Calvete-Candenas, Julio; Unda, Miguel; López, José I; Larrinaga, Gorka

    2017-01-01

    The discovery of the intrarenal renin-angiotensin system (iRAS), which regulates angiogenesis, cell differentiation and proliferation, has opened new perspectives in the knowledge of kidney carcinogenesis. In this study we analyzed the immunohistochemical expression and fluorimetric activity of four key peptidases of iRAS in tumor tissue (n = 144) and serum samples (n = 128) from patients with renal neoplasms. Neutral endopeptidase (NEP/CD10), Angiotensin-converting enzyme-2 (ACE2), and aminopeptidase A (APA) were expressed in tumor cells whilst Angiotensin-converting enzyme (ACE) was expressed in the endothelial cells of intratumor blood vessels. The expression of ACE, ACE2 and NEP/CD10 was highest in clear cell renal cell carcinoma (CCRCC) and papillary renal cell carcinoma (PRCC). The expression of these enzymes correlated with CCRCC aggressiveness. In addition, NEP/CD10 correlated with 15-year overall survival. On the other hand, APA expression was decreased in CCRCC with higher grade and stage. The loss of expression of APA independently correlated with a worse 15-year overall survival. Serum activity of ACE2, NEP/CD10 and APA was significantly higher in renal tumor patients than in healthy subjects. Serum ACE activity was lower in high grade and metastatic CCRCC patients, and NEP/CD10 activity was negatively correlated with UISS (UCLA Integrated Staging System) and SSIGN (Mayo Clinic stage, size, grade and necrosis model) scores and with overall survival of CCRCC patients. These results suggest a metabolic imbalance of iRAS in renal tumors. This finding should be taken into account in the search of new diagnostic, prognostic and therapeutic tools for this disease.

  18. Computational identification of altered metabolism using gene expression and metabolic pathways.

    PubMed

    Nam, Hojung; Lee, Jinwon; Lee, Doheon

    2009-07-01

    Understanding altered metabolism is an important issue because altered metabolism is often revealed as a cause or an effect in pathogenesis. It has also been shown to be an important factor in the manipulation of an organism's metabolism in metabolic engineering. Unfortunately, it is not yet possible to measure the concentration levels of all metabolites in the genome-wide scale of a metabolic network; consequently, a method that infers the alteration of metabolism is beneficial. The present study proposes a computational method that identifies genome-wide altered metabolism by analyzing functional units of KEGG pathways. As control of a metabolic pathway is accomplished by altering the activity of at least one rate-determining step enzyme, not all gene expressions of enzymes in the pathway demonstrate significant changes even if the pathway is altered. Therefore, we measure the alteration levels of a metabolic pathway by selectively observing expression levels of significantly changed genes in a pathway. The proposed method was applied to two strains of Saccharomyces cerevisiae gene expression profiles measured in very high-gravity (VHG) fermentation. The method identified altered metabolic pathways whose properties are related to ethanol and osmotic stress responses which had been known to be observed in VHG fermentation because of the high sugar concentration in growth media and high ethanol concentration in fermentation products. With the identified altered pathways, the proposed method achieved best accuracy and sensitivity rates for the Red Star (RS) strain compared to other three related studies (gene-set enrichment analysis (GSEA), significance analysis of microarray to gene set (SAM-GS), reporter metabolite), and for the CEN.PK 113-7D (CEN) strain, the proposed method and the GSEA method showed comparably similar performances.

  19. Subtyping of renal cortical neoplasms in fine needle aspiration biopsies using a decision tree based on genomic alterations detected by fluorescence in situ hybridization

    PubMed Central

    Gowrishankar, Banumathy; Cahill, Lynnette; Arndt, Alexandra E; Al-Ahmadie, Hikmat; Lin, Oscar; Chadalavada, Kalyani; Chaganti, Seeta; Nanjangud, Gouri J; Murty, Vundavalli V; Chaganti, Raju S K; Reuter, Victor E; Houldsworth, Jane

    2014-01-01

    Objectives To improve the overall accuracy of diagnosis in needle biopsies of renal masses, especially small renal masses (SRMs), using fluorescence in situ hybridization (FISH), and to develop a renal cortical neoplasm classification decision tree based on genomic alterations detected by FISH. Patients and Methods Ex vivo fine needle aspiration biopsies of 122 resected renal cortical neoplasms were subjected to FISH using a series of seven-probe sets to assess gain or loss of 10 chromosomes and rearrangement of the 11q13 locus. Using specimen (nephrectomy)-histology as the ‘gold standard’, a genomic aberration-based decision tree was generated to classify specimens. The diagnostic potential of the decision tree was assessed by comparing the FISH-based classification and biopsy histology with specimen histology. Results Of the 114 biopsies diagnostic by either method, a higher diagnostic yield was achieved by FISH (92 and 96%) than histology alone (82 and 84%) in the 65 biopsies from SRMs (<4 cm) and 49 from larger masses, respectively. An optimized decision tree was constructed based on aberrations detected in eight chromosomes, by which the maximum concordance of classification achieved by FISH was 79%, irrespective of mass size. In SRMs, the overall sensitivity of diagnosis by FISH compared with histopathology was higher for benign oncocytoma, was similar for the chromophobe renal cell carcinoma subtype, and was lower for clear-cell and papillary subtypes. The diagnostic accuracy of classification of needle biopsy specimens (from SRMs) increased from 80% obtained by histology alone to 94% when combining histology and FISH. Conclusion The present study suggests that a novel FISH assay developed by us has a role to play in assisting in the yield and accuracy of diagnosis of renal cortical neoplasms in needle biopsies in particular, and can help guide the clinical management of patients with SRMs that were non-diagnostic by histology. PMID:24467611

  20. Cigarette smoke alters IL-33 expression and release in airway epithelial cells.

    PubMed

    Pace, Elisabetta; Di Sano, Caterina; Sciarrino, Serafina; Scafidi, Valeria; Ferraro, Maria; Chiappara, Giuseppina; Siena, Liboria; Gangemi, Sebastiano; Vitulo, Patrizio; Giarratano, Antonino; Gjomarkaj, Mark

    2014-09-01

    Airway epithelium is a regulator of innate immune responses to a variety of insults including cigarette smoke. Cigarette smoke alters the expression and the activation of Toll Like Receptor 4 (TLR4), an innate immunity receptor. IL-33, an alarmin, increases innate immunity Th2 responses. The aims of this study were to explore whether mini-bronchoalveolar lavage (mini-BAL) or sera from smokers have altered concentrations of IL-33 and whether cigarette smoke extracts (CSE) alter both intracellular expression (mRNA and protein) and release of IL-33 in bronchial epithelial cells. The role of TLR4 in the expression of IL-33 was also explored. Mini-BALs, but not sera, from smokers show reduced concentrations of IL-33. The expression of IL-33 was increased also in bronchial epithelium from smokers. 20% CSE reduced IL-33 release but increased the mRNA for IL-33 by real time PCR and the intracellular expression of IL-33 in bronchial epithelial cells as confirmed by flow cytometry, immunocytochemistry and western blot analysis. The effect of CSE on IL-33 expression was also observed in primary bronchial epithelial cells. IL-33 expression was mainly concentrated within the cytoplasm of the cells. LPS, an agonist of TLR4, reduced IL-33 expression, and an inhibitor of TLR4 increased the intracellular expression of IL-33. In conclusion, the release of IL-33 is tightly controlled and, in smokers, an altered activation of TLR4 may lead to an increased intracellular expression of IL-33 with a limited IL-33 release.