Sample records for altered renal function

  1. Renal dopamine containing nerves. What is their functional significance?

    PubMed

    DiBona, G F

    1990-06-01

    Biochemical and morphological studies indicate that there are nerves within the kidney that contain dopamine and that various structures within the kidney contain dopamine receptors. However, the functional significance of these renal dopamine containing nerves in relation to renal dopamine receptors is unknown. The functional significance could be defined by demonstrating that an alteration in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves is dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors. Thus, the hypothesis becomes: reflex or electrical activation of efferent renal nerves causes alterations in renal function (eg, renal blood flow, water and solute handling) that are inhibited by specific and selective dopamine receptor antagonists. As reviewed herein, the published experimental data do not support the hypothesis. Therefore, the view that alterations in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves are dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors remains unproven.

  2. Functions of the Renal Nerves.

    ERIC Educational Resources Information Center

    Koepke, John P.; DiBona, Gerald F.

    1985-01-01

    Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…

  3. High sodium intake increases blood pressure and alters renal function in intrauterine growth-retarded rats.

    PubMed

    Sanders, Marijke W; Fazzi, Gregorio E; Janssen, Ger M J; Blanco, Carlos E; De Mey, Jo G R

    2005-07-01

    A suboptimal fetal environment increases the risk to develop cardiovascular disease in the adult. We reported previously that intrauterine stress in response to reduced uteroplacental blood flow in the pregnant rat limits fetal growth and compromises renal development, leading to an altered renal function in the adult offspring. Here we tested the hypothesis that high dietary sodium intake in rats with impaired renal development attributable to intrauterine stress, results in increased blood pressure, altered renal function, and organ damage. In rats, intrauterine stress was induced by bilateral ligation of the uterine arteries at day 17 of pregnancy. At the age of 12 weeks, the offspring was given high-sodium drinking water (2% sodium chloride). At the age of 16 weeks, rats were instrumented for monitoring of blood pressure and renal function. After intrauterine stress, litter size and birth weight were reduced, whereas hematocrit at birth was increased. Renal blood flow, glomerular filtration rate, and the glomerular filtration fraction were increased significantly after intrauterine stress. High sodium intake did not change renal function and blood pressure in control animals. However, during high sodium intake in intrauterine stress offspring, renal blood flow, glomerular filtration rate, and the filtration fraction were decreased, and blood pressure was increased. In addition, these animals developed severe albuminuria, an important sign of renal dysfunction. Thus, a suboptimal fetal microenvironment, which impairs renal development, results in sodium-dependent hypertension and albuminuria.

  4. Renal function and acute heart failure outcome.

    PubMed

    Llauger, Lluís; Jacob, Javier; Miró, Òscar

    2018-06-05

    The interaction between acute heart failure (AHF) and renal dysfunction is complex. Several studies have evaluated the prognostic value of this syndrome. The aim of this systematic review, which includes non-selected samples, was to investigate the impact of different renal function variables on the AHF prognosis. The categories included in the studies reviewed included: creatinine, blood urea nitrogen (BUN), the BUN/creatinine quotient, chronic kidney disease, the formula to estimate the glomerular filtration rate, criteria of acute renal injury and new biomarkers of renal damage such as neutrophil gelatinase-associated lipocalin (NGAL and cystatin c). The basal alterations of the renal function, as well as the acute alterations, transient or not, are related to a worse prognosis in AHF, it is therefore necessary to always have baseline, acute and evolutive renal function parameters. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  5. Cytochrome P450 and Lipoxygenase Metabolites on Renal Function

    PubMed Central

    Imig, John D.; Hye Khan, Md. Abdul

    2018-01-01

    Arachidonic acid metabolites have a myriad of biological actions including effects on the kidney to alter renal hemodynamics and tubular transport processes. Cyclooxygenase metabolites are products of an arachidonic acid enzymatic pathway that has been extensively studied in regards to renal function. Two lesser-known enzymatic pathways of arachidonic acid metabolism are the lipoxygenase (LO) and cytochrome P450 (CYP) pathways. The importance of LO and CYP metabolites to renal hemodynamics and tubular transport processes is now being recognized. LO and CYP metabolites have actions to alter renal blood flow and glomerular filtration rate. Proximal and distal tubular sodium transport and fluid and electrolyte homeostasis are also significantly influenced by renal CYP and LO levels. Metabolites of the LO and CYP pathways also have renal actions that influence renal inflammation, proliferation, and apoptotic processes at vascular and epithelial cells. These renal LO and CYP pathway actions occur through generation of specific metabolites and cell-signaling mechanisms. Even though the renal physiological importance and actions for LO and CYP metabolites are readily apparent, major gaps remain in our understanding of these lipid mediators to renal function. Future studies will be needed to fill these major gaps regarding LO and CYP metabolites on renal function. PMID:26756638

  6. Oral manifestations in a renal osteodystrophy patient - a case report with review of literature.

    PubMed

    J, Parthiban; Nisha V, Aarthi; Gs, Asokan; Ca, Prakash; Mm, Varadharaja

    2014-08-01

    Renal Osteodystrophy (ROD) is a common complication of chronic renal disease (CRD) and is the part of a broad spectrum of disorders of mineral metabolism that occurs in the clinical setting. It occurs early in the course of chronic renal failure and progresses as the kidney function deteriorates. It is an osseous alteration believed to arise from increased parathyroid function associated with inappropriate calcium, phosphorus and vitamin D metabolism. Involvement of the jaws is common and radiographic alterations are often one of the earliest signs of chronic renal failure. Herein, reporting a case of Chronic Renal Failure (Bilateral Grade I Neuropathy) with ROD presenting oral manifestations in an 11-year -old male child.

  7. High-salt diets during pregnancy affected fetal and offspring renal renin-angiotensin system.

    PubMed

    Mao, Caiping; Liu, Rong; Bo, Le; Chen, Ningjing; Li, Shigang; Xia, Shuixiu; Chen, Jie; Li, Dawei; Zhang, Lubo; Xu, Zhice

    2013-07-01

    Intrauterine environments are related to fetal renal development and postnatal health. Influence of salty diets during pregnancy on renal functions and renin-angiotensin system (RAS) was determined in the ovine fetuses and offspring. Pregnant ewes were fed high-salt diet (HSD) or normal-salt diet (NSD) for 2 months during middle-to-late gestation. Fetal renal functions, plasma hormones, and mRNA and protein expressions of the key elements of renal RAS were measured in the fetuses and offspring. Fetal renal excretion of sodium was increased while urine volume decreased in the HSD group. Fetal blood urea nitrogen was increased, while kidney weight:body weight ratio decreased in the HSD group. The altered ratio was also observed in the offspring aged 15 and 90 days. Maternal and fetal plasma antidiuretic hormone was elevated without changes in plasma renin activity and Ang I levels, while plasma Ang II was decreased. The key elements of local renal RAS, including angiotensinogen, angiotensin converting enzyme (ACE), ACE2, AT1, and AT2 receptor expression in both mRNA and protein, except renin, were altered following maternal high salt intake. The results suggest that high intake of salt during pregnancy affected fetal renal development associated with an altered expression of the renal key elements of RAS, some alterations of fetal origins remained after birth as possible risks in developing renal or cardiovascular diseases.

  8. [Volume Homeostasis and Renal Function in Rats Exposed to Simulated and Actual Microgravity

    NASA Technical Reports Server (NTRS)

    Tucker, Bryan J.

    1993-01-01

    This project has investigated mechanisms that influence alterations in compartmental fluid and electrolyte balance in microgravity and evaluates countermeasures to control renal fluid and electrolyte losses. Determining the alterations due to space flight in fluid compartments and renal function is an important component in understanding long term adaptation to spaceflight and the contribution to post-flight orthostatic intolerance. Four definition phase studies and two studies examining neuro-humoral and vascular mechanisms have been completed.

  9. Oral Manifestations in a Renal Osteodystrophy Patient - A Case Report with Review of Literature

    PubMed Central

    Nisha V, Aarthi; GS, Asokan; CA, Prakash; MM, Varadharaja

    2014-01-01

    Renal Osteodystrophy (ROD) is a common complication of chronic renal disease (CRD) and is the part of a broad spectrum of disorders of mineral metabolism that occurs in the clinical setting. It occurs early in the course of chronic renal failure and progresses as the kidney function deteriorates. It is an osseous alteration believed to arise from increased parathyroid function associated with inappropriate calcium, phosphorus and vitamin D metabolism. Involvement of the jaws is common and radiographic alterations are often one of the earliest signs of chronic renal failure. Herein, reporting a case of Chronic Renal Failure (Bilateral Grade I Neuropathy) with ROD presenting oral manifestations in an 11-year -old male child. PMID:25302278

  10. Renal function alterations during skeletal muscle disuse in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Tucker, Bryan J.

    1992-01-01

    This project was to examine the alterations in renal functions during skeletal muscle disuse in simulated microgravity. Although this area could cover a wide range of investigative efforts, the limited funding resulted in the selection of two projects. These projects would result in data contributing to an area of research deemed high priority by NASA and would address issues of the alterations in renal response to vasoactive stimuli during conditions of skeletal muscle disuse as well as investigate the contribution of skeletal muscle disuse, conditions normally found in long term human exposure to microgravity, to the balance of fluid and macromolecules within the vasculature versus the interstitium. These two projects selected are as follows: investigate the role of angiotensin 2 on renal function during periods of simulated microgravity and skeletal muscle disuse to determine if the renal response is altered to changes in circulating concentrations of angiotensin 2 compared to appropriate controls; and determine if the shift of fluid balance from vasculature to the interstitium, the two components of extracellular fluid volume, that occur during prolonged exposure to microgravity and skeletal muscle disuse is a result, in part, to alterations in the fluid and macromolecular balance in the peripheral capillary beds, of which the skeletal muscle contains the majority of recruitment capillaries. A recruitment capillary bed would be most sensitive to alterations in Starling forces and fluid and macromolecular permeability.

  11. Prevalence and predictors of renal artery stenosis in patients undergoing peripheral and coronary angiography.

    PubMed

    Shukla, Anand N; Madan, Tarun H; Jayaram, Ashwal A; Kute, Vivek B; Rawal, Jayesh R; Manjunath, A P; Udhreja, Satyam

    2013-12-01

    Renal artery stenosis is a potential cause of secondary hypertension, ischemic nephropathy and end-stage renal disease. Atherosclerosis is by far the most common etiology of renal artery stenosis in elderly. We investigated whether the presence of significant atherosclerotic renal artery stenosis (ARAS) with luminal diameter narrowing ≥50 % could be predicted in patients undergoing peripheral and coronary angiography. The records of 3,500 consecutive patients undergoing simultaneous renal angiography along with peripheral and coronary angiography were reviewed. The patients with known renal artery disease were excluded. Prevalence of ARAS was 5.7 %. Significant ARAS (luminal diameter narrowing ≥50 %) was present in 139 patients (3.9 %). Hypertension with altered serum creatinine and triple-vessel CAD were associated with significant renal artery stenosis in multivariate analysis. No significant relationship between the involved coronary arteries like left anterior descending, left circumflex, right coronary artery and ARAS was found. Only hypertension and altered serum creatinine were associated with bilateral ARAS. Extent of CAD or risk factors like diabetes, hyperlipidemia or smoking did not predict the unilateral or bilateral ARAS. Prevalence of ARAS among the patients in routine cardiac catheterization was 5.7 %. Hypertension is closely associated with significant ARAS. Significant CAD in the form of triple-vessel disease and altered renal function tests are closely associated with ARAS. They predict the presence of significant renal artery stenosis in patients undergoing routine peripheral and coronary angiography. Moreover, hypertension and altered renal functions predict bilateral ARAS.

  12. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    PubMed Central

    Cristóbal-García, Magdalena; García-Arroyo, Fernando E.; Arellano-Buendía, Abraham S.; Madero, Magdalena; Rodríguez-Iturbe, Bernardo; Pedraza-Chaverrí, José; Zazueta, Cecilia; Johnson, Richard J.; Sánchez Lozada, Laura-Gabriela

    2015-01-01

    We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks) and short-term (3 weeks) effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW), OA+Allopurinol (AP, 150 mg/L drinking water), OA+Tempol (T, 15 mg/kg BW), or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase) and oxidative stress markers (lipid and protein oxidation) along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident. PMID:25918583

  13. PAROTID FLUID TOTAL PROTEIN IN PATIENTS WITH UREMIA AND PROTEINURIA.

    DTIC Science & Technology

    Stimulated parotid fluid samples (238) were collected from 32 patients to determine if altered renal function was associated with deviations in...tubular necrosis, and 15 had normal renal function. There were no significant differences in parotid fluid protein concentration or minute secretion associated with the state of renal function. (Author)

  14. Mechanisms responsible for decreased glomerular filtration in hibernation and hypothermia

    NASA Technical Reports Server (NTRS)

    Tempel, G. E.; Musacchia, X. J.; Jones, S. B.

    1977-01-01

    Measurements of blood pressure, heart rate, red blood cell and plasma volumes, and relative distribution of cardiac output were made on hibernating and hypothermic adult male and female golden hamsters weighing 120-140 g to study the mechanisms underlying the elimination or marked depression of renal function in hibernation and hypothermia. The results suggest that the elimination or marked depression in renal function reported in hibernation and hypothermia may partly be explained by alterations in cardiovascular system function. Renal perfusion pressure which decreases nearly 60% in both hibernation and hypothermia and a decrease in plasma volume of roughly 35% in the hypothermic animal might both be expected to markedly alter glomerular function.

  15. Stress and sodium intake in neural control of renal function in hypertension.

    PubMed

    DiBona, G F

    1991-04-01

    The interaction between genetic and environmental factors is important in the pathophysiology of hypertension. By examining the effects of two environmental factors--acute psychoemotional stress and dietary sodium intake--in rats with genetic hypertension, an important influence on central neural mechanisms governing the renal sympathetic neural control of renal function has been demonstrated. Additional studies of the central opioid systems have demonstrated an important role of opioid peptides in modulating the renal functional responses to acute psychoemotional stress. The observed renal functional alterations--antidiuresis, antinatriuresis, and renal vasoconstriction--are known to be capable of contributing to the initiation, development, and maintenance of the hypertensive process.

  16. Mechanisms of Acute Kidney Injury Induced by Experimental Lonomia obliqua Envenomation

    PubMed Central

    Berger, Markus; Santi, Lucélia; Beys-da-Silva, Walter O.; Oliveira, Fabrício Marcus Silva; Caliari, Marcelo Vidigal; Yates, John R.; Ribeiro, Maria Aparecida; Guimarães, Jorge Almeida

    2015-01-01

    Background Lonomia obliqua caterpillar envenomation causes acute kidney injury (AKI), which can be responsible for its deadly actions. This study evaluates the possible mechanisms involved in the pathogenesis of renal dysfunction. Methods To characterize L. obliqua venom effects we subcutaneously injected rats and examined renal functional, morphological and biochemical parameters at several time points. We also performed discovery based proteomic analysis to measure protein expression to identify molecular pathways of renal disease. Results L. obliqua envenomation causes acute tubular necrosis, which is associated with renal inflammation; formation of hematic casts, resulting from intravascular hemolysis; increase in vascular permeability and fibrosis. The dilation of Bowman’s space and glomerular tuft is related to fluid leakage and intra-glomerular fibrin deposition, respectively, since tissue factor procoagulant activity increases in the kidney. Systemic hypotension also contributes to these alterations and to the sudden loss of basic renal functions, including filtration and excretion capacities, urinary concentration and maintenance of fluid homeostasis. In addition, envenomed kidneys increases expression of proteins involved in cell stress, inflammation, tissue injury, heme-induced oxidative stress, coagulation and complement system activation. Finally, the localization of the venom in renal tissue agrees with morphological and functional alterations, suggesting also a direct nephrotoxic activity. Conclusions Mechanisms of L. obliqua-induced AKI are complex involving mainly glomerular and tubular functional impairment and vascular alterations. These results are important to understand the mechanisms of renal injury and may suggest more efficient ways to prevent or attenuate the pathology of Lonomia’s envenomation. PMID:24798088

  17. Novel prediction model of renal function after nephrectomy from automated renal volumetry with preoperative multidetector computed tomography (MDCT).

    PubMed

    Isotani, Shuji; Shimoyama, Hirofumi; Yokota, Isao; Noma, Yasuhiro; Kitamura, Kousuke; China, Toshiyuki; Saito, Keisuke; Hisasue, Shin-ichi; Ide, Hisamitsu; Muto, Satoru; Yamaguchi, Raizo; Ukimura, Osamu; Gill, Inderbir S; Horie, Shigeo

    2015-10-01

    The predictive model of postoperative renal function may impact on planning nephrectomy. To develop the novel predictive model using combination of clinical indices with computer volumetry to measure the preserved renal cortex volume (RCV) using multidetector computed tomography (MDCT), and to prospectively validate performance of the model. Total 60 patients undergoing radical nephrectomy from 2011 to 2013 participated, including a development cohort of 39 patients and an external validation cohort of 21 patients. RCV was calculated by voxel count using software (Vincent, FUJIFILM). Renal function before and after radical nephrectomy was assessed via the estimated glomerular filtration rate (eGFR). Factors affecting postoperative eGFR were examined by regression analysis to develop the novel model for predicting postoperative eGFR with a backward elimination method. The predictive model was externally validated and the performance of the model was compared with that of the previously reported models. The postoperative eGFR value was associated with age, preoperative eGFR, preserved renal parenchymal volume (RPV), preserved RCV, % of RPV alteration, and % of RCV alteration (p < 0.01). The significant correlated variables for %eGFR alteration were %RCV preservation (r = 0.58, p < 0.01) and %RPV preservation (r = 0.54, p < 0.01). We developed our regression model as follows: postoperative eGFR = 57.87 - 0.55(age) - 15.01(body surface area) + 0.30(preoperative eGFR) + 52.92(%RCV preservation). Strong correlation was seen between postoperative eGFR and the calculated estimation model (r = 0.83; p < 0.001). The external validation cohort (n = 21) showed our model outperformed previously reported models. Combining MDCT renal volumetry and clinical indices might yield an important tool for predicting postoperative renal function.

  18. Sympathetic neural control of the kidney in hypertension.

    PubMed

    DiBona, G F

    1992-01-01

    Efferent renal sympathetic nerve activity is elevated in human essential hypertension as well as in several forms of experimental hypertension in animals. In addition, bilateral complete renal denervation delays the development and/or attenuates the magnitude of the hypertension in several different forms of experimental hypertension in animals. Efferent renal sympathetic nerve activity is known to have dose-dependent effects on renal blood flow, the glomerular filtration rate, renal tubular sodium and water reabsorption, and the renin secretion rate, which are capable of contributing, singly or in combination, to the development, maintenance, and exacerbation of the hypertensive state. Of the many factors known to influence the central nervous system integrative regulation of efferent renal sympathetic nerve activity, two environmental factors, a high dietary sodium intake and environmental stress, are capable of significant interaction. This resultant increase in efferent renal sympathetic nerve activity and subsequent renal functional alterations can participate in the hypertensive process. This is especially evident in the presence of an underlying genetic predisposition to the development of hypertension. Thus, interactions between environmental and genetic influences can produce alterations in the sympathetic neural control of renal function that play an important role in hypertension.

  19. Sympathetic nervous system influences on the kidney. Role in hypertension.

    PubMed

    DiBona, G F

    1989-03-01

    Efferent renal sympathetic nerve activity (ERSNA) is elevated in human essential hypertension as well as several forms of experimental hypertension in animals. In addition, bilateral complete renal denervation delays the development and/or attenuates the magnitude of the hypertension in several different forms of experimental hypertension in animals. Efferent renal sympathetic nerve activity is known to have dose-dependent effects on renal blood flow and glomerular filtration rate, renal tubular sodium and water reabsorption, and renin secretion rate that are capable of contributing, singly or in combination, to the development, maintenance, and exacerbation of the hypertensive state. Of the many factors known to influence the central nervous system integrative regulation of ERSNA, two environmental factors, dietary sodium intake and environmental stress, are capable of significant interaction. This resultant increase in ERSNA and subsequent renal functional alterations can participate in the hypertensive process. This is especially evident in the presence of an underlying genetic predisposition to the development of hypertension. Thus, interactions between environmental and genetic influences can produce alterations in the sympathetic neural control of renal function that play an important role in hypertension.

  20. Low thyroid function is not associated with an accelerated deterioration in renal function.

    PubMed

    Meuwese, Christiaan L; van Diepen, Merel; Cappola, Anne R; Sarnak, Mark J; Shlipak, Michael G; Bauer, Douglas C; Fried, Linda P; Iacoviello, Massimo; Vaes, Bert; Degryse, Jean; Khaw, Kay-Tee; Luben, Robert N; Åsvold, Bjørn O; Bjøro, Trine; Vatten, Lars J; de Craen, Anton J M; Trompet, Stella; Iervasi, Giorgio; Molinaro, Sabrina; Ceresini, Graziano; Ferrucci, Luigi; Dullaart, Robin P F; Bakker, Stephan J L; Jukema, J Wouter; Kearney, Patricia M; Stott, David J; Peeters, Robin P; Franco, Oscar H; Völzke, Henry; Walsh, John P; Bremner, Alexandra; Sgarbi, José A; Maciel, Rui M B; Imaizumi, Misa; Ohishi, Waka; Dekker, Friedo W; Rodondi, Nicolas; Gussekloo, Jacobijn; den Elzen, Wendy P J

    2018-04-18

    Chronic kidney disease (CKD) is frequently accompanied by thyroid hormone dysfunction. It is currently unclear whether these alterations are the cause or consequence of CKD. This study aimed at studying the effect of thyroid hormone alterations on renal function in cross-sectional and longitudinal analyses in individuals from all adult age groups. Individual participant data (IPD) from 16 independent cohorts having measured thyroid stimulating hormone, free thyroxine levels and creatinine levels were included. Thyroid hormone status was defined using clinical cut-off values. Estimated glomerular filtration rates (eGFR) were calculated by means of the four-variable Modification of Diet in Renal Disease (MDRD) formula. For this IPD meta-analysis, eGFR at baseline and eGFR change during follow-up were computed by fitting linear regression models and linear mixed models in each cohort separately. Effect estimates were pooled using random effects models. A total of 72 856 individuals from 16 different cohorts were included. At baseline, individuals with overt hypothyroidism (n = 704) and subclinical hypothyroidism (n = 3356) had a average (95% confidence interval) -4.07 (-6.37 to -1.78) and -2.40 (-3.78 to -1.02) mL/min/1.73 m2 lower eGFR as compared with euthyroid subjects (n = 66 542). In (subclinical) hyperthyroid subjects (n = 2254), average eGFR was 3.01 (1.50-4.52) mL/min/1.73 m2 higher. During 329 713 patient years of follow-up, eGFR did not decline more rapidly in individuals with low thyroid function compared with individuals with normal thyroid function. Low thyroid function is not associated with a deterioration of renal function. The cross-sectional association may be explained by renal dysfunction causing thyroid hormone alterations.

  1. Neural control of renal function: cardiovascular implications.

    PubMed

    DiBona, G F

    1989-06-01

    The innervation of the kidney serves to function of its component parts, for example, the blood vessels, the nephron (glomerulus, tubule), and the juxtaglomerular apparatus. Alterations in efferent renal sympathetic nerve activity produce significant changes in renal blood flow, glomerular filtration rate, the reabsorption of water, sodium, and other ions, and the release of renin, prostaglandins, and other vasoactive substances. These functional effects contribute significantly to the renal regulation of total body sodium and fluid volumes with important implications for the control of arterial pressure. The renal nerves, both efferent and afferent, are known to be important contributors to the pathogenesis of hypertension. In addition, the efferent renal nerves participate in the mediation of the excessive renal sodium retention, which characterizes edema-forming states such as congestive heart failure. Thus, the renal nerves play an important role in overall cardiovascular homeostasis in both normal and pathological conditions.

  2. Boldine Prevents Renal Alterations in Diabetic Rats

    PubMed Central

    Hernández-Salinas, Romina; Vielma, Alejandra Z.; Arismendi, Marlene N.; Boric, Mauricio P.; Sáez, Juan C.; Velarde, Victoria

    2013-01-01

    Diabetic nephropathy alters both structure and function of the kidney. These alterations are associated with increased levels of reactive oxygen species, matrix proteins, and proinflammatory molecules. Inflammation decreases gap junctional communication and increases hemichannel activity leading to increased membrane permeability and altering tissue homeostasis. Since current treatments for diabetic nephropathy do not prevent renal damage, we postulated an alternative treatment with boldine, an alkaloid obtained from boldo with antioxidant, anti-inflammatory, and hypoglycemic effects. Streptozotocin-induced diabetic and control rats were treated or not treated with boldine (50 mg/Kg/day) for ten weeks. In addition, mesangial cells were cultured under control conditions or in high glucose concentration plus proinflammatory cytokines, with or without boldine (100 µmol/L). Boldine treatment in diabetic animals prevented the increase in glycemia, blood pressure, renal thiobarbituric acid reactive substances and the urinary protein/creatinine ratio. Boldine also reduced alterations in matrix proteins and markers of renal damage. In mesangial cells, boldine prevented the increase in oxidative stress, the decrease in gap junctional communication, and the increase in cell permeability due to connexin hemichannel activity induced by high glucose and proinflammatory cytokines but did not block gap junction channels. Thus boldine prevented both renal and cellular alterations and could be useful for preventing tissue damage in diabetic subjects. PMID:24416726

  3. Boldine prevents renal alterations in diabetic rats.

    PubMed

    Hernández-Salinas, Romina; Vielma, Alejandra Z; Arismendi, Marlene N; Boric, Mauricio P; Sáez, Juan C; Velarde, Victoria

    2013-01-01

    Diabetic nephropathy alters both structure and function of the kidney. These alterations are associated with increased levels of reactive oxygen species, matrix proteins, and proinflammatory molecules. Inflammation decreases gap junctional communication and increases hemichannel activity leading to increased membrane permeability and altering tissue homeostasis. Since current treatments for diabetic nephropathy do not prevent renal damage, we postulated an alternative treatment with boldine, an alkaloid obtained from boldo with antioxidant, anti-inflammatory, and hypoglycemic effects. Streptozotocin-induced diabetic and control rats were treated or not treated with boldine (50 mg/Kg/day) for ten weeks. In addition, mesangial cells were cultured under control conditions or in high glucose concentration plus proinflammatory cytokines, with or without boldine (100 µmol/L). Boldine treatment in diabetic animals prevented the increase in glycemia, blood pressure, renal thiobarbituric acid reactive substances and the urinary protein/creatinine ratio. Boldine also reduced alterations in matrix proteins and markers of renal damage. In mesangial cells, boldine prevented the increase in oxidative stress, the decrease in gap junctional communication, and the increase in cell permeability due to connexin hemichannel activity induced by high glucose and proinflammatory cytokines but did not block gap junction channels. Thus boldine prevented both renal and cellular alterations and could be useful for preventing tissue damage in diabetic subjects.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburano, T.; Takayama, T.; Nakajima, K.

    The three different methods to evaluate the alterations of split renal function following continued captopril treatment were studied in patients with hypertension. Five patients had unilateral and 2 had bilateral renal artery stenosis, and 13 had normal renal arteries. The studies were performed the day prior to receiving captopril (baseline), and 6th or 7th day following continued captorpril treatment (37.5mg or 75mg/day): Split effective renal plasma flow (ERPF) and glomerular filtration rate (GFR) after injections of I-131 iodohippuran and Tc-99m DTPA were measured respectively by the methods using kidney counting corrected for depth and dose, described by Schlegel and Gates.more » And Tc-99m DMSA uptake was also evaluated qualitatively. In most of patients with renal artery stenosis, split GFR and Tc-99m DMSA uptake in the affected kidney were markedly decreased 6th or 7th day following continued captorpril treatment. These findings suggest that the captopril induced alterations of split renal function may be of importance for the diagnosis of renovascular hypertension. For this purpose, split GFR determination and Tc-99m DMSA study are more useful than split ERPF determination.« less

  5. Chronic Sleep Restriction during Pregnancy - Repercussion on Cardiovascular and Renal Functioning of Male Offspring

    PubMed Central

    Lima, Ingrid L. B.; Rodrigues, Aline F. A. C.; Bergamaschi, Cássia T.; Campos, Ruy R.; Hirata, Aparecida E.; Tufik, Sergio; Xylaras, Beatriz D. P.; Visniauskas, Bruna; Chagas, Jair R.; Gomes, Guiomar N.

    2014-01-01

    Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi – tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127±2.6 (19); OCSR: 144±2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: −2.6±0.15 (9); OCRS: −1.6±0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4±15 (18); OSR: 60.2±3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4±0.2 (10); OCSR: 7.4±0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring. PMID:25405471

  6. Chronic sleep restriction during pregnancy--repercussion on cardiovascular and renal functioning of male offspring.

    PubMed

    Lima, Ingrid L B; Rodrigues, Aline F A C; Bergamaschi, Cássia T; Campos, Ruy R; Hirata, Aparecida E; Tufik, Sergio; Xylaras, Beatriz D P; Visniauskas, Bruna; Chagas, Jair R; Gomes, Guiomar N

    2014-01-01

    Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi - tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127 ± 2.6 (19); OCSR: 144 ± 2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: -2.6 ± 0.15 (9); OCRS: -1.6 ± 0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4 ± 15 (18); OSR: 60.2 ± 3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4 ± 0.2 (10); OCSR: 7.4 ± 0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring.

  7. eNOS gene Glu298Asp and 4b/a polymorphisms are associated with renal function parameters in Mexican patients with Fabry disease.

    PubMed

    Marin-Medina, A; Brambila-Tapia, A J L; Picos-Cárdenas, V J; Gallegos-Arreola, M P; Figuera, L E

    2016-10-24

    Fabry disease (FD) is an inherited X-linked lysosomal disease that causes renal failure in a high percentage of affected individuals. The eNOS gene encodes for endothelial nitric oxide synthase, which plays an important role in glomerular hemodynamics. This gene has two main polymorphisms (Glu298Asp and 4b/a) that have been studied in the context of many different diseases, including those involving cardiovascular and renal alterations. Considering the lack of information regarding eNOS variants and FD, we investigated whether there were associations between eNOS genetic variants and renal function parameters in Mexican patients with FD and renal impairment. In total, 15 FD patients with renal alterations were included in the present study, and associations between eNOS polymorphisms and renal function parameters (urea, creatinine, and GFR) were evaluated. The Asp298 and 4a alleles of the eNOS gene were found to be significantly associated with increased levels of urea and creatinine, and a decreased glomerular filtration rate in FD patients, and this association behaved in a co-dominant fashion. Our results coincide with previous reports showing an association between these polymorphisms and kidney disease, and along with other studies regarding their role in the nitric oxide pathway, suggest that these variants affect the severity of nephropathy in patients with FD.

  8. Influence of renal insufficiency on the pharmacokinetics of cicletanine and its effects on the urinary excretion of electrolytes and prostanoids.

    PubMed Central

    Ferry, N; Geoffroy, J; Pozet, N; Cuisinaud, G; Benzoni, D; Zech, P Y; Sassard, J

    1988-01-01

    1. The kinetics of a single oral dose (300 mg) of cicletanine a new antihypertensive drug with diuretic properties, and its effects on the urinary excretion of electrolytes and of the major stable metabolites of prostacyclin and thromboxane A2 were studied in patients with normal renal function (n = 6), mild (n = 9) and severe (n = 10) renal insufficiency. 2. In normotensive subjects with normal renal function, cicletanine was rapidly and regularly absorbed, its apparent elimination half-life established around 7 h, and both its renal clearance (0.4 ml min-1) and its cumulative renal excretion (0.85% of the administered dose), were low. Mild renal insufficiency did not significantly alter these parameters, while severe renal impairment reduced the renal clearance and the cumulative urinary excretion of cicletanine and increased its apparent elimination half-life (31 h). However the area under the plasma curve was not changed due to reduced plasma concentrations in these patients. 3. Cicletanine induced a rapid and marked (four fold as a mean) increase in the urinary excretion of water, sodium and potassium which lasted for 6 to 10 h, in subjects with normal renal function. Renal insufficiency did not alter the slope of the calculated plasma concentration-effects curves but reduced the maximum effect observed for water, sodium and potassium. 4. A single oral dose of cicletanine did not change the urinary excretion of 6-keto-prostaglandin F1 alpha and thromboxane B2 in the three groups of patients studied, the basal values of which being found to be closely related to the creatinine clearance.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3358898

  9. Curcumin prevents mitochondrial dynamics disturbances in early 5/6 nephrectomy: Relation to oxidative stress and mitochondrial bioenergetics.

    PubMed

    Aparicio-Trejo, Omar Emiliano; Tapia, Edilia; Molina-Jijón, Eduardo; Medina-Campos, Omar Noel; Macías-Ruvalcaba, Norma Angélica; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; García-Arroyo, Fernando E; Cristóbal, Magdalena; Sánchez-Lozada, Laura Gabriela; Pedraza-Chaverri, José

    2017-03-01

    Five-sixths nephrectomy (5/6NX) is a widely used model to study the mechanisms leading to renal damage in chronic kidney disease (CKD). However, early alterations on renal function, mitochondrial dynamics, and oxidative stress have not been explored yet. Curcumin is an antioxidant that has shown nephroprotection in 5/6NX-induced renal damage. The aim of this study was to explore the effect of curcumin on early mitochondrial alterations induced by 5/6NX in rats. In isolated mitochondria, 5/6NX-induced hydrogen peroxide production was associated with decreased activity of complexes I and V, decreased activity of antioxidant enzymes, alterations in oxygen consumption and increased MDA-protein adducts. In addition, it was found that 5/6NX shifted mitochondrial dynamics to fusion, which was evidenced by increased optic atrophy 1 and mitofusin 1 (Mfn1) and decreased fission 1 and dynamin-related protein 1 expressions. These data were confirmed by morphological analysis and immunoelectron microscopy of Mfn-1. All the above-described mechanisms were prevented by curcumin. Also, it was found that curcumin prevented renal dysfunction by improving renal blood flow and the total antioxidant capacity induced by 5/6NX. Moreover, in glomeruli and proximal tubules 5/6NX-induced superoxide anion production by uncoupled nitric oxide synthase (NOS) and nicotinamide adenine dinucleotide phosphate oxidase (NOX) dependent way, this latter was associated with increased phosphorylation of serine 304 of p47phox subunit of NOX. In conclusion, this study shows that curcumin pretreatment decreases early 5/6NX-induced altered mitochondrial dynamics, bioenergetics, and oxidative stress, which may be associated with the preservation of renal function. © 2016 BioFactors, 43(2):293-310, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  10. Quantitative analysis of the renal aging in rats. Stereological study.

    PubMed

    Melchioretto, Eduardo Felippe; Zeni, Marcelo; Veronez, Djanira Aparecida da Luz; Martins, Eduardo Lopes; Fraga, Rogério de

    2016-05-01

    To evaluate the renal function and the renal histological alterations through the stereology and morphometrics in rats submitted to the natural process of aging. Seventy two Wistar rats, divided in six groups. Each group was sacrificed in a different age: 3, 6, 9, 12, 18 and 24 months. It was performed right nephrectomy, stereological and morphometric analysis of the renal tissue (renal volume and weight, density of volume (Vv[glom]) and numerical density (Nv[glom]) of the renal glomeruli and average glomerular volume (Vol[glom])) and also it was evaluated the renal function for the dosage of serum creatinine and urea. There was significant decrease of the renal function in the oldest rats. The renal volume presented gradual increase during the development of the rats with the biggest values registered in the group of animals at 12 months of age and significant progressive decrease in older animals. Vv[glom] presented statistically significant gradual reduction between the groups and the Nv[glom] also decreased significantly. The renal function proved to be inferior in senile rats when compared to the young rats. The morphometric and stereological analysis evidenced renal atrophy, gradual reduction of the volume density and numerical density of the renal glomeruli associated to the aging process.

  11. Fetal development and renal function in adult rats prenatally subjected to sodium overload.

    PubMed

    Cardoso, Henriqueta D; Cabral, Edjair V; Vieira-Filho, Leucio D; Vieyra, Adalberto; Paixão, Ana D O

    2009-10-01

    The aims of this study were (1) to evaluate two factors that affect fetal development--placental oxidative stress (Ox) and plasma volume (PV)--in dams with sodium overload and (2) to correlate possible alterations in these factors with subsequent modifications in the renal function of adult offspring. Wistar dams were maintained on 0.17 M NaCl instead of water from 20 days before mating until either the twentieth pregnancy day/parturition or weaning. Colorimetric methods were used to measure Ox in maternal and offspring tissues, PV, 24-h urinary protein (U(Prot24 h)) and serum triacylglycerols (TG) and cholesterol (Chol). Renal hemodynamics was evaluated in the offspring at 90 days of age using a blood pressure transducer, a flow probe and inulin clearance to measure mean arterial pressure (MAP), renal blood flow and glomerular filtration rate (GFR), respectively. The number of nephrons (NN) was counted in kidney suspensions. Dams showed unchanged PV, placental Ox and fetal weight but increased U(Prot24 h) (150%, P < 0.05). Prenatally sodium-overloaded pups showed increased U(Prot24 h) (45%, P < 0.05) but unchanged MAP, renal hemodynamics, NN and kidney Ox. Prenatally and postnatally sodium-overloaded rats showed increased U(Prot24 h) (27%, P < 0.05) and kidney Ox (44%, P < 0.05), reduced GFR (12%, P < 0.05), increased PV (26%, P < 0.05) and unchanged MAP and NN. The TG increased in both groups of treated offspring (21%, P < 0.05), whereas Chol increased only in the postnatally sodium-overloaded group. We conclude that salt overload from the prenatal stage until weaning leads to alterations in lipid metabolism and in the renal function of the pups, which are additional to those alterations seen in rats only overloaded prenatally.

  12. Salivary markers in patients with chronic renal failure.

    PubMed

    Pallos, Debora; Leão, Mariella V P; Togeiro, Fernanda C F B; Alegre, Larissa; Ricardo, Lucilene Hernandes; Perozini, Caroline; Ruivo, Gilson Fernandes

    2015-12-01

    Chronic renal failure (CRF) is a progressive loss of renal function over a period of months or years. The major function of the kidneys is the removal of metabolic waste products, electrolytes and water. When this function is impaired, systemic changes, oral complications and alterations in salivary composition may occur. This study aimed to compare the levels of immunological and inflammatory components in the saliva samples from patients that undergo to hemodialysis treatment (HD), without HD and control. This study evaluated IgA, IgG, C reactive protein (CRP) and nitric oxide (NO) in saliva samples from 119 patients, who were divided into the control group (C), chronic renal failure (CRF) patient group and CRF patients on hemodialysis treatment (HD) group. IgA and IgG levels were analyzed by ELISA. Nitric oxide levels were determined indirectly by the nitrite concentration using Griess reagent; CRP by agglutination tests; and total proteins, by Bradford assay. The HD group showed significantly higher levels of IgG, IgA and CRP compared with the control and CRF groups. The CRF group presented the same amounts of IgG, IgA and CRP as the C group but significantly higher levels of NO similar to the HD group. Renal disease, particularly hemodialysis treatment during renal disease, seems to alter salivary immunological and inflammatory components. Thus, analyzing the levels of IgA, IgG, NO and CRP in saliva may be beneficial for monitoring renal disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Neural regulation of renal tubular sodium reabsorption and renin secretion: integrative aspects.

    PubMed

    DiBona, G F

    1987-01-01

    Efferent renal sympathetic nerve activity plays an important role in the regulation of renal function. Via its direct influence on renal tubular sodium reabsorption throughout the entire mammalian nephron, alterations in efferent renal sympathetic nerve activity represent an important physiological contribution to the overall role of the kidney in the regulation of external sodium balance and the defense against sodium deficit and surfeit. Abnormalities of this mechanism can lead to inappropriate renal sodium retention and augmentation of renin secretion, two factors which are capable of contributing to the development and maintenance of hypertension.

  14. Effects of age and caloric restriction in the vascular response of renal arteries to endothelin-1 in rats.

    PubMed

    Amor, Sara; García-Villalón, Angel Luis; Rubio, Carmen; Carrascosa, Jose Ma; Monge, Luis; Fernández, Nuria; Martín-Carro, Beatriz; Granado, Miriam

    2017-02-01

    Cardiovascular alterations are the most prevalent cause of impaired physiological function in aged individuals with kidney being one the most affected organs. Aging-induced alterations in renal circulation are associated with a decrease in endothelium-derived relaxing factors such as nitric oxide (NO) and with an increase in contracting factors such as endothelin-1(ET-1). As caloric restriction (CR) exerts beneficial effects preventing some of the aging-induced alterations in cardiovascular system, the aim of this study was to analyze the effects of age and caloric restriction in the vascular response of renal arteries to ET-1 in aged rats. Vascular function was studied in renal arteries from 3-month-old Wistar rats fed ad libitum (3m) and in renal arteries from 8-and 24-month-old Wistar rats fed ad libitum (8m and 24m), or subjected to 20% caloric restriction during their three last months of life (8m-CR and 24m-CR). The contractile response to ET-1 was increased in renal arteries from 8m and 24m compared to 3m rats. ET-1-induced contraction was mediated by ET-A receptors in all experimental groups and also by ET-B receptors in 24m rats. Caloric restriction attenuated the increased contraction to ET-1 in renal arteries from 8m but not from 24m rats possibly through NO release proceeding from ET-B endothelial receptors. In 24m rats, CR did not attenuate the aging-increased response of renal arteries to ET-1, but it prevented the aging-induced increase in iNOS mRNA levels and the aging-induced decrease in eNOS mRNA levels in arterial tissue. In conclusion, aging is associated with an increased response to ET-1 in renal arteries that is prevented by CR in 8m but not in 24m rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Renal neural mechanisms in salt-sensitive hypertension.

    PubMed

    DiBona, G F

    1995-01-01

    Genetic forms of salt (NaCl)-sensitive hypertension are characterized by increased renal sympathetic nerve activity responses to environmental stimuli. The increases in renal sympathetic nerve activity produce marked changes in renal function with renal vasoconstriction and sodium and water retention which can contribute to the initiation, development and maintenance of hypertension. In genetic forms of NaCl-sensitive hypertension, increased dietary NaCl intake produces alterations in norepinephrine kinetics with decreased concentrations of norepinephrine in regions of the anterior hypothalamus which are critical for the regulation of peripheral sympathetic nerve activity. This local central decrease in tonic alpha 2 adrenoceptor sympathoinhibitory input leads to increased peripheral (renal) sympathetic nerve activity and hypertension. Similarly, with increased dietary NaCl intake, patients with NaCl-sensitive hypertension develop increased arterial pressure, renal vasoconstriction, increased glomerular capillary pressure and increased urinary albumin excretion. Thus, increased dietary NaCl intake can, via central nervous system actions, produce increases in renal sympathetic nerve activity whose renal functional effects contribute to the pathophysiology of hypertension.

  16. Neural control of renal function: role of renal alpha adrenoceptors.

    PubMed

    DiBona, G F

    1985-01-01

    Adrenoceptors of various subtypes mediate the renal functional responses to alterations in efferent renal sympathetic nerve activity, the neural component, and renal arterial plasma catecholamine concentrations, the humoral component, of the sympathoadrenergic nervous system. Under normal physiologic as well as hypertensive conditions, the influence of the renal sympathetic nerves predominates over that of circulating plasma catecholamines. In most mammalian species, increases in efferent renal sympathetic nerve activity elicit renal vasoconstrictor responses mediated predominantly by renal vascular alpha-1 adrenoceptors, increases in renin release mediated largely by renal juxtaglomerular granular cell beta-1 adrenoceptors with involvement of renal vascular alpha-1 adrenoceptors only when renal vasoconstriction occurs, and direct increases in renal tubular sodium and water reabsorption mediated predominantly by renal tubular alpha-1 adrenoceptors. In most mammalian species, alpha-2 adrenoceptors do not play a significant role in the renal vascular or renin release responses to renal sympathoadrenergic stimulation. Although renal tubular alpha-2 adrenoceptors do not mediate the increases in renal tubular sodium and water reabsorption produced by increases in efferent renal sympathetic nerve activity, they may be involved through their inhibitory effect on adenylate cyclase in modulating the response to other hormonal agents that influence renal tubular sodium and water reabsorption via stimulation of adenylate cyclase.

  17. The effect of maleate induced proximal tubular dysfunction on the renal handling of Tc-99m DMSA in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provoost, A.P.; Van Aken, M.

    1984-01-01

    In the healthy kidney Tc-99m DMSA accumulates in the proximal tubular cells. Consequently, impairment of the reabsorptive function of these cells may alter the renal handling of this static renal imaging agent. The authors investigated in rats the effects of a sodiummaleate (Ma) (2mmol/kg iv) induced proximal tubular dysfunction on the renal accumulation and excretion of Tc-99m DMSA. Such a treatment results in a moderate fall of the glomerular filtration rate, glycosuria, aminoaciduria and a tubular proteinuria. In 7 adult male Wistar rats, Tc-99m DMSA scans were taken before Ma, on the day of treatment, and 1 week thereafter. Themore » accumulation of Tc-99m DMSA in kidneys (Ki) and bladder (Bl) was determined at 1, 2, 4, and 24 hours after i.v. injection. The results, expressed as a percentage of the injected dose, are presented. The findings show that a reversible Ma induced impairment of the proximal reabsorptive capacity severely alters the renal tubular handling of Tc-99m DMSA. In contrast to the control situation, only a small fraction of the DMSA is retained in the kidney and the majority is transported directly to the urinary bladder. When similar alterations are observed in clinical Tc-99m DMSA scans, this may be an indication of an impairment of the proximal tubular function.« less

  18. Assessment of renal function and electrolytes in patients with thyroid dysfunction in Addis Ababa, Ethiopia: a cross sectional study.

    PubMed

    Abebe, Nardos; Kebede, Tedla; Wolde, Mistire

    2016-01-01

    Studies demonstrated that abnormal thyroid functions may result in decreased or increased kidney size, kidney weight, and affect renal functions. In this regard, studies on the association of abnormal thyroid functions and renal function tests are scarcely found in Ethiopia. To assess renal function and electrolytes in patients with thyroid dysfunction, in Addis Ababa, Ethiopia. Cross sectional study was conducted from March 21/2015-May 27/2015 at Arsho Advanced Medical Laboratory. During the study period, 71 patients with thyroid dysfunction were eligible, and socio demographic data collected by structured questionnaire. Then blood sample was collected for thyroid function tests, renal function and blood electrolyte analysis. The collected data was analyzed by SPSS version 20. ANOVA and binary logistic regression were employed to evaluate the mean deference and associations of thyroid hormone with renal function and electrolyte balances. Among the renal function tests, serum uric acid, and creatinine mean values were significantly decreased in hyperthyroid patients; whereas, eGFR mean value was significantly increased in hyperthyroid study patients (P<0.05). Meanwhile, from the electrolyte measurements made, only the mean serum sodium value was significantly increased in hyperthyroid study participants. Binary logistic regression analysis on the association of thyroid dysfunction with electrolyte balance and renal function tests indicated that serum sodium, creatinine, eGFR values and hyperthyroidism have a statistical significant association at AOR 95% CI of 0.141(0.033-0.593, P=0.008); 16.236(3.481-75.739, P=0.001), and 13.797(3.261-58.67, P=0.001) respectively. The current study reveals, thyroid abnormalities may lead to renal function alterations and also may disturb electrolyte balance. Knowledge of this significant association has worthwhile value for clinicians, to manage their patients' optimally.

  19. Sickle cell disease: renal manifestations and mechanisms

    PubMed Central

    Nath, Karl A.; Hebbel, Robert P.

    2015-01-01

    Sickle cell disease (SCD) substantially alters renal structure and function, and causes various renal syndromes and diseases. Such diverse renal outcomes reflect the uniquely complex vascular pathobiology of SCD and the propensity of red blood cells to sickle in the renal medulla because of its hypoxic, acidotic, and hyperosmolar conditions. Renal complications and involvement in sickle cell nephropathy (SCN) include altered haemodynamics, hypertrophy, assorted glomerulopathies, chronic kidney disease, acute kidney injury, impaired urinary concentrating ability, distal nephron dysfunction, haematuria, and increased risks of urinary tract infections and renal medullary carcinoma. SCN largely reflects an underlying vasculopathy characterized by cortical hyperperfusion, medullary hypoperfusion, and an increased, stress-induced vasoconstrictive response. Renal involvement is usually more severe in homozygous disease (sickle cell anaemia, HbSS) than in compound heterozygous types of SCD (for example HbSC and HbSβ+-thalassaemia), and is typically mild, albeit prevalent, in the heterozygous state (sickle cell trait, HbAS). Renal involvement contributes substantially to the diminished life expectancy of patients with SCD, accounting for 16–18% of mortality. As improved clinical care promotes survival into adulthood, SCN imposes a growing burden on both individual health and health system costs. This Review addresses the renal manifestations of SCD and focuses on their underlying mechanisms. PMID:25668001

  20. Prevention of shockwave induced functional and morphological alterations: an overview.

    PubMed

    Sarica, Kemal; Yencilek, Faruk

    2008-03-01

    Experimental as well as clinical findings reported in the literature suggest that treatment with shock wave lithotripsy (SWL) causes renal parenchymal damage mainly by generating free radicals through ischaemia/reperfusion injury mechanism. Although SWL-induced renal damage is well tolerated in the majority of healthy cases with no permanent functional and/or morphologic side effects, a subset of patients with certain risk factors requires close attention on this aspect among which the ones with pre-existing renal disorders, urinary tract infection, previous lithotripsy history and solitary kidneys could be mentioned. It is clear that in such patients lowering the number of shock waves (per session) could be beneficial and has been applied by the physicians as the first practical step of diminishing SWL induced parenchymal damage. On the other hand, taking the injurious effects of high energy shock wave (HESW) induced free radical formation on renal parenchyma and subsequent histopathologic alterations into account, physicians searched for some protective agents in an attempt to prevent or at least to limit the extent of the functional as well as the morphologic alterations. Among these agents calcium channel blocking agents (verapamil and nifedipine), antioxidant agents (allopurinol, vitamin E and selenium) and potassium citrate have been used to minimize these adverse effects. Additionally, therapeutic application of these agents on reducing stone recurrence particularly after SWL will gain more importance in the future in order to limit new stone formation in these cases. Lastly, as experimental and clinical studies have demonstrated, combination of anti-oxidants with free radical scavengers may provide superior renal protection against shock wave induced trauma. However, we believe that further investigations are certainly needed to determine the dose-response relationship between the damaging effects of SWL application and the protective role of these agents.

  1. Geometric Alteration of Renal Arteries After Fenestrated Grafting and the Impact on Renal Function.

    PubMed

    Ou, Jiale; Chan, Yiu-Che; Chan, Crystal Yin-Tung; Cheng, Stephen W K

    2017-05-01

    This study aims to investigate the degree of geometric change on renal arteries and its impact on renal function after fenestrated endovascular aortic repair (fEVAR). Twenty-five patients with fEVAR were included. There were 47 renal arteries target vessels, and 43 of these (22 left and 21 right vessels) stented successfully. Their preoperative and first postoperative follow-up computed tomography (CT) images were reconstructed using the Aquarius workstation (TeraRecon, San Mateo, CA, USA). The superior mesenteric artery (SMA) or celiac axis (if SMA was stented) was appointed as reference origin. The longitudinal orientation of a renal artery or a stent was represented by a takeoff angle (ToA) between the renal artery or stent and the distal abdominal aorta. The postoperative stent ToAs were compared with those of preoperative renal arteries. Preoperative and short-term postoperative serum creatinine levels were measured. Renal function impairment was indicated as a >30% or >2.0 mg/dL rise in serum creatinine compared to the preoperative level. The relationship between postoperative renal function impairment and the stent orientation or geometric changes in renal arteries was correlated. The patency rate of renal arteries was 100% at the first postoperative CT review. The average ToAs of both renal arteries were significantly enlarged after stenting (P < 0.05). Seven stent deformations (16.3%) in four patients (16.0%) were observed. They were attributed to caudal misalignment of the fenestrated stent graft (n = 6) or inaccurate graft sizing (n = 1). There was no stent fracture or target vessel loss. Postoperatively, nine patients (36.0%) at day 1 and 10 patients (41.7%) after 3 months suffered the renal function impairment. This was found not to be associated with the stent angulation or angular change of the renal arteries (both P > 0.05). The three patients with stent deformation due to misalignment suffered postoperative renal function impairment and continuing deterioration in renal function. Implanted renal stents could angulate renal arteries more cephalad after fenestrated stenting. Postoperative renal function impairment was not associated with the stent orientation and changes in vessel orientation. Accurate fenestrated alignment is important to maintain stent performance and preserve renal function. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. [Contribution of X-ray computed tomography in the evaluation of kidney performance].

    PubMed

    Lemoine, Sandrine; Rognant, Nicolas; Collet-Benzaquen, Diane; Juillard, Laurent

    2012-07-01

    X-ray computer assisted tomography scanner is an imaging method based on the use of X-ray attenuation in tissue. This attenuation is proportional to the density of the tissue (without or after contrast media injection) in each pixel image of the image. Spiral scanner, the electron beam computed tomography (EBCT) scanner and multidetector computed tomography scanner allow renal anatomical measurements, such as cortical and medullary volume, but also the measurement of renal functional parameters, such as regional renal perfusion, renal blood flow and glomerular filtration rate. These functional parameters are extracted from the modeling of the kinetics of the contrast media concentration in the vascular space and the renal tissue, using two main mathematical models (the gamma variate model and the Patlak model). Renal functional imaging allows measuring quantitative parameters on each kidney separately, in a non-invasive manner, providing significant opportunities in nephrology, both for experimental and clinical studies. However, this method uses contrast media that may alter renal function, thus limiting its use in patients with chronic renal failure. Moreover, the increase irradiation delivered to the patient with multi detector computed tomography (MDCT) should be considered. Copyright © 2011 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  3. Developmental Programming of Renal Function and Re-Programming Approaches.

    PubMed

    Nüsken, Eva; Dötsch, Jörg; Weber, Lutz T; Nüsken, Kai-Dietrich

    2018-01-01

    Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to "re-program" renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin-angiotensin-aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application. Early nutritional concepts with specific modifications in macro- or micronutrients are among the most promising approaches to improve future renal health.

  4. Developmental Programming of Renal Function and Re-Programming Approaches

    PubMed Central

    Nüsken, Eva; Dötsch, Jörg; Weber, Lutz T.; Nüsken, Kai-Dietrich

    2018-01-01

    Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to “re-program” renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin–angiotensin–aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application. Early nutritional concepts with specific modifications in macro- or micronutrients are among the most promising approaches to improve future renal health. PMID:29535992

  5. The effects of furosemide on remal blood flow and cortical perfusion during methoxyflurane and halothane anaesthesia.

    PubMed

    Leighton, K M; Bruce, C; Machin, R

    1976-01-01

    Nephrotoxicity due to methoxyflurane may be due in part to alterations in intra-renal perfusion. Furosemide is believed to alter the intra-renal distribution of blood flow. Studies have been carried out to observe the effects of systemic furosemide administration during methoxyflurane and halothane anaesthesia in normotensive animals and in animals made hypotensive by increasing inspired concentrations of the anaesthetics. During halothane anaesthesia normotensive dogs showed a rise in total renal blood flow during the infusion of furosemide. Hypotensive dogs showed no increase in flow. During methoxyflurane anaesthesia no change in total renal blood flow followed furosemide administration to normotensive animals. Some diminution in total blood flow followed the administration of furosemide in hypotensive dogs during methoxyflurane anaesthesia. In normotensive dogs during halothane anaesthesia there was a significant increase in deep cortical perfusion after furosemide. Furosemide, therefore, is unlikely to mitigate the potential for nephrotoxicity which methoxyflurane possesses. Furthermore, this diuretic may adversely influence renal function when administered during halothane anaesthesia.

  6. Enhanced renal prostaglandin production in the dog. I. Effects on renal function.

    PubMed

    Tannenbaum, J; Splawinski, J A; Oates, J A; Nies, A S

    1975-01-01

    The changes in renal function produced by endogenous synthesis of prostaglandins by the kidney were evaluated by infusing sodium arachidonate, the prescursor of the prostaglandins, into one renal artery of the dog. These changes were compared with those produced by similar infusions on performed prostaglandin (PG) E2 and F2alpha.PGE2given at 0.01-0.3 mug/kg min--1 produced dose-related increases in urine flow, sodium and potassium excretion, free water clearance, and renal blood flow. The glomerular filtration rage increased only at the lowest dose and the calculated filtration fraction fell. Arachidonic acid at 1.0-30.0 mug/kg min--1 similarly produced dose-related increases in electrolyte excretion, but the increase in renal blood flow was much less than that produced by PGE2 and there were no changes in glomerular filtration rate, filtration fraction, or free water clearances. PGF2alpha had essentially no effects at infusion rates of 0.03-1.0 mug/kg min--1. All renal effects of arachidonic acid were inhibited by simultaneous infusions of an inhibitor of prostaglandin synthetase, 5, 8, 11,14-eicosatetraynoic acid (20:4). None of the effects produced by PGE2 were inhibited by 20:4. These results indicate that enhanced endogenous renal prostaglandin synthesis, which can be produced by arachidonate infusion, results in significant alterations of renal function. This finding strengthens the hypothesis that renal prostaglandins formed in vivo have physiological importance as regulators of renal function.

  7. Prevention of methotrexate-induced nephrotoxicity by concomitant administration of garlic aqueous extract in rat.

    PubMed

    Ahmed, Walaa; Zaki, Amr; Nabil, Taghred

    2015-01-01

    Methotrexate (MTX) has been widely used for treatment of cancer and rheumatoid arthritis, but its use has been limited by its nephrotoxicity. This study was carried out to determine whether garlic exerts a protective effect against MTX-induced nephrotoxicity. Nephrotoxicity was induced in rats after a single i.p. injection of MTX (20 mg/kg). Garlic extract (1 mL/100 g b.w.) was given orally for 7 days before and after MTX administration. Serum samples were collected to evaluate urea, creatinine, sodium, phosphorous, potassium, and calcium. Reduced glutathione, catalase, adenosine deaminase, nitric oxide, and malondialdehyde were measured in renal tissue. Tubular injury was evaluated by histopathological examination. MTX increased urea and creatinine levels and led to imbalances in some electrolytes. It also depleted renal antioxidant enzyme levels and increased malondialdehyde, adenosine deaminase, and nitric oxide levels. Histopathological examination showed glomerular and tubular alterations. Pretreatment with garlic significantly improved renal function and increased renal antioxidant enzyme activities. Furthermore, garlic reduced renal oxidative stress and prevented alterations in renal morphology. Garlic treatment has a reversible biochemical and histological effect upon MTX-induced nephrotoxicity.

  8. Etiopathology of chronic tubular, glomerular and renovascular nephropathies: Clinical implications

    PubMed Central

    2011-01-01

    Chronic kidney disease (CKD) comprises a group of pathologies in which the renal excretory function is chronically compromised. Most, but not all, forms of CKD are progressive and irreversible, pathological syndromes that start silently (i.e. no functional alterations are evident), continue through renal dysfunction and ends up in renal failure. At this point, kidney transplant or dialysis (renal replacement therapy, RRT) becomes necessary to prevent death derived from the inability of the kidneys to cleanse the blood and achieve hydroelectrolytic balance. Worldwide, nearly 1.5 million people need RRT, and the incidence of CKD has increased significantly over the last decades. Diabetes and hypertension are among the leading causes of end stage renal disease, although autoimmunity, renal atherosclerosis, certain infections, drugs and toxins, obstruction of the urinary tract, genetic alterations, and other insults may initiate the disease by damaging the glomerular, tubular, vascular or interstitial compartments of the kidneys. In all cases, CKD eventually compromises all these structures and gives rise to a similar phenotype regardless of etiology. This review describes with an integrative approach the pathophysiological process of tubulointerstitial, glomerular and renovascular diseases, and makes emphasis on the key cellular and molecular events involved. It further analyses the key mechanisms leading to a merging phenotype and pathophysiological scenario as etiologically distinct diseases progress. Finally clinical implications and future experimental and therapeutic perspectives are discussed. PMID:21251296

  9. Increased curvature of hollow fiber membranes could up-regulate differential functions of renal tubular cell layers.

    PubMed

    Shen, Chong; Meng, Qin; Zhang, Guoliang

    2013-08-01

    Tissue engineering devices as in vitro cell culture systems in scaffolds has encountered the bottleneck due to their much lower cell functions than real tissues/organs in vivo. Such situation has been improved in some extent by mimicking the cell microenvironments in vivo from either chemical or physical ways. However, microenvironmental curvature, commonly seen in real tissues/organs, has never been manipulated to regulate the cell performance in vitro. In this regard, this paper fabricated polysulfone membranes with or without polyethylene glycol modification to investigate the impact of curvature on two renal tubular cells. Regardless the varying membrane curvatures among hollow fiber membranes of different diameters and flat membrane of zero curvature, both renal cells could well attach at 4 h of seeding and form similar confluent layers at 6 days on each membrane. Nevertheless, the renal cells on hollow fibers, though showing confluent morphology as those on flat membranes, expressed higher renal functions and, moreover, the renal functions significantly increased with the membrane curvature among hollow fibers. Such upregulation on functions was unassociated with mass transport barrier of hollow fibers, because the cultures on lengthwise cut hollow fibers without mass transfer barrier showed same curvature effect on renal functions as whole hollow fibers. It could be proposed that the curvature of hollow fiber membrane approaching to the large curvature in kidney tubules increased the mechanical stress in the renal cells and thus might up-regulate the renal cell functions. In conclusion, the increase of substrate curvature could up-regulate the cell functions without altering the confluent cell morphology and this finding will facilitate the design of functional tissue engineering devices. Copyright © 2013 Wiley Periodicals, Inc.

  10. Neural control of renal function.

    PubMed

    Johns, Edward J; Kopp, Ulla C; DiBona, Gerald F

    2011-04-01

    The kidney is innervated with efferent sympathetic nerve fibers that directly contact the vasculature, the renal tubules, and the juxtaglomerular granular cells. Via specific adrenoceptors, increased efferent renal sympathetic nerve activity decreases renal blood flow and glomerular filtration rate, increases renal tubular sodium and water reabsorption, and increases renin release. Decreased efferent renal sympathetic nerve activity produces opposite functional responses. This integrated system contributes importantly to homeostatic regulation of sodium and water balance under physiological conditions and to pathological alterations in sodium and water balance in disease. The kidney contains afferent sensory nerve fibers that are located primarily in the renal pelvic wall where they sense stretch. Stretch activation of these afferent sensory nerve fibers elicits an inhibitory renorenal reflex response wherein the contralateral kidney exhibits a compensatory natriuresis and diuresis due to diminished efferent renal sympathetic nerve activity. The renorenal reflex coordinates the excretory function of the two kidneys so as to facilitate homeostatic regulation of sodium and water balance. There is a negative feedback loop in which efferent renal sympathetic nerve activity facilitates increases in afferent renal nerve activity that in turn inhibit efferent renal sympathetic nerve activity so as to avoid excess renal sodium retention. In states of renal disease or injury, there is activation of afferent sensory nerve fibers that are excitatory, leading to increased peripheral sympathetic nerve activity, vasoconstriction, and increased arterial pressure. Proof of principle studies in essential hypertensive patients demonstrate that renal denervation produces sustained decreases in arterial pressure. © 2011 American Physiological Society. Compr Physiol 1:699-729, 2011.

  11. Angiotensin converting enzyme inhibitors and aortic arch obstructive malformations.

    PubMed

    Maliheh, Kadivar; Abdorrazagh, Kiani; Armen, Kocharian; Reza, Shabanian

    2006-10-01

    We describe two newborn infants with aortic arch obstructive malformations who became anuric after initiation of captopril. Since angiotensin converting enzyme inhibitors can alter renal blood flow by reduction in angiotensin II and blocking autoregulation phenomenon, it is important to use them with great caution in neonates with aortic arch obstructive malformations, while monitoring their renal function closely.

  12. Frequency response of the renal vasculature in congestive heart failure.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2003-04-29

    The renal vasoconstrictor response to renal nerve stimulation is greater in congestive heart failure (CHF) rats than in control rats. This study tested the hypothesis that the enhanced renal vasoconstrictor response to renal nerve stimulation in CHF is a result of an impairment in the low-pass filter function of the renal vasculature. In response to conventional graded-frequency renal nerve stimulation, the reductions in renal blood flow at each stimulation frequency were greater in CHF rats than control rats. A pseudorandom binary sequence pattern of renal nerve stimulation was used to examine the frequency response of the renal vasculature. Although this did not affect the renal blood flow power spectrum in control rats, there was a 10-fold increase in renal blood flow power over the frequency range of 0.01 to 1.0 Hz in CHF rats. On analysis of transfer function gain, attenuation of the renal nerve stimulation input signal was similar in control and CHF rats over the frequency range of 0.001 to 0.1 Hz. However, over the frequency range of 0.1 to 1.0 Hz, although there was progressive attenuation of the input signal (-30 to -70 dB) in control rats, CHF rats exhibited a flat gain response (-20 dB) without progressive attenuation. The enhanced renal vasoconstrictor response to renal nerve stimulation in CHF rats is caused by an alteration in the low-pass filter function of the renal vasculature, resulting in a greater transfer of input signals into renal blood flow in the 0.1 to 1.0 Hz range.

  13. Cobalt treatment does not prevent glomerular morphological alterations in type 1 diabetic rats.

    PubMed

    Singh, Gaaminepreet; Krishan, Pawan

    2018-06-02

    Early renal morphological alterations including glomerular hypertrophy and mesangial expansion occur in diabetic kidney disease and correlate with various clinical manifestations of diabetes. The present study was designed to investigate the influence of pharmacological modulation of HIF-1α (hypoxia inducible factor-1 alpha) protein levels, on these glomerular changes in rodent model of type 1 diabetes. Male wistar rats were made diabetic (Streptozotocin 45 mg/kg; i.p.) and afterwards treated with HIF activator cobalt chloride for 4 weeks. Renal function was assessed by serum creatinine, albumin, proteinuria levels, oxidative stress: reduced glutathione levels and catalase activity, and renal tissue HIF-1α protein levels were determined by ELISA assay. Histological analysis of kidney sections was done by haematoxylin and eosin (glomeruli diameter), periodic acid Schiff (mesangial expansion and glomerulosclerosis) and sirius red (fibrosis, tubular dilation) staining. Diabetes rats displayed reduced serum albumin levels, marked proteinuria, lower kidney reduced glutathione content, glomerular hypertrophy, glomerulosclerosis, mesangial expansion, tubular dilation and renal fibrosis. Cobalt chloride treatment normalised renal HIF-1α protein levels, reduced development of proteinuria and tubulo-interstitial fibrosis, but the glomerular morphological alterations such as glomerulosclerosis, mesangial expansion, increased glomerular diameter and tubular vacoulations were not abrogated in diabetic kidneys. Glomerular morphological abnormalities might precede the development of proteinuria and renal fibrosis in experimental model of type 1 diabetes. Pharmacological modulation of renal HIF-1α protein levels does not influence glomerular and tubular dilatory changes in diabetic kidney disease.

  14. Functional significance of the pattern of renal sympathetic nerve activation.

    PubMed

    Dibona, G F; Sawin, L L

    1999-08-01

    To assess the renal functional significance of the pattern of renal sympathetic nerve activation, computer-generated stimulus patterns (delivered at constant integrated voltage) were applied to the decentralized renal sympathetic nerve bundle and renal hemodynamic and excretory responses determined in anesthetized rats. When delivered at the same integrated voltage, stimulus patterns resembling those observed in in vivo multifiber recordings of renal sympathetic nerve activity (diamond-wave patterns) produced greater renal vasoconstrictor responses than conventional square-wave patterns. Within diamond-wave patterns, increasing integrated voltage by increasing amplitude produced twofold greater renal vasoconstrictor responses than by increasing duration. With similar integrated voltages that were subthreshold for renal vasoconstriction, neither diamond- nor square-wave pattern altered glomerular filtration rate, whereas diamond- but not square-wave pattern reversibly decreased urinary sodium excretion by 25 +/- 3%. At the same number of pulses per second, intermittent stimulation produced faster and greater renal vasoconstriction than continuous stimulation. At the same number of pulses per second, increases in rest period during intermittent stimulation proportionally augmented the renal vasoconstrictor response compared with that observed with continuous stimulation; the maximum augmentation of 55% occurred at a rest period of 500 ms. These results indicate that the pattern of renal sympathetic nerve stimulation (activity) significantly influences the rapidity, magnitude, and selectivity of the renal vascular and tubular responses.

  15. Changes in leucocyte migration after renal transplantation

    PubMed Central

    Smith, M. G. M.; Eddleston, A. L. W. F.; Dominguez, J. A.; Evans, D. B.; Bewick, M.; Williams, Roger

    1969-01-01

    The leucocyte migration test, an in-vitro measure of cellular immunity, has been used to follow the changes in cell-mediated hypersensitivity to kidney and histocompatibility antigens in three patients after renal transplantation. Inhibition of leucocyte migration, indicating strong sensitization to the antigens used, occurred in each patient, starting five to seven days after transplantation. Satisfactory renal function had not been established in any of the patients at this time. In one case inhibition of leucocyte migration persisted almost continuously until the 24th day and was associated with poor renal function proved histologically to be due to rejection. Treatment with increased dosage of prednisone was associated with a rapid reversion to normal of the migration index and improvement in renal function. Later, inhibition of migration occurred again, and shortly afterwards the graft ceased to function. In the other two cases the migration index became normal without alteration in immunosuppressive therapy and a satisfactory diuresis followed. It is suggested that this simple test should prove useful in the specific diagnosis of rejection and in control of immunosuppressive therapy. ImagesFig. 3Fig. 4 PMID:4899455

  16. The kidney in the pathogenesis of hypertension: the role of renal nerves.

    PubMed

    DiBona, G F

    1985-04-01

    The intrinsic efferent innervation of the kidney consists of exclusively noradrenergic fibers that innervate the preglomerular and postgomerular vasculature, all elements of the juxtagomerular apparatus and virtually all segments of the nephron in both cortical and medullo-papillary regions. Increases in efferent renal sympathetic nerve activity produce renal vasoconstriction, release of renin, catecholamines, prostaglandins and other vasoactive substances, and increases in renal tubular sodium reabsorption; these responses are graded and differentiated. The intrinsic afferent innervation of the kidney consists of mechanoreceptors and chemoreceptors which participate in reno-renal and reno-systemic reflexes that modulate sympathetic neural outflow in an organ-specific differentiated pattern. Therefore, alterations in efferent and afferent renal nerve activity produce changes in several important renal functions known to contribute to the development and maintenance of hypertension.

  17. [Impact of end-stage renal disease and kidney transplantation on the reproductive system].

    PubMed

    Delesalle, A-S; Robin, G; Provôt, F; Dewailly, D; Leroy-Billiard, M; Peigné, M

    2015-01-01

    Chronic renal failure leads to many metabolic disorders affecting reproductive function. For men, hypergonadotropic hypogonadism, hyperprolactinemia, spermatic alterations, decreased libido and erectile dysfunction are described. Kidney transplantation improves sperm parameters and hormonal function within 2 years. But sperm alterations may persist with the use of immunosuppressive drugs. In women, hypothalamic-pituitary-ovarian axis dysfunction due to chronic renal failure results in menstrual irregularities, anovulation and infertility. After kidney transplantation, regular menstruations usually start 1 to 12 months after transplantation. Fertility can be restored but luteal insufficiency can persist. Moreover, 4 to 20% of women with renal transplantation suffer from premature ovarian failure syndrome. In some cases, assisted reproductive technologies can be required and imply risks of ovarian hyperstimulation syndrome and must be performed with caution. Pregnancy risks for mother, fetus and transplant are added to assisted reproductive technologies ones. Only 7 authors have described assisted reproductive technologies for patients with kidney transplantation. No cases of haemodialysis patients have been described yet. So, assisted reproductive technologies management requires a multidisciplinary approach with obstetrics, nephrology and reproductive medicine teams' agreement. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Cyclic adenosine monophosphate modulates cell morphology and behavior of a cultured renal epithelial.

    PubMed

    Amsler, K

    1990-07-01

    The role of cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) in modulating functions of differentiated renal cells is well established. Its importance in controlling their growth and differentiation is less clear. We have used somatic cell genetic techniques to probe the role of PKA in controlling morphology and behavior of a renal epithelial cell line, LLC-PK1, which acquires many properties characteristic of the renal proximal tubular cell. Mutants of this line altered in PKA activity have been isolated and their behavior compared to that of the parent line. The results indicate that PKA is involved, either directly or indirectly, in maintenance of cell morphology, cell-cell and cell-substratum interactions, density-dependent growth regulation, and expression of one function characteristic of the renal proximal tubular cell, Na-hexose symport. The relevance of these results to the role of PKA in controlling growth and differentiation of renal epithelial cells in vivo is discussed.

  19. Mild zinc deficiency in male and female rats: early postnatal alterations in renal nitric oxide system and morphology.

    PubMed

    Tomat, Analia Lorena; Veiras, Luciana Cecilia; Aguirre, Sofía; Fasoli, Héctor; Elesgaray, Rosana; Caniffi, Carolina; Costa, María Ángeles; Arranz, Cristina Teresa

    2013-03-01

    Fetal and postnatal zinc deficiencies induce an increase in arterial blood pressure and impair renal function in male adult rats. We therefore hypothesized that these renal alterations are present in early stages of life and that there are sexual differences in the adaptations to this nutritional injury. The aim was to study the effects of moderate zinc deficiency during fetal life and lactation on renal morphology, oxidative stress, apoptosis, and the nitric oxide system in male and female rats at 21 d of life. Female Wistar rats received low (8 ppm) or control (30 ppm) zinc diets from the beginning of pregnancy to weaning. Glomerulus number, morphology, oxidative stress, apoptotic cells, nitric oxide synthase activity, and protein expression were evaluated in the kidneys of offspring at 21 d. Zinc deficiency decreased the nephron number, induced glomerular hypertrophy, increased oxidative damage, and decreased nitric oxide synthase activity in the male and female rat kidneys. Nitric oxide synthase activity was not affected by inhibitors of the neuronal or inducible isoforms, so nitric oxide was mainly generated by the endothelial isoenzyme. Gender differences were observed in glomerular areas and antioxidant enzyme activities. Zinc deficiency during fetal life and lactation induces an early decrease in renal functional units, associated with a decrease in nitric oxide activity and an increase in oxidative stress, which would contribute to increased arterial blood pressure and renal dysfunction in adulthood. The sexual differences observed in this model may explain the dissimilar development of hypertension and renal diseases in adult life. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Diabetes-Induced Decrease in Renal Oxygen Tension: Effects of an Altered Metabolism

    NASA Astrophysics Data System (ADS)

    Palm, Fredrik; Carlsson, Per-Ola; Fasching, Angelica; Hansell, Peter; Liss, Per

    During conditions with experimental diabetes mellitus, it is evident that several alterations in renal oxygen metabolism occur, including increased mitochondrial respiration and increased lactate accumulation in the renal tissue. Consequently, these alterations will contribute to decrease the interstitial pO2, preferentially in the renal medulla of animals with sustained long-term hyperglycemia.

  1. Effect of endogenous angiotensin II on the frequency response of the renal vasculature.

    PubMed

    Dibona, Gerald F; Sawin, Linda L

    2004-12-01

    The renal vasculature functions as an efficient low-pass filter of the multiple frequencies contained within renal sympathetic nerve activity. This study examined the effect of angiotensin II on the frequency response of the renal vasculature. Physiological changes in the activity of the endogenous renin-angiotensin system were produced by alterations in dietary sodium intake. The frequency response of the renal vasculature was evaluated using pseudorandom binary sequence renal nerve stimulation, and the role of angiotensin II was evaluated by the administration of the angiotensin II AT(1)-receptor antagonist losartan. In low-sodium-diet rats with increased renin-angiotensin system activity, losartan steepened the renal vascular frequency response (i.e., greater attenuation); this was not seen in normal- or high-sodium-diet rats with normal or decreased renin-angiotensin system activity. Analysis of the transfer function from arterial pressure to renal blood flow, i.e., dynamic autoregulation, showed that the tubuloglomerular feedback but not the myogenic component was enhanced in low- and normal- but not in high-sodium-diet rats and that this was reversed by losartan administration. Thus physiological increases in endogenous renin-angiotensin activity inhibit the renal vascular frequency response to renal nerve stimulation while selectively enhancing the tubuloglomerular feedback component of dynamic autoregulation of renal blood flow.

  2. Alteration of renal excretion pathways in gentamicin-induced renal injury in rats.

    PubMed

    Ma, Yan-Rong; Luo, Xuan; Wu, Yan-Fang; Zhang, Tiffany; Zhang, Fan; Zhang, Guo-Qiang; Wu, Xin-An

    2018-07-01

    The kidney plays a major part in the elimination of many drugs and their metabolites, and drug-induced kidney injury commonly alters either glomerular filtration or tubular transport, or both. However, the renal excretion pathway of drugs has not been fully elucidated at different stages of renal injury. This study aimed to evaluate the alteration of renal excretion pathways in gentamicin (GEN)-induced renal injury in rats. Results showed that serum cystatin C, creatinine and urea nitrogen levels were greatly increased by the exposure of GEN (100 mg kg -1 ), and creatinine concentration was increased by 39.7% by GEN (50 mg kg -1 ). GEN dose-dependently upregulated the protein expression of rOCT1, downregulated rOCT2 and rOAT1, but not affected rOAT2. Efflux transporters, rMRP2, rMRP4 and rBCRP expressions were significantly increased by GEN(100), and the rMATE1 level was markedly increased by GEN(50) but decreased by GEN(100). GEN(50) did not alter the urinary excretion of inulin, but increased metformin and furosemide excretion. However, GEN(100) resulted in a significant decrease of the urinary excretion of inulin, metformin and p-aminohippurate. In addition, urinary metformin excretions in vivo were significantly decreased by GEN(100), but slightly increased by GEN(50). These results suggested that GEN(50) resulted in the induction of rOCTs-rMATE1 and rOAT3-rMRPs pathway, but not changed the glomerular filtration rate, and GEN(100)-induced acute kidney injury caused the downregulated function of glomerular filtration -rOCTs-rMATE1 and -rOAT1-rMRPs pathway. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Dynamic Contrast-Enhanced Ultrasound Identifies Microcirculatory Alterations in Sepsis-Induced Acute Kidney Injury.

    PubMed

    Lima, Alexandre; van Rooij, Tom; Ergin, Bulent; Sorelli, Michele; Ince, Yasin; Specht, Patricia A C; Mik, Egbert G; Bocchi, Leonardo; Kooiman, Klazina; de Jong, Nico; Ince, Can

    2018-05-15

    We developed quantitative methods to analyze microbubble kinetics based on renal contrast-enhanced ultrasound imaging combined with measurements of sublingual microcirculation on a fixed area to quantify early microvascular alterations in sepsis-induced acute kidney injury. Prospective controlled animal experiment study. Hospital-affiliated animal research institution. Fifteen female pigs. The animals were instrumented with a renal artery flow probe after surgically exposing the kidney. Nine animals were given IV infusion of lipopolysaccharide to induce septic shock, and six were used as controls. Contrast-enhanced ultrasound imaging was performed on the kidney before, during, and after having induced shock. Sublingual microcirculation was measured continuously using the Cytocam on the same spot. Contrast-enhanced ultrasound effectively allowed us to develop new analytical methods to measure dynamic variations in renal microvascular perfusion during shock and resuscitation. Renal microvascular hypoperfusion was quantified by decreased peak enhancement and an increased ratio of the final plateau intensity to peak enhancement. Reduced intrarenal blood flow could be estimated by measuring the microbubble transit times between the interlobar arteries and capillary vessels in the renal cortex. Sublingual microcirculation measured using the Cytocam in a fixed area showed decreased functional capillary density associated with plugged sublingual capillary vessels that persisted during and after fluid resuscitation. In our lipopolysaccharide model, with resuscitation targeted at blood pressure, the contrast-enhanced ultrasound imaging can identify renal microvascular alterations by showing prolonged contrast enhancement in microcirculation during shock, worsened by resuscitation with fluids. Concomitant analysis of sublingual microcirculation mirrored those observed in the renal microcirculation.

  4. Hypertension and Hyperglycemia Synergize to Cause Incipient Renal Tubular Alterations Resulting in Increased NGAL Urinary Excretion in Rats

    PubMed Central

    Blázquez-Medela, Ana M.; García-Sánchez, Omar; Blanco-Gozalo, Víctor; Quiros, Yaremi; Montero, María J.; Martínez-Salgado, Carlos; López-Novoa, José M.; López-Hernández, Francisco J.

    2014-01-01

    Background Hypertension and diabetes are the two leading causes of chronic kidney disease (CKD) eventually leading to end stage renal disease (ESRD) and the need of renal replacement therapy. Mortality among CKD and ESRD patients is high, mostly due to cardiovascular events. New early markers of risk are necessary to better anticipate the course of the disease, to detect the renal affection of additive risk factors, and to appropriately handle patients in a pre-emptive and personalized manner. Methods Renal function and NGAL urinary excretion was monitored in rats with spontaneous (SHR) or L-NAME induced hypertension rendered hyperglycemic (or not as controls). Results Combination of hypertension and hyperglycemia (but not each of these factors independently) causes an increased urinary excretion of neutrophil gelatinase-associated lipocalin (NGAL) in the rat, in the absence of signs of renal damage. Increased NGAL excretion is observed in diabetic animals with two independent models of hypertension. Elevated urinary NGAL results from a specific alteration in its tubular handling, rather than from an increase in its renal expression. In fact, when kidneys of hyperglycaemic-hypertensive rats are perfused in situ with Krebs-dextran solution containing exogenous NGAL, they excrete more NGAL in the urine than hypertensive rats. We also show that albuminuria is not capable of detecting the additive effect posed by the coexistence of these two risk factors. Conclusions Our results suggest that accumulation of hypertension and hyperglycemia induces an incipient and quite specific alteration in the tubular handling of NGAL resulting in its increased urinary excretion. PMID:25148248

  5. Hypertension and hyperglycemia synergize to cause incipient renal tubular alterations resulting in increased NGAL urinary excretion in rats.

    PubMed

    Blázquez-Medela, Ana M; García-Sánchez, Omar; Blanco-Gozalo, Víctor; Quiros, Yaremi; Montero, María J; Martínez-Salgado, Carlos; López-Novoa, José M; López-Hernández, Francisco J

    2014-01-01

    Hypertension and diabetes are the two leading causes of chronic kidney disease (CKD) eventually leading to end stage renal disease (ESRD) and the need of renal replacement therapy. Mortality among CKD and ESRD patients is high, mostly due to cardiovascular events. New early markers of risk are necessary to better anticipate the course of the disease, to detect the renal affection of additive risk factors, and to appropriately handle patients in a pre-emptive and personalized manner. Renal function and NGAL urinary excretion was monitored in rats with spontaneous (SHR) or L-NAME induced hypertension rendered hyperglycemic (or not as controls). Combination of hypertension and hyperglycemia (but not each of these factors independently) causes an increased urinary excretion of neutrophil gelatinase-associated lipocalin (NGAL) in the rat, in the absence of signs of renal damage. Increased NGAL excretion is observed in diabetic animals with two independent models of hypertension. Elevated urinary NGAL results from a specific alteration in its tubular handling, rather than from an increase in its renal expression. In fact, when kidneys of hyperglycaemic-hypertensive rats are perfused in situ with Krebs-dextran solution containing exogenous NGAL, they excrete more NGAL in the urine than hypertensive rats. We also show that albuminuria is not capable of detecting the additive effect posed by the coexistence of these two risk factors. Our results suggest that accumulation of hypertension and hyperglycemia induces an incipient and quite specific alteration in the tubular handling of NGAL resulting in its increased urinary excretion.

  6. Experimental drug-induced changes in renal function and biodistribution of /sup 99m/Tc-MDP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAfee, J.G.; Singh, A.; Roskopf, M.

    Increased renal uptake of /sup 99m/Tc methylene diphosphonate (MDP) was observed irregularly in rats after methotrexate, vincristine or gentamicin, administered separately. Cisplatin regularly induced a dose-related increased MDP uptake which correlated with the degree of tubular damage histologically. The augmented MDP renal uptake was not consistently accompanied by a decreased clearance of simultaneously injected I-131 Hippuran, particularly at lower drug dose levels. This observation agreed with previous evidence that the mechanisms of tubular transport of diphosphonates and organic acids like Hippuran are different. At higher dose levels, the augmented MDP uptake was accompanied by increased renal calcium, hypophosphatemia, elevated serummore » urea nitrogen and creatinine, and only occasional, mild hypercalcemia. The magnitude of the increased renal uptake of MDP observed could not be explained by alterations in iron metabolism or by dehydration. Drug-induced renal retention of MDP by a factor of 2 or more above normal appears to be a useful indicator of tubular damage when other parameters of renal function are sometimes normal.« less

  7. The role of sympathetic nervous system in the progression of chronic kidney disease in the era of catheter based sympathetic renal denervation.

    PubMed

    Petras, Dimitrios; Koutroutsos, Konstantinos; Kordalis, Athanasios; Tsioufis, Costas; Stefanadis, Christodoulos

    2013-08-01

    The kidney has been shown to be critically involved as both trigger and target of sympathetic nervous system overactivity in both experimental and clinical studies. Renal injury and ischemia, activation of renin angiotensin system and dysfunction of nitric oxide system have been implicated in adrenergic activation from kidney. Conversely, several lines of evidence suggest that sympathetic overactivity, through functional and morphological alterations in renal physiology and structure, may contribute to kidney injury and chronic kidney disease progression. Pharmacologic modulation of sympathetic nervous system activity has been found to have a blood pressure independent renoprotective effect. The inadequate normalization of sympathoexcitation by pharmacologic treatment asks for novel treatment options. Catheter based renal denervation targets selectively both efferent and afferent renal nerves and functionally denervates the kidney providing blood pressure reduction in clinical trials and renoprotection in experimental models by ameliorating the effects of excessive renal sympathetic drive. This review will focus on the role of sympathetic overactivity in the pathogenesis of kidney injury and CKD progression and will speculate on the effect of renal denervation to these conditions.

  8. Hyperammonemia associated with distal renal tubular acidosis or urinary tract infection: a systematic review.

    PubMed

    Clericetti, Caterina M; Milani, Gregorio P; Lava, Sebastiano A G; Bianchetti, Mario G; Simonetti, Giacomo D; Giannini, Olivier

    2018-03-01

    Hyperammonemia usually results from an inborn error of metabolism or from an advanced liver disease. Individual case reports suggest that both distal renal tubular acidosis and urinary tract infection may also result in hyperammonemia. A systematic review of the literature on hyperammonemia secondary to distal renal tubular acidosis and urinary tract infection was conducted. We identified 39 reports on distal renal tubular acidosis or urinary tract infections in association with hyperammonemia published between 1980 and 2017. Hyperammonemia was detected in 13 children with distal renal tubular acidosis and in one adult patient with distal renal tubular acidosis secondary to primary hyperparathyroidism. In these patients a negative relationship was observed between circulating ammonia and bicarbonate levels (P < 0.05). In 31 patients (19 children, 12 adults), an acute urinary tract infection was complicated by acute hyperammonemia and symptoms and signs of acute neuronal dysfunction, such as an altered level of consciousness, convulsions and asterixis, often associated with signs of brain edema, such as anorexia and vomiting. Urea-splitting bacteria were isolated in 28 of the 31 cases. The urinary tract was anatomically or functionally abnormal in 30 of these patients. This study reveals that both altered distal renal tubular acidification and urinary tract infection may be associated with relevant hyperammonemia in both children and adults.

  9. Effects of N-acetyl-L-cysteine on redox status and markers of renal function in mice inoculated with Bothrops jararaca and Crotalus durissus terrificus venoms.

    PubMed

    Barone, Juliana Marton; Frezzatti, Rodrigo; Silveira, Paulo Flavio

    2014-03-01

    Renal dysfunction is an important aggravating factor in accidents caused by Crotalus durissus terrificus (Cdt) and Bothrops jararaca (Bj) bites. N-acetyl-l-cysteine (NAC) is well known as a nephroprotective antioxidant with low toxicity. The present study investigated the effects of NAC on redox status and markers of renal function in mice that received vehicle (controls) or venoms (v) of Cdt and Bj. In controls NAC promoted hypercreatinemia, hypouremia, hyperosmolality with decreased urea in urine, hyperproteinuria, decreased protein and increased dipeptidyl peptidase IV (DPPIV) in membrane-bound fraction (MF) from renal cortex (RC) and medulla (RM). NAC ameliorated or normalized altered creatinuria, proteinemia and aminopeptidase (AP) acid in MF, AP basic (APB) in soluble fraction (SF), and neutral AP in SF and MF from RC and RM in vBj envenomation. NAC ameliorated or normalized altered neutral AP in SF from RC and RM, and DPPIV and protein in MF from RC in vCdt envenomation. NAC ameliorated or restored renal redox status respectively in vCdt and vBj, and normalized uricemia in both envenomations. These data are promising perspectives that recommend the clinical evaluation of NAC as potential coadjuvant in the anti venom serotherapy for accidents with these snake's genera. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Aging is Associated with Impaired Renal Function, INF-gamma Induced Inflammation and with Alterations in Iron Regulatory Proteins Gene Expression.

    PubMed

    Costa, Elísio; Fernandes, João; Ribeiro, Sandra; Sereno, José; Garrido, Patrícia; Rocha-Pereira, Petronila; Coimbra, Susana; Catarino, Cristina; Belo, Luís; Bronze-da-Rocha, Elsa; Vala, Helena; Alves, Rui; Reis, Flávio; Santos-Silva, Alice

    2014-12-01

    Our aim was to contribute to a better understanding of the pathophysiology of anemia in elderly, by studying how aging affects renal function, iron metabolism, erythropoiesis and the inflammatory response, using an experimental animal model. The study was performed in male Wistar, a group of young rats with 2 months age and an old one with 18 months age. Old rats presented a significant higher urea, creatinine, interferon (INF)-gamma, ferritin and soluble transferrin receptor serum levels, as well as increased counts of reticulocytes and RDW. In addition, these rats showed significant lower erythropoietin (EPO) and iron serum levels. Concerning gene expression of iron regulatory proteins, old rats presented significantly higher mRNA levels of hepcidin (Hamp), transferrin (TF), transferrin receptor 2 (TfR2) and hemojuvelin (HJV); divalent metal transporter 1 (DMT1) mRNA levels were significantly higher in duodenal tissue; EPO gene expression was significantly higher in liver and lower in kidney, and the expression of the EPOR was significantly higher in both liver and kidney. Our results showed that aging is associated with impaired renal function, which could be in turn related with the inflammatory process and with a decline in EPO renal production. Moreover, we also propose that aging may be associated with INF-gamma-induced inflammation and with alterations upon iron regulatory proteins gene expression.

  11. The Putative Role of the Antiageing Protein Klotho in Cardiovascular and Renal Disease

    PubMed Central

    Maltese, Giuseppe; Karalliedde, Janaka

    2012-01-01

    Ageing is a multifactorial process often characterized by a progressive decline in physiological function(s). Ageing can and is often associated with an increased incidence of cardiovascular and renal disease. Klotho is a novel antiageing gene that encodes a protein with multiple pleiotropic functions including an emerging role in cardiorenal disease. Mice deficient for this gene display a phenotype of premature human ageing characterized by diffuse vascular calcification, altered calcium/phosphate metabolism, and shortened lifespan. Klotho is mainly expressed in the renal tubules but it also exists as circulating soluble form detectable in the blood, with systemic effects. Reduction in soluble Klotho has been associated with renal disease, hyperphosphataemia, increased oxidative stress, endothelial dysfunction, and diffuse vascular calcification. Conversely, overexpression of Klotho promotes cardiovascular-renal protection. The majority of the research on Klotho has been conducted in vitro and in animal studies but there is emerging data from human studies which suggest that Klotho may be a modifiable factor involved in the pathogenesis of cardiovascular and renal disease in at-risk populations. Further data is required to confirm if this novel protein can emerge as therapeutic tool that may be used to prevent or slow progression of cardiorenal disease. PMID:22121479

  12. Tight Junction Proteins and Oxidative Stress in Heavy Metals-Induced Nephrotoxicity

    PubMed Central

    Reyes, José L.; Molina-Jijón, Eduardo; Rodríguez-Muñoz, Rafael; Bautista-García, Pablo; Debray-García, Yazmin; Namorado, María del Carmen

    2013-01-01

    Kidney is a target organ for heavy metals. They accumulate in several segments of the nephron and cause profound alterations in morphology and function. Acute intoxication frequently causes acute renal failure. The effects of chronic exposure have not been fully disclosed. In recent years increasing awareness of the consequences of their presence in the kidney has evolved. In this review we focus on the alterations induced by heavy metals on the intercellular junctions of the kidney. We describe that in addition to the proximal tubule, which has been recognized as the main site of accumulation and injury, other segments of the nephron, such as glomeruli, vessels, and distal nephron, show also deleterious effects. We also emphasize the participation of oxidative stress as a relevant component of the renal damage induced by heavy metals and the beneficial effect that some antioxidant drugs, such as vitamin A (all-trans-retinoic acid) and vitamin E (α-tocopherol), depict on the morphological and functional alterations induced by heavy metals. PMID:23710457

  13. Morphologic and functional alterations induced by low doses of mercuric chloride in the kidney OK cell line: ultrastructural evidence for an apoptotic mechanism of damage.

    PubMed

    Carranza-Rosales, Pilar; Said-Fernández, Salvador; Sepúlveda-Saavedra, Julio; Cruz-Vega, Delia E; Gandolfi, A Jay

    2005-06-01

    Mercury produces acute renal failure in experimental animal models, but the mechanism of tubular injury has not completely been clarified. There is an increased interest in the role of apoptosis in the pathogenesis of renal diseases that result primarily from injury to renal tubular epithelial cells. However, detailed studies of morpho-functional alterations induced by mercuric chloride in kidney cell lines are scarce. This work characterizes these alterations in OK cell cultures. Morphological alterations were profiled using light microscopy, transmission electron microscopy, and confocal microscopy, as well as mitochondrial functional assays in the cells exposed to low concentrations of HgCl2. At concentrations of 1 and 10 microM of HgCl2 there were no morphological or ultrastructural alterations, but the mitochondrial function (MTT assay) and intracellular ATP content was increased, especially at longer incubation times (6 and 9 h). At 15 microM HgCl2, both the mitochondrial activity and the endogenous ATP decreased significantly. At this concentration the OK cells rounded up, had increased number of cytoplasmic vacuoles, and detached from the cell monolayer. At 15 microM HgCl2 ultrastructural changes were characterized by dispersion of the ribosomes, dilatation of the cisterns of the rough endoplasmic reticulum, increase of number of cytoplasmic vacuoles, chromatin condensation, invaginations of the nuclear envelope, presence of cytoplasmic inclusion bodies, and alterations in the size and morphology of mitochondria. At 15 microM HgCl2 apoptotic signs included membrane blebbing, chromatin condensation, mitochondrial alterations, apoptotic bodies, and nuclear envelope rupture. Using confocal microscopy and the mitochondrial specific dye MitoTracker Red, it was possible to establish qualitative changes induced by mercury on the mitochondrial membrane potential after incubation of the cells for 6 and 9h with 15 microM HgCl2. This effect was not observed at short times (1 and 3h) with this same concentration, neither with 1 and 10 microM HgCl2 in all the studied times. Taken together, these findings indicate that low concentrations of HgCl2 induce apoptosis by inhibiting mitochondrial function, and the OK cell line may be considered a useful tool for the study of programmed cell death involving mercurial species and other heavy metals.

  14. Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis.

    PubMed

    Ishikawa, Ken; Calzavacca, Paolo; Bellomo, Rinaldo; Bailey, Michael; May, Clive N

    2012-08-01

    Nitric oxide plays an important role in the control of renal blood flow and renal function. In sepsis, increased levels of inducible nitric oxide synthase produce excessive nitric oxide, which may contribute to the development of acute kidney injury. We, therefore, examined the effects of intrarenal infusion of selective inducible nitric oxide synthase inhibitors in a large animal model of hyperdynamic sepsis in which acute kidney injury occurs in the presence of increased renal blood flow. Prospective crossover randomized controlled interventional studies. University-affiliated research institute. Twelve unilaterally nephrectomized Merino ewes. Infusion of a selective (1400W) and a partially selective inducible nitric oxide synthase inhibitor (aminoguanidine) into the renal artery for 2 hrs after the induction of sepsis, and comparison with a nonselective inhibitor (Nω-nitro-L-arginine methyl ester). In sheep with nonhypotensive hyperdynamic sepsis, creatinine clearance halved (32 to 16 mL/min, ratio [95% confidence interval] 0.51 [0.28-0.92]) despite increased renal blood flow (241 to 343 mL/min, difference [95% confidence interval] 102 [78-126]). Infusion of 1400W did not change renal blood flow, urine output, or creatinine clearance, whereas infusion of Nω-nitro-L-arginine methyl ester and a high dose of aminoguanidine normalized renal blood flow, but did not alter creatinine clearance. In hyperdynamic sepsis, intrarenal infusion of a highly selective inducible nitric oxide synthase inhibitor did not reduce the elevated renal blood flow or improve renal function. In contrast, renal blood flow was reduced by infusion of a nonselective NOS inhibitor or a high dose of a partially selective inducible nitric oxide synthase inhibitor. The renal vasodilatation in septic acute kidney injury may be due to nitric oxide derived from the endothelial and neural isoforms of nitric oxide synthase, but their blockade did not restore renal function.

  15. Cardiac and renal function in a large cohort of amateur marathon runners.

    PubMed

    Hewing, Bernd; Schattke, Sebastian; Spethmann, Sebastian; Sanad, Wasiem; Schroeckh, Sabrina; Schimke, Ingolf; Halleck, Fabian; Peters, Harm; Brechtel, Lars; Lock, Jürgen; Baumann, Gert; Dreger, Henryk; Borges, Adrian C; Knebel, Fabian

    2015-03-21

    Participation of amateur runners in endurance races continues to increase. Previous studies of marathon runners have raised concerns about exercise-induced myocardial and renal dysfunction and damage. In our pooled analysis, we aimed to characterize changes of cardiac and renal function after marathon running in a large cohort of mostly elderly amateur marathon runners. A total of 167 participants of the Berlin-Marathon (female n = 89, male n = 78; age = 50.3 ± 11.4 years) were included and cardiac and renal function was analyzed prior to, immediately after and 2 weeks following the race by echocardiography and blood tests (including cardiac troponin T, NT-proBNP and cystatin C). Among the runners, 58% exhibited a significant increase in cardiac biomarkers after completion of the marathon. Overall, the changes in echocardiographic parameters for systolic or diastolic left and right ventricular function did not indicate relevant myocardial dysfunction. Notably, 30% of all participants showed >25% decrease in cystatin C-estimated glomerular filtration rate (GFR) from baseline directly after the marathon; in 8%, we observed a decline of more than 50%. All cardiac and renal parameters returned to baseline ranges within 2 weeks after the marathon. The increase in cardiac biomarkers after completing a marathon was not accompanied by relevant cardiac dysfunction as assessed by echocardiography. After the race, a high proportion of runners experienced a decrease in cystatin C-estimated GFR, which is suggestive of transient, exercise-related alteration of renal function. However, we did not observe persistent detrimental effects on renal function.

  16. Prostaglandins and nonsteroidal anti-inflammatory drugs. Effects on renal hemodynamics.

    PubMed

    DiBona, G F

    1986-01-17

    Renal prostaglandins are important modulators of renal hemodynamic function. Their synthesis from arachidonic acid precursor is regulated by neurohumoral vasoactive substances as well as by intrarenal factors. Endogenous renal prostaglandins exert little influence on renal blood flow and glomerular filtration rate in the basal state. In contrast, inhibition of cyclooxygenase-dependent arachidonic acid metabolism with nonsteroidal anti-inflammatory drugs in states of decreased renal perfusion causes marked alterations in these variables. Thus, clinical states characterized by decreased intravascular volume (decreased effective blood volume) with decreased renal perfusion augment the activity of various neurohumoral vasoactive systems and result in an increased dependence of renal hemodynamics on endogenous renal prostaglandin synthesis, which is stimulated, in a compensatory manner, by these same systems. The development of newer drugs that undergo biotransformation in the kidney between active and inactive forms may permit a lesser degree of renal cyclooxygenase inhibition, with the possibility of a reduction in the adverse effects on renal blood flow and glomerular filtration rate. Appropriate clinical use of nonsteroidal anti-inflammatory drugs requires careful consideration of the potential deleterious consequences of prostaglandin synthesis inhibition. Prostaglandins are considered to be autacoids and, as such, they exert their physiologic actions close to or at the site of synthesis. Therefore, production of prostaglandins, thromboxanes, and, possibly, leukotrienes in the renal cortex by the constituent cells of the glomeruli and the arterioles would be anticipated to influence their hemodynamic functions, that is, glomerular filtration rate, renal blood flow, renal vascular resistance, and juxtaglomerular granular cell renin release.

  17. Hemodynamic and tubular changes induced by contrast media.

    PubMed

    Caiazza, Antonella; Russo, Luigi; Sabbatini, Massimo; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI.

  18. Hemodynamic and Tubular Changes Induced by Contrast Media

    PubMed Central

    Caiazza, Antonella; Russo, Luigi; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI. PMID:24678510

  19. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.

    PubMed

    Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan

    2016-03-01

    Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels. © 2015 International Federation for Cell Biology.

  20. Presence of FoxP3+ regulatory T Cells predicts outcome of subclinical rejection of renal allografts.

    PubMed

    Bestard, Oriol; Cruzado, Josep M; Rama, Inés; Torras, Joan; Gomà, Montse; Serón, Daniel; Moreso, Francesc; Gil-Vernet, Salvador; Grinyó, Josep M

    2008-10-01

    Subclinical rejection (SCR) of renal allografts refers to histologic patterns of acute rejection despite stable renal function. The clinical approach to SCR is controversial; it would be helpful to identify biomarkers that could determine whether the identified cellular infiltrates were detrimental. For investigation of whether the presence of FoxP3+ regulatory T cells (Treg) could help determine the functional importance of tubulointerstitial infiltrates observed in 6-mo protocol biopsies, 37 cases of SCR were evaluated. The presence of FoxP3+ Treg discriminated harmless from injurious infiltrates, evidenced by independently predicting better graft function 2 and 3 yr after transplantation. Furthermore, the FoxP3+ Treg/CD3+ T cell ratio positively correlated with graft function at 2 yr after transplantation, suggesting that an increasing proportion of Treg within the global T cell infiltrate may facilitate renal engraftment; therefore, immunostaining for FoxP3+ Treg in patients with SCR on protocol biopsies may ultimately be useful to identify patients who may require alterations in their immunosuppressive regimens.

  1. Presence of FoxP3+ Regulatory T Cells Predicts Outcome of Subclinical Rejection of Renal Allografts

    PubMed Central

    Bestard, Oriol; Cruzado, Josep M.; Rama, Inés; Torras, Joan; Gomà, Montse; Serón, Daniel; Moreso, Francesc; Gil-Vernet, Salvador; Grinyó, Josep M.

    2008-01-01

    Subclinical rejection (SCR) of renal allografts refers to histologic patterns of acute rejection despite stable renal function. The clinical approach to SCR is controversial; it would be helpful to identify biomarkers that could determine whether the identified cellular infiltrates were detrimental. For investigation of whether the presence of FoxP3+ regulatory T cells (Treg) could help determine the functional importance of tubulointerstitial infiltrates observed in 6-mo protocol biopsies, 37 cases of SCR were evaluated. The presence of FoxP3+ Treg discriminated harmless from injurious infiltrates, evidenced by independently predicting better graft function 2 and 3 yr after transplantation. Furthermore, the FoxP3+ Treg/CD3+ T cell ratio positively correlated with graft function at 2 yr after transplantation, suggesting that an increasing proportion of Treg within the global T cell infiltrate may facilitate renal engraftment; therefore, immunostaining for FoxP3+ Treg in patients with SCR on protocol biopsies may ultimately be useful to identify patients who may require alterations in their immunosuppressive regimens. PMID:18495961

  2. Acute renal proximal tubule alterations during induced metabolic crises in a mouse model of glutaric aciduria type 1.

    PubMed

    Thies, Bastian; Meyer-Schwesinger, Catherine; Lamp, Jessica; Schweizer, Michaela; Koeller, David M; Ullrich, Kurt; Braulke, Thomas; Mühlhausen, Chris

    2013-10-01

    The metabolic disorder glutaric aciduria type 1 (GA1) is caused by deficiency of the mitochondrial glutaryl-CoA dehydrogenase (GCDH), leading to accumulation of the pathologic metabolites glutaric acid (GA) and 3-hydroxyglutaric acid (3OHGA) in blood, urine and tissues. Affected patients are prone to metabolic crises developing during catabolic conditions, with an irreversible destruction of striatal neurons and a subsequent dystonic-dyskinetic movement disorder. The pathogenetic mechanisms mediated by GA and 3OHGA have not been fully characterized. Recently, we have shown that GA and 3OHGA are translocated through membranes via sodium-dependent dicarboxylate cotransporter (NaC) 3, and organic anion transporters (OATs) 1 and 4. Here, we show that induced metabolic crises in Gcdh(-/-) mice lead to an altered renal expression pattern of NaC3 and OATs, and the subsequent intracellular GA and 3OHGA accumulation. Furthermore, OAT1 transporters are mislocalized to the apical membrane during metabolic crises accompanied by a pronounced thinning of proximal tubule brush border membranes. Moreover, mitochondrial swelling and increased excretion of low molecular weight proteins indicate functional tubulopathy. As the data clearly demonstrate renal proximal tubule alterations in this GA1 mouse model during induced metabolic crises, we propose careful evaluation of renal function in GA1 patients, particularly during acute crises. Further studies are needed to investigate if these findings can be confirmed in humans, especially in the long-term outcome of affected patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Glomerular filtration barrier in pediatric idiopathic nephrotic syndrome.

    PubMed

    Sharma, Alok; Gupta, Ruchika; Bagga, Arvind; Dinda, Amit K

    2013-03-01

    Nephrotic syndrome (NS) is a common proteinuric disorder with defect in the perm-selectivity of the glomerular filtration barrier (GFB). Ultrastructural morphometric evaluation of the GFB in pediatric NS has been attempted in only a few studies. This study was aimed at qualitative and quantitative evaluation of the alterations involving the GFB in pediatric idiopathic NS with an attempt to correlate these alterations with the clinico-laboratory data. For this study, renal biopsies from nine patients with NS and two children with interstitial nephritis were included. Relevant clinical and laboratory data, including degree of 24-h proteinuria and renal function tests, were recorded. Renal biopsies were reviewed for morphologic and electron microscopic diagnosis. Ultrastructural morphometry of the GFB was performed using image analysis software. The age at onset of NS, duration of illness, presence of hypertension, and renal function tests were comparable between the group of patients with minimal change disease (MCD) and those with mesangioproliferative glomerulonephritis (mesPGN)/focal segmental glomerulosclerosis (FSGS). However, the latter group showed higher 24-h proteinuria compared with the group with MCD. Among the detected ultra-structural changes, glomerular basement membrane thickness and foot process width were significantly different between the MCD and the mesPGN/FSGS groups. The slit pore diameter in the glomeruli showed a positive correlation with the degree of proteinuria. We conclude that our study demonstrated remarkable differences in certain parameters and the glomerular ultrastructural alterations in the various categories of NS. These differences might underlie the observed variation in response of these entities to various therapies.

  4. Cockcroft-Gault revisited: New de-liver-ance on recommendations for use in cirrhosis.

    PubMed

    Scappaticci, Gianni B; Regal, Randolph E

    2017-01-28

    The Cockcroft-Gault (CG) equation has become perhaps the most popular practical approach for estimating renal function among health care professionals. Despite its widespread use, clinicians often overlook not only the limitations of the original serum creatinine (SCr) based equation, but also may not appreciate the validity of the many variations used to compensate for these limitations. For cirrhotic patients in particular, the underlying pathophysiology of the disease contributes to a falsely low SCr, thereby overestimating renal function with use of the CG equation in this population. We reviewed the original CG trial from 1976 along with data surrounding clinician specific alterations to the CG equation that followed through time. These alterations included different formulas for body weight in obese patients and the "rounding up" approach in patients with low SCr. Additionally, we described the pathophysiology and hemodynamic changes that occur in cirrhosis; and reviewed several studies that attempted to estimate renal function in this population. The evidence we reviewed regarding the most accurate manipulation of the original CG equation to estimate creatinine clearance (CrCl) was inconclusive. Unfortunately, the homogeneity of the patient population in the original CG trial limited its external validity. Elimination of body weight in the CG equation actually produced the estimate closest to the measure CrCl. Furthermore, "rounding up" of SCr values often underestimated CrCl. This approach could lead to suboptimal dosing of drug therapies in patients with low SCr. In cirrhotic patients, utilization of SCr based methods overestimated true renal function by about 50% in the literature we reviewed.

  5. Acetylator Status Impacts Amifampridine Phosphate (Firdapse™) Pharmacokinetics and Exposure to a Greater Extent Than Renal Function.

    PubMed

    Haroldsen, Peter E; Sisic, Zlatko; Datt, Joe; Musson, Donald G; Ingenito, Gary

    2017-07-01

    The purpose of this study is to evaluate safety, tolerability, and pharmacokinetic (PK) properties of amifampridine phosphate (Firdapse™) and its major inactive 3-N-acetyl metabolite in renally impaired and healthy individuals with slow acetylator (SA) and rapid acetylator (RA) phenotypes. This was a Phase I, multicenter, open-label study of the PK properties and safety profile of amifampridine phosphate in individuals with normal, mild, moderate, or severely impaired renal function. Amifampridine phosphate was given as a single 10 mg (base equivalent) dose, and the plasma and urine PK properties of amifampridine and its 3-N-acetyl metabolite were determined. The safety profile was evaluated by monitoring adverse events (AEs), clinical laboratory tests, and physical examinations. Amifampridine clearance was predominantly metabolic through N-acetylation, regardless of renal function in both acetylator phenotypes. In individuals with normal renal function, mean renal clearance represented approximately 3% and 18% of the total clearance of amifampridine in RA and SA, respectively. Large differences in amifampridine exposure were observed between acetylation phenotypes across renal function levels. Mean amifampridine exposure values of AUC 0-∞ and C max were up to 8.8-fold higher in the SA group compared with the RA group across renal function levels. By comparison, mean AUC 0-∞ was less affected by renal function within an acetylator group, only 2- to 3-fold higher in individuals with severe renal impairment (RI) compared with those with normal renal function. Exposure to amifampridine in the SA group with normal renal function was higher (AUC 0-∞, approximately 1.8-fold; C max, approximately 4.1-fold) than the RA group with severe RI. Exposure to the inactive 3-N-acetyl metabolite was higher than amifampridine in both acetylator groups, independent of renal function level. The metabolite is cleared by renal excretion, and exposure was clearly dependent on renal function with 4.0- to 6.8-fold increases in AUC 0-∞ from normal to severe RI. No new tolerability findings were observed. A single dose of 10 mg of amifampridine phosphate was well tolerated, independent of renal function and acetylator status. The results indicate that the PK profile of amifampridine is affected by metabolic acetylator phenotype to a greater extent than by renal function level, supporting Firdapse™ administration in individuals with RI in line with current labeling recommendations. Amifampridine should be dosed to effect per the individual patient need, altering administration frequency and dose in normal through severe RI. The therapeutic dose of amifampridine phosphate should be tailored to the individual patient needs by gradual dose titration up to the present maximum recommended dose (60-80 mg/day) or until dose-limiting AEs intervene to avoid overdosing and underdosing. EudraCT identifier: 2013-005349-35. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Protective and recuperative effects of 3-bromopyruvate on immunological, hepatic and renal homeostasis in a murine host bearing ascitic lymphoma: Implication of niche dependent differential roles of macrophages.

    PubMed

    Yadav, Saveg; Pandey, Shrish Kumar; Goel, Yugal; Kujur, Praveen Kumar; Maurya, Babu Nandan; Verma, Ashish; Kumar, Ajay; Singh, Rana Pratap; Singh, Sukh Mahendra

    2018-03-01

    3-bromopyruvate (3-BP) possesses promising antineoplastic potential, however, its effects on immunological homeostasis vis a vis hepatic and renal functions in a tumor bearing host remain unclear. Therefore, the effect of 3-BP administration to a murine host bearing a progressively growing tumor of thymoma origin, designated as Dalton's lymphoma (DL), on immunological, renal and hepatic homeostasis was investigated. Administration of 3-BP (4 mg/kg) to the tumor bearing host reversed tumor growth associated thymic atrophy and splenomegaly, accompanied by altered cell survival and repertoire of splenic, bone marrow and tumor associated macrophages (TAM). TAM displayed augmented phagocytic, tumoricidal activities and production of IL-1 and TNF-α. 3-BP-induced activation of TAM was of indirect nature, mediated by IFN-γ. Blood count of T lymphocytes (CD4 + & CD8 + ) and NK cells showed a rise in 3-BP administered tumor bearing mice. Moreover, 3-BP administration triggered modulation of immunomodulatory cytokines in serum along with refurbished hepatic and renal functions. The study indicates the role of altered cytokines balance, site specific differential macrophage functions and myelopoiesis in restoration of lymphoid organ homeostasis in 3-BP administered tumor bearing host. These observations will have long lasting impact in understanding of alternate mechanisms underlying the antitumor action of 3-BP accompanying appraisal of safety issues for optimizing its antineoplastic actions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Autonomic and Renal Alterations in the Offspring of Sleep-Restricted Mothers During Late Pregnancy.

    PubMed

    Raimundo, Joyce R S; Bergamaschi, Cassia T; Campos, Ruy R; Palma, Beatriz D; Tufik, Sergio; Gomes, Guiomar N

    2016-09-01

    Considering that changes in the maternal environment may result in changes in progeny, the aim of this study was to investigate the influence of sleep restriction during the last week of pregnancy on renal function and autonomic responses in male descendants at an adult age. After confirmation of pregnancy, female Wistar rats were randomly assigned to either a control or a sleep restriction group. The sleep-restricted rats were subjected to sleep restriction using the multiple platforms method for over 20 hours per day between the 14th and 20th day of pregnancy. After delivery, the litters were limited to 6 offspring that were designated as offspring from control and offspring from sleep-restricted mothers. Indirect measurements of systolic blood pressure (BPi), renal plasma flow, glomerular filtration rate, glomerular area and number of glomeruli per field were evaluated at three months of age. Direct measurements of cardiovascular function (heart rate and mean arterial pressure), cardiac sympathetic tone, cardiac parasympathetic tone, and baroreflex sensitivity were evaluated at four months of age. The sleep-restricted offspring presented increases in BPi, glomerular filtration rate and glomerular area compared with the control offspring. The sleep-restricted offspring also showed higher basal heart rate, increased mean arterial pressure, increased sympathetic cardiac tone, decreased parasympathetic cardiac tone and reduced baroreflex sensitivity. Our data suggest that reductions in sleep during the last week of pregnancy lead to alterations in cardiovascular autonomic regulation and renal morpho-functional changes in offspring, triggering increases in blood pressure.

  8. Homer W. Smith's contribution to renal physiology.

    PubMed

    Giebisch, Gerhard

    2004-01-01

    Homer Smith was, for three decades, from the 1930s until his death in 1962, one of the leaders in the field of renal physiology. His contributions were many: he played a major role in introducing and popularizing renal clearance methods, introduced non-invasive methods for the measurement of glomerular filtration rate, of renal blood flow and tubular transport capacity, and provided novel insights into the mechanisms of excretion of water and electrolytes. Homer Smith's contributions went far beyond his personal investigations. He was a superb writer of several inspiring textbooks of renal physiology that exerted great and lasting influence on the development of renal physiology. Smith's intellectual insights and ability for critical analysis of data allowed him to create broad concepts that defined the functional properties of glomeruli, tubules and the renal circulation. A distinguishing feature of Homer Smith's career was his close contact and collaboration, over many years, with several clinicians of his alma mater, New York University. For initiating these pathophysiological investigations, he is justly credited to have advanced, in a major way, our understanding of altered renal function in disease. Smith's lasting scientific impact is also reflected by a whole school of investigators that trained with him and who applied his methods, analyses and concepts to the study of renal function all over the world. So great was his influence and preeminence that Robert Pitts, in his excellent tribute to Homer Smith in the Memoirs of the National Academy of Science states that his death brought an end to what might be aptly called the Smithian Era of renal physiology.

  9. Effect of weight loss in obese dogs on indicators of renal function or disease.

    PubMed

    Tvarijonaviciute, A; Ceron, J J; Holden, S L; Biourge, V; Morris, P J; German, A J

    2013-01-01

    Obesity is a common medical disorder in dogs, and can predispose to a number of diseases. Human obesity is a risk factor for the development and progression of chronic kidney disease. To investigate the possible association of weight loss on plasma and renal biomarkers of kidney health. Thirty-seven obese dogs that lost weight were included in the study. Prospective observational study. Three novel biomarkers of renal functional impairment, disease, or both (homocysteine, cystatin C, and clusterin), in addition to traditional markers of chronic renal failure (serum urea and creatinine, urine specific gravity [USG], urine protein-creatinine ratio [UPCR], and urine albumin corrected by creatinine [UAC]) before and after weight loss in dogs with naturally occurring obesity were investigated. Urea (P = .043) and USG (P = .012) were both greater after weight loss than before loss, whilst UPCR, UAC, and creatinine were less after weight loss (P = .032, P = .006, and P = .026, respectively). Homocysteine (P < .001), cystatin C (P < .001) and clusterin (P < .001) all decreased upon weight loss. Multiple linear regression analysis revealed associations between percentage weight loss (greater weight loss, more lean tissue loss; r = -0.67, r(2) = 0.45, P < .001) and before-loss plasma clusterin concentration (greater clusterin, more lean tissue loss; r = 0.48, r(2) = 0.23, P = .003). These results suggest possible subclinical alterations in renal function in canine obesity, which improve with weight loss. Further work is required to determine the nature of these alterations and, most notably, the reason for the association between before loss plasma clusterin and subsequent lean tissue loss during weight management. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  10. Impaired renal function and development in Belgrade rats

    PubMed Central

    Veuthey, Tania; Hoffmann, Dana; Vaidya, Vishal S.

    2013-01-01

    Belgrade rats carry a disabling mutation in the iron transporter divalent metal transporter 1 (DMT1). Although DMT1 plays a major role in intestinal iron absorption, the transporter is also highly expressed in the kidney, where its function remains unknown. The goal of this study was to characterize renal physiology of Belgrade rats. Male Belgrade rats died prematurely with ∼50% survival at 20 wk of age. Necropsy results indicated marked glomerular nephritis and chronic end-stage renal disease. By 15 wk of age, Belgrade rats displayed altered renal morphology associated with sclerosis and fibrosis. Creatinine clearance was significantly lower compared with heterozygote littermates. Urinary biomarkers of kidney injury, including albumin, fibrinogen, and kidney injury molecule-1, were significantly elevated. Pilot morphological studies suggest that nephrogenesis is delayed in Belgrade rat pups due to their low iron status and fetal growth restriction. Such defects in renal development most likely underlie the compromised renal metabolism observed in adult b/b rats. Belgrade rat kidney nonheme iron levels were not different from controls but urinary iron and transferrin levels were higher. These results further implicate an important role for the transporter in kidney function not only in iron reabsorption but also in glomerular filtration of the serum protein. PMID:24226520

  11. The kidney in congestive heart failure: 'are natriuresis, sodium, and diuretics really the good, the bad and the ugly?'.

    PubMed

    Verbrugge, Frederik H; Dupont, Matthias; Steels, Paul; Grieten, Lars; Swennen, Quirine; Tang, W H Wilson; Mullens, Wilfried

    2014-02-01

    This review discusses renal sodium handling in heart failure. Increased sodium avidity and tendency to extracellular volume overload, i.e. congestion, are hallmark features of the heart failure syndrome. Particularly in the case of concomitant renal dysfunction, the kidneys often fail to elicit potent natriuresis. Yet, assessment of renal function is generally performed by measuring serum creatinine, which has inherent limitations as a biomarker for the glomerular filtration rate (GFR). Moreover, glomerular filtration only represents part of the nephron's function. Alterations in the fractional reabsorptive rate of sodium are at least equally important in emerging therapy-refractory congestion. Indeed, renal blood flow decreases before the GFR is affected in congestive heart failure. The resulting increased filtration fraction changes Starling forces in peritubular capillaries, which drive sodium reabsorption in the proximal tubules. Congestion further stimulates this process by augmenting renal lymph flow. Consequently, fractional sodium reabsorption in the proximal tubules is significantly increased, limiting sodium delivery to the distal nephron. Orthosympathetic activation probably plays a pivotal role in those deranged intrarenal haemodynamics, which ultimately enhance diuretic resistance, stimulate neurohumoral activation with aldosterone breakthrough, and compromise the counter-regulatory function of natriuretic peptides. Recent evidence even suggests that intrinsic renal derangements might impair natriuresis early on, before clinical congestion or neurohumoral activation are evident. This represents a paradigm shift in heart failure pathophysiology, as it suggests that renal dysfunction-although not by conventional GFR measurements-is driving disease progression. In this respect, a better understanding of renal sodium handling in congestive heart failure is crucial to achieve more tailored decongestive therapy, while preserving renal function. © 2013 The Authors. European Journal of Heart Failure © 2013 European Society of Cardiology.

  12. Dietary potassium and the renal control of salt balance and blood pressure.

    PubMed

    Penton, David; Czogalla, Jan; Loffing, Johannes

    2015-03-01

    Dietary potassium (K(+)) intake has antihypertensive effects, prevents strokes, and improves cardiovascular outcomes. The underlying mechanism for these beneficial effects of high K(+) diets may include vasodilation, enhanced urine flow, reduced renal renin release, and negative sodium (Na(+)) balance. Indeed, several studies demonstrate that dietary K(+) intake induces renal Na(+) loss despite elevated plasma aldosterone. This review briefly highlights the epidemiological and experimental evidences for the effects of dietary K(+) on arterial blood pressure. It discusses the pivotal role of the renal distal tubule for the regulation of urinary K(+) and Na(+) excretion and blood pressure and highlights that it depends on the coordinated interaction of different nephron portions, epithelial cell types, and various ion channels, transporters, and ATPases. Moreover, we discuss the relevance of aldosterone and aldosterone-independent factors in mediating the effects of an altered K(+) intake on renal K(+) and Na(+) handling. Particular focus is given to findings suggesting that an aldosterone-independent downregulation of the thiazide-sensitive NaCl cotransporter significantly contributes to the natriuretic and antihypertensive effect of a K(+)-rich diet. Last but not least, we refer to the complex signaling pathways enabling the kidney to adapt its function to the homeostatic needs in response to an altered K(+) intake. Future work will have to further address the underlying cellular and molecular mechanism and to elucidate, among others, how an altered dietary K(+) intake is sensed and how this signal is transmitted to the different epithelial cells lining the distal tubule.

  13. Renal alterations in feline immunodeficiency virus (FIV)-infected cats: a natural model of lentivirus-induced renal disease changes.

    PubMed

    Poli, Alessandro; Tozon, Natasa; Guidi, Grazia; Pistello, Mauro

    2012-09-01

    Human immunodeficiency virus (HIV) is associated with several renal syndromes including acute and chronic renal failures, but the underlying pathogenic mechanisms are unclear. HIV and feline immunodeficiency virus (FIV) share numerous biological and pathological features, including renal alterations. We investigated and compared the morphological changes of renal tissue of 51 experimentally and 21 naturally infected cats. Compared to the latter, the experimentally infected cats exhibited some mesangial widening and glomerulonephritis, milder proteinuria, and lower tubular and interstitial alterations. The numbers of giant protein tubular casts and tubular microcysts were also lower. In contrast, diffuse interstitial infiltrates and glomerular and interstitial amyloidosis were detected only in naturally infected cats. Similar alterations are found in HIV infected patients, thus supporting the idea of a causative role of FIV infection in renal disease, and underlining the relevance of the FIV and its natural host as an animal model for investigating lentivirus-associated nephropathy.

  14. Effects of 30 day simulated microgravity and recovery on fluid homeostasis and renal function in the rat

    NASA Technical Reports Server (NTRS)

    Tucker, Bryan J.; Mendonca, Margarida M.

    1995-01-01

    Transition from a normal gravitational environment to that of microgravity eventually results in decreased plasma and blood volumes, increasing with duration of exposure to microgravity. This loss of vascular fluid is presumably due to negative fluid and electrolyte balance and most likely contributes to the orthostatic intolerance associated with the return to gravity. The decrease in plasma volume is presumed to be a reflection of a concurrent decrease in extracellular fluid volume with maintenance of normal plasma-interstitial fluid balance. In addition, the specific alterations in renal function contributing to these changes in fluid and electrolyte homeostasis are potentially responding to neuro-humoral signals that are not consistent with systemic fluid volume status. We have previously demonstrated an early increase in both glomerular filtration rate and extracellular fluid volume and that this decreases towards control values by 7 days of simulated microgravity. However, longer duration studies relating these changes to plasma volume alterations and the response to return to orthostasis have not been fully addressed. Male Wistar rats were chronically cannulated, submitted to 30 days heat-down tilt (HDT) and followed for 7 days after return to orthostasis from HDT. Measurements of renal function and extracellular and blood volumes were performed in the awake rat.

  15. Recirculation zone length in renal artery is affected by flow spirality and renal-to-aorta flow ratio.

    PubMed

    Javadzadegan, Ashkan; Fulker, David; Barber, Tracie

    2017-07-01

    Haemodynamic perturbations such as flow recirculation zones play a key role in progression and development of renal artery stenosis, which typically originate at the aorta-renal bifurcation. The spiral nature of aortic blood flow, division of aortic blood flow in renal artery as well as the exercise conditions have been shown to alter the haemodynamics in both positive and negative ways. This study focuses on the combinative effects of spiral component of blood flow, renal-to-aorta flow ratio and the exercise conditions on the size and distribution of recirculation zones in renal branches using computational fluid dynamics technique. Our findings show that the recirculation length was longest when the renal-to-aorta flow ratio was smallest. Spiral flow and exercise conditions were found to be effective in reducing the recirculation length in particular in small renal-to-aorta flow ratios. These results support the hypothesis that in renal arteries with small flow ratios where a stenosis is already developed an artificially induced spiral flow within the aorta may decelerate the progression of stenosis and thereby help preserve kidney function.

  16. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Bidya Dhar; Tatireddy, Srujana; Koneru, Meghana

    Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrialmore » NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100 mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in the kidney. - Highlights: • Naringin ameliorated gentamicin-induced nephrotoxicity in rats. • Naringin treatment attenuated gentamicin-induced renal apoptosis in rats. • Naringin ameliorated gentamicin-induced renal mitochondrial dysfunction in rats. • Naringin decreased NF-κB activation and pro-inflammatory cytokine release. • U-HPLC-MS data revealed that naringin did not alter the renal uptake of gentamicin.« less

  17. The macro- and microcirculation of the kidney.

    PubMed

    Guerci, Philippe; Ergin, Bulent; Ince, Can

    2017-09-01

    Acute kidney injury (AKI) remains one of the main causes of morbidity and mortality in the intensive care medicine today. Its pathophysiology and progress to chronic kidney disease is still under investigation. In addition, the lack of techniques to adequately monitor renal function and microcirculation at the bedside makes its therapeutic resolution challenging. In this article, we review current concepts related to renal hemodynamics compromise as being the event underlying AKI. In doing so, we discuss the physiology of the renal circulation and the effects of alterations in systemic hemodynamics that lead to renal injury specifically in the context of reperfusion injury and sepsis. The ultimate key culprit of AKI leading to failure is the dysfunction of the renal microcirculation. The cellular and subcellular components of the renal microcirculation are discussed and how their injury contributes to AKI is described. Copyright © 2017. Published by Elsevier Ltd.

  18. Contributions of nuclear magnetic resonance to renal biochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, B.; Freeman, D.; Chan, L.

    /sup 31/P NMR as a descriptive technique is of interest to nephrologists. Particular contributions of /sup 31/P NMR to our understanding of renal function may be enumerated.: Free metabolite levels are different from those classically accepted; in particular, ADP and Pi are low with implications for the control of renal metabolism and Pi transport, and, via the phosphorylation potential, for Na+ transport. Renal pH is heterogeneous; between cortex, outer medulla, and papilla, and between cell and lumen, a large pH gradient exists. Also, quantitation between cytosol and mitochondrion of the pH gradient is now feasible. In acute renal failure ofmore » either ischemic or nonischemic origin, both ATP depletion and acidification of the renal cell result in damage, with increasing evidence for the importance of the latter. Measurements of renal metabolic rate in vivo suggest the existence of a prodromal phase of acute renal failure, which could lead to its detection at an earlier and possibly reversible stage. Human renal cancers show a unique /sup 31/P NMR spectrum and a very acidic environment. Cancer chemotherapy may alter this and detection of such changes with NMR offers a method of therapeutic monitoring with significance beyond nephrology. Renal cortex and medulla have a different T1 relaxation time, possibly due to differences in lipid composition. It seems that NMR spectroscopy has much to offer to the future understanding of the relationship between renal biochemistry and function. 56 references.« less

  19. The Role of Endothelin System in Renal Structure and Function during the Postnatal Development of the Rat Kidney.

    PubMed

    Albertoni Borghese, María F; Ortiz, María C; Balonga, Sabrina; Moreira Szokalo, Rocío; Majowicz, Mónica P

    2016-01-01

    Renal development in rodents, unlike in humans, continues during early postnatal period. We aimed to evaluate whether the pharmacological inhibition of Endothelin system during this period affects renal development, both at structural and functional level in male and female rats. Newborn rats were treated orally from postnatal day 1 to 20 with vehicle or bosentan (Actelion, 20 mg/kg/day), a dual endothelin receptor antagonist (ERA). The animals were divided in 4 groups: control males, control females, ERA males and ERA females. At day 21, we evaluated renal function, determined the glomerular number by a maceration method and by morphometric analysis and evaluated possible structural renal alterations by three methods: 〈alpha〉-Smooth muscle actin (α-SMA) immunohistochemistry, Masson's trichrome and Sirius red staining. The pharmacological inhibition of Endothelin system with a dual ERA during the early postnatal period of the rat did not leads to renal damage in the kidneys of male and female rats. However, ERA administration decreased the number of glomeruli, the juxtamedullary filtration surface area and the glomerular filtration rate and increased the proteinuria. These effects could predispose to hypertension or renal diseases in the adulthood. On the other hand, these effects were more pronounced in male rats, suggesting that there are sex differences that could be greater later in life. These results provide evidence that Endothelin has an important role in rat renal postnatal development. However these results do not imply that the same could happen in humans, since human renal development is complete at birth.

  20. Renal function and size at young adult age after intrauterine growth restriction and very premature birth.

    PubMed

    Keijzer-Veen, Mandy G; Kleinveld, Hilda A; Lequin, Maarten H; Dekker, Friedo W; Nauta, Jeroen; de Rijke, Yolanda B; van der Heijden, Bert J

    2007-10-01

    Premature birth and intrauterine growth restriction may increase the risk of developing renal disease at adult age. Renal function may already be impaired at young adult age. Cross-sectional study. Very premature individuals (gestational age < 32 weeks) recruited from Project on Premature and Small for Gestational Age Infants and full-term-born controls (37 to 42 weeks) recruited from a children's hospital in Rotterdam, The Netherlands. All individuals were 20 years of age at the time of study. Gestational age and birth weight: premature and small for gestational age (SGA; n = 23), premature and appropriate for gestational age (n = 29), and controls (n = 30). Glomerular filtration rate (GFR), effective renal plasma flow (ERPF), and filtration fraction before and after renal stimulation with low-dose dopamine infusion and oral amino-acid intake. Urine albumin and renal ultrasound. Height, weight, kidney length and volume, GFR, and ERPF were significantly lower in the SGA group than in controls. After adjustment for body surface area, GFR did not differ significantly among groups. Mean ERPF was 71 mL/min/1.73 m(2) (95% confidence interval [CI], 3 to 139) less, but filtration fraction was only 1.3% (95% CI, -0.3 to 3.0) greater, in the SGA group than controls. Renal stimulation significantly increased GFR and ERPF and decreased filtration fraction in all groups. After renal stimulation, ERPF was 130 mL/min/1.73 m(2) (95% CI, 21 to 238) greater in the SGA group than controls, but GFR and filtration fraction did not differ significantly among groups. Microalbuminuria was present in 2 patients (8.7%) in the SGA group, but none in the appropriate-for-gestational-age group or controls. Renal function correlated with renal size. Small sample size. Our findings do not fully support the hypothesis that preterm birth in combination with intrauterine growth restriction contributes to renal function alterations at young adult age. Larger studies are needed to evaluate this hypothesis.

  1. Protective effect of Euterpe oleracea Mart (açaí) extract on programmed changes in the adult rat offspring caused by maternal protein restriction during pregnancy.

    PubMed

    de Bem, Graziele Freitas; da Costa, Cristiane Aguiar; de Oliveira, Paola Raquel Braz; Cordeiro, Viviane Silva Cristino; Santos, Izabelle Barcellos; de Carvalho, Lenize Costa Reis Marins; Souza, Marcelo Augusto Vieira; Ognibene, Dayane Texeira; Daleprane, Julio Beltrame; Sousa, Pergentino José Cunha; Resende, Angela Castro; de Moura, Roberto Soares

    2014-09-01

    This study examined the effect of açaí (Euterpe oleracea Mart.) seed extract (ASE) on cardiovascular and renal alterations in adult offspring, whose mothers were fed a low-protein (LP) diet during pregnancy. Four groups of rats were fed: control diet (20% protein); ASE (200 mg/kg per day); and LP (6% protein); LP + ASE (6% protein + ASE) during pregnancy. After weaning, all male offspring were fed a control diet and sacrificed at 4 months old. We evaluated the blood pressure, vascular function, serum and urinary parameters, plasma and kidney oxidative damage, and antioxidant activity and renal structural changes. Hypertension and the reduced acetylcholine-induced vasodilation in the LP group were prevented by ASE. Serum levels of urea, creatinine and fractional excretion of sodium were increased in LP and reduced in LP + ASE. ASE improved nitrite levels and the superoxide dismutase and glutathione peroxidase activity in LP, with a corresponding decrease of malondialdehyde and protein carbonyl levels. Kidney volume and glomeruli number were reduced and glomerular volume was increased in LP. These renal alterations were prevented by ASE. Treatment of protein-restricted dams with ASE provides protection from later-life hypertension, oxidative stress, renal functional and structural changes, probably through a vasodilator and antioxidant activity. © 2014 Royal Pharmaceutical Society.

  2. Intestinal absorption and renal reabsorption of calcium throughout postnatal development

    PubMed Central

    Beggs, Megan R

    2017-01-01

    Calcium is vital for many physiological functions including bone mineralization. Postnatal deposition of calcium into bone is greatest in infancy and continues through childhood and adolescence until peek mineral density is reached in early adulthood. Thereafter, bone mineral density remains static until it eventually declines in later life. A positive calcium balance, i.e. more calcium absorbed than excreted, is crucial to bone deposition during growth and thus to peek bone mineral density. Dietary calcium is absorbed from the intestine into the blood. It is then filtered by the renal glomerulus and either reabsorbed by the tubule or excreted in the urine. Calcium can be (re)absorbed across intestinal and renal epithelia via both transcellular and paracellular pathways. Current evidence suggests that significant intestinal and renal calcium transport changes occur throughout development. However, the molecular details of these alterations are incompletely delineated. Here we first briefly review the current model of calcium transport in the intestine and renal tubule in the adult. Then, we describe what is known with regard to calcium handling through postnatal development, and how alterations may aid in mediating a positive calcium balance. The role of transcellular and paracellular calcium transport pathways and the contribution of specific intestinal and tubular segments vary with age. However, the current literature highlights knowledge gaps in how specifically intestinal and renal calcium (re)absorption occurs early in postnatal development. Future research should clarify the specific changes in calcium transport throughout early postnatal development including mediators of these alterations enabling appropriate bone mineralization. Impact statement This mini review outlines the current state of knowledge pertaining to the molecules and mechanisms maintaining a positive calcium balance throughout postnatal development. This process is essential to achieving optimal bone mineral density in early adulthood, thereby lowering the lifetime risk of osteoporosis. PMID:28346014

  3. Effect of renal nerve stimulation on responsiveness of the rat renal vasculature.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2002-11-01

    When the renal nerves are stimulated with sinusoidal stimuli over the frequency range 0.04-0.8 Hz, low (< or =0.4 Hz)- but not high (> or =0.4 Hz)-frequency oscillations appear in renal blood flow (RBF) and are proposed to increase responsiveness of the renal vasculature to stimuli. This hypothesis was tested in anesthetized rats in which RBF responses to intrarenal injection of norepinephrine and angiotensin and to reductions in renal arterial pressure (RAP) were determined during conventional rectangular pulse and sinusoidal renal nerve stimulation. Conventional rectangular pulse renal nerve stimulation decreased RBF at 2 Hz but not at 0.2 or 1.0 Hz. Sinusoidal renal nerve stimulation elicited low-frequency oscillations (< or =0.4 Hz) in RBF only when the basal carrier signal frequency produced renal vasoconstriction, i.e., at 5 Hz but not at 1 Hz. Regardless of whether renal vasoconstriction occurred, neither conventional rectangular pulse nor sinusoidal renal nerve stimulation altered renal vasoconstrictor responses to norepinephrine and angiotensin. The RBF response to reduction in RAP was altered by both conventional rectangular pulse and sinusoidal renal nerve stimulation only when renal vasoconstriction occurred: the decrease in RBF during reduced RAP was greater. Sinusoidal renal nerve stimulation with a renal vasoconstrictor carrier frequency results in a decrease in RBF with superimposed low-frequency oscillations. However, these low-frequency RBF oscillations do not alter renal vascular responsiveness to vasoconstrictor stimuli.

  4. Renal mechanoreceptor dysfunction: an intermediate phenotype in spontaneously hypertensive rats.

    PubMed

    DiBona, G F; Jones, S Y; Kopp, U C

    1999-01-01

    This study tested the hypothesis that decreased responsiveness of renal mechanosensitive neurons constitutes an intermediate phenotype in spontaneously hypertensive rats (SHR). Decreased responsiveness of these sensory neurons would contribute to increased renal sympathetic nerve activity and sodium retention, characteristic findings in hypertension. A backcross population, developed by mating borderline hypertensive rats with Wistar-Kyoto rats (WKY) (the F1 of a cross between an SHR and a normotensive WKY), was fed 8% NaCl food for 12 weeks from age 4 to 16 weeks. Responses to increases in ureteral pressure to 20 and 40 mm Hg in 80 backcross rats instrumented for measurement of mean arterial pressure and afferent renal nerve activity were determined. Mean arterial pressure ranged from 110 to 212 mm Hg and was inversely correlated with the magnitude of the increase in afferent renal nerve activity during increased ureteral pressure. Thus, decreased responsiveness of renal mechanosensitive neurons cosegregated with hypertension in this backcross population. This aspect of the complex quantitative trait of altered renal sympathetic neural control of renal function, ie, decreased renal mechanoreceptor responsiveness, is part of an intermediate phenotype in SHR.

  5. IGF-1, IGFBP-3 and ALS in adult patients with chronic kidney disease.

    PubMed

    Lepenies, Julia; Wu, Zida; Stewart, Paul M; Strasburger, Christian J; Quinkler, Marcus

    2010-04-01

    Insulin-like growth factor I (IGF-1) is for the most part bound in a ternary complex with IGF-binding protein-3 (IGFBP-3) and acid-labile subunit (ALS). This ternary complex is a storage form of IGF-1 in blood and passes not through the renal glomerulus. Little information is available in regard to the components of the ternary complex in adult renal disease. To investigate levels of serum IGF-1, IGFBP-3 and ALS in relation to renal function and extent of proteinuria. We measured IGF-1, IGFBP-3 and ALS concentrations in 137 patients who were investigated due to proteinuria and/or haematuria and/or renal impairment. The patients received renal biopsies and the histological diagnosis was documented. Urinary albumin excretion and relevant clinical parameter were evaluated. IGF-1 showed a highly positive correlation to IGFBP-3 and ALS, and the latter to IGFBP-3. IGF-1, IGFBP-3 and ALS decreased with increasing age. IGF-1 and IGFBP-3 showed no significant change depending on the creatinine clearance. However, ALS decreased with decreasing renal function. In patients with heavy proteinuria ALS levels, but not IGF-1 and IGFBP-3 levels, decreased significantly. Patients with chronic ischaemic renal damage and diabetic glomerulopathy showed higher IGF-1 and IGFBP-3 levels compared to patients with thin glomerular basement membrane disease despite their older age. IGF-1 and IGFBP-3 levels seem to be independent of renal function and severity of proteinuria. However, ALS levels are altered in renal failure and nephrotic syndrome, which may be due to increased renal loss or diminished hepatic production or both. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  6. Comparative effects of avocado oil and losartan on blood pressure, renal vascular function, and mitochondrial oxidative stress in hypertensive rats.

    PubMed

    Márquez-Ramírez, Cristian Adrián; Hernández de la Paz, José Lucio; Ortiz-Avila, Omar; Raya-Farias, Andrés; González-Hernández, Juan Carlos; Rodríguez-Orozco, Alain Raimundo; Salgado-Garciglia, Rafael; Saavedra-Molina, Alfredo; Godínez-Hernández, Daniel; Cortés-Rojo, Christian

    2018-03-20

    Angiotensin II (Ang-II) antagonism alleviates hypertensive kidney damage by improving mitochondrial function and decreasing oxidative stress. This condition also is associated with altered renal vascular tone due to enhanced constriction by Ang-II. Thus, approaches ameliorating these events are desirable to alleviate kidney damage. Avocado oil, a source of antioxidants and oleic acid, is known to improve mitochondrial function, while oleic acid has antihypertensive effects. Therefore, the aim of this study was to test whether avocado oil counteracts, to a similar degree as the Ang-II blocker losartan, the deleterious effects of hypertension on blood pressure, renal vascular performance, kidney mitochondrial function, and oxidative stress. Hypertensive rats induced with Nω-nitro-l-arginine methyl ester (L-NAME) were supplemented during 45 d with avocado oil or losartan. Vascular responses were analyzed in perfused kidney. Membrane potential, reactive oxygen species levels, and glutathione were analyzed in isolated kidney mitochondria. In hypertensive rats, avocado oil decreased 21.2% and 15.5% diastolic and systolic blood pressures, respectively, and alleviated impaired renal vasodilation. Hypertension decreased membrane potential by 83.7% and augmented reactive oxygen species levels by 51% in mitochondria fueled with a complex I substrate, whereas it augmented the levels of oxidized glutathione in 48%. These alterations were normalized by avocado oil at a comparable degree to losartan. Because avocado oil mimicked the effects of losartan, we propose that the effects of avocado oil might be mediated by decreasing the actions of Ang-II on mitochondria. These results suggest that avocado oil intake might be a nutritional approach to attenuate the deleterious effects of hypertension on kidney. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Restoration of podocyte structure and improvement of chronic renal disease in transgenic mice overexpressing renin.

    PubMed

    Huby, Anne-Cécile; Rastaldi, Maria-Pia; Caron, Kathleen; Smithies, Oliver; Dussaule, Jean-Claude; Chatziantoniou, Christos

    2009-08-21

    Proteinuria is a major marker of the decline of renal function and an important risk factor of coronary heart disease. Elevated proteinuria is associated to the disruption of slit-diaphragm and loss of podocyte foot processes, structural alterations that are considered irreversible. The objective of the present study was to investigate whether proteinuria can be reversed and to identify the structural modifications and the gene/protein regulation associated to this reversal. We used a novel transgenic strain of mouse (RenTg) that overexpresses renin at a constant high level. At the age of 12-month, RenTg mice showed established lesions typical of chronic renal disease such as peri-vascular and periglomerular inflammation, glomerular ischemia, glomerulosclerosis, mesangial expansion and tubular dilation. Ultrastructural analysis indicated abnormal heterogeneity of basement membrane thickness and disappearance of podocyte foot processes. These structural alterations were accompanied by decreased expressions of proteins specific of podocyte (nephrin, podocin), or tubular epithelial cell (E-cadherin and megalin) integrity. In addition, since TGFbeta is considered the major pro-fibrotic agent in renal disease and since exogenous administration of BMP7 is reported to antagonize the TGFbeta-induced phenotype changes in kidney, we have screened the expressions of several genes belonging in the TGFbeta/BMP superfamily. We found that the endogenous inhibitors of BMPs such as noggin and Usag-1 were several-fold activated inhibiting the action of BMPs and thus reinforcing the deleterious action of TGFbeta.Treatment with an AT1 receptor antagonist, at dose that did not decrease arterial pressure, gradually reduced albuminuria. This decrease was accompanied by re-expression of podocin, nephrin, E-cadherin and megalin, and reappearance of podocyte foot processes. In addition, expressions of noggin and Usag-1 were markedly decreased, permitting thus activation of the beneficial action of BMPs. These findings show that proteinuria and alterations in the expression of proteins involved in the integrity and function of glomerular and renal epithelial phenotype are reversible events when the local action of angiotensin II is blocked, and provide hope that chronic renal disease can be efficiently treated.

  8. Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease.

    PubMed

    Falkevall, Annelie; Mehlem, Annika; Palombo, Isolde; Heller Sahlgren, Benjamin; Ebarasi, Lwaki; He, Liqun; Ytterberg, A Jimmy; Olauson, Hannes; Axelsson, Jonas; Sundelin, Birgitta; Patrakka, Jaakko; Scotney, Pierre; Nash, Andrew; Eriksson, Ulf

    2017-03-07

    Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Programmatic Considerations to Reduce the Risk of Adverse Renal Stone Events in Spaceflight

    NASA Technical Reports Server (NTRS)

    Antonsen, Erik; Pietrzyk, Robert

    2017-01-01

    Introduction: Microgravity exposure may alter the likelihood that astronauts will experience renal stones. The potential risk includes both acute and chronic health issues, with the potential for significant impact on mission objectives. Methods: To understand the role of the NASA's Human Research Program (HRP) research agenda in both preventing and addressing renal stones in spaceflight, current astronaut epidemiologic data and a summary of programmatic considerations are reviewed. Results: Although there has never been a symptomatic renal stone event in a U.S. crewmember during spaceflight, urine chemistry has been altered - likely due to induced changes in renal physiology as a result of exposure to microgravity. This may predispose astronauts to stone formation, leading the HRP to conduct and sponsor research to: 1) understand the risk of stone formation in space; 2) prevent stones from forming; and 3) address stones that may form by providing novel diagnostic and therapeutic approaches. Discussion: The development of a renal stone during spaceflight is a significant medical concern that requires the HRP to minimize this risk by providing the ability to prevent, diagnose, monitor and treat the condition during spaceflight. A discussion of the risk as NASA understands it is followed by an overview of the multiple mitigations currently under study, including novel ultrasound techniques for stone detection and manipulation, and how they may function as part of a larger exploration medical system.

  10. Roles of mitogen-activated protein kinases and angiotensin II in renal development.

    PubMed

    Balbi, A P C; Francescato, H D C; Marin, E C S; Costa, R S; Coimbra, T M

    2009-01-01

    Experimental and clinical evidence suggests that angiotensin II (AII) participates in renal development. Renal AII content is several-fold higher in newborn rats and mice than in adult animals. AII receptors are also expressed in higher amounts in the kidneys of newborn rats. The kidneys of fetuses whose mother received a type 1 AII receptor (AT1) antagonist during gestation present several morphological alterations. Mutations in genes that encode components of the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Morphological changes were detected in the kidneys of 3-week-old angiotensin-deficient mice. Mitogen-activated protein kinases (MAPKs) are important mediators that transduce extracellular stimuli to intracellular responses. The MAPK family comprises three major subgroups, namely extracellular signal-regulated protein kinase (ERK), c-jun N-terminal kinases (JNK), and p38 MAPK (p38). Important events in renal growth during nephrogenesis such as cellular proliferation and differentiation accompanied by apoptosis on a large scale can be mediated by MAPK pathways. A decrease in glomerulus number was observed in embryos cultured for 48 and 120 h with ERK or p38 inhibitors. Many effects of AII are mediated by MAPK pathways. Treatment with losartan during lactation provoked changes in renal function and structure associated with alterations in AT1 and type 2 AII (AT2) receptors and p-JNK and p-p38 expression in the kidney. Several studies have shown that AII and MAPKs play an important role in renal development. However, the relationship between the effects of AII and MAPK activation on renal development is still unclear.

  11. Blockade of renal medullary bradykinin B2 receptors increases tubular sodium reabsorption in rats fed a normal-salt diet

    PubMed Central

    Sivritas, Sema-Hayriye; Ploth, David W.; Fitzgibbon, Wayne R.

    2008-01-01

    The present study was performed to test the hypothesis that under normal physiological conditions and/or during augmentation of kinin levels, intrarenal kinins act on medullary bradykinin B2 (BKB2) receptors to acutely increase papillary blood flow (PBF) and therefore Na+ excretion. We determined the effect of acute inner medullary interstitial (IMI) BKB2 receptor blockade on renal hemodynamics and excretory function in rats fed either a normal (0.23%)- or a low (0.08%)-NaCl diet. For each NaCl diet, two groups of rats were studied. Baseline renal hemodynamic and excretory function were determined during IMI infusion of 0.9% NaCl into the left kidney. The infusion was then either changed to HOE-140 (100 μg·kg−1·h−1, treated group) or maintained with 0.9% NaCl (time control group), and the parameters were again determined. In rats fed a normal-salt diet, HOE-140 infusion decreased left kidney Na+ excretion (urinary Na+ extraction rate) and fractional Na+ excretion by 40 ± 5% and 40 ± 4%, respectively (P < 0.01), but did not alter glomerular filtration rate, inner medullary blood flow (PBF), or cortical blood flow. In rats fed a low-salt diet, HOE-140 infusion did not alter renal regional hemodynamics or excretory function. We conclude that in rats fed a normal-salt diet, kinins act tonically via medullary BKB2 receptors to increase Na+ excretion independent of changes in inner medullary blood flow. PMID:18632797

  12. Renal Hypoxia and Dysoxia After Reperfusion of the Ischemic Kidney

    PubMed Central

    Legrand, Matthieu; Mik, Egbert G; Johannes, Tanja; Payen, Didier; Ince, Can

    2008-01-01

    Ischemia is the most common cause of acute renal failure. Ischemic-induced renal tissue hypoxia is thought to be a major component in the development of acute renal failure in promoting the initial tubular damage. Renal oxygenation originates from a balance between oxygen supply and consumption. Recent investigations have provided new insights into alterations in oxygenation pathways in the ischemic kidney. These findings have identified a central role of microvascular dysfunction related to an imbalance between vasoconstrictors and vasodilators, endothelial damage and endothelium–leukocyte interactions, leading to decreased renal oxygen supply. Reduced microcirculatory oxygen supply may be associated with altered cellular oxygen consumption (dysoxia), because of mitochondrial dysfunction and activity of alternative oxygen-consuming pathways. Alterations in oxygen utilization and/or supply might therefore contribute to the occurrence of organ dysfunction. This view places oxygen pathways’ alterations as a potential central player in the pathogenesis of acute kidney injury. Both in regulation of oxygen supply and consumption, nitric oxide seems to play a pivotal role. Furthermore, recent studies suggest that, following acute ischemic renal injury, persistent tissue hypoxia contributes to the development of chronic renal dysfunction. Adaptative mechanisms to renal hypoxia may be ineffective in more severe cases and lead to the development of chronic renal failure following ischemia-reperfusion. This paper is aimed at reviewing the current insights into oxygen transport pathways, from oxygen supply to oxygen consumption in the kidney and from the adaptation mechanisms to renal hypoxia. Their role in the development of ischemia-induced renal damage and ischemic acute renal failure are discussed. PMID:18488066

  13. Creatinine, Arsenic Metabolism, and Renal Function in an Arsenic-Exposed Population in Bangladesh

    PubMed Central

    Peters, Brandilyn A.; Hall, Megan N.; Liu, Xinhua; Neugut, Y. Dana; Pilsner, J. Richard; Levy, Diane; Ilievski, Vesna; Slavkovich, Vesna; Islam, Tariqul; Factor-Litvak, Pam; Graziano, Joseph H.; Gamble, Mary V.

    2014-01-01

    Kidney disease is emerging as an arsenic (As)-linked disease outcome, however further evidence of this association is warranted. Our first objective for this paper was to examine the potential renal toxicity of As exposure in Bangladesh. Our second objective relates to examining whether the previously reported positive association between urinary creatinine (uCrn) and As methylation may be explained by renal function. We had hypothesized that these associations relate to supply and demand for s-adenosylmethionine, the methyl donor for both creatine synthesis and As methylation. Alternatively, renal function could influence both As and creatinine excretion, or the As metabolites may influence renal function, which in turn influences uCrn. We conducted a cross-sectional study (N = 478) of adults, composed of a sample recruited in 2001 and a sample recruited in 2003. We assessed renal function using plasma cystatin C, and calculated the estimated glomerular filtration rate (eGFR). Consistent with renal toxicity of As, log-uAs had a marginal inverse association with eGFR in the 2003 sample (b = −5.6, p = 0.07), however this association was not significant in the 2001 sample (b = −1.9, p = 0.24). Adjustment for eGFR did not alter the associations between uCrn and the %uAs metabolites, indicating that GFR does not explain these associations. Increased eGFR was associated with increased odds of having %uInAs >12.2% (2001: OR = 1.01, 95%CI (1.00,1.03); 2003: OR = 1.04, 95%CI (1.01,1.07)). In the 2003 sample only, there was a negative association between eGFR and %uDMA (b = −0.08, p = 0.02). These results may indicate differential effects of renal function on excretion of InAs and DMA. Alternatively, a certain methylation pattern, involving decreased %InAs and increased %DMA, may reduce renal function. Given that these studies were cross-sectional, we cannot distinguish between these two possibilities. Discrepancies between the samples may be due to the higher As exposure, poorer nutrition, and lower As methylation capacity in the 2003 sample. PMID:25438247

  14. Creatinine, arsenic metabolism, and renal function in an arsenic-exposed population in Bangladesh.

    PubMed

    Peters, Brandilyn A; Hall, Megan N; Liu, Xinhua; Neugut, Y Dana; Pilsner, J Richard; Levy, Diane; Ilievski, Vesna; Slavkovich, Vesna; Islam, Tariqul; Factor-Litvak, Pam; Graziano, Joseph H; Gamble, Mary V

    2014-01-01

    Kidney disease is emerging as an arsenic (As)-linked disease outcome, however further evidence of this association is warranted. Our first objective for this paper was to examine the potential renal toxicity of As exposure in Bangladesh. Our second objective relates to examining whether the previously reported positive association between urinary creatinine (uCrn) and As methylation may be explained by renal function. We had hypothesized that these associations relate to supply and demand for s-adenosylmethionine, the methyl donor for both creatine synthesis and As methylation. Alternatively, renal function could influence both As and creatinine excretion, or the As metabolites may influence renal function, which in turn influences uCrn. We conducted a cross-sectional study (N = 478) of adults, composed of a sample recruited in 2001 and a sample recruited in 2003. We assessed renal function using plasma cystatin C, and calculated the estimated glomerular filtration rate (eGFR). Consistent with renal toxicity of As, log-uAs had a marginal inverse association with eGFR in the 2003 sample (b = -5.6, p = 0.07), however this association was not significant in the 2001 sample (b = -1.9, p = 0.24). Adjustment for eGFR did not alter the associations between uCrn and the %uAs metabolites, indicating that GFR does not explain these associations. Increased eGFR was associated with increased odds of having %uInAs >12.2% (2001: OR = 1.01, 95%CI (1.00,1.03); 2003: OR = 1.04, 95%CI (1.01,1.07)). In the 2003 sample only, there was a negative association between eGFR and %uDMA (b = -0.08, p = 0.02). These results may indicate differential effects of renal function on excretion of InAs and DMA. Alternatively, a certain methylation pattern, involving decreased %InAs and increased %DMA, may reduce renal function. Given that these studies were cross-sectional, we cannot distinguish between these two possibilities. Discrepancies between the samples may be due to the higher As exposure, poorer nutrition, and lower As methylation capacity in the 2003 sample.

  15. The effect of obesity and type 1 diabetes on renal function in children and adolescents.

    PubMed

    Franchini, Simone; Savino, Alessandra; Marcovecchio, M Loredana; Tumini, Stefano; Chiarelli, Francesco; Mohn, Angelika

    2015-09-01

    Early signs of renal complications can be common in youths with type 1 diabetes (T1D). Recently, there has been an increasing interest in potential renal complications associated with obesity, paralleling the epidemics of this condition, although there are limited data in children. Obese children and adolescents present signs of early alterations in renal function similar to non-obese peers with T1D. Eighty-three obese (age: 11.6 ± 3.0 yr), 164 non-obese T1D (age: 12.4 ± 3.2 yr), and 71 non-obese control (age: 12.3 ± 3.2 yr) children and adolescents were enrolled in the study. Anthropometric parameters and blood pressure were measured. Renal function was assessed by albumin excretion rate (AER), serum cystatin C, creatinine and estimated glomerular filtration rate (e-GFR), calculated using the Bouvet's formula. Obese and non-obese T1D youths had similar AER [8.9(5.9-10.8) vs. 8.7(5.9-13.1) µg/min] and e-GFR levels (114.8 ± 19.6 vs. 113.4 ± 19.1 mL/min), which were higher than in controls [AER: 8.1(5.9-8.7) µg/min, e-GFR: 104.7 ± 18.9 mL/min]. Prevalence of microalbuminuria and hyperfiltration was similar between obese and T1D youths and higher than their control peers (6.0 vs. 8.0 vs. 0%, p = 0.02; 15.9 vs. 15.9 vs. 4.3%, p = 0.03, respectively). Body mass index (BMI) z-score was independently related to e-GFR (r = 0.328; p < 0.001), and AER (r = 0.138; p = 0.017). Hemoglobin A1c (HbA1c) correlated with AER (r = 0.148; p = 0.007) but not with eGFR (r = 0.041; p = 0.310). Obese children and adolescents show early alterations in renal function, compared to normal weight peers, and they have similar renal profiles than age-matched peers with T1D. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Iatrogenic Baclofen Neurotoxicity in ESRD: Recognition and Management

    PubMed Central

    Roberts, John K.; Westphal, Scott; Sparks, Matthew A.

    2016-01-01

    Baclofen is an oral derivative of gamma-aminobutyric acid (GABA) used to treat muscular spasticity from disorders of the central nervous system. However, it is also being used for a variety of other conditions such as musculoskeletal pain, myoclonus, and alcohol withdrawal. The elimination of baclofen is heavily dependent on intact renal function, and the contraindication for use in patients with insufficient renal function is not well recognized by healthcare providers. Here, the authors report a series of mild to severe cases of baclofen intoxication in patients with end-stage renal disease. In all cases, baclofen was initiated by either inpatient or outpatient healthcare providers and the patients generally presented with altered mentation, somnolence, and/or respiratory depression. All patients were treated with aggressive hemodialysis and made a full recovery. This paper will briefly review the literature regarding baclofen intoxication, safety of baclofen use in renal disease, and efficacy of extra-corporeal therapy in the treatment of baclofen intoxication. PMID:26096760

  17. Iatrogenic Baclofen Neurotoxicity in ESRD: Recognition and Management.

    PubMed

    Roberts, John K; Westphal, Scott; Sparks, Matthew A

    2015-01-01

    Baclofen is an oral derivative of gamma-aminobutyric acid (GABA) used to treat muscular spasticity from disorders of the central nervous system. However, it is also being used for a variety of other conditions such as musculoskeletal pain, myoclonus, and alcohol withdrawal. The elimination of baclofen is heavily dependent on intact renal function, and the contraindication for use in patients with insufficient renal function is not well recognized by healthcare providers. Here, the authors report a series of mild to severe cases of baclofen intoxication in patients with end-stage renal disease. In all cases, baclofen was initiated by either inpatient or outpatient healthcare providers and the patients generally presented with altered mentation, somnolence, and/or respiratory depression. All patients were treated with aggressive hemodialysis and made a full recovery. This paper will briefly review the literature regarding baclofen intoxication, safety of baclofen use in renal disease, and efficacy of extracorporeal therapy in the treatment of baclofen intoxication. © 2015 Wiley Periodicals, Inc.

  18. 6β-HYDROXYTESTOSTERONE, A CYTOCHROME P450 1B1-TESTOSTERONE-METABOLITE, MEDIATES ANGIOTENSIN II-INDUCED RENAL DYSFUNCTION IN MALE MICE

    PubMed Central

    Pingili, Ajeeth K.; Thirunavukkarasu, Shyamala; Kara, Mehmet; Brand, David; Katsurada, Akemi; Majid, Dewan S. A.; Navar, L. Gabriel; Gonzalez, Frank J.; Malik, Kafait U.

    2016-01-01

    6β-hydroxytestosterone, a cytochrome P450 1B1-derived metabolite of testosterone, contributes to the development of angiotensin II-induced hypertension and associated cardiovascular pathophysiology. In view of the critical role of angiotensin II in the maintenance of renal homeostasis, development of hypertension and end organ damage, this study was conducted to determine the contribution of 6β-hydroxytestosterone to angiotensin II actions on water consumption and renal function in male Cyp1b1+/+ and Cyp1b1−/− mice. Castration of Cyp1b1+/+ mice or Cyp1b1−/− gene disruption minimized the angiotensin II-induced increase in water consumption, urine output, proteinuria, and sodium excretion and decreases in urine osmolality. 6β-hydroxytestosterone did not alter angiotensin II-induced increases in water intake, urine output, proteinuria, and sodium excretion or decreases in osmolality in Cyp1b1+/+ mice, but restored these effects of angiotensin II in Cyp1b1−/− or castrated mice Cyp1b1+/+ mice. Cyp1b1 gene disruption or castration prevented angiotensin II-induced renal fibrosis, oxidative stress, inflammation, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, and angiotensin converting enzyme. 6β-hydroxytestosterone did not alter angiotensin II-induced renal fibrosis, inflammation, oxidative stress, urinary excretion angiotensinogen, expression of angiotensin II type 1 receptor, or angiotensin converting enzyme in Cyp1b1+/+ mice; however, in Cyp1b1−/− or castrated mice Cyp1b1+/+ mice, it restored these effects of angiotensin II. These data indicate that 6β-hydroxytestosterone contributes to increased thirst, impairment of renal function, and end organ injury associated with angiotensin II-induced hypertension in male mice and that cytochrome P450 1B1 could serve as a novel target for treating renal disease and hypertension in males. PMID:26928804

  19. Effects of a Single Dose of Parecoxib on Inflammatory Response and Ischemic Tubular Injury Caused by Hemorrhagic Shock in Rats.

    PubMed

    Takaku, Mariana; da Silva, Andre Carnevali; Iritsu, Nathalie Izumi; Vianna, Pedro Thadeu Galvao; Castiglia, Yara Marcondes Machado

    2018-01-01

    Parecoxib, a selective COX-2 inhibitor, is used to improve analgesia in postoperative procedures. Here we evaluated whether pretreatment with a single dose of parecoxib affects the function, cell injury, and inflammatory response of the kidney of rats subjected to acute hemorrhage. Inflammatory response was determined according to serum and renal tissue cytokine levels (IL-1 α , IL-1 β , IL-6, IL-10, and TNF- α ). Forty-four adult Wistar rats anesthetized with sevoflurane were randomized into four groups: placebo/no hemorrhage (Plc/NH); parecoxib/no hemorrhage (Pcx/NH); placebo/hemorrhage (Plc/H); and parecoxib/hemorrhage (Pcx/H). Pcx groups received a single dose of intravenous parecoxib while Plc groups received a single dose of placebo (isotonic saline). Animals in hemorrhage groups underwent bleeding of 30% of blood volume. Renal function and renal histology were then evaluated. Plc/H showed the highest serum levels of cytokines, suggesting that pretreatment with parecoxib reduced the inflammatory response in rats subjected to hemorrhage. No difference in tissue cytokine levels between groups was observed. Plc/H showed higher percentage of tubular dilation and degeneration, indicating that parecoxib inhibited tubular injury resulting from renal hypoperfusion. Our findings indicate that pretreatment with a single dose of parecoxib reduced the inflammatory response and tubular renal injury without altering renal function in rats undergoing acute hemorrhage.

  20. Acute kidney injury in acute liver failure: a review.

    PubMed

    Moore, Joanna K; Love, Eleanor; Craig, Darren G; Hayes, Peter C; Simpson, Kenneth J

    2013-11-01

    Acute liver failure is a rare and often devastating condition consequent on massive liver cell necrosis that frequently affects young, previously healthy individuals resulting in altered cognitive function, coagulopathy and peripheral vasodilation. These patients frequently develop concurrent acute kidney injury (AKI). This abrupt and sustained decline in renal function, through a number of pathogenic mechanisms such as renal hypoperfusion, direct drug-induced nephrotoxicity or sepsis/systemic inflammatory response contributes to increased morbidity and is strongly associated with a worse prognosis. Improved understanding of the pathophysiology AKI in the context of acute liver failure may be beneficial in a number of areas; the development of new and sensitive biomarkers of renal dysfunction, refining prognosis and organ allocation, and ultimately leading to the development of novel treatment strategies, these issues are discussed in more detail in this expert review.

  1. Signaling Pathways Involved in Renal Oxidative Injury: Role of the Vasoactive Peptides and the Renal Dopaminergic System

    PubMed Central

    Rukavina Mikusic, N. L.; Kravetz, M. C.; Kouyoumdzian, N. M.; Della Penna, S. L.; Rosón, M. I.; Fernández, B. E.; Choi, M. R.

    2014-01-01

    The physiological hydroelectrolytic balance and the redox steady state in the kidney are accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Angiotensin II, atrial natriuretic peptide and intrarenal dopamine play a pivotal role in this interactive network. The balance between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide, by one side, and the prooxidant effect of the renin angiotensin system, by the other side, contributes to ensuring the normal function of the kidney. Different pathological scenarios, as nephrotic syndrome and hypertension, where renal sodium excretion is altered, are associated with an impaired interaction between two natriuretic systems as the renal dopaminergic system and atrial natriuretic peptide that may be involved in the pathogenesis of renal diseases. The aim of this review is to update and comment the most recent evidences about the intracellular pathways involved in the relationship between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide and the prooxidant effect of the renin angiotensin system in the pathogenesis of renal inflammation. PMID:25436148

  2. Signaling pathways involved in renal oxidative injury: role of the vasoactive peptides and the renal dopaminergic system.

    PubMed

    Rukavina Mikusic, N L; Kravetz, M C; Kouyoumdzian, N M; Della Penna, S L; Rosón, M I; Fernández, B E; Choi, M R

    2014-01-01

    The physiological hydroelectrolytic balance and the redox steady state in the kidney are accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Angiotensin II, atrial natriuretic peptide and intrarenal dopamine play a pivotal role in this interactive network. The balance between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide, by one side, and the prooxidant effect of the renin angiotensin system, by the other side, contributes to ensuring the normal function of the kidney. Different pathological scenarios, as nephrotic syndrome and hypertension, where renal sodium excretion is altered, are associated with an impaired interaction between two natriuretic systems as the renal dopaminergic system and atrial natriuretic peptide that may be involved in the pathogenesis of renal diseases. The aim of this review is to update and comment the most recent evidences about the intracellular pathways involved in the relationship between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide and the prooxidant effect of the renin angiotensin system in the pathogenesis of renal inflammation.

  3. Evaluation of the water disinfection by-product dichloroacetonitrile-induced biochemical, oxidative, histopathological, and mitochondrial functional alterations: Subacute oral toxicity in rats.

    PubMed

    Dong, Ying; Li, Fang; Shen, Haijun; Lu, Rongzhu; Yin, Siqi; Yang, Qi; Li, Zhuangfa; Wang, Suhua

    2018-03-01

    Dichloroacetonitrile (DCAN), an emerging nitrogenous disinfection by-product, is more genotoxic and cytotoxic than the currently regulated carbonaceous disinfection by-products such as haloacetic acids. Few mechanistic studies have been conducted on the hepatic and renal toxicities of DCAN. This study examined the clinical biochemical, hematological, histopathological, oxidative, and mitochondrial functional alterations to evaluate the systematic toxicity after subacute oral exposure of 11 or 44 mg/kg/day in rats for 28 days. Body and spleen weights were lower, and organ-to-body weight ratios of the liver and kidney were higher in rats administered 44-mg/kg DCAN than in controls. The activities of serum alanine aminotransferase and alkaline phosphatase, and concentrations of blood serum urea nitrogen and retinol-binding protein were increased in rats administered 44-mg/kg DCAN compared with those of controls, thereby indicating hepatic and renal damage in this group. This was confirmed by histopathological alterations, including hepatic sinus dilation, extensive hemorrhage, vacuolar degeneration in the liver and glomerulus hemorrhage, and renal tubular swelling, in DCAN-exposed rats. Exposure to 44-mg/kg DCAN induced hepatic oxidative damage shown by the significant increase in malonaldehyde levels, a poisonous product of lipid peroxidation. Exposure to 44-mg/kg DCAN significantly increased hepatic glutathione content and mitochondrial bioenergy as noted by the elevation of mitochondrial membrane potential and cytochrome c oxidase activity, which might be attributed to compensatory pathophysiologic responses to DCAN-induced hepatic mitochondrial damage.

  4. Hepatorenal syndrome.

    PubMed

    Papper, S

    1980-01-01

    Renal failure without apparent cause (the hepatorenal syndrome) may develop in the course of cirrhosis of the liver. While the development of renal failure bears a poor prognosis, spontaneous recovery can occur. The data suggest that for the most part patients die in rather than of renal failure. The latter seems to be only part of a broader more fundamental disturbance. The pathogenesis of HRS is unknown, but the evidence supports an impairment of effective renal perfusion. The two major hypotheses concerning the nature of the impaired perfusion are that it is a physiologic response to alterations in the extrarenal circulation, and that there is an unidentified humoral agent(s) produced by or inadequately inactivated by or bypassing the diseased liver and causing circulatory changes in the kidney as well as in other organs. It is possible that both mechanisms are operative. Treatment is unsatisfactory and emphasis is presently best placed upon searching for more treatable causes of renal functional impairment in individual patients.

  5. Physiological stability and renal clearance of ultrasmall zwitterionic gold nanoparticles: Ligand length matters

    NASA Astrophysics Data System (ADS)

    Ning, Xuhui; Peng, Chuanqi; Li, Eric S.; Xu, Jing; Vinluan, Rodrigo D.; Yu, Mengxiao; Zheng, Jie

    2017-05-01

    Efficient renal clearance has been observed from ultrasmall zwitterionic glutathione-coated gold nanoparticles (GS-AuNPs), which have broad preclinical applications in cancer diagnosis and kidney functional imaging. However, origin of such efficient renal clearance is still not clear. Herein, we conducted head-to-head comparison on physiological stability and renal clearance of two zwitterionic luminescent AuNPs coated with cysteine and glycine-cysteine (Cys-AuNPs and Gly-Cys-AuNPs), respectively. While both of them exhibited similar surface charges and the same core sizes, additional glycine slightly increased the hydrodynamic diameter of the AuNPs by 0.4 nm but significantly enhanced physiological stability of the AuNPs as well as altered their clearance pathways. These studies indicate that the ligand length, in addition to surface charges and size, also plays a key role in the physiological stability and renal clearance of ultrasmall zwitterionic inorganic NPs.

  6. Endothelial mineralocorticoid receptor ablation does not alter blood pressure, kidney function or renal vessel contractility

    PubMed Central

    Laursen, Sidsel B.; Finsen, Stine; Marcussen, Niels; Quaggin, Susan E.

    2018-01-01

    Aldosterone blockade confers substantial cardiovascular and renal protection. The effects of aldosterone on mineralocorticoid receptors (MR) expressed in endothelial cells (EC) within the renal vasculature have not been delineated. We hypothesized that lack of MR in EC may be protective in renal vasculature and examined this by ablating the Nr3c2 gene in endothelial cells (EC-MR) in mice. Blood pressure, heart rate and PAH clearance were measured using indwelling catheters in conscious mice. The role of the MR in EC on contraction and relaxation was investigated in the renal artery and in perfused afferent arterioles. Urinary sodium excretion was determined by use of metabolic cages. EC-MR transgenics had markedly decreased MR expression in isolated aortic endothelial cells as compared to littermates (WT). Blood pressure and effective renal plasma flow at baseline and following AngII infusion was similar between groups. No differences in contraction and relaxation were observed between WT and EC-MR KO in isolated renal arteries during baseline or following 2 or 4 weeks of AngII infusion. The constriction or dilatations of afferent arterioles between genotypes were not different. No changes were found between the groups with respect to urinary excretion of sodium after 4 weeks of AngII infusion, or in urinary albumin excretion and kidney morphology. In conclusion, deletion of the EC-MR does not confer protection towards the development of hypertension, endothelial dysfunction of renal arteries or renal function following prolonged AngII-infusion. PMID:29466427

  7. Oxidative Stress in Hypertension: Role of the Kidney

    PubMed Central

    Araujo, Magali

    2014-01-01

    Abstract Significance: Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective antioxidant system also can contribute. Recent Advances: Superoxide has been identified as the principal ROS implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in diminishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in hypertensive animals. Critical Issues and Future Directions: Increased renal ROS have been implicated in renal vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches are required to dampen the renal oxidative stress pathways to reduced O2−• rather than H2O2 selectivity and/or to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-damaging effects of hypertension. Antioxid. Redox Signal. 20, 74–101. PMID:23472618

  8. Genome-Wide Association and Functional Follow-Up Reveals New Loci for Kidney Function

    PubMed Central

    Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B.; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L. R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C. M.; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Goessling, Wolfram; Chasman, Daniel I.; Kao, W. H. Linda; Fox, Caroline S.

    2012-01-01

    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD. PMID:22479191

  9. Genome-wide association and functional follow-up reveals new loci for kidney function.

    PubMed

    Pattaro, Cristian; Köttgen, Anna; Teumer, Alexander; Garnaas, Maija; Böger, Carsten A; Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C M; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Goessling, Wolfram; Chasman, Daniel I; Kao, W H Linda; Fox, Caroline S

    2012-01-01

    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.

  10. Mitochondrionopathy phenotype in doxorubicin-treated Wistar rats depends on treatment protocol and is cardiac-specific.

    PubMed

    Pereira, Gonçalo C; Pereira, Susana P; Pereira, Claudia V; Lumini, José A; Magalhães, José; Ascensão, António; Santos, Maria S; Moreno, António J; Oliveira, Paulo J

    2012-01-01

    Although doxorubicin (DOX) is a very effective antineoplastic agent, its clinical use is limited by a dose-dependent, persistent and cumulative cardiotoxicity, whose mechanism remains to be elucidated. Previous works in animal models have failed to use a multi-organ approach to demonstrate that DOX-associated toxicity is selective to the cardiac tissue. In this context, the present work aims to investigate in vivo DOX cardiac, hepatic and renal toxicity in the same animal model, with special relevance on alterations of mitochondrial bioenergetics. To this end, male Wistar rats were sub-chronically (7 wks, 2 mg/Kg) or acutely (20 mg/Kg) treated with DOX and sacrificed one week or 24 hours after the last injection, respectively. Alterations of mitochondrial bioenergetics showed treatment-dependent differences between tissues. No alterations were observed for cardiac mitochondria in the acute model but decreased ADP-stimulated respiration was detected in the sub-chronic treatment. In the acute treatment model, ADP-stimulated respiration was increased in liver and decreased in kidney mitochondria. Aconitase activity, a marker of oxidative stress, was decreased in renal mitochondria in the acute and in heart in the sub-chronic model. Interestingly, alterations of cardiac mitochondrial bioenergetics co-existed with an absence of echocardiograph, histopathological or ultra-structural alterations. Besides, no plasma markers of cardiac injury were found in any of the time points studied. The results confirm that alterations of mitochondrial function, which are more evident in the heart, are an early marker of DOX-induced toxicity, existing even in the absence of cardiac functional alterations.

  11. Mitochondrionopathy Phenotype in Doxorubicin-Treated Wistar Rats Depends on Treatment Protocol and Is Cardiac-Specific

    PubMed Central

    Pereira, Gonçalo C.; Pereira, Susana P.; Pereira, Claudia V.; Lumini, José A.; Magalhães, José; Ascensão, António; Santos, Maria S.; Moreno, António J.; Oliveira, Paulo J.

    2012-01-01

    Although doxorubicin (DOX) is a very effective antineoplastic agent, its clinical use is limited by a dose-dependent, persistent and cumulative cardiotoxicity, whose mechanism remains to be elucidated. Previous works in animal models have failed to use a multi-organ approach to demonstrate that DOX-associated toxicity is selective to the cardiac tissue. In this context, the present work aims to investigate in vivo DOX cardiac, hepatic and renal toxicity in the same animal model, with special relevance on alterations of mitochondrial bioenergetics. To this end, male Wistar rats were sub-chronically (7 wks, 2 mg/Kg) or acutely (20 mg/Kg) treated with DOX and sacrificed one week or 24 hours after the last injection, respectively. Alterations of mitochondrial bioenergetics showed treatment-dependent differences between tissues. No alterations were observed for cardiac mitochondria in the acute model but decreased ADP-stimulated respiration was detected in the sub-chronic treatment. In the acute treatment model, ADP-stimulated respiration was increased in liver and decreased in kidney mitochondria. Aconitase activity, a marker of oxidative stress, was decreased in renal mitochondria in the acute and in heart in the sub-chronic model. Interestingly, alterations of cardiac mitochondrial bioenergetics co-existed with an absence of echocardiograph, histopathological or ultra-structural alterations. Besides, no plasma markers of cardiac injury were found in any of the time points studied. The results confirm that alterations of mitochondrial function, which are more evident in the heart, are an early marker of DOX-induced toxicity, existing even in the absence of cardiac functional alterations. PMID:22745682

  12. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in healthy geriatric cats fed reduced protein foods enriched with fish oil, L-carnitine, and medium-chain triglycerides.

    PubMed

    Hall, J A; Yerramilli, M; Obare, E; Yerramilli, M; Yu, S; Jewell, D E

    2014-12-01

    The purpose of this study was to determine whether feeding cats reduced protein and phosphorus foods with added fish oil, L-carnitine, and medium-chain triglycerides (MCT) altered serum biomarkers of renal function. Thirty-two healthy cats, mean age 14.0 (8.3-19.6) years, were fed control food or one of two experimental foods for 6 months. All foods had similar concentrations of moisture, protein, and fat (approximately 8.0%, 26.5%, and 20.0%, respectively). Both experimental foods contained added fish oil (1.5%) and L-carnitine (500 mg/kg). Experimental-food 2 also contained increased MCT (10.5% from coconut oil), 1.5% added corn oil, and reduced animal fat. Glomerular filtration rate (GFR), serum biochemistries, renal function biomarkers including serum creatinine (sCr) and symmetrical dimethylarginine (SDMA), and plasma metabolomic profiles were measured at baseline, and at 1.5, 3, and 6 months. Body composition was determined by dual-energy X-ray absorptiometry. Although both experimental foods altered plasma fatty acids, carnitine and related metabolites, and lysophospholipid concentrations, there were no changes in renal function biomarkers. There was, however, a benefit in using SDMA versus sCr to assess renal function in older cats with less total lean mass. Compared with cats <12 years, those >15 years had lower total lean mass (P < 0.01), lower GFR (P = 0.04), and lower sCr concentrations (P < 0.01). However, SDMA concentrations (P < 0.01) were higher in older cats. This study shows that in cats, serum SDMA concentration is more highly correlated with GFR than sCr concentration, and, unlike sCr, which declines with age because of muscle wasting, SDMA increases as GFR declines with age. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Stress, temperature, heart rate, and hibernating factors in hamsters. [pathophysiological conditions resulting from exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1974-01-01

    Pathophysiological conditions resulting from prolonged exposure to zero gravity, cabin constraint, altered ambient environment, whether it be noise, vibrations, high temperatures, or combinations of such factors, are studied in laboratory animals and applied to manned space flight. Results and plans for further study are presented. Specific topics covered include: thermoregulation and its role in reflecting stress and adaptation to the gravity free environment and cabin confinement with its altered circadian forcings; renal function and its measurement in electrolyte distribution and blood flow dynamics; gastronintestinal function and an assessment of altered absorptive capacity in the intestinal mucosa; and catecholamine metabolism in terms of distribution and turnover rates in specific tissues.

  14. Understanding alterations on blood and biochemical parameters in athletes that use dietary supplements, steroids and illicit drugs.

    PubMed

    Bordin, Dayanne Mozaner; Bettim, Bárbara Beltrame; Perdona, Gleici Castro; de Campos, Eduardo Geraldo; De Martinis, Bruno Spinosa

    2017-02-01

    In recent years it was verified there are an alarming growing number of teenagers and young adults using a combination of dietary supplements (DS) anabolic androgenic steroids (AAS) and drugs of abuse. This practice is used to improve physical fitness and appearance, may cause serious side effects. This article shows the alterations in the hematological and renal function parameters associate with these substances in 40 athletes. This research involved three steps: 1-the administration of a self-completion questionnaire ; 2-the assessment of hematological and biochemical parameters of renal function and; 3-toxicological urinalysis. Hematological and biochemical tests were conducted in an accredited laboratory and the toxicological urinalysis was validated in our laboratory using liquid-liquid extraction (LLE) and gas chromatography-mass spectrometry (GC-MS). The testosterone levels in the participants who consumed steroids increased 20-60% and alterations in serum creatinine, urea and uric reached values of up to 1.9; 60.6 and 7.5mg/dL, respectively. The toxicological urinalysis supports self-reports confirming the use of AAS and recreational drugs, putting at risk the health of those athletes increasing the chances of kidney diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Mesenchymal stem cells in renal function recovery after acute kidney injury: use of a differentiating agent in a rat model.

    PubMed

    La Manna, Gaetano; Bianchi, Francesca; Cappuccilli, Maria; Cenacchi, Giovanna; Tarantino, Lucia; Pasquinelli, Gianandrea; Valente, Sabrina; Della Bella, Elena; Cantoni, Silvia; Claudia, Cavallini; Neri, Flavia; Tsivian, Matvey; Nardo, Bruno; Ventura, Carlo; Stefoni, Sergio

    2011-01-01

    Acute kidney injury (AKI) is a major health care condition with limited current treatment options. Within this context, stem cells may provide a clinical approach for AKI. Moreover, a synthetic compound previously developed, hyaluronan monoesters with butyric acid (HB), able to induce metanephric differentiation, formation of capillary-like structures, and secretion of angiogenic cytokines, was tested in vitro. Thereafter, we investigated the effects of human mesenchymal stem cells from fetal membranes (FMhMSCs), both treated and untreated with HB, after induction of ischemic AKI in a rat model. At reperfusion following 45-min clamping of renal pedicles, each rat was randomly assigned to one of four groups: CTR, PBS, MSC, and MSC-HB. Renal function at 1, 3, 5, and 7 days was assessed. Histological samples were analyzed by light and electron microscopy and renal injury was graded. Cytokine analysis on serum samples was performed. FMhMSCs induced an accelerated renal functional recovery, demonstrated by biochemical parameters and confirmed by histology showing that histopathological alterations associated with ischemic injury were less severe in cell-treated kidneys. HB-treated rats showed a minor degree of inflammation, both at cytokine and TEM analyses. Better functional and morphological recovery were not associated to stem cells' regenerative processes, but possibly suggest paracrine effects on microenvironment that induce retrieval of renal damaged tissues. These results suggest that FMhMSCs could be useful in the treatment of AKI and the utilization of synthetic compounds could enhance the recovery induction ability of cells.

  16. Does Altered Uric Acid Metabolism Contribute to Diabetic Kidney Disease Pathophysiology?

    PubMed

    Gul, Ambreen; Zager, Philip

    2018-03-01

    Multiple experimental and clinical studies have identified pathways by which uric acid may facilitate the development and progression of chronic kidney disease (CKD) in people with diabetes. However, it remains uncertain if the association of uric acid with CKD represents a pathogenic effect or merely reflects renal impairment. In contrast to many published reports, a recent Mendelian randomization study did not identify a causal link between uric acid and CKD in people with type 1 diabetes. Two recent multicenter randomized control trials, Preventing Early Renal Function Loss in Diabetes (PERL) and FEbuxostat versus placebo rAndomized controlled Trial regarding reduced renal function in patients with Hyperuricemia complicated by chRonic kidney disease stage 3 (FEATHER), were recently designed to assess if uric acid lowering slows progression of CKD. We review the evidence supporting a role for uric acid in the pathogenesis of CKD in people with diabetes and the putative benefits of uric acid lowering.

  17. Effects of Hyperbaric Oxygen Treatment on Renal System.

    PubMed

    Tezcan, Orhan; Caliskan, Ahmet; Demirtas, Sinan; Yavuz, Celal; Kuyumcu, Mahir; Nergiz, Yusuf; Guzel, Abdulmenap; Karahan, Oguz; Ari, Seyhmus; Soker, Sevda; Yalinkilic, Ibrahim; Turkdogan, Kenan Ahmet

    2017-01-01

    Hyperbaric oxygen (HBO) treatment is steadily increasing as a therapeutic modality for various types of diseases. Although good clinical outcomes were reported with HBO treatment for various diseases, the multisystemic effects of this modality are still unclear. This study aimed to investigate the renal effects of HBO experimentally. Fourteen New Zealand White rabbits were divided into 2 groups randomly as the control group and the study group. The study group received HBO treatment for 28 days (100% oxygen at 2.5 atmospheres for 90 minutes daily) and the control group was used to obtain normal renal tissue of the animal genus. After the intervention period, venous blood samples were obtained, and renal tissue samples were harvested for comparisons. Normal histological morphology was determined with Masson trichrome staining and periodic acid-Schiff staining in the control group. Atrophic glomerular structures, vacuolated tubule cells, and degeneration were detected in the renal samples of the study group with Masson trichrome staining. Additionally, flattening was observed on the brush borders of the proximal tubules, and tubular dilatation was visualized with periodic acid-Schiff staining. The histopathologic disruption of renal morphology was verified with detection of significantly elevated kidney function laboratory biomarkers in the study group. Our findings suggests that HBO has adverse effects on renal glomerulus and proximal tubules. However, the functional effects of this alteration should be investigated with further studies.

  18. CDP-choline circumvents mercury-induced mitochondrial damage and renal dysfunction.

    PubMed

    Buelna-Chontal, Mabel; Franco, Martha; Hernández-Esquivel, Luz; Pavón, Natalia; Rodríguez-Zavala, José S; Correa, Francisco; Jasso, Ricardo; Pichardo-Ramos, Gregorio; Santamaría, José; González-Pacheco, Héctor; Soto, Virgilia; Díaz-Ruíz, Jorge L; Chávez, Edmundo

    2017-12-01

    Heavy metal ions are known to produce harmful alterations on kidney function. Specifically, the accumulation of Hg 2+ in kidney tissue may induce renal failure. In this work, the protective effect of CDP-choline against the deleterious effects induced by Hg 2+ on renal function was studied. CDP-choline administered ip at a dose of 125 mg/kg body weight prevented the damage induced by Hg 2+ administration at a dose of 3 mg/kg body weight. The findings indicate that CDP-choline guards mitochondria against Hg 2+ -toxicity by preserving their ability to retain matrix content, such as accumulated Ca 2+ . This nucleotide also protected mitochondria from Hg 2+ -induced loss of the transmembrane electric gradient and from the generation of hydrogen peroxide and membrane TBARS. In addition, CDP-choline avoided the oxidative damage of mtDNA and inhibited the release of the interleukins IL-1 and IL6, recognized as markers of acute inflammatory reaction. After the administration of Hg 2+ and CDP, CDP-choline maintained nearly normal levels of renal function and creatinine clearance, as well as blood urea nitrogen (BUN) and serum creatinine. © 2017 International Federation for Cell Biology.

  19. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation

    PubMed Central

    Gautier, Jean-François; Porcher, Raphaël; Abi Khalil, Charbel; Bellili-Munoz, Naima; Fetita, Lila Sabrina; Travert, Florence; Choukem, Simeon-Pierre; Riveline, Jean-Pierre; Hadjadj, Samy; Larger, Etienne; Boudou, Philippe; Blondeau, Bertrand; Roussel, Ronan; Ferré, Pascal; Ravussin, Eric; Rouzet, François; Marre, Michel

    2015-01-01

    Background Fetal exposure to hyperglycemia impacts negatively kidney development and function. Objective Our objective was to determine whether fetal exposure to moderate hyperglycemia is associated with epigenetic alterations in DNA methylation in peripheral blood cells and whether those alterations are related to impaired kidney function in adult offspring. Design Twenty nine adult, non-diabetic offspring of mothers with type 1 diabetes (T1D) (case group) were matched with 28 offspring of T1D fathers (control group) for the study of their leukocyte genome-wide DNA methylation profile (27,578 CpG sites, Human Methylation 27 BeadChip, Illumina Infinium). In a subset of 19 cases and 18 controls, we assessed renal vascular development by measuring Glomerular Filtration Rate (GFR) and Effective Renal Plasma Flow (ERPF) at baseline and during vasodilatation produced by amino acid infusion. Results Globally, DNA was under-methylated in cases vs. controls. Among the 87 CpG sites differently methylated, 74 sites were less methylated and 13 sites more methylated in cases vs. controls. None of these CpG sites were located on a gene known to be directly involved in kidney development and/or function. However, the gene encoding DNA methyltransferase 1 (DNMT1)—a key enzyme involved in gene expression during early development–was under-methylated in cases. The average methylation of the 74 under-methylated sites differently correlated with GFR in cases and controls. Conclusion Alterations in methylation profile imprinted by the hyperglycemic milieu of T1D mothers during fetal development may impact kidney function in adult offspring. The involved pathways seem to be a nonspecific imprinting process rather than specific to kidney development or function. PMID:26258530

  20. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation.

    PubMed

    Gautier, Jean-François; Porcher, Raphaël; Abi Khalil, Charbel; Bellili-Munoz, Naima; Fetita, Lila Sabrina; Travert, Florence; Choukem, Simeon-Pierre; Riveline, Jean-Pierre; Hadjadj, Samy; Larger, Etienne; Boudou, Philippe; Blondeau, Bertrand; Roussel, Ronan; Ferré, Pascal; Ravussin, Eric; Rouzet, François; Marre, Michel

    2015-01-01

    Fetal exposure to hyperglycemia impacts negatively kidney development and function. Our objective was to determine whether fetal exposure to moderate hyperglycemia is associated with epigenetic alterations in DNA methylation in peripheral blood cells and whether those alterations are related to impaired kidney function in adult offspring. Twenty nine adult, non-diabetic offspring of mothers with type 1 diabetes (T1D) (case group) were matched with 28 offspring of T1D fathers (control group) for the study of their leukocyte genome-wide DNA methylation profile (27,578 CpG sites, Human Methylation 27 BeadChip, Illumina Infinium). In a subset of 19 cases and 18 controls, we assessed renal vascular development by measuring Glomerular Filtration Rate (GFR) and Effective Renal Plasma Flow (ERPF) at baseline and during vasodilatation produced by amino acid infusion. Globally, DNA was under-methylated in cases vs. controls. Among the 87 CpG sites differently methylated, 74 sites were less methylated and 13 sites more methylated in cases vs. controls. None of these CpG sites were located on a gene known to be directly involved in kidney development and/or function. However, the gene encoding DNA methyltransferase 1 (DNMT1)--a key enzyme involved in gene expression during early development--was under-methylated in cases. The average methylation of the 74 under-methylated sites differently correlated with GFR in cases and controls. Alterations in methylation profile imprinted by the hyperglycemic milieu of T1D mothers during fetal development may impact kidney function in adult offspring. The involved pathways seem to be a nonspecific imprinting process rather than specific to kidney development or function.

  1. Role of Bone Marrow Derived Mesenchymal Stem Cells and the Protective Effect of Silymarin in Cisplatin-Induced Acute Renal Failure in Rats.

    PubMed

    Ibrahim, Mohamed El-Tantawy; Bana, Eman El; El-Kerdasy, Hanan I

    2018-01-01

    Cisplatin is a highly effective antitumor agent whose clinical application is limited by its nephrotoxicity, which is associated with high mortality and morbidity rates. We aimed to study the protective role of silymarin and mesenchymal stem cells as a therapeutic tool of cisplatin nephrotoxicity. We injected rats with cisplatin in a dose of 5mg/kg body weight for 5 days to induce acute renal failure (ARF). Silymarin was administrated 6 hours before cisplatin injection and mesenchymal stem cells were injected 24 hours after cisplatin-induced ARF. We assessed the ARF biochemically by elevation of kidney function tests and histopathologically by an alteration of the histological architecture of the renal cortex in the form of shrinkage of glomeruli, lobulated tufts and glomerular hypertrophy with narrowing capsular space. The tubules showed extensive tubular degeneration with cellular hyaline materials and debris in the lumen of the renal tubules. The renal blood vessels appeared sclerotic with marked thickened walls. When silymarin was given in different doses before cisplatin, it decreased the toxic effect of cisplatin in the kidney but sclerotic blood vessels remained. Injection of mesenchymal stem cells in rats with cisplatin-induced ARF improved the histopathological effects of cisplatin in renal tissues and kidney function tests were significantly improved. There was a significant improvement in kidney function tests and renal histopathology by using silymarin as protective mechanism in cisplatin-induced ARF. Administration of mesenchymal stem cells denoted a more remarkable therapeutic effect in ARF. Copyright © 2018 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  2. Role of neuropeptide Y in renal sympathetic vasoconstriction: studies in normal and congestive heart failure rats.

    PubMed

    DiBona, G F; Sawin, L L

    2001-08-01

    Sympathetic nerve activity, including that in the kidney, is increased in heart failure with increased plasma concentrations of norepinephrine and the vasoconstrictor cotransmitter neuropeptide Y (NPY). We examined the contribution of NPY to sympathetically mediated alterations in kidney function in normal and heart failure rats. Heart failure rats were created by left coronary ligation and myocardial infarction. In anesthetized normal rats, the NPY Y(1) receptor antagonist, H 409/22, at two doses, had no effect on heart rate, arterial pressure, or renal hemodynamic and excretory function. In conscious severe heart failure rats, high-dose H 409/22 decreased mean arterial pressure by 8 +/- 2 mm Hg but had no effect in normal and mild heart failure rats. During graded frequency renal sympathetic nerve stimulation (0 to 10 Hz), high-dose H 409/22 attenuated the decreases in renal blood flow only at 10 Hz (-36% +/- 5%, P <.05) in normal rats but did so at both 4 (-29% +/- 4%, P <.05) and 10 Hz (-33% +/- 5%, P <.05) in heart failure rats. The glomerular filtration rate, urinary flow rate, and sodium excretion responses to renal sympathetic nerve stimulation were not affected by high-dose H 409/22 in either normal or heart failure rats. NPY does not participate in the regulation of kidney function and arterial pressure in normal conscious or anesthetized rats. When sympathetic nervous system activity is increased, as in heart failure and intense renal sympathetic nerve stimulation, respectively, a small contribution of NPY to maintenance of arterial pressure and to sympathetic renal vasoconstrictor responses may be identified.

  3. Alterations of Hepatic Metabolism in Chronic Kidney Disease via D-box-binding Protein Aggravate the Renal Dysfunction.

    PubMed

    Hamamura, Kengo; Matsunaga, Naoya; Ikeda, Eriko; Kondo, Hideaki; Ikeyama, Hisako; Tokushige, Kazutaka; Itcho, Kazufumi; Furuichi, Yoko; Yoshida, Yuya; Matsuda, Masaki; Yasuda, Kaori; Doi, Atsushi; Yokota, Yoshifumi; Amamoto, Toshiaki; Aramaki, Hironori; Irino, Yasuhiro; Koyanagi, Satoru; Ohdo, Shigehiro

    2016-03-04

    Chronic kidney disease (CKD) is associated with an increase in serum retinol; however, the underlying mechanisms of this disorder are poorly characterized. Here, we found that the alteration of hepatic metabolism induced the accumulation of serum retinol in 5/6 nephrectomy (5/6Nx) mice. The liver is the major organ responsible for retinol metabolism; accordingly, microarray analysis revealed that the hepatic expression of most CYP genes was changed in 5/6Nx mice. In addition, D-box-binding protein (DBP), which controls the expression of several CYP genes, was significantly decreased in these mice. Cyp3a11 and Cyp26a1, encoding key proteins in retinol metabolism, showed the greatest decrease in expression in 5/6Nx mice, a process mediated by the decreased expression of DBP. Furthermore, an increase of plasma transforming growth factor-β1 (TGF-β1) in 5/6Nx mice led to the decreased expression of the Dbp gene. Consistent with these findings, the alterations of retinol metabolism and renal dysfunction in 5/6Nx mice were ameliorated by administration of an anti-TGF-β1 antibody. We also show that the accumulation of serum retinol induced renal apoptosis in 5/6Nx mice fed a normal diet, whereas renal dysfunction was reduced in mice fed a retinol-free diet. These findings indicate that constitutive Dbp expression plays an important role in mediating hepatic dysfunction under CKD. Thus, the aggravation of renal dysfunction in patients with CKD might be prevented by a recovery of hepatic function, potentially through therapies targeting DBP and retinol. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Vascular and renal function in experimental thyroid disorders.

    PubMed

    Vargas, Félix; Moreno, Juan Manuel; Rodríguez-Gómez, Isabel; Wangensteen, Rosemary; Osuna, Antonio; Alvarez-Guerra, Miriam; García-Estañ, Joaquín

    2006-02-01

    This review focuses on the effects of thyroid hormones in vascular and renal systems. Special emphasis is given to the mechanisms by which thyroid hormones affect the regulation of body fluids, vascular resistance and, ultimately, blood pressure. Vascular function is markedly affected by thyroid hormones that produce changes in vascular reactivity and endothelial function in hyper- and hypothyroidism. The hypothyroid state is accompanied by a marked decrease in sensitivity to vasoconstrictors, especially to sympathetic agonists, alteration that may play a role in the reduced blood pressure of hypothyroid rats, as well as in the preventive effects of hypothyroidism on experimental hypertension. Moreover, in hypothyroid rats, the endothelium-dependent and nitric oxide donors vasodilation is reduced. Conversely, the vessels from hyperthyroid rats showed an increased endothelium-dependent responsiveness that may be secondary to the shear-stress induced by the hyperdynamic circulation, and that may contribute to the reduced vascular resistance characteristic of this disease. Thyroid hormones also have important effects in the kidney, affecting renal growth, renal haemodynamics, and salt and water metabolism. In hyperthyroidism, there is a resetting of the pressure-natriuresis relationship related to hyperactivity of the renin-angiotensin system, which contributes to the arterial hypertension associated with this endocrine disease. Moreover, thyroid hormones affect the development and/or maintenance of various forms of arterial hypertension. This review also describes recent advances in our understanding of thyroid hormone action on nitric oxide and oxidative stress in the regulation of cardiovascular and renal function and in the long-term control of blood pressure.

  5. Direct renal effects of a fructose-enriched diet: interaction with high salt intake

    PubMed Central

    Ares, Gustavo R.

    2015-01-01

    Consumption of fructose has increased during the last 50 years. Excessive fructose consumption has a detrimental effect on mammalian health but the mechanisms remain unclear. In humans, a direct relationship exists between dietary intake of added sugars and increased risk for cardiovascular disease mortality (52). While the causes for this are unclear, we recently showed that fructose provided in the drinking water induces a salt-dependent increase in blood pressure in Sprague-Dawley rats in a matter of days (6). However, little is known about the effects of fructose in renal salt handling and whether combined intake of high fructose and salt can lead to salt-sensitive hypertension before the development of metabolic abnormalities. The long-term (more than 4 wk) adverse effects of fructose intake on renal function are not just due to fructose but are also secondary to alterations in metabolism which may have an impact on renal function. This minireview focuses on the acute effect of fructose intake and its effect on salt regulation, as they affect blood pressure. PMID:26447210

  6. The use of renal replacement therapy in acute decompensated heart failure.

    PubMed

    Udani, Suneel M; Murray, Patrick T

    2009-01-01

    The worsening of renal function in the context of decompensated heart failure is an increasingly common clinical scenario, dubbed the cardiorenal syndrome. Its development is not completely understood; however, it results from the hemodynamic and neurohumoral alterations that occur in the setting of left ventricular pressure and volume overload with poor cardiac output. Diuretics have been the mainstay of treatment; however, they are often unsuccessful in reversing the vicious cycle of volume overload, worsening cardiac function, and azotemia. Renal replacement therapy (RRT) in the form of isolated or continuous ultrafiltration (UF) with or without a component of solute clearance (hemofiltration or hemodialysis) has been increasingly utilized as a therapeutic tool in this setting. Initial clinical trial data on the use of UF have demonstrated promising cardiac outcomes with regard to fluid removal and symptom relief without worsening renal function. The addition of a component of solute clearance may provide additional benefits in these patients with varying degrees of renal impairment. The exact clinical setting in which the various forms of RRT should be applied as initial or early therapy for acute decompensated heart failure (ADHF) remains unknown. More research examining the use of RRT in ADHF is necessary; however, it appears that the patients with the most severe clinical presentations have the best chance of benefiting from the early application of RRT.

  7. Effects of preoperative administration of carprofen on renal function and hemostasis in dogs undergoing surgery for fracture repair.

    PubMed

    Bergmann, Hannes M L; Nolte, Ingo J A; Kramer, Sabine

    2005-08-01

    To evaluate effects of preoperative administration of carprofen on renal function and hemostasis in dogs undergoing general anesthesia for fracture repair. 26 client-owned dogs. Anesthesia was induced with levomethadone, diazepam, and propofol and maintained by administration of isoflurane in oxygen-nitrous oxide. Carprofen (4 mg/kg, SC) was administered 1 hour before induction to 13 dogs (group 1) and after extubation to the other 13 dogs (group 2). All dogs also received carprofen (4 mg/kg, SC, q 24 h) for the first 4 days after surgery. Renal function (glomerular filtration rate [GFR], urinary protein-to-urinary creatinine ratio [UP:UC], and results of urinalysis and biochemical analysis of plasma), hemostatic variables (bleeding time, platelet aggregation, prothrombin time [PT], activated partial thromboplastin time [APTT], and platelet count), and Hct were assessed before and at various time points after surgery. Analysis of results for renal function tests, most of the hemostatic and plasma biochemical variables, and Hct did not reveal significant differences between treatment groups. Values for GFR, UP:UC, PT, APTT, and platelet aggregation were outside reference ranges in many dogs before surgery and during the first 6 hours after surgery. In most dogs, these trauma-induced pathologic changes returned to within reference ranges during the 4-day period after surgery. Carprofen did not cause clinically relevant adverse effects in dogs anesthetized for fracture repair after 5 days of treatment, even when it was administered before surgery or given to patients with trauma-induced alterations in renal function or hemostasis.

  8. Maternal corticosterone exposure in the mouse programs sex-specific renal adaptations in the renin-angiotensin-aldosterone system in 6-month offspring.

    PubMed

    Cuffe, James S M; Burgess, Danielle J; O'Sullivan, Lee; Singh, Reetu R; Moritz, Karen M

    2016-04-01

    Short-term maternal corticosterone (Cort) administration at mid-gestation in the mouse reduces nephron number in both sexes while programming renal and cardiovascular dysfunction in 12-month male but not female offspring. The renal renin-angiotensin-aldosterone system (RAAS), functions in a sexually dimorphic manner to regulate both renal and cardiovascular physiology. This study aimed to identify if there are sex-specific differences in basal levels of the intrarenal RAAS and to determine the impact of maternal Cort exposure on the RAAS in male and female offspring at 6 months of age. While intrarenal renin concentrations were higher in untreated females compared to untreated males, renal angiotensin II concentrations were higher in males than females. Furthermore, basal plasma aldosterone concentrations were greater in females than males. Cort exposed male but not female offspring had reduced water intake and urine excretion. Cort exposure increased renal renin concentrations and elevated mRNA expression of Ren1, Ace2, and Mas1 in male but not female offspring. In addition, male Cort exposed offspring had increased expression of the aldosterone receptor, Nr3c2 and renal sodium transporters. In contrast, Cort exposure increased Agtr1a mRNA levels in female offspring only. This study demonstrates that maternal Cort exposure alters key regulators of renal function in a sex-specific manner at 6 months of life. These finding likely contribute to the disease outcomes in male but not female offspring in later life and highlights the importance of renal factors other than nephron number in the programming of renal and cardiovascular disease. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  9. Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α.

    PubMed

    Adil, Mohammad; Kandhare, Amit D; Visnagri, Asjad; Bodhankar, Subhash L

    2015-01-01

    Chronic exposure of a naturally occurring metal arsenic leads to renal and hepatic diseases. Naringin, a flavanone glycoside, possesses anti-inflammatory and anti-oxidant potential. The aim of this investigation was to evaluate the protective effect of naringin against arsenic-induced renal and hepatic toxicity in rats. Renal and hepatic toxicity was induced in rats by sodium arsenite (5 mg/kg, p.o.). Rats were treated orally with either vehicle or naringin (20, 40, and 80 mg/kg) or Coenzyme Q10 (10 mg/kg) for 28 days. Various biochemical, histological, and molecular biomarkers were assessed in kidney and liver. Treatment with naringin (40 and 80 mg/kg) significantly and dose-dependently restored (p < 0.01 and p < 0.001) altered levels of kidney (serum creatinine, urine creatinine, BUN, uric acid, and creatinine clearance) and liver function test (AST and ALT) induced by sodium arsenite. Elevated levels of oxido-nitrosative stress in renal and hepatic tissue was significantly and dose-dependently decreased (p < 0.01 and p < 0.001) by naringin (40 and 80 mg/kg) treatment. It significantly and dose-dependently down-regulated (p < 0.01 and p < 0.001) renal KIM-1, Caspase-3, TGF-β, and TNF-α mRNA expression. Histopathological alteration induced in kidney and liver by sodium arsenite was reduced by naringin (40 and 80 mg/kg) treatment. In conclusion, naringin treatment ameliorates arsenic-induced renal and hepatic damage in rats due its antioxidant and anti-inflammatory properties via down-regulation of elevated oxido-nitrosative stress, KIM-1, Caspase-3, TGF-β, and TNF-α levels.

  10. Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of end-stage renal failure patients.

    PubMed

    D'Haese, P C; Couttenye, M M; Lamberts, L V; Elseviers, M M; Goodman, W G; Schrooten, I; Cabrera, W E; De Broe, M E

    1999-09-01

    Little is known about trace metal alterations in the bones of dialysis patients or whether particular types of renal osteodystrophy are associated with either increased or decreased skeletal concentrations of trace elements. Because these patients are at risk for alterations of trace elements as well as for morbidity from skeletal disorders, we measured trace elements in bone of patients with end-stage renal disease. We analyzed bone biopsies of 100 end-stage renal failure patients enrolled in a hemodialysis program. The trace metal contents of bone biopsies with histological features of either osteomalacia, adynamic bone disease, mixed lesion, normal histology, or hyperparathyroidism were compared with each other and with the trace metal contents of bone of subjects with normal renal function. Trace metals were measured by atomic absorption spectrometry. The concentrations of aluminum, chromium, and cadmium were increased in bone of end-stage renal failure patients. Comparing the trace metal/calcium ratio, significantly higher values were found for the bone chromium/calcium, aluminum/calcium, zinc/calcium, magnesium/calcium, and strontium/calcium ratios. Among types of renal osteodystrophy, increased bone aluminum, lead, and strontium concentrations and strontium/calcium and aluminum/calcium ratios were found in dialysis patients with osteomalacia vs the other types of renal osteodystrophy considered as one group. Moreover, the concentrations of several trace elements in bone were significantly correlated with each other. Bone aluminum was correlated with the time on dialysis, whereas bone iron, aluminum, magnesium, and strontium tended to be associated with patient age. Bone trace metal concentrations did not depend on vitamin D intake nor on the patients' gender. The concentration of several trace elements in bone of end-stage renal failure patients is disturbed, and some of the trace metals under study might share pathways of absorption, distribution, and accumulation. The clinical significance of the increased/decreased concentrations of several trace elements other than aluminum in bone of dialysis patients deserves further investigation.

  11. Efficient genome editing of differentiated renal epithelial cells.

    PubMed

    Hofherr, Alexis; Busch, Tilman; Huber, Nora; Nold, Andreas; Bohn, Albert; Viau, Amandine; Bienaimé, Frank; Kuehn, E Wolfgang; Arnold, Sebastian J; Köttgen, Michael

    2017-02-01

    Recent advances in genome editing technologies have enabled the rapid and precise manipulation of genomes, including the targeted introduction, alteration, and removal of genomic sequences. However, respective methods have been described mainly in non-differentiated or haploid cell types. Genome editing of well-differentiated renal epithelial cells has been hampered by a range of technological issues, including optimal design, efficient expression of multiple genome editing constructs, attainable mutation rates, and best screening strategies. Here, we present an easily implementable workflow for the rapid generation of targeted heterozygous and homozygous genomic sequence alterations in renal cells using transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat (CRISPR) system. We demonstrate the versatility of established protocols by generating novel cellular models for studying autosomal dominant polycystic kidney disease (ADPKD). Furthermore, we show that cell culture-validated genetic modifications can be readily applied to mouse embryonic stem cells (mESCs) for the generation of corresponding mouse models. The described procedure for efficient genome editing can be applied to any cell type to study physiological and pathophysiological functions in the context of precisely engineered genotypes.

  12. Renal Autoregulation: New Perspectives Regarding the Protective and Regulatory Roles of the Underlying Mechanisms

    PubMed Central

    Loutzenhiser, Rodger; Griffin, Karen; Williamson, Geoffrey; Bidani, Anil

    2006-01-01

    When the kidney is subjected to acute increases in blood pressure (BP), renal blood flow (RBF) and glomerular filtration rate (GFR) are observed to remain relatively constant. Two mechanisms, tubuloglomerular feedback (TGF) and the myogenic response, are thought to act in concert to achieve a precise moment-by-moment regulation of GFR and distal salt delivery. The current view is that this mechanism insulates renal excretory function from fluctuations in BP. Indeed, the concept that renal autoregulation is necessary for normal renal function and volume homeostasis has long been a cornerstone of renal physiology. This article presents a very different view, at least in regard to the myogenic component of this response. We suggest that its primary purpose is to protect the kidney against the damaging effects of hypertension. The arguments advanced take into consideration the unique properties of the afferent arteriolar myogenic response that allow it to protect against the oscillating systolic pressure, and the accruing evidence that when this response is impaired the primary consequence is not a disturbed volume homeostasis, but rather an increased susceptibility to hypertensive injury. It is suggested that redundant and compensatory mechanisms are capable of achieving volume regulation despite considerable fluctuations in distal delivery and the assumed moment-by-moment regulation of renal hemodynamics is questioned. Evidence is presented suggesting that additional mechanisms may exist to maintain ambient levels of RBF and GFR within normal range despite chronic alterations in BP and severely impaired acute responses to pressure. Finally the implications of this new perspective on the divergent roles of the renal myogenic response to pressure versus the TGF response to changes in distal delivery are considered and it is proposed that, in addition to TGF-induced vasoconstrictor responses, vasodepressor responses to reduced distal delivery may play a more critical role in modulating afferent arteriolar reactivity, in order to integrate the regulatory and protective functions of the renal microvasculature. PMID:16603656

  13. Brown spider dermonecrotic toxin directly induces nephrotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaim, Olga Meiri; Sade, Youssef Bacila; Bertoni da Silveira, Rafael

    2006-02-15

    Brown spider (Loxosceles genus) venom can induce dermonecrotic lesions at the bite site and systemic manifestations including fever, vomiting, convulsions, disseminated intravascular coagulation, hemolytic anemia and acute renal failure. The venom is composed of a mixture of proteins with several molecules biochemically and biologically well characterized. The mechanism by which the venom induces renal damage is unknown. By using mice exposed to Loxosceles intermedia recombinant dermonecrotic toxin (LiRecDT), we showed direct induction of renal injuries. Microscopic analysis of renal biopsies from dermonecrotic toxin-treated mice showed histological alterations including glomerular edema and tubular necrosis. Hyalinization of tubules with deposition of proteinaceousmore » material in the tubule lumen, tubule epithelial cell vacuoles, tubular edema and epithelial cell lysis was also observed. Leukocytic infiltration was neither observed in the glomerulus nor the tubules. Renal vessels showed no sign of inflammatory response. Additionally, biochemical analyses showed such toxin-induced changes in renal function as urine alkalinization, hematuria and azotemia with elevation of blood urea nitrogen levels. Immunofluorescence with dermonecrotic toxin antibodies and confocal microscopy analysis showed deposition and direct binding of this toxin to renal intrinsic structures. By immunoblotting with a hyperimmune dermonecrotic toxin antiserum on renal lysates from toxin-treated mice, we detected a positive signal at the region of 33-35 kDa, which strengthens the idea that renal failure is directly induced by dermonecrotic toxin. Immunofluorescence reaction with dermonecrotic toxin antibodies revealed deposition and binding of this toxin directly in MDCK epithelial cells in culture. Similarly, dermonecrotic toxin treatment caused morphological alterations of MDCK cells including cytoplasmic vacuoles, blebs, evoked impaired spreading and detached cells from each other and from culture substratum. In addition, dermonecrotic toxin treatment of MDCK cells changed their viability evaluated by XTT and Neutral-Red Uptake methodologies. The present results point to brown spider dermonecrotic toxin cytotoxicity upon renal structures in vivo and renal cells in vitro and provide experimental evidence that this brown spider toxin is directly involved in nephrotoxicity evoked during Loxosceles spider venom accidents.« less

  14. The Mitochondria-Targeted Antioxidant Mitoquinone Protects against Cold Storage Injury of Renal Tubular Cells and Rat Kidneys

    PubMed Central

    Mitchell, Tanecia; Rotaru, Dumitru; Saba, Hamida; Smith, Robin A. J.; Murphy, Michael P.

    2011-01-01

    The majority of kidneys used for transplantation are obtained from deceased donors. These kidneys must undergo cold preservation/storage before transplantation to preserve tissue quality and allow time for recipient selection and transport. However, cold storage (CS) can result in tissue injury, kidney discardment, or long-term renal dysfunction after transplantation. We have previously determined mitochondrial superoxide and other downstream oxidants to be important signaling molecules that contribute to CS plus rewarming (RW) injury of rat renal proximal tubular cells. Thus, this study's purpose was to determine whether adding mitoquinone (MitoQ), a mitochondria-targeted antioxidant, to University of Wisconsin (UW) preservation solution could offer protection against CS injury. CS was initiated by placing renal cells or isolated rat kidneys in UW solution alone (4 h at 4°C) or UW solution containing MitoQ or its control compound, decyltriphenylphosphonium bromide (DecylTPP) (1 μM in vitro; 100 μM ex vivo). Oxidant production, mitochondrial function, cell viability, and alterations in renal morphology were assessed after CS exposure. CS induced a 2- to 3-fold increase in mitochondrial superoxide generation and tyrosine nitration, partial inactivation of mitochondrial complexes, and a significant increase in cell death and/or renal damage. MitoQ treatment decreased oxidant production ∼2-fold, completely prevented mitochondrial dysfunction, and significantly improved cell viability and/or renal morphology, whereas DecylTPP treatment did not offer any protection. These findings implicate that MitoQ could potentially be of therapeutic use for reducing organ preservation damage and kidney discardment and/or possibly improving renal function after transplantation. PMID:21159749

  15. The mitochondria-targeted antioxidant mitoquinone protects against cold storage injury of renal tubular cells and rat kidneys.

    PubMed

    Mitchell, Tanecia; Rotaru, Dumitru; Saba, Hamida; Smith, Robin A J; Murphy, Michael P; MacMillan-Crow, Lee Ann

    2011-03-01

    The majority of kidneys used for transplantation are obtained from deceased donors. These kidneys must undergo cold preservation/storage before transplantation to preserve tissue quality and allow time for recipient selection and transport. However, cold storage (CS) can result in tissue injury, kidney discardment, or long-term renal dysfunction after transplantation. We have previously determined mitochondrial superoxide and other downstream oxidants to be important signaling molecules that contribute to CS plus rewarming (RW) injury of rat renal proximal tubular cells. Thus, this study's purpose was to determine whether adding mitoquinone (MitoQ), a mitochondria-targeted antioxidant, to University of Wisconsin (UW) preservation solution could offer protection against CS injury. CS was initiated by placing renal cells or isolated rat kidneys in UW solution alone (4 h at 4°C) or UW solution containing MitoQ or its control compound, decyltriphenylphosphonium bromide (DecylTPP) (1 μM in vitro; 100 μM ex vivo). Oxidant production, mitochondrial function, cell viability, and alterations in renal morphology were assessed after CS exposure. CS induced a 2- to 3-fold increase in mitochondrial superoxide generation and tyrosine nitration, partial inactivation of mitochondrial complexes, and a significant increase in cell death and/or renal damage. MitoQ treatment decreased oxidant production ~2-fold, completely prevented mitochondrial dysfunction, and significantly improved cell viability and/or renal morphology, whereas DecylTPP treatment did not offer any protection. These findings implicate that MitoQ could potentially be of therapeutic use for reducing organ preservation damage and kidney discardment and/or possibly improving renal function after transplantation.

  16. Nutrition and human physiological adaptations to space flight

    NASA Technical Reports Server (NTRS)

    Lane, H. W.; LeBlanc, A. D.; Putcha, L.; Whitson, P. A.

    1993-01-01

    Space flight provides a model for the study of healthy individuals undergoing unique stresses. This review focuses on how physiological adaptations to weightlessness may affect nutrient and food requirements in space. These adaptations include reductions in body water and plasma volume, which affect the renal and cardiovascular systems and thereby fluid and electrolyte requirements. Changes in muscle mass and function may affect requirements for energy, protein and amino acids. Changes in bone mass lead to increased urinary calcium concentrations, which may increase the risk of forming renal stones. Space motion sickness may influence putative changes in gastro-intestinal-hepatic function; neurosensory alterations may affect smell and taste. Some or all of these effects may be ameliorated through the use of specially designed dietary countermeasures.

  17. Aging and the Disposition and Toxicity of Mercury in Rats

    PubMed Central

    Bridges, Christy C.; Joshee, Lucy; Zalups, Rudolfs K.

    2014-01-01

    Progressive loss of functioning nephrons, secondary to age-related glomerular disease, can impair the ability of the kidneys to effectively clear metabolic wastes and toxicants from blood. Additionally, as renal mass is diminished, cellular hypertrophy occurs in functional nephrons that remain. We hypothesize that these nephrons are exposed to greater levels of nephrotoxicants, such as inorganic mercury (Hg2+), and thus are at an increased risk of becoming intoxicated by these compounds. The purpose of the present study was to characterize the effects of aging on the disposition and renal toxicity of Hg2+ in young adult and aged Wistar rats. Paired groups of animals were injected (i.v.) with either a 0.5 μmol • kg−1 non-nephrotoxic or a 2.5 μmol • kg−1 nephrotoxic dose of mercuric chloride (HgCl2). Plasma creatinine and renal biomarkers of proximal tubular injury were greater in both groups of aged rats than in the corresponding groups of young adult rats. Histologically, evidence of glomerular sclerosis, tubular atrophy, interstitial inflammation and fibrosis were significant features of kidneys from aged animals. In addition, proximal tubular necrosis, especially along the straight segments in the inner cortex and outer stripe of the outer medulla was a prominent feature in the renal sections from both aged and young rats treated with the nephrotoxic dose of HgCl2. Our findings indicate 1) that overall renal function is significantly impaired in aged rats, resulting in chronic renal insufficiency and 2) the disposition of HgCl2 in aging rats is significantly altered compared to that of young rats. PMID:24548775

  18. Alteration of renal function of rats following spaceflight.

    PubMed

    Wade, C E; Morey-Holton, E

    1998-10-01

    Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.

  19. Nutritional status, functional capacity and exercise rehabilitation in end-stage renal disease.

    PubMed

    Mercer, T H; Koufaki, P; Naish, P F

    2004-05-01

    A significant percentage of patients with end-stage renal disease are malnourished and/or muscle wasted. Uremia is associated with decreased protein synthesis and increased protein degradation. Fortunately, nutritional status has been shown to be a modifiable risk factor in the dialysis population. It has long been proposed that exercise could positively alter the protein synthesis-degradation balance. Resistance training had been considered as the only form of exercise likely to induce anabolism in renal failure patients. However, a small, but growing, body of evidence indicates that for some dialysis patients, favourable improvements in muscle atrophy and fibre hypertrophy can be achieved via predominantly aerobic exercise training. Moreover, some studies tentatively suggest that nutritional status, as measured by SGA, can also be modestly improved by modes and patterns of exercise training that have been shown to also increase muscle fibre cross-sectional area and improve functional capacity. Functional capacity tests can augment the information content of basic nutritional status assessments of dialysis patients and as such are recommended for routine inclusion as a feature of all nutritional status assessments.

  20. Alteration of renal function of rats following spaceflight

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Morey-Holton, E.

    1998-01-01

    Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.

  1. Agmatine improves renal function in gentamicin-induced nephrotoxicity in rats.

    PubMed

    El-Kashef, Dalia H; El-Kenawi, Asmaa E; Abdel Rahim, Mona; Suddek, Ghada M; Salem, Hatem A

    2016-03-01

    The present study was designed to explore the possible protective effects of agmatine, a known nitric oxide (NO) synthase inhibitor, against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of agmatine on gentamicin-induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was evaluated. Twenty-four male Wistar albino rats were randomly divided into 3 groups, namely control, gentamicin (100 mg/kg, i.p.), and gentamicin plus agmatine (40 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood and urine samples and kidneys were taken. Administration of agmatine significantly decreased kidney/body mass ratio, serum creatinine, lactate dehydrogenase (LDH), renal malondialdehyde (MDA), myeloperoxidase (MPO), NO, and tumor necrosis factor-alpha (TNF-α) while it significantly increased creatinine clearance and renal superoxide dismutase (SOD) activity when compared with the gentamicin-treated group. Additionally, agmatine ameliorated tissue morphology as evidenced by histological evaluation and reduced the responses of isolated bladder rings to ACh. Our study indicates that agmatine administration with gentamicin attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation, restoring NO level and inhibiting inflammatory mediators such as TNF-α.

  2. Renal sympathetic denervation in therapy resistant hypertension - pathophysiological aspects and predictors for treatment success

    PubMed Central

    Fengler, Karl; Rommel, Karl Philipp; Okon, Thomas; Schuler, Gerhard; Lurz, Philipp

    2016-01-01

    Many forms of human hypertension are associated with an increased systemic sympathetic activity. Especially the renal sympathetic nervous system has been found to play a prominent role in this context. Therefore, catheter-interventional renal sympathetic denervation (RDN) has been established as a treatment for patients suffering from therapy resistant hypertension in the past decade. The initial enthusiasm for this treatment was markedly dampened by the results of the Symplicity-HTN-3 trial, although the transferability of the results into clinical practice to date appears to be questionable. In contrast to the extensive use of RDN in treating hypertensive patients within or without clinical trial settings over the past years, its effects on the complex pathophysiological mechanisms underlying therapy resistant hypertension are only partly understood and are part of ongoing research. Effects of RDN have been described on many levels in human trials: From altered systemic sympathetic activity across cardiac and metabolic alterations down to changes in renal function. Most of these changes could sustainably change long-term morbidity and mortality of the treated patients, even if blood pressure remains unchanged. Furthermore, a number of promising predictors for a successful treatment with RDN have been identified recently and further trials are ongoing. This will certainly help to improve the preselection of potential candidates for RDN and thereby optimize treatment outcomes. This review summarizes important pathophysiologic effects of renal denervation and illustrates the currently known predictors for therapy success. PMID:27621771

  3. Microalbuminuria and early renal response to lethal dose Shiga toxin type 2 in rats.

    PubMed

    Ochoa, Federico; Oltra, Gisela; Gerhardt, Elizabeth; Hermes, Ricardo; Cohen, Lilian; Damiano, Alicia E; Ibarra, Cristina; Lago, Nestor R; Zotta, Elsa

    2012-01-01

    In Argentina, hemolytic uremic syndrome (HUS) constitutes the most frequent cause of acute renal failure in children. Approximately 2%-4% of patients die during the acute phase, and one-third of the 96% who survive are at risk of chronic renal sequelae. Little information is available about the direct effect of Shiga toxin type 2 (Stx2) on the onset of proteinuria and the evolution of toxin-mediated glomerular or tubular injury. In this work, rats were injected intraperitoneally with recombinant Escherichia coli culture supernatant containing Stx2 (sStx2; 20 μg/kg body weight) to induce HUS. Functional, immunoblotting, and immunohistochemistry studies were carried out to determine alterations in slit diaphragm proteins and the proximal tubule endocytic system at 48 hours post-inoculation. We detected a significant increase in microalbuminuria, without changes in the proteinuria values compared to the control rats. In immunoperoxidase studies, the renal tubules and glomerular mesangium showed an increased expression of transforming growth factor β(1)(TGF-β(1)). The expression of megalin was decreased by immunoperoxidase and the cytoplasm showed a granular pattern of megalin expression by immunofluorescence techniques. Western blot analysis performed in the renal cortex from sStx2-treated and control rats using anti-nephrin and anti-podocalyxin antibodies showed a decreased expression of these proteins. We suggest that the alterations in slit diaphragm proteins and megalin expression could be related to the development of microalbuminuria in response to lethal doses of Stx2.

  4. Renal atrial natriuretic factor receptors in hamster cardiomyopathy.

    PubMed

    Mukaddam-Daher, S; Jankowski, M; Dam, T V; Quillen, E W; Gutkowska, J

    1995-12-01

    Hamsters with cardiomyopathy (CMO), an experimental model of congestive heart failure, display stimulated renin-angiotensin-aldosterone and enhanced sympathetic nervous activity, all factors that lead to sodium retention, volume expansion and subsequent elevation of plasma atrial natriuretic factor (ANF) by the cardiac atria. However, sodium and water retention persist in CMO, indicating hyporesponsiveness to endogenous ANF. These studies were undertaken to fully characterize renal ANF receptor subtypes in normal hamsters and to evaluate whether alterations in renal ANF receptors may contribute to renal resistance to ANF in cardiomyopathy. Transcripts of the guanylyl cyclase-A (GC-A) and guanylyl cyclase B (GC-B) receptors were detected by quantitative polymerase chain reaction (PCR) in renal cortex, and outer and inner medullas. Compared to normal controls, the cardiomyopathic hamster's GC-A mRNA was similar in cortex but significantly increased in outer and inner medulla. Levels of GC-B mRNA were not altered by the disease. On the other hand, competitive binding studies, autoradiography, and affinity cross-linking demonstrated the absence of functional GC-B receptors in the kidney glomeruli and inner medulla. Also, C-type natriuretic peptide (CNP), the natural ligand for the GC-B receptors, failed to stimulate glomerular production of its second messenger cGMP. In CMO, sodium and water excretion were significantly reduced despite elevated plasma ANF (50.5 +/- 11.1 vs. 309.4 +/- 32.6 pg/ml, P < 0.001). Competitive binding studies of renal glomerular ANF receptors revealed no change in total receptor density, Bmax (369.6 +/- 27.4 vs. 282.8 +/- 26.2 fmol/mg protein), nor in dissociation constant, Kd (647.4 +/- 79.4 vs. 648.5 +/- 22.9 pM). Also, ANF-C receptor density (254.3 +/- 24.8 vs. 233.8 +/- 23.5 fmol/mg protein), nor affinity were affected by heart failure. Inner medullary receptors were exclusively of the GC-A subtype with Bmax (153.2 +/- 26.4 vs. 134.5 +/- 21.2 fmol/mg protein) and Kd (395.7 +/- 148.0 vs. 285.8 +/- 45.0 pM) not altered by cardiomyopathy. The increase in ANF-stimulated glomerular cGMP production was similar in normal and CMO hamsters (94- vs. 75-fold). These results demonstrate that renal ANF receptors do not contribute to the attenuated renal responses to ANF in hamster cardiomyopathy.

  5. Effect of naringin on hemodynamic changes and left ventricular function in renal artery occluded renovascular hypertension in rats

    PubMed Central

    Visnagri, Asjad; Adil, Mohammad; Kandhare, Amit D.; Bodhankar, Subhash L.

    2015-01-01

    Background: Renal artery occlusion (RAO) induced hypertension is a major health problem associated with structural and functional variations of the renal and cardiac vasculature. Naringin a flavanone glycoside derived possesses metal-chelating, antioxidant and free radical scavenging properties. Objective: The objective of this study was to investigate the antihypertensive activity of naringin in RAO induced hypertension in rats. Material and Methods: Male Wistar rats (180-200 g) were divided into five groups Sham, RAO, naringin (20, 40 and 80 mg/kg). Animals were pretreated with naringin (20, 40 and 80 mg/kg p.o) for 4 weeks. On the last day of the experiment, left renal artery was occluded with renal bulldog clamp for 4 h. After assessment of hemodynamic and left ventricular function various biochemical (superoxide dismutase [SOD], glutathione [GSH] and malondialdehyde [MDA]) and histological parameters were determined in the kidney. Results: RAO group significantly (P < 0.001) increased hemodynamic parameters at 15, 30 and 45 min of clamp removal. Naringin (40 and 80 mg/kg) treated groups showed a significant decrease in hemodynamic parameters at 15 min. after clamp removal that remained sustained for 60 min. Naringin (40 and 80 mg/kg) treated groups showed significant improvement in left ventricular function at 15, 30 and 45 min after clamp removal. Alteration in level of SOD, GSH and MDA was significantly restored by naringin (40 and 80 mg/kg) treatment. It also reduced histological aberration induced in kidney by RAO. Conclusion: It is concluded that the antihypertensive activity of naringin may result through inhibition of oxidative stress. PMID:25883516

  6. Comparison of clamping technique in robotic partial nephrectomy: does unclamped partial nephrectomy improve perioperative outcomes and renal function?

    PubMed

    Krane, L Spencer; Mufarrij, Patrick W; Manny, Theodore B; Hemal, Ashok K

    2013-02-01

    Partial nephrectomy without renal vascular occlusion has been introduced to improve outcomes in patients undergoing robotic partial nephrectomy (RPN). We prospectively evaluated unclamped RPN at our institution and compared this to other clamping techniques in a non-randomized fashion. Ninety-five consecutive patients who successfully completed RPN between June 2010 and October 2011 are included in this analysis. All RPNs were performed by a single surgeon. Clamping technique was artery and vein (AV), artery alone (AO) or unclamped (U) without hypotensive anesthesia. Clamping decision was based on surgeon preference and feasibility of minimizing ischemia. All patients had bilateral functional renal units. Eighteen (19%), 58 (61%) and 19 (20%) patients had AV, AO and U technique respectively. Preoperative characteristics including age (p = 0.43), body mass index (p = 0.40) and RENAL nephromety distribution (p = 0.10) were similar. In AV and AO, mean warm ischemia time were 19 and 17 minutes and similar between the two cohorts (p = 0.39). Mean glomerular filtration rate (GFR) and overall percentage decrease in GFR at time of at last follow up were (64, 69, 81, p = 0.12) and (6%, 6%,and 2%,p = 0.79) for AV, AO and U respectively. Median follow up for last serum creatinine was 113 days and was similar between all cohorts (p = 0.37). Complication rate (p = 0.37), positive margin rate (p = 0.84), and change in hemoglobin concentration postoperatively (p = 0.94) were similar between cohorts. Unclamped partial nephrectomy is possible in patients undergoing RPN. In this study, it does not significantly alter perioperative or postoperative renal function or change rate of complications. Minimal ischemia, irrespective of clamping technique, in patients with bilateral renal units does not appear to adversely effect intermediate term renal function in these patients.

  7. Fluid compartment and renal function alterations in the rat during 7 and 14 day head down tilt

    NASA Technical Reports Server (NTRS)

    Tucker, Bryan J.

    1991-01-01

    Exposure to conditions of microgravity for any extended duration can modify the distribution of fluid within the vascular and interstitial spaces, and eventually intracellular volume. Whether the redistribution of fluid and resetting of volume homeostasis mechanisms is appropriate for the long term environmental requirements of the body in microgravity remains to be fully defined. The event that initiates the change in fluid volume homeostasis is the cephalad movement of fluid which potentially triggers volume sensors and stretch receptors (atrial stretch with the resulting release of atrial natriuretic peptide) and suppresses adrenergic activity via the carotid and aortic arch baroreceptors. All these events act in concert to reset blood and interstitial volume to new levels, which in turn modify the renin-angiotensin system. All these factors have an influence on the kidney, the end organ for fluid volume control. How the fluid compartment volume changes interrelate with alterations in renal functions under conditions of simulated microgravity is the focus of the present investigation which utilizes 25-30 deg head-down tilt in the rat.

  8. Can zero-hour cortical biopsy predict early graft outcomes after living donor renal transplantation?

    PubMed

    Rathore, Ranjeet Singh; Mehta, Nisarg; Mehta, Sony Bhaskar; Babu, Manas; Bansal, Devesh; Pillai, Biju S; Sam, Mohan P; Krishnamoorthy, Hariharan

    2017-11-01

    The aim of this study was to identify relevance of subclinical pathological findings in the kidneys of living donors and correlate these with early graft renal function. This was a prospective study on 84 living donor kidney transplant recipients over a period of two years. In all the donors, cortical wedge biopsy was taken and sent for assessment of glomerular, mesangial, and tubule status. The graft function of patients with normal histology was compared with those of abnormal histological findings at one, three, and six months, and one year post-surgery. Most abnormal histological findings were of mild degree. Glomerulosclerosis (GS, 25%), interstitial fibrosis (IF, 13%), acute tubular necrosis (ATN 5%), and focal tubal atrophy (FTA, 5%) were the commonly observed pathological findings in zero-hour biopsies. Only those donors who had histological changes of IF and ATN showed progressive deterioration of renal function at one month, three months, six months, and one year post-transplantation. In donors with other histological changes, no significant effect on graft function was observed. Zero-hour cortical biopsy gave us an idea of the general status of the donor kidney and presence or absence of subclinical pathological lesions. A mild degree of subclinical and pathological findings on zero-hour biopsy did not affect early graft renal function in living donor kidney transplantation. Zero-hour cortical biopsy could also help in discriminating donor-derived lesions from de novo alterations in the kidney that could happen subsequently.

  9. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    PubMed

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. ACE2 alterations in kidney disease.

    PubMed

    Soler, María José; Wysocki, Jan; Batlle, Daniel

    2013-11-01

    Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that degrades angiotensin (Ang) II to Ang-(1-7). ACE2 is highly expressed within the kidneys, it is largely localized in tubular epithelial cells and less prominently in glomerular epithelial cells and in the renal vasculature. ACE2 activity has been shown to be altered in diabetic kidney disease, hypertensive renal disease and in different models of kidney injury. There is often a dissociation between tubular and glomerular ACE2 expression, particularly in diabetic kidney disease where ACE2 expression is increased at the tubular level but decreased at the glomerular level. In this review, we will discuss alterations in circulating and renal ACE2 recently described in different renal pathologies and disease models as well as their possible significance.

  11. ACE2 alterations in kidney disease

    PubMed Central

    Soler, María José; Wysocki, Jan; Batlle, Daniel

    2013-01-01

    Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that degrades angiotensin (Ang) II to Ang-(1–7). ACE2 is highly expressed within the kidneys, it is largely localized in tubular epithelial cells and less prominently in glomerular epithelial cells and in the renal vasculature. ACE2 activity has been shown to be altered in diabetic kidney disease, hypertensive renal disease and in different models of kidney injury. There is often a dissociation between tubular and glomerular ACE2 expression, particularly in diabetic kidney disease where ACE2 expression is increased at the tubular level but decreased at the glomerular level. In this review, we will discuss alterations in circulating and renal ACE2 recently described in different renal pathologies and disease models as well as their possible significance. PMID:23956234

  12. Type 2 Diabetes Mellitus and Impaired Renal Function Are Associated With Brain Alterations and Poststroke Cognitive Decline.

    PubMed

    Ben Assayag, Einor; Eldor, Roy; Korczyn, Amos D; Kliper, Efrat; Shenhar-Tsarfaty, Shani; Tene, Oren; Molad, Jeremy; Shapira, Itzhak; Berliner, Shlomo; Volfson, Viki; Shopin, Ludmila; Strauss, Yehuda; Hallevi, Hen; Bornstein, Natan M; Auriel, Eitan

    2017-09-01

    Type 2 diabetes mellitus (T2DM) is associated with diseases of the brain, kidney, and vasculature. However, the relationship between T2DM, chronic kidney disease, brain alterations, and cognitive function after stroke is unknown. We aimed to evaluate the inter-relationship between T2DM, impaired renal function, brain pathology on imaging, and cognitive decline in a longitudinal poststroke cohort. The TABASCO (Tel Aviv brain acute stroke cohort) is a prospective cohort of stroke/transient ischemic attack survivors. The volume and white matter integrity, ischemic lesions, and brain and hippocampal volumes were measured at baseline using 3-T MRI. Cognitive tests were performed on 507 patients, who were diagnosed as having mild cognitive impairment, dementia, or being cognitively intact after 24 months. At baseline, T2DM and impaired renal function (estimated creatinine clearance [eCCl] <60 mL/min) were associated with smaller brain and hippocampal volumes, reduced cortical thickness, and worse white matter microstructural integrity. Two years later, both T2DM and eCCl <60 mL/min were associated with poorer cognitive scores, and 19.7% of the participants developed cognitive decline (mild cognitive impairment or dementia). Multiple analysis, controlling for age, sex, education, and apolipoprotein E4, showed a significant association of both T2DM and eCCl <60 mL/min with cognitive decline. Having both conditions doubled the risk compared with patients with T2DM or eCCl <60 mL/min alone and almost quadrupled the risk compared with patients without either abnormality. T2DM and impaired renal function are independently associated with abnormal brain structure, as well as poorer performance in cognitive tests, 2 years after stroke. The presence of both conditions quadruples the risk for cognitive decline. T2DM and lower eCCl have an independent and additive effect on brain atrophy and the risk of cognitive decline. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01926691. © 2017 American Heart Association, Inc.

  13. Impaired Lysosomal Function Underlies Monoclonal Light Chain–Associated Renal Fanconi Syndrome

    PubMed Central

    Luciani, Alessandro; Sirac, Christophe; Terryn, Sara; Javaugue, Vincent; Prange, Jenny Ann; Bender, Sébastien; Bonaud, Amélie; Cogné, Michel; Aucouturier, Pierre; Ronco, Pierre

    2016-01-01

    Monoclonal gammopathies are frequently complicated by kidney lesions that increase the disease morbidity and mortality. In particular, abnormal Ig free light chains (LCs) may accumulate within epithelial cells, causing proximal tubule (PT) dysfunction and renal Fanconi syndrome (RFS). To investigate the mechanisms linking LC accumulation and PT dysfunction, we used transgenic mice overexpressing human control or RFS-associated κLCs (RFS-κLCs) and primary cultures of mouse PT cells exposed to low doses of corresponding human κLCs (25 μg/ml). Before the onset of renal failure, mice overexpressing RFS-κLCs showed PT dysfunction related to loss of apical transporters and receptors and increased PT cell proliferation rates associated with lysosomal accumulation of κLCs. Exposure of PT cells to RFS-κLCs resulted in κLC accumulation within enlarged and dysfunctional lysosomes, alteration of cellular dynamics, defective proteolysis and hydrolase maturation, and impaired lysosomal acidification. These changes were specific to the RFS-κLC variable (V) sequence, because they did not occur with control LCs or the same RFS-κLC carrying a single substitution (Ala30→Ser) in the V domain. The lysosomal alterations induced by RFS-κLCs were reflected in increased cell proliferation, decreased apical expression of endocytic receptors, and defective endocytosis. These results reveal that specific κLCs accumulate within lysosomes, altering lysosome dynamics and proteolytic function through defective acidification, thereby causing dedifferentiation and loss of reabsorptive capacity of PT cells. The characterization of these early events, which are similar to those encountered in congenital lysosomal disorders, provides a basis for the reported differential LC toxicity and new perspectives on LC-induced RFS. PMID:26614382

  14. Aging and physiological changes of the kidneys including changes in glomerular filtration rate.

    PubMed

    Musso, Carlos G; Oreopoulos, Dimitrios G

    2011-01-01

    In addition to the structural changes in the kidney associated with aging, physiological changes in renal function are also found in older adults, such as decreased glomerular filtration rate, vascular dysautonomia, altered tubular handling of creatinine, reduction in sodium reabsorption and potassium secretion, and diminished renal reserve. These alterations make aged individuals susceptible to the development of clinical conditions in response to usual stimuli that would otherwise be compensated for in younger individuals, including acute kidney injury, volume depletion and overload, disorders of serum sodium and potassium concentration, and toxic reactions to water-soluble drugs excreted by the kidneys. Additionally, the preservation with aging of a normal urinalysis, normal serum urea and creatinine values, erythropoietin synthesis, and normal phosphorus, calcium and magnesium tubular handling distinguishes decreased GFR due to normal aging from that due to chronic kidney disease. Copyright © 2011 S. Karger AG, Basel.

  15. Proteomic analysis of differentially expressed proteins in kidneys of brain dead rabbits.

    PubMed

    Li, Ling; Li, Ning; He, Chongxiang; Huang, Wei; Fan, Xiaoli; Zhong, Zibiao; Wang, Yanfeng; Ye, Qifa

    2017-07-01

    A large number of previous clinical studies have reported a delayed graft function for brain dead donors, when compared with living relatives or cadaveric organ transplantations. However, there is no accurate method for the quality evaluation of kidneys from brain‑dead donors. In the present study, two‑dimensional gel electrophoresis and MALDI‑TOF MS‑based comparative proteomic analysis were conducted to profile the differentially‑expressed proteins between brain death and the control group renal tissues. A total of 40 age‑ and sex‑matched rabbits were randomly divided into donation following brain death (DBD) and control groups. Following the induction of brain death via intracranial progressive pressure, the renal function and the morphological alterations were measured 2, 6 and 8 h afterwards. The differentially expressed proteins were detected from renal histological evidence at 6 h following brain death. Although 904±19 protein spots in control groups and 916±25 in DBD groups were identified in the two‑dimensional gel electrophoresis, >2‑fold alterations were identified by MALDI‑TOF MS and searched by NCBI database. The authors successfully acquired five downregulated proteins, these were: Prohibitin (isoform CRA_b), beta-1,3‑N-acetylgalactosaminyltransferase 1, Annexin A5, superoxide dismutase (mitochondrial) and cytochrome b‑c1 complex subunit 1 (mitochondrial precursor). Conversely, the other five upregulated proteins were: PRP38 pre‑mRNA processing factor 38 (yeast) domain containing A, calcineurin subunit B type 1, V‑type proton ATPase subunit G 1, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 and peroxiredoxin‑3 (mitochondrial). Immunohistochemical results revealed that the expressions of prohibitin (PHB) were gradually increased in a time‑dependent manner. The results indicated that there were alterations in levels of several proteins in the kidneys of those with brain death, even if the primary function and the morphological changes were not obvious. PHB may therefore be a novel biomarker for primary quality evaluation of kidneys from brain‑dead donors.

  16. Proteomic analysis of differentially expressed proteins in kidneys of brain dead rabbits

    PubMed Central

    Li, Ling; Li, Ning; He, Chongxiang; Huang, Wei; Fan, Xiaoli; Zhong, Zibiao; Wang, Yanfeng; Ye, Qifa

    2017-01-01

    A large number of previous clinical studies have reported a delayed graft function for brain dead donors, when compared with living relatives or cadaveric organ transplantations. However, there is no accurate method for the quality evaluation of kidneys from brain-dead donors. In the present study, two-dimensional gel electrophoresis and MALDI-TOF MS-based comparative proteomic analysis were conducted to profile the differentially-expressed proteins between brain death and the control group renal tissues. A total of 40 age- and sex-matched rabbits were randomly divided into donation following brain death (DBD) and control groups. Following the induction of brain death via intracranial progressive pressure, the renal function and the morphological alterations were measured 2, 6 and 8 h afterwards. The differentially expressed proteins were detected from renal histological evidence at 6 h following brain death. Although 904±19 protein spots in control groups and 916±25 in DBD groups were identified in the two-dimensional gel electrophoresis, >2-fold alterations were identified by MALDI-TOF MS and searched by NCBI database. The authors successfully acquired five downregulated proteins, these were: Prohibitin (isoform CRA_b), beta-1,3-N-acetylgalactosaminyltransferase 1, Annexin A5, superoxide dismutase (mitochondrial) and cytochrome b-c1 complex subunit 1 (mitochondrial precursor). Conversely, the other five upregulated proteins were: PRP38 pre-mRNA processing factor 38 (yeast) domain containing A, calcineurin subunit B type 1, V-type proton ATPase subunit G 1, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 and peroxiredoxin-3 (mitochondrial). Immunohistochemical results revealed that the expressions of prohibitin (PHB) were gradually increased in a time-dependent manner. The results indicated that there were alterations in levels of several proteins in the kidneys of those with brain death, even if the primary function and the morphological changes were not obvious. PHB may therefore be a novel biomarker for primary quality evaluation of kidneys from brain-dead donors. PMID:28534953

  17. Comprehensive Molecular Characterization of Papillary Renal Cell Carcinoma

    PubMed Central

    Linehan, W. Marston; Spellman, Paul T.; Ricketts, Christopher J.; Creighton, Chad J.; Fei, Suzanne S.; Davis, Caleb; Wheeler, David A.; Murray, Bradley A.; Schmidt, Laura; Vocke, Cathy D.; Peto, Myron; Al Mamun, Abu Amar M.; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W. Kimryn; Brooks, Angela N.; Hoadley, Katherine A.; Robertson, A. Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J.; Bootwalla, Moiz; Baylin, Stephen B.; Laird, Peter W.; Cherniack, Andrew D.; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B.; Akbani, Rehan; Leiserson, Mark D.M.; Raphael, Benjamin J.; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K.; Czerniak, Bogdan; Godwin, Andrew K.; Hakimi, A. Ari; Ho, Thai; Hsieh, James; Ittmann, Michael; Kim, William Y.; Krishnan, Bhavani; Merino, Maria J.; Mills Shaw, Kenna R.; Reuter, Victor E.; Reznik, Ed; Shelley, Carl Simon; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D.; Penny, Robert J.; Shelton, Candace; Shelton, W. Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T.; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A.; Felau, Ina; Hutter, Carolyn M.; Sheth, Margi; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S.N.; Carlsen, Rebecca; Carter, Scott L.; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R.; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, HarshaVardhan; Drummond, Jennifer; Gabriel, Stacey B.; Gibbs, Richard A.; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D. Neil; Holt, Robert A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Steven J.M.; Jones, Corbin D.; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A.; Moore, Richard A.; Morton, Donna; Mose, Lisle E.; Mungall, Andrew J.; Muzny, Donna; Parker, Joel S.; Perou, Charles M.; Roach, Jeffrey; Schein, Jacqueline E.; Schumacher, Steven E.; Shi, Yan; Simons, Janae V.; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G.; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D.; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N.; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J. Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L.; Boice, Lori; Bollag, Roni J.; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C.; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K.; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L.; Slaton, Joel; Stanton, Melissa; Thompson, R. Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M.; Winemiller, Cythnia; Zach, Leigh Anne; Zuna, Rosemary

    2016-01-01

    Background Papillary renal cell carcinoma, accounting for 15% of renal cell carcinoma, is a heterogeneous disease consisting of different types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal cell carcinoma; no effective forms of therapy for advanced disease exist. Methods We performed comprehensive molecular characterization utilizing whole-exome sequencing, copy number, mRNA, microRNA, methylation and proteomic analyses of 161 primary papillary renal cell carcinomas. Results Type 1 and Type 2 papillary renal cell carcinomas were found to be different types of renal cancer characterized by specific genetic alterations, with Type 2 further classified into three individual subgroups based on molecular differences that influenced patient survival. MET alterations were associated with Type 1 tumors, whereas Type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-ARE pathway. A CpG island methylator phenotype (CIMP) was found in a distinct subset of Type 2 papillary renal cell carcinoma characterized by poor survival and mutation of the fumarate hydratase (FH) gene. Conclusions Type 1 and Type 2 papillary renal cell carcinomas are clinically and biologically distinct. Alterations in the MET pathway are associated with Type 1 and activation of the NRF2-ARE pathway with Type 2; CDKN2A loss and CIMP in Type 2 convey a poor prognosis. Furthermore, Type 2 papillary renal cell carcinoma consists of at least 3 subtypes based upon molecular and phenotypic features. PMID:26536169

  18. FXYD8, a Novel Regulator of Renal Na+/K+-ATPase in the Euryhaline Teleost, Tetraodon nigroviridis

    PubMed Central

    Wang, Pei-Jen; Yang, Wen-Kai; Lin, Chia-Hao; Hwang, Hau-Hsuan; Lee, Tsung-Han

    2017-01-01

    FXYD proteins are important regulators of Na+/K+-ATPase (NKA) activity in mammals. As an inhabitant of estuaries, the pufferfish (Tetraodon nigroviridis) responds to ambient salinity changes with efficient osmoregulation, including alterations in branchial, and renal NKA activities. Previous studies on teleostean FXYDs have mainly focused on the expression and potential functions of FXYD proteins in gills. The goal of the present study was to elucidate the potential role of FXYD8, a member of the fish FXYD protein family, in the modulation of NKA activity in the kidneys of this euryhaline pufferfish by using molecular, biochemical, and physiological approaches. The results demonstrate that T. nigroviridis FXYD8 (TnFXYD8) interacts with NKA in renal tubules. Meanwhile, the protein expression of renal TnFXYD8 was found to be significantly upregulated in hyperosmotic seawater-acclimated pufferfish. Moreover, overexpression of TnFXYD8 in Xenopus oocytes decreased NKA activity. Our results suggest the FXYD8 is able to modulate NKA activity through inhibitory effects upon salinity challenge. The present study further extends our understanding of the functions of FXYD proteins, the regulators of NKA, in vertebrates. PMID:28848450

  19. EFFECTS OF PROTEINURIA ON THE KIDNEY

    PubMed Central

    Baxter, James H.; Cotzias, George C.

    1949-01-01

    Repeated intraperitoneal injections twice daily of various proteins into young rats were regularly accompanied by an increase in the protein content of the urine, significant renal enlargement, and often some degree of renal pallor. The most marked changes were induced by gelatin, followed in order by human albumin and bovine globulin. Rat serum produced similar but less conclusive changes. Similar changes were not produced by equivalent amounts of urea or casein hydrolysate. In sections from the kidneys of animals receiving gelatin, the cells of the convoluted tubules appeared enlarged, and they contained clear "spaces" throughout the cytoplasm. The tubular cells of the animals receiving the other solutions were not obviously altered in size or shape, and the cytoplasmic changes were slight or absent. There was little evidence of increased multiplication of cells or of tubular dilatation in the kidneys of any of the groups. Changes in concentrations of plasma proteins and hemoglobin, and the results of preliminary studies of the injected proteins in urine and renal tissue following the injections, are described and their possible significance discussed. It appears that the renal enlargement, as well as the increase in proteinuria and the tubular alterations which followed the protein injections, might have been caused in part by effects on the kidney of protein molecules per se, perhaps most likely by the effects on the tubular cells of an increased amount of protein filtered through the glomerular membranes, rather than entirely by effects of products of protein digestion and metabolism reaching the kidney through the blood stream. In the majority of animals there was no evidence from the morphological or functional studies, that the prolonged and continuous proteinuria induced by the protein injections resulted in renal damage, unless the renal enlargement, and the cytoplasmic changes which occurred regularly with gelatin, are considered evidence of damage. Renal enlargement and proteinuria promptly regressed after injections were discontinued. Lesions characterized by severe degrees of tubular damage, possibly as a result of tubular plugging, were observed in some of the animals of one group receiving gelatin solution of the usual concentration, and dilatation of renal tubules and glomerular capsules was present in some other gelatin-treated animals autopsied after relatively brief injection periods. A description is also presented of lesions of remarkable character which developed in the kidneys of all the animals of one small group receiving homologous serum obtained from severely anoxic donors. The possible relationship between the renal changes in the protein-injected animals and certain alterations of the kidneys observed in diseases characterized by large amounts of protein in the urine, is considered. PMID:18129864

  20. Uriniferous tubule: structural and functional organization.

    PubMed

    Christensen, Erik Ilsø; Wagner, Carsten A; Kaissling, Brigitte

    2012-04-01

    The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology. © 2012 American Physiological Society. Compr Physiol 2:933-996, 2012.

  1. Human Urine-Derived Renal Progenitors for Personalized Modeling of Genetic Kidney Disorders

    PubMed Central

    Ronconi, Elisa; Angelotti, Maria Lucia; Peired, Anna; Mazzinghi, Benedetta; Becherucci, Francesca; Conti, Sara; Sansavini, Giulia; Sisti, Alessandro; Ravaglia, Fiammetta; Lombardi, Duccio; Provenzano, Aldesia; Manonelles, Anna; Cruzado, Josep M.; Giglio, Sabrina; Roperto, Rosa Maria; Materassi, Marco; Lasagni, Laura

    2015-01-01

    The critical role of genetic and epigenetic factors in the pathogenesis of kidney disorders is gradually becoming clear, and the need for disease models that recapitulate human kidney disorders in a personalized manner is paramount. In this study, we describe a method to select and amplify renal progenitor cultures from the urine of patients with kidney disorders. Urine-derived human renal progenitors exhibited phenotype and functional properties identical to those purified from kidney tissue, including the capacity to differentiate into tubular cells and podocytes, as demonstrated by confocal microscopy, Western blot analysis of podocyte-specific proteins, and scanning electron microscopy. Lineage tracing studies performed with conditional transgenic mice, in which podocytes are irreversibly tagged upon tamoxifen treatment (NPHS2.iCreER;mT/mG), that were subjected to doxorubicin nephropathy demonstrated that renal progenitors are the only urinary cell population that can be amplified in long-term culture. To validate the use of these cells for personalized modeling of kidney disorders, renal progenitors were obtained from (1) the urine of children with nephrotic syndrome and carrying potentially pathogenic mutations in genes encoding for podocyte proteins and (2) the urine of children without genetic alterations, as validated by next-generation sequencing. Renal progenitors obtained from patients carrying pathogenic mutations generated podocytes that exhibited an abnormal cytoskeleton structure and functional abnormalities compared with those obtained from patients with proteinuria but without genetic mutations. The results of this study demonstrate that urine-derived patient-specific renal progenitor cultures may be an innovative research tool for modeling of genetic kidney disorders. PMID:25568173

  2. Pharmacokinetics of Tedizolid in Subjects with Renal or Hepatic Impairment

    PubMed Central

    Minassian, S. L.; Morris, D.; Ponnuraj, R.; Marbury, T. C.; Alcorn, H. W.; Fang, E.; Prokocimer, P.

    2014-01-01

    Two open-label, single-dose, parallel-group studies were conducted to characterize the pharmacokinetics of the novel antibacterial tedizolid and the safety of tedizolid phosphate, its prodrug, in renally or hepatically impaired subjects. Tedizolid pharmacokinetics in subjects with severe renal impairment without dialysis support was compared with that of matched control subjects with normal renal function. Effects of hemodialysis on tedizolid pharmacokinetics were determined in a separate cohort of subjects undergoing long-term hemodialysis. Effects of hepatic impairment on tedizolid pharmacokinetics were determined in subjects with moderate or severe hepatic impairment and compared with those of matched control subjects with normal hepatic function. Each participant received a single oral (hepatic impairment) or intravenous (renal impairment) dose of tedizolid phosphate at 200 mg; hemodialysis subjects received two doses (separated by 7 days), before and after dialysis, in a crossover fashion. The pharmacokinetics of tedizolid was similar in subjects with severe renal impairment and controls (∼8% lower area under the concentration-time curve [AUC], with a nearly identical peak concentration) and in subjects undergoing hemodialysis before and after tedizolid phosphate administration (∼9% lower AUC, with a 15% higher peak concentration); <10% of the dose was removed during 4 h of hemodialysis. Tedizolid pharmacokinetics was only minimally altered in subjects with moderate or severe hepatic impairment; the AUC was increased approximately 22% and 34%, respectively, compared with that of subjects in the control group. Tedizolid phosphate was generally well tolerated in all participants. These results suggest that tedizolid phosphate dose adjustments are not necessary in patients with any degree of renal or hepatic impairment. (This study has been registered at ClinicalTrials.gov under registration numbers NCT01452828 [renal study] and NCT01431833 [hepatic study].) PMID:25136024

  3. Endothelin-1 receptor antagonists protect the kidney against the nephrotoxicity induced by cyclosporine-A in normotensive and hypertensive rats

    PubMed Central

    Caires, A.; Fernandes, G.S.; Leme, A.M.; Castino, B.; Pessoa, E.A.; Fernandes, S.M.; Fonseca, C.D.; Vattimo, M.F.; Schor, N.; Borges, F.T.

    2017-01-01

    Cyclosporin-A (CsA) is an immunosuppressant associated with acute kidney injury and chronic kidney disease. Nephrotoxicity associated with CsA involves the increase in afferent and efferent arteriole resistance, decreased renal blood flow (RBF) and glomerular filtration. The aim of this study was to evaluate the effect of Endothelin-1 (ET-1) receptor blockade with bosentan (BOS) and macitentan (MAC) antagonists on altered renal function induced by CsA in normotensive and hypertensive animals. Wistar and genetically hypertensive rats (SHR) were separated into control group, CsA group that received intraperitoneal injections of CsA (40 mg/kg) for 15 days, CsA+BOS and CsA+MAC that received CsA and BOS (5 mg/kg) or MAC (25 mg/kg) by gavage for 15 days. Plasma creatinine and urea, mean arterial pressure (MAP), RBF and renal vascular resistance (RVR), and immunohistochemistry for ET-1 in the kidney cortex were measured. CsA decreased renal function, as shown by increased creatinine and urea. There was a decrease in RBF and an increase in MAP and RVR in normotensive and hypertensive animals. These effects were partially reversed by ET-1 antagonists, especially in SHR where increased ET-1 production was observed in the kidney. Most MAC effects were similar to BOS, but BOS seemed to be better at reversing cyclosporine-induced changes in renal function in hypertensive animals. The results of this work suggested the direct participation of ET-1 in renal hemodynamics changes induced by cyclosporin in normotensive and hypertensive rats. The antagonists of ET-1 MAC and BOS reversed part of these effects. PMID:29267497

  4. Endothelin-1 receptor antagonists protect the kidney against the nephrotoxicity induced by cyclosporine-A in normotensive and hypertensive rats.

    PubMed

    Caires, A; Fernandes, G S; Leme, A M; Castino, B; Pessoa, E A; Fernandes, S M; Fonseca, C D; Vattimo, M F; Schor, N; Borges, F T

    2017-12-11

    Cyclosporin-A (CsA) is an immunosuppressant associated with acute kidney injury and chronic kidney disease. Nephrotoxicity associated with CsA involves the increase in afferent and efferent arteriole resistance, decreased renal blood flow (RBF) and glomerular filtration. The aim of this study was to evaluate the effect of Endothelin-1 (ET-1) receptor blockade with bosentan (BOS) and macitentan (MAC) antagonists on altered renal function induced by CsA in normotensive and hypertensive animals. Wistar and genetically hypertensive rats (SHR) were separated into control group, CsA group that received intraperitoneal injections of CsA (40 mg/kg) for 15 days, CsA+BOS and CsA+MAC that received CsA and BOS (5 mg/kg) or MAC (25 mg/kg) by gavage for 15 days. Plasma creatinine and urea, mean arterial pressure (MAP), RBF and renal vascular resistance (RVR), and immunohistochemistry for ET-1 in the kidney cortex were measured. CsA decreased renal function, as shown by increased creatinine and urea. There was a decrease in RBF and an increase in MAP and RVR in normotensive and hypertensive animals. These effects were partially reversed by ET-1 antagonists, especially in SHR where increased ET-1 production was observed in the kidney. Most MAC effects were similar to BOS, but BOS seemed to be better at reversing cyclosporine-induced changes in renal function in hypertensive animals. The results of this work suggested the direct participation of ET-1 in renal hemodynamics changes induced by cyclosporin in normotensive and hypertensive rats. The antagonists of ET-1 MAC and BOS reversed part of these effects.

  5. RAS and sex differences in diabetic nephropathy.

    PubMed

    Clotet, Sergi; Riera, Marta; Pascual, Julio; Soler, Maria José

    2016-03-09

    The incidence and progression of kidney diseases are influenced by sex. The renin-angiotensin system (RAS) is an important regulator of cardiovascular and renal function. Sex differences in the renal response to RAS blockade have been demonstrated. Circulating and renal RAS has been shown to be altered in type 1 and type 2 diabetes; this enzymatic cascade plays a critical role in the development of diabetic nephropathy (DN). Angiotensin converting enzyme (ACE) and ACE2 are differentially regulated depending on its localization within the diabetic kidney. Furthermore, clinical and experimental studies have shown that circulating levels of sex hormones are clearly modulated in the context of diabetes, suggesting that sex-dependent RAS regulation may be also be affected in these individuals. The effect of sex hormones on circulating and renal RAS may be involved in the sex differences observed in DN progression. In this paper we will review the influence of sex hormones on RAS expression and its relation to diabetic kidney disease. A better understanding of the sex dimorphism on RAS might provide a new approach for diabetic kidney disease treatment. Copyright © 2015, American Journal of Physiology - Renal Physiology.

  6. Developmental Origins of Chronic Kidney Disease: Should We Focus on Early Life?

    PubMed Central

    Tain, You-Lin; Hsu, Chien-Ning

    2017-01-01

    Chronic kidney disease (CKD) is becoming a global burden, despite recent advances in management. CKD can begin in early life by so-called “developmental programming” or “developmental origins of health and disease” (DOHaD). Early-life insults cause structural and functional changes in the developing kidney, which is called renal programming. Epidemiological and experimental evidence supports the proposition that early-life adverse events lead to renal programming and make subjects vulnerable to developing CKD and its comorbidities in later life. In addition to low nephron endowment, several mechanisms have been proposed for renal programming. The DOHaD concept opens a new window to offset the programming process in early life to prevent the development of adult kidney disease, namely reprogramming. Here, we review the key themes on the developmental origins of CKD. We have particularly focused on the following areas: evidence from human studies support fetal programming of kidney disease; insight from animal models of renal programming; hypothetical mechanisms of renal programming; alterations of renal transcriptome in response to early-life insults; and the application of reprogramming interventions to prevent the programming of kidney disease. PMID:28208659

  7. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion.

    PubMed

    Weiner, I David; Mitch, William E; Sands, Jeff M

    2015-08-07

    Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance. Copyright © 2015 by the American Society of Nephrology.

  8. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion

    PubMed Central

    Mitch, William E.; Sands, Jeff M.

    2015-01-01

    Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance. PMID:25078422

  9. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma.

    PubMed

    Linehan, W Marston; Spellman, Paul T; Ricketts, Christopher J; Creighton, Chad J; Fei, Suzanne S; Davis, Caleb; Wheeler, David A; Murray, Bradley A; Schmidt, Laura; Vocke, Cathy D; Peto, Myron; Al Mamun, Abu Amar M; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W Kimryn; Brooks, Angela N; Hoadley, Katherine A; Robertson, A Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J; Bootwalla, Moiz; Baylin, Stephen B; Laird, Peter W; Cherniack, Andrew D; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B; Akbani, Rehan; Leiserson, Mark D M; Raphael, Benjamin J; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K; Czerniak, Bogdan; Godwin, Andrew K; Hakimi, A Ari; Ho, Thai H; Hsieh, James; Ittmann, Michael; Kim, William Y; Krishnan, Bhavani; Merino, Maria J; Mills Shaw, Kenna R; Reuter, Victor E; Reznik, Ed; Shelley, Carl S; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D; Penny, Robert J; Shelton, Candace; Shelton, W Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T; Bowen, Jay; Gastier-Foster, Julie M; Gerken, Mark; Leraas, Kristen M; Lichtenberg, Tara M; Ramirez, Nilsa C; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A; Felau, Ina; Hutter, Carolyn M; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C; Zhang, Jiashan; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S N; Carlsen, Rebecca; Carter, Scott L; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, Harsha V; Drummond, Jennifer A; Gabriel, Stacey B; Gibbs, Richard A; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D Neil; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven J M; Jones, Corbin D; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A; Moore, Richard A; Morton, Donna; Mose, Lisle E; Mungall, Andrew J; Muzny, Donna; Parker, Joel S; Perou, Charles M; Roach, Jeffrey; Schein, Jacqueline E; Schumacher, Steven E; Shi, Yan; Simons, Janae V; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L; Boice, Lori; Bollag, Roni J; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L; Slaton, Joel; Stanton, Melissa; Thompson, R Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M; Winemiller, Cynthia; Zach, Leigh Anne; Zuna, Rosemary

    2016-01-14

    Papillary renal-cell carcinoma, which accounts for 15 to 20% of renal-cell carcinomas, is a heterogeneous disease that consists of various types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal-cell carcinoma, and no effective forms of therapy for advanced disease exist. We performed comprehensive molecular characterization of 161 primary papillary renal-cell carcinomas, using whole-exome sequencing, copy-number analysis, messenger RNA and microRNA sequencing, DNA-methylation analysis, and proteomic analysis. Type 1 and type 2 papillary renal-cell carcinomas were shown to be different types of renal cancer characterized by specific genetic alterations, with type 2 further classified into three individual subgroups on the basis of molecular differences associated with patient survival. Type 1 tumors were associated with MET alterations, whereas type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in a distinct subgroup of type 2 papillary renal-cell carcinomas that was characterized by poor survival and mutation of the gene encoding fumarate hydratase (FH). Type 1 and type 2 papillary renal-cell carcinomas were shown to be clinically and biologically distinct. Alterations in the MET pathway were associated with type 1, and activation of the NRF2-ARE pathway was associated with type 2; CDKN2A loss and CIMP in type 2 conveyed a poor prognosis. Furthermore, type 2 papillary renal-cell carcinoma consisted of at least three subtypes based on molecular and phenotypic features. (Funded by the National Institutes of Health.).

  10. Sub-nephrotoxic cisplatin sensitizes rats to acute renal failure and increases urinary excretion of fumarylacetoacetase.

    PubMed

    Vicente-Vicente, Laura; Sánchez-Juanes, Fernando; García-Sánchez, Omar; Blanco-Gozalo, Víctor; Pescador, Moisés; Sevilla, María A; González-Buitrago, José Manuel; López-Hernández, Francisco J; López-Novoa, José Miguel; Morales, Ana Isabel

    2015-04-16

    Nephrotoxicity limits the therapeutic efficacy of the antineoplastic drug cisplatin. Due to dosage adjustment and appropriate monitoring, most therapeutic courses with cisplatin produce no or minimal kidney damage. However, we studied whether even sub-nephrotoxic dosage of cisplatin poses a potential risk for the kidneys by predisposing to acute kidney injury (AKI), specifically by lowering the toxicity threshold for a second nephrotoxin. With this purpose rats were treated with a single sub-nephrotoxic dosage of cisplatin (3mg/kg, i.p.) and after two days, with a sub-nephrotoxic regime of gentamicin (50mg/kg/day, during 6 days, i.p.). Control groups received only one of the drugs or the vehicle. Renal function and renal histology were monitored throughout the experiment. Cisplatin treatment did not cause any relevant functional or histological alterations in the kidneys. Rats treated with cisplatin and gentamicin, but not those under single treatments, developed an overt renal failure characterized by both renal dysfunction and massive tubular necrosis. In addition, the urinary excretion of fumarylacetoacetase was increased in cisplatin-treated animals at subtoxic doses, which might be exploited as a cisplatin-induced predisposition marker. In fact, the urinary level of fumarylacetoacetase prior to the second nephrotoxin correlated with the level of AKI triggered by gentamicin in predisposed animals. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Cardiovascular and renal manifestations of glutathione depletion induced by buthionine sulfoximine.

    PubMed

    Vargas, Félix; Rodríguez-Gómez, Isabel; Pérez-Abud, Rocío; Vargas Tendero, Pablo; Baca, Yolanda; Wangensteen, Rosemary

    2012-06-01

    Oxidative stress contributes to the development of several cardiovascular diseases, including diabetes, renal insufficiency, and arterial hypertension. Animal studies have evidenced the association between higher blood pressure (BP) and increased oxidative stress, and treatment with antioxidants has been shown to reduce BP, while BP reduction due to antihypertensive drugs is associated with reduced oxidative stress. In 2000, it was first reported that oxidative stress and arterial hypertension were produced in normal Sprague-Dawley rats by oral administration of buthionine sulfoximine (BSO), which induces glutathione (GSH) depletion, indicating that oxidative stress may induce hypertension. The contribution of several potential pathogenic factors has been evaluated in the BSO rat model, the prototype of oxidative stress-induced hypertension, including vascular reactivity, endothelium-derived factors, renin-angiotensin system activity, TXA(2)-PGH(2) production, sodium sensitivity, renal dopamine-induced natriuresis, and sympathetic tone. This review summarizes the main factors implicated in the pathogenesis of BSO-induced hypertension and the alterations associated with GSH depletion that are related to renal function or BP control.

  12. Expression of peroxisomal proliferator-activated receptors and retinoid X receptors in the kidney.

    PubMed

    Yang, T; Michele, D E; Park, J; Smart, A M; Lin, Z; Brosius, F C; Schnermann, J B; Briggs, J P

    1999-12-01

    The discovery that 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) is a ligand for the gamma-isoform of peroxisome proliferator-activated receptor (PPAR) suggests nuclear signaling by prostaglandins. Studies were undertaken to determine the nephron localization of PPAR isoforms and their heterodimer partners, retinoid X receptors (RXR), and to evaluate the function of this system in the kidney. PPARalpha mRNA, determined by RT-PCR, was found predominately in cortex and further localized to proximal convoluted tubule (PCT); PPARgamma was abundant in renal inner medulla, localized to inner medullary collecting duct (IMCD) and renal medullary interstitial cells (RMIC); PPARbeta, the ubiquitous form of PPAR, was abundant in all nephron segments examined. RXRalpha was localized to PCT and IMCD, whereas RXRbeta was expressed in almost all nephron segments examined. mRNA expression of acyl-CoA synthase (ACS), a known PPAR target gene, was stimulated in renal cortex of rats fed with fenofibrate, but the expression was not significantly altered in either cortex or inner medulla of rats fed with troglitazone. In cultured RMIC cells, both troglitazone and 15d-PGJ2 significantly inhibited cell proliferation and dramatically altered cell shape by induction of cell process formation. We conclude that PPAR and RXR isoforms are expressed in a nephron segment-specific manner, suggesting distinct functions, with PPARalpha being involved in energy metabolism through regulating ACS in PCT and with PPARgamma being involved in modulating RMIC growth and differentiation.

  13. Metabolomic Profiling in Individuals with a Failing Kidney Allograft.

    PubMed

    Bassi, Roberto; Niewczas, Monika A; Biancone, Luigi; Bussolino, Stefania; Merugumala, Sai; Tezza, Sara; D'Addio, Francesca; Ben Nasr, Moufida; Valderrama-Vasquez, Alessandro; Usuelli, Vera; De Zan, Valentina; El Essawy, Basset; Venturini, Massimo; Secchi, Antonio; De Cobelli, Francesco; Lin, Alexander; Chandraker, Anil; Fiorina, Paolo

    2017-01-01

    Alteration of certain metabolites may play a role in the pathophysiology of renal allograft disease. To explore metabolomic abnormalities in individuals with a failing kidney allograft, we analyzed by liquid chromatography-mass spectrometry (LC-MS/MS; for ex vivo profiling of serum and urine) and two dimensional correlated spectroscopy (2D COSY; for in vivo study of the kidney graft) 40 subjects with varying degrees of chronic allograft dysfunction stratified by tertiles of glomerular filtration rate (GFR; T1, T2, T3). Ten healthy non-allograft individuals were chosen as controls. LC-MS/MS analysis revealed a dose-response association between GFR and serum concentration of tryptophan, glutamine, dimethylarginine isomers (asymmetric [A]DMA and symmetric [S]DMA) and short-chain acylcarnitines (C4 and C12), (test for trend: T1-T3 = p<0.05; p = 0.01; p<0.001; p = 0.01; p = 0.01; p<0.05, respectively). The same association was found between GFR and urinary levels of histidine, DOPA, dopamine, carnosine, SDMA and ADMA (test for trend: T1-T3 = p<0.05; p<0.01; p = 0.001; p<0.05; p = 0.001; p<0.001; p<0.01, respectively). In vivo 2D COSY of the kidney allograft revealed significant reduction in the parenchymal content of choline, creatine, taurine and threonine (all: p<0.05) in individuals with lower GFR levels. We report an association between renal function and altered metabolomic profile in renal transplant individuals with different degrees of kidney graft function.

  14. Bmi-1 plays a critical role in protection from renal tubulointerstitial injury by maintaining redox balance

    PubMed Central

    Jin, Jianliang; Lv, Xianhui; Chen, Lulu; Zhang, Wei; Li, Jinbo; Wang, Qian; Wang, Rong; Lu, Xiang; Miao, Dengshun

    2014-01-01

    To determine whether Bmi-1 deficiency could lead to renal tubulointerstitial injury by mitochondrial dysfunction and increased oxidative stress in the kidney, 3-week-old Bmi-1-/- mice were treated with the antioxidant N-acetylcysteine (NAC, 1 mg mL−1) in their drinking water, or pyrro-quinoline quinone (PQQ, 4 mg kg−1 diet) in their diet for 2 weeks, and their renal phenotypes were compared with vehicle-treated Bmi1-/- and wild-type mice. Bmi-1 was knocked down in human renal proximal tubular epithelial (HK2) cells which were treated with 1 mm NAC for 72 or 96 h, and their phenotypes were compared with control cells. Five-week-old vehicle-treated Bmi-1-/- mice displayed renal interstitial fibrosis, tubular atrophy, and severe renal function impairment with decreased renal cell proliferation, increased renal cell apoptosis and senescence, and inflammatory cell infiltration. Impaired mitochondrial structure, decreased mitochondrial numbers, and increased oxidative stress occurred in Bmi-1-/- mice; subsequently, this caused DNA damage, the activation of TGF-β1/Smad signaling, and the imbalance between extracellular matrix synthesis and degradation. Oxidative stress-induced epithelial-to-mesenchymal transition of renal tubular epithelial cells was enhanced in Bmi-1 knocked down HK2 cells. All phenotypic alterations caused by Bmi-1 deficiency were ameliorated by antioxidant treatment. These findings indicate that Bmi-1 plays a critical role in protection from renal tubulointerstitial injury by maintaining redox balance and will be a novel therapeutic target for preventing renal tubulointerstitial injury. PMID:24915841

  15. Incubation relative humidity induces renal morphological and physiological remodeling in the embryo of the chicken (Gallus gallus domesticus).

    PubMed

    Bolin, Greta; Dubansky, Benjamin; Burggren, Warren W

    2017-02-01

    The metanephric kidneys of the chicken embryo, along with the chorioallantoic membrane, process water and ions to maintain osmoregulatory homeostasis. We hypothesized that changes in relative humidity (RH) and thus osmotic conditions during embryogenesis would alter the developmental trajectory of embryonic kidney function. White leghorn chicken eggs were incubated at one of 25-30% relative humidity, 55-60% relative humidity, and 85-90% relative humidity. Embryos were sampled at days 10, 12, 14, 16, and 18 to examine embryo and kidney mass, glomerular characteristics, body fluid osmolalities, hematological properties, and whole embryo oxygen consumption. Low and especially high RH elevated mortality, which was reflected in a 10-20% lower embryo mass on D18. Low RH altered several glomerular characteristics by day 18, including increased numbers of glomeruli per kidney, increased glomerular perfusion, and increased total glomerular volume, all indicating potentially increased functional kidney capacity. Hematological variables and plasma and amniotic fluid osmolalities remained within normal physiological values. However, the allantoic, amniotic and cloacal fluids had a significant increase in osmolality at most developmental points sampled. Embryonic oxygen consumption increased relative to control at both low and high relative humidities on Day 18, reflecting the increased metabolic costs of osmotic stress. Major differences in both renal structure and performance associated with changes in incubation humidity occurred after establishment of the metanephric kidney and persisted into late development, and likely into the postnatal period. These data indicate that the avian embryo deserves to be further investigated as a promising model for fetal programming of osmoregulatory function, and renal remodeling during osmotic stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Correlation between differential renal function estimation using CT-based functional renal parenchymal volume and (99m)Tc - DTPA renal scan.

    PubMed

    Sarma, Debanga; Barua, Sasanka K; Rajeev, T P; Baruah, Saumar J

    2012-10-01

    Nuclear renal scan is currently the gold standard imaging study to determine differential renal function. We propose helical CT as single modality for both the anatomical and functional evaluation of kidney with impaired function. In the present study renal parenchymal volume is measured and percent total renal volume is used as a surrogate marker for differential renal function. The objective of this study is to correlate between differential renal function estimation using CT-based renal parenchymal volume measurement with differential renal function estimation using (99m)TC - DTPA renal scan. Twenty-one patients with unilateral obstructive uropathy were enrolled in this prospective comparative study. They were subjected to (99m)Tc - DTPA renal scan and 64 slice helical CT scan which estimates the renal volume depending on the reconstruction of arterial phase images followed by volume rendering and percent renal volume was calculated. Percent renal volume was correlated with percent renal function, as determined by nuclear renal scan using Pearson coefficient. RESULTS AND OBSERVATION: A strong correlation is observed between percent renal volume and percent renal function in obstructed units (r = 0.828, P < 0.001) as well as in nonobstructed units (r = 0.827, P < 0.001). There is a strong correlation between percent renal volume determined by CT scan and percent renal function determined by (99m)TC - DTPA renal scan both in obstructed and in normal units. CT-based percent renal volume can be used as a single radiological tests for both functional and anatomical assessment of impaired renal units.

  17. Birt-Hogg-Dubé syndrome: Clinical and molecular aspects of recently identified kidney cancer syndrome.

    PubMed

    Hasumi, Hisashi; Baba, Masaya; Hasumi, Yukiko; Furuya, Mitsuko; Yao, Masahiro

    2016-03-01

    Birt-Hogg-Dubé syndrome is an autosomal dominantly inherited disease that predisposes patients to develop fibrofolliculoma, lung cysts and bilateral multifocal renal tumors, histologically hybrid oncocytic/chromophobe tumors, chromophobe renal cell carcinoma, oncocytoma, papillary renal cell carcinoma and clear cell renal cell carcinoma. The predominant forms of Birt-Hogg-Dubé syndrome-associated renal tumors, hybrid oncocytic/chromophobe tumors and chromophobe renal cell carcinoma are typically less aggressive, and a therapeutic principle for these tumors is a surgical removal with nephron-sparing. The timing of surgery is the most critical element for postoperative renal function, which is one of the important prognostic factors for Birt-Hogg-Dubé syndrome patients. The folliculin gene (FLCN) that is responsible for Birt-Hogg-Dubé syndrome was isolated as a novel tumor suppressor for kidney cancer. Recent studies using murine models for FLCN, a protein encoded by the FLCN gene, and its two binding partners, folliculin-interacting protein 1 (FNIP1) and folliculin-interacting protein 2 (FNIP2), have uncovered important roles for FLCN, FNIP1 and FNIP2 in cell metabolism, which include AMP-activated protein kinase-mediated energy sensing, Ppargc1a-driven mitochondrial oxidative phosphorylation and mTORC1-dependent cell proliferation. Birt-Hogg-Dubé syndrome is a hereditary hamartoma syndrome, which is triggered by metabolic alterations under a functional loss of FLCN/FNIP1/FNIP2 complex, a critical regulator of kidney cell proliferation rate; a mechanistic insight into the FLCN/FNIP1/FNIP2 pathway could provide us a basis for developing new therapeutics for kidney cancer. © 2015 The Japanese Urological Association.

  18. Nephron-Specific Deletion of Circadian Clock Gene Bmal1 Alters the Plasma and Renal Metabolome and Impairs Drug Disposition.

    PubMed

    Nikolaeva, Svetlana; Ansermet, Camille; Centeno, Gabriel; Pradervand, Sylvain; Bize, Vincent; Mordasini, David; Henry, Hugues; Koesters, Robert; Maillard, Marc; Bonny, Olivier; Tokonami, Natsuko; Firsov, Dmitri

    2016-10-01

    The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question, we performed a combined functional, transcriptomic, and metabolomic analysis in mice with inducible conditional knockout (cKO) of BMAL1, which is critically involved in the circadian clock system, in renal tubular cells (Bmal1 lox/lox /Pax8-rtTA/LC1 mice). Induction of cKO in adult mice did not produce obvious abnormalities in renal sodium, potassium, or water handling. Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport in cKO mice compared with control littermates. Furthermore, kidneys from cKO mice exhibited a significant decrease in the NAD + -to-NADH ratio, which reflects the oxidative phosphorylation-to-glycolysis ratio and/or the status of mitochondrial function. Metabolome profiling showed significant changes in plasma levels of amino acids, biogenic amines, acylcarnitines, and lipids. In-depth analysis of two selected pathways revealed a significant increase in plasma urea level correlating with increased renal Arginase II activity, hyperargininemia, and increased kidney arginine content as well as a significant increase in plasma creatinine concentration and a reduced capacity of the kidney to secrete anionic drugs (furosemide) paralleled by an approximate 80% decrease in the expression level of organic anion transporter 3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at the intrarenal and systemic levels and are involved in drug disposition. Copyright © 2016 by the American Society of Nephrology.

  19. Cyclooxygenase-2 Selectively Controls Renal Blood Flow Through a Novel PPARβ/δ-Dependent Vasodilator Pathway.

    PubMed

    Kirkby, Nicholas S; Sampaio, Walkyria; Etelvino, Gisele; Alves, Daniele T; Anders, Katie L; Temponi, Rafael; Shala, Fisnik; Nair, Anitha S; Ahmetaj-Shala, Blerina; Jiao, Jing; Herschman, Harvey R; Xiaomeng, Wang; Wahli, Walter; Santos, Robson A; Mitchell, Jane A

    2018-02-01

    Cyclooxygenase-2 (COX-2) is an inducible enzyme expressed in inflammation and cancer targeted by nonsteroidal anti-inflammatory drugs. COX-2 is also expressed constitutively in discreet locations where its inhibition drives gastrointestinal and cardiovascular/renal side effects. Constitutive COX-2 expression in the kidney regulates renal function and blood flow; however, the global relevance of the kidney versus other tissues to COX-2-dependent blood flow regulation is not known. Here, we used a microsphere deposition technique and pharmacological COX-2 inhibition to map the contribution of COX-2 to regional blood flow in mice and compared this to COX-2 expression patterns using luciferase reporter mice. Across all tissues studied, COX-2 inhibition altered blood flow predominantly in the kidney, with some effects also seen in the spleen, adipose, and testes. Of these sites, only the kidney displayed appreciable local COX-2 expression. As the main site where COX-2 regulates blood flow, we next analyzed the pathways involved in kidney vascular responses using a novel technique of video imaging small arteries in living tissue slices. We found that the protective effect of COX-2 on renal vascular function was associated with prostacyclin signaling through PPARβ/δ (peroxisome proliferator-activated receptor-β/δ). These data demonstrate the kidney as the principle site in the body where local COX-2 controls blood flow and identifies a previously unreported PPARβ/δ-mediated renal vasodilator pathway as the mechanism. These findings have direct relevance to the renal and cardiovascular side effects of drugs that inhibit COX-2, as well as the potential of the COX-2/prostacyclin/PPARβ/δ axis as a therapeutic target in renal disease. © 2018 The Authors.

  20. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: possible mechanism of nephroprotection.

    PubMed

    Sahu, Bidya Dhar; Tatireddy, Srujana; Koneru, Meghana; Borkar, Roshan M; Kumar, Jerald Mahesh; Kuncha, Madhusudana; Srinivas, R; Shyam Sunder, R; Sistla, Ramakrishna

    2014-05-15

    Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrial NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in the kidney. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Transient renal tubulopathy in a racing Greyhound.

    PubMed

    Abraham, L A; Tyrrell, D; Charles, J A

    2006-11-01

    A 2-year-old female Greyhound was presented for inappetence and lethargy. On referral, results of diagnostic tests indicated renal glucosuria, increased excretion of selected amino acids and abnormal fractional excretion of electrolytes consistent with renal tubular dysfunction. Systemic blood pressure was elevated. Renal biopsy revealed mild proximal renal tubular damage consistent with a subacute toxic or hypoxic insult. Systemic hypertension, renal glucosuria and altered fractional excretion of electrolytes resolved during the 7 day period of hospital treatment. The Greyhound resumed training without recurrence of renal dysfunction.

  2. Altered central nervous system processing of baroreceptor input following hindlimb unloading in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, J. A.; Schadt, J. C.; Hasser, E. M.

    1999-01-01

    The effect of cardiovascular deconditioning on central nervous system processing of baroreceptor afferent activity was evaluated following 14 days of hindlimb unloading (HU). Inactin-anesthetized rats were instrumented with catheters, renal sympathetic nerve electrodes, and aortic depressor nerve electrodes for measurement of mean arterial pressure, heart rate, renal sympathetic nerve activity (RSNA), and aortic depressor nerve activity (ADNA). Baroreceptor and baroreflex functions were assessed during infusion of phenylephrine and sodium nitroprusside. Central processing of baroreceptor afferent input was evaluated by linear regression relating RSNA to ADNA. The maximum baroreflex-elicited increase in RSNA was significantly reduced in HU rats (122 +/- 3.8 vs. 144 +/- 4.9% of baseline RSNA), whereas ADNA was not altered. The slope (-0.18 +/- 0.04 vs. -0.40 +/- 0.04) and y-intercept (121 +/- 3.2 vs. 146 +/- 4.3) of the linear regression relating increases in efferent RSNA to decreases in afferent ADNA during hypotension were significantly reduced in HU rats. There were no differences during increases in arterial pressure. Results demonstrate that the attenuation in baroreflex-mediated increases in RSNA following HU is due to changes in central processing of baroreceptor afferent information rather than aortic baroreceptor function.

  3. Effect of a keto acid-amino acid supplement on the metabolism and renal elimination of branched-chain amino acids in patients with chronic renal insufficiency on a low protein diet.

    PubMed

    Teplan, V; Schück, O; Horácková, M; Skibová, J; Holecek, M

    2000-10-27

    The aim of our study was to evaluate the effect of a low-protein diet supplemented with keto acids-amino acids on renal function and urinary excretion of branched-chain amino acids (BCAA) in patients with chronic renal insufficiency (CRI). In a prospective investigation 28 patients with CRI (16 male, 12 female, aged 28-66 yrs, CCr 18.6 +/- 10.2 ml/min) on a low-protein diet (0.6 g of protein /kg BW/day and energy intake 140 kJ/kg BW/day) for a period of one month were included. Subsequently, this low protein diet was supplemented with keto acids-amino acids at a dose of 0.1 g/kg BW/day orally for a period of 3 months. Examinations performed at baseline and at the end of the follow-up period revealed significant increase in the serum levels of BCAA leucine (p < 0.02), isoleucine (p < 0.03), and valine (p < 0.02) while their renal fractional excretion declined (p < 0.02, p < 0.01 resp.). Keto acid-amino acid administration had no effect on renal function and on the clearance of inulin, para-aminohippuric acid. Endogenous creatinine and urea clearance remained unaltered. A significant correlation between fractional excretion of sodium and leucine (p < 0.05) and a hyperbolic relationship between inulin clearance and fractional excretion of BCAA (p < 0.01) were seen. Moreover, a significant decrease in proteinuria (p < 0.02), plasma urea concentration and renal urea excretion and a rise in albumin level (p < 0.03) were noted. We conclude that in patients with CRI on a low protein diet the supplementation of keto acids-amino acids does not affect renal hemodynamics, but is associated--despite increases in plasma concentrations--with a reduction of renal amino acid and protein excretion suggesting induction of alterations in the tubular transport mechanisms.

  4. Final amended safety assessment of hydroquinone as used in cosmetics.

    PubMed

    Andersen, F Alan; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W

    2010-01-01

    Hydroquinone is an aromatic compound that functions in cosmetics as an antioxidant, fragrance, reducing agent, or polymerization inhibitor. Hydroquinone is also used as a skin bleaching agent. Safety and toxicity information indicate that hydroquinone is dermally absorbed in humans from both aqueous and alcoholic formulations and is excreted mainly as the glucuronide or sulfate conjugates. Hydroquinone is associated with altered immune function in vitro and in vivo in animals and an increased incidence of renal tubule cell tumors and leukemia in F344 rats, but the relevance to humans is uncertain. Quantitatively, however, the use of hydroquinone in cosmetics is unlikely to result in renal neoplasia through this mode of action. Thus, hydroquinone is safe at concentrations of ≤1% in hair dyes and is safe for use in nail adhesives. Hydroquinone should not be used in other leave-on cosmetics.

  5. Clinical review: Drug metabolism and nonrenal clearance in acute kidney injury

    PubMed Central

    Vilay, A Mary; Churchwell, Mariann D; Mueller, Bruce A

    2008-01-01

    Decreased renal drug clearance is an obvious consequence of acute kidney injury (AKI). However, there is growing evidence to suggest that nonrenal drug clearance is also affected. Data derived from human and animal studies suggest that hepatic drug metabolism and transporter function are components of nonrenal clearance affected by AKI. Acute kidney injury may also impair the clearance of formed metabolites. The fact that AKI does not solely influence kidney function may have important implications for drug dosing, not only of renally eliminated drugs but also of those that are hepatically cleared. A review of the literature addressing the topic of drug metabolism and clearance alterations in AKI reveals that changes in nonrenal clearance are highly complicated and poorly studied, but they may be quite common. At present, our understanding of how AKI affects drug metabolism and nonrenal clearance is limited. However, based on the available evidence, clinicians should be cognizant that even hepatically eliminated drugs and formed drug metabolites may accumulate during AKI, and renal replacement therapy may affect nonrenal clearance as well as drug metabolite clearance. PMID:19040780

  6. Unmasking glucose metabolism alterations in stable renal transplant recipients: a multicenter study.

    PubMed

    Delgado, Patricia; Diaz, Juan Manuel; Silva, Irene; Osorio, José M; Osuna, Antonio; Bayés, Beatriz; Lauzurica, Ricardo; Arellano, Edgar; Campistol, Jose Maria; Dominguez, Rosa; Gómez-Alamillo, Carlos; Ibernon, Meritxell; Moreso, Francisco; Benitez, Rocio; Lampreave, Ildefonso; Porrini, Esteban; Torres, Armando

    2008-05-01

    Emerging information indicates that glucose metabolism alterations are common after renal transplantation and are associated with carotid atheromatosis. The aims of this study were to investigate the prevalence of different glucose metabolism alterations in stable recipients as well as the factors related to the condition. A multicenter, cross-sectional study was conducted of 374 renal transplant recipients without pre- or posttransplantation diabetes. A standard 75-g oral glucose tolerance test was performed. Glucose metabolism alterations were present in 119 (31.8%) recipients: 92 (24.6%) with an abnormal oral glucose tolerance test and 27 (7.2%) with isolated impaired fasting glucose. The most common disorder was impaired glucose tolerance (17.9%), and an abnormal oral glucose tolerance test was observed for 21.5% of recipients with a normal fasting glucose. By multivariate analysis, age, prednisone dosage, triglyceride/high-density lipoprotein cholesterol ratio, and beta blocker use were shown to be factors related to glucose metabolism alterations. Remarkably, triglyceride levels, triglyceride/high-density lipoprotein cholesterol ratio, and the proportion of recipients with impaired fasting glucose were already higher throughout the first posttransplantation year in recipients with a current glucose metabolism alteration as compared with those without the condition. Glucose metabolism alterations are common in stable renal transplant recipients, and an oral glucose tolerance test is required for its detection. They are associated with a worse metabolic profile, which is already present during the first posttransplantation year. These findings may help planning strategies for early detection and intervention.

  7. Transitional epithelial lesions of the ureter in renal transplant rejection.

    PubMed

    Katz, J P; Greenstein, S M; Hakki, A; Miller, A; Katz, S M; Simonian, S

    1988-04-01

    The spectrum of ureteric lesions of human renal allografts, long attributed exclusively to postsurgical complications such as ischemia, has recently been shown to include the types of rejection seen in the kidney. Since the rejected ureter also exhibits transitional epithelial lesions that may impact on renal and ureteral function, we studied, by light, immunohistochemical, immunofluorescent, and electron microscopic techniques, ureters of 65 irreversibly rejected kidneys. Seven unused cadaver kidneys served as controls. Urothelial lesions, noticed in 57 of 65 ureters (88%), ranged from minimal basal vacuolization to complete sloughing with or without necrosis of the epithelial lining. Epithelial exfoliation was noticed in 31 cases (54.4%), and basal vacuolization, severe enough to produce cleavage of the epithelial junctions and thus create bullae, was noticed in 21 cases (36.8%). Immunofluorescent and immunoperoxidase stains, performed in 16 cases, were all positive for immunoglobulins but yielded varied results ranging from granular to linear staining, particularly in the region of the basal cells and the basement membrane. Electron microscopic findings confirmed the light microscopic alterations. By contrast, control ureters showed no lesions. Urothelial ureteric lesions might impede ureteral functions and result in obstruction or infection, thus compounding the consequences of renal allograft rejection. Moreover, elucidation of the pathophysiology of the process will advance the understanding of various cutaneous and transitional epithelial autoimmune conditions.

  8. Renal and metabolic effects of three months of decarbonated cola beverages in rats.

    PubMed

    Celec, Peter; Pálffy, Roland; Gardlík, Roman; Behuliak, Michal; Hodosy, Július; Jáni, Peter; Bozek, Peter; Sebeková, Katarína

    2010-11-01

    Epidemiological studies have shown an association between the intake of cola beverages and chronic kidney diseases. Experimental evidence for the negative effects of cola intake on kidneys is lacking. Male Wistar rats had ad libitum access to water (control group) or three different sugar-sweetened cola beverages for three months. Despite very high cola intake (daily cca 140 mL), no differences were found in body weight, kidney weight, glomerular morphology, oxidative and carbonyl stress or expression of selected marker genes in the renal cortex. Interestingly, all groups consuming cola beverages had lower blood glucose levels during an oral glucose tolerance test, suggesting improved insulin sensitivity. Despite hyperfiltration (5-6-fold increase in diuresis), cola beverages had no effect on assessed parameters of renal function, histology, gene expression or oxidative stress. Moreover, cola intake seems to increase creatinine clearance and to decrease plasma levels of urea. In our study increased insulin sensitivity and altered renal functional parameters were observed in rats receiving cola beverages for three months. Whether the findings are due to the short duration of the study or interspecies metabolic differences should be uncovered in further studies. Even more interesting might be the analysis of effects of cola intake in animal models of diabetes.

  9. Effects of chronic fructose overload on renal dopaminergic system: alteration of urinary L-dopa/dopamine index correlates to hypertension and precedes kidney structural damage.

    PubMed

    Rukavina Mikusic, Natalia L; Kouyoumdzian, Nicolás M; Del Mauro, Julieta S; Cao, Gabriel; Trida, Verónica; Gironacci, Mariela M; Puyó, Ana M; Toblli, Jorge E; Fernández, Belisario E; Choi, Marcelo R

    2018-01-01

    Insulin resistance induced by a high-fructose diet has been associated to hypertension and renal damage. The aim of this work was to assess alterations in the urinary L-dopa/dopamine ratio over three time periods in rats with insulin resistance induced by fructose overload and its correlation with blood pressure levels and the presence of microalbuminuria and reduced nephrin expression as markers of renal structural damage. Male Sprague-Dawley rats were randomly divided into six groups: control (C) (C4, C8 and C12) with tap water to drink and fructose-overloaded (FO) rats (FO4, FO8 and FO12) with a fructose solution (10% w/v) to drink for 4, 8 and 12 weeks. A significant increase of the urinary L-dopa/dopamine ratio was found in FO rats since week 4, which positively correlated to the development of hypertension and preceded in time the onset of microalbuminuria and reduced nephrin expression observed on week 12 of treatment. The alteration of this ratio was associated to an impairment of the renal dopaminergic system, evidenced by a reduction in renal dopamine transporters and dopamine D1 receptor expression, leading to an overexpression and overactivation of the enzyme Na + , K + -ATPase with sodium retention. In conclusion, urinary L-dopa/dopamine ratio alteration in rats with fructose overload positively correlated to the development of hypertension and preceded in time the onset of renal structural damage. This is the first study to propose the use of the urinary L-dopa/dopamine index as marker of renal dysfunction that temporarily precedes kidney structural damage induced by fructose overload. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Detecting truly clonal alterations from multi-region profiling of tumours

    PubMed Central

    Werner, Benjamin; Traulsen, Arne; Sottoriva, Andrea; Dingli, David

    2017-01-01

    Modern cancer therapies aim at targeting tumour-specific alterations, such as mutations or neo-antigens, and maximal treatment efficacy requires that targeted alterations are present in all tumour cells. Currently, treatment decisions are based on one or a few samples per tumour, creating uncertainty on whether alterations found in those samples are actually present in all tumour cells. The probability of classifying clonal versus sub-clonal alterations from multi-region profiling of tumours depends on the earliest phylogenetic branching event during tumour growth. By analysing 181 samples from 10 renal carcinoma and 11 colorectal cancers we demonstrate that the information gain from additional sampling falls onto a simple universal curve. We found that in colorectal cancers, 30% of alterations identified as clonal with one biopsy proved sub-clonal when 8 samples were considered. The probability to overestimate clonal alterations fell below 1% in 7/11 patients with 8 samples per tumour. In renal cell carcinoma, 8 samples reduced the list of clonal alterations by 40% with respect to a single biopsy. The probability to overestimate clonal alterations remained as high as 92% in 7/10 renal cancer patients. Furthermore, treatment was associated with more unbalanced tumour phylogenetic trees, suggesting the need of denser sampling of tumours at relapse. PMID:28344344

  11. Detecting truly clonal alterations from multi-region profiling of tumours

    NASA Astrophysics Data System (ADS)

    Werner, Benjamin; Traulsen, Arne; Sottoriva, Andrea; Dingli, David

    2017-03-01

    Modern cancer therapies aim at targeting tumour-specific alterations, such as mutations or neo-antigens, and maximal treatment efficacy requires that targeted alterations are present in all tumour cells. Currently, treatment decisions are based on one or a few samples per tumour, creating uncertainty on whether alterations found in those samples are actually present in all tumour cells. The probability of classifying clonal versus sub-clonal alterations from multi-region profiling of tumours depends on the earliest phylogenetic branching event during tumour growth. By analysing 181 samples from 10 renal carcinoma and 11 colorectal cancers we demonstrate that the information gain from additional sampling falls onto a simple universal curve. We found that in colorectal cancers, 30% of alterations identified as clonal with one biopsy proved sub-clonal when 8 samples were considered. The probability to overestimate clonal alterations fell below 1% in 7/11 patients with 8 samples per tumour. In renal cell carcinoma, 8 samples reduced the list of clonal alterations by 40% with respect to a single biopsy. The probability to overestimate clonal alterations remained as high as 92% in 7/10 renal cancer patients. Furthermore, treatment was associated with more unbalanced tumour phylogenetic trees, suggesting the need of denser sampling of tumours at relapse.

  12. Renal protection by a soy diet in obese Zucker rats is associated with restoration of nitric oxide generation.

    PubMed

    Trujillo, Joyce; Ramírez, Victoria; Pérez, Jazmín; Torre-Villalvazo, Ivan; Torres, Nimbe; Tovar, Armando R; Muñoz, Rosa M; Uribe, Norma; Gamba, Gerardo; Bobadilla, Norma A

    2005-01-01

    The obese Zucker rat is a valuable model for studying kidney disease associated with obesity and diabetes. Previous studies have shown that substitution of animal protein with soy ameliorates the progression of renal disease. To explore the participation of nitric oxide (NO) and caveolin-1 in this protective effect, we evaluated proteinuria, creatinine clearance, renal structural lesions, nitrites and nitrates urinary excretion (UNO(2)(-)/NO(3)V), and mRNA and protein levels of neuronal NO synthase (nNOS), endothelial NOS (eNOS), and caveolin-1 in lean and fatty Zucker rats fed with 20% casein or soy protein diet. After 160 days of feeding with casein, fatty Zucker rats developed renal insufficiency, progressive proteinuria, and renal structural lesions; these alterations were associated with an important fall of UNO(2)(-)/NO(3)V, changes in nNOS and eNOS mRNA levels, together with increased amount of eNOS and caveolin-1 present in plasma membrane proteins of the kidney. In fatty Zucker rats fed with soy, we observed that soy diet improved renal function, UNO(2)(-)/NO(3)V, and proteinuria and reduced glomerulosclerosis, tubular dilation, intersticial fibrosis, and extracapilar proliferation. Renal protection was associated with reduction of caveolin-1 and eNOS in renal plasma membrane proteins. In conclusion, our results suggest that renal protective effect of soy protein appears to be mediated by improvement of NO generation and pointed out to caveolin-1 overexpression as a potential pathophysiological mechanism in renal disease.

  13. Necrotizing crescentic glomerulonephritis related to sarcoidosis: a case report.

    PubMed

    Maroz, Natallia; Field, Halle

    2015-12-14

    Renal injury due to sarcoidosis develops in less than a quarter of patients with this systemic disease. In most cases, granulomatous tissue alters the production of vitamin D, which leads to hypercalciuria, nephrocalcinosis, and nephrolithiasis. Granulomatous interstitial nephritis is another well-recognized pathological process associated with sarcoidosis. However, a glomerular pathology is very rarely noted, and only a few cases are reported to have cellular crescentic glomerulonephritis. We describe the case of a 26-year-old African American woman with systemic sarcoidosis, with a unique constellation of renal lesions, including noncaseating epithelioid granulomatous necrotizing interstitial nephritis, cellular crescent formation, and necrotizing vasculitis. Immunosuppressive therapy was helpful for alleviating her nephrotic syndrome and maintaining the stability of her renal function over a 30-month period. Glomerular involvement of sarcoidosis needs to be considered in the differential diagnosis in cases of rapidly progressive glomerular nephritis.

  14. Renal Aging: Causes and Consequences

    PubMed Central

    Hughes, Jeremy; Ferenbach, David A.

    2017-01-01

    Individuals age >65 years old are the fastest expanding population demographic throughout the developed world. Consequently, more aged patients than before are receiving diagnoses of impaired renal function and nephrosclerosis—age–associated histologic changes in the kidneys. Recent studies have shown that the aged kidney undergoes a range of structural changes and has altered transcriptomic, hemodynamic, and physiologic behavior at rest and in response to renal insults. These changes impair the ability of the kidney to withstand and recover from injury, contributing to the high susceptibility of the aged population to AKI and their increased propensity to develop subsequent progressive CKD. In this review, we examine these features of the aged kidney and explore the various validated and putative pathways contributing to the changes observed with aging in both experimental animal models and humans. We also discuss the potential for additional study to increase understanding of the aged kidney and lead to novel therapeutic strategies. PMID:28143966

  15. Obesity-induced changes in kidney mitochondria and endoplasmic reticulum in the presence or absence of leptin

    PubMed Central

    do Carmo, Jussara M.; Hosler, Jonathan P.; Hall, John E.

    2015-01-01

    We investigated obesity-induced changes in kidney lipid accumulation, mitochondrial function, and endoplasmic reticulum (ER) stress in the absence of hypertension, and the potential role of leptin in modulating these changes. We compared two normotensive genetic mouse models of obesity, leptin-deficient ob/ob mice and hyperleptinemic melanocortin-4 receptor-deficient mice (LoxTB MC4R−/−), with their respective lean controls. Compared with controls, ob/ob and LoxTB MC4R−/− mice exhibit significant albuminuria, increased creatinine clearance, and high renal triglyceride content. Renal ATP levels were decreased in both obesity models, and mitochondria isolated from both models showed alterations that would lower mitochondrial ATP production. Mitochondria from hyperleptinemic LoxTB MC4R−/− mice kidneys respired NADH-generating substrates (including palmitate) at lower rates due to an apparent decrease in complex I activity, and these mitochondria showed oxidative damage. Kidney mitochondria of leptin-deficient ob/ob mice showed normal rates of respiration with no evidence of oxidative damage, but electron transfer was partially uncoupled from ATP synthesis. A fourfold induction of C/EBP homologous protein (CHOP) expression indicated induction of ER stress in kidneys of hyperleptinemic LoxTB MC4R−/− mice. In contrast, ER stress was not induced in kidneys of leptin-deficient ob/ob mice. Our findings show that obesity, in the absence of hypertension, is associated with renal dysfunction in mice but not with major renal injury. Alterations to mitochondria that lower cellular ATP levels may be involved in obesity-induced renal injury. The type and severity of mitochondrial and ER dysfunction differs depending upon the presence or absence of leptin. PMID:26290368

  16. Association of the cystatin C/creatinine ratio with the renally cleared hormones parathyroid hormone (PTH) and brain natriuretic peptide (BNP) in primary care patients: a cross-sectional study.

    PubMed

    Risch, Martin; Risch, Lorenz; Purde, Mette-Triin; Renz, Harald; Ambühl, Patrice; Szucs, Thomas; Tomonaga, Yuki

    2016-09-01

    The ratio of cystatin C to creatinine (cysC/crea) is regarded as a marker of glomerular filtration quality and predicts mortality. It has been hypothesized that increased mortality may be mediated by the retention of biologically active substances due to shrinking glomerular pores. The present study investigated whether cysC/crea is independently associated with the levels of two renally cleared hormones, which have been linked to increased mortality. We conducted a multicenter, cross-sectional study with a random selection of general practitioners (GPs) from all GP offices in seven Swiss cantons. Markers of glomerular filtration quality were investigated together with estimated glomerular filtration rate (eGFR), albuminuria and urinary neutrophil gelatinase associated lipocalin (uNGAL) as well as two renally cleared low-molecular-weight protein hormones (i.e. BNP and PTH), Morbidity was assessed with the Charlson Comorbidity Index (CCI). A total of 1000 patients (433 males; mean age 57 ± 17 years) were included. There was a significant univariate association of BNP (r = 0.36, p < 0.001) and PTH (r = 0.18, p < 0.001) with cysC/crea. An adjusted model that accounted for kidney function (eGFR), altered glomerular structure (albuminuria), renal stress (uNGAL), and CCI showed that BNP and PTH were independently associated with cysC/crea as well as with the ratio of cystatin C-based to creatinine-based eGFR. In conclusion, in primary care patients, BNP and PTH are independently associated both with markers of glomerular filtration quality and eGFR regardless of structural kidney damage or renal stress. These findings offer an explanation, how altered glomerular filtration quality could contribute to increased mortality.

  17. Effects of protease activated receptor (PAR)2 blocking peptide on endothelin-1 levels in kidney tissues in endotoxemic rat mode.

    PubMed

    Jesmin, Subrina; Shimojo, Nobutake; Yamaguchi, Naoto; Mowa, Chishimba Nathan; Oki, Masami; Zaedi, Sohel; Sultana, Sayeeda Nusrat; Rahman, Arifur; Islam, Majedul; Sawamura, Atsushi; Gando, Satoshi; Kawano, Satoru; Miyauchi, Takashi; Mizutani, Taro

    2014-05-02

    Septic shock, the severe form of sepsis, is associated with development of progressive damage in multiple organs. Kidney can be injured and its functions altered by activation of coagulation, vasoactive-peptide and inflammatory processes in sepsis. Endothelin (ET)-1, a potent vasoconstrictor, is implicated in the pathogenesis of sepsis and its complications. Protease-activated receptors (PARs) are shown to play an important role in the interplay between inflammation and coagulation. We examined the time-dependent alterations of ET-1 and inflammatory cytokine, such as tumor necrosis factor (TNF)-α in kidney tissue in lipopolysaccharide (LPS)-induced septic rat model and the effects of PAR2 blocking peptide on the LPS-induced elevations of renal ET-1 and TNF-α levels. Male Wistar rats at 8 weeks of age were administered with either saline solution or LPS at different time points (1, 3, 6 and 10h). Additionally, we treated LPS-administered rats with PAR2 blocking peptide for 3h to assess whether blockade of PAR2 has a regulatory role on the ET-1 level in septic kidney. An increase in ET-1 peptide level was observed in kidney tissue after LPS administration time-dependently. Levels of renal TNF-α peaked (around 12-fold) at 1h of sepsis. Interestingly, PAR2 blocking peptide normalized the LPS-induced elevations of renal ET-1 and TNF-α levels. The present study reveals a distinct chronological expression of ET-1 and TNF-α in LPS-administered renal tissues and that blockade of PAR2 may play a crucial role in treating renal injury, via normalization of inflammation, coagulation and vaso-active peptide. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Chronic kidney disease: Pathological and functional evaluation with intravoxel incoherent motion diffusion-weighted imaging.

    PubMed

    Mao, Wei; Zhou, Jianjun; Zeng, Mengsu; Ding, Yuqin; Qu, Lijie; Chen, Caizhong; Ding, Xiaoqiang; Wang, Yaqiong; Fu, Caixia

    2018-05-01

    Because chronic kidney disease (CKD) is a worldwide problem, accurate pathological and functional evaluation is required for planning treatment and follow-up. Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) can assess both capillary perfusion and tissue diffusion and may be helpful in evaluating renal function and pathology. To evaluate functional and pathological alterations in CKD by applying IVIM-DWI. Prospective study. In all, 72 CKD patients who required renal biopsy and 20 healthy volunteers. 1.5T. All subjects underwent IVIM-DWI of the kidneys, and image analysis was performed by two radiologists. The mean values of true diffusion coefficient (D), pseudo diffusion coefficient (D*), and perfusion fraction (f) were acquired from renal parenchyma. Correlation between IVIM-DWI parameters and estimated glomerular filtration rate (eGFR), as well as pathological damage, were assessed. One-way analysis of variance (ANOVA), paired sample t-test and Spearman correlation analysis. The paired sample t-test revealed that IVIM-DWI parameters were significantly lower in medulla than cortex for both patients and controls (P < 0.01). Regardless of whether eGFR was reduced, ANOVA revealed that f values of renal parenchyma were significantly lower in patients than controls (P < 0.05). Spearman correlation analysis revealed that there were positive correlations between eGFR and D (cortex, r = 0.466, P < 0.001; medulla, r = 0.491, P < 0.001), and between eGFR and f (cortex, r = 0.713, P < 0.001; medulla, r = 0.512, P < 0.001). Negative correlations were found between f and glomerular injury (cortex, r = -0.773, P < 0.001; medulla, r = -0.629, P < 0.001), and between f and tubulointerstitial lesion (cortex, r = -0.728, P < 0.001; medulla, r = -0.547, P < 0.001). IVIM-DWI might be feasible for noninvasive evaluation of renal function and pathology of CKD, especially in detection of renal insufficiency at an early stage. 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1251-1259. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells.

    PubMed

    Navarro-Moreno, L G; Quintanar-Escorza, M A; González, S; Mondragón, R; Cerbón-Solorzáno, J; Valdés, J; Calderón-Salinas, J V

    2009-10-01

    Lead intoxication is a worldwide health problem which frequently affects the kidney. In this work, we studied the effects of chronic lead intoxication (500 ppm of Pb in drinking water during seven months) on the structure, function and biochemical properties of rat proximal tubule cells. Lead-exposed animals showed increased lead concentration in kidney, reduction of calcium and amino acids uptake, oxidative damage and glucosuria, proteinuria, hematuria and reduced urinary pH. These biochemical and physiological alterations were related to striking morphological modifications in the structure of tubule epithelial cells and in the morphology of their mitochondria, nuclei, lysosomes, basal and apical membranes. Interestingly, in addition to the nuclei, inclusion bodies were found in the cytoplasm and in mitochondria. The epithelial cell structure modifications included an early loss of the apical microvillae, followed by a decrement of the luminal space and the respective apposition and proximity of apical membranes, resulting in the formation of atypical intercellular contacts and adhesion structures. Similar but less marked alterations were observed in subacute lead intoxication as well. Our work contributes in the understanding of the physiopathology of lead intoxication on the structure of renal tubular epithelial cell-cell contacts in vivo.

  20. An analysis of the differences between early and late preeclampsia with severe hypertension.

    PubMed

    Li, X L; Guo, P L; Xue, Y; Gou, W L; Tong, M; Chen, Q

    2016-01-01

    Preeclampsia is clinically divided into early onset and late onset preeclampsia based on the gestational age at delivery. Although the diagnostic criteria are the same in each subgroup of preeclampsia, it has been suggested that the maternal and perinatal mortalities of early onset and late onset preeclampsia are different. However, studies that compare clinical parameters or laboratory biomarkers between early onset and late onset preeclampsia are limited. Data on 177 women with early or late preeclampsia with severe hypertension were collected from a University Teaching Hospital from January 2010 to January 2011 and analysed. Data included all the clinical parameters and laboratory biomarkers of liver and renal function. 63 women and 114 women were diagnosed with early and late preeclampsia with severe hypertension, respectively. There was no difference in the maternal age and the incidence of clinical symptoms including edema, vision disturbance, severe headache and stillbirth between two groups. There was a decrease in alkaline phosphatase levels in early preeclampsia with severe hypertension but other markers of liver function were not altered. However, renal function including blood urea nitrogen, creatinine and uric acid were significantly higher in early preeclampsia with severe hypertension. Umbilical artery systolic velocity/diastolic velocity ratio was significantly higher in early preeclampsia with severe hypertension. Our data demonstrates that the laboratory biomarkers of renal function differ between early and late preeclampsia with severe hypertension. The severity of renal dysfunction correlated with the time of delivery in preeclampsia with severe hypertension. Copyright © 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  1. Hepatic and renal effects of low concentrations of methoxyflurane in exposed delivery ward personnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlgren, B.E.

    1980-12-01

    During five alternating three-week periods either methoxyflurane-nitrous oxide or nitrous oxide alone was used for obstetrical analgesia. Delivery ward personnel were followed by venous blood samples once a week. Analyses of blood urea nitrogen, serum uric acid, SGOT and SGPT showed significantly elevated levels three days after exposure to methoxyflurane. This study demonstrates the importance of the scavenging of anesthetic gases to reduce the exposure of personnel to inhalational agents used in delivery suites. Since definite alterations in the indices of both hepatic and renal functions were recognized in obstetrical personnel following exposure, a re-evaluation of the use of methoxyfluranemore » for obstetrical analgesia is suggested.« less

  2. Calpain-mediated proteolysis of polycystin-1 C-terminus induces JAK2 and ERK signal alterations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunho; Department of Medicine, University of Maryland, Baltimore, MD; Kang, Ah-Young

    2014-01-01

    Autosomal dominant polycystic kidney disease (ADPKD), a hereditary renal disease caused by mutations in PKD1 (85%) or PKD2 (15%), is characterized by the development of gradually enlarging multiple renal cysts and progressive renal failure. Polycystin-1 (PC1), PKD1 gene product, is an integral membrane glycoprotein which regulates a number of different biological processes including cell proliferation, apoptosis, cell polarity, and tubulogenesis. PC1 is a target of various proteolytic cleavages and proteosomal degradations, but its role in intracellular signaling pathways remains poorly understood. Herein, we demonstrated that PC1 is a novel substrate for μ- and m-calpains, which are calcium-dependent cysteine proteases. Overexpressionmore » of PC1 altered both Janus-activated kinase 2 (JAK2) and extracellular signal-regulated kinase (ERK) signals, which were independently regulated by calpain-mediated PC1 degradation. They suggest that the PC1 function on JAK2 and ERK signaling pathways might be regulated by calpains in response to the changes in intracellular calcium concentration. - Highlights: • Polycystin-1 is a target of ubiquitin-independent degradation by calpains. • The PEST domain is required for calpain-mediated degradation of polycystin-1. • Polycystin-1 may independently regulate JAK2 and ERK signaling pathways.« less

  3. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter.

    PubMed

    Prié, Dominique; Huart, Virginie; Bakouh, Naziha; Planelles, Gabrielle; Dellis, Olivier; Gérard, Bénédicte; Hulin, Philippe; Benqué-Blanchet, François; Silve, Caroline; Grandchamp, Bernard; Friedlander, Gérard

    2002-09-26

    Epidemiologic studies suggest that genetic factors confer a predisposition to the formation of renal calcium stones or bone demineralization. Low serum phosphate concentrations due to a decrease in renal phosphate reabsorption have been reported in some patients with these conditions, suggesting that genetic factors leading to a decrease in renal phosphate reabsorption may contribute to them. We hypothesized that mutations in the gene coding for the main renal sodium-phosphate cotransporter (NPT2a) may be present in patients with these disorders. We studied 20 patients with urolithiasis or bone demineralization and persistent idiopathic hypophosphatemia associated with a decrease in maximal renal phosphate reabsorption. The coding region of the gene for NPT2a was sequenced in all patients. The functional consequences of the mutations identified were analyzed by expressing the mutated RNA in Xenopus laevis oocytes. Two patients, one with recurrent urolithiasis and one with bone demineralization, were heterozygous for two distinct mutations. One mutation resulted in the substitution of phenylalanine for alanine at position 48, and the other in a substitution of methionine for valine at position 147. Phosphate-induced current and sodium-dependent phosphate uptake were impaired in oocytes expressing the mutant NPT2a. Coinjection of oocytes with wild-type and mutant RNA indicated that the mutant protein had altered function. Heterozygous mutations in the NPT2a gene may be responsible for hypophosphatemia and urinary phosphate loss in persons with urolithiasis or bone demineralization. Copyright 2002 Massachusetts Medical Society

  4. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    PubMed

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  5. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations

    PubMed Central

    Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K. H.; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A.; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L.; Sandholzer, Michael; Lisse, Thomas S.; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M.; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H.; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M.; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin

    2016-01-01

    The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. PMID:27815347

  6. Swimming exercise demonstrates advantages over running exercise in reducing proteinuria and glomerulosclerosis in spontaneously hypertensive rats.

    PubMed

    Totou, N L; Moura, S S; Coelho, D B; Oliveira, E C; Becker, L K; Lima, W G

    2018-03-01

    Experimental studies in animal models have described the benefits of physical exercise (PE) to kidney diseases associated with hypertension. Land- and water-based exercises induce different responses in renal function. Our aim was to evaluate the renal alterations induced by different environments of PE in spontaneously hypertensive rats (SHRs). The SHRs were divided into sedentary (S), swimming exercise (SE), and running exercise (RE) groups, and were trained for 8 weeks under similar intensities (60 min/day). Arterial pressure (AP) and heart rate (HR) were recorded. The renal function was evaluated through urinary volume at each week of training; sodium and potassium excretions, plasma and urinary osmolarities, glomerular filtration rate (GFR), levels of proteinuria, and renal damage were determined. SE and RE rats presented reduced mean AP, systolic blood pressure, and HR in comparison with S group. SE and RE rats showed higher urine osmolarity compared with S. SE rats showed higher free water clearance (P < 0.01), lower urinary density (P < 0.0001), and increased weekly urine volume (P < 0.05) in comparison with RE and S groups. GFR was increased in both SE and RE rats. The proteinuria of SE (7.0 ± 0.8 mg/24 h) rats was decreased at the 8th week of the PE in comparison with RE (9.6 ± 0.8 mg/24 h) and S (9.8 ± 0.5 mg/24 h) groups. The glomerulosclerosis was reduced in SE rats (P < 0.02). SE produced different response in renal function in comparison with RE, in which only swimming-trained rats had better profile for proteinuria and glomerulosclerosis.

  7. Emodin via colonic irrigation modulates gut microbiota and reduces uremic toxins in rats with chronic kidney disease

    PubMed Central

    Lu, Fuhua; Lu, Zhaoyu; Liu, Xusheng; Chen, Cha; Qu, Pinghua; Li, Dingcheng; Hua, Zhengshuang; Qu, Yanni; Zou, Chuan

    2016-01-01

    Gut microbiota plays a dual role in chronic kidney disease (CKD) and is closely linked to production of uremic toxins. Strategies of reducing uremic toxins by targeting gut microbiota are emerging. It is known that Chinese medicine rhubarb enema can reduce uremic toxins and improve renal function. However, it remains unknown which ingredient or mechanism mediates its effect. Here we utilized a rat CKD model of 5/6 nephrectomy to evaluate the effect of emodin, a main ingredient of rhubarb, on gut microbiota and uremic toxins in CKD. Emodin was administered via colonic irrigation at 5ml (1mg/day) for four weeks. We found that emodin via colonic irrigation (ECI) altered levels of two important uremic toxins, urea and indoxyl sulfate (IS), and changed gut microbiota in rats with CKD. ECI remarkably reduced urea and IS and improved renal function. Pyrosequencing and Real-Time qPCR analyses revealed that ECI resumed the microbial balance from an abnormal status in CKD. We also demonstrated that ten genera were positively correlated with Urea while four genera exhibited the negative correlation. Moreover, three genera were positively correlated with IS. Therefore, emodin altered the gut microbiota structure. It reduced the number of harmful bacteria, such as Clostridium spp. that is positively correlated with both urea and IS, but augmented the number of beneficial bacteria, including Lactobacillus spp. that is negatively correlated with urea. Thus, changes in gut microbiota induced by emodin via colonic irrigation are closely associated with reduction in uremic toxins and mitigation of renal injury. PMID:27003359

  8. Emodin via colonic irrigation modulates gut microbiota and reduces uremic toxins in rats with chronic kidney disease.

    PubMed

    Zeng, Yu-Qun; Dai, Zhenhua; Lu, Fuhua; Lu, Zhaoyu; Liu, Xusheng; Chen, Cha; Qu, Pinghua; Li, Dingcheng; Hua, Zhengshuang; Qu, Yanni; Zou, Chuan

    2016-04-05

    Gut microbiota plays a dual role in chronic kidney disease (CKD) and is closely linked to production of uremic toxins. Strategies of reducing uremic toxins by targeting gut microbiota are emerging. It is known that Chinese medicine rhubarb enema can reduce uremic toxins and improve renal function. However, it remains unknown which ingredient or mechanism mediates its effect. Here we utilized a rat CKD model of 5/6 nephrectomy to evaluate the effect of emodin, a main ingredient of rhubarb, on gut microbiota and uremic toxins in CKD. Emodin was administered via colonic irrigation at 5ml (1mg/day) for four weeks. We found that emodin via colonic irrigation (ECI) altered levels of two important uremic toxins, urea and indoxyl sulfate (IS), and changed gut microbiota in rats with CKD. ECI remarkably reduced urea and IS and improved renal function. Pyrosequencing and Real-Time qPCR analyses revealed that ECI resumed the microbial balance from an abnormal status in CKD. We also demonstrated that ten genera were positively correlated with Urea while four genera exhibited the negative correlation. Moreover, three genera were positively correlated with IS. Therefore, emodin altered the gut microbiota structure. It reduced the number of harmful bacteria, such as Clostridium spp. that is positively correlated with both urea and IS, but augmented the number of beneficial bacteria, including Lactobacillus spp. that is negatively correlated with urea. Thus, changes in gut microbiota induced by emodin via colonic irrigation are closely associated with reduction in uremic toxins and mitigation of renal injury.

  9. Metabolomic Profiling in Individuals with a Failing Kidney Allograft

    PubMed Central

    Biancone, Luigi; Bussolino, Stefania; Merugumala, Sai; Tezza, Sara; D’Addio, Francesca; Ben Nasr, Moufida; Valderrama-Vasquez, Alessandro; Usuelli, Vera; De Zan, Valentina; El Essawy, Basset; Venturini, Massimo; Secchi, Antonio; De Cobelli, Francesco; Lin, Alexander; Chandraker, Anil; Fiorina, Paolo

    2017-01-01

    Background Alteration of certain metabolites may play a role in the pathophysiology of renal allograft disease. Methods To explore metabolomic abnormalities in individuals with a failing kidney allograft, we analyzed by liquid chromatography-mass spectrometry (LC-MS/MS; for ex vivo profiling of serum and urine) and two dimensional correlated spectroscopy (2D COSY; for in vivo study of the kidney graft) 40 subjects with varying degrees of chronic allograft dysfunction stratified by tertiles of glomerular filtration rate (GFR; T1, T2, T3). Ten healthy non-allograft individuals were chosen as controls. Results LC-MS/MS analysis revealed a dose-response association between GFR and serum concentration of tryptophan, glutamine, dimethylarginine isomers (asymmetric [A]DMA and symmetric [S]DMA) and short-chain acylcarnitines (C4 and C12), (test for trend: T1-T3 = p<0.05; p = 0.01; p<0.001; p = 0.01; p = 0.01; p<0.05, respectively). The same association was found between GFR and urinary levels of histidine, DOPA, dopamine, carnosine, SDMA and ADMA (test for trend: T1-T3 = p<0.05; p<0.01; p = 0.001; p<0.05; p = 0.001; p<0.001; p<0.01, respectively). In vivo 2D COSY of the kidney allograft revealed significant reduction in the parenchymal content of choline, creatine, taurine and threonine (all: p<0.05) in individuals with lower GFR levels. Conclusions We report an association between renal function and altered metabolomic profile in renal transplant individuals with different degrees of kidney graft function. PMID:28052095

  10. Unmasking Glucose Metabolism Alterations in Stable Renal Transplant Recipients: A Multicenter Study

    PubMed Central

    Delgado, Patricia; Diaz, Juan Manuel; Silva, Irene; Osorio, José M.; Osuna, Antonio; Bayés, Beatriz; Lauzurica, Ricardo; Arellano, Edgar; Campistol, Jose Maria; Dominguez, Rosa; Gómez-Alamillo, Carlos; Ibernon, Meritxell; Moreso, Francisco; Benitez, Rocio; Lampreave, Ildefonso; Porrini, Esteban; Torres, Armando

    2008-01-01

    Background and objectives: Emerging information indicates that glucose metabolism alterations are common after renal transplantation and are associated with carotid atheromatosis. The aims of this study were to investigate the prevalence of different glucose metabolism alterations in stable recipients as well as the factors related to the condition. Design, setting, participants, & measurements: A multicenter, cross-sectional study was conducted of 374 renal transplant recipients without pre- or posttransplantation diabetes. A standard 75-g oral glucose tolerance test was performed. Results: Glucose metabolism alterations were present in 119 (31.8%) recipients: 92 (24.6%) with an abnormal oral glucose tolerance test and 27 (7.2%) with isolated impaired fasting glucose. The most common disorder was impaired glucose tolerance (17.9%), and an abnormal oral glucose tolerance test was observed for 21.5% of recipients with a normal fasting glucose. By multivariate analysis, age, prednisone dosage, triglyceride/high-density lipoprotein cholesterol ratio, and β blocker use were shown to be factors related to glucose metabolism alterations. Remarkably, triglyceride levels, triglyceride/high-density lipoprotein cholesterol ratio, and the proportion of recipients with impaired fasting glucose were already higher throughout the first posttransplantation year in recipients with a current glucose metabolism alteration as compared with those without the condition. Conclusions: Glucose metabolism alterations are common in stable renal transplant recipients, and an oral glucose tolerance test is required for its detection. They are associated with a worse metabolic profile, which is already present during the first posttransplantation year. These findings may help planning strategies for early detection and intervention. PMID:18322043

  11. Droxidopa, an oral norepinephrine precursor, improves hemodynamic and renal alterations of portal hypertensive rats.

    PubMed

    Coll, Mar; Rodriguez, Sarai; Raurell, Imma; Ezkurdia, Nahia; Brull, Astrid; Augustin, Salvador; Guardia, Jaime; Esteban, Rafael; Martell, María; Genescà, Joan

    2012-11-01

    We aimed to evaluate the effects of droxidopa (an oral synthetic precursor of norepinephrine) on the hemodynamic and renal alterations of portal hypertensive rats. Sham, portal vein-ligated (PVL), and 4-week biliary duct-ligated (BDL) rats received a single oral dose of droxidopa (25-50 mg/kg) or vehicle and hemodynamic parameters were monitored for 2 hours. Two groups of BDL and cirrhotic rats induced by carbon tetrachloride (CCl(4) ) were treated for 5 days with droxidopa (15 mg/kg, twice daily, orally); hemodynamic parameters and blood and urinary parameters were assessed. The droxidopa effect on the Rho kinase (RhoK) / protein kinase B (AKT) / endothelial nitric oxide synthase (eNOS) pathways was analyzed by western blot in superior mesenteric artery (SMA). The acute administration of droxidopa in PVL and BDL rats caused a significant and maintained increase in arterial pressure and mesenteric arterial resistance, with a significant decrease of mesenteric arterial and portal blood flow, without changing portal pressure and renal blood flow. Two-hour diuresis greatly increased. Carbidopa (DOPA decarboxylase inhibitor) blunted all effects of droxidopa. Chronic droxidopa therapy in BDL rats produced the same beneficial hemodynamic effects observed in the acute study, did not alter liver function parameters, and caused a 50% increase in 24-hour diuresis volume (7.4 ± 0.9 mL/100g in BDL vehicle versus 11.8 ± 2.5 mL/100g in BDL droxidopa; P = 0.01). Droxidopa-treated rats also showed a decreased ratio of p-eNOS/eNOS and p-AKT/AKT and increased activity of RhoK in SMA. The same chronic treatment in CCl(4) rats caused similar hemodynamic effects and produced significant increases in diuresis volume and 24-hour natriuresis (0.08 ± 0.02 mmol/100g in CCl(4) vehicle versus 0.23 ± 0.03 mmol/100g in CCl(4) droxidopa; P = 0.014). Droxidopa might be an effective therapeutic agent for hemodynamic and renal alterations of liver cirrhosis and should be tested in cirrhosis patients. Copyright © 2012 American Association for the Study of Liver Diseases.

  12. Evaluation of renal function in patients with a main renal stone larger than 1 cm and perioperative renal functional change in minimally invasive renal stone surgery: a prospective, observational study.

    PubMed

    Piao, Songzhe; Park, Juhyun; Son, Hwancheol; Jeong, Hyeon; Cho, Sung Yong

    2016-05-01

    To compare the perioperative relative renal function and determine predictors of deterioration and recovery of separate renal function in patients with renal stones >10 mm and who underwent mini-percutaneous nephrolithotomy or retrograde intra-renal surgery. A main stone >10 mm or stones growing, high-risk stone formers and extracorporeal shock-wave lithotripsy-resistant stones were prospectively included in 148 patients. Patients with bilateral renal stones and anatomical deformities were excluded. Renal function was evaluated by estimated glomerular filtration rate, 99m-technetium dimercaptosuccinic acid and 99m-technetium diethylenetriamine pentaacetate prior to intervention and at postoperative 3 months. Logistic regression analyses were performed to find predictors of functional deterioration and recovery. The overall stone-free rate was 85.1 %. A third of patients (53/148, 35.8 %) with renal stones >10 mm showed deterioration of separate renal function. Mean renal function of operative sites showed 58.2 % (36.8 %/63.2 %) of that of contralateral sites in these patients. Abnormal separate renal function showed postoperative recovery in 31 patients (58.5 %). Three cases (5.7 %) showed deterioration of separate renal function despite no presence of remnant stones. Improvement rates of the abnormal separate renal function did not differ according to the type of surgery. The presence of hydronephrosis and three or more stones were significant predictors for renal function deterioration. Female gender and three or more stones were significantly correlated with postoperative recovery. Mini-percutaneous nephrolithotomy or retrograde intra-renal surgery was effective and safe for renal function preservation. Patients with multiple large stones should be considered for candidates of active surgical removal.

  13. Congenital ureteropelvic junction obstruction: human disease and animal models

    PubMed Central

    Klein, Julie; Gonzalez, Julien; Miravete, Mathieu; Caubet, Cécile; Chaaya, Rana; Decramer, Stéphane; Bandin, Flavio; Bascands, Jean-Loup; Buffin-Meyer, Bénédicte; Schanstra, Joost P

    2011-01-01

    Ureteropelvic junction (UPJ) obstruction is the most frequently observed cause of obstructive nephropathy in children. Neonatal and foetal animal models have been developed that mimic closely what is observed in human disease. The purpose of this review is to discuss how obstructive nephropathy alters kidney histology and function and describe the molecular mechanisms involved in the progression of the lesions, including inflammation, proliferation/apoptosis, renin–angiotensin system activation and fibrosis, based on both human and animal data. Also we propose that during obstructive nephropathy, hydrodynamic modifications are early inducers of the tubular lesions, which are potentially at the origin of the pathology. Finally, an important observation in animal models is that relief of obstruction during kidney development has important effects on renal function later in adult life. A major short-coming is the absence of data on the impact of UPJ obstruction on long-term adult renal function to elucidate whether these animal data are also valid in humans. PMID:20681980

  14. Computer simulation analysis of the behavior of renal-regulating hormones during hypogravic stress

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1982-01-01

    A computer simulation of a mathematical circulation model is used to study the alterations of body fluids and their electrolyte composition that occur in weightlessness. The behavior of the renal-regulating hormones which control these alterations is compared in simulations of several one-g analogs of weightlessness and space flight. It is shown that the renal-regulating hormones represent a tightly coupled system that responds acutely to volume disturbances and chronically to electrolyte disturbances. During hypogravic conditions these responses lead to an initial suppression of hormone levels and a long-term effect which varies depending on metabolic factors that can alter the plasma electrolytes. In addition, it is found that if pressure effects normalize rapidly, a transition phase may exist which leads to a dynamic multiphasic endocrine response.

  15. De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure.

    PubMed

    Jenkins, Dagan; Bitner-Glindzicz, Maria; Malcolm, Sue; Hu, Chih-Chi A; Allison, Jennifer; Winyard, Paul J D; Gullett, Ambrose M; Thomas, David F M; Belk, Rachel A; Feather, Sally A; Sun, Tung-Tien; Woolf, Adrian S

    2005-07-01

    Human renal adysplasia usually occurs sporadically, and bilateral disease is the most common cause of childhood end-stage renal failure, a condition that is lethal without intervention using dialysis or transplantation. De novo heterozygous mutations in Uroplakin IIIa (UPIIIa) are reported in four of 17 children with kidney failure caused by renal adysplasia in the absence of an overt urinary tract obstruction. One girl and one boy in unrelated kindreds had a missense mutation at a CpG dinucleotide in the cytoplasmic domain of UPIIIa (Pro273Leu), both of whom had severe vesicoureteric reflux, and the girl had persistent cloaca; two other patients had de novo mutations in the 3' UTR (963 T-->G; 1003 T-->C), and they had renal adysplasia in the absence of any other anomaly. The mutations were absent in all sets of parents and in siblings, none of whom had radiologic evidence of renal adysplasia, and mutations were absent in two panels of 192 ethnically matched control chromosomes. UPIIIa was expressed in nascent urothelia in ureter and renal pelvis of human embryos, and it is suggested that perturbed urothelial differentiation may generate human kidney malformations, perhaps by altering differentiation of adjacent smooth muscle cells such that the metanephros is exposed to a functional obstruction of urine flow. With advances in renal replacement therapy, children with renal failure, who would otherwise have died, are surviving to adulthood. Therefore, although the mechanisms of action of the UPIIIa mutations have yet to be determined, these findings have important implications regarding genetic counseling of affected individuals who reach reproductive age.

  16. Acute kidney injury after contrast-enhanced examination among elderly1

    PubMed Central

    Aoki, Beatriz Bonadio; Fram, Dayana; Taminato, Mônica; Batista, Ruth Ester Sayad; Belasco, Angélica; Barbosa, Dulce Aparecida

    2014-01-01

    OBJECTIVES: to assess renal function in elderly patients undergoing contrast-enhanced computed tomography and identify the preventive measures of acute kidney injury in the period before and after the examination. METHOD: longitudinal cohort study conducted at the Federal University of São Paulo Hospital, from March 2011 to March 2013. All hospitalized elderly, of both sexes, aged 60 years and above, who performed the examination, were included (n=93). We collected sociodemographic data, data related to the examination and to the care provided, and creatinine values prior and post exam. RESULTS: an alteration in renal function was observed in 51 patients (54%) with a statistically significant increase of creatinine values (p<0.04), and two patients (4.0%) required hemodialysis. CONCLUSION: There is an urgent need for protocols prior to and post contrast-enhanced examination in the elderly, and other studies to verify the prognosis of this population. PMID:25296148

  17. Diabetes induced renal urea transport alterations assessed with 3D hyperpolarized 13 C,15 N-Urea.

    PubMed

    Bertelsen, Lotte B; Nielsen, Per M; Qi, Haiyun; Nørlinger, Thomas S; Zhang, Xiaolu; Stødkilde-Jørgensen, Hans; Laustsen, Christoffer

    2017-04-01

    In the current study, we investigated hyperpolarized urea as a possible imaging biomarker of the renal function by means of the intrarenal osmolality gradient. Hyperpolarized three-dimensional balanced steady state 13 C MRI experiments alongside kidney function parameters and quantitative polymerase chain reaction measurements was performed on two groups of rats, a streptozotocin type 1 diabetic group and a healthy control group. A significant decline in intrarenal steepness of the urea gradient was found after 4 weeks of untreated insulinopenic diabetes in agreement with an increased urea transport transcription. MRI and hyperpolarized [ 13 C, 15 N]urea can monitor the changes in the corticomedullary urea concentration gradients in diabetic and healthy control rats. Magn Reson Med 77:1650-1655, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Influence of CT-based depth correction of renal scintigraphy in evaluation of living kidney donors on side selection and postoperative renal function: is it necessary to know the relative renal function?

    PubMed

    Weinberger, Sarah; Klarholz-Pevere, Carola; Liefeldt, Lutz; Baeder, Michael; Steckhan, Nico; Friedersdorff, Frank

    2018-03-22

    To analyse the influence of CT-based depth correction in the assessment of split renal function in potential living kidney donors. In 116 consecutive living kidney donors preoperative split renal function was assessed using the CT-based depth correction. Influence on donor side selection and postoperative renal function of the living kidney donors were analyzed. Linear regression analysis was performed to identify predictors of postoperative renal function. A left versus right kidney depth variation of more than 1 cm was found in 40/114 donors (35%). 11 patients (10%) had a difference of more than 5% in relative renal function after depth correction. Kidney depth variation and changes in relative renal function after depth correction would have had influence on side selection in 30 of 114 living kidney donors. CT depth correction did not improve the predictability of postoperative renal function of the living kidney donor. In general, it was not possible to predict the postoperative renal function from preoperative total and relative renal function. In multivariate linear regression analysis, age and BMI were identified as most important predictors for postoperative renal function of the living kidney donors. Our results clearly indicate that concerning the postoperative renal function of living kidney donors, the relative renal function of the donated kidney seems to be less important than other factors. A multimodal assessment with consideration of all available results including kidney size, location of the kidney and split renal function remains necessary.

  19. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes and moderate or severe renal impairment: observations from the SAVOR-TIMI 53 Trial.

    PubMed

    Udell, Jacob A; Bhatt, Deepak L; Braunwald, Eugene; Cavender, Matthew A; Mosenzon, Ofri; Steg, Ph Gabriel; Davidson, Jaime A; Nicolau, Jose C; Corbalan, Ramon; Hirshberg, Boaz; Frederich, Robert; Im, KyungAh; Umez-Eronini, Amarachi A; He, Ping; McGuire, Darren K; Leiter, Lawrence A; Raz, Itamar; Scirica, Benjamin M

    2015-04-01

    The glycemic management of patients with type 2 diabetes mellitus (T2DM) and renal impairment is challenging, with few treatment options. We investigated the effect of saxagliptin in the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus (SAVOR)-Thrombolysis in Myocardial Infarction (TIMI) 53 trial according to baseline renal function. Patients with T2DM at risk for cardiovascular events were stratified as having normal or mildly impaired renal function (estimated glomerular filtration rate [eGFR] >50 mL/min/1.73 m(2); n = 13,916), moderate renal impairment (eGFR 30-50 mL/min/1.73 m(2); n = 2,240), or severe renal impairment (eGFR <30 mL/min/1.73 m(2); n = 336) and randomized to receive saxagliptin or placebo. The primary end point was cardiovascular death, myocardial infarction, or ischemic stroke. After a median duration of 2 years, saxagliptin neither increased nor decreased the risk of the primary and secondary composite end points compared with placebo, irrespective of renal function (all P for interactions ≥ 0.19). Overall, the risk of hospitalization for heart failure among the three eGFR groups of patients was 2.2% (referent), 7.4% (adjusted hazard ratio [HR] 2.38 [95% CI 1.95-2.91], P < 0.001), and 13.0% (adjusted HR 4.59 [95% CI 3.28-6.28], P < 0.001), respectively. The relative risk of hospitalization for heart failure with saxagliptin was similar (P for interaction = 0.43) in patients with eGFR >50 mL/min/1.73 m(2) (HR 1.23 [95% CI 0.99-1.55]), eGFR 30-50 mL/min/1.73 m(2) (HR 1.46 [95% CI 1.07-2.00]), and in patients with eGFR <30 (HR 0.94 [95% CI 0.52-1.71]). Patients with renal impairment achieved reductions in microalbuminuria with saxagliptin (P = 0.041) that were similar to those of the overall trial population. Saxagliptin did not affect the risk of ischemic cardiovascular events, increased the risk of heart failure hospitalization, and reduced progressive albuminuria, irrespective of baseline renal function. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Urine peptidome analysis predicts risk of end-stage renal disease and reveals proteolytic pathways involved in autosomal dominant polycystic kidney disease progression.

    PubMed

    Pejchinovski, Martin; Siwy, Justyna; Metzger, Jochen; Dakna, Mohammed; Mischak, Harald; Klein, Julie; Jankowski, Vera; Bae, Kyongtae T; Chapman, Arlene B; Kistler, Andreas D

    2017-03-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by slowly progressive bilateral renal cyst growth ultimately resulting in loss of kidney function and end-stage renal disease (ESRD). Disease progression rate and age at ESRD are highly variable. Therapeutic interventions therefore require early risk stratification of patients and monitoring of disease progression in response to treatment. We used a urine peptidomic approach based on capillary electrophoresis-mass-spectrometry (CE-MS) to identify potential biomarkers reflecting the risk for early progression to ESRD in the Consortium of Radiologic Imaging in Polycystic Kidney Disease (CRISP) cohort. A biomarker-based classifier consisting of 20 urinary peptides allowed the prediction of ESRD within 10-13 years of follow-up in patients 24-46 years of age at baseline. The performance of the biomarker score approached that of height-adjusted total kidney volume (htTKV) and the combination of the biomarker panel with htTKV improved prediction over either one alone. In young patients (<24 years at baseline), the same biomarker model predicted a 30 mL/min/1.73 m 2 glomerular filtration rate decline over 8 years. Sequence analysis of the altered urinary peptides and the prediction of the involved proteases by in silico analysis revealed alterations in distinct proteolytic pathways, in particular matrix metalloproteinases and cathepsins. We developed a urinary test that accurately predicts relevant clinical outcomes in ADPKD patients and suggests altered proteolytic pathways involved in disease progression. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  1. [Effects of the of renal warm ischemia time on the recovery of filtration function in the experiment].

    PubMed

    Guseinov, R G; Popov, S V; Gorshkov, A N; Sivak, K V; Martov, A G

    2017-12-01

    To investigate experimentally ultrastructural and biochemical signs of acute injury to the renal parenchyma after warm renal ischemia of various duration and subsequent reperfusion. The experiments were performed on 44 healthy conventional female rabbits of the "Chinchilla" breed weighted 2.6-2.7 kg, which were divided into four groups. In the first, control, group included pseudo-operated animals. In the remaining three groups, an experimental model of warm ischemia of renal tissue was created, followed by a 60-minute reperfusion. The renal warm ischemia time was 30, 60 and 90 minutes in the 2nd, 3rd and 4th groups, respectively. Electron microscopy was used to study ultrastructural disturbances of the renal parenchyma. Biochemical signs of acute kidney damage were detected by measuring the following blood serum and/or urine analytes: NGAL, cystatin C, KIM-1, L-FABP, interleukin-18. The glomerular filtration was evaluated by creatinine clearance, which was determined on days 1, 5, 7, 14, 21 and 35 of follow-up. A 30-minute renal warm ischemia followed by a 60-minute reperfusion induced swelling and edema of the brush membrane, vacuolation of the cytoplasm of the endothelial cells of the proximal tubules, and microvilli restructuring. The observed disorders were reversible, and the epithelial cells retained their viability. After 60 minutes of ischemia and 60 minutes of reperfusion, the observed changes in the ultrastructure of the epithelial cells were much more pronounced, some of the epithelial cells were in a state of apoptosis. 90 min of ischemia and 60 min of reperfusion resulted in electron-microscopic signs of the mass cellular death of the tubular epithelium. Concentration in serum and/or biochemical urine markers of acute renal damage increased sharply after ischemic-reperfusion injury. Restoration of indicators was observed only in cases when the renal warm ischemia time did not exceed 60 minutes. The decrease in creatinine clearance occurred in the first 24 hours after the intervention, lasting not less than two weeks after a 30-minute warm ischemia, at least 3 weeks after a 60-minute warm ischemia and continued more than a month after a 90-minute renal artery occlusion. Intraoperative warm ischemia and subsequent reperfusion are the actual reasons for the alteration of the ultrastructure of the renal tissue and the impairment of the filtration function. The severity of the disorders depends on the duration of the damaging factors. After a 30-60-minute ischemia, the structural and functional changes in the renal tissue are reversible. The mass death of nephrocytes-effectors is possible only after warm renal ischemia longer than 60 min.

  2. The role of metabolic enzymes in mesenchymal tumors and tumor syndromes: genetics, pathology, and molecular mechanisms.

    PubMed

    Schaefer, Inga-Marie; Hornick, Jason L; Bovée, Judith V M G

    2018-04-01

    The discovery of mutations in genes encoding the metabolic enzymes isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), and fumarate hydratase (FH) has expanded our understanding not only of altered metabolic pathways but also epigenetic dysregulation in cancer. IDH1/2 mutations occur in enchondromas and chondrosarcomas in patients with the non-hereditary enchondromatosis syndromes Ollier disease and Maffucci syndrome and in sporadic tumors. IDH1/2 mutations result in excess production of the oncometabolite (D)-2-hydroxyglutarate. In contrast, SDH and FH act as tumor suppressors and genomic inactivation results in succinate and fumarate accumulation, respectively. SDH deficiency may result from germline SDHA, SDHB, SDHC, or SDHD mutations and is found in autosomal-dominant familial paraganglioma/pheochromocytoma and Carney-Stratakis syndrome, describing the combination of paraganglioma and gastrointestinal stromal tumor (GIST). In contrast, patients with the non-hereditary Carney triad, including paraganglioma, GIST, and pulmonary chondroma, usually lack germline SDH mutations and instead show epigenetic SDH complex inactivation through SDHC promoter methylation. Inactivating FH germline mutations are found in patients with hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome comprising benign cutaneous/uterine leiomyomas and renal cell carcinoma. Mutant IDH, SDH, and FH share common inhibition of α-ketoglutarate-dependent oxygenases such as the TET family of 5-methylcytosine hydroxylases preventing DNA demethylation, and Jumonji domain histone demethylases increasing histone methylation, which together inhibit cell differentiation. Ongoing studies aim to better characterize these complex alterations in cancer, the different clinical phenotypes, and variable penetrance of inherited and sporadic cancer predisposition syndromes. A better understanding of the roles of metabolic enzymes in cancer may foster the development of therapies that specifically target functional alterations in tumor cells in the future. Here, the physiologic functions of these metabolic enzymes, the mutational spectrum, and associated functional alterations will be discussed, with a focus on mesenchymal tumor predisposition syndromes.

  3. The pharmacokinetics and extracorporeal removal of N-acetylcysteine during renal replacement therapies.

    PubMed

    Hernandez, Stephanie H; Howland, Maryann; Schiano, Thomas D; Hoffman, Robert S

    2015-01-01

    Acetaminophen-induced fulminant hepatic failure is associated with acute kidney injury, metabolic acidosis, and fluid and electrolyte imbalances, requiring treatment with renal replacement therapies. Although antidote, acetylcysteine, is potentially extracted by renal replacement therapies, pharmacokinetic data are lacking to guide potential dosing alterations. We aimed to determine the extracorporeal removal of acetylcysteine by various renal replacement therapies. Simultaneous urine, plasma and effluent specimens were serially collected to measure acetylcysteine concentrations in up to three stages: before, during and upon termination of renal replacement therapy. Alterations in pharmacokinetics were determined by applying standard pharmacokinetic equations. Over 2 years, 10 critically ill patients in fulminant hepatic failure requiring renal replacement therapy coincident with acetylcysteine were consecutively enrolled. All 10 patients required continuous venovenous hemofiltration (n = 10) and 2 of the 10 also required hemodialysis (n = 2). There was a significant alteration in the pharmacokinetics of acetylcysteine during hemodialysis; the area under the curve (AUC) decreased 41%, the mean extraction ratio was 51%, the mean hemodialytic clearance was 114.01 ml/kg/h, and a mean 166.75 mg/h was recovered in the effluent or 41% of the hourly dose. Alteration in the pharmacokinetics of acetylcysteine during continuous venovenous hemofiltration did not appear to be significant: the AUC decreased 13%, the mean clearance was 31.77 ml/kg/h and a mean 62.12 mg/h was recovered in the effluent or 14% of the hourly dose. There was no significant extraction of acetylcysteine from continuous venovenous hemofiltration. In contrast, there was significant extracorporeal removal of acetylcysteine during hemodialysis. A reasonable dose adjustment may be to double the IV infusion rate or possibly supplement with oral acetylcysteine during hemodialysis.

  4. Effects of water immersion on renal hemodynamics in normal man

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Levinson, R.; Loutzenhiser, R.

    1976-01-01

    The present study was undertaken to delineate the effects of water immersion to the neck (NI) on renal plasma flow and glomerular filtration rate as assessed by the clearance of p-aminohippuric acid (PAH) and inulin, respectively. Nine normal male subjects were studied on two occasions, control and NI. The conditions of seated posture and time of day were identical. Immersion did not alter either clearance at a time when sodium excretion was increasing markedly. The constancy of PAH clearance during NI suggests that renal blood flow is unaltered and that the natriuresis of NI is mediated independently of alterations in overall renal perfusion. The sluggish decline of a natriuresis during recovery is consistent with the presence of a humoral factor contributing to the encountered natriuresis.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sfakianakis, G.; Kyriakides, G.; Jaffe, D.

    Renal scintigraphy has a sensitivity of 85% and it is not entirely specific for RVH. Angiotensino converting enzyme inhibitors (captopril or enalapril) increase the sensitivity and specificity of differential renal vein renin determinations for diagnosing potentially curable RVH, but this is an invasive test. Captopril decreases renal function in RVH through alterations in renal hemodynamics of the affected kidney. The authors studied the yield of one visit captopril renography for the diagnosis of potentially curable renovascular hypertension. Twelve studies in patients with clinical RVH were performed without technical problems as following: After hydration (10ml/kg) the patient was injected iv withmore » 300 ..mu..Ci of I-131-Hippuran and routine imaging in 2 min intervals with computer assisted generation of renograms in 30 sec intervals was performed for at least twenty min. Three hours later the patient received an oral dose of 50mg (weight adjusted for children) of captopril and one hour later the above test was repeated. Four patients showed normal baseline scintigraphy but unilateral decrease in split function and increase in Hippuran transit time (cortical retention at 20 min); two of them, who had angiography and transluminal angioplasty, were cured and repeat studies showed no effect of captopril. Six patients had normal studies (without response to captopril) two with proven lack of RVH (one angiography and one transient post transplantation hypertension); the remaining are followed clinically. The noninvasive approach appears promising for the diagnosis of potentially curable RVH.« less

  6. The Remedial Efficacy of Spirulina platensis versus Chromium-Induced Nephrotoxicity in Male Sprague-Dawley Rats

    PubMed Central

    Elshazly, M. O.; Abd El-Rahman, Sahar S.; Morgan, Ashraf M.; Ali, Merhan E.

    2015-01-01

    This study was conducted to investigate the possible protective effect of Spirulina platensis against chromium-induced nephrotoxicity. A total of 36 adult male Sprague-Dawley rats were divided into 4 equal groups (Gps). Gp1 served as control, rats of Gps 2, 3, and 4 were exposed to Spirulina platensis (300 mg/kg b.wt per os) and sodium dichromate dihydrate (SDD) via drinking water at concentration of 520 mg /l respectively. Chromium administration caused alterations in the renal function markers as evidenced by significant increase of blood urea and creatinine levels accompanied with significant increase in kidney’s chromium residues and MDA level as well as decreased catalase activity and glutathion content in kidney tissue. Histologically, Cr provoked deleterious changes including: vascular congestion, wide spread tubular epithelium necrobiotic changes, atrophy of glomerular tuft and proliferative hyperplasia. The latter was accompanied with positive PCNA expression in kidney tissues as well as DNA ploidy interpretation of major cellular population of degenerated cells, appearance of tetraploid cells, high proliferation index and high DNA index. Morphometrical measurements revealed marked glomerular and tubular lumen alterations. On contrary, spirulina co-treatment with Cr significantly restored the histopathological changes, antioxidants and renal function markers and all the previously mentioned changes as well. PMID:26029926

  7. The Remedial Efficacy of Spirulina platensis versus Chromium-Induced Nephrotoxicity in Male Sprague-Dawley Rats.

    PubMed

    Elshazly, M O; Abd El-Rahman, Sahar S; Morgan, Ashraf M; Ali, Merhan E

    2015-01-01

    This study was conducted to investigate the possible protective effect of Spirulina platensis against chromium-induced nephrotoxicity. A total of 36 adult male Sprague-Dawley rats were divided into 4 equal groups (Gps). Gp1 served as control, rats of Gps 2, 3, and 4 were exposed to Spirulina platensis (300 mg/kg b.wt per os) and sodium dichromate dihydrate (SDD) via drinking water at concentration of 520 mg /l respectively. Chromium administration caused alterations in the renal function markers as evidenced by significant increase of blood urea and creatinine levels accompanied with significant increase in kidney's chromium residues and MDA level as well as decreased catalase activity and glutathion content in kidney tissue. Histologically, Cr provoked deleterious changes including: vascular congestion, wide spread tubular epithelium necrobiotic changes, atrophy of glomerular tuft and proliferative hyperplasia. The latter was accompanied with positive PCNA expression in kidney tissues as well as DNA ploidy interpretation of major cellular population of degenerated cells, appearance of tetraploid cells, high proliferation index and high DNA index. Morphometrical measurements revealed marked glomerular and tubular lumen alterations. On contrary, spirulina co-treatment with Cr significantly restored the histopathological changes, antioxidants and renal function markers and all the previously mentioned changes as well.

  8. Role of vaptans in the management of hydroelectrolytic imbalance in liver cirrhosis.

    PubMed

    Facciorusso, Antonio; Amoruso, Annabianca; Neve, Viviana; Antonino, Matteo; Prete, Valentina Del; Barone, Michele

    2014-11-27

    Ascites and hyponatremia are the most common complications in patients with liver cirrhosis and develop as a consequence of a severe impairment of liver function and portal hypertension. Increasing evidences support the central role of renal function alterations in the pathogenesis of hydroelectrolytic imbalances in cirrhotic patients, thus implying a dense cross-talk between liver and kidney in the systemic and splanchnic vascular homeostasis in such subjects. Since Arginin Vasopressin (AVP) hyperincretion occurs at late stage of cirrhosis and plays an important role in the development of refractory ascites, dilutional hyponatremia and finally hepato-renal syndrome, selective antagonists of AVP receptors V2 (vaptans) have been recently introduced in the therapeutic algorithm of advanced cirrhotic patients. Despite the promising results of earlier phase-two studies, randomized controlled trials failed to find significant results in terms of efficacy of such drugs both in refractory ascites and hyponatremia. Moreover, concerns on their safety profile arise, due to the number of potentially severe side effects of vaptans in the clinical setting, such as hypernatremia, dehydration, renal impairment, and osmotic demyelination syndrome. More robust data from randomized controlled trials are needed in order to confirm the potential role of vaptans in the management of advanced cirrhotic patients.

  9. Renal and Hepatic Functions after A Week of Controlled Ovarian Hyperstimulation during In Vitro Fertilization Cycles.

    PubMed

    Romito, Ilaria; Gulino, Ferdinando Antonio; Laganà, Antonio Simone; Vitale, Salvatore Giovanni; Tuscano, Attilio; Leanza, Gianluca; Musmeci, Giulia; Leanza, Vito; Rapisarda, Agnese Maria Chiara; Palumbo, Marco Antonio

    2017-01-01

    One the main aspects of in vitro fertilization (IVF) cycle is to avoid any possible systemic damage on women undergoing a controlled ovarian hyperstimulation (COH). The aim of this work is to evaluate renal and hepatic function blood tests in patients undergoing controlled ovarian hyperstimulation during IVF cycles. We performed a prospective cohort analysis. All patients re- ceived a long stimulation protocol with gonadotropin-releasing hormone (GnRH) analogues by daily administration, since the twenty-first day of the previous ovarian cycle followed by COH with recombinant follicle-stimulating hormone (FSH). The daily dose of exogenous gonadotropins for every single patient was modified according to her follicular growth. The oocytes were retrieved during the oocyte pick up and fertilized by standard procedures of intracytoplasmic sperm injection (ICSI). The blood samples to evaluate renal and hepatic functions were taken at the 7 th day of ovarian stimulation. We enrolled 426 women aged between 19 and 44 years, with a mean body mass index (BMI) of 24.68 Kg/m 2 . The mean value of blood urea nitrogen was 14 ± 3.16 mg/ dl, creatinine: 1 ± 0.45 mg/dl, uric acid: 4 ± 1.95 mg/dl, total proteins: 7 ± 3.93 mg/dl, aspartate aminotransferase: 18 ± 6.29 mU/ml, alanine aminotransferase: 19 ± 10.41 mU/ ml, alkaline phosphatase: 81 ± 45.25 mU/ml, total bilirubin 1 ± 0.35 mg/dL. All of the results were considered as a normal range following the Medical Council of Canada. Our data suggest that, unlike ovarian hyperstimulation syndrome (OHSS), COH patients did not show any alteration to renal and hepatic functions.

  10. Chronic Inhibition of Renal Outer Medullary Potassium Channel Not Only Prevented but Also Reversed Development of Hypertension and End-Organ Damage in Dahl Salt-Sensitive Rats.

    PubMed

    Zhou, Xiaoyan; Forrest, Michael J; Sharif-Rodriguez, Wanda; Forrest, Gail; Szeto, Daphne; Urosevic-Price, Olga; Zhu, Yonghua; Stevenson, Andra S; Zhou, Yuchen; Stribling, Sloan; Dajee, Maya; Walsh, Shawn P; Pasternak, Alexander; Sullivan, Kathleen A

    2017-02-01

    The renal outer medullary potassium (ROMK) channel mediates potassium recycling and facilitates sodium reabsorption through the Na + /K + /2Cl - cotransporter in the loop of Henle and potassium secretion at the cortical collecting duct. Evidence from the phenotype of humans and rodents with functional ROMK deficiency supports the contention that selective ROMK inhibitors (ROMKi) will represent a novel diuretic with potential of therapeutic benefit for hypertension. ROMKi have recently been synthesized by Merck & Co, Inc. The present studies were designed to examine the effects of ROMKi B on systemic hemodynamics, renal function and structure, and vascular function in Dahl salt-sensitive rats. Four experimental groups-control, high-salt diet alone; ROMKi B 3 mg·kg - 1 ·d - 1 ; ROMKi B 10 mg·kg - 1 ·d - 1 ; and hydrochlorothiazide 25 mg·kg - 1 ·d - 1 -were included in prophylactic (from week 1 to week 9 on high-salt diet) and therapeutic studies (from week 5 to week 9 on high-salt diet), respectively. ROMKi B produced sustained blood pressure reduction and improved renal and vascular function and histological alterations induced by a high-salt diet. ROMKi B was superior to hydrochlorothiazide at reducing blood pressure. Furthermore, ROMKi B provided beneficial effects on both the plasma lipid profile and bone mineral density. Chronic ROMK inhibition not only prevented but also reversed the development of hypertension and end-organ damage in Dahl salt-sensitive rats. Our findings suggest a potential utility of ROMKi B as a novel antihypertensive agent, particularly for the treatment of the salt-sensitive hypertension patient population. © 2016 American Heart Association, Inc.

  11. Superoxide overproduction and kidney fibrosis: a new animal model

    PubMed Central

    Guimarães-Souza, Nadia Karina; Yamaleyeva, Liliya Marsovna; Lu, Baisong; Ramos, Ana Claudia Mallet de Souza; Bishop, Colin Edward; Andersson, Karl Erik

    2015-01-01

    Objective To establish whether the mutation in the Immp2L gene induces renal fibrosis and whether aging exacerbates renal morphology in mice. Methods Female mutant mice with mutation in the inner mitochondrial membrane peptidase 2-like protein at 3 and 18 months of age were used. Renal fibrosis was analyzed using classic fibrosis score, Masson’s trichrome staining, and analysis of profibrotic markers using real time polymerase chain reaction (superoxide dismutase 1, metalloproteinase-9, erythropoietin, transforming growth factor beta), and immunostaining (fibroblasts and Type IV collagen). Oxidative stress markers were determined by immunohistochemistry. The number of renal apoptotic cells was determined. Renal function was estimated by serum creatinine. Results Young mutant mice had significantly more glomerulosclerosis than age-matched mice (p=0.034). Mutant mice had more tubular casts (p=0.025), collagen deposition (p=0.019), and collagen type IV expression (p<0.001). Superoxide dismutase 1 expression was significantly higher in young mutants (p=0.038). Old mutants exhibited significantly higher expression of the fibroblast marker and macrophage marker (p=0.007 and p=0.012, respectively). The real time polymerase chain reaction of metalloproteinase-9 and erythropoietin were enhanced 2.5- and 6-fold, respectively, in old mutants. Serum creatinine was significantly higher in old mutants (p<0.001). Conclusion This mutation altered renal architecture by increasing the deposition of extracellular matrix, oxidative stress, and inflammation, suggesting a protective role of Immp2L against renal fibrosis. PMID:25993073

  12. Renal development: a complex process dependent on inductive interaction.

    PubMed

    Upadhyay, Kiran K; Silverstein, Douglas M

    2014-01-01

    Renal development begins in-utero and continues throughout childhood. Almost one-third of all developmental anomalies include structural or functional abnormalities of the urinary tract. There are three main phases of in-utero renal development: Pronephros, Mesonephros and Metanephros. Within three weeks of gestation, paired pronephri appear. A series of tubules called nephrotomes fuse with the pronephric duct. The pronephros elongates and induces the nearby mesoderm, forming the mesonephric (Woffian) duct. The metanephros is the precursor of the mature kidney that originates from the ureteric bud and the metanephric mesoderm (blastema) by 5 weeks of gestation. The interaction between these two components is a reciprocal process, resulting in the formation of a mature kidney. The ureteric bud forms the major and minor calyces, and the collecting tubules while the metanephrogenic blastema develops into the renal tubules and glomeruli. In humans, all of the nephrons are formed by 32 to 36 weeks of gestation. Simultaneously, the lower urinary tract develops from the vesico urethral canal, ureteric bud and mesonephric duct. In utero, ureters deliver urine from the kidney to the bladder, thereby creating amniotic fluid. Transcription factors, extracellular matrix glycoproteins, signaling molecules and receptors are the key players in normal renal development. Many medications (e.g., aminoglycosides, cyclooxygenase inhibitors, substances that affect the renin-angiotensin aldosterone system) also impact renal development by altering the expression of growth factors, matrix regulators or receptors. Thus, tight regulation and coordinated processes are crucial for normal renal development.

  13. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis

    PubMed Central

    van der Heijden, Roel A.; Bijzet, Johan; Meijers, Wouter C.; Yakala, Gopala K.; Kleemann, Robert; Nguyen, Tri Q.; de Boer, Rudolf A.; Schalkwijk, Casper G.; Hazenberg, Bouke P. C.; Tietge, Uwe J. F.; Heeringa, Peter

    2015-01-01

    Obesity-induced inflammation presumably accelerates the development of chronic kidney diseases. However, little is known about the sequence of these inflammatory events and their contribution to renal pathology. We investigated the effects of obesity on the evolution of age-dependent renal complications in mice in conjunction with the development of renal and systemic low-grade inflammation (LGI). C57BL/6J mice susceptible to develop age-dependent sclerotic pathologies with amyloid features in the kidney, were fed low (10% lard) or high-fat diets (45% lard) for 24, 40 and 52 weeks. HFD-feeding induced overt adiposity, altered lipid and insulin homeostasis, increased systemic LGI and adipokine release. HFD-feeding also caused renal upregulation of pro-inflammatory genes, infiltrating macrophages, collagen I protein, increased urinary albumin and NGAL levels. HFD-feeding severely aggravated age-dependent structural changes in the kidney. Remarkably, enhanced amyloid deposition rather than sclerosis was observed. The degree of amyloidosis correlated significantly with body weight. Amyloid deposits stained positive for serum amyloid A (SAA) whose plasma levels were chronically elevated in HFD mice. Our data indicate obesity-induced chronic inflammation as a risk factor for the acceleration of age-dependent renal amyloidosis and functional impairment in mice, and suggest that obesity-enhanced chronic secretion of SAA may be the driving factor behind this process. PMID:26563579

  14. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis.

    PubMed

    van der Heijden, Roel A; Bijzet, Johan; Meijers, Wouter C; Yakala, Gopala K; Kleemann, Robert; Nguyen, Tri Q; de Boer, Rudolf A; Schalkwijk, Casper G; Hazenberg, Bouke P C; Tietge, Uwe J F; Heeringa, Peter

    2015-11-13

    Obesity-induced inflammation presumably accelerates the development of chronic kidney diseases. However, little is known about the sequence of these inflammatory events and their contribution to renal pathology. We investigated the effects of obesity on the evolution of age-dependent renal complications in mice in conjunction with the development of renal and systemic low-grade inflammation (LGI). C57BL/6J mice susceptible to develop age-dependent sclerotic pathologies with amyloid features in the kidney, were fed low (10% lard) or high-fat diets (45% lard) for 24, 40 and 52 weeks. HFD-feeding induced overt adiposity, altered lipid and insulin homeostasis, increased systemic LGI and adipokine release. HFD-feeding also caused renal upregulation of pro-inflammatory genes, infiltrating macrophages, collagen I protein, increased urinary albumin and NGAL levels. HFD-feeding severely aggravated age-dependent structural changes in the kidney. Remarkably, enhanced amyloid deposition rather than sclerosis was observed. The degree of amyloidosis correlated significantly with body weight. Amyloid deposits stained positive for serum amyloid A (SAA) whose plasma levels were chronically elevated in HFD mice. Our data indicate obesity-induced chronic inflammation as a risk factor for the acceleration of age-dependent renal amyloidosis and functional impairment in mice, and suggest that obesity-enhanced chronic secretion of SAA may be the driving factor behind this process.

  15. Effects of acetylcysteine and probucol on contrast medium-induced depression of intrinsic renal glutathione peroxidase activity in diabetic rats.

    PubMed

    Yen, Hsueh-Wei; Lee, Hsiang-Chun; Lai, Wen-Te; Sheu, Sheng-Hsiung

    2007-04-01

    Antioxidants such as N-acetylcysteine and probucol have been used to protect patients from contrast media-induced nephrotoxicity. The mechanisms underlying these protective effects are not well understood. We hypothesized that acetylcysteine and probucol alter the activity of endogenous antioxidant enzyme activity. Four weeks after induction of diabetes with streptozotocin, diabetic and nondiabetic rats were divided into three groups. Group 1 rats did not receive any antioxidant agents. Group 2 rats were treated with acetylcysteine and group 3 rats with probucol for 1 week before injection of the contrast medium diatrizoate (DTZ). We found that diabetic rats had higher renal glutathione peroxidase (GPx) activity than normal rats. DTZ suppressed renal GPx activity significantly in both group 1 diabetic and normal rats. Interestingly, renal GPx activity in both diabetic and normal rats pretreated with acetylcysteine or probucol was not inhibited by DTZ. Renal superoxide dismutase (SOD) increased significantly in normal rats after DTZ injection, but not in diabetic rats. Finally, acetylcysteine or probucol did not significantly influence renal SOD. These findings suggest that the renal protective effects of acetylcysteine and probucol against contrast-induced oxidative stress and nephrotoxicity may be mediated by altering endogenous GPx activity.

  16. Age-related pathophysiological changes in rats with unilateral renal agenesis.

    PubMed

    Amakasu, Kohei; Suzuki, Katsushi; Katayama, Kentaro; Suzuki, Hiroetsu

    2011-06-01

    Affected rats of the unilateral urogenital anomalies (UUA) strain show renal agenesis restricted to the left side. To determine whether unilateral renal agenesis is a risk factor for the progression of renal insufficiency, we studied age-related pathophysiological alterations in affected rats. Although body growth and food intake were normal, polydipsia and polyuria with low specific gravity were present at 10 weeks and deteriorated further with age. Blood hemoglobin concentrations were normal, though there was slight erythropenia with increased MCV and MCH. Although hypoalbuminemia, hypercholesterolemia, azotemia, and hypermagnesemia were manifested after age 20 weeks, neither hyperphosphatemia nor hypocalcemia was observed. Plasma Cre and UN concentrations gradually increased with age. Cre clearance was almost normal, whereas fractional UN excretion was consistently lower than normal. Proteinuria increased with age, and albumin was the major leakage protein. In addition to cortical lesions, dilated tubules, cast formation, and interstitial fibrosis were observed in the renal medulla of 50 week-old affected rats. Renal weight was increased 1.7-fold and glomerular number 1.2-fold compared with normal rats. These findings show that the remaining kidney in UUA rats is involved not only in compensatory reactions but experiences pathophysiological alterations associated with progressive renal insufficiency.

  17. Kidney and Phosphate Metabolism

    PubMed Central

    2008-01-01

    The serum phosphorus level is maintained through a complex interplay between intestinal absorption, exchange intracellular and bone storage pools, and renal tubular reabsorption. The kidney plays a major role in regulation of phosphorus homeostasis by renal tubular reabsorption. Type IIa and type IIc Na+/Pi transporters are important renal Na+-dependent inorganic phosphate (Pi) transporters, which are expressed in the brush border membrane of proximal tubular cells. Both are regulated by dietary Pi intake, vitamin D, fibroblast growth factor 23 (FGF23) and parathyroid hormone. The expression of type IIa Na+/Pi transporter result from hypophosphatemia quickly. However, type IIc appears to act more slowly. Physiological and pathophysiological alteration in renal Pi reabsorption are related to altered brush border membrane expression/content of the type II Na+/Pi cotransporter. Many studies of genetic and acquired renal phosphate wasting disorders have led to the identification of novel genes. Two novel Pi regulating genes, PHEX and FGF23, play a role in the pathophysiology of genetic and acquired renal phosphate wasting disorders and studies are underway to define their mechanism on renal Pi regulation. In recent studies, sodium-hydrogen exchanger regulatory factor 1 (NHERF1) is reported as another new regulator for Pi reabsorption mechanism. PMID:24459526

  18. Effect of endogenous angiotensin II on renal nerve activity and its cardiac baroreflex regulation.

    PubMed

    Dibona, G F; Jones, S Y; Sawin, L L

    1998-11-01

    The effects of physiologic alterations in endogenous angiotensin II activity on basal renal sympathetic nerve activity and its cardiac baroreflex regulation were studied. The effect of angiotensin II type 1 receptor blockade with intracerebroventricular losartan was examined in conscious rats consuming a low, normal, or high sodium diet that were instrumented for the simultaneous measurement of right atrial pressure and renal sympathetic nerve activity. The gain of cardiac baroreflex regulation of renal sympathetic nerve activity (% delta renal sympathetic nerve activity/mmHg mean right atrial pressure) was measured during isotonic saline volume loading. Intracerebroventricular losartan did not decrease arterial pressure but significantly decreased renal sympathetic nerve activity in low (-36+/-6%) and normal (-24+/-5%), but not in high (-2+/-3%) sodium diet rats. Compared with vehicle treatment, losartan treatment significantly increased cardiac baroreflex gain in low (-3.45+/-0.20 versus -2.89+/-0.17) and normal (-2.89+/-0.18 versus -2.54+/-0.14), but not in high (-2.27+/-0.15 versus -2.22+/-0.14) sodium diet rats. These results indicate that physiologic alterations in endogenous angiotensin II activity tonically influence basal levels of renal sympathetic nerve activity and its cardiac baroreflex regulation.

  19. Inappropriate Prescription and Renal Function Among Older Patients with Cognitive Impairment.

    PubMed

    Sönnerstam, Eva; Sjölander, Maria; Gustafsson, Maria

    2016-12-01

    Older people are more sensitive to drugs and adverse drug reactions than younger people because of age-related physiological changes such as impaired renal function. As people with dementia are particularly vulnerable to the effects of drugs, it is especially important to evaluate the dosages of renally cleared medications in this group. The aim of this study was to estimate the prevalence of impaired renal function and inappropriate prescriptions on the basis of renal function among older patients with dementia or cognitive impairment. The medical records of 428 patients aged ≥65 years who were admitted to two hospitals in northern Sweden were reviewed and renally cleared medications were identified. The Cockcroft-Gault equation was used to evaluate renal function. Doses were evaluated according to the Geriatric Dosage Handbook. Renal function was impaired (estimated glomerular filtration rate <60 ml/min) in 65.4 % of the study population. Impaired renal function was associated with increasing age. Among 547 prescriptions identified as renally cleared medications, 9.1 % were inappropriate based on the patient's renal function; 13.5 % of the 326 patients prescribed renally cleared medications had inappropriate prescriptions. Inappropriate prescriptions were more common among patients living in nursing homes. Impaired renal function is common and inappropriate prescription is prevalent among old people with cognitive impairment in northern Sweden. Continuous consideration of renal function is important when prescribing medications to this group.

  20. Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection

    NASA Astrophysics Data System (ADS)

    Sinha, Rileen; Winer, Andrew G.; Chevinsky, Michael; Jakubowski, Christopher; Chen, Ying-Bei; Dong, Yiyu; Tickoo, Satish K.; Reuter, Victor E.; Russo, Paul; Coleman, Jonathan A.; Sander, Chris; Hsieh, James J.; Hakimi, A. Ari

    2017-05-01

    The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours clustering with cell lines display clinical and genomic features of more aggressive disease, suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy number alterations for important kidney cancer genes by the consistency between databases, and classify cell lines into established gene expression-based indolent and aggressive subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines.

  1. Clinical application of calculated split renal volume using computed tomography-based renal volumetry after partial nephrectomy: Correlation with technetium-99m dimercaptosuccinic acid renal scan data.

    PubMed

    Lee, Chan Ho; Park, Young Joo; Ku, Ja Yoon; Ha, Hong Koo

    2017-06-01

    To evaluate the clinical application of computed tomography-based measurement of renal cortical volume and split renal volume as a single tool to assess the anatomy and renal function in patients with renal tumors before and after partial nephrectomy, and to compare the findings with technetium-99m dimercaptosuccinic acid renal scan. The data of 51 patients with a unilateral renal tumor managed by partial nephrectomy were retrospectively analyzed. The renal cortical volume of tumor-bearing and contralateral kidneys was measured using ImageJ software. Split estimated glomerular filtration rate and split renal volume calculated using this renal cortical volume were compared with the split renal function measured with technetium-99m dimercaptosuccinic acid renal scan. A strong correlation between split renal function and split renal volume of the tumor-bearing kidney was observed before and after surgery (r = 0.89, P < 0.001 and r = 0.94, P < 0.001). The preoperative and postoperative split estimated glomerular filtration rate of the operated kidney showed a moderate correlation with split renal function (r = 0.39, P = 0.004 and r = 0.49, P < 0.001). The correlation between reductions in split renal function and split renal volume of the operated kidney (r = 0.87, P < 0.001) was stronger than that between split renal function and percent reduction in split estimated glomerular filtration rate (r = 0.64, P < 0.001). The split renal volume calculated using computed tomography-based renal volumetry had a strong correlation with the split renal function measured using technetium-99m dimercaptosuccinic acid renal scan. Computed tomography-based split renal volume measurement before and after partial nephrectomy can be used as a single modality for anatomical and functional assessment of the tumor-bearing kidney. © 2017 The Japanese Urological Association.

  2. Dynamic analysis of patterns of renal sympathetic nerve activity: implications for renal function.

    PubMed

    DiBona, Gerald F

    2005-03-01

    Methods of dynamic analysis are used to provide additional understanding of the renal sympathetic neural control of renal function. The concept of functionally specific subgroups of renal sympathetic nerve fibres conveying information encoded in the frequency domain is presented. Analog pulse modulation and pseudorandom binary sequence stimulation patterns are used for the determination of renal vascular frequency response. Transfer function analysis is used to determine the effects of non-renal vasoconstrictor and vasoconstrictor intensities of renal sympathetic nerve activity on dynamic autoregulation of renal blood flow.

  3. SGLT2 Inhibitors and the Diabetic Kidney.

    PubMed

    Fioretto, Paola; Zambon, Alberto; Rossato, Marco; Busetto, Luca; Vettor, Roberto

    2016-08-01

    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. Blood glucose and blood pressure control reduce the risk of developing this complication; however, once DN is established, it is only possible to slow progression. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, the most recent glucose-lowering oral agents, may have the potential to exert nephroprotection not only through improving glycemic control but also through glucose-independent effects, such as blood pressure-lowering and direct renal effects. It is important to consider, however, that in patients with impaired renal function, given their mode of action, SGLT2 inhibitors are less effective in lowering blood glucose. In patients with high cardiovascular risk, the SGLT2 inhibitor empagliflozin lowered the rate of cardiovascular events, especially cardiovascular death, and substantially reduced important renal outcomes. Such benefits on DN could derive from effects beyond glycemia. Glomerular hyperfiltration is a potential risk factor for DN. In addition to the activation of the renin-angiotensin-aldosterone system, renal tubular factors, including SGLT2, contribute to glomerular hyperfiltration in diabetes. SGLT2 inhibitors reduce sodium reabsorption in the proximal tubule, causing, through tubuloglomerular feedback, afferent arteriole vasoconstriction and reduction in hyperfiltration. Experimental studies showed that SGLT2 inhibitors reduced hyperfiltration and decreased inflammatory and fibrotic responses of proximal tubular cells. SGLT2 inhibitors reduced glomerular hyperfiltration in patients with type 1 diabetes, and in patients with type 2 diabetes, they caused transient acute reductions in glomerular filtration rate, followed by a progressive recovery and stabilization of renal function. Interestingly, recent studies consistently demonstrated a reduction in albuminuria. Although these data are promising, only dedicated renal outcome trials will clarify whether SGLT2 inhibitors, in addition to their glycemic and blood pressure benefits, may provide nephroprotective effects. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  4. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma.

    PubMed

    Miao, Diana; Margolis, Claire A; Gao, Wenhua; Voss, Martin H; Li, Wei; Martini, Dylan J; Norton, Craig; Bossé, Dominick; Wankowicz, Stephanie M; Cullen, Dana; Horak, Christine; Wind-Rotolo, Megan; Tracy, Adam; Giannakis, Marios; Hodi, Frank Stephen; Drake, Charles G; Ball, Mark W; Allaf, Mohamad E; Snyder, Alexandra; Hellmann, Matthew D; Ho, Thai; Motzer, Robert J; Signoretti, Sabina; Kaelin, William G; Choueiri, Toni K; Van Allen, Eliezer M

    2018-02-16

    Immune checkpoint inhibitors targeting the programmed cell death 1 receptor (PD-1) improve survival in a subset of patients with clear cell renal cell carcinoma (ccRCC). To identify genomic alterations in ccRCC that correlate with response to anti-PD-1 monotherapy, we performed whole-exome sequencing of metastatic ccRCC from 35 patients. We found that clinical benefit was associated with loss-of-function mutations in the PBRM1 gene ( P = 0.012), which encodes a subunit of the PBAF switch-sucrose nonfermentable (SWI/SNF) chromatin remodeling complex. We confirmed this finding in an independent validation cohort of 63 ccRCC patients treated with PD-1 or PD-L1 (PD-1 ligand) blockade therapy alone or in combination with anti-CTLA-4 (cytotoxic T lymphocyte-associated protein 4) therapies ( P = 0.0071). Gene-expression analysis of PBAF-deficient ccRCC cell lines and PBRM1 -deficient tumors revealed altered transcriptional output in JAK-STAT (Janus kinase-signal transducers and activators of transcription), hypoxia, and immune signaling pathways. PBRM1 loss in ccRCC may alter global tumor-cell expression profiles to influence responsiveness to immune checkpoint therapy. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Predictors of Recoverability of Renal Function after Pyeloplasty in Adults with Ureteropelvic Junction Obstruction.

    PubMed

    Li, Xiao-Dong; Wu, Yu-Peng; Wei, Yong; Chen, Shao-Hao; Zheng, Qing-Shui; Cai, Hai; Xue, Xue-Yi; Xu, Ning

    2018-01-01

    This study aimed to identify factors predicting the recoverability of renal function after pyeloplasty in adult patients with ureteropelvic junction obstruction. We retrospectively reviewed 138 adults with unilateral renal obstruction-induced hydronephrosis and who underwent Anderson-Hynes dismembered pyeloplasty from January 2013 to January 2016. Hydronephrosis was classified preoperatively according to the Society for Fetal Urology (SFU) grading system. All patients underwent Doppler ultrasonography, excretory urography, computed tomography, and technetium-99m-diethylenetriamine pentaacetic acid radioisotope (99mTc DTPA) renography before and after surgery. Renal resistive index (RRI) and 99mTc DTPA renography were repeated at 1, 3, 6, and 12 months. Multivariate analysis identified age, renal pelvic type, SFU grade, preoperative RRI, decline of RRI, and renal parenchyma to hydronephrosis area ratio (PHAR) as independent predictors of renal function recoverability after pyeloplasty. However, preoperative RRI and RRI decline were not significantly associated with recoverability of renal function in patients aged >35 years. Lower preoperative RRI, greater decline in RRI, higher PHAR, lower SFU grade, and extrarenal pelvis were associated with greater improvements in postoperative renal function. Preoperative differential renal function cannot independently predict the recoverability of postoperative renal function in adult patients with unilateral renal obstruction-induced hydronephrosis. SFU grade, renal pelvic type, PHAR, preoperative RRI, and decline in RRI were significantly associated with the recoverability of renal function in adult patients aged <35 years, while only SFU grade, renal pelvic type, and PHAR were significantly associated with renal function recoverability in patients aged ≥35 years. Renal function recovery was better in patients younger than 35 years when compared with older patients. © 2018 S. Karger AG, Basel.

  6. Accurate assessment of long-term nephrotoxicity after peptide receptor radionuclide therapy with (177)Lu-octreotate.

    PubMed

    Sabet, Amir; Ezziddin, Khaled; Pape, Ulrich-Frank; Reichman, Karl; Haslerud, Torjan; Ahmadzadehfar, Hojjat; Biersack, Hans-Jürgen; Nagarajah, James; Ezziddin, Samer

    2014-03-01

    Renal radiation during peptide receptor radionuclide therapy (PRRT) may result in glomerular damage, a potential reduction of glomerular filtration rate (GFR) and ultimately lead to renal failure. While reported PRRT nephrotoxicity is limited to data derived from serum creatinine-allowing only approximate estimates of GFR-the aim of this study is to accurately determine PRRT-induced long-term changes of renal function and associated risk factors according to state-of-the-art GFR measurement. Nephrotoxicity was analysed using (99m)Tc-diethylenetriaminepentaacetic acid (DTPA) clearance data of 74 consecutive patients with gastroenteropancreatic neuroendocrine tumours (GEP NET) undergoing PRRT with (177)Lu-octreotate. The mean follow-up period was 21 months (range 12-50) with a median of five GFR measurements per patient. The change of GFR was analysed by linear curve fit. Potential risk factors including diabetes mellitus, arterial hypertension, previous chemotherapy, renal impairment at baseline and cumulative administered activity were analysed regarding potential impact on renal function loss. In addition, Common Terminology Criteria for Adverse Events (CTCAE) v3.0 were used to compare nephrotoxicity determined by (99m)Tc-DTPA clearance versus serum creatinine. The alteration in GFR differed widely among the patients (mean -2.1 ± 13.1 ml/min/m(2) per year, relative yearly reduction -1.8 ± 18.9%). Fifteen patients (21%) experienced a mild (2-10 ml/min/m(2) per year) and 16 patients (22%) a significant (>10 ml/min/m(2) per year) decline of GFR following PRRT. However, 11 patients (15%) showed an increase of >10 ml/min/m(2) per year. Relevant nephrotoxicity according to CTCAE (grade ≥3) was observed in one patient (1.3%) with arterial hypertension and history of chemotherapy. Nephrotoxicity according to serum creatinine was discordant to that defined by GFR in 15% of the assessments and led to underestimation in 12% of patients. None of the investigated factors including cumulative administered activity contributed to the decline of renal function. Serious nephrotoxicity after PRRT with (177)Lu-octreotate is rare (1.3%). However, slight renal impairment (GFR loss >2 ml/min/m(2) per year) can frequently (43%) be detected by (99m)Tc-DTPA clearance assessments. Cumulative administered activity of (177)Lu-octreotate is not a major determinant of renal impairment in our study.

  7. Epigenetics of kidney disease.

    PubMed

    Wanner, Nicola; Bechtel-Walz, Wibke

    2017-07-01

    DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.

  8. The pathologic physiology of chronic Bright's disease. An exposition of the "intact nephron hypothesis".

    PubMed

    Bricker, N S; Morrin, P A; Kime, S W

    1997-09-01

    Clinical and experimental data relating to the functional capacity of the surviving nephrons of the chronically diseased kidney for the most part support the thesis that these nephrons retain their essential functional integrity regardless of the nature of the underlying form of chronic Bright's disease. There are instances in which specific alterations of function correlate with pathologic involvement of a particular site of the nephron but these appear to represent the exceptions, and in general the more advanced the disease becomes, the less evident are the differentiating features. Studies on dogs with unilateral renal disease indicate that the functional capacity of the nephrons of the diseased kidney parallels that of the nephrons of the contralateral normal kidney. These data tend to exclude widespread intrinsic damage to the functioning nephrons by the underlying pathologic processes. From these observations, as well as from certain supporting clinical and experimental observations, it is suggested that the majority of surviving nephrons in the patient with bilateral renal disease similarly are functionally intact. Concepts of the pathologic physiology of the kidney, based on the "intact nephron hypothesis", are presented. Within the framework of this hypothesis it is concluded that (1) the diseased kidney consists of a diminished number of nephrons, most of which retain essentially normal functional abilities; (2) certain of the apparent abnormalities in function in bilateral renal disease may relate to adaptive changes imposed by the decreased nephron population and the attendant derangements in body fluids rather than to structural distortion of nephrons; (3) the over-all flexibility of the diseased kidney decreases as the number of constituent nephrons decreases; but (4) there is an orderly and predictable pattern of excretion for all substances.

  9. Acute Total and Chronic Partial Sleep Deprivation: Effects on Neurobehavioral Functions, Waking EEG and Renin-Angiotensin System

    NASA Technical Reports Server (NTRS)

    Dijk, Derk-Jan

    1999-01-01

    Total sleep deprivation leads to decrements in neurobehavioral performance and changes in electroencephalographic (EEG) oscillations as well as the incidence of slow eye movements ad detected in the electro-oculogram (EOG) during wakefulness. Although total sleep deprivation is a powerful tool to investigate the association of EEG/EOG and neurobehavioral decrements, sleep loss during space flight is usual only partial. Furthermore exposure to the microgravity environment leads to changes in sodium and volume homeostasis and associated renal and cardio-endocrine responses. Some of these changes can be induced in head down tilt bedrest studies. We integrate research tools and research projects to enhance the fidelity of the simulated conditions of space flight which are characterized by complexity and mutual interactions. The effectiveness of countermeasures and physiologic mechanisms underlying neurobehavioral changes and renal-cardio endocrine changes are investigated in Project 3 of the Human Performance Team and Project 3 of the Cardiovascular Alterations Team respectively. Although the. specific aims of these two projects are very different, they employ very similar research protocols. Thus, both projects investigate the effects of posture/bedrest and sleep deprivation (total or partial) on outcome measures relevant to their specific aims. The main aim of this enhancement grant is to exploit the similarities in research protocols by including the assessment of outcome variables relevant to the Renal-Cardio project in the research protocol of Project 3 of the Human Performance Team and by including the assessment of outcome variables relevant to the Quantitative EEG and Sleep Deprivation Project in the research protocols of Project 3 of the Cardiovascular Alterations team. In particular we will assess Neurobehavioral Function and Waking EEG in the research protocols of the renal-cardio endocrine project and renin-angiotensin and cardiac function in the research protocol of the Quantitative EEG and Waking Neurobehavioral Function project. This will allow us to investigate two additional specific aims: 1) Test the hypothesis that chronic partial sleep deprivation during a 17 day bed rest experiment results in deterioration of neurobehavioral function during waking and increases in EEG power density in the theta frequencies, especially in frontal areas of the brain, as well as the nonREM- REM cycle dependent modulation of heart-rate variability. 2) Test the hypothesis that acute total sleep deprivation modifies the circadian rhythm of the renin-angiotensin system, changes the acute responsiveness of this system to posture beyond what a microgravity environment alone does and affects the nonREM-REM cycle dependent modulation of heart-rate variability.

  10. Association between pulmonary function and renal function: findings from China and Australia.

    PubMed

    Yu, Dahai; Chen, Tao; Cai, Yamei; Zhao, Zhanzheng; Simmons, David

    2017-05-01

    The relationship between obstructive lung function and impaired renal function is unclear. This study investigated the dose-response relationship between obstructive lung function and impaired renal function. Two independent cross-sectional studies with representative sampling were applied. 1454 adults from rural Victoria, Australia (1298 with normal renal function, 156 with impaired renal function) and 5824 adults from Nanjing, China (4313 with normal renal function, 1511 with impaired renal function). Pulmonary function measurements included forced expiratory volume in one second (FEV1) and forced vital capacity (FVC). Estimated glomerular filtration rate (eGFR), and impaired renal function marked by eGFR <60 mL/min/1.73m 2 were used as outcome. eGFR increased linearly with FEV1 in Chinese participants and with FVC in Australians. A non-linear relationship with peaked eGFR was found for FEV1 at 2.65 L among Australians and for FVC at 2.78 L among Chinese participants, respectively. A non-linear relationship with peaked eGFR was found for the predicted percentage value of forced expiratory volume in 1 s (PFEV1) at 81-82% and for the predicted percentage value of forced vital capacity (PFVC) at 83-84% among both Chinese and Australian participants, respectively. The non-linear dose-response relationships between lung capacity measurements (both for FEV1 and FVC) and risk of impaired renal function were consistently identified in both Chinese and Australian participants. An increased risk of impaired renal function was found below 3.05 L both for FEV1 and FVC, respectively. The non-linear relationship between PFEV and PVC and the risk of impaired renal function were consistently identified in both Chinese and Australian participants. An increased risk of impaired renal function was found below 76-77% for PFEV1 and 79-80% for PFVC, respectively. In both Australian and Chinese populations, the risk of impaired renal function increased both with FEV1 and FVC below 3.05 L, with PFEV1 below 76-77% or with PFVC below 79-80%, respectively. Obstructive lung function was associated with increased risk of reduced renal function. The screen for impaired renal function in patients with obstructive lung disease might be useful to ensure there was no impaired renal function before the commencement of potentially nephrotoxic medication where indicated (eg diuretics).

  11. Altered metabolic pathways in clear cell renal cell carcinoma: A meta-analysis and validation study focused on the deregulated genes and their associated networks

    PubMed Central

    Zaravinos, Apostolos; Pieri, Myrtani; Mourmouras, Nikos; Anastasiadou, Natassa; Zouvani, Ioanna; Delakas, Dimitris; Deltas, Constantinos

    2014-01-01

    Clear cell renal cell carcinoma (ccRCC) is the predominant subtype of renal cell carcinoma (RCC). It is one of the most therapy-resistant carcinomas, responding very poorly or not at all to radiotherapy, hormonal therapy and chemotherapy. A more comprehensive understanding of the deregulated pathways in ccRCC can lead to the development of new therapies and prognostic markers. We performed a meta- analysis of 5 publicly available gene expression datasets and identified a list of co- deregulated genes, for which we performed extensive bioinformatic analysis coupled with experimental validation on the mRNA level. Gene ontology enrichment showed that many proteins are involved in response to hypoxia/oxygen levels and positive regulation of the VEGFR signaling pathway. KEGG analysis revealed that metabolic pathways are mostly altered in ccRCC. Similarly, Ingenuity Pathway Analysis showed that the antigen presentation, inositol metabolism, pentose phosphate, glycolysis/gluconeogenesis and fructose/mannose metabolism pathways are altered in the disease. Cellular growth, proliferation and carbohydrate metabolism, were among the top molecular and cellular functions of the co-deregulated genes. qRT-PCR validated the deregulated expression of several genes in Caki-2 and ACHN cell lines and in a cohort of ccRCC tissues. NNMT and NR3C1 increased expression was evident in ccRCC biopsies from patients using immunohistochemistry. ROC curves evaluated the diagnostic performance of the top deregulated genes in each dataset. We show that metabolic pathways are mostly deregulated in ccRCC and we highlight those being most responsible in its formation. We suggest that these genes are candidate predictive markers of the disease. PMID:25594006

  12. The renal effects of droxidopa are maintained in propranolol treated cirrhotic rats.

    PubMed

    Rodríguez, Sarai; Raurell, Imma; Ezkurdia, Nahia; Augustin, Salvador; Esteban, Rafael; Genescà, Joan; Martell, María

    2015-02-01

    Droxidopa improves hemodynamic and renal alterations of cirrhotic rats without changing portal pressure. We aimed to evaluate the effects of a combined treatment with droxidopa and non-selective beta-blockers or statins in order to decrease portal pressure, while maintaining droxidopa beneficial effects. Acute studies combining droxidopa with carvedilol, propranolol or atorvastatin in four-week bile-duct ligated (BDL) rats and a chronic study combining propranolol and droxidopa for 5 days in CCl4 -cirrhotic rats were performed. Hemodynamic values were registered and biochemical parameters from blood and urine samples analyzed. Bile-duct ligated rats treated with carvedilol + droxidopa showed no changes in mean arterial pressure (MAP) and portal pressure (PP) compared to vehicles. Atorvastatin + droxidopa combination also failed to reduce PP, but maintained the beneficial increase in MAP and superior mesenteric artery resistance (SMAR) and decrease in blood flow (SMABF) caused by droxidopa. In contrast, the acute administration of propranolol + droxidopa significantly reduced PP maintaining a mild increase in MAP and improving, in an additive way, the decrease in SMABF and increase in SMAR caused by droxidopa. This combination also preserved droxidopa diuretic effect. When chronically administered to CCl4 -cirrhotic rats, propranolol + droxidopa caused a decrease in PP, a significant reduction in SMABF and an increase in SMAR. The combination did not alter liver function and droxidopa diuretic and natriuretic effect, and even improved free water clearance. Droxidopa could be effective for the renal alterations of cirrhotic patients on propranolol therapy and the combination of both drugs may balance the adverse effects of each treatment. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Effect of rMnSOD on Sodium Reabsorption in Renal Proximal Tubule in Ochratoxin A-Treated Rats.

    PubMed

    Damiano, Sara; Puzio, Maria V; Squillacioti, Caterina; Mirabella, Nicola; Zona, Enrica; Mancini, Aldo; Borrelli, Antonella; Astarita, Carlo; Boffo, Silvia; Giordano, Antonio; Avallone, Luigi; Florio, Salvatore; Ciarcia, Roberto

    2018-01-01

    Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium that represent toxic real threat for human beings and animal health. In this study we evaluated the effect of a new recombinant mitochondrial manganese containing superoxide dismutase (rMnSOD) on oxidative stress and on the alterations of fluid reabsorption in renal proximal tubule (PT) as possible causes of OTA nephrotoxicity. Finally, we have measured the concentration of O 2 - in the kidney through dihydroethidium assay (DHE) and nitric oxide (NO) concentration through nitrites and nitrates assay. Male Sprague Dawley rats weighing 120-150 g were treated for 14 days by gavage, as follows: Control group, 12 rats received a corresponding amount of saline solution (including 10% DMSO); rMnSOD group, 12 rats treated with rMnSOD (10 µg/kg bw); OTA group, 12 rats treated with OTA (0.5 mg/kg bw) dissolved in 10% DMSO and then scaled to required volume with corn oil; rMnSOD + OTA, 12 rats treated with rMnSOD (10 µg/kg bw) plus OTA (0.5 mg/kg bw). Our results have shown that rMnSOD restores the alteration of reabsorption in PT in rats treated with OTA plus rMnSOD, probably through the response to pressure natriuresis, where nitric oxide plays a key role. Moreover, rMnSOD prevents the nephrotoxicity induced by OTA probably restoring the balance between superoxide and NO that is most probably the cause of hypertension and renal functional alterations through the inhibition of NO synthase. In conclusion these data provide important information for understanding of mechanism of toxic action of OTA. J. Cell. Biochem. 119: 424-430, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Requirement for Class II Phosphoinositide 3-Kinase C2α in Maintenance of Glomerular Structure and Function▿

    PubMed Central

    Harris, David P.; Vogel, Peter; Wims, Marie; Moberg, Karen; Humphries, Juliane; Jhaver, Kanchan G.; DaCosta, Christopher M.; Shadoan, Melanie K.; Xu, Nianhua; Hansen, Gwenn M.; Balakrishnan, Sanjeevi; Domin, Jan; Powell, David R.; Oravecz, Tamas

    2011-01-01

    An early lesion in many kidney diseases is damage to podocytes, which are critical components of the glomerular filtration barrier. A number of proteins are essential for podocyte filtration function, but the signaling events contributing to development of nephrotic syndrome are not well defined. Here we show that class II phosphoinositide 3-kinase C2α (PI3KC2α) is expressed in podocytes and plays a critical role in maintaining normal renal homeostasis. PI3KC2α-deficient mice developed chronic renal failure and exhibited a range of kidney lesions, including glomerular crescent formation and renal tubule defects in early disease, which progressed to diffuse mesangial sclerosis, with reduced podocytes, widespread effacement of foot processes, and modest proteinuria. These findings were associated with altered expression of nephrin, synaptopodin, WT-1, and desmin, indicating that PI3KC2α deficiency specifically impacts podocyte morphology and function. Deposition of glomerular IgA was observed in knockout mice; importantly, however, the development of severe glomerulonephropathy preceded IgA production, indicating that nephropathy was not directly IgA mediated. PI3KC2α deficiency did not affect immune responses, and bone marrow transplantation studies also indicated that the glomerulonephropathy was not the direct consequence of an immune-mediated disease. Thus, PI3KC2α is critical for maintenance of normal glomerular structure and function by supporting normal podocyte function. PMID:20974805

  15. Persistent oxidative stress following renal ischemia-reperfusion injury increases ANG II hemodynamic and fibrotic activity

    PubMed Central

    Leonard, Ellen C.; Beal, Alisa G.; Schleuter, Devin; Friedrich, Jessica

    2012-01-01

    ANG II is a potent renal vasoconstrictor and profibrotic factor and its activity is enhanced by oxidative stress. We sought to determine whether renal oxidative stress was persistent following recovery from acute kidney injury (AKI) induced by ischemia-reperfusion (I/R) injury in rats and whether this resulted in increased ANG II sensitivity. Rats were allowed to recover from bilateral renal I/R injury for 5 wk and renal blood flow responses were measured. Post-AKI rats showed significantly enhanced renal vasoconstrictor responses to ANG II relative to sham-operated controls and treatment of AKI rats with apocynin (15 mM, in the drinking water) normalized these responses. Recovery from AKI for 5 wk resulted in sustained oxidant stress as indicated by increased dihydroethidium incorporation in renal tissue slices and was normalized in apocynin-treated rats. Surprisingly, the renal mRNA expression for common NADPH oxidase subunits was not altered in kidneys following recovery from AKI; however, mRNA screening using PCR arrays suggested that post-AKI rats had decreased renal Gpx3 mRNA and an increased expression other prooxidant genes such as lactoperoxidase, myeloperoxidase, and dual oxidase-1. When rats were infused for 7 days with ANG II (100 ng·kg−1·min−1), renal fibrosis was not apparent in sham-operated control rats, but it was enhanced in post-AKI rats. The profibrotic response was significantly attenuated in rats treated with apocynin. These data suggest that there is sustained renal oxidant stress following recovery from AKI that alters both renal hemodynamic and fibrotic responses to ANG II, and may contribute to the transition to chronic kidney disease following AKI. PMID:22442209

  16. New Developments in Hepatorenal Syndrome.

    PubMed

    Mindikoglu, Ayse L; Pappas, Stephen C

    2018-02-01

    Hepatorenal syndrome (HRS) continues to be one of the major complications of decompensated cirrhosis, leading to death in the absence of liver transplantation. Challenges in precisely evaluating renal function in the patient with cirrhosis remain because of the limitations of serum creatinine (Cr) alone in estimating glomerular filtration rate (GFR); current GFR estimating models appear to underestimate renal dysfunction. Newer models incorporating renal biomarkers, such as the Cr-Cystatin C GFR Equation for Cirrhosis appear to estimate measured GFR more accurately. A major change in the diagnostic criteria for HRS based on dynamic serial changes in serum Cr that regard HRS type 1 as a special form of acute kidney injury promises the possibility of earlier identification of renal dysfunction in patients with cirrhosis. The diagnostic criteria of HRS still include the exclusion of other causes of kidney injury. Renal biomarkers have been disappointing in assisting with the differentiation of HRS from prerenal azotemia and other kidney disorders. Serum metabolomic profiling may be a more powerful tool to assess renal dysfunction, although the practical clinical significance of this remains unclear. As a result of the difficulties of assessing renal function in cirrhosis and the varying HRS diagnostic criteria and the rigor with which they are applied, the precise incidence and prevalence of HRS is unknown, but it is likely that HRS occurs more commonly than expected. The pathophysiology of HRS is rooted firmly in the setting of progressive reduction in renal blood flow as a result of portal hypertension and splanchnic vasodilation. Progressive marked renal cortical ischemia in patients with cirrhosis parallels the evolution of diuretic-sensitive ascites to diuretic-refractory ascites and HRS, a recognized continuum of renal dysfunction in cirrhosis. Alterations in nitrous oxide production, both increased and decreased, may play a major role in the pathophysiology of this evolution. The inflammatory cascade, triggered by bacterial translocation and endotoxemia, increasingly recognized as important in the manifestation of acute-on-chronic liver failure, also may play a significant role in the pathophysiology of HRS. The mainstay of treatment remains vasopressor therapy with albumin in an attempt to reverse splanchnic vasodilation and improve renal blood flow. Several meta-analyses have confirmed the value of vasopressors, chiefly terlipressin and noradrenaline, in improving renal function and reversing HRS type 1. Other interventions such as renal replacement therapy, transjugular intrahepatic portosystemic shunt, and artificial liver support systems have a very limited role in improving outcomes in HRS. Liver transplantation remains the definitive treatment for HRS. The frequency of simultaneous liver-kidney transplantation has increased dramatically in the Model for End-stage Liver Disease era, with changes in organ allocation policies. This has resulted in a more urgent need to predict native kidney recovery from HRS after liver transplantation alone, to avoid unnecessary simultaneous liver-kidney transplantation. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. Renal Function Descriptors in Neonates: Which Creatinine-Based Formula Best Describes Vancomycin Clearance?

    PubMed

    Bhongsatiern, Jiraganya; Stockmann, Chris; Yu, Tian; Constance, Jonathan E; Moorthy, Ganesh; Spigarelli, Michael G; Desai, Pankaj B; Sherwin, Catherine M T

    2016-05-01

    Growth and maturational changes have been identified as significant covariates in describing variability in clearance of renally excreted drugs such as vancomycin. Because of immaturity of clearance mechanisms, quantification of renal function in neonates is of importance. Several serum creatinine (SCr)-based renal function descriptors have been developed in adults and children, but none are selectively derived for neonates. This review summarizes development of the neonatal kidney and discusses assessment of the renal function regarding estimation of glomerular filtration rate using renal function descriptors. Furthermore, identification of the renal function descriptors that best describe the variability of vancomycin clearance was performed in a sample study of a septic neonatal cohort. Population pharmacokinetic models were developed applying a combination of age-weight, renal function descriptors, or SCr alone. In addition to age and weight, SCr or renal function descriptors significantly reduced variability of vancomycin clearance. The population pharmacokinetic models with Léger and modified Schwartz formulas were selected as the optimal final models, although the other renal function descriptors and SCr provided reasonably good fit to the data, suggesting further evaluation of the final models using external data sets and cross validation. The present study supports incorporation of renal function descriptors in the estimation of vancomycin clearance in neonates. © 2015, The American College of Clinical Pharmacology.

  18. Renal inflammation, autoimmunity and salt-sensitive hypertension

    PubMed Central

    Rodríguez-Iturbe, Bernardo; Franco, Martha; Tapia, Edilia; Quiroz, Yasmir; Johnson, Richard J

    2011-01-01

    This article reviews the role of immune competent cells infiltrating the kidney and their association with oxidative stress and renal angiotensin activity in the development of salt-sensitive hypertension.We discuss the alteration of the pressure-natriuresis relationship resulting from renal inflammation and its improvement resulting from immunosuppressive treatment.The potential role of T cell-driven reactivity in sustaining the renal inflammation is examined in the light of accumulating evidence of autoimmune mechanisms in experimental and clinical hypertension. PMID:21251049

  19. Assessment of the relationship between renal volume and renal function after minimally-invasive partial nephrectomy: the role of computed tomography and nuclear renal scan.

    PubMed

    Bertolo, Riccardo; Fiori, Cristian; Piramide, Federico; Amparore, Daniele; Barrera, Monica; Sardo, Diego; Veltri, Andrea; Porpiglia, Francesco

    2018-05-14

    To evaluate the correlation between the loss of renal function as assessed by Tc99MAG-3 renal scan and the loss of renal volume as calculated by volumetric assessment on CT-scan in patients who underwent minimally-invasive partial nephrectomy (PN). PN prospectively-maintained database was retrospectively queried for patients who underwent minimally-invasive PN (2012-2017) for renal mass

  20. Reduced cholesterol levels in renal membranes of undernourished rats may account for urinary Na⁺ loss.

    PubMed

    Oliveira, Fabiana S T; Vieira-Filho, Leucio D; Cabral, Edjair V; Sampaio, Luzia S; Silva, Paulo A; Carvalho, Vera C O; Vieyra, Adalberto; Einicker-Lamas, Marcelo; Lima, Vera L M; Paixão, Ana D O

    2013-04-01

    It has been demonstrated that reabsorption of Na⁺ in the thick ascending limb is reduced and the ability to concentrate urine can be compromised in undernourished individuals. Alterations in phospholipid and cholesterol content in renal membranes, leading to Na⁺ loss and the inability to concentrate urine, were investigated in undernourished rats. Sixty-day-old male Wistar rats were utilized to evaluate (1) phospholipid and cholesterol content in the membrane fraction of whole kidneys, (2) cholesterol content and the levels of active Na⁺ transporters, (Na⁺ + K⁺)ATPase and Na⁺-ATPase, in basolateral membranes of kidney proximal tubules, and (3) functional indicators of medullary urine concentration. Body weight in the undernourished group was 73 % lower than in control. Undernourishment did not affect the levels of cholesterol in serum or in renal homogenates. However, membranes of whole kidneys revealed 56 and 66 % reduction in the levels of total phospholipids and cholesterol, respectively. Furthermore, cholesterol and (Na⁺ + K⁺)ATPase activity in proximal tubule membranes were reduced by 55 and 68 %, respectively. Oxidative stress remained unaltered in the kidneys of undernourished rats. In contrast, Na⁺-ATPase activity, an enzyme with all regulatory components in membrane, was increased in the proximal tubules of undernourished rats. Free water clearance and fractional Na⁺ excretion were increased by 86 and 24 %, respectively, and urinary osmolal concentration was 21 % lower in undernourished rats than controls. Life-long undernutrition reduces the levels of total phospholipids and cholesterol in membranes of renal tubular cells. This alteration in membrane integrity could diminish (Na⁺ + K⁺)ATPase activity resulting in reduced Na⁺ reabsorption and urinary concentrating ability.

  1. Pregnancy-related pharmacokinetic changes.

    PubMed

    Tasnif, Y; Morado, J; Hebert, M F

    2016-07-01

    The pharmacokinetics of many drugs are altered by pregnancy. Drug distribution and protein binding are changed by pregnancy. While some drug metabolizing enzymes have an apparent increase in activity, others have an apparent decrease in activity. Not only is drug metabolism affected by pregnancy, but renal filtration is also increased. In addition, pregnancy alters the apparent activities of multiple drug transporters resulting in changes in the net renal secretion of drugs. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  2. [Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].

    PubMed

    Maroto Rey, José Pablo; Cillán Narvaez, Elena

    2013-06-01

    There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.

  3. The somatic genomic landscape of chromophobe renal cell carcinoma

    PubMed Central

    Davis, Caleb F.; Ricketts, Christopher; Wang, Min; Yang, Lixing; Cherniack, Andrew D.; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C.; Hacker, Kathryn E.; Bhanot, Gyan; Gordenin, Dmitry A.; Chu, Andy; Gunaratne, Preethi H.; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A.; Bristow, Christopher A.; Donehower, Lawrence A.; Wallen, Eric M.; Smith, Angela B.; Tickoo, Satish K.; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S.; Hsieh, James J.; Choueiri, Toni K.; Hakimi, A. Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A. Gordon; Laird, Peter W.; Henske, Elizabeth P.; Kwiatkowski, David J.; Park, Peter J.; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A.; Linehan, W. Marston; Gibbs, Richard A.; Rathmell, W. Kimryn; Creighton, Chad J.

    2014-01-01

    Summary We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) based on multidimensional and comprehensive characterization, including mitochondrial DNA (mtDNA) and whole genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared to other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT up-regulation in cancer distinct from previously-observed amplifications and point mutations. PMID:25155756

  4. The somatic genomic landscape of chromophobe renal cell carcinoma.

    PubMed

    Davis, Caleb F; Ricketts, Christopher J; Wang, Min; Yang, Lixing; Cherniack, Andrew D; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C; Hacker, Kathryn E; Bhanot, Gyan; Gordenin, Dmitry A; Chu, Andy; Gunaratne, Preethi H; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A; Bristow, Christopher A; Donehower, Lawrence A; Wallen, Eric M; Smith, Angela B; Tickoo, Satish K; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S; Hsieh, James J; Choueiri, Toni K; Hakimi, A Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A Gordon; Laird, Peter W; Henske, Elizabeth P; Kwiatkowski, David J; Park, Peter J; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A; Linehan, W Marston; Gibbs, Richard A; Rathmell, W Kimryn; Creighton, Chad J

    2014-09-08

    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared with other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT upregulation in cancer distinct from previously observed amplifications and point mutations. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Accuracy of cystatin C for the detection of abnormal renal function in children undergoing chemotherapy for malignancy: a systematic review using individual patient data.

    PubMed

    Whiting, Penny; Birnie, Kate; Sterne, Jonathan A C; Jameson, Catherine; Skinner, Rod; Phillips, Bob

    2018-05-01

    We conducted a systematic review and individual patient data (IPD) meta-analysis to examine the utility of cystatin C for evaluation of glomerular function in children with cancer. Eligible studies evaluated the accuracy of cystatin C for detecting poor renal function in children undergoing chemotherapy. Study quality was assessed using QUADAS-2. Authors of four studies shared IPD. We calculated the correlation between log cystatin C and GFR stratified by study and measure of cystatin C. We dichotomized the reference standard at GFR 80 ml/min/1.73m 2 and stratified cystatin C at 1 mg/l, to calculate sensitivity and specificity in each study and according to age group (0-4, 5-12, and ≥ 13 years). In sensitivity analyses, we investigated different GFR and cystatin C cut points. We used logistic regression to estimate the association of impaired renal function with log cystatin C and quantified diagnostic accuracy using the area under the ROC curve (AUC). Six studies, which used different test and reference standard thresholds, suggested that cystatin C has the potential to monitor renal function in children undergoing chemotherapy for malignancy. IPD data (504 samples, 209 children) showed that cystatin C has poor sensitivity (63%) and moderate specificity (89%), although use of a GFR cut point of < 60 ml/min/1.73m 2 (data only available from two of the studies) estimated sensitivity to be 92% and specificity 81.3%. The AUC for the combined data set was 0.890 (95% CI 0.826, 0.951). Diagnostic accuracy appeared to decrease with age. Cystatin C has better diagnostic accuracy than creatinine as a test for glomerular dysfunction in young people undergoing treatment for cancer. Diagnostic accuracy is not sufficient for it to replace current reference standards for predicting clinically relevant impairments that may alter dosing of important nephrotoxic agents.

  6. Analogy of cardiac and renal complications in essential hypertension and aged SHR or L-NAME/SHR.

    PubMed

    Zhou, Xiaoyan; Frohlich, Edward D

    2007-01-01

    Hypertension plays major causative roles in development of cardiac failure and end-stage renal disease (ESRD). Cardiac and renal involvements in hypertension and relevant pharmacological interventions have been extensively studied in our laboratories. Our findings demonstrated that aged spontaneous hypertensive rats (SHR) developed reduced coronary flow reserve, increased coronary vascular resistance and cardiac fibrosis, and impaired cardiac function. Moreover, aged SHR naturally developed glomerular hypertension and ischemia, proteinuria, and glomerular sclerosis and interstitial fibrosis. These naturally-occurring cardiac and renal involvements in aged SHR are very similar to these target organ changes in essential hypertension. Furthermore, we have been able to reproduce similar derangements in younger adult SHR by nitric oxide synthesis inhibition. These changes are identical to the pathophysiological alterations in heart and kidney found in old SHR as well as clinically. Antihypertensive therapeutic interventions provided cardiac and renal protection and, perhaps even prevention in the aged SHR and younger adult SHR with suppressed nitric oxide synthesis. Recent clinical trails have translated these pathophysiological observations demonstrating that angiotensin II inhibition affords remarkable cardiac and renal benefits to patients with essential hypertension. Thus, both the aged SHR as well as younger adult SHR with suppressed nitric oxide synthesis very closely mimic the cardiac and renal outcomes seen in patients with essential hypertension. They accordingly have become extremely useful experimental models of hypertensive heart disease and ESRD seen with severe nephrosclerosis. The latter hypertensive rat model with induced endothelial dysfunction is recommended enthusiastically for its foregoing as well as time-saving and economic values.

  7. Rapamycin inhibition of mTORC1 reverses lithium-induced proliferation of renal collecting duct cells

    PubMed Central

    Gao, Yang; Romero-Aleshire, Melissa J.; Cai, Qi; Price, Theodore J.

    2013-01-01

    Nephrogenic diabetes insipidus (NDI) is the most common renal side effect in patients undergoing lithium therapy for bipolar affective disorders. Approximately 2 million US patients take lithium of whom ∼50% will have altered renal function and develop NDI (2, 37). Lithium-induced NDI is a defect in the urinary concentrating mechanism. Lithium therapy also leads to proliferation and abundant renal cysts (microcysts), commonly in the collecting ducts of the cortico-medullary region. The mTOR pathway integrates nutrient and mitogen signals to control cell proliferation and cell growth (size) via the mTOR Complex 1 (mTORC1). To address our hypothesis that mTOR activation may be responsible for lithium-induced proliferation of collecting ducts, we fed mice lithium chronically and assessed mTORC1 signaling in the renal medulla. We demonstrate that mTOR signaling is activated in the renal collecting ducts of lithium-treated mice; lithium increased the phosphorylation of rS6 (Ser240/Ser244), p-TSC2 (Thr1462), and p-mTOR (Ser2448). Consistent with our hypothesis, treatment with rapamycin, an allosteric inhibitor of mTOR, reversed lithium-induced proliferation of medullary collecting duct cells and reduced levels of p-rS6 and p-mTOR. Medullary levels of p-GSK3β were increased in the renal medullas of lithium-treated mice and remained elevated following rapamycin treatment. However, mTOR inhibition did not improve lithium-induced NDI and did not restore the expression of collecting duct proteins aquaporin-2 or UT-A1. PMID:23884148

  8. Renal effects of carprofen administered to healthy dogs anesthetized with propofol and isoflurane.

    PubMed

    Ko, J C; Miyabiyashi, T; Mandsager, R E; Heaton-Jones, T G; Mauragis, D F

    2000-08-01

    To evaluate renal effects of carprofen in healthy dogs following general anesthesia. Randomized clinical trial. 10 English hound dogs (6 females and 4 males). Dogs were randomly assigned to control (n = 5) or carprofen (5) groups. Anesthesia was induced with propofol (6 to 8 mg/kg [2.7 to 3.6 mg/lb] of body weight, i.v.) and maintained with isoflurane (end-tidal concentration, 2.0%). Each dog underwent two 60-minute anesthetic episodes with 1 week between episodes, and mean arterial blood pressure was maintained between 60 and 90 mm Hg during each episode. Dogs in the carprofen group received carprofen (2.2 mg/kg [1 mg/lb], p.o.) at 9:00 AM and 6:00 PM the day before and at 7:00 AM the day of the second anesthetic episode. Glomerular filtration rates (GFR) were determined during each anesthetic episode by use of renal scintigraphy. Serum creatinine and BUN concentrations and the urine gamma-glutamyltransferase-to-creatinine concentration (urine GGT:creatinine) ratio were determined daily for 2 days before and 5 days after general anesthesia. Significant differences were not detected in BUN and serum creatinine concentrations, urine GGT:creatinine ratio, and GFR either between or within treatment groups over time. Carprofen did not significantly alter renal function in healthy dogs anesthetized with propofol and isoflurane. These results suggest that carprofen may be safe to use for preemptive perioperative analgesia, provided that normal cardiorespiratory function is maintained.

  9. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cárdenas-González, Mariana C.; Del Razo, Luz M.; Barrera-Chimal, Jonatan

    2013-11-01

    Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end ofmore » the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary β-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: • Exposure to low concentrations of fluoride induced proximal tubular injury • Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group • Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups • Fluoride exposure increased renal Kim, Clu and OPN mRNA expression levels. • Fluoride increased kidney injury biomarkers at stages where eGFR was unaltered.« less

  10. Renal oxygen content is increased in healthy subjects after angiotensin-converting enzyme inhibition.

    PubMed

    Stein, Anna; Goldmeier, Silvia; Voltolini, Sarah; Setogutti, Enio; Feldman, Carlos; Figueiredo, Eduardo; Eick, Renato; Irigoyen, Maria; Rigatto, Katya

    2012-07-01

    The association between renal hypoxia and the development of renal injury is well established. However, no adequate method currently exists to non-invasively measure functional changes in renal oxygenation in normal and injured patients. R2* quantification was performed using renal blood oxygen level-dependent properties. Five healthy normotensive women (50 ± 5.3 years) underwent magnetic resonance imaging in a 1.5T Signa Excite HDx scanner (GE Healthcare, Waukesha, WI). A multiple fast gradient-echo sequence was used to acquire R2*/T2* images (sixteen echoes from 2.1 ms/slice to 49.6 ms/slice in a single breath hold per location). The images were post-processed to generate R2* maps for quantification. Data were recorded before and at 30 minutes after the oral administration of an angiotensin II-converting enzyme inhibitor (captopril, 25 mg). The results were compared using an ANOVA for repeated measurements (mean + standard deviation) followed by the Tukey test. ClinicalTrials.gov: NCT01545479. A significant difference (p<0.001) in renal oxygenation (R2*) was observed in the cortex and medulla before and after captopril administration: right kidney, cortex = 11.08 ± 0.56 ms, medulla = 17.21 ± 1.47 ms and cortex = 10.30 ± 0.44 ms, medulla = 16.06 ± 1.74 ms, respectively; and left kidney, cortex= 11.79 ± 1.85 ms, medulla = 17.03 ± 0.88 ms and cortex = 10.89 ± 0.91 ms, medulla = 16.43 ± 1.49 ms, respectively. This result suggests that the technique efficiently measured alterations in renal blood oxygenation after angiotensin II-converting enzyme inhibition and that it may provide a new strategy for identifying the early stages of renal disease and perhaps new therapeutic targets.

  11. Evaluation of Brain Pharmacokinetic and Neuropharmacodynamic Attributes of an Antiepileptic Drug, Lacosamide, in Hepatic and Renal Impairment: Preclinical Evidence.

    PubMed

    Kumar, Baldeep; Modi, Manish; Saikia, Biman; Medhi, Bikash

    2017-07-19

    The knowledge of pharmacokinetic and pharmacodynamic properties of antiepileptic drugs is helpful in optimizing drug therapy for epilepsy. This study was designed to evaluate the pharmacokinetic and pharmacodynamic properties of lacosamide in experimentally induced hepatic and renal impairment in seizure animals. Hepatic or renal impairment was induced by injection of carbon tetrachloride or diclofenac sodium, respectively. After induction, the animals were administered a single dose of lacosamide. At different time points, maximal electroshock (MES) seizure recordings were made followed by isolation of plasma and brain samples for drug quantification and pharmacodynamic measurements. Our results showed a significant increase in the area under the curve of lacosamide in hepatic and renal impairment groups. Reduced clearance of lacosamide was observed in animals with renal impairment. Along with pharmacokinetic alterations, the changes in pharmacodynamic effects of lacosamide were also observed in all the groups. Lacosamide showed a significant protection against MES-induced seizures, oxidative stress, and neuroinflammatory cytokines. These findings revealed that experimentally induced hepatic or renal impairment could alter the pharmacokinetic as well as pharmacodynamic properties of lacosamide. Hence, these conditions may affect the safety and efficacy of lacosamide.

  12. Angiotensin II Type 1 Receptor-Associated Protein Regulates Kidney Aging and Lifespan Independent of Angiotensin.

    PubMed

    Uneda, Kazushi; Wakui, Hiromichi; Maeda, Akinobu; Azushima, Kengo; Kobayashi, Ryu; Haku, Sona; Ohki, Kohji; Haruhara, Kotaro; Kinguchi, Sho; Matsuda, Miyuki; Ohsawa, Masato; Minegishi, Shintaro; Ishigami, Tomoaki; Toya, Yoshiyuki; Atobe, Yoshitoshi; Yamashita, Akio; Umemura, Satoshi; Tamura, Kouichi

    2017-07-27

    The kidney is easily affected by aging-associated changes, including glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Particularly, renal tubulointerstitial fibrosis is a final common pathway in most forms of progressive renal disease. Angiotensin II type 1 receptor (AT1R)-associated protein (ATRAP), which was originally identified as a molecule that binds to AT1R, is highly expressed in the kidney. Previously, we have shown that ATRAP suppresses hyperactivation of AT1R signaling, but does not affect physiological AT1R signaling. We hypothesized that ATRAP has a novel functional role in the physiological age-degenerative process, independent of modulation of AT1R signaling. ATRAP-knockout mice were used to study the functional involvement of ATRAP in the aging. ATRAP-knockout mice exhibit a normal age-associated appearance without any evident alterations in physiological parameters, including blood pressure and cardiovascular and metabolic phenotypes. However, in ATRAP-knockout mice compared with wild-type mice, the following takes place: (1) age-associated renal function decline and tubulointerstitial fibrosis are more enhanced; (2) renal tubular mitochondrial abnormalities and subsequent increases in the production of reactive oxygen species are more advanced; and (3) life span is 18.4% shorter (median life span, 100.4 versus 123.1 weeks). As a key mechanism, age-related pathological changes in the kidney of ATRAP-knockout mice correlated with decreased expression of the prosurvival gene, Sirtuin1 . On the other hand, chronic angiotensin II infusion did not affect renal sirtuin1 expression in wild-type mice. These results indicate that ATRAP plays an important role in inhibiting kidney aging, possibly through sirtuin1-mediated mechanism independent of blocking AT1R signaling, and further protecting normal life span. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  13. High and Low Salt Intake during Pregnancy: Impact on Cardiac and Renal Structure in Newborns.

    PubMed

    Seravalli, Priscila; de Oliveira, Ivone Braga; Zago, Breno Calazans; de Castro, Isac; Veras, Mariana Matera; Alves-Rodrigues, Edson Nogueira; Heimann, Joel C

    2016-01-01

    Previous studies from our laboratory demonstrated that dietary salt overload and salt restriction during pregnancy were associated with cardiac and renal structural and/or functional alterations in adult offspring. The present study evaluated renal and cardiac structure and the local renin-angiotensin system in newborns from dams fed high-, normal- or low-salt diets during pregnancy. Female Wistar rats were fed low- (LS, 0.15% NaCl), normal- (NS, 1.3% NaCl) or high- (HS, 8% NaCl) salt diets during pregnancy. Kidneys and hearts were collected from newborns (n = 6-8/group) during the first 24 hours after birth to evaluate possible changes in structure using stereology. Protein expression of renin-angiotensin system components was evaluated using an indirect enzyme-linked immunosorbent assay (ELISA). No differences between groups were observed in total renal volume, volume of renal compartments or number of glomeruli. The transverse diameter of the nuclei of cardiomyocytes was greater in HS than NS males in the left and right ventricles. Protein expression of the AT1 receptor was lower in the kidneys of the LS than in those of the NS and HS males but not females. Protein expression of the AT2 receptor was lower in the kidneys of the LS males and females than in those of the NS males and females. High salt intake during pregnancy induced left and right ventricular hypertrophy in male newborns. Salt restriction during pregnancy reduced the expression of renal angiotensin II receptors in newborns.

  14. SECRETED KLOTHO AND CHRONIC KIDNEY DISEASE

    PubMed Central

    Hu, Ming Chang; Kuro-o, Makoto; Moe, Orson W.

    2013-01-01

    Soluble Klotho (sKl) in the circulation can be generated directly by alterative splicing of the Klotho transcript or the extracellular domain of membrane Klotho can be released from membrane-anchored Klotho on the cell surface. Unlike membrane Klotho which functions as a coreceptor for fibroblast growth factor-23 (FGF23), sKl, acts as hormonal factor and plays important roles in anti-aging, anti-oxidation, modulation of ion transport, and Wnt signaling. Emerging evidence reveals that Klotho deficiency is an early biomarker for chronic kidney diseases as well as a pathogenic factor. Klotho deficiency is associated with progression and chronic complications in chronic kidney disease including vascular calcification, cardiac hypertrophy, and secondary hyperparathyroidism. In multiple experimental models, replacement of sKl, or manipulated up-regulation of endogenous Klotho protect the kidney from renal insults, preserve kidney function, and suppress renal fibrosis, in chronic kidney disease. Klotho is a highly promising candidate on the horizon as an early biomarker, and as a novel therapeutic agent for chronic kidney disease. PMID:22396167

  15. Morin Hydrate Mitigates Cisplatin-Induced Renal and Hepatic Injury by Impeding Oxidative/Nitrosative Stress and Inflammation in Mice.

    PubMed

    K V, Athira; Madhana, Rajaram Mohanrao; Kasala, Eshvendar Reddy; Samudrala, Pavan Kumar; Lahkar, Mangala; Gogoi, Ranadeep

    2016-12-01

    Cisplatin is a widely used chemotherapeutic drug; however, it induces damage on kidney and liver at clinically effective higher doses. Morin hydrate possesses antioxidant, anti-inflammatory, and anticancer properties. Therefore, we aimed to investigate the effects of morin hydrate (50 and 100 mg/kg, orally) against the renohepatic toxicity induced by a high dose of cisplatin (20 mg/kg, intraperitoneally). Renal and hepatic function, oxidative/nitrosative stress, and inflammatory markers along with histopathology were evaluated. Morin hydrate ameliorated cisplatin-induced renohepatic toxicity significantly at 100 mg/kg as evidenced from the significant reversal of cisplatin-induced body weight loss, mortality, functional and structural alterations of kidney, and liver. The protective role offered by morin hydrate against cisplatin-induced renohepatic toxicity is by virtue of its free radical scavenging property, thereby abating the depletion of cellular antioxidant defense components and through modulation of inflammatory cytokines. We speculate morin hydrate as a protective candidate against renohepatic toxicity of cisplatin. © 2016 Wiley Periodicals, Inc.

  16. Presence of transient hydronephrosis immediately after surgery has a limited influence on renal function 1 year after ileal neobladder construction.

    PubMed

    Narita, Takuma; Hatakeyama, Shingo; Koie, Takuya; Hosogoe, Shogo; Matsumoto, Teppei; Soma, Osamu; Yamamoto, Hayato; Yoneyama, Tohru; Tobisawa, Yuki; Yoneyama, Takahiro; Hashimoto, Yasuhiro; Ohyama, Chikara

    2017-08-31

    Urinary tract obstruction and postoperative hydronephrosis are risk factor for renal function deterioration after orthotopic ileal neobladder construction. However, reports of relationship between transient hydronephrosis and renal function are limited. We assess the influence of postoperative transient hydronephrosis on renal function in patients with orthotopic ileal neobladder construction. Between January 2006 and June 2013, we performed radical cystectomy in 164 patients, and 101 received orthotopic ileal neobladder construction. This study included data available from 64 patients with 128 renal units who were enrolled retrospectively. The hydronephrosis grade of each renal unit scored 0-4. The patients were divided into 4 groups according to the grade of hydronephrosis: control, low, intermediate, and high. The grade of postoperative hydronephrosis was compared with renal function 1 month and 1 year after surgery. There were no significant differences in renal function before surgery between groups. One month after surgery, the presence of hydronephrosis was significantly associated with decreased renal function. However, 1 year after urinary diversion hydronephrosis grades were improved significantly, and renal function was comparable between groups. Postoperative hydronephrosis at 1 month had no significant influence on renal function 1 year after ileal neobladder construction. Limitations include retrospective design, short follow-up periods, and a sample composition. The presence of transient hydronephrosis immediately after surgery may have limited influence on renal function 1 year after ileal neobladder construction.

  17. Rediscovering Beta-2 Microglobulin As a Biomarker across the Spectrum of Kidney Diseases

    PubMed Central

    Argyropoulos, Christos P.; Chen, Shan Shan; Ng, Yue-Harn; Roumelioti, Maria-Eleni; Shaffi, Kamran; Singh, Pooja P.; Tzamaloukas, Antonios H.

    2017-01-01

    There is currently an unmet need for better biomarkers across the spectrum of renal diseases. In this paper, we revisit the role of beta-2 microglobulin (β2M) as a biomarker in patients with chronic kidney disease and end-stage renal disease. Prior to reviewing the numerous clinical studies in the area, we describe the basic biology of β2M, focusing in particular on its role in maintaining the serum albumin levels and reclaiming the albumin in tubular fluid through the actions of the neonatal Fc receptor. Disorders of abnormal β2M function arise as a result of altered binding of β2M to its protein cofactors and the clinical manifestations are exemplified by rare human genetic conditions and mice knockouts. We highlight the utility of β2M as a predictor of renal function and clinical outcomes in recent large database studies against predictions made by recently developed whole body population kinetic models. Furthermore, we discuss recent animal data suggesting that contrary to textbook dogma urinary β2M may be a marker for glomerular rather than tubular pathology. We review the existing literature about β2M as a biomarker in patients receiving renal replacement therapy, with particular emphasis on large outcome trials. We note emerging proteomic data suggesting that β2M is a promising marker of chronic allograft nephropathy. Finally, we present data about the role of β2M as a biomarker in a number of non-renal diseases. The goal of this comprehensive review is to direct attention to the multifaceted role of β2M as a biomarker, and its exciting biology in order to propose the next steps required to bring this recently rediscovered biomarker into the twenty-first century. PMID:28664159

  18. Aortic Blood Flow Reversal Determines Renal Function: Potential Explanation for Renal Dysfunction Caused by Aortic Stiffening in Hypertension.

    PubMed

    Hashimoto, Junichiro; Ito, Sadayoshi

    2015-07-01

    Aortic stiffness determines the glomerular filtration rate (GFR) and predicts the progressive decline of the GFR. However, the underlying pathophysiological mechanism remains obscure. Recent evidence has shown a close link between aortic stiffness and the bidirectional (systolic forward and early diastolic reverse) flow characteristics. We hypothesized that the aortic stiffening-induced renal dysfunction is attributable to altered central flow dynamics. In 222 patients with hypertension, Doppler velocity waveforms were recorded at the proximal descending aorta to calculate the reverse/forward flow ratio. Tonometric waveforms were recorded to measure the carotid-femoral (aortic) and carotid-radial (peripheral) pulse wave velocities, to estimate the aortic pressure from the radial waveforms, and to compute the aortic characteristic impedance. In addition, renal hemodynamics was evaluated by duplex ultrasound. The estimated GFR was inversely correlated with the aortic pulse wave velocity, reverse/forward flow ratio, pulse pressure, and characteristic impedance, whereas it was not correlated with the peripheral pulse wave velocity or mean arterial pressure. The association between aortic pulse wave velocity and estimated GFR was independent of age, diabetes mellitus, hypercholesterolemia, and antihypertensive medication. However, further adjustment for the aortic reverse/forward flow ratio and pulse pressure substantially weakened this association, and instead, the reverse/forward flow ratio emerged as the strongest determinant of estimated GFR (P=0.001). A higher aortic reverse/forward flow ratio was also associated with lower intrarenal forward flow velocities. These results suggest that an increase in aortic flow reversal (ie, retrograde flow from the descending thoracic aorta toward the aortic arch), caused by aortic stiffening and impedance mismatch, reduces antegrade flow into the kidney and thereby deteriorates renal function. © 2015 American Heart Association, Inc.

  19. Impact of Ischemia and Procurement Conditions on Gene Expression in Renal Cell Carcinoma

    PubMed Central

    Liu, Nick W.; Sanford, Thomas; Srinivasan, Ramaprasad; Liu, Jack L.; Khurana, Kiranpreet; Aprelikova, Olga; Valero, Vladimir; Bechert, Charles; Worrell, Robert; Pinto, Peter A.; Yang, Youfeng; Merino, Maria; Linehan, W. Marston; Bratslavsky, Gennady

    2013-01-01

    Purpose Previous studies have shown that ischemia alters gene expression in normal and malignant tissues. There are no studies that evaluated effects of ischemia in renal tumors. This study examines the impact of ischemia and tissue procurement conditions on RNA integrity and gene expression in renal cell carcinoma. Experimental Design Ten renal tumors were resected without renal hilar clamping from 10 patients with renal clear cell carcinoma. Immediately after tumor resection, a piece of tumor was snap frozen. Remaining tumor samples were stored at 4C, 22C and 37C and frozen at 5, 30, 60, 120, and 240 minutes. Histopathologic evaluation was performed on all tissue samples, and only those with greater than 80% tumor were selected for further analysis. RNA integrity was confirmed by electropherograms and quantitated using RIN index. Altered gene expression was assessed by paired, two-sample t-test between the zero time point and aliquots from various conditions obtained from the same tumor. Results One hundred and forty microarrays were performed. Some RNA degradation was observed 240 mins after resection at 37C. The expression of over 4,000 genes was significantly altered by ischemia times or storage conditions. The greatest gene expression changes were observed with longer ischemia time and warmer tissue procurement conditions. Conclusion RNA from kidney cancer remains intact for up to 4 hours post surgical resection regardless of storage conditions. Despite excellent RNA preservation, time after resection and procurement conditions significantly influence gene expression profiles. Meticulous attention to pre-acquisition variables is of paramount importance for accurate tumor profiling. PMID:23136194

  20. Gentamicin Nephrotoxicity in Subclinical Renal Disease.

    NASA Astrophysics Data System (ADS)

    Frazier, Donita L.

    The purpose of the present study was to examine the pharmacokinetic disposition of gentamicin and to define the mechanisms which predispose to nephrotoxicity in subclinical renal disease. Subtotally nephrectomized beagle dogs were used as a model for human beings with compromised renal function secondary to a reduced number of functional nephrons. Using ultrastructural morphometry, light microscopy and clinical chemistry data, the model was defined and the nephrotoxic responses of intact dogs administered recommended doses of drug were compared to the response of subtotally nephrectomized dogs administered reduced doses based on each animal's clearance of drug. Lysosomal and mitochondrial morphometric changes suggested mechanisms for increased sensitivity. To determine if increased sensitivity in this model was dependent on altered serum concentrations, variable rate infusions based on individual pharmacokinetic disposition of drug were administered using computer-driven infusion pumps. Identical serum concentration-time profiles were achieved in normal dogs and subtotally nephrectomized dogs, however, toxicity was significantly greater in nephrectomized dogs. The difference in the nephrotoxic response was characterized by administering supratherapeutic doses of drug to dogs. Nephrectomized dogs given a recommended dose of gentamicin became oliguric during the second week of treatment and increasingly uremic after withdrawal of drug. In contrast, intact dogs administered 2 times the recommended dose of gentamicin become only slightly polyuric during week 4 of treatment. The need to individualize dosage regimens based on drug clearance and not serum creatinine nor creatinine clearance alone was substantiated by describing the pharmacokinetic disposition of gentamicin in spontaneously occurring disease states. Four individualized dosage regimens with differing predicted efficacy were then administered to nephrectomized dogs to determine their relative nephrotoxic potential. Conclusions from these studies include (1) nephrectomized dogs are more susceptible to gentamicin-induced nephrotoxicity than intact dogs, (2) sensitivity is not totally dependent on serum drug concentrations, (3) nephrectomized dogs have hypertrophied nephrons with subcellular alterations in proximal tubule cells, (4) unlike intact dogs, the toxic response in nephrectomized dogs is characterized by oliguria and irreversibility, (5) dosage regimens of aminoglycosides should be based on individual drug disposition since it varies greatly in spontaneous disease states and (6) altered dosage regimens may decrease toxicity and increase efficacy.

  1. Variation in the HFE gene is associated with the development of bleomycin-induced pulmonary toxicity in testicular cancer patients.

    PubMed

    van der Schoot, Gabriela G F; Westerink, Nico-Derk L; Lubberts, Sjoukje; Nuver, Janine; Zwart, Nynke; Walenkamp, Annemiek M E; Wempe, Johan B; Meijer, Coby; Gietema, Jourik A

    2016-05-01

    Bleomycin and cisplatin are of key importance in testicular cancer treatment. Known potential serious adverse effects are bleomycin-induced pulmonary toxicity (BIP) and cisplatin-induced renal toxicity. Iron handling may play a role in development of this toxicity. Carriage of allelic variants of the HFE gene induces altered iron metabolism and may contribute to toxicity. We investigated the association between two common allelic variants of the HFE gene, H63D and C282Y, with development of pulmonary and renal toxicity during and after treatment with bleomycin- and cisplatin-containing chemotherapy. In 369 testicular cancer patients treated with bleomycin and cisplatin at the University Medical Center Groningen between 1978 and 2006, H63D and/or C282Y genotypes were determined with an allelic discrimination assay. Data were collected on development of BIP, pulmonary function parameters, renal function, and survival. BIP developed more frequently in patients who were heterozygote (16 in 75, 21%) and homozygote (2 in 4, 50%) for the H63D variant, compared with those who had the HFE wild-type gene (31 in 278, 11%) (p = 0.012). Overall survival, testicular cancer-related survival, and change in renal function were not associated with the H63D variant. We observed an association between presence of one or both H63D alleles and development of BIP in testicular cancer patients treated with bleomycin combination chemotherapy. In patients heterozygote and homozygote for the H63D variant, BIP occurred more frequently compared with wild-type patients. When validated and confirmed, HFE H63D genotyping may be used to identify patients with increased risk for pulmonary bleomycin toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Nephro-protective potential of Morus alba, a prospective experimental study on animal models.

    PubMed

    Ullah, Naveed; Khan, Mir Azam; Khan, Salimullah; Ahmad, Habib; Asif, Afzal Haq; Khan, Taous

    2016-01-01

    Morus alba L. (Moraceae) is traditionally used for the treatment of urinary incontinency due its strong diuretic properties. The present study explores the renal protective effects of M. alba, due to its free radical scavenging properties, in order to provide experimental evidence for its established use. Ethanolic extract (200 mg/kg/d) derived from M. alba fruit was employed in rabbits as a co-therapy (GM-al) with gentamicin (80 mg/kg/d) for a period of 3 weeks. Biochemical kidney functioning parameters, urinary isozymes, and histopathological examination were performed. The results showed that ethanol extract of Morus alba L. prevented alterations in serum creatinine (4.02 ± 0.14, p < 0.0001), blood urea nitrogen (54.18 ± 2.60, p < 0.0001), and serum uric acid levels (2.34 ± 0.12, p < 0.001). However, a decrease in creatinine clearance and urinary volume was observed in experimental groups. Histopathological examination and urinary enzymes excretion also suggested the protective role of the extract. The co-administration of M. alba with gentamicin prevented renal functioning alterations expected with the use of gentamicin alone. Therefore, it can be concluded that M. alba to protect from kidney damage, which may be because of its free radical scavenging and diuretic properties.

  3. Very low rate of readmission after an early discharge outpatient model for autografting in multiple myeloma patients: an Italian multicenter retrospective study.

    PubMed

    Martino, Massimo; Montanari, Mauro; Ferrara, Felicetto; Ciceri, Fabio; Scortechini, Ilaria; Palmieri, Salvatore; Marktel, Sarah; Cimminiello, Michele; Messina, Giuseppe; Irrera, Giuseppe; Offidani, Massimo; Console, Giuseppe; Castagna, Luca; Milone, Giuseppe; Bruno, Benedetto; Tripepi, Giovanni; Lemoli, Roberto Massimo; Olivieri, Attilio

    2014-07-01

    We analyzed the main modalities and clinical outcomes of the early discharge outpatient model in autologous stem cell transplantation (EDOM-ASCT) for multiple myeloma in Italy. EDOM-ASCT was employed in 382 patients, for a total of 522 procedures, between 1998 and 2012. Our study showed high homogeneity among centers in terms of inclusion criteria, supportive care, and in hospital readmission criteria. Overall, readmissions during the aplastic phase occurred in 98 of 522 transplantations (18.8%). The major extrahematological complication was neutropenic fever in 161 cases (30.8%), which required readmission in 76 cases. The incidence of severe World Health Organization grade 3 to 4 mucositis was 9.6%. By univariate analysis, fever, mucositis, altered renal function at diagnosis, second transplantation, and transplantation performed late in the course of the disease were significantly correlated with readmission, whereas fever, mucositis, altered renal function, and timing of transplantation remained the only independent predictors by multivariate analysis. Overall, transplantation-related mortality was 1.0%. No center effect was observed in this study (P = .36). The safety and low rate of readmission of the EDOM-ASCT in myeloma trial suggest that this strategy could be extended to other transplantation centers if a stringent patient selection and appropriate management are applied. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  4. Impact of pretransplant renal function on survival after liver transplantation.

    PubMed

    Gonwa, T A; Klintmalm, G B; Levy, M; Jennings, L S; Goldstein, R M; Husberg, B S

    1995-02-15

    To determine the effect of pretransplant liver function on survival following orthotopic liver transplantation and to quantify the effects of cyclosporine administration on long-term renal function in patients undergoing liver transplant, we performed an analysis of a prospectively maintained database. Data from 569 consecutive patients undergoing liver transplantation alone who were treated with CsA for immunosuppression were used for this study. Actuarial graft and patient survival rates were calculated using Kaplan-Meier statistics. Glomerular filtration rates, serum creatinine, and the use of various immunosuppressives were analyzed for this study. The initial analysis demonstrated that patients presenting for liver transplant with hepatorenal syndrome have a significantly decreased acturial patient survival after liver transplant at 5 years compared with patients without hepatorenal syndrome (60% vs. 68%, P < 0.03). Patients with hepatorenal syndrome recovered their renal function after liver transplant. Patients who had hepatorenal syndrome were sicker and required longer stays in the intensive care unit, longer hospitalizations, and more dialysis treatments after transplantation compared with patients who did not have hepatorenal syndrome. The incidence of end-stage renal disease after liver transplantation in patients who had hepatorenal syndrome was 7%, compared with 2% in patients who did not have hepatorenal syndrome. To more fully examine the effect of pretransplant renal function on posttransplant survival, the non-hepatorenal syndrome patients were divided into quartiles depending upon their pretransplant renal function. The patients with the lowest pretransplant renal function had the same survival as the patients with the highest pretransplant renal function. In addition, there was no increased incidence of acute or chronic rejection in any of the groups. The patients with the lower pretransplant renal function were treated with more azathioprine to maintain renal function and had a negligible decrease in glomerular filtration rate following transplant. Conversely, patients with the highest level of renal function pretransplant had a 40% decline in renal function in the first year, but maintained stable renal function up to 4 years after transplant. We conclude that pretransplant renal function other than hepato-renal syndrome has no effect on patient survival after orthotopic liver transplant. Renal function after liver transplant is stable after an initial decline, despite continued administration of CsA.(ABSTRACT TRUNCATED AT 400 WORDS)

  5. Production and actions of superoxide in the renal medulla.

    PubMed

    Zou, A P; Li, N; Cowley, A W

    2001-02-01

    The present study characterized the biochemical pathways responsible for superoxide (O(2)(-.)) production in different regions of the rat kidney and determined the role of O(2)(-.)in the control of renal medullary blood flow (MBF) and renal function. By use of dihydroethidium/DNA fluorescence spectrometry with microtiter plates, the production of O(2)(-. )was monitored when tissue homogenate from different kidney regions was incubated with substrates for the major O(2)(-.)-producing enzymes, such as NADH/NADPH oxidase, xanthine oxidase, and mitochondrial respiratory chain enzymes. The production of O(2)(-. )via NADH oxidase was greater (P<0.05) in the renal cortex and outer medulla (OM) than in the papilla. The mitochondrial enzyme activity for O(2)(-.)production was higher (P<0.05) in the OM than in the cortex and papilla. Compared with NADH oxidase and mitochondrial enzymes, xanthine oxidase and NADPH oxidase produced much less O(2)(-. )in the kidney under this condition. Overall, the renal OM exhibited the greatest enzyme activities for O(2)(-.)production. In anesthetized rats, renal medullary interstitial infusion of a superoxide dismutase inhibitor, diethyldithiocarbamate, markedly decreased renal MBF and sodium excretion. Diethyldithiocarbamate (5 mg/kg per minute by renal medullary interstitial infusion [RI]) reduced the renal medullary laser-Doppler flow signal from 0.6+/-0.04 to 0.4+/-0.03 V, a reduction of 33%, and both urine flow and sodium excretion decreased by 49%. In contrast, a membrane-permeable superoxide dismutase mimetic, 4-hydroxytetramethyl-piperidine-1-oxyl (TEMPOL, 30 micromol/kg per minute RI) increased MBF and sodium excretion by 34% and 69%, respectively. These effects of TEMPOL on renal MBF and sodium excretion were not altered by pretreatment with N(G)-nitro-L-arginine methyl ester (10 microgram/kg per minute RI). We conclude that (1) renal medullary O(2)(-. )is primarily produced in the renal OM; (2) both NADH oxidase and mitochondrial enzymes are responsible for the O(2)(-.)production in this kidney region; and (3) O(2)(-. )exerts a tonic regulatory action on renal MBF.

  6. Clinical course of dengue fever and its impact on renal function in renal transplant recipients and patients with chronic kidney disease.

    PubMed

    Arun Thomas, E T; George, Jacob; Sruthi, Devi; Vineetha, N S; Gracious, Noble

    2018-04-01

    Dengue fever is a mosquito-borne viral disease endemic in many tropical and sub-tropical countries. There is only limited data in the literature about dengue fever in renal transplant recipients and patients with chronic kidney disease. This study compares the clinical course of dengue fever and its impact on renal function in renal transplant recipients, patients with chronic kidney disease and patients with normal base line renal function. An observational study was conducted from 1 st May to 31 st July 2017, at a tertiary care centre of South India. A major epidemic of dengue had occurred during the study period. Twelve renal transplant recipients, 22 patients with CKD and 58 patients with normal baseline renal function (control group) admitted with dengue fever were prospectively studied. Nadir WBC count was lowest in renal transplant recipients (2575 + 1187/mm 3 ), [P<0.001]. Renal transplant recipients took more time for normalisation of platelet count (6 + 4.5 days), [P<0.001]. All 22 patients with CKD and 11 of 12 renal transplant recipients had worsening of renal function where as only 17 of 58 patients in the control group had worsening [P<0.001]. Sixteen patients with CKD, one renal transplant recipient and none among control group required hemodialysis [P<0.001]. Dialysis requiring patients had more hemoconcentration (52.5+ 19.9% increase in haemoglobin), [P<0.001]. Seven patients with CKD were dialysis dependent at the end of 2 weeks. Clinical features of dengue fever were different in renal transplant recipients and patients with CKD. Severe worsening of renal function was common in CKD patients. Worsening of renal function in renal transplant recipients was less severe and transient. This article is protected by copyright. All rights reserved.

  7. Role of vaptans in the management of hydroelectrolytic imbalance in liver cirrhosis

    PubMed Central

    Facciorusso, Antonio; Amoruso, Annabianca; Neve, Viviana; Antonino, Matteo; Prete, Valentina Del; Barone, Michele

    2014-01-01

    Ascites and hyponatremia are the most common complications in patients with liver cirrhosis and develop as a consequence of a severe impairment of liver function and portal hypertension. Increasing evidences support the central role of renal function alterations in the pathogenesis of hydroelectrolytic imbalances in cirrhotic patients, thus implying a dense cross-talk between liver and kidney in the systemic and splanchnic vascular homeostasis in such subjects. Since Arginin Vasopressin (AVP) hyperincretion occurs at late stage of cirrhosis and plays an important role in the development of refractory ascites, dilutional hyponatremia and finally hepato-renal syndrome, selective antagonists of AVP receptors V2 (vaptans) have been recently introduced in the therapeutic algorithm of advanced cirrhotic patients. Despite the promising results of earlier phase-two studies, randomized controlled trials failed to find significant results in terms of efficacy of such drugs both in refractory ascites and hyponatremia. Moreover, concerns on their safety profile arise, due to the number of potentially severe side effects of vaptans in the clinical setting, such as hypernatremia, dehydration, renal impairment, and osmotic demyelination syndrome. More robust data from randomized controlled trials are needed in order to confirm the potential role of vaptans in the management of advanced cirrhotic patients. PMID:25429317

  8. Heart failure and kidney dysfunction: epidemiology, mechanisms and management.

    PubMed

    Schefold, Joerg C; Filippatos, Gerasimos; Hasenfuss, Gerd; Anker, Stefan D; von Haehling, Stephan

    2016-10-01

    Heart failure (HF) is a major health-care problem and the prognosis of affected patients is poor. HF often coexists with a number of comorbidities of which declining renal function is of particular importance. A loss of glomerular filtration rate, as in acute kidney injury (AKI) or chronic kidney disease (CKD), independently predicts mortality and accelerates the overall progression of cardiovascular disease and HF. Importantly, cardiac and renal diseases interact in a complex bidirectional and interdependent manner in both acute and chronic settings. From a pathophysiological perspective, cardiac and renal diseases share a number of common pathways, including inflammatory and direct, cellular immune-mediated mechanisms; stress-mediated and (neuro)hormonal responses; metabolic and nutritional changes including bone and mineral disorder, altered haemodynamic and acid-base or fluid status; and the development of anaemia. In an effort to better understand the important crosstalk between the two organs, classifications such as the cardio-renal syndromes were developed. This classification might lead to a more precise understanding of the complex interdependent pathophysiology of cardiac and renal diseases. In light of exceptionally high mortality associated with coexisting HF and kidney disease, this Review describes important crosstalk between the heart and kidney, with a focus on HF and kidney disease in the acute and chronic settings. Underlying molecular and cellular pathomechanisms in HF, AKI and CKD are discussed in addition to current and future therapeutic approaches.

  9. Endothelin-A Receptor Antagonism after Renal Angioplasty Enhances Renal Recovery in Renovascular Disease

    PubMed Central

    Tullos, Nathan; Stewart, Nicholas J.; Surles, Bret

    2015-01-01

    Percutaneous transluminal renal angioplasty/stenting (PTRAS) is frequently used to treat renal artery stenosis and renovascular disease (RVD); however, renal function is restored in less than one half of the cases. This study was designed to test a novel intervention that could refine PTRAS and enhance renal recovery in RVD. Renal function was quantified in pigs after 6 weeks of chronic RVD (induced by unilateral renal artery stenosis), established renal damage, and hypertension. Pigs with RVD then underwent PTRAS and were randomized into three groups: placebo (RVD+PTRAS), chronic endothelin-A receptor (ET-A) blockade (RVD+PTRAS+ET-A), and chronic dual ET-A/B blockade (RVD+PTRAS+ET-A/B) for 4 weeks. Renal function was again evaluated after treatments, and then, ex vivo studies were performed on the stented kidney. PTRAS resolved renal stenosis, attenuated hypertension, and improved renal function but did not resolve renal microvascular rarefaction, remodeling, or renal fibrosis. ET-A blocker therapy after PTRAS significantly improved hypertension, microvascular rarefaction, and renal injury and led to greater recovery of renal function. Conversely, combined ET-A/B blockade therapy blunted the therapeutic effects of PTRAS alone or PTRAS followed by ET-A blockade. These data suggest that ET-A receptor blockade therapy could serve as a coadjuvant intervention to enhance the outcomes of PTRAS in RVD. These results also suggest that ET-B receptors are important for renal function in RVD and may contribute to recovery after PTRAS. Using clinically available compounds and techniques, our results could contribute to both refinement and design of new therapeutic strategies in chronic RVD. PMID:25377076

  10. Predictive abilities of cardiovascular biomarkers to rapid decline of renal function in Chinese community-dwelling population: a 5-year prospective analysis.

    PubMed

    Fu, Shihui; Liu, Chunling; Luo, Leiming; Ye, Ping

    2017-11-09

    Predictive abilities of cardiovascular biomarkers to renal function decline are more significant in Chinese community-dwelling population without glomerular filtration rate (GFR) below 60 ml/min/1.73m 2 , and long-term prospective study is an optimal choice to explore this problem. Aim of this analysis was to observe this problem during the follow-up of 5 years. In a large medical check-up program in Beijing, there were 948 participants with renal function evaluated at baseline and follow-up of 5 years. Physical examinations were performed by well-trained physicians. Blood samples were analyzed by qualified technicians in central laboratory. Median rate of renal function decline was 1.46 (0.42-2.91) mL/min/1.73m 2 /year. Rapid decline of renal function had a prevalence of 23.5% (223 participants). Multivariate linear and Logistic regression analyses confirmed that age, sex, baseline GFR, homocysteine and N-terminal pro B-type natriuretic peptide (NT-proBNP) had independently predictive abilities to renal function decline rate and rapid decline of renal function (p < 0.05 for all). High-sensitivity cardiac troponin T (hs-cTnT), carotid femoral pulse wave velocity and central augmentation index had no statistically independent association with renal function decline rate and rapid decline of renal function (p > 0.05 for all). Homocysteine and NT-proBNP rather than hs-cTnT had independently predictive abilities to rapid decline of renal function in Chinese community-dwelling population without GFR below 60 ml/min/1.73m 2 . Baseline GFR was an independent factor predicting the rapid decline of renal function. Arterial stiffness and compliance had no independent effect on rapid decline of renal function. This analysis has a significant implication for public health, and changing the homocysteine and NT-proBNP levels might slow the rapid decline of renal function.

  11. The additive effects of atorvastatin and insulin on renal function and renal organic anion transporter 3 function in diabetic rats.

    PubMed

    Thongnak, Laongdao; Pongchaidecha, Anchalee; Jaikumkao, Krit; Chatsudthipong, Varanuj; Chattipakorn, Nipon; Lungkaphin, Anusorn

    2017-10-19

    Hyperglycemia-induced oxidative stress is usually found in diabetic condition. 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors, statins, are widely used as cholesterol-lowering medication with several "pleiotropic" effects in diabetic patients. This study aims to evaluate whether the protective effects of atorvastatin and insulin on renal function and renal organic anion transporter 3 (Oat3) function involve the modulation of oxidative stress and pancreatic function in type 1 diabetic rats. Type 1 diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg BW). Atorvastatin and insulin as single or combined treatment were given for 4 weeks after diabetic condition had been confirmed. Diabetic rats demonstrated renal function and renal Oat3 function impairment with an increased MDA level and decreased SOD protein expression concomitant with stimulation of renal Nrf2 and HO-1 protein expression. Insulin plus atorvastatin (combined) treatment effectively restored renal function as well as renal Oat3 function which correlated with the decrease in hyperglycemia and oxidative stress. Moreover, pancreatic inflammation and apoptosis in diabetic rats were ameliorated by the combined drugs treatment. Therefore, atorvastatin plus insulin seems to exert the additive effect in improving renal functionby alleviating hyperglycemiaand the modulation of oxidative stress, inflammation and apoptosis.

  12. Effects of continuous and pulsatile flows generated by ventricular assist devices on renal function and pathology.

    PubMed

    Miyamoto, Takuma; Karimov, Jamshid H; Fukamachi, Kiyotaka

    2018-03-01

    Continuous-flow (CF) left ventricular assist devices (LVADs) are widely used to treat end-stage heart failure. Despite substantial improvement in clinical results, numerous complications remain associated with this technology. Worsening renal function is one, associated with morbidity and mortality in patients supported by CF LVADs. The effects of CF LVAD support on renal function have been investigated since the mid-1990s by many research groups. Area covered: We review the current status of LVAD therapy, experimental results regarding the effects of types of flow generated by LVADs on renal function and pathology, changes in renal function after LVAD implant, the influence of renal function on outcomes, and risk factors for renal dysfunction post implant. This information was obtained through online databases and direct extraction of single studies. Expert commentary: Immediately after CF LVAD implantation, renal function improves temporarily as patients recover from the kidneys' previously low perfusion and congestive state. However, many studies have shown that this initially recovered renal function gradually declines during long-term CF LVAD support. Although it is known that CF LVAD support adversely affects renal function over the long term, just how it does has not yet been clearly defined in terms of clinical symptoms or signs.

  13. Echocardiographic predictors of change in renal function with intravenous diuresis for decompensated heart failure.

    PubMed

    Gannon, Stephen A; Mukamal, Kenneth J; Chang, James D

    2018-06-14

    The aim of this study was to identify echocardiographic predictors of improved or worsening renal function during intravenous diuresis for decompensated heart failure. Secondary aim included defining the incidence and clinical risk factors for acute changes in renal function with decongestion. A retrospective review of 363 patients admitted to a single centre for decompensated heart failure who underwent intravenous diuresis and transthoracic echocardiography was conducted. Clinical, echocardiographic, and renal function data were retrospectively collected. A multinomial logistic regression model was created to determine relative risk ratios for improved renal function (IRF) or worsening renal function (WRF). Within this cohort, 36% of patients experienced WRF, 35% had stable renal function, and 29% had IRF. Patients with WRF were more likely to have a preserved left ventricular ejection fraction compared with those with stable renal function or IRF (P = 0.02). Patients with IRF were more likely to have a dilated, hypokinetic right ventricle compared with those with stable renal function or WRF (P ≤ 0.01), although this was not significant after adjustment for baseline characteristics. Left atrial size, left ventricular linear dimensions, and diastolic function did not significantly predict change in renal function. An acute change in renal function occurred in 65% of patients admitted with decompensated heart failure. WRF was statistically more likely in patients with a preserved left ventricular ejection fraction. A trend towards IRF was noted in patients with global right ventricular dysfunction. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  14. Renal cell tumors with clear cell histology and intact VHL and chromosome 3p: a histological review of tumors from the Cancer Genome Atlas database.

    PubMed

    Favazza, Laura; Chitale, Dhananjay A; Barod, Ravi; Rogers, Craig G; Kalyana-Sundaram, Shanker; Palanisamy, Nallasivam; Gupta, Nilesh S; Williamson, Sean R

    2017-11-01

    Clear cell renal cell carcinoma is by far the most common form of kidney cancer; however, a number of histologically similar tumors are now recognized and considered distinct entities. The Cancer Genome Atlas published data set was queried (http://cbioportal.org) for clear cell renal cell carcinoma tumors lacking VHL gene mutation and chromosome 3p loss, for which whole-slide images were reviewed. Of the 418 tumors in the published Cancer Genome Atlas clear cell renal cell carcinoma database, 387 had VHL mutation, copy number loss for chromosome 3p, or both (93%). Of the remaining, 27/31 had whole-slide images for review. One had 3p loss based on karyotype but not sequencing, and three demonstrated VHL promoter hypermethylation. Nine could be reclassified as distinct or emerging entities: translocation renal cell carcinoma (n=3), TCEB1 mutant renal cell carcinoma (n=3), papillary renal cell carcinoma (n=2), and clear cell papillary renal cell carcinoma (n=1). Of the remaining, 6 had other clear cell renal cell carcinoma-associated gene alterations (PBRM1, SMARCA4, BAP1, SETD2), leaving 11 specimens, including 2 high-grade or sarcomatoid renal cell carcinomas and 2 with prominent fibromuscular stroma (not TCEB1 mutant). One of the remaining tumors exhibited gain of chromosome 7 but lacked histological features of papillary renal cell carcinoma. Two tumors previously reported to harbor TFE3 gene fusions also exhibited VHL mutation, chromosome 3p loss, and morphology indistinguishable from clear cell renal cell carcinoma, the significance of which is uncertain. In summary, almost all clear cell renal cell carcinomas harbor VHL mutation, 3p copy number loss, or both. Of tumors with clear cell histology that lack these alterations, a subset can now be reclassified as other entities. Further study will determine whether additional entities exist, based on distinct genetic pathways that may have implications for treatment.

  15. Prognostic and predictive value of VHL gene alteration in renal cell carcinoma: a meta-analysis and review.

    PubMed

    Kim, Bum Jun; Kim, Jung Han; Kim, Hyeong Su; Zang, Dae Young

    2017-02-21

    The von Hippel-Lindau (VHL) gene is often inactivated in sporadic renal cell carcinoma (RCC) by mutation or promoter hypermethylation. The prognostic or predictive value of VHL gene alteration is not well established. We conducted this meta-analysis to evaluate the association between the VHL alteration and clinical outcomes in patients with RCC. We searched PUBMED, MEDLINE and EMBASE for articles including following terms in their titles, abstracts, or keywords: 'kidney or renal', 'carcinoma or cancer or neoplasm or malignancy', 'von Hippel-Lindau or VHL', 'alteration or mutation or methylation', and 'prognostic or predictive'. There were six studies fulfilling inclusion criteria and a total of 633 patients with clear cell RCC were included in the study: 244 patients who received anti-vascular endothelial growth factor (VEGF) therapy in the predictive value analysis and 419 in the prognostic value analysis. Out of 663 patients, 410 (61.8%) had VHL alteration. The meta-analysis showed no association between the VHL gene alteration and overall response rate (relative risk = 1.47 [95% CI, 0.81-2.67], P = 0.20) or progression free survival (hazard ratio = 1.02 [95% CI, 0.72-1.44], P = 0.91) in patients with RCC who received VEGF-targeted therapy. There was also no correlation between the VHL alteration and overall survival (HR = 0.80 [95% CI, 0.56-1.14], P = 0.21). In conclusion, this meta-analysis indicates that VHL gene alteration has no prognostic or predictive value in patients with clear cell RCC.

  16. Porcine proximal tubular cells (LLC-PK1) are able to tolerate high levels of lithium chloride in vitro: assessment of the influence of 1-20 mM LiCl on cell death and alterations in cell biology and biochemistry.

    PubMed

    Lucas, Kirsten C; Hart, David A; Becker, Rolf W

    2010-01-25

    Lithium, a prophylactic drug for the treatment of bipolar disorder, is prescribed with caution due to its side effects, including renal damage. In this study porcine LLC-PK1 renal tubular cells were used to establish the direct toxicity of lithium on proximal cells and gain insights into the molecular mechanisms involved. In the presence of LiCl, cell proliferation exhibited insignificant decreases in a concentration-dependent manner, but once confluent, constant cell numbers were observed. Cell cycle studies indicated a small dose-dependent accumulation of cells in the G2/M stage after 24 h, as well as an increase in cells in the G0/G1 phase after treatment with 1-10 mM LiCl, but not at 20 mM LiCl. No evidence of apoptosis was observed based on cell morphology or DNA fragmentation studies, or evidence of protein expression changes for Bax, Bcl-2, and p53 proteins using immunocytochemistry. In addition caspases 3, 8 and 9 activity remained unaltered between control and lithium-treated cultures. To conclude, exposure to high concentrations of lithium did not result in overt toxic effects to LLC-PK1 renal cells, although LiCl did alter some aspects of cell behaviour, which could potentially influence function over time.

  17. Prostaglandin control of renal circulation in the unanesthetized dog and baboon

    NASA Technical Reports Server (NTRS)

    Swain, J. A.; Vatner, S. F.; Heyndrickx, G. R.; Boettcher, D. H.

    1975-01-01

    Effects of indomethacin and meclofenamate, inhibitors of prostaglandin synthesis, were evaluated in the regulation of renal blood flow in conscious and anesthetized dogs and in tranquilized baboons, instrumented with arterial pressure catheters and renal blood flow probes. Indomethacin, 10 mg/kg, did not alter renal blood flow or resistance significantly in the conscious dog. In the anesthetized dog, however, indomethacin caused a reduction in renal blood flow and an elevation of renal vascular resistance. Meclofenamate, 4 mg/kg, reduced renal flow and increased renal vascular resistance in conscious dogs. In conscious dogs and tranquilized primates, indomethacin and meclofenamate reduced the reactive hyperemia in the renal bed. Methoxamine and angiotensin II infused in graded doses induced significantly greater renal vasoconstriction in conscious dogs in the presence of indomethacin. Thus, in the conscious animal, prostaglandins appear to play only a minor part in the control of renal circulation at rest, but they are of greater importance in mediating the renal responses to reactive hyperemia and to vasoconstriction.

  18. Neural control of renal tubular sodium reabsorption of the dog.

    PubMed

    DiBona, G F

    1978-04-01

    The evidence supporting a role for direct neurogenic control of renal tubular sodium reabsorption is reviewed. Electron microscopic and fluorescence histochemical studies demonstrate adrenergic nerve terminals in direct contact with basement membranes of mammalian renal tubular epithelial cells. Low level direct or baroreceptor reflex stimulation of renal sympathetic nerves produces an increase in renal tubular sodium reabsorption without alterations in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. The antinatriuresis is prevented by prior treatment of the kidney with guanethidine or phenoxybenzamine. Possible indirect mediation of the antinatriuresis by other humoral agents known to be released from the kidney upon renal nerve stimulation (angiotensin II, prostaglandin) was excluded by experiments with appropriate blocking agents. Reflex diminutions in renal nerve activity (left atrial distention, stellate ganglion stimulation) produce a decrease in renal tubular sodium reabsorption independent of glomerular filtration rate or renal blood flow. The anatomically described adrenergic innervation of the renal tubules participates in the direct regulation of renal tubular sodium reabsorption.

  19. Post-Discharge Worsening Renal Function in Patients with Type 2 Diabetes and Recent Acute Coronary Syndrome.

    PubMed

    Morici, Nuccia; Savonitto, Stefano; Ponticelli, Claudio; Schrieks, Ilse C; Nozza, Anna; Cosentino, Francesco; Stähli, Barbara E; Perrone Filardi, Pasquale; Schwartz, Gregory G; Mellbin, Linda; Lincoff, A Michael; Tardif, Jean-Claude; Grobbee, Diederick E

    2017-09-01

    Worsening renal function during hospitalization for an acute coronary syndrome is strongly predictive of in-hospital and long-term outcome. However, the role of post-discharge worsening renal function has never been investigated in this setting. We considered the placebo cohort of the AleCardio trial comparing aleglitazar with standard medical therapy among patients with type 2 diabetes mellitus and a recent acute coronary syndrome. Patients who had died or had been admitted to hospital for heart failure before the 6-month follow-up, as well as patients without complete renal function data, were excluded, leaving 2776 patients for the analysis. Worsening renal function was defined as a >20% reduction in estimated glomerular filtration rate from discharge to 6 months, or progression to macroalbuminuria. The Cox regression analysis was used to determine the prognostic impact of 6-month renal deterioration on the composite of all-cause death and hospitalization for heart failure. Worsening renal function occurred in 204 patients (7.34%). At a median follow-up of 2 years the estimated rates of death and hospitalization for heart failure per 100 person-years were 3.45 (95% confidence interval [CI], 2.46-6.36) for those with worsening renal function, versus 1.43 (95% CI, 1.14-1.79) for patients with stable renal function. At the adjusted analysis worsening renal function was associated with the composite endpoint (hazard ratio 2.65; 95% CI, 1.57-4.49; P <.001). Post-discharge worsening renal function is not infrequent among patients with type 2 diabetes and acute coronary syndromes with normal or mildly depressed renal function, and is a strong predictor of adverse cardiovascular events. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate

    PubMed Central

    Ueda, Norishi

    2015-01-01

    Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed. PMID:25751724

  1. Renal blood flow measurement with contrast-enhanced harmonic ultrasonography: evaluation of dopamine-induced changes in renal cortical perfusion in humans.

    PubMed

    Kishimoto, N; Mori, Y; Nishiue, T; Shibasaki, Y; Iba, O; Nose, A; Uchiyama-Tanaka, Y; Masaki, H; Matsubara, H; Iwasaka, T

    2003-06-01

    An accessible non-invasive method for evaluating renal regional blood flow in real time is highly desirable in the clinical setting. Recent progress in ultrasonography with microbubble contrast has allowed quantification of regional blood flow in animal models. Goal ofthis study was to establish a convenient contrast--enhanced harmonic ultrasonography (CEHU) method for evaluating renal cortical blood flow in humans. We carried out intermittent second harmonic imaging in 9 healthy volunteers. Pulse interval was progressively decreased from 4 s - 0.2 s during continuous venous infusion of the microbubble contrast agent. Pulse interval versus CEHU-derived acoustic intensity plots provided microbubble velocity (MV) and fractional vascular volume (FVV) during renal cortical perfusion in humans. Low-dose dopamine infusion (2 microg/min/kg) resulted in a significant increase in MV which correlated well with the increase in total renal blood flow (RBF) determined by a conventional study of p-aminohippurate clearance (C(PAH)) (r = 0.956, p < 0.0001). Although FVV was not significantly increased, alterations in CEHU-derived renal cortical blood flow calculated by the products of MV and FVV were also correlated with alterations in total RBF (r = 0.969, p < 0.0001). Thus, low-dose dopamine infusion increases renal cortical blood flow observed in CEHU, mainly by increasing MV. The present study shows that renal cortical blood flow in humans can be measured non-invasively by CEHU and that CEHU can be used for quantitatively evaluating changes induced by a therapeutic agent such as dopamine in flow velocity and in FVV.

  2. Supplementation with N-3 Long-Chain Polyunsaturated Fatty Acids or Olive Oil in Men and Women with Renal Disease Induces Differential Changes in the DNA Methylation of FADS2 and ELOVL5 in Peripheral Blood Mononuclear Cells

    PubMed Central

    Hoile, Samuel P.; Clarke-Harris, Rebecca; Huang, Rae-Chi; Calder, Philip C.; Mori, Trevor A.; Beilin, Lawrence J.; Lillycrop, Karen A.; Burdge, Graham C.

    2014-01-01

    Background Studies in animal models and in cultured cells have shown that fatty acids can induce alterations in the DNA methylation of specific genes. There have been no studies of the effects of fatty acid supplementation on the epigenetic regulation of genes in adult humans. Methods and Results We investigated the effect of supplementing renal patients with 4 g daily of either n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) or olive oil (OO) for 8 weeks on the methylation status of individual CpG loci in the 5′ regulatory region of genes involved in PUFA biosynthesis in peripheral blood mononuclear cells from men and women (aged 53 to 63 years). OO and n-3 LCPUFA each altered (>10% difference in methylation) 2/22 fatty acid desaturase (FADS)-2 CpGs, while n-3 LCPUFA, but not OO, altered (>10%) 1/12 ELOVL5 CpGs in men. OO altered (>6%) 8/22 FADS2 CpGs and (>3%) 3/12 elongase (ELOVL)-5 CpGs, while n-3 LCPUFA altered (>5%) 3/22 FADS2 CpGs and 2/12 (>3%) ELOVL5 CpGs in women. FADS1 or ELOVL2 methylation was unchanged. The n-3 PUFA supplementation findings were replicated in blood DNA from healthy adults (aged 23 to 30 years). The methylation status of the altered CpGs in FADS2 and ELOVL5 was associated negatively with the level of their transcripts. Conclusions These findings show that modest fatty acid supplementation can induce altered methylation of specific CpG loci in adult humans, contingent on the nature of the supplement and on sex. This has implications for understanding the effect of fatty acids on PUFA metabolism and cell function. PMID:25329159

  3. Atherosclerotic renal artery stenosis in the post-CORAL era part 1: the renal penumbra concept and next-generation functional diagnostic imaging.

    PubMed

    Sag, Alan Alper; Inal, Ibrahim; Okcuoglu, John; Rossignol, Patrick; Ortiz, Alberto; Afsar, Baris; Sos, Thomas A; Kanbay, Mehmet

    2016-04-01

    After three neutral trials in which renal artery stenting failed to improve renal function or reduce cardiovascular and renal events, the controversy surrounding diagnosis and treatment of atherosclerotic renal artery stenosis and renovascular hypertension has led to paradigm shifts in the diagnostic algorithm. Noninvasive determination of earlier events (cortex hypoxia and renal artery hemodynamic changes) will supersede late sequelae (calcific stenosis, renal cortical thinning). Therefore, this review proposes the concept of renal penumbra in defining at-risk ischemic renal parenchyma. The complex field of functional renal magnetic resonance imaging will be reviewed succinctly in a clinician-directed fashion. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  4. Arterially Delivered Mesenchymal Stem Cells Prevent Obstruction-Induced Renal Fibrosis

    PubMed Central

    Asanuma, Hiroshi; Vanderbrink, Brian A.; Campbell, Matthew T.; Hile, Karen L.; Zhang, Hongji; Meldrum, Daniel R.; Meldrum, Kirstan K.

    2010-01-01

    Purpose Mesenchymal stem cells (MSCs) hold promise for the treatment of renal disease. While MSCs have been shown to accelerate recovery and prevent acute renal failure in multiple disease models, the effect of MSC therapy on chronic obstruction-induced renal fibrosis has not previously been evaluated. Materials and Methods Male Sprague-Dawley rats underwent renal artery injection of vehicle or fluorescent-labeled human bone marrow-derived MSCs immediately prior to sham operation or induction of left ureteral obstruction (UUO). One or 4 weeks later, the kidneys were harvested and the renal cortex analyzed for evidence of stem cell infiltration, epithelial-mesenchymal transition (EMT) as evidenced by E-cadherin/α-smooth muscle actin (α-SMA) expression and fibroblast specific protein (FSP+) staining, renal fibrosis (collagen content, Masson’s trichrome staining), and cytokine and growth factor activity (ELISA and real time RT-PCR). Results Fluorescent-labeled MSCs were detected in the interstitium of the kidney up to 4 weeks post-obstruction. Arterially delivered MSCs significantly reduced obstruction-induced α-SMA expression, FSP+ cell accumulation, total collagen content, and tubulointerstitial fibrosis, while simultaneously preserving E-cadherin expression, suggesting that MSCs prevent obstruction-induced EMT and renal fibrosis. Exogenous MSCs reduced obstruction-induced tumor necrosis factor-α (TNF-α) levels, but did not alter transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), interleukin-10 (IL-10), fibroblast growth factor (FGF), or hepatocyte growth factor (HGF) expression. Conclusions Human bone marrow-derived MSCs remain viable several weeks after delivery into the kidney and provide protection against obstruction-induced EMT and chronic renal fibrosis. While the mechanism of MSCs-induced renal protection during obstruction remains unclear, our results demonstrate that alterations in TNF-α production may be involved. PMID:20850784

  5. Population pharmacokinetics of pomalidomide in patients with relapsed or refractory multiple myeloma with various degrees of impaired renal function.

    PubMed

    Li, Yan; Wang, Xiaomin; O'Mara, Edward; Dimopoulos, Meletios A; Sonneveld, Pieter; Weisel, Katja C; Matous, Jeffrey; Siegel, David S; Shah, Jatin J; Kueenburg, Elisabeth; Sternas, Lars; Cavanaugh, Chloe; Zaki, Mohamed; Palmisano, Maria; Zhou, Simon

    2017-01-01

    Pomalidomide is an immunomodulatory drug for treatment of relapsed or refractory multiple myeloma (rrMM) in patients who often have comorbid renal conditions. To assess the impact of renal impairment on pomalidomide exposure, a population pharmacokinetics (PPK) model of pomalidomide in rrMM patients with various degrees of impaired renal function was developed. Intensive and sparse pomalidomide concentration data collected from two clinical studies in rrMM patients with normal renal function, moderately impaired renal function, severely impaired renal function not requiring dialysis, and with severely impaired renal function requiring dialysis were pooled over the dose range of 2 to 4 mg, to assess specifically the influence of the impaired renal function as a categorical variable and a continuous variable on pomalidomide clearance and plasma exposure. In addition, pomalidomide concentration data collected on dialysis days from both the withdrawal (arterial) side and from the returning (venous) side of the dialyzer, from rrMM patients with severely impaired renal function requiring dialysis, were used to assess the extent to which dialysis contributes to the removal of pomalidomide from blood circulation. PPK analyses demonstrated that moderate to severe renal impairment not requiring dialysis has no influence on pomalidomide clearance or plasma exposure, as compared to those patients with normal renal function, while pomalidomide exposure increased approximately 35% in patients with severe renal impairment requiring dialysis on nondialysis days. In addition, dialysis increased total body pomalidomide clearance from 5 L/h to 12 L/h, indicating that dialysis will significantly remove pomalidomide from the blood circulation. Thus, pomalidomide should be administered post-dialysis on the days of dialysis.

  6. Alteration of the Intestinal Environment by Lubiprostone Is Associated with Amelioration of Adenine-Induced CKD

    PubMed Central

    Mishima, Eikan; Fukuda, Shinji; Shima, Hisato; Hirayama, Akiyoshi; Akiyama, Yasutoshi; Takeuchi, Yoichi; Fukuda, Noriko N.; Suzuki, Takehiro; Suzuki, Chitose; Yuri, Akinori; Kikuchi, Koichi; Tomioka, Yoshihisa; Ito, Sadayoshi; Soga, Tomoyoshi

    2015-01-01

    The accumulation of uremic toxins is involved in the progression of CKD. Various uremic toxins are derived from gut microbiota, and an imbalance of gut microbiota or dysbiosis is related to renal failure. However, the pathophysiologic mechanisms underlying the relationship between the gut microbiota and renal failure are still obscure. Using an adenine-induced renal failure mouse model, we evaluated the effects of the ClC-2 chloride channel activator lubiprostone (commonly used for the treatment of constipation) on CKD. Oral administration of lubiprostone (500 µg/kg per day) changed the fecal and intestinal properties in mice with renal failure. Additionally, lubiprostone treatment reduced the elevated BUN and protected against tubulointerstitial damage, renal fibrosis, and inflammation. Gut microbiome analysis of 16S rRNA genes in the renal failure mice showed that lubiprostone treatment altered their microbial composition, especially the recovery of the levels of the Lactobacillaceae family and Prevotella genus, which were significantly reduced in the renal failure mice. Furthermore, capillary electrophoresis–mass spectrometry-based metabolome analysis showed that lubiprostone treatment decreased the plasma level of uremic toxins, such as indoxyl sulfate and hippurate, which are derived from gut microbiota, and a more recently discovered uremic toxin, trans-aconitate. These results suggest that lubiprostone ameliorates the progression of CKD and the accumulation of uremic toxins by improving the gut microbiota and intestinal environment. PMID:25525179

  7. Measuring residual renal function for hemodialysis adequacy: Is there an easier option?

    PubMed

    Davenport, Andrew

    2017-10-01

    Most patients starting hemodialysis (HD) have residual renal function. As such, there has been increased interest in starting patients with less frequent and shorter dialysis session times. However, for this incremental approach to be successful, patients require regular monitoring of residual renal function, so that as residual renal function declines, the amount of HD is appropriately increased. Currently most dialysis centers rely on interdialytic urine collections. However, many patients find these inconvenient and there may be marked intrapatient variability due to compliance issues. Thus, alternative markers of residual renal function are required for routine clinical practice. Currently three middle sized molecules; cystatin C, β2 microglobulin, and βtrace protein have been investigated as potential endogenous markers of glomerular filtration. Although none is ideal, combinations of these markers have been proposed to provide a more accurate estimation of glomerular clearance, and in particular cut offs for minimal residual renal function. However, in patients with low levels of residual renal function it remains unclear as to whether the benefits of residual renal function equally apply to glomerular filtration or tubular function. © 2017 International Society for Hemodialysis.

  8. Value of Nephrometry Score Constituents on Perioperative Outcomes and Split Renal Function in Patients Undergoing Minimally Invasive Partial Nephrectomy.

    PubMed

    Watts, Kara L; Ghosh, Propa; Stein, Solomon; Ghavamian, Reza

    2017-01-01

    To assess the relationship between individual nephrometry score (NS) constituents (RENAL) on perioperative outcomes and renal function of the surgical kidney in patients undergoing laparoscopic partial nephrectomy or robotic-assisted partial nephrectomy. Two hundred forty-five patients who underwent laparoscopic partial nephrectomy or robotic-assisted partial nephrectomy between 2005 and 2014 were retrospectively reviewed. Each renal mass' NS was calculated from preoperative computed tomography imaging. Multivariate regression analysis was used to evaluate the effect of NS variables on perioperative outcomes and change in overall renal function (as estimated by glomerular filtration rate) from preoperative to 1-year postoperative. A cohort analysis assessed the effect of NS variables on change in split renal function of the surgical kidney from pre- to postoperative based on nuclear medicine renal scintigraphy. Tumor radius (R), endophytic nature (E), and nearness to collecting system (N) variables significantly and incrementally predicted a longer operative time and warm ischemia time. Overall renal function based on glomerular filtration rate was not affected by any NS variable. However, percent function of the surgical kidney by renal scintigraphy significantly decreased postoperatively as R and E values increased. R, E, and N were associated with significant changes in warm ischemia time and operative time. R and E were associated with a significant decrease in split renal function of the surgical kidney at 1 year after surgery but not with overall renal function. R, E, and N are the NS constituents most relevant to perioperative outcomes and postoperative differential renal function after partial nephrectomy. Copyright © 2016. Published by Elsevier Inc.

  9. Glucocorticoid-induced fetal programming alters the functional complement of angiotensin receptor subtypes within the kidney.

    PubMed

    Gwathmey, TanYa M; Shaltout, Hossam A; Rose, James C; Diz, Debra I; Chappell, Mark C

    2011-03-01

    We examined the impact of fetal programming on the functional responses of renal angiotensin receptors. Fetal sheep were exposed in utero to betamethasone (BMX; 0.17 mg/kg) or control (CON) at 80 to 81 days gestation with full-term delivery. Renal nuclear and plasma membrane fractions were isolated from sheep age 1.0 to 1.5 years for receptor binding and fluorescence detection of reactive oxygen species (ROS) or nitric oxide (NO). Mean arterial blood pressure and blood pressure variability were significantly higher in the BMX-exposed adult offspring versus CON sheep. The proportion of nuclear AT(1) receptors sensitive to losartan was 2-fold higher (67 ± 6% vs 27 ± 9%; P<0.01) in BMX compared with CON. In contrast, the proportion of AT(2) sites was only one third that of controls (BMX, 25 ± 11% vs CON, 78 ± 4%; P<0.01), with a similar reduction in sites sensitive to the Ang-(1-7) antagonist D-Ala7-Ang-(1-7) with BMX exposure. Functional studies revealed that Ang II stimulated ROS to a greater extent in BMX than in CON sheep (16 ± 3% vs 6 ± 4%; P<0.05); however, NO production to Ang II was attenuated in BMX (26 ± 7% vs 82 ± 14%; P<0.05). BMX exposure was also associated with a reduction in the Ang-(1-7) NO response (75 ± 8% vs 131 ± 26%; P<0.05). We conclude that altered expression of angiotensin receptor subtypes may be one mechanism whereby functional changes in NO- and ROS-dependent signaling pathways may favor the sustained increase in blood pressure evident in fetal programming.

  10. Reactive oxygen species in the presence of high glucose alter ureteric bud morphogenesis.

    PubMed

    Zhang, Shao-Ling; Chen, Yun-Wen; Tran, Stella; Chenier, Isabelle; Hébert, Marie-Josée; Ingelfinger, Julie R

    2007-07-01

    Renal malformations are a major cause of childhood renal failure. During the development of the kidney, ureteric bud (UB) branching morphogenesis is critical for normal nephrogenesis. These studies investigated whether renal UB branching morphogenesis is altered by a high ambient glucose environment and studied underlying mechanism(s). Kidney explants that were isolated from different periods of gestation (embryonic days 12 to 18) from Hoxb7-green fluorescence protein mice were cultured for 24 h in either normal d-glucose (5 mM) or high d-glucose (25 mM) medium with or without various inhibitors. Alterations in renal morphogenesis were assessed by fluorescence microscopy. Paired-homeobox 2 (Pax-2) gene expression was determined by real-time quantitative PCR, Western blotting, and immunohistology. The results revealed that high d-glucose (25 mM) specifically stimulates UB branching morphogenesis via Pax-2 gene expression, whereas other glucose analogs, such as d-mannitol, l-glucose, and 2-deoxy-d-glucose, had no effect. The stimulatory effect of high glucose on UB branching was blocked in the presence of catalase and inhibitors of NADPH oxidase, mitochondrial electron transport chain complex I, and Akt signaling. Moreover, in in vivo studies, it seems that high glucose induces, via Pax-2 (mainly localized in UB), acceleration of UB branching but not nephron formation. Taken together, these data demonstrate that high glucose alters UB branching morphogenesis. This occurs, at least in part, via reactive oxygen species generation, activation of Akt signaling, and upregulation of Pax-2 gene expression.

  11. Validation of a Functional Pyelocalyceal Renal Model for the Evaluation of Renal Calculi Passage While Riding a Roller Coaster.

    PubMed

    Mitchell, Marc A; Wartinger, David D

    2016-10-01

    The identification and evaluation of activities capable of dislodging calyceal renal calculi require a patient surrogate or validated functional pyelocalyceal renal model. To evaluate roller coaster facilitation of calyceal renal calculi passage using a functional pyelocalyceal renal model. A previously described adult ureteroscopy and renoscopy simulator (Ideal Anatomic) was modified and remolded to function as a patient surrogate. Three renal calculi of different sizes from the patient who provided the original computed tomographic urograph on which the simulator was based were used. The renal calculi were suspended in urine in the model and taken for 20 rides on the Big Thunder Mountain Railroad roller coaster at Walt Disney World in Orlando, Florida. The roller coaster rides were analyzed using variables of renal calculi volume, calyceal location, model position on the roller coaster, and renal calculi passage. Sixty renal calculi rides were analyzed. Independent of renal calculi volume and calyceal location, front seating on the roller coaster resulted in a passage rate of 4 of 24. Independent of renal calculi volume and calyceal location, rear seating on the roller coaster resulted in a passage rate of 23 of 36. Independent of renal calculi volume in rear seating, calyceal location differed in passage rates, with an upper calyceal calculi passage rate of 100%; a middle calyceal passage rate of 55.6%; and a lower calyceal passage rate of 40.0%. The functional pyelocalyceal renal model serves as a functional patient surrogate to evaluate activities that facilitate calyceal renal calculi passage. The rear seating position on the roller coaster led to the most renal calculi passages.

  12. Effect of Carnosine on Renal Function, Oxidation and Glycation Products in the Kidneys of High-Fat Diet/Streptozotocin-Induced Diabetic Rats.

    PubMed

    Fatih Aydın, Abdurrahman; Küçükgergin, Canan; Bingül, İlknur; Doğan-Ekici, Işın; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2017-05-01

    High fat diet (HFD) and low dose of streptozotocin (STZ)-treated rats provide an animal model for type 2 Diabetes Mellitus (T2DM). Oxidative stress plays a role in the development of diabetic complications. Carnosine (CAR) has antioxidant and antiglycating properties. We investigated effects of CAR on renal function, oxidation and glycation products in HFD+STZ-rats. Rats were fed with HFD (60% of total calories from fat) for 4 weeks and then a single dose STZ (40 mg/kg; i.p.) was applied. Rats with blood glucose levels above 200 mg/dL were fed with HFD until the end of the 12 th week. CAR (250 mg/kg body weight; i.p.; 5 times a week) was administered to rats for the last 4 weeks. Glycated hemoglobin (HbA1c), glucose, lipids, and andrenal function tests in serum as well as reactive oxygen species, malondialdehyde, protein carbonyl, advanced oxidation protein products, advanced glycation end products (AGEs), antioxidant power, and antioxidant enzyme activities and their mRNA expressions in kidneys were determined. CAR treatment did not alter glucose and HbA1c, but it decreased serum lipids, creatinine, and urea levels in HFD+STZ rats. Oxidation products of lipids and proteins and AGEs levels decreased, but antioxidant enzyme activities and their mRNA expressions remained unchanged due to CAR treatment. Our results indicate that CAR treatment alleviated renal function and decreased accumulation of oxidation and glycation products in kidneys in HFD+STZ-rats. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Shiga Toxin 1 Induces on Lipopolysaccharide-Treated Astrocytes the Release of Tumor Necrosis Factor-alpha that Alter Brain-Like Endothelium Integrity

    PubMed Central

    Landoni, Verónica I.; Schierloh, Pablo; de Campos Nebel, Marcelo; Fernández, Gabriela C.; Calatayud, Cecilia; Lapponi, María J.; Isturiz, Martín A.

    2012-01-01

    The hemolytic uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia and renal dysfunction. The typical form of HUS is generally associated with infections by Gram-negative Shiga toxin (Stx)-producing Escherichia coli (STEC). Endothelial dysfunction induced by Stx is central, but bacterial lipopolysaccharide (LPS) and neutrophils (PMN) contribute to the pathophysiology. Although renal failure is characteristic of this syndrome, neurological complications occur in severe cases and is usually associated with death. Impaired blood-brain barrier (BBB) is associated with damage to cerebral endothelial cells (ECs) that comprise the BBB. Astrocytes (ASTs) are inflammatory cells in the brain and determine the BBB function. ASTs are in close proximity to ECs, hence the study of the effects of Stx1 and LPS on ASTs, and the influence of their response on ECs is essential. We have previously demonstrated that Stx1 and LPS induced activation of rat ASTs and the release of inflammatory factors such as TNF-α, nitric oxide and chemokines. Here, we demonstrate that rat ASTs-derived factors alter permeability of ECs with brain properties (HUVECd); suggesting that functional properties of BBB could also be affected. Additionally, these factors activate HUVECd and render them into a proagregant state promoting PMN and platelets adhesion. Moreover, these effects were dependent on ASTs secreted-TNF-α. Stx1 and LPS-induced ASTs response could influence brain ECs integrity and BBB function once Stx and factors associated to the STEC infection reach the brain parenchyma and therefore contribute to the development of the neuropathology observed in HUS. PMID:22479186

  14. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations.

    PubMed

    Blázquez-Medela, Ana M; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M; Romero, Miguel; Duarte, Juan M; López-Hernández, Francisco J; López-Novoa, José M; Martínez-Salgado, Carlos

    2015-10-01

    Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys.We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage.Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments.The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening.KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage.

  15. Ameliorative effect of naringin in acetaminophen-induced hepatic and renal toxicity in laboratory rats: role of FXR and KIM-1.

    PubMed

    Adil, Mohammad; Kandhare, Amit D; Ghosh, Pinaki; Venkata, Shivakumar; Raygude, Kiran S; Bodhankar, Subhash L

    2016-07-01

    Acetaminophen (APAP) is an analgesic and antipyretic agent commonly known agent to cause hepatic and renal toxicity at a higher dose. Naringin, a bioflavonoid possesses multiple pharmacological properties such as antioxidant, anti-inflammatory, analgesic and anti-hyperlipidemic activity. To evaluate the effect of naringin against the APAP-induced hepatic and renal toxicity. Male Wistar albino rats (180-220 g) were divided into various groups, and toxicity was induced by APAP (700 mg/kg, p.o., 14 days). Naringin (20, 40 and 80 mg/kg, p.o.) or Silymarin (25 mg/kg) was administered to rats 2 h before APAP oral administration. Various biochemical, molecular and histopathological parameter were accessed in hepatic and renal tissue. Naringin pretreatment significantly decreased (p < 0.05) serum creatinine, blood urea nitrogen, bilirubin, aspartate transaminase, alanine transaminase, lactate dehydrogenase, low-density lipoprotein, very low-density lipoprotein, cholesterol and triglycerides as compared with APAP control rats. Decreased level of serum albumin, uric acid, and high-density lipoprotein were also significantly restored (p < 0.05) by naringin pretreatment. It also significantly restores (p < 0.05) the altered level of superoxide dismutase, reduced glutathione, malondialdehyde and nitric oxide in hepatic and renal tissue. Moreover, altered mRNA expression of hepatic farnesoid X receptor and renal injury molecule-1 (KIM-1) were significantly restored (p < 0.05) by naringin treatment. Naringin treatment also reduced histological alteration induced by APAP in the liver and kidney. Naringin exerts its hepato- and nephroprotective effect via modulation of oxido-nitrosative stress, FXR and KIM-1 mRNA expression.

  16. Urea.

    PubMed

    Wang, Hongkai; Ran, Jianhua; Jiang, Tao

    2014-01-01

    Urea is generated by the urea cycle enzymes, which are mainly in the liver but are also ubiquitously expressed at low levels in other tissues. The metabolic process is altered in several conditions such as by diets, hormones, and diseases. Urea is then eliminated through fluids, especially urine. Blood urea nitrogen (BUN) has been utilized to evaluate renal function for decades. New roles for urea in the urinary system, circulation system, respiratory system, digestive system, nervous system, etc., were reported lately, which suggests clinical significance of urea.

  17. Iohexol clearance is superior to creatinine-based renal function estimating equations in detecting short-term renal function decline in chronic heart failure.

    PubMed

    Cvan Trobec, Katja; Kerec Kos, Mojca; von Haehling, Stephan; Anker, Stefan D; Macdougall, Iain C; Ponikowski, Piotr; Lainscak, Mitja

    2015-12-01

    To compare the performance of iohexol plasma clearance and creatinine-based renal function estimating equations in monitoring longitudinal renal function changes in chronic heart failure (CHF) patients, and to assess the effects of body composition on the equation performance. Iohexol plasma clearance was measured in 43 CHF patients at baseline and after at least 6 months. Simultaneously, renal function was estimated with five creatinine-based equations (four- and six-variable Modification of Diet in Renal Disease, Cockcroft-Gault, Cockcroft-Gault adjusted for lean body mass, Chronic Kidney Disease Epidemiology Collaboration equation) and body composition was assessed using bioimpedance and dual-energy x-ray absorptiometry. Over a median follow-up of 7.5 months (range 6-17 months), iohexol clearance significantly declined (52.8 vs 44.4 mL/[min ×1.73 m2], P=0.001). This decline was significantly higher in patients receiving mineralocorticoid receptor antagonists at baseline (mean decline -22% of baseline value vs -3%, P=0.037). Mean serum creatinine concentration did not change significantly during follow-up and no creatinine-based renal function estimating equation was able to detect the significant longitudinal decline of renal function determined by iohexol clearance. After accounting for body composition, the accuracy of the equations improved, but not their ability to detect renal function decline. Renal function measured with iohexol plasma clearance showed relevant decline in CHF patients, particularly in those treated with mineralocorticoid receptor antagonists. None of the equations for renal function estimation was able to detect these changes. ClinicalTrials.gov registration number: NCT01829880.

  18. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury

    PubMed Central

    Cheng, Kang; Rai, Partab; Lan, Xiqian; Plagov, Andrei; Malhotra, Ashwani; Gupta, Sanjeev; Singhal, Pravin C

    2013-01-01

    Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic mice and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. PMID:23806280

  19. Impact of worsening renal function during the treatment of decompensated heart failure on changes in renal function during subsequent hospitalization.

    PubMed

    Testani, Jeffrey M; Cappola, Thomas P; McCauley, Brian D; Chen, Jennifer; Shen, James; Shannon, Richard P; Kimmel, Stephen E

    2011-05-01

    Worsening renal function (WRF) commonly complicates the treatment of acute decompensated heart failure. Despite considerable investigation in this area, it remains unclear to what degree WRF is a reflection of treatment- versus patient-related factors. We hypothesized that if WRF is significantly influenced by factors intrinsic to the patient, then WRF during an index hospitalization should predict WRF during subsequent hospitalization. Consecutive admissions to the Hospital of the University of Pennsylvania with a discharge diagnosis of congestive heart failure were reviewed. Patients with >1 hospitalization were retained for analysis. In total, 181 hospitalization pairs met the inclusion criteria. Baseline patient characteristics demonstrated significant correlation between hospitalizations (P ≤ .002 for all) but minimal association with WRF. In contrast, variables related to the aggressiveness of diuresis were weakly correlated between hospitalizations but significantly associated with WRF (P ≤ .024 for all). Consistent with the primary hypothesis, WRF during the index hospitalization was strongly associated with WRF during subsequent hospitalization (odds ratio [OR] 2.7, P = .003). This association was minimally altered after controlling for traditional baseline characteristics (OR 2.5, P = .006) and in-hospital treatment-related parameters (OR 2.8, P = .005). A prior history of WRF is strongly associated with subsequent episodes of WRF, independent of in-hospital treatment received. These results suggest that baseline factors intrinsic to the patient's cardiorenal pathophysiology have substantial influence on the subsequent development of WRF. Copyright © 2011 Mosby, Inc. All rights reserved.

  20. Impact of Worsening Renal Function during the Treatment of Decompensated Heart Failure on Changes in Renal Function during Subsequent Hospitalization

    PubMed Central

    Testani, Jeffrey M.; Cappola, Thomas P.; McCauley, Brian D.; Chen, Jennifer; Shen, James; Shannon, Richard P.; Kimmel, Stephen E.

    2011-01-01

    Background Worsening renal function (WRF) commonly complicates the treatment of acute decompensated heart failure. Despite considerable investigation in this area, it remains unclear to what degree WRF is a reflection of treatment versus patient related factors. We hypothesized that if WRF is significantly influenced by factors intrinsic to the patient than WRF during an index hospitalization should predict WRF during subsequent hospitalization. Methods Consecutive admissions to the Hospital of the University of Pennsylvania with a discharge diagnosis of congestive heart failure were reviewed. Patients with >1 hospitalization were retained for analysis. Results In total 181 hospitalization pairs met the inclusion criteria. Baseline patient characteristics demonstrated significant correlation between hospitalizations (p≤0.002 for all) but minimal association with WRF. In contrast, variables related to the aggressiveness of diuresis were weakly correlated between hospitalizations but significantly associated with WRF (p≤0.024 for all). Consistent with the primary hypothesis, WRF during the index hospitalization was strongly associated with WRF during subsequent hospitalization (OR=2.7, p=0.003). This association was minimally altered after controlling for traditional baseline characteristics (OR=2.5, p=0.006) and in-hospital treatment related parameters (OR=2.8, p=0.005). Conclusions A prior history of WRF is strongly associated with subsequent episodes of WRF, independent of in-hospital treatment received. These results suggest that baseline factors intrinsic to the patient’s cardiorenal pathophysiology have substantial influence on the subsequent development of WRF. PMID:21570527

  1. 'Special K' and a Loss of Cell-To-Cell Adhesion in Proximal Tubule-Derived Epithelial Cells: Modulation of the Adherens Junction Complex by Ketamine

    PubMed Central

    Hills, Claire E.; Jin, Tianrong; Siamantouras, Eleftherios; Liu, Issac K-K; Jefferson, Kieran P.; Squires, Paul E.

    2013-01-01

    Ketamine, a mild hallucinogenic class C drug, is the fastest growing ‘party drug’ used by 16–24 year olds in the UK. As the recreational use of Ketamine increases we are beginning to see the signs of major renal and bladder complications. To date however, we know nothing of a role for Ketamine in modulating both structure and function of the human renal proximal tubule. In the current study we have used an established model cell line for human epithelial cells of the proximal tubule (HK2) to demonstrate that Ketamine evokes early changes in expression of proteins central to the adherens junction complex. Furthermore we use AFM single-cell force spectroscopy to assess if these changes functionally uncouple cells of the proximal tubule ahead of any overt loss in epithelial cell function. Our data suggests that Ketamine (24–48 hrs) produces gross changes in cell morphology and cytoskeletal architecture towards a fibrotic phenotype. These physical changes matched the concentration-dependent (0.1–1 mg/mL) cytotoxic effect of Ketamine and reflect a loss in expression of the key adherens junction proteins epithelial (E)- and neural (N)-cadherin and β-catenin. Down-regulation of protein expression does not involve the pro-fibrotic cytokine TGFβ, nor is it regulated by the usual increase in expression of Slug or Snail, the transcriptional regulators for E-cadherin. However, the loss in E-cadherin can be partially rescued pharmacologically by blocking p38 MAPK using SB203580. These data provide compelling evidence that Ketamine alters epithelial cell-to-cell adhesion and cell-coupling in the proximal kidney via a non-classical pro-fibrotic mechanism and the data provides the first indication that this illicit substance can have major implications on renal function. Understanding Ketamine-induced renal pathology may identify targets for future therapeutic intervention. PMID:24009666

  2. Novel NEK8 Mutations Cause Severe Syndromic Renal Cystic Dysplasia through YAP Dysregulation

    PubMed Central

    Grampa, Valentina; Odye, Gweltas; Thomas, Sophie; Elkhartoufi, Nadia; Filhol, Emilie; Niel, Olivier; Silbermann, Flora; Lebreton, Corinne; Collardeau-Frachon, Sophie; Rouvet, Isabelle; Alessandri, Jean-Luc; Devisme, Louise; Dieux-Coeslier, Anne; Cordier, Marie-Pierre; Capri, Yline; Khung-Savatovsky, Suonavy; Sigaudy, Sabine; Salomon, Rémi; Antignac, Corinne; Gubler, Marie-Claire; Benmerah, Alexandre; Terzi, Fabiola; Attié-Bitach, Tania; Jeanpierre, Cécile; Saunier, Sophie

    2016-01-01

    Ciliopathies are a group of genetic multi-systemic disorders related to dysfunction of the primary cilium, a sensory organelle present at the cell surface that regulates key signaling pathways during development and tissue homeostasis. In order to identify novel genes whose mutations would cause severe developmental ciliopathies, >500 patients/fetuses were analyzed by a targeted high throughput sequencing approach allowing exome sequencing of >1200 ciliary genes. NEK8/NPHP9 mutations were identified in five cases with severe overlapping phenotypes including renal cystic dysplasia/hypodysplasia, situs inversus, cardiopathy with hypertrophic septum and bile duct paucity. These cases highlight a genotype-phenotype correlation, with missense and nonsense mutations associated with hypodysplasia and enlarged cystic organs, respectively. Functional analyses of NEK8 mutations in patient fibroblasts and mIMCD3 cells showed that these mutations differentially affect ciliogenesis, proliferation/apoptosis/DNA damage response, as well as epithelial morphogenesis. Notably, missense mutations exacerbated some of the defects due to NEK8 loss of function, highlighting their likely gain-of-function effect. We also showed that NEK8 missense and loss-of-function mutations differentially affect the regulation of the main Hippo signaling effector, YAP, as well as the expression of its target genes in patient fibroblasts and renal cells. YAP imbalance was also observed in enlarged spheroids of Nek8-invalidated renal epithelial cells grown in 3D culture, as well as in cystic kidneys of Jck mice. Moreover, co-injection of nek8 MO with WT or mutated NEK8-GFP RNA in zebrafish embryos led to shortened dorsally curved body axis, similar to embryos injected with human YAP RNA. Finally, treatment with Verteporfin, an inhibitor of YAP transcriptional activity, partially rescued the 3D spheroid defects of Nek8-invalidated cells and the abnormalities of NEK8-overexpressing zebrafish embryos. Altogether, our study demonstrates that NEK8 human mutations cause major organ developmental defects due to altered ciliogenesis and cell differentiation/proliferation through deregulation of the Hippo pathway. PMID:26967905

  3. Butyrate modulates TGF-beta1 generation and function: potential renal benefit for Acacia(sen) SUPERGUM (gum arabic)?

    PubMed

    Matsumoto, N; Riley, S; Fraser, D; Al-Assaf, S; Ishimura, E; Wolever, T; Phillips, G O; Phillips, A O

    2006-01-01

    Anecdotal evidence suggests that high fibre supplementation of dietary intake may have health benefits in renal disease related to alterations in circulating levels of short-chain fatty acids. The aim of the study was to examine the hypothesis that dietary manipulation may increase serum butyrate and thus have potential beneficial effects in renal disease. We examined the effect of dietary supplementation with a gum arabic sample of standardized molecular characteristics, Acacia(sen) SUPERGUM EM2 (SUPERGUM), on systemic levels of butyrate in normal human subjects. In an in vitro study, we also examined the potential role of butyrate in modifying the generation of the profibrotic cytokine transforming growth factor-beta (TGF-beta1) by renal epithelial cells. Following 8 weeks of dietary supplementation with 25 g/day of SUPERGUM, there was a two-fold increase in serum butyrate (n=7, P=0.03). In vitro work demonstrated that exposure of renal epithelial cells to elevated concentrations of butyrate suppressed both basal and stimulated TGF-beta1 synthesis. The action of butyrate was mediated by suppression of the extracellular signal-regulated kinase/mitogen-activated protein kinase signalling pathway. In addition, butyrate exposures reduced the response of renal epithelial cells to TGF-beta1 as assessed by luciferase activity of a TGF-beta-responsive reporter construct. Attenuation of TGF-beta1 signalling was associated with reduced phosphorylation of Smad 3 and decreased trafficking of TGF-beta1 receptors into signalling, non-lipid raft-associated membrane fractions. In conclusion, the data demonstrate that dietary supplementation with SUPERGU increased serum butyrate, which at least in vitro has beneficial effects on renal pro-fibrotic cytokine generation.

  4. Sex-specific effect of antenatal betamethasone exposure on renal oxidative stress induced by angiotensins in adult sheep.

    PubMed

    Bi, Jianli; Contag, Stephen A; Chen, Kai; Su, Yixin; Figueroa, Jorge P; Chappell, Mark C; Rose, James C

    2014-11-01

    Prenatal glucocorticoid administration in clinically relevant doses reduces nephron number and renal function in adulthood and is associated with hypertension. Nephron loss in early life may predispose the kidney to other insults later but whether sex influences increases in renal susceptibility is unclear. Therefore, we determined, in male and female adult sheep, whether antenatal glucocorticoid (betamethasone) exposure increased 8-isoprostane (marker of oxidative stress) and protein excretion after acute nephron reduction and intrarenal infusions of angiotensin peptides. We also examined whether renal proximal tubule cells (PTCs) could contribute to alterations in 8-isoprostane excretion in a sex-specific fashion. In vivo, ANG II significantly increased 8-isoprostane excretion by 49% and protein excretion by 44% in male betamethasone- but not in female betamethasone- or vehicle-treated sheep. ANG-(1-7) decreased 8-isoprostane excretion but did not affect protein excretion in either group. In vitro, ANG II stimulated 8-isoprostane release from PTCs of male but not female betamethasone-treated sheep. Male betamethasone-exposed sheep had increased p47 phox abundance in the renal cortex while superoxide dismutase (SOD) activity was increased only in females. We conclude that antenatal glucocorticoid exposure enhances the susceptibility of the kidney to oxidative stress induced by ANG II in a sex-specific fashion and the renal proximal tubule is one target of the sex-specific effects of antenatal steroids. ANG-(1-7) may mitigate the impact of prenatal glucocorticoids on the kidney. P47 phox activation may be responsible for the increased oxidative stress and proteinuria in males. The protection from renal oxidative stress in females is associated with increased SOD activity. Copyright © 2014 the American Physiological Society.

  5. Flavocoxid attenuates gentamicin-induced nephrotoxicity in rats.

    PubMed

    El-Kashef, Dalia H; El-Kenawi, Asmaa E; Suddek, Ghada M; Salem, Hatem A

    2015-12-01

    Gentamicin is a widely used antibiotic against serious and life-threatening infections; however, its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine whether flavocoxid has a protective effect against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of flavocoxid on gentamicin induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was determined. Twenty-four male Wistar albino rats were randomly divided into three groups, namely control, gentamicin (100 mg/kg, i.p.) and gentamicin plus flavocoxid (20 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood, urine samples and kidneys were collected for further analysis. Gentamicin administration caused a severe nephrotoxicity which was evidenced by an elevated renal somatic index (RSI), serum creatinine, blood urea nitrogen, serum lactate dehydrogenase, and protein in urine with a concomitant reduction in serum albumin and normalized creatinine clearance value as compared with the controls. Moreover, a significant increase in renal contents of malondialdehyde, myeloperoxidase, and tumor necrosis factor-alpha with a significant decrease in renal reduced glutathione and superoxide dismutase activities was detected upon gentamicin administration together with increasing the sensitivity of isolated urinary bladder rings to ACh. Exposure to gentamicin induced necrosis of renal tubular epithelial cells. Flavocoxid protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by gentamicin treatment. In addition, flavocoxid significantly reduced the responses of isolated bladder rings to ACh. The results from our study indicate that flavocoxid supplement attenuates gentamicin-induced renal injury via the amelioration of oxidative stress and inflammation of renal tubular cells.

  6. The renoprotective activity of hesperetin in cisplatin induced nephrotoxicity in rats: Molecular and biochemical evidence.

    PubMed

    Kumar, Mukesh; Dahiya, Vicky; Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Lahkar, Mangala

    2017-05-01

    Nephrotoxicity remain a major life-threatening complication in cancer patients on cisplatin chemotherapy. In this study, we investigated the protective effect and possible cellular mechanism of the hesperetin, a naturally-occurring bioflavonoid against cisplatin-induced renal injury in rats. Hesperetin was administered at a dose of 50mg/kg and 100mg/kg orally for 10days and cisplatin (7.5mg/kg, ip) was administered on the 5th day of experiment. Cisplatin induced nephrotoxicity was evidenced by alteration in the level of markers such as blood urea nitrogen, creatinine, serum albumin and severe histopathological changes in kidney. Cisplatin administration also resulted in significant increase in the tissue oxidative stress and inflammatory cytokines. The level of antioxidants enzymes were decreased significantly in the cisplatin administered rats. Hesperetin treatment (50mg/kg and 100mg/kg) normalized the renal function by attenuation of the cisplatin-induced oxidative stress, lipid peroxidation, and inflammatory cytokines and histopathological alterations. On the basis of these experimental findings our present study postulate that co-administration of hesperetin with cisplatin chemotherapy may be promising preventive approach to limit the major mortal side effect of cisplatin. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Right ventricular systolic dysfunction and vena cava dilatation precede alteration of renal function in adult patients undergoing cardiac surgery: An observational study.

    PubMed

    Guinot, Pierre Grégoire; Abou-Arab, Osama; Longrois, Dan; Dupont, Herve

    2015-08-01

    Several authors have suggested that right ventricular dysfunction (RVd) may contribute to renal dysfunction in nonsurgical patients. We tested the hypothesis that RVd diagnosed immediately after cardiac surgery may be associated with subsequent development of renal dysfunction and tried to identify the possible mechanisms. A single-centre, prospective observational study. Amiens University Hospital, France. All adult patients undergoing cardiac surgery were considered eligible for participation. Patients who had undergone pulmonary or tricuspid valve surgery, repeat surgery or who underwent immediate postoperative renal replacement therapy were excluded. Data from 74 patients were analysed. Left ventricular and right ventricular function were assessed before surgery and on admission to ICU by transthoracic echocardiography (TTE): left ventricular and right ventricular ejection fractions (LVEF/RVEF), tricuspid annular plane systolic excursion (TAPSE), tricuspid annular systolic velocity (Sr(t)) and right ventricular dilatation. RVd was defined as values in the lowest quartile of at least two echocardiographic variables. Renal dysfunction was defined as an increase in serum creatinine concentration (sCr) on postoperative day 1. All right ventricular TTE variables decreased (P < 0.05) after surgery: RVEF from 50% (49 to 60) to 40% (35 to 50); TAPSE from 22.3 mm (19.4 to 25.3) to 12.2 mm (8.8 to 14.8); and Sr(t) from 15.0 cm s(-1) (12.0 to 18.0) to 8.1 cm s(-1) (6.3 to 9.2). Fourteen (19%) patients had right ventricular dilatation and RVd was present in 23 (31%) patients. Forty patients had a positive variation in sCr. In multivariate analysis, patients with RVd had an odds ratio (OR) of 12.7 [95% confidence interval (95% CI) 2.6 to 63.4, P = 0.02] for development of renal dysfunction. Renal dysfunction was associated with increased central venous pressure but was not associated with cardiac index (CI). These results suggest that early postoperative RVd is associated with a subsequent increase of sCr and that the mechanism involved is congestion (vena cava dilatation/elevated CVP) rather than decreased CI.

  8. Role of mitochondrial dysfunction in renal fibrosis promoted by hypochlorite-modified albumin in a remnant kidney model and protective effects of antioxidant peptide SS-31.

    PubMed

    Zhao, Hao; Liu, Yan-Jun; Liu, Zong-Rui; Tang, Dong-Dong; Chen, Xiao-Wen; Chen, Yi-Hua; Zhou, Ru-Ning; Chen, Si-Qi; Niu, Hong-Xin

    2017-06-05

    Oxidative stress aggravates renal fibrosis, a pathway involved in almost all forms of chronic kidney disease (CKD). However, the underlying mechanism involved in the pathogenesis of renal oxidative stress has not been completely elucidated. In this study, we explored the role and mechanism of hypochlorite-modified albumin (HOCl-alb) in mediating oxidative stress and fibrotic response in a remnant-kidney rat model. Five-sixths nephrectomy (5/6 NX) was performed on the rats and then the animals were randomly assigned to intravenous treatment with either vehicle alone, or HOCl-rat serum albumin (RSA) in the presence or absence of SS-31 (administered intraperitoneally). A sham-operation control group was set up concurrently. Compared with the control group, 5/6 NX animals displayed marked mitochondrial (mt) dysfunction, as evidenced by decrease of mitochondrial membrane potential (MMP), ATP production, mtDNA copy number alterations and manganese superoxide dismutase (MnSOD) activity, release of cytochrome C (Cyto C) from mitochondria to the cytoplasm, and increase of mitochondrial reactive oxygen species in renal tissues. They also displayed increased levels of HOCl-alb in both plasma and renal tissues. These changes were accompanied by accumulation of extracellular matrix, worsened proteinuria, deteriorated renal function, and a marked increase of macrophage infiltration along with up-regulation of monocyte chemoattractant protein (MCP)-1 and transforming growth factor (TGF)-β1 expression. HOCl-alb challenge further exacerbated the above biological effects in 5/6 NX animals, but these adverse effects were prevented by administration of SS-31, a mitochondrial targeted antioxidant peptide. These data suggest that accumulation of HOCl-alb may promote renal inflammation and fibrosis, probably related to mitochondrial oxidative stress and dysfunction and that the mitochondrial targeted peptide SS-31 might be a novel therapy for renal fibrosis and chronic renal failure (CRF). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of Shock Wave Lithotripsy on Renal Hemodynamics

    NASA Astrophysics Data System (ADS)

    Handa, Rajash K.; Willis, Lynn R.; Evan, Andrew P.; Connors, Bret A.

    2008-09-01

    Extracorporeal shock wave lithotripsy (SWL) can injure tissue and decrease blood flow in the SWL-treated kidney, both tissue and functional effects being largely localized to the region targeted with shock waves (SWs). A novel method of limiting SWL-induced tissue injury is to employ the "protection" protocol, where the kidney is pretreated with low-energy SWs prior to the application of a standard clinical dose of high-energy SWs. Resistive index measurements of renal vascular resistance/impedance to blood flow during SWL treatment protocols revealed that a standard clinical dose of high-energy SWs did not alter RI during SW application. However, there was an interaction between low- and high-energy SWL treatment phases of the "protection" protocol such that an increase in RI (vasoconstriction) was observed during the later half of SW application, a time when tissue damage is occurring during the standard high-energy SWL protocol. We suggest that renal vasoconstriction may be responsible for reducing the degree of tissue damage that normally results from a standard clinical dose of high-energy SWs.

  10. The Prognostic Importance of Changes in Renal Function during Treatment for Acute Heart Failure Depends on Admission Renal Function

    PubMed Central

    Reid, Ryan; Ezekowitz, Justin A.; Brown, Paul M.; McAlister, Finlay A.; Rowe, Brian H.; Braam, Branko

    2015-01-01

    Background Worsening and improving renal function during acute heart failure have been associated with adverse outcomes but few studies have considered the admission level of renal function upon which these changes are superimposed. Objectives The objective of this study was to evaluate definitions that incorporate both admission renal function and change in renal function. Methods 696 patients with acute heart failure with calculable eGFR were classified by admission renal function (Reduced [R, eGFR<45 ml/min] or Preserved [P, eGFR≥45 ml/min]) and change over hospital admission (worsening [WRF]: eGFR ≥20% decline; stable [SRF]; and improving [IRF]: eGFR ≥20% increase). The primary outcome was all-cause mortality. The prevalence of Pres and Red renal function was 47.8% and 52.2%. The frequency of R-WRF, R-SRF, and R-IRF was 11.4%, 28.7%, and 12.1%, respectively; the incidence of P-WRF, P-SRF, and P-IRF was 5.7%, 35.3%, and 6.8%, respectively. Survival was shorter for patients with R-WRF compared to R-IRF (median survival times 13.9 months (95%CI 7.7–24.9) and 32.5 months (95%CI 18.8–56.1), respectively), resulting in an acceleration factor of 2.3 (p = 0.016). Thus, an increase compared with a decrease in renal function was associated with greater than two times longer survival among patients with Reduced renal function. PMID:26380982

  11. Nephrotoxicity of ibandronate and zoledronate in Wistar rats with normal renal function and after unilateral nephrectomy.

    PubMed

    Bergner, R; Siegrist, B; Gretz, N; Pohlmeyer-Esch, G; Kränzlin, B

    2015-09-01

    A previous animal study compared the nephrotoxic effect of ibandronate (IBN) and zoledronate (ZOL), but interpretation of these study results was limited because of the model of minimal nephrotoxic dosage with a dosage ratio of 1:3. The present study investigated the nephrotoxicity of ibandronate and zoledronate in a 1.5:1 dose ratio, as used in clinical practice and compared the nephrotoxicity in rats with normal and with mildly to moderately impaired renal function. We compared rats with normal renal function (SHAM) and with impaired renal function after unilateral nephrectomy (UNX), treated either with ibandronate 1.5mg/kg, zoledronate 1mg/kg or placebo once (1×) or nine (9×) times. Renal function and markers of tubular toxicity were measured over a 27 week period. After last bisphosphonate treatment the rats were sacrificed and kidneys examined histologically. All bisphosphonate treated animals showed a significant tubular toxicity, which was temporary except in the ZOL-UNX-9×-group. Also the renal function was only transiently reduced except in the ZOL-UNX-9×-group. Histologically, bisphosphonate treatment led to cortical tubuloepithelial degeneration/necrosis and medullary tubuloepithelial swelling which were slightly more pronounced in ibandronate treated animals, when compared to zoledronate treated animals, especially with impaired renal function. In contrast to the previous study we found a similar nephrotoxicity of ibandronate and zoledronate in rats with normal renal function. In rats with impaired renal function the peak of toxicity had not even been fully reached until end of experiment in the zoledronate treated animals. The peak of toxicity seems to be more severe and delayed in rats with impaired renal function compared with rats with normal renal function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Impaired renal function modifies the risk of severe hypoglycaemia among users of insulin but not glyburide: a population-based nested case-control study.

    PubMed

    Weir, Matthew A; Gomes, Tara; Mamdani, Muhammad; Juurlink, David N; Hackam, Daniel G; Mahon, Jeffrey L; Jain, Arsh K; Garg, Amit X

    2011-06-01

    Little evidence justifies the avoidance of glyburide in patients with impaired renal function. We aimed to determine if renal function modifies the risk of hypoglycaemia among patients using glyburide. We conducted a nested case-control study using administrative records and laboratory data from Ontario, Canada. We included outpatients 66 years of age and older with diabetes mellitus and prescriptions for glyburide, insulin or metformin. We ascertained hypoglycaemic events using administrative records and estimated glomerular filtration rates (eGFR) using serum creatinine concentrations. From a cohort of 19,620 patients, we identified 204 cases whose eGFR was ≥ 60 mL/min/1.73 m(2) (normal renal function) and 354 cases whose eGFR was < 60 mL/min/1.73 m(2) (impaired renal function). Compared to metformin, glyburide is associated with a greater risk of hypoglycaemia in patients with both normal [adjusted odds ratio (OR) 9.0, 95% confidence interval (95% CI) 4.9-16.4] and impaired renal function (adjusted OR 6.0, 95% CI 3.8-9.5). We observed a similar relationship when comparing insulin to metformin; the risk was greater in patients with normal renal function (adjusted OR 18.7, 95% CI 10.5-33.5) compared to those with impaired renal function (adjusted OR 7.9, 95% CI 5.0-12.4). Tests of interaction showed that among glyburide users, renal function did not significantly modify the risk of hypoglycaemia, but among insulin users, impaired renal function is associated with a lower risk. In this population-based study, impaired renal function did not augment the risk of hypoglycaemia associated with glyburide use.

  13. Multimarker assessment for the prediction of renal function improvement after percutaneous revascularization for renal artery stenosis.

    PubMed

    Staub, Daniel; Partovi, Sasan; Zeller, Thomas; Breidthardt, Tobias; Kaech, Max; Boeddinghaus, Jasper; Puelacher, Christian; Nestelberger, Thomas; Aschwanden, Markus; Mueller, Christian

    2016-06-01

    Identifying patients likely to have improved renal function after percutaneous transluminal renal angioplasty and stenting (PTRA) for renal artery stenosis (RAS) is challenging. The purpose of this study was to use a comprehensive multimarker assessment to identify those patients who would benefit most from correction of RAS. In 127 patients with RAS and decreased renal function and/or hypertension referred for PTRA, quantification of hemodynamic cardiac stress using B-type natriuretic peptide (BNP), renal function using estimated glomerular filtration rate (eGFR), parenchymal renal damage using resistance index (RI), and systemic inflammation using C-reactive protein (CRP) were performed before intervention. Predefined renal function improvement (increase in eGFR ≥10%) at 6 months occurred in 37% of patients. Prognostic accuracy as quantified by the area under the receiver-operating characteristics curve for the ability of BNP, eGFR, RI and CRP to predict renal function improvement were 0.59 (95% CI, 0.48-0.70), 0.71 (95% CI, 0.61-0.81), 0.52 (95% CI, 0.41-0.65), and 0.56 (95% CI, 0.44-0.68), respectively. None of the possible combinations increased the accuracy provided by eGFR (lower eGFR indicated a higher likelihood for eGFR improvement after PTRA, P=ns for all). In the subgroup of 56 patients with pre-interventional eGFR <60 mL/min/1.73 m(2), similar findings were obtained. Quantification of renal function, but not any other pathophysiologic signal, provides at least moderate accuracy in the identification of patients with RAS in whom PTRA will improve renal function.

  14. A retrospective analysis of laparoscopic partial nephrectomy with segmental renal artery clamping and factors that predict postoperative renal function.

    PubMed

    Li, Pu; Qin, Chao; Cao, Qiang; Li, Jie; Lv, Qiang; Meng, Xiaoxin; Ju, Xiaobing; Tang, Lijun; Shao, Pengfei

    2016-10-01

    To evaluate the feasibility and efficiency of laparoscopic partial nephrectomy (LPN) with segmental renal artery clamping, and to analyse the factors affecting postoperative renal function. We conducted a retrospective analysis of 466 consecutive patients undergoing LPN using main renal artery clamping (group A, n = 152) or segmental artery clamping (group B, n = 314) between September 2007 and July 2015 in our department. Blood loss, operating time, warm ischaemia time (WIT) and renal function were compared between groups. Univariable and multivariable linear regression analyses were applied to assess the correlations of selected variables with postoperative glomerular filtration rate (GFR) reduction. Volumetric data and estimated GFR of a subset of 60 patients in group B were compared with GFR to evaluate the correlation between these functional variables and preserved renal function after LPN. The novel technique slightly increased operating time, WIT and intra-operative blood loss (P < 0.001), while it provided better postoperative renal function (P < 0.001) compared with the conventional technique. The blocking method and tumour characteristics were independent factors affecting GFR reduction, while WIT was not an independent factor. Correlation analysis showed that estimated GFR presented better correlation with GFR compared with kidney volume (R(2) = 0.794 cf. R(2) = 0.199) in predicting renal function after LPN. LPN with segmental artery clamping minimizes warm ischaemia injury and provides better early postoperative renal function compared with clamping the main renal artery. Kidney volume has a significantly inferior role compared with eGFR in predicting preserved renal function. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  15. Functional MRI detects perfusion impairment in renal allografts with delayed graft function.

    PubMed

    Hueper, Katja; Gueler, Faikah; Bräsen, Jan Hinrich; Gutberlet, Marcel; Jang, Mi-Sun; Lehner, Frank; Richter, Nicolas; Hanke, Nils; Peperhove, Matti; Martirosian, Petros; Tewes, Susanne; Vo Chieu, Van Dai; Großhennig, Anika; Haller, Hermann; Wacker, Frank; Gwinner, Wilfried; Hartung, Dagmar

    2015-06-15

    Delayed graft function (DGF) after kidney transplantation is not uncommon, and it is associated with long-term allograft impairment. Our aim was to compare renal perfusion changes measured with noninvasive functional MRI in patients early after kidney transplantation to renal function and allograft histology in biopsy samples. Forty-six patients underwent MRI 4-11 days after transplantation. Contrast-free MRI renal perfusion images were acquired using an arterial spin labeling technique. Renal function was assessed by estimated glomerular filtration rate (eGFR), and renal biopsies were performed when indicated within 5 days of MRI. Twenty-six of 46 patients had DGF. Of these, nine patients had acute rejection (including borderline), and eight had other changes (e.g., tubular injury or glomerulosclerosis). Renal perfusion was significantly lower in the DGF group compared with the group with good allograft function (231 ± 15 vs. 331 ± 15 ml·min(-1)·100 g(-1), P < 0.001). Living donor allografts exhibited significantly higher perfusion values compared with deceased donor allografts (P < 0.001). Renal perfusion significantly correlated with eGFR (r = 0.64, P < 0.001), resistance index (r = -0.57, P < 0.001), and cold ischemia time (r = -0.48, P < 0.01). Furthermore, renal perfusion impairment early after transplantation predicted inferior renal outcome and graft loss. In conclusion, noninvasive functional MRI detects renal perfusion impairment early after kidney transplantation in patients with DGF. Copyright © 2015 the American Physiological Society.

  16. Renal function monitoring in heart failure – what is the optimal frequency? A narrative review

    PubMed Central

    Wright, David; Devonald, Mark Alexander John; Pirmohamed, Munir

    2017-01-01

    The second most common cause of hospitalization due to adverse drug reactions in the UK is renal dysfunction due to diuretics, particularly in patients with heart failure, where diuretic therapy is a mainstay of treatment regimens. Therefore, the optimal frequency for monitoring renal function in these patients is an important consideration for preventing renal failure and hospitalization. This review looks at the current evidence for optimal monitoring practices of renal function in patients with heart failure according to national and international guidelines on the management of heart failure (AHA/NICE/ESC/SIGN). Current guidance of renal function monitoring is in large part based on expert opinion, with a lack of clinical studies that have specifically evaluated the optimal frequency of renal function monitoring in patients with heart failure. Furthermore, there is variability between guidelines, and recommendations are typically nonspecific. Safer prescribing of diuretics in combination with other antiheart failure treatments requires better evidence for frequency of renal function monitoring. We suggest developing more personalized monitoring rather than from the current medication‐based guidance. Such flexible clinical guidelines could be implemented using intelligent clinical decision support systems. Personalized renal function monitoring would be more effective in preventing renal decline, rather than reacting to it. PMID:28901643

  17. WNK kinases and renal sodium transport in health and disease: an integrated view

    PubMed Central

    McCormick, James; Yang, Chao-Ling; Ellison, David H.

    2011-01-01

    The with no lysine (WNK) kinases comprise a novel branch of the human kinome that plays a central role in regulating renal sodium, potassium, and chloride transport, and, therefore, blood pressure. Mutations of two WNK kinases, WNK1 and WNK4, cause familial hyperkalemic hypertension (Gordon’s syndrome or Type II pseudohypoaldosteronism), a rare monogenic disease. Many aspects of WNK action have been elucidated during the past seven years. WNKs are all expressed along a short segment of renal distal tubule, where they modulate the activity of a wide variety of transport proteins. These diverse effects, however, make it difficult to describe an integrated model of WNK function within the kidney. Recently, work in vivo and in vitro has begun to clarify this picture. The present review emphasizes recent insights into mechanism by which WNK kinases interact to modulate sodium and potassium transport along the aldosterone-sensitive distal nephron. We describe a potential mechanism by which WNK4 mutations convert the action of WNK4 from inhibiting renal sodium chloride retention to stimulating it, thereby affecting both blood pressure and potassium balance. An explanation for how WNK kinases can alter the effects of aldosterone from primarily kaliuretic to primarily sodium chloride retentive, according to physiological need, is also described. PMID:18212265

  18. Lung-Kidney Cross-Talk in the Critically Ill Patient.

    PubMed

    Husain-Syed, Faeq; Slutsky, Arthur S; Ronco, Claudio

    2016-08-15

    Discoveries have emerged highlighting the complex nature of the interorgan cross-talk between the kidney and the lung. Vascular rigidity, neurohormonal activation, tissue hypoxia, and abnormal immune cell signaling have been identified as common pathways leading to the development and progression of chronic kidney disease. However, our understanding of the causal relationships between lung injury and kidney injury is not precise. This review discusses a number of features and mechanisms of renal dysfunction in pulmonary disorders in relation to respiratory acidosis, impaired gas exchange, systemic congestion, respiratory support/replacement therapies, and other issues relevant to the clinical care of these patients. Biotrauma due to injurious ventilatory strategies can lead to the release of mediators into the lung, which may then translocate into the systemic circulation and cause end-organ dysfunction, including renal dysfunction. Right ventricular dysfunction and congestive states may contribute to alterations of renal perfusion and oxygenation, leading to diuretic resistance and recurrent hospitalization. In patients with concomitant respiratory failure, noninvasive ventilation represents a promising treatment option for the correction of impaired renal microcirculation and endothelial dysfunction. In patients requiring extracorporeal membrane oxygenation, short- and long-term monitoring of kidney function is warranted, as they are at highest risk of developing acute kidney injury and fluid overload.

  19. Cardiorenal Syndrome in Acute Heart Failure: Revisiting Paradigms.

    PubMed

    Núñez, Julio; Miñana, Gema; Santas, Enrique; Bertomeu-González, Vicente

    2015-05-01

    Cardiorenal syndrome has been defined as the simultaneous dysfunction of both the heart and the kidney. Worsening renal function that occurs in patients with acute heart failure has been classified as cardiorenal syndrome type 1. In this setting, worsening renal function is a common finding and is due to complex, multifactorial, and not fully understood processes involving hemodynamic (renal arterial hypoperfusion and renal venous congestion) and nonhemodynamic factors. Traditionally, worsening renal function has been associated with worse outcomes, but recent findings have revealed mixed and heterogeneous results, perhaps suggesting that the same phenotype represents a diversity of pathophysiological and clinical situations. Interpreting the magnitude and chronology of renal changes together with baseline renal function, fluid overload status, and clinical response to therapy might help clinicians to unravel the clinical meaning of renal function changes that occur during an episode of heart failure decompensation. In this article, we critically review the contemporary evidence on the pathophysiology and clinical aspects of worsening renal function in acute heart failure. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  20. High Prolactin Excretion in Patients with Diabetes Mellitus and Impaired Renal Function.

    PubMed

    Triebel, Jakob; Moreno-Vega, Aura Ileana; Vázquez-Membrillo, Miguel; Nava, Gabriel; García-Franco, Renata; López-Star, Ellery; Baldivieso-Hurtado, Olivia; Ochoa, Daniel; Macotela, Yazmín; Bertsch, Thomas; Martinez de la Escalera, Gonzalo; Clapp, Carmen

    2015-01-01

    The metabolic clearance of prolactin (PRL) is partially executed by the kidney. Here, we investigate the urine excretion of PRL in patients with Diabetes Mellitus and renal impairment. Serum and urine samples were collected from male, mestizo patients in central Mexico employing a cross-sectional study design. Ninety-eight individuals had either no diabetes and normal renal function (control), diabetes and normal renal function, or diabetes with impaired renal function. PRL was determined by a chemiluminescent immunometric assay; protein, albumin, and creatinine were evaluated using quantitative colorimetric assays. The results were analyzed using ANOVA-testing. Patients with Diabetes Mellitus and renal impairment had significantly higher urine PRL levels than patients with Diabetes Mellitus and normal renal function and control patients. Higher urine PRL levels were associated with lower glomerular filtration rates, higher serum creatinine, and higher urinary albumin-to-creatinine ratios (UACR). Urine PRL levels correlated positively with UACR. Serum PRL levels were similar among groups. Patients with Diabetes Mellitus and impaired renal function demonstrate a high urinary PRL excretion. Urinary PRL excretion in the context of proteinuria could contribute to PRL dysregulation in renal impairment.

  1. Renal effects of fresh water-induced hypo-osmolality in a marine adapted seal

    NASA Technical Reports Server (NTRS)

    Ortiz, R. M.; Wade, C. E.; Costa, D. P.; Ortiz, C. L.

    2002-01-01

    With few exceptions, marine mammals are not exposed to fresh water; however quantifying the endocrine and renal responses of a marine-adapted mammal to the infusion of fresh water could provide insight on the evolutionary adaptation of kidney function and on the renal capabilities of these mammals. Therefore, renal function and hormonal changes associated with fresh water-induced diuresis were examined in four, fasting northern elephant seal ( Mirounga angustirostris) (NES) pups. A series of plasma samples and 24-h urine voids were collected prior to (control) and after the infusion of water. Water infusion resulted in an osmotic diuresis associated with an increase in glomerular filtration rate (GFR), but not an increase in free water clearance. The increase in excreted urea accounted for 96% of the increase in osmotic excretion. Following infusion of fresh water, plasma osmolality and renin activity decreased, while plasma aldosterone increased. Although primary regulators of aldosterone release (Na(+), K(+) and angiotensin II) were not significantly altered in the appropriate directions to individually stimulate aldosterone secretion, increased aldosterone may have resulted from multiple, non-significant changes acting in concert. Aldosterone release may also be hypersensitive to slight reductions in plasma Na(+), which may be an adaptive mechanism in a species not known to drink seawater. Excreted aldosterone and urea were correlated suggesting aldosterone may regulate urea excretion during hypo-osmotic conditions in NES pups. Urea excretion appears to be a significant mechanism by which NES pups sustain electrolyte resorption during conditions that can negatively affect ionic homeostasis such as prolonged fasting.

  2. Tangeretin attenuates cisplatin-induced renal injury in rats: Impact on the inflammatory cascade and oxidative perturbations.

    PubMed

    Arab, Hany H; Mohamed, Wafaa R; Barakat, Bassant M; Arafa, El-Shaimaa A

    2016-10-25

    Despite the efficacy of cisplatin as a chemotherapeutic agent against various cancers, its clinical utility is limited by serious adverse reactions including nephrotoxicity. The current study aims to investigate the protective potential of tangeretin, a citrus flavone with marked antioxidant actions, against cisplatin-induced renal injury in rats. Tangeretin was administered at 50 and 100 mg/kg p.o. for 1 week starting one day before cisplatin (7.5 mg/kg i.p.) injection. Likewise, silymarin was administered at 100 mg/kg orally. Renal function tests, histopathology, oxidative stress and inflammatory events were investigated. Tangeretin mitigated the increased levels of serum creatinine, blood urea nitrogen and histopathologic alterations evoked by cisplatin. It alleviated renal oxidative stress due to cisplatin by lowering lipid peroxides, nitric oxide and Nrf2 levels with concomitant enhancement of GSH and GPx. Tangeretin also suppressed the upregulated inflammatory response seen with cisplatin treatment by downregulation of activated NF-κB p65 protein expression together with its downstream effectors e.g., iNOS and TNF-α, with restoration of the anti-inflammatory interleukin IL-10. Additionally, it down-regulated the expression of caspase-3, an apoptotic marker, thus favoring renal cell survival. Importantly, tangeretin enhanced the cytotoxic actions of cisplatin in Hep3B and HCT-116 human cancer cell lines. Together, these findings accentuate the dual benefit of tangeretin: mitigation of renal injury-induced by cisplatin and enhancement of its cytotoxic effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Cardio-renal and metabolic adaptations during pregnancy in female rats born small: implications for maternal health and second generation fetal growth.

    PubMed

    Gallo, Linda A; Tran, Melanie; Moritz, Karen M; Mazzuca, Marc Q; Parry, Laura J; Westcott, Kerryn T; Jefferies, Andrew J; Cullen-McEwen, Luise A; Wlodek, Mary E

    2012-02-01

    Intrauterine growth restriction caused by uteroplacental insufficiency increases risk of cardiovascular and metabolic disease in offspring. Cardio-renal and metabolic responses to pregnancy are critical determinants of immediate and long-term maternal health. However, no studies to date have investigated the renal and metabolic adaptations in growth restricted offspring when they in turn become pregnant. We hypothesised that the physiological challenge of pregnancy in growth restricted females exacerbates disease outcome and compromises next generation fetal growth. Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (Restricted) or sham surgery (Control) on day 18 of gestation in WKY rats and F1 female offspring birth and postnatal body weights were recorded. F1 Control and Restricted females were mated at 4 months and blood pressure, renal and metabolic parameters were measured in late pregnancy and F2 fetal and placental weights recorded. Age-matched non-pregnant Control and Restricted F1 females were also studied. F1 Restricted females were born 10-15% lighter than Controls. Basal insulin secretion and pancreatic β-cell mass were reduced in non-pregnant Restricted females but restored in pregnancy. Pregnant Restricted females, however, showed impaired glucose tolerance and compensatory glomerular hypertrophy, with a nephron deficit but normal renal function and blood pressure. F2 fetuses from Restricted mothers exposed to physiological measures during pregnancy were lighter than Controls highlighting additive adverse effects when mothers born small experience stress during pregnancy. Female rats born small exhibit mostly normal cardio-renal adaptations but altered glucose control during late pregnancy making them vulnerable to lifestyle challenges.

  4. Efficacy and Safety of Apixaban Compared With Warfarin in Patients With Atrial Fibrillation in Relation to Renal Function Over Time: Insights From the ARISTOTLE Randomized Clinical Trial.

    PubMed

    Hijazi, Ziad; Hohnloser, Stefan H; Andersson, Ulrika; Alexander, John H; Hanna, Michael; Keltai, Matyas; Parkhomenko, Alexander; López-Sendón, José L; Lopes, Renato D; Siegbahn, Agneta; Granger, Christopher B; Wallentin, Lars

    2016-07-01

    Renal impairment confers an increased risk of stroke, bleeding, and death in patients with atrial fibrillation. Little is known about the efficacy and safety of apixaban in relation to renal function changes over time. To evaluate changes of renal function over time and their interactions with outcomes during a median of 1.8 years of follow-up in patients with atrial fibrillation randomized to apixaban vs warfarin treatment. The prospective, randomized, double-blind Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) clinical trial randomized 18 201 patients with atrial fibrillation to apixaban or warfarin. Serial creatinine measurements were available in 16 869 patients. Worsening of renal function was defined as an annual decrease in estimated glomerular filtration more than 20%. The relations between treatment, outcomes, and renal function were investigated using Cox regression models, with renal function as a time-dependent covariate. Stroke or systemic embolism (primary outcome), major bleeding (safety outcome), and mortality were examined in relation to renal function over time estimated with both the Cockcroft-Gault and Chronic Kidney Disease Epidemiology Collaboration equations. Among 16 869 patients, the median age was 70 years and 65.2% of patients were men. Worsening in estimated glomerular filtration more than 20% was observed in 2294 patients (13.6%) and was associated with older age and more cardiovascular comorbidities. The risks of stroke or systemic embolism, major bleeding, and mortality were higher in patients with worsening renal function (HR, 1.53; 95% CI, 1.17-2.01 for stroke or systemic embolism; HR, 1.56; 95% CI, 1.27-1.93 for major bleeding; and HR, 2.31; 95% CI, 1.98-2.68 for mortality). The beneficial effects of apixaban vs warfarin on rates of stroke or systemic embolism and major bleeding were consistent in patients with normal or poor renal function over time and also in those with worsening renal function. In patients with atrial fibrillation, declining renal function was more common in elderly patients and those with cardiovascular comorbidities. Worsening renal function was associated with a higher risk of subsequent cardiovascular events and bleeding. The superior efficacy and safety of apixaban as compared with warfarin were similar in patients with normal, poor, and worsening renal function. clinicaltrials.gov Identifier: NCT00412984.

  5. Iohexol clearance is superior to creatinine-based renal function estimating equations in detecting short-term renal function decline in chronic heart failure

    PubMed Central

    Cvan Trobec, Katja; Kerec Kos, Mojca; von Haehling, Stephan; Anker, Stefan D.; Macdougall, Iain C.; Ponikowski, Piotr; Lainscak, Mitja

    2015-01-01

    Aim To compare the performance of iohexol plasma clearance and creatinine-based renal function estimating equations in monitoring longitudinal renal function changes in chronic heart failure (CHF) patients, and to assess the effects of body composition on the equation performance. Methods Iohexol plasma clearance was measured in 43 CHF patients at baseline and after at least 6 months. Simultaneously, renal function was estimated with five creatinine-based equations (four- and six-variable Modification of Diet in Renal Disease, Cockcroft-Gault, Cockcroft-Gault adjusted for lean body mass, Chronic Kidney Disease Epidemiology Collaboration equation) and body composition was assessed using bioimpedance and dual-energy x-ray absorptiometry. Results Over a median follow-up of 7.5 months (range 6-17 months), iohexol clearance significantly declined (52.8 vs 44.4 mL/[min ×1.73 m2], P = 0.001). This decline was significantly higher in patients receiving mineralocorticoid receptor antagonists at baseline (mean decline -22% of baseline value vs -3%, P = 0.037). Mean serum creatinine concentration did not change significantly during follow-up and no creatinine-based renal function estimating equation was able to detect the significant longitudinal decline of renal function determined by iohexol clearance. After accounting for body composition, the accuracy of the equations improved, but not their ability to detect renal function decline. Conclusions Renal function measured with iohexol plasma clearance showed relevant decline in CHF patients, particularly in those treated with mineralocorticoid receptor antagonists. None of the equations for renal function estimation was able to detect these changes. ClinicalTrials.gov registration number NCT01829880 PMID:26718759

  6. Renal Function Recovery with Total Artificial Heart Support.

    PubMed

    Quader, Mohammed A; Goodreau, Adam M; Shah, Keyur B; Katlaps, Gundars; Cooke, Richard; Smallfield, Melissa C; Tchoukina, Inna F; Wolfe, Luke G; Kasirajan, Vigneshwar

    2016-01-01

    Heart failure patients requiring total artificial heart (TAH) support often have concomitant renal insufficiency (RI). We sought to quantify renal function recovery in patients supported with TAH at our institution. Renal function data at 30, 90, and 180 days after TAH implantation were analyzed for patients with RI, defined as hemodialysis supported or an estimated glomerular filtration rate (eGFR) less than 60 ml/min/1.73 m. Between January 2008 and December 2013, 20 of the 46 (43.5%) TAH recipients (age 51 ± 9 years, 85% men) had RI, mean preoperative eGFR of 48 ± 7 ml/min/1.73 m. Renal function recovery was noted at each follow-up interval: increment in eGFR (ml/min/1.73 m) at 30, 90, and 180 days was 21 ± 35 (p = 0.1), 16.5 ± 18 (p = 0.05), and 10 ± 9 (p = 0.1), respectively. Six patients (30%) required preoperative dialysis. Of these, four recovered renal function, one remained on dialysis, and one died. Six patients (30%) required new-onset dialysis. Of these, three recovered renal function and three died. Overall, 75% (15 of 20) of patients' renal function improved with TAH support. Total artificial heart support improved renal function in 75% of patients with pre-existing significant RI, including those who required preoperative dialysis.

  7. Improvement in Renal Function and Symptoms of Patients Treated with Laparoscopic Pyeloplasty for Ureteropelvic Junction Obstruction with Less Than 20% Split Renal Function.

    PubMed

    Nishi, Morihiro; Matsumoto, Kazumasa; Fujita, Tetsuo; Iwamura, Masatsugu

    2016-11-01

    To evaluate the efficacy of laparoscopic pyeloplasty (LPP) for lower functioning kidney, we investigated the outcome of this procedure for patients with ureteropelvic junction obstruction with decreased renal function, defined as less than 20% split renal function. Between October 1998 and June 2015, we performed transperitoneal dismembered LPP in 224 patients. Among them, 15 patients with less than 20% split renal function were included in this study. Patient characteristics, perioperative split renal functions, complications, and surgical outcomes were retrospectively investigated. Fourteen of 15 patients had preoperative symptoms, including flank pain in 13 patients and gross hematuria in 1 patient. Preoperative 99mTc-mercaptoacetyltriglycine (MAG3) renogram revealed no response to diuretic injection and median split renal function was 16.5%. Median operative time and blood loss were 170 minutes and 20 mL, respectively. There were no complications during the perioperative period. Postoperative MAG3 renogram at 6 and 12 months after the operation revealed significantly increased split renal function (median: 23.8% and 23.7%, p = 0.001 and 0.008, respectively) and response to diuretic injection in all patients. Preoperative symptoms disappeared and no recurrence was seen during the follow-up period for all patients except for one who experienced flank pain again 4 months after the surgery. He subsequently underwent open pyeloplasty, and flank pain disappeared soon after. LPP for patients with low split renal function and flank pain significantly improved symptoms and split renal functions. Although the long-term clinical effects of LPP are unknown, we recommend performing LPP before considering nephrectomy for patients with lower functioning kidney.

  8. Multimarker assessment for the prediction of renal function improvement after percutaneous revascularization for renal artery stenosis

    PubMed Central

    Partovi, Sasan; Zeller, Thomas; Breidthardt, Tobias; Kaech, Max; Boeddinghaus, Jasper; Puelacher, Christian; Nestelberger, Thomas; Aschwanden, Markus; Mueller, Christian

    2016-01-01

    Background Identifying patients likely to have improved renal function after percutaneous transluminal renal angioplasty and stenting (PTRA) for renal artery stenosis (RAS) is challenging. The purpose of this study was to use a comprehensive multimarker assessment to identify those patients who would benefit most from correction of RAS. Methods In 127 patients with RAS and decreased renal function and/or hypertension referred for PTRA, quantification of hemodynamic cardiac stress using B-type natriuretic peptide (BNP), renal function using estimated glomerular filtration rate (eGFR), parenchymal renal damage using resistance index (RI), and systemic inflammation using C-reactive protein (CRP) were performed before intervention. Results Predefined renal function improvement (increase in eGFR ≥10%) at 6 months occurred in 37% of patients. Prognostic accuracy as quantified by the area under the receiver-operating characteristics curve for the ability of BNP, eGFR, RI and CRP to predict renal function improvement were 0.59 (95% CI, 0.48–0.70), 0.71 (95% CI, 0.61–0.81), 0.52 (95% CI, 0.41–0.65), and 0.56 (95% CI, 0.44–0.68), respectively. None of the possible combinations increased the accuracy provided by eGFR (lower eGFR indicated a higher likelihood for eGFR improvement after PTRA, P=ns for all). In the subgroup of 56 patients with pre-interventional eGFR <60 mL/min/1.73 m2, similar findings were obtained. Conclusions Quantification of renal function, but not any other pathophysiologic signal, provides at least moderate accuracy in the identification of patients with RAS in whom PTRA will improve renal function. PMID:27280085

  9. Renal function had an independent relationship with coronary artery calcification in Chinese elderly men.

    PubMed

    Fu, Shihui; Zhang, Zhao; Luo, Leiming; Ye, Ping

    2017-04-07

    Although previous studies have analyzed the relationship between renal function and coronary artery calcification (CAC) in pre-dialysis and dialysis patients, limited studies have discussed the relationship between renal function and CAC in Chinese elderly men without obvious damage of renal function. The present study was designed to explore the relationship between renal function and CAC in Chinese elderly men without obvious damage of renal function. This cross-sectional study was carried out in 105 male participants older than 60 years with glomerular filtration rate (GFR) ≥ 45 ml/min/1.73 m 2 . CAC was detected by high-definition computerized tomography (HDCT), which is a highly sensitive technique for detecting the CAC and provides the most accurate CAC scores up to date. Age was 72 ± 8.4 years on average and ranged from 60 to 89 years. Simple correlation analysis indicated that all kinds of CAC scores including the Agatston, volume and mass scores inversely correlated with GFR values (p < 0.05 for all). In multivariate linear regression analysis, GFR values were independently associated with all these CAC scores (p < 0.05 for all). Renal function had an independent relationship with CAC detected by HDCT in Chinese elderly men, demonstrating that the relationship between renal function and CAC started at the early stage of renal function decline.

  10. WWSSF - a worldwide study on radioisotopic renal split function: reproducibility of renal split function assessment in children.

    PubMed

    Geist, Barbara Katharina; Dobrozemsky, Georg; Samal, Martin; Schaffarich, Michael P; Sinzinger, Helmut; Staudenherz, Anton

    2015-12-01

    The split or differential renal function is the most widely accepted quantitative parameter derived from radionuclide renography. To examine the intercenter variance of this parameter, we designed a worldwide round robin test. Five selected dynamic renal studies have been distributed all over the world by e-mail. Three of these studies are anonymized patient data acquired using the EANM standardized protocol and two studies are phantom studies. In a simple form, individual participants were asked to measure renal split function as well as to provide additional information such as data analysis software, positioning of background region of interest, or the method of calculation. We received the evaluation forms from 34 centers located in 21 countries. The analysis of the round robin test yielded an overall z-score of 0.3 (a z-score below 1 reflecting a good result). However, the z-scores from several centers were unacceptably high, with values greater than 3. In particular, the studies with impaired renal function showed a wide variance. A wide variance in the split renal function was found in patients with impaired kidney function. This study indicates the ultimate importance of quality control and standardization of the measurement of the split renal function. It is especially important with respect to the commonly accepted threshold for significant change in split renal function by 10%.

  11. Efficacy and Safety of Liraglutide Versus Placebo as Add-on to Glucose-Lowering Therapy in Patients With Type 2 Diabetes and Moderate Renal Impairment (LIRA-RENAL): A Randomized Clinical Trial.

    PubMed

    Davies, Melanie J; Bain, Stephen C; Atkin, Stephen L; Rossing, Peter; Scott, David; Shamkhalova, Minara S; Bosch-Traberg, Heidrun; Syrén, Annika; Umpierrez, Guillermo E

    2016-02-01

    Renal impairment in type 2 diabetes limits available glucose-lowering treatment options. This trial was conducted to establish the efficacy and safety of liraglutide as an add-on to existing glucose-lowering medications in patients with inadequately controlled type 2 diabetes and moderate renal impairment. In this 26-week, double-blind trial, 279 patients with HbA1c 7-10%, BMI 20-45 kg/m(2), and moderate renal impairment (estimated glomerular filtration rate [eGFR] 30-59 mL/min/1.73 m(2); MDRD) were randomized (1:1) to once-daily liraglutide 1.8 mg (n = 140) or placebo (n = 139). The estimated treatment difference in HbA1c from baseline to week 26 was -0.66% (-7.25 mmol/mol) (95% CI -0.90 to -0.43 [-9.82 to -4.69]), P < 0.0001). Fasting plasma glucose decreased more with liraglutide (-1.22 mmol/L [-22.0 mg/dL]) than with placebo (-0.57 mmol/L [-10.3 mg/dL], P = 0.036). There was a greater reduction in body weight with liraglutide (-2.41 kg) than with placebo (-1.09 kg, P = 0.0052). No changes in renal function were observed (eGFR relative ratio to baseline: -1% liraglutide, +1% placebo; estimated treatment ratio [ETR] 0.98, P = 0.36). The most common adverse events were gastrointestinal (GI) adverse effects (liraglutide, 35.7%; placebo, 17.5%). No difference in hypoglycemic episodes was observed between treatment groups (event rate/100 patient-years of exposure: liraglutide, 30.47; placebo, 40.08; P = 0.54). The estimated ratio to baseline for lipase was 1.33 for liraglutide and 0.97 for placebo (ETR 1.37, P < 0.0001). Liraglutide did not affect renal function and demonstrated better glycemic control, with no increase in hypoglycemia risk but with higher withdrawals due to GI adverse events than placebo in patients with type 2 diabetes and moderate renal impairment. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. Alteration of the Intestinal Environment by Lubiprostone Is Associated with Amelioration of Adenine-Induced CKD.

    PubMed

    Mishima, Eikan; Fukuda, Shinji; Shima, Hisato; Hirayama, Akiyoshi; Akiyama, Yasutoshi; Takeuchi, Yoichi; Fukuda, Noriko N; Suzuki, Takehiro; Suzuki, Chitose; Yuri, Akinori; Kikuchi, Koichi; Tomioka, Yoshihisa; Ito, Sadayoshi; Soga, Tomoyoshi; Abe, Takaaki

    2015-08-01

    The accumulation of uremic toxins is involved in the progression of CKD. Various uremic toxins are derived from gut microbiota, and an imbalance of gut microbiota or dysbiosis is related to renal failure. However, the pathophysiologic mechanisms underlying the relationship between the gut microbiota and renal failure are still obscure. Using an adenine-induced renal failure mouse model, we evaluated the effects of the ClC-2 chloride channel activator lubiprostone (commonly used for the treatment of constipation) on CKD. Oral administration of lubiprostone (500 µg/kg per day) changed the fecal and intestinal properties in mice with renal failure. Additionally, lubiprostone treatment reduced the elevated BUN and protected against tubulointerstitial damage, renal fibrosis, and inflammation. Gut microbiome analysis of 16S rRNA genes in the renal failure mice showed that lubiprostone treatment altered their microbial composition, especially the recovery of the levels of the Lactobacillaceae family and Prevotella genus, which were significantly reduced in the renal failure mice. Furthermore, capillary electrophoresis-mass spectrometry-based metabolome analysis showed that lubiprostone treatment decreased the plasma level of uremic toxins, such as indoxyl sulfate and hippurate, which are derived from gut microbiota, and a more recently discovered uremic toxin, trans-aconitate. These results suggest that lubiprostone ameliorates the progression of CKD and the accumulation of uremic toxins by improving the gut microbiota and intestinal environment. Copyright © 2015 by the American Society of Nephrology.

  13. Renal function monitoring in heart failure - what is the optimal frequency? A narrative review.

    PubMed

    Al-Naher, Ahmed; Wright, David; Devonald, Mark Alexander John; Pirmohamed, Munir

    2018-01-01

    The second most common cause of hospitalization due to adverse drug reactions in the UK is renal dysfunction due to diuretics, particularly in patients with heart failure, where diuretic therapy is a mainstay of treatment regimens. Therefore, the optimal frequency for monitoring renal function in these patients is an important consideration for preventing renal failure and hospitalization. This review looks at the current evidence for optimal monitoring practices of renal function in patients with heart failure according to national and international guidelines on the management of heart failure (AHA/NICE/ESC/SIGN). Current guidance of renal function monitoring is in large part based on expert opinion, with a lack of clinical studies that have specifically evaluated the optimal frequency of renal function monitoring in patients with heart failure. Furthermore, there is variability between guidelines, and recommendations are typically nonspecific. Safer prescribing of diuretics in combination with other antiheart failure treatments requires better evidence for frequency of renal function monitoring. We suggest developing more personalized monitoring rather than from the current medication-based guidance. Such flexible clinical guidelines could be implemented using intelligent clinical decision support systems. Personalized renal function monitoring would be more effective in preventing renal decline, rather than reacting to it. © 2017 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  14. Renal volume assessed by magnetic resonance imaging volumetry correlates with renal function in living kidney donors pre- and postdonation: a retrospective cohort study.

    PubMed

    Lange, Daniel; Helck, Andreas; Rominger, Axel; Crispin, Alexander; Meiser, Bruno; Werner, Jens; Fischereder, Michael; Stangl, Manfred; Habicht, Antje

    2018-07-01

    Renal function of potential living kidney donors is routinely assessed with scintigraphy. Kidney anatomy is evaluated by imaging techniques such as magnetic resonance imaging (MRI). We evaluated if a MRI-based renal volumetry is a good predictor of kidney function pre- and postdonation. We retrospectively analyzed the renal volume (RV) in a MRI of 100 living kidney donors. RV was correlated with the tubular excretion rate (TER) of MAG3-scintigraphy, a measured creatinine clearance (CrCl), and the estimated glomerular filtration rate (eGFR) by Cockcroft-Gault (CG), CKD-EPI, and modification of diet in renal disease (MDRD) formula pre- and postdonation during a follow-up of 3 years. RV correlated significantly with the TER (total: r = 0.6735, P < 0.0001). Correlation between RV and renal function was the highest for eGFR by CG (r = 0.5595, P < 0.0001), in comparison with CrCl, MDRD-GFR, and CKD-EPI-GFR predonation. RV significantly correlated with CG-GFR postdonation and predicted CG-GFR until 3 years after donation. MRI renal volumetry might be an alternative technique for the evaluation of split renal function and prediction of renal function postdonation in living kidney donors. © 2018 Steunstichting ESOT.

  15. Antibody and complement reduce renal hemodynamic function in isolated perfused rat kidney.

    PubMed

    Jocks, T; Zahner, G; Helmchen, U; Kneissler, U; Stahl, R A

    1996-01-01

    To evaluate the effect of antibody and complement on renal hemodynamic changes, glomerular injury was induced in isolated perfused kidneys by an anti-thymocyte antibody (ATS) and rat serum (RS). Glomerular filtration rate (GFR), renal vascular resistance (RVR), and renal perfusate flow (RPF) were assessed over an 80-min period. The possible role of thromboxane (Tx) was tested by the application of the Tx synthesis inhibitor UK-38485 and the Tx receptor blocker daltroban. Perfusion of kidneys with ATS and RS significantly reduced GFR at 10 min (control, 501 +/- 111; ATS + RS, 138 +/- 86 ml.g kidney-1.min-1, significance of F = 0.000) after RS. Similarly, RPF (ml.g kidney-1.min-1) fell from 19.2 +/- 1.8 to 6.1 +/- 2.0 (significance of F = 0.000), whereas RVR (mmHg.ml-1.g.min) increased threefold from 5.2 +/- 0.4 to 17.9 +/- 5.0 at 10 min. These changes were ameliorated by the pretreatment of the rats with daltroban and UK-38485. Addition of erythrocytes to the perfusate increased RVR and GFR, whereas RPF decreased compared with cell-free perfused kidneys. ATS and RS in this preparation also decrease GFR and RPF. The hemodynamic alterations appeared without changes in filtration fraction. Compared with untreated, perfused control kidneys, glomerular Tx formation was significantly increased in ATS and RS perfused kidneys. These data demonstrate that antibody and RS induce impairment of renal hemodynamics, which are mediated by increased Tx formation.

  16. Impact of high doses of 6% hydroxyethyl starch 130/0.42 and 4% gelatin on renal function in a pediatric animal model.

    PubMed

    Witt, Lars; Glage, Silke; Lichtinghagen, Ralf; Pape, Lars; Boethig, Dietmar; Dennhardt, Nils; Heiderich, Sebastian; Leffler, Andreas; Sümpelmann, Robert

    2016-03-01

    Despite serious renal side effects in critically ill adult patients, artificial colloids are still fundamental components of perioperative fluid therapy in infants and children, although the impact of 6% hydroxyethyl starch (HES) and 4% gelatin (GEL) on renal function during pediatric surgery has not been identified yet. To determine the impact of high doses of artificial colloids on renal function, we conducted an experimental animal study and hypothesized that neither the infusion of HES nor of GEL would have a serious impact on renal function. Fifteen sedated piglets were randomly assigned to receive an infusion of either 50 ml · kg(-1) HES or GEL, or a balanced electrolyte solution (crystalloid group). Before and 1 week after infusion, serum and urine renal function tests were recorded and renal biopsies were taken. Serum and urine renal function tests revealed no increase after administration of HES and GEL, and only a discrete increase in serum creatinine (median 9.8 μmol · l(-1), 95% CI 4.0-19.1) in the crystalloid group. Histopathological examination indicated a sparsely, multifocal infiltration of mononuclear cells in all groups and an unspecific pyelectasia of one animal in the GEL group. After high doses of HES or GEL in piglets, no relevant impact on renal function could be found. These results confirm that AKI after HES or GEL is very unlikely in hemodynamically stable perioperative patients with normal renal function. © 2015 John Wiley & Sons Ltd.

  17. Interest and limits of glomerular filtration rate (GFR) estimation with formulae using creatinine or cystatin C in the malnourished elderly population.

    PubMed

    Fabre, Emmanuelle E; Raynaud-Simon, Agathe; Golmard, Jean-Louis; Gourgouillon, Nadège; Beaudeux, Jean-Louis; Nivet-Antoine, Valérie

    2010-01-01

    Renal function is often altered in elderly patients. A lot of formulae are proposed to estimate GFR to adjust drug posology. French guidelines recommend the Cockcroft-Gault formula corrected with the body surface area (cCG), but the initially described unadjusted Cockcroft-Gault equation (CG) is mainly used in geriatric clinical practice. International recommendations have proposed the modification of diet in renal disease (MDRD) formula, since several authors recommended the Rule formula using cystatin C (cystC) in particular population. To appreciate the most accurate GFR estimation for posology adaptation in an elderly polypathological population, a cross-sectional study with prospective inclusion was carried out in Charles Foix Hospital. Plasma glucose levels (PGL), creatinine (CREA) levels and serum cystC, albumin (ALB), transthyretin (TTR), C-reactive protein (CRP), orosomucoid (ORO) total cholesterol (tCHOL) levels were determined among 193 elderly patients aged 70 and older. The results showed that in a malnourished, inflamed old population, CG, MDRD and Rule formulae resulted in different estimations of GFR, depending on nutritional and inflammatory parameters. Only cCG estimation was shown to be independent from these parameters. To conclude, cCG seems to be the most accurate and appropriate formula in a polypathological elderly population to evaluate renal function in order to adapt drug posology. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  18. Psammomys obesus, a particularly important animal model for the study of the human diabetic nephropathy

    PubMed Central

    Scherzer, Pnina; Katalan, Shachaf; Got, Gay; Pizov, Galina; Londono, Irene; Gal-Moscovici, Anca; Popovtzer, Mordecai M.; Ziv, Ehud

    2011-01-01

    The Psammomys obesus lives in natural desert habitat on low energy (LE) diet, however when maintained in laboratory conditions with high energy (HE) diet it exhibits pathological metabolic changes resembling those of type 2 diabetes. We have evaluated and correlated the histopathology, metabolic and functional renal alterations occurring in the diabetic Psammomys. Renal function determined by measuring glomerular filtration rate (GFR), protein excretion, protein/creatinine ratio and morpho-immunocytochemical evaluations were performed on HE diet diabetic animals and compared to LE diet control animals. The diabetic animals present a 54% increase in GFR after one month of hyperglycemic condition and a decrease of 47% from baseline values after 4 months. Protein excretion in diabetic animals was 5 folds increased after 4 months. Light microscopy showed an increase in glomeruli size in the diabetic Psammomys, and electron microscopy and immunocytochemical quantitative evaluations revealed accumulation of basement membrane material as well as frequent splitting of the glomerular basement membrane. In addition, glycogen-filled Armanni-Ebstein clear cells were found in the distal tubules including the thick ascending limbs of the diabetic animals. These renal complications in the Psammomys, including changes in GFR with massive proteinuria sustained by physiological and histopathological changes, are very similar to the diabetic nephropathy in human. The Psamommys obesus represents therefore a reliable animal model of diabetic nephropathy. PMID:22025969

  19. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations

    PubMed Central

    Blázquez-Medela, Ana M.; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M.; Romero, Miguel; Duarte, Juan M.; López-Hernández, Francisco J.; López-Novoa, José M.; Martínez-Salgado, Carlos

    2015-01-01

    Abstract Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys. We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage. Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments. The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening. KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage. PMID:26469898

  20. Renal perfusion index reflects cardiac systolic function in chronic cardio-renal syndrome.

    PubMed

    Lubas, Arkadiusz; Ryczek, Robert; Kade, Grzegorz; Niemczyk, Stanisław

    2015-04-17

    Cardiac dysfunction can modify renal perfusion, which is crucial to maintain sufficient kidney tissue oxygenation. Renal cortex perfusion assessed by dynamic ultrasound method is related both to renal function and cardiac hemodynamics. The aim of the study was to test the hypothesis that Renal Perfusion Index (RPI) can more closely reflect cardiac hemodynamics and differentiate etiology of chronic cardio-renal syndrome. Twenty-four patients with hypertension and chronic kidney disease (CKD) at 2-4 stage (12 with hypertensive nephropathy and 12 with CKD prior to hypertension) were enrolled in the study. Blood tests, 24-h ABPM, echocardiography, and ultrasonography with estimation of Total renal Cortical Perfusion intensity and Renal Perfusion Index (RPI) were performed. In the group of all patients, RPI correlated with left ventricular stoke volume (LVSV), and cardiac index, but not with markers of renal function. In multiple stepwise regression analysis CKD-EPI(Cys-Cr) (b=-0.360), LVSV (b=0.924) and MAP (b=0.376) together independently influenced RPI (R2=0.74; p<0.0001). RPI<0.567 allowed for the identification of patients with chronic cardio-renal syndrome with sensitivity of 41.7% and specificity of 83.3%. Renal perfusion index relates more strongly to cardiac output than to renal function, and could be helpful in recognizing chronic cardio-renal syndrome. Applicability of RPI in diagnosing early abnormalities in the cardio-renal axis requires further investigation.

  1. The Effect of Patient and Surgical Characteristics on Renal Function After Partial Nephrectomy.

    PubMed

    Winer, Andrew G; Zabor, Emily C; Vacchio, Michael J; Hakimi, A Ari; Russo, Paul; Coleman, Jonathan A; Jaimes, Edgar A

    2018-06-01

    The purpose of the study was to identify patient and disease characteristics that have an adverse effect on renal function after partial nephrectomy. We conducted a retrospective review of 387 patients who underwent partial nephrectomy for renal tumors between 2006 and 2014. A line plot with a locally weighted scatterplot smoothing was generated to visually assess renal function over time. Univariable and multivariable longitudinal regression analyses incorporated a random intercept and slope to evaluate the association between patient and disease characteristics with renal function after surgery. Median age was 60 years and most patients were male (255 patients [65.9%]) and white (343 patients [88.6%]). In univariable analysis, advanced age at surgery, larger tumor size, male sex, longer ischemia time, history of smoking, and hypertension were significantly associated with lower preoperative estimated glomerular filtration rate (eGFR). In multivariable analysis, independent predictors of reduced renal function after surgery included advanced age, lower preoperative eGFR, and longer ischemia time. Length of time from surgery was strongly associated with improvement in renal function among all patients. Independent predictors of postoperative decline in renal function include advanced age, lower preoperative eGFR, and longer ischemia time. A substantial number of subjects had recovery in renal function over time after surgery, which continued past the 12-month mark. These findings suggest that patients who undergo partial nephrectomy can experience long-term improvement in renal function. This improvement is most pronounced among younger patients with higher preoperative eGFR. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Nephritic cell damage and antioxidant status in rats exposed to leachate from battery recycling industry

    PubMed Central

    Oboh, Ganiyu

    2016-01-01

    Limited studies have assessed the toxic effect of sub-acute and sub-chronic exposure of leachate (mixture of metals) in mammalian kidney. The sub-acute and sub-chronic exposure of mature male Wistar-strain albino rats (200–220 g) were given by oral administration with leachate from Elewi Odo municipal battery recycling industry (EOMABRIL) for period of 7 and 60 days respectively, at different concentrations (20%, 40%, 60%, 80% and 100%). This was to evaluate its toxic effects on male renal functions using biomarkers of oxidative stress and nephro-cellular damage. Control groups were treated equally, but given distilled water instead of the leachate. All the groups were fed with the same standard food and had free access to drinking water. Following the exposure, results showed that the treatment induced systemic toxicity at the doses tested by causing a significant (p<0.05) alteration in enzymatic antioxidants-catalase (CAT) and superoxide dismutase (SOD) in the kidneys which resulted into elevated levels of malonaldehyde (MDA). Reduced glutathione (GSH) levels were found to be significantly (p<0.05) depleted relative to the control group. Considerable renal cortical congestion and numerous tubules with protein casts were observed in the lumen of EOMABRIL-treated rats. These findings conclude that possible mechanism by which EOMABRIL at the investigated concentrations elicits nephrotoxicity could be linked to the individual, additive, synergistic or antagonistic interactions of this mixture of metals with the renal bio-molecules, alteration of kidney detoxifying enzymes and necrosis of nephritic tubular epithelial cells. PMID:28652841

  3. Nephritic cell damage and antioxidant status in rats exposed to leachate from battery recycling industry.

    PubMed

    Akintunde, Jacob K; Oboh, Ganiyu

    2016-03-01

    Limited studies have assessed the toxic effect of sub-acute and sub-chronic exposure of leachate (mixture of metals) in mammalian kidney. The sub-acute and sub-chronic exposure of mature male Wistar-strain albino rats (200-220 g) were given by oral administration with leachate from Elewi Odo municipal battery recycling industry (EOMABRIL) for period of 7 and 60 days respectively, at different concentrations (20%, 40%, 60%, 80% and 100%). This was to evaluate its toxic effects on male renal functions using biomarkers of oxidative stress and nephro-cellular damage. Control groups were treated equally, but given distilled water instead of the leachate. All the groups were fed with the same standard food and had free access to drinking water. Following the exposure, results showed that the treatment induced systemic toxicity at the doses tested by causing a significant ( p <0.05) alteration in enzymatic antioxidants-catalase (CAT) and superoxide dismutase (SOD) in the kidneys which resulted into elevated levels of malonaldehyde (MDA). Reduced glutathione (GSH) levels were found to be significantly ( p <0.05) depleted relative to the control group. Considerable renal cortical congestion and numerous tubules with protein casts were observed in the lumen of EOMABRIL-treated rats. These findings conclude that possible mechanism by which EOMABRIL at the investigated concentrations elicits nephrotoxicity could be linked to the individual, additive, synergistic or antagonistic interactions of this mixture of metals with the renal bio-molecules, alteration of kidney detoxifying enzymes and necrosis of nephritic tubular epithelial cells.

  4. Head-to-head comparison of structurally unrelated dipeptidyl peptidase 4 inhibitors in the setting of renal ischemia reperfusion injury.

    PubMed

    Reichetzeder, Christoph; von Websky, Karoline; Tsuprykov, Oleg; Mohagheghi Samarin, Azadeh; Falke, Luise Gabriele; Dwi Putra, Sulistyo Emantoko; Hasan, Ahmed Abdallah; Antonenko, Viktoriia; Curato, Caterina; Rippmann, Jörg; Klein, Thomas; Hocher, Berthold

    2017-07-01

    Results regarding protective effects of dipeptidyl peptidase 4 (DPP4) inhibitors in renal ischaemia-reperfusion injury (IRI) are conflicting. Here we have compared structurally unrelated DPP4 inhibitors in a model of renal IRI. IRI was induced in uninephrectomized male rats by renal artery clamping for 30 min. The sham group was uninephrectomized but not subjected to IRI. DPP4 inhibitors or vehicle were given p.o. once daily on three consecutive days prior to IRI: linagliptin (1.5 mg·kg -1 ·day -1 ), vildagliptin (8 mg·kg -1 ·day -1 ) and sitagliptin (30 mg·kg -1 ·day -1 ). An additional group received sitagliptin until study end (before IRI: 30 mg·kg -1 ·day -1 ; after IRI: 15 mg·kg -1 ·day -1 ). Plasma-active glucagon-like peptide type 1 (GLP-1) increased threefold to fourfold in all DPP4 inhibitor groups 24 h after IRI. Plasma cystatin C, a marker of GFR, peaked 48 h after IRI. Compared with the placebo group, DPP4 inhibition did not reduce increased plasma cystatin C levels. DPP4 inhibitors ameliorated histopathologically assessed tubular damage with varying degrees of drug-specific efficacies. Renal osteopontin expression was uniformly reduced by all DPP4 inhibitors. IRI-related increased renal cytokine expression was not decreased by DPP4 inhibition. Renal DPP4 activity at study end was significantly inhibited in the linagliptin group, but only numerically reduced in the prolonged/dose-adjusted sitagliptin group. Active GLP-1 plasma levels at study end were increased only in the prolonged/dose-adjusted sitagliptin treatment group. In rats with renal IRI, DPP4 inhibition did not alter plasma cystatin C, a marker of glomerular function, but may protect against tubular damage. © 2017 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  5. Nervous kidney. Interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function.

    PubMed

    DiBona, G F

    2000-12-01

    Increases in renal sympathetic nerve activity regulate the functions of the nephron, the vasculature, and the renin-containing juxtaglomerular granular cells. Because increased activity of the renin-angiotensin system can also influence nephron and vascular function, it is important to understand the interactions between the renal sympathetic nerves and the renin-angiotensin system in the control of renal function. These interactions can be intrarenal, for example, the direct (by specific innervation) and indirect (by angiotensin II) contributions of increased renal sympathetic nerve activity to the regulation of renal function. The effects of increased renal sympathetic nerve activity on renal function are attenuated when the activity of the renin-angiotensin system is suppressed or antagonized with ACE inhibitors or angiotensin II-type AT(1)-receptor antagonists. The effects of intrarenal administration of angiotensin II are attenuated after renal denervation. These interactions can also be extrarenal, for example, in the central nervous system, wherein renal sympathetic nerve activity and its arterial baroreflex control are modulated by changes in activity of the renin-angiotensin system. In addition to the circumventricular organs, whose permeable blood-brain barrier permits interactions with circulating angiotensin II, there are interactions at sites behind the blood-brain barrier that depend on the influence of local angiotensin II. The responses to central administration of angiotensin II-type AT(1)-receptor antagonists into the ventricular system or microinjected into the rostral ventrolateral medulla are modulated by changes in activity of the renin-angiotensin system produced by physiological changes in dietary sodium intake. Similar modulation is observed in pathophysiological models wherein activity of both the renin-angiotensin and sympathetic nervous systems is increased (eg, congestive heart failure). Thus, both renal and extrarenal sites of interaction between the renin-angiotensin system and renal sympathetic nerve activity are involved in influencing the neural control of renal function.

  6. Pharmacokinetics of Drugs in Cachectic Patients: A Systematic Review

    PubMed Central

    Trobec, Katja; Kerec Kos, Mojca; von Haehling, Stephan; Springer, Jochen; Anker, Stefan D.; Lainscak, Mitja

    2013-01-01

    Cachexia is a weight-loss process caused by an underlying chronic disease such as cancer, chronic heart failure, chronic obstructive pulmonary disease, or rheumatoid arthritis. It leads to changes in body structure and function that may influence the pharmacokinetics of drugs. Changes in gut function and decreased subcutaneous tissue may influence the absorption of orally and transdermally applied drugs. Altered body composition and plasma protein concentration may affect drug distribution. Changes in the expression and function of metabolic enzymes could influence the metabolism of drugs, and their renal excretion could be affected by possible reduction in kidney function. Because no general guidelines exist for drug dose adjustments in cachectic patients, we conducted a systematic search to identify articles that investigated the pharmacokinetics of drugs in cachectic patients. PMID:24282510

  7. Relationship between histopathological changes in post partum renal biopsies and renal function tests of African women with early onset pre-eclampsia.

    PubMed

    Khedun, S M; Naicker, T; Moodley, J

    2000-05-01

    To improve the diagnostic accuracy of concurrent renal disease in hypertension of pregnancy, biopsy evaluation is essential. In addition, establishing underlying renal disease is important for prognosis on future pregnancies. We therefore designed a study to determine the diagnostic yield of postpartum renal biopsy and the nature and frequency of complications associated with this procedure. Also, to determine relationships, if any, between renal function tests and ultrastructural and histopathological findings. Fifty renal biopsies were performed in the immediate postpartum period in black African women with early onset pre-eclampsia. Each biopsy specimen was placed in a separate container and coded so that sampling was unknown to the electron microscopist. Each biopsy specimen was divided into three parts, and processed and stained for light, fluorescent and transmission electron microscopy using conventional techniques. Renal tissue biopsies were adequate for diagnostic purposes in all cases. There were no complications in any of the 50 patients studied. Ultrastructural examination confirmed the light microscopy findings. In addition the ultrastructural findings showed intramembranous deposits, foot process fusion and mesangial deposits. In 16 patients with normal renal function tests; the biopsies evaluation from these patients showed ultrastructural changes. In the remaining 34 patients with abnormal renal function tests of varying severity; biopsy evaluation from these patients showed both ultrastructural and histopathological changes. Renal biopsy procedure is safe, and ultrastructural and histological findings obtained from postpartum renal biopsies are more informative than the routine renal function tests.

  8. Renal function decline predicted by left atrial expansion index in non-diabetic cohort with preserved systolic heart function.

    PubMed

    Hsiao, Shih-Hung; Chiou, Kuan-Rau

    2017-05-01

    Since natriuretic peptide and troponin are associated with renal prognosis and left atrial (LA) parameters are indicators of subclinical cardiovascular abnormalities, this study investigated whether LA expansion index can predict renal decline. This study analysed 733 (69% male) non-diabetic patients with sinus rhythm, preserved systolic function, and estimated glomerular filtration rate (eGFR) higher than 60 mL/min/1.73 m2. In all patients, echocardiograms were performed and LA expansion index was calculated. Renal function was evaluated annually. The endpoint was a downhill trend in renal function with a final eGFR of <60 mL/min/1.73 m2. Rapid renal decline was defined as an annual decline in eGFR >3 mL/min/1.73 m2. The median follow-up time was 5.2 years, and 57 patients (7.8%) had renal function declines (19 had rapid renal declines, and 38 had incidental renal dysfunction). Events were associated with left ventricular mass index, LA expansion index, and heart failure during the follow-up period. The hazard ratio was 1.426 (95% confidence interval, 1.276-1.671; P < 0.0001) per 10% decrease in LA expansion index and was independently associated with an increased event rate. Compared with the highest quartile for the LA expansion index, the lowest quartile had a 9.7-fold risk of renal function decline in the unadjusted model and a 6.9-fold risk after adjusting for left ventricular mass index and heart failure during the follow-up period. Left atrial expansion index is a useful early indicator of renal function decline and may enable the possibility of early intervention to prevent renal function from worsening. NCT01171040. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  9. Longitudinal changes in kidney parenchymal volume associated with renal artery stenting.

    PubMed

    Modrall, J Gregory; Timaran, Carlos H; Rosero, Eric B; Chung, Jayer; Plummer, Mitchell; Valentine, R James; Trimmer, Clayton

    2012-03-01

    This study assessed the longitudinal changes in renal volume after renal artery stenting (RAS) to determine if renal mass is preserved by stenting. The study cohort consisted of 38 patients with longitudinal imaging available for renal volume quantification before and after RAS. Renal volume was estimated as (kidney length) × (width) × (depth/2) based on preoperative renal imaging. For each patient, the clinical response of blood pressure (BP) and renal function to RAS was categorized according to modified American Heart Association guidelines. Changes in renal volume were assessed using paired nonparametric analyses. The cohort was a median age of 69 years (interquartile range [IQR], 60-74 years). A favorable BP response was observed in 11 of 38 patients (28.9%). At a median interval between imaging studies of 21 months (IQR, 13-32 months), ipsilateral renal volume was significantly increased from baseline (146.8 vs 133.8 cm(3);P = .02). This represents a 6.9% relative increase in ipsilateral kidney volume from baseline. A significant negative correlation between preoperative renal volume and the relative change in renal volume postoperatively (r = -0.42; P = .0055) suggests that smaller kidneys experienced the greatest gains in renal volume after stenting. It is noteworthy that the 25 patients with no change in BP or renal function-clinical failures using traditional definitions-experienced a 12% relative increase in ipsilateral renal volume after RAS. Multivariate analysis determined that stable or improved renal volume after stenting was an independent predictor of stable or improved long-term renal function (odds ratio, 0.008; 95% confidence interval, 0.000-0.206; P = .004). These data lend credence to the belief that RAS preserves renal mass in some patients. This benefit of RAS even extends to those patients who would be considered treatment failures by traditional definitions. Patients with stable or increased renal volume after RAS had more stable renal function during long-term follow-up, whereas patients with renal volume loss after stenting were prone to deterioration of renal function. Published by Mosby, Inc.

  10. The renin-angiotensin system in thyroid disorders and its role in cardiovascular and renal manifestations.

    PubMed

    Vargas, Félix; Rodríguez-Gómez, Isabel; Vargas-Tendero, Pablo; Jimenez, Eugenio; Montiel, Mercedes

    2012-04-01

    Thyroid disorders are among the most common endocrine diseases and affect virtually all physiological systems, with an especially marked impact on cardiovascular and renal systems. This review summarizes the effects of thyroid hormones on the renin-angiotensin system (RAS) and the participation of the RAS in the cardiovascular and renal manifestations of thyroid disorders. Thyroid hormones are important regulators of cardiac and renal mass, vascular function, renal sodium handling, and consequently blood pressure (BP). The RAS acts globally to control cardiovascular and renal functions, while RAS components act systemically and locally in individual organs. Various authors have implicated the systemic and local RAS in the mediation of functional and structural changes in cardiovascular and renal tissues due to abnormal thyroid hormone levels. This review analyzes the influence of thyroid hormones on RAS components and discusses the role of the RAS in BP, cardiac mass, vascular function, and renal abnormalities in thyroid disorders.

  11. Tumor necrosis factor-α: regulation of renal function and blood pressure

    PubMed Central

    Garvin, Jeffrey L.

    2013-01-01

    Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine that becomes elevated in chronic inflammatory states such as hypertension and diabetes and has been found to mediate both increases and decreases in blood pressure. High levels of TNF-α decrease blood pressure, whereas moderate increases in TNF-α have been associated with increased NaCl retention and hypertension. The explanation for these disparate effects is not clear but could simply be due to different concentrations of TNF-α within the kidney, the physiological status of the subject, or the type of stimulus initiating the inflammatory response. TNF-α alters renal hemodynamics and nephron transport, affecting both activity and expression of transporters. It also mediates organ damage by stimulating immune cell infiltration and cell death. Here we will summarize the available findings and attempt to provide plausible explanations for such discrepancies. PMID:23515717

  12. Analysis of reciprocal creatinine plots by two-phase linear regression.

    PubMed

    Rowe, P A; Richardson, R E; Burton, P R; Morgan, A G; Burden, R P

    1989-01-01

    The progression of renal diseases is often monitored by the serial measurement of plasma creatinine. The slope of the linear relation that is frequently found between the reciprocal of creatinine concentration and time delineates the rate of change in renal function. Minor changes in slope, perhaps indicating response to therapeutic intervention, can be difficult to identify and yet be of clinical importance. We describe the application of two-phase linear regression to identify and characterise changes in slope using a microcomputer. The method fits two intersecting lines to the data by computing a least-squares estimate of the position of the slope change and its 95% confidence limits. This avoids the potential bias of fixing the change at a preconceived time corresponding with an alteration in treatment. The program then evaluates the statistical and clinical significance of the slope change and produces a graphical output to aid interpretation.

  13. ROLE OF SYMPATHETIC NERVOUS SYSTEM IN OBESITY RELATED HYPERTENSION

    PubMed Central

    da Silva, Alexandre; doCarmo, Jussara; Dubinion, John; Hall, John E.

    2010-01-01

    Obesity is recognized as a major, worldwide, health problem. Excess weight is a major cause of increased blood pressure in most patients with essential hypertension, and greatly increases the risk for diabetes, cardiovascular diseases, and end stage renal disease. Although the mechanisms by which obesity raises blood pressure are not completely understood, increased renal sodium reabsorption, impaired pressure natriuresis, and volume expansion appear to play important roles. Several potential mechanisms have been suggested to contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system (SNS) and the renin-angiotensin-aldosterone system (RAAS), and physical compression of the kidneys, especially when visceral obesity is present. Activation of the SNS in obesity may be due, in part, to hyperleptinemia and other factors secreted by adipocytes and the gastrointestinal tract, activation of the central nervous melanocortin pathway, and baroreceptor dysfunction. PMID:19442330

  14. Changes in Renal Function and Blood Pressure in Patients with Stone Disease

    NASA Astrophysics Data System (ADS)

    Worcester, Elaine M.

    2007-04-01

    Stone disease is a rare cause of renal failure, but a history of kidney stones is associated with an increased risk for chronic kidney disease, particularly in overweight patients. Loss of renal function seems especially notable for patients with stones associated with cystinuria, hyperoxaluria, and renal tubular acidosis, in whom the renal pathology shows deposits of mineral obstructing inner medullary collecting ducts, often diffusely. However, even idiopathic calcium oxalate stone formers have a mild but significant decrease in renal function, compared to age, sex and weight-matched normals, and appear to lose renal function with age at a slightly faster rate than non-stone formers. There is also an increased incidence of hypertension among stone formers, although women are more likely to be affected than men.

  15. Symplocos cochinchinensis attenuates streptozotocin-diabetes induced pathophysiological alterations of liver, kidney, pancreas and eye lens in rats.

    PubMed

    Antu, Kalathookunnel Antony; Riya, Mariam Philip; Mishra, Arvind; Sharma, Sharad; Srivastava, Arvind K; Raghu, Kozhiparambil Gopalan

    2014-09-01

    The beneficial effects of hydroethanol extract of Symplocos cochinchinensis (SCE) has been explored against hyperglycemia associated secondary complications in streptozotocin induced diabetic rat model. The experimental groups consist of normal control (NC), diabetic control (DC), DC + metformin 100 mg kg(-1) bwd, DC + SCE 250 and DC + SCE 500. SCEs and metformin were administered daily for 21 days and sacrificed on day 22. Oral glucose tolerance test, plasma insulin, % HbA1c, urea, creatinine, aspartate aminotransferase, alanine aminotransferase, albumin, total protein etc. were analysed. Aldose reductase (AR) activity in the eye lens was also checked. On day 21, DC rats showed significantly abnormal glucose response, HOMA-IR, % HbA1c, decreased activity of antioxidant enzymes and GSH, elevated AR activity, hepatic and renal oxidative stress markers like malondialdehyde, protein carbonyls compared to NC. DC rats also exhibited increased level of plasma urea and creatinine. Treatment with SCE protected from the deleterious alterations of biochemical parameters in a dose dependent manner including histopathological alterations in pancreas. SCE 500 exhibited 46.28% of glucose lowering effect and decreased HOMA-IR (2.47), % HbA1c (6.61), lens AR activity (15.99%), and hepatic, renal oxidative stress and function markers compared to DC group. Considerable amount of liver and muscle glycogen was replenished by SCE treatment in diabetic animals. Although metformin showed better effect, the activity of SCE was very much comparable with this drug. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Optimization of Bone Health in Children before and after Renal Transplantation: Current Perspectives and Future Directions

    PubMed Central

    Sgambat, Kristen; Moudgil, Asha

    2014-01-01

    The accrual of healthy bone during the critical period of childhood and adolescence sets the stage for lifelong skeletal health. However, in children with chronic kidney disease (CKD), disturbances in mineral metabolism and endocrine homeostasis begin early on, leading to alterations in bone turnover, mineralization, and volume, and impairing growth. Risk factors for CKD–mineral and bone disorder (CKD–MBD) include nutritional vitamin D deficiency, secondary hyperparathyroidism, increased fibroblast growth factor 23 (FGF-23), altered growth hormone and insulin-like growth factor-1 axis, delayed puberty, malnutrition, and metabolic acidosis. After kidney transplantation, nutritional vitamin D deficiency, persistent hyperparathyroidism, tertiary FGF-23 excess, hypophosphatemia, hypomagnesemia, immunosuppressive therapy, and alteration of sex hormones continue to impair bone health and growth. As function of the renal allograft declines over time, CKD–MBD associated changes are reactivated, further impairing bone health. Strategies to optimize bone health post-transplant include healthy diet, weight-bearing exercise, correction of vitamin D deficiency and acidosis, electrolyte abnormalities, steroid avoidance, and consideration of recombinant human growth hormone therapy. Other drug therapies have been used in adult transplant recipients, but there is insufficient evidence for use in the pediatric population at the present time. Future therapies to be explored include anti-FGF-23 antibodies, FGF-23 receptor blockers, and treatments targeting the colonic microbiota by reduction of generation of bacterial toxins and adsorption of toxic end products that affect bone mineralization. PMID:24605319

  17. Effect of renal impairment on the pharmacokinetics, pharmacodynamics, and safety of empagliflozin, a sodium glucose cotransporter 2 inhibitor, in Japanese patients with type 2 diabetes mellitus.

    PubMed

    Sarashina, Akiko; Ueki, Kohjiro; Sasaki, Tomohiro; Tanaka, Yuko; Koiwai, Kazuki; Sakamoto, Wataru; Woerle, Hans J; Salsali, Afshin; Broedl, Uli C; Macha, Sreeraj

    2014-11-01

    The purpose of this study was to assess the effect of renal impairment on the pharmacokinetic, pharmacodynamic, and safety profiles of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in Japanese patients with type 2 diabetes mellitus (T2DM). In an open-label, parallel-group study, 32 Japanese patients with T2DM and different degrees of renal function (n = 8 per renal function category: normal renal function, estimated glomerular filtration rate [eGFR; Japanese equation] ≥90 mL/min/1.73 m(2); mild renal impairment, eGFR of 60-<90 mL/min/1.73 m(2); moderate renal impairment, eGFR of 30-<60 mL/min/1.73 m(2); and severe renal impairment, eGFR of 15-<30 mL/min/1.73 m(2)) received a single 25 mg dose of empagliflozin. Empagliflozin exposure increased with increasing renal impairment. Maximum empagliflozin plasma concentrations were similar among all renal function groups. Adjusted geometric mean ratios for extent of exposure (AUC0-∞) to empagliflozin versus normal renal function were 128.8% (95% CI, 106.0-156.6%), 143.8% (95% CI, 118.3-174.8%), and 152.3% (95% CI, 125.3-185.2%) for patients with mild, moderate, and severe renal impairment, respectively. Decreases in renal clearance of empagliflozin correlated with eGFR. Urinary glucose excretion decreased with increasing renal impairment and correlated with eGFR (adjusted mean [SE] change from baseline: 75.0 [4.84] g, 62.6 [5.75] g, 57.9 [4.86] g, and 23.7 [5.24] g for patients with normal renal function and mild, moderate, and severe renal impairment, respectively). Only 2 patients (6%) had adverse events; both were mild. Pharmacokinetic data suggest that no dose adjustment of empagliflozin is necessary in Japanese patients with T2DM and renal impairment because increases in exposure were <2-fold. Urinary glucose excretion decreased with increasing renal impairment. ClinicalTrials.gov identifier: NCT01581658. Copyright © 2014 Elsevier HS Journals, Inc. All rights reserved.

  18. The rebirth of interest in renal tubular function.

    PubMed

    Lowenstein, Jerome; Grantham, Jared J

    2016-06-01

    The measurement of glomerular filtration rate by the clearance of inulin or creatinine has evolved over the past 50 years into an estimated value based solely on plasma creatinine concentration. We have examined some of the misconceptions and misunderstandings of the classification of renal disease and its course, which have followed this evolution. Furthermore, renal plasma flow and tubular function, which in the past were estimated by the clearance of the exogenous aryl amine, para-aminohippurate, are no longer measured. Over the past decade, studies in experimental animals with reduced nephron mass and in patients with reduced renal function have identified small gut-derived, protein-bound uremic retention solutes ("uremic toxins") that are poorly filtered but are secreted into the lumen by organic anion transporters (OATs) in the proximal renal tubule. These are not effectively removed by conventional hemodialysis or peritoneal dialysis. Residual renal function, urine produced in patients with advanced renal failure or undergoing dialysis treatment, may represent, at least in part, secretion of fluid and uremic toxins, such as indoxyl sulfate, mediated by proximal tubule OATs and might serve as a useful survival function. In light of this new evidence of the physiological role of proximal tubule OATs, we suggest that measurement of renal tubular function and renal plasma flow may be of considerable value in understanding and managing chronic kidney disease. Data obtained in normal subjects indicate that renal plasma flow and renal tubular function might be measured by the clearance of the endogenous aryl amine, hippurate. Copyright © 2016 the American Physiological Society.

  19. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    NASA Technical Reports Server (NTRS)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently arises from sources other than the caudal ventrolateral medulla. If similar alterations in control of the sympathetic nervous system occur in humans in response to cardiovascular deconditioning, it is likely that they play an important role in the observed tendency for orthostatic intolerance. Combined with potential changes in vascular function, cardiac function, and hypovolemia, the predisposition for orthostatic intolerance following cardiovascular deconditioning would be markedly enhanced by blunted ability to reflexly activate the sympathetic nervous system.

  20. Aspects of renal function in patients with colorectal cancer in a gastroenterology clinic of a county hospital in Western Romania.

    PubMed

    Velciov, Silvia; Hoinoiu, B; Hoinoiu, Teodora; Popescu, Alina; Gluhovschi, Cristina; Grădinaru, Oana; Popescu, Mădalină; Moţiu, Flavia; Timar, R; Gluhovschi, G H; Sporea, I

    2013-01-01

    Colorectal cancer represents the third cause of cancer. Since its detection in due time is important resolution, appropriate monitoring is mandatory. The present study deals with the relationship between colorectal cancer and renal function, as well as other associated risk factors. Chronic kidney disease (CKD) represents a risk factor of cancer, both in non-dialysed patients and especially in dialysed patients and in patients with renal transplant. It can get aggravated with cancer in general and particularly with colorectal cancer, partly related to the toxins that cannot be appropriately eliminated because of renal functional disturbances. At the same time, immunosuppressive therapy used for treating glomerular or secondary nephropathies represents an important risk factor of cancer. Some patients with colorectal cancer were found to present also impaired renal function, a fact whose significance is still little known. The object of the present paper is an analysis of the case records of a clinic of gastroenterology on the relationship between colorectal cancer and renal functional impairment. We found in the patients with colorectal cancer under study a glomerular filtration rate (GFR calculated with the EPI formula) of < 60 ml/min/1.73m2 in 31/180 patients, respectively 17.22% of the cases, a value that is similar to that in specialised literature. We also analysed associated risk factors that could be related to renal function impairment in these patients: age, gender, anaemia, diabetes mellitus and hypertension. These could represent, together with the colorectal cancer of the investigated patients, risk factors affecting on the one hand renal function, and on the other hand, potentially increasing the risk of cancer. Correction of these risk factors would have beneficial effects on patients. The relationship between renal functional impairment, respectively CKD, and colorectal cancer is to be regarded from the point of view of complex reciprocity: the impairment of the renal function is a factor of risk of colorectal cancer and colorectal cancer can influence renal function of these patients. This report of reciprocity based on important pathogenic mechanisms also interrelates with factors of risk consecutive to both renal function impairment and colorectal cancer.

  1. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Kang; Rai, Partab; Lan, Xiqian

    Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic micemore » and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. -- Highlights: •MSCs isolated from HIV mice displayed HIV genes. •MSCs isolated from HIV mice exhibited attenuated growth and paracrine functions. •AKI mice with transplanted HIV-MSC displayed poor outcome. •HIV-1 MSC secreted multiple cytokines but at a lower level.« less

  2. Interaction between renal function and percutaneous edge-to-edge mitral valve repair using MitraClip.

    PubMed

    Kaneko, Hidehiro; Neuss, Michael; Schau, Thomas; Weissenborn, Jens; Butter, Christian

    2017-02-01

    MitraClip (MC; Abbott Vascular, Menlo Park, CA, USA) is a treatment option for mitral regurgitation. Renal dysfunction is closely associated with cardiovascular disease. However, the influence of renal function in MC remains not fully understood. In this study, we aimed to clarify the association between renal function and MC. We examined 206 consecutive patients who underwent MC and divided patients into 3 groups according to estimated glomerular filtration rate (eGFR), normal eGFR (≥60mL/min/1.73m 2 ) (n=70), mild chronic kidney disease (CKD) (30-59mL/min/1.73m 2 ) (n=106), and severe CKD (<30mL/min/1.73m 2 ) (n=30). N-terminal pro-B type natriuretic peptide (NT-pro BNP) levels increased with decreasing eGFR. Kaplan-Meier curves revealed that the long-term survival rate significantly decreased with eGFR. After adjustment with the covariates, severe CKD was still associated with mortality. Improved renal function was observed in 30% and associated with baseline lower NT-pro BNP levels. Patients with improved renal function had higher chronic phase survival rate. Renal dysfunction is common in MC patients and the survival rate decreased with eGFR in association with increased NT-pro BNP levels. MC may improve renal function in approximately 30% of MC patients. Improved renal function is associated with lower NT-pro BNP levels and results in satisfactory prognosis. These results implies a close association between renal function and MC treatment. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  3. Reinjury risk of nano-calcium oxalate monohydrate and calcium oxalate dihydrate crystals on injured renal epithelial cells: aggravation of crystal adhesion and aggregation

    PubMed Central

    Gan, Qiong-Zhi; Sun, Xin-Yuan; Bhadja, Poonam; Yao, Xiu-Qiong; Ouyang, Jian-Ming

    2016-01-01

    Background Renal epithelial cell injury facilitates crystal adhesion to cell surface and serves as a key step in renal stone formation. However, the effects of cell injury on the adhesion of nano-calcium oxalate crystals and the nano-crystal-induced reinjury risk of injured cells remain unclear. Methods African green monkey renal epithelial (Vero) cells were injured with H2O2 to establish a cell injury model. Cell viability, superoxide dismutase (SOD) activity, malonaldehyde (MDA) content, propidium iodide staining, hematoxylin–eosin staining, reactive oxygen species production, and mitochondrial membrane potential (Δψm) were determined to examine cell injury during adhesion. Changes in the surface structure of H2O2-injured cells were assessed through atomic force microscopy. The altered expression of hyaluronan during adhesion was examined through laser scanning confocal microscopy. The adhesion of nano-calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystals to Vero cells was observed through scanning electron microscopy. Nano-COM and COD binding was quantitatively determined through inductively coupled plasma emission spectrometry. Results The expression of hyaluronan on the cell surface was increased during wound healing because of Vero cell injury. The structure and function of the cell membrane were also altered by cell injury; thus, nano-crystal adhesion occurred. The ability of nano-COM to adhere to the injured Vero cells was higher than that of nano-COD crystals. The cell viability, SOD activity, and Δψm decreased when nano-crystals attached to the cell surface. By contrast, the MDA content, reactive oxygen species production, and cell death rate increased. Conclusion Cell injury contributes to crystal adhesion to Vero cell surface. The attached nano-COM and COD crystals can aggravate Vero cell injury. As a consequence, crystal adhesion and aggregation are enhanced. These findings provide further insights into kidney stone formation. PMID:27382277

  4. Expression of renin-angiotensin system signalling compounds in maternal protein-restricted rats: effect on renal sodium excretion and blood pressure.

    PubMed

    Mesquita, Flávia Fernandes; Gontijo, José Antonio Rocha; Boer, Patrícia Aline

    2010-02-01

    Intrauterine growth restriction due to low maternal dietary protein during pregnancy is associated with retardation of foetal growth, renal alterations and adult hypertension. The renin-angiotensin system (RAS) is a coordinated hormonal cascade in the control of cardiovascular, renal and adrenal function that governs body fluid and electrolyte balance, as well as arterial pressure. In the kidney, all the components of the renin-angiotensin system including angiotensin II type 1 (AT1) and type 2 (AT2) receptors are expressed locally during nephrogenesis. Hence, we investigated whether low protein diet intake during pregnancy altered kidney and adrenal expression of AT1(R) and AT2(R) receptors, their pathways and if the modified expression of the RAS compounds occurs associated with changes in urinary sodium and in arterial blood pressure in sixteen-week-old males' offspring of the underfed group. The pregnancy dams were divided in two groups: with normal protein diet (pups named NP) (17% protein) or low protein diet (pups LP) (6% protein) during all pregnancy. The present data confirm a significant enhancement in arterial pressure in the LP group. Furthermore, the study showed a significantly decreased expression of RAS pathway protein and Ang II receptors in the kidney and an increased expression in the adrenal of LP rats. The detailed immunohistochemical analysis of RAS signalling proteins in the kidney confirm the immunoblotting results for both groups. The present investigation also showed a pronounced decrease in fractional urinary sodium excretion in maternal protein-restricted offspring, compared with the NP age-matched group. This occurred despite unchanged creatinine clearance. The current data led us to hypothesize that foetal undernutrition could be associated with decreased kidney expression of AT(R) resulting in the inability of renal tubules to handle the hydro-electrolyte balance, consequently causing arterial hypertension.

  5. Long-term expression of glomerular genes in diabetic nephropathy.

    PubMed

    Chittka, Dominik; Banas, Bernhard; Lennartz, Laura; Putz, Franz Josef; Eidenschink, Kathrin; Beck, Sebastian; Stempfl, Thomas; Moehle, Christoph; Reichelt-Wurm, Simone; Banas, Miriam C

    2018-01-11

    Although diabetic nephropathy (DN) is the most common cause for end-stage renal disease in western societies, its pathogenesis still remains largely unclear. A different gene pattern of diabetic and healthy kidney cells is one of the probable explanations. Numerous signalling pathways have emerged as important pathophysiological mechanisms for diabetes-induced renal injury. Glomerular cells, as podocytes or mesangial cells, are predominantly involved in the development of diabetic renal lesions. While many gene assays concerning DN are performed with whole kidney or renal cortex tissue, we isolated glomeruli from black and tan, brachyuric (BTBR) obese/obese (ob/ob) and wildtype mice at four different timepoints (4, 8, 16 and 24 weeks) and performed an mRNA microarray to identify differentially expressed genes (DEGs). In contrast to many other diabetic mouse models, these homozygous ob/ob leptin-deficient mice develop not only a severe type 2 diabetes, but also diabetic kidney injury with all the clinical and especially histologic features defining human DN. By functional enrichment analysis we were able to investigate biological processes and pathways enriched by the DEGs at different disease stages. Altered expression of nine randomly selected genes was confirmed by quantitative polymerase chain reaction from glomerular RNA. Ob/ob type 2 diabetic mice showed up- and downregulation of genes primarily involved in metabolic processes and pathways, including glucose, lipid, fatty acid, retinol and amino acid metabolism. Members of the CYP4A and ApoB family were found among the top abundant genes. But more interestingly, altered gene loci showed enrichment for processes and pathways linked to angioneogenesis, complement cascades, semaphorin pathways, oxidation and reduction processes and renin secretion. The gene profile of BTBR ob/ob type 2 diabetic mice we conducted in this study can help to identify new key players in molecular pathogenesis of diabetic kidney injury. © The Author(s) 2018. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  6. Molecular mechanisms of acid-base sensing by the kidney.

    PubMed

    Brown, Dennis; Wagner, Carsten A

    2012-05-01

    A major function of the kidney is to collaborate with the respiratory system to maintain systemic acid-base status within limits compatible with normal cell and organ function. It achieves this by regulating the excretion and recovery of bicarbonate (mainly in the proximal tubule) and the secretion of buffered protons (mainly in the distal tubule and collecting duct). How proximal tubular cells and distal professional proton transporting (intercalated) cells sense and respond to changes in pH, bicarbonate, and CO(2) status is a question that has intrigued many generations of renal physiologists. Over the past few years, however, some candidate molecular pH sensors have been identified, including acid/alkali-sensing receptors (GPR4, InsR-RR), kinases (Pyk2, ErbB1/2), pH-sensitive ion channels (ASICs, TASK, ROMK), and the bicarbonate-stimulated adenylyl cyclase (sAC). Some acid-sensing mechanisms in other tissues, such as CAII-PDK2L1 in taste buds, might also have similar roles to play in the kidney. Finally, the function of a variety of additional membrane channels and transporters is altered by pH variations both within and outside the cell, and the expression of several metabolic enzymes are altered by acid-base status in parts of the nephron. Thus, it is possible that a master pH sensor will never be identified. Rather, the kidney seems equipped with a battery of molecules that scan the epithelial cell environment to mount a coordinated physiologic response that maintains acid-base homeostasis. This review collates current knowledge on renal acid-base sensing in the context of a whole organ sensing and response process.

  7. Renal dopaminergic system: Pathophysiological implications and clinical perspectives

    PubMed Central

    Choi, Marcelo Roberto; Kouyoumdzian, Nicolás Martín; Rukavina Mikusic, Natalia Lucía; Kravetz, María Cecilia; Rosón, María Inés; Rodríguez Fermepin, Martín; Fernández, Belisario Enrique

    2015-01-01

    Fluid homeostasis, blood pressure and redox balance in the kidney are regulated by an intricate interaction between local and systemic anti-natriuretic and natriuretic systems. Intrarenal dopamine plays a central role on this interactive network. By activating specific receptors, dopamine promotes sodium excretion and stimulates anti-oxidant and anti-inflammatory pathways. Different pathological scenarios where renal sodium excretion is dysregulated, as in nephrotic syndrome, hypertension and renal inflammation, can be associated with impaired action of renal dopamine including alteration in biosynthesis, dopamine receptor expression and signal transduction. Given its properties on the regulation of renal blood flow and sodium excretion, exogenous dopamine has been postulated as a potential therapeutic strategy to prevent renal failure in critically ill patients. The aim of this review is to update and discuss on the most recent findings about renal dopaminergic system and its role in several diseases involving the kidneys and the potential use of dopamine as a nephroprotective agent. PMID:25949933

  8. Prevalence and possible causes of anemia in the elderly: a cross-sectional analysis of a large European university hospital cohort

    PubMed Central

    Bach, Veronika; Schruckmayer, Guenter; Sam, Ines; Kemmler, Georg; Stauder, Reinhard

    2014-01-01

    Background Anemia in later life is associated with increased morbidity and mortality. The purpose of this study was to evaluate the prevalence and possible causes of anemia in the elderly in a well defined hospital cohort. Methods Participants in this cross-sectional, retrospective analysis included all inpatients and outpatients aged ≥64 years with complete blood counts treated at Innsbruck Medical University Hospital between October 1, 2004 and September 29, 2005 (n=19,758, median age 73 years). Results According to World Health Organization criteria, 21.1% of these patients were anemic, ie, 30.7% and 37.0% at 80+ years and 90+ years, respectively. The prevalence of anemia was significantly correlated with advanced age (r=0.21; P<0.001) and male sex (P<0.001). In anemic patients, renal insufficiency with a glomerular filtration rate <30 mL/min/1.73 m2 (11.3% versus 2.1%), hyperinflammation (62.1% versus 31.4%), absolute (14.4% versus 6.9%) or functional (28.2% versus 11.8%) iron deficiency, and folate deficiency (6.7% versus 3.0%) were observed significantly more often than in nonanemic subjects (P<0.001). The pathogenesis of anemia was multifactorial, with decreased renal function (glomerular filtration rate <60 mL/min/1.73 m2), signs of inflammation, and functional iron deficiency detected in 11.4% of anemic patients. Hemoglobin was significantly correlated with elevated C-reactive protein (r= −0.296; P<0.001) and low transferrin saturation (r=0.313; P<0.001). Mean corpuscular volume correlated only weakly with the various anemia subtypes. Cytopenias and morphologic alterations suggestive of underlying myelodysplastic syndromes were found in a substantial proportion of anemic patients, including thrombocytopenia (5.4%), leukopenia (8.26%), and macrocytic alterations (18.4%). Conclusion Anemia was frequently diagnosed in this series of elderly patients. Partly treatable nutritional deficiencies, such as iron or folate deficiency, were identified as possible causes. A complex and heterogeneous interplay of chronic inflammation, functional iron deficiency, and renal impairment was identified in a large proportion of patients. A hitherto undiagnosed myelodysplastic syndrome can be assumed in a relevant proportion of patients. Morphologic classification based on mean corpuscular volume is inadequate from the standpoint of pathogenesis. New parameters are needed to differentiate the multifactorial pathogenesis of anemia in the elderly. PMID:25092968

  9. Reduction of severe mitral regurgitation with the MitraClip system improves renal function in two patients presenting with acute kidney injury and progressive renal failure due to cardio renal syndrome.

    PubMed

    Asdonk, T; Nickenig, G; Hammerstingl, C

    2014-10-01

    Mitral regurgitation (MR) is a frequent valve disorder in elderly patients, often accompanied by multiple comorbidities such as renal impairment. In these patients percutaneous mitral valve (MV) repair has become an established treatment option but the role of MR on renal dysfunction is not yet well defined. We here report on two cases presenting with severe MR and progressive renal failure caused by cardio renal syndrome, in which percutaneous MV treatment with the MitraClip system significantly improved renal function. These findings suggest that interventional MV repair can prevent progression of renal deterioration in patients suffering from combined advanced heart and renal failure. Further clinical studies are necessary to support our finding and to answer the question whether optimizing renal function by implantation of the MitraClip device is also of prognostic relevance in these patients. © 2014 Wiley Periodicals, Inc.

  10. Lack of Correlation between Periodontitis and Renal Dysfunction in Systemically Healthy Patients.

    PubMed

    Brotto, Renata Squariz; Vendramini, Regina Célia; Brunetti, Iguatemy Lourenço; Marcantonio, Rosemary Adriana Chierici; Ramos, Adriana Pelegrino Pinho; Pepato, Maria Teresa

    2011-01-01

    The aim of this study was to assess a suggested association between periodontitis and renal insufficiency by assaying kidney disease markers. VARIABLES USED TO DIAGNOSE PERIODONTITIS WERE: (i) probing pocket depth (PPD), (ii) attachment loss (AL), (iii) bleeding on probing (BOP), (iv) plaque index (PI) and (v) extent and severity index. Blood and urine were collected from 60 apparently healthy non-smokers (men and women), consisting of a test group of 30 subjects with periodontitis (age 46±6 yrs) and a control group of 30 healthy subjects (age 43±5 yrs). Kidney function markers (urea, creatinine, uric acid and albumin contents) were measured in the serum and urine. Also, the glomerular filtration rate was estimated from creatinine clearance, from the abbreviated Modification of Diet in Renal Disease formula and from the albumin : creatinine ratio in a 24-h sample of urine. It was found that the control group had a greater mean number of teeth than the test group and that the two groups also differed in PPD, AL, BOP and PI, all these variables being higher in the test group (P=0.006). For the extent and severity index of both PPD and AL, the test group had much higher medians of both extent and severity than the control group (P=0.001). With regard to kidney function, none of the markers revealed a significant difference between the control and test groups and all measured values fell within the reference intervals. It is proposed that severe periodontitis is not associated with any alteration in kidney function.

  11. Effect of meloxicam and carprofen on renal function when administered to healthy dogs prior to anesthesia and painful stimulation.

    PubMed

    Crandell, Dawn E; Mathews, Karol A; Dyson, Doris H

    2004-10-01

    To determine whether administration of the nonsteroidal anti-inflammatory drugs meloxicam or carprofen to healthy dogs that were subsequently anesthetized and subjected to painful electrical stimulation has adverse effects on renal function as measured by glomerular filtration rate (GFR) and evaluation of serum concentrations of urea and creatinine. 6 male and 6 female healthy young-adult Beagles. A study was conducted in accordance with a randomized crossover Latin-square design. One of 3 treatments (saline [0.9% NaCl] solution, 0.2 mg of meloxicam/kg, or 4.0 mg of carprofen/kg) was administered i.v. 1 hour before anesthesia was induced by use of drugs in accordance with a standard anesthetic protocol (butorphanol tartrate and acepromazine maleate as preanesthetic medications, ketamine hydrochloride and diazepam for induction, and maintenance with isoflurane). Anesthetized dogs were subjected to intermittent electrical stimulation for 30 minutes. Direct, mean arterial blood pressure; heart rate; and respiratory rate were monitored. End-tidal isoflurane concentration was maintained at 1.5 times the minimum alveolar concentration. The GFR, as measured by plasma clearance of 99mTc-diethylenetriaminepentaacetic acid, and serum concentrations of serum and creatinine were determined 24 hours after induction of anesthesia. Neither meloxicam nor carprofen significantly affected GFR or serum concentrations of urea and creatinine, compared with values for the saline treatment. When administered 1 hour before onset of anesthesia and painful electrical stimulation, meloxicam or carprofen did not cause clinically important alterations of renal function in young healthy dogs.

  12. Lack of Correlation between Periodontitis and Renal Dysfunction in Systemically Healthy Patients

    PubMed Central

    Brotto, Renata Squariz; Vendramini, Regina Célia; Brunetti, Iguatemy Lourenço; Marcantonio, Rosemary Adriana Chierici; Ramos, Adriana Pelegrino Pinho; Pepato, Maria Teresa

    2011-01-01

    Objectives: The aim of this study was to assess a suggested association between periodontitis and renal insufficiency by assaying kidney disease markers. Methods: Variables used to diagnose periodontitis were: (i) probing pocket depth (PPD), (ii) attachment loss (AL), (iii) bleeding on probing (BOP), (iv) plaque index (PI) and (v) extent and severity index. Blood and urine were collected from 60 apparently healthy non-smokers (men and women), consisting of a test group of 30 subjects with periodontitis (age 46±6 yrs) and a control group of 30 healthy subjects (age 43±5 yrs). Kidney function markers (urea, creatinine, uric acid and albumin contents) were measured in the serum and urine. Also, the glomerular filtration rate was estimated from creatinine clearance, from the abbreviated Modification of Diet in Renal Disease formula and from the albumin : creatinine ratio in a 24–h sample of urine. Results: It was found that the control group had a greater mean number of teeth than the test group and that the two groups also differed in PPD, AL, BOP and PI, all these variables being higher in the test group (P=0.006). For the extent and severity index of both PPD and AL, the test group had much higher medians of both extent and severity than the control group (P=0.001). With regard to kidney function, none of the markers revealed a significant difference between the control and test groups and all measured values fell within the reference intervals. Conclusions: It is proposed that severe periodontitis is not associated with any alteration in kidney function. PMID:21228952

  13. Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model

    PubMed Central

    Martínez-García, Cristina; Izquierdo, Adriana; Velagapudi, Vidya; Vivas, Yurena; Velasco, Ismael; Campbell, Mark; Burling, Keith; Cava, Fernando; Ros, Manuel; Orešič, Matej; Vidal-Puig, Antonio; Medina-Gomez, Gema

    2012-01-01

    SUMMARY Individuals with metabolic syndrome are at high risk of developing chronic kidney disease (CKD) through unclear pathogenic mechanisms. Obesity and diabetes are known to induce glucolipotoxic effects in metabolically relevant organs. However, the pathogenic role of glucolipotoxicity in the aetiology of diabetic nephropathy is debated. We generated a murine model, the POKO mouse, obtained by crossing the peroxisome proliferator-activated receptor gamma 2 (PPARγ2) knockout (KO) mouse into a genetically obese ob/ob background. We have previously shown that the POKO mice showed: hyperphagia, insulin resistance, hyperglycaemia and dyslipidaemia as early as 4 weeks of age, and developed a complete loss of normal β-cell function by 16 weeks of age. Metabolic phenotyping of the POKO model has led to investigation of the structural and functional changes in the kidney and changes in blood pressure in these mice. Here we demonstrate that the POKO mouse is a model of renal disease that is accelerated by high levels of glucose and lipid accumulation. Similar to ob/ob mice, at 4 weeks of age these animals exhibited an increased urinary albumin:creatinine ratio and significantly increased blood pressure, but in contrast showed a significant increase in the renal hypertrophy index and an associated increase in p27Kip1 expression compared with their obese littermates. Moreover, at 4 weeks of age POKO mice showed insulin resistance, an alteration of lipid metabolism and glomeruli damage associated with increased transforming growth factor beta (TGFβ) and parathyroid hormone-related protein (PTHrP) expression. At this age, levels of proinflammatory molecules, such as monocyte chemoattractant protein-1 (MCP-1), and fibrotic factors were also increased at the glomerular level compared with levels in ob/ob mice. At 12 weeks of age, renal damage was fully established. These data suggest an accelerated lesion through glucolipotoxic effects in the renal pathogenesis in POKO mice. PMID:22773754

  14. Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model.

    PubMed

    Martínez-García, Cristina; Izquierdo, Adriana; Velagapudi, Vidya; Vivas, Yurena; Velasco, Ismael; Campbell, Mark; Burling, Keith; Cava, Fernando; Ros, Manuel; Oresic, Matej; Vidal-Puig, Antonio; Medina-Gomez, Gema

    2012-09-01

    Individuals with metabolic syndrome are at high risk of developing chronic kidney disease (CKD) through unclear pathogenic mechanisms. Obesity and diabetes are known to induce glucolipotoxic effects in metabolically relevant organs. However, the pathogenic role of glucolipotoxicity in the aetiology of diabetic nephropathy is debated. We generated a murine model, the POKO mouse, obtained by crossing the peroxisome proliferator-activated receptor gamma 2 (PPARγ2) knockout (KO) mouse into a genetically obese ob/ob background. We have previously shown that the POKO mice showed: hyperphagia, insulin resistance, hyperglycaemia and dyslipidaemia as early as 4 weeks of age, and developed a complete loss of normal β-cell function by 16 weeks of age. Metabolic phenotyping of the POKO model has led to investigation of the structural and functional changes in the kidney and changes in blood pressure in these mice. Here we demonstrate that the POKO mouse is a model of renal disease that is accelerated by high levels of glucose and lipid accumulation. Similar to ob/ob mice, at 4 weeks of age these animals exhibited an increased urinary albumin:creatinine ratio and significantly increased blood pressure, but in contrast showed a significant increase in the renal hypertrophy index and an associated increase in p27(Kip1) expression compared with their obese littermates. Moreover, at 4 weeks of age POKO mice showed insulin resistance, an alteration of lipid metabolism and glomeruli damage associated with increased transforming growth factor beta (TGFβ) and parathyroid hormone-related protein (PTHrP) expression. At this age, levels of proinflammatory molecules, such as monocyte chemoattractant protein-1 (MCP-1), and fibrotic factors were also increased at the glomerular level compared with levels in ob/ob mice. At 12 weeks of age, renal damage was fully established. These data suggest an accelerated lesion through glucolipotoxic effects in the renal pathogenesis in POKO mice.

  15. pH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+cells: a versatile in vitro model to study renal proximal tubule metabolism and function

    PubMed Central

    Curthoys, Norman P.

    2014-01-01

    Ammoniagenesis and gluconeogenesis are prominent metabolic features of the renal proximal convoluted tubule that contribute to maintenance of systemic acid-base homeostasis. Molecular analysis of the mechanisms that mediate the coordinate regulation of the two pathways required development of a cell line that recapitulates these features in vitro. By adapting porcine renal epithelial LLC-PK1 cells to essentially glucose-free medium, a gluconeogenic subline, termed LLC-PK1-FBPase+ cells, was isolated. LLC-PK1-FBPase+ cells grow in the absence of hexoses and pentoses and exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase. The cells also express significant levels of the key gluconeogenic enzymes, fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus the altered phenotype of LLC-PK1-FBPase+ cells is pleiotropic. Most importantly, when transferred to medium that mimics a pronounced metabolic acidosis (9 mM HCO3−, pH 6.9), the LLC-PK1-FBPase+ cells exhibit a gradual increase in NH4+ ion production, accompanied by increases in glutaminase and cytosolic PEPCK mRNA levels and proteins. Therefore, the LLC-PK1-FBPase+ cells retained in culture many of the metabolic pathways and pH-responsive adaptations characteristic of renal proximal tubules. The molecular mechanisms that mediate enhanced expression of the glutaminase and PEPCK in LLC-PK1-FBPase+ cells have been extensively reviewed. The present review describes novel properties of this unique cell line and summarizes the molecular mechanisms that have been defined more recently using LLC-PK1-FBPase+ cells to model the renal proximal tubule. It also identifies future studies that could be performed using these cells. PMID:24808535

  16. Nephrotic range proteinuria as a strong risk factor for rapid renal function decline during pre-dialysis phase in type 2 diabetic patients with severely impaired renal function.

    PubMed

    Kitai, Yuichiro; Doi, Yohei; Osaki, Keisuke; Sugioka, Sayaka; Koshikawa, Masao; Sugawara, Akira

    2015-12-01

    Proteinuria is an established risk factor for progression of renal disease, including diabetic nephropathy. The predictive power of proteinuria, especially nephrotic range proteinuria, for progressive renal deterioration has been well demonstrated in diabetic patients with normal to relatively preserved renal function. However, little is known about the relationship between severity of proteinuria and renal outcome in pre-dialysis diabetic patients with severely impaired renal function. 125 incident dialysis patients with type 2 diabetes were identified. This study was aimed at retrospectively evaluating the impact of nephrotic range proteinuria (urinary protein-creatinine ratio above 3.5 g/gCr) on renal function decline during the 3 months just prior to dialysis initiation. In total, 103 patients (82.4 %) had nephrotic range proteinuria. The median rate of decline in estimated glomerular filtration rate (eGFR) in this study population was 0.98 (interquartile range 0.51-1.46) ml/min/1.73 m(2) per month. Compared to patients without nephrotic range proteinuria, patients with nephrotic range proteinuria showed significantly faster renal function decline (0.46 [0.24-1.25] versus 1.07 [0.64-1.54] ml/min/1.73 m(2) per month; p = 0.007). After adjusting for gender, age, systolic blood pressure, serum albumin, calcium-phosphorus product, hemoglobin A1c, and use of an angiotensin-converting enzyme inhibitor or an angiotensin II receptor blocker, patients with nephrotic range proteinuria showed a 3.89-fold (95 % CI 1.08-14.5) increased risk for rapid renal function decline defined as a decline in eGFR ≥0.5 ml/min/1.73 m(2) per month. Nephrotic range proteinuria is the predominant renal risk factor in type 2 diabetic patients with severely impaired renal function receiving pre-dialysis care.

  17. The Effect of Chronic Renal Failure on Drug Metabolism and Transport

    PubMed Central

    Dreisbach, Albert W; Lertora, Juan JL

    2009-01-01

    Background Chronic renal failure (CRF) has been shown to significantly reduce the nonrenal clearance and alter bioavailability of drugs predominantly metabolized by the liver and intestine. Objectives The purpose of this article is to review all significant animal and clinical studies dealing with the effect of CRF on drug metabolism and transport. Methods The National Library of Medicine PubMed was utilized with the search terms ‘chronic renal failure, cytochrome P450, liver metabolism, efflux drug transport and uptake transport’ including relevant articles back to 1969. Results Animal studies in CRF have shown a major downregulation (40-85%) of hepatic and intestinal cytochrome P450 (CYP) metabolism. High levels of parathyroid hormone, cytokines, and uremic toxins have been shown to reduce CYP activity. Phase II reactions and drug transporters such as P-glycoprotein (Pgp) and organic anion transporting polypeptide (OATP) are also affected. Conclusion CRF alters intestinal, renal, and hepatic drug metabolism and transport producing a clinically significant impact on drug disposition and increasing the risk for adverse drug reactions. PMID:18680441

  18. Effects of renal function on pharmacokinetics and pharmacodynamics of lesinurad in adult volunteers.

    PubMed

    Gillen, Michael; Valdez, Shakti; Zhou, Dongmei; Kerr, Bradley; Lee, Caroline A; Shen, Zancong

    2016-01-01

    Lesinurad is a selective uric acid reabsorption inhibitor approved for the treatment of gout in combination with a xanthine oxidase inhibitor (XOI) in patients who have not achieved target serum uric acid (sUA) levels with an XOI alone. Most people with gout have chronic kidney disease. The pharmacokinetics, pharmacodynamics, and safety of lesinurad were assessed in subjects with impaired renal function. Two Phase I, multicenter, open-label, single-dose studies enrolled subjects with normal renal function (estimated creatinine clearance [eCrCl] >90 mL/min; N=12) or mild (eCrCl 60-89 mL/min; N=8), moderate (eCrCl 30-59 mL/min; N=16), or severe (eCrCl <30 mL/min; N=6) renal impairment. Subjects were given a single oral lesinurad dose of 200 mg (N=24) or 400 mg (N=18). Blood and urine samples were analyzed for plasma lesinurad concentrations and serum and urine uric acid concentrations. Safety was assessed by adverse events and laboratory data. Mild, moderate, and severe renal impairment increased lesinurad plasma area under the plasma concentration-time curve by 34%, 54%-65%, and 102%, respectively. Lesinurad plasma C max was unaffected by renal function status. Lower renal clearance and urinary excretion of lesinurad were associated with the degree of renal impairment. The sUA-lowering effect of a single dose of lesinurad was similar between mild renal impairment and normal function, reduced in moderate impairment, and greatly diminished in severe impairment. Lesinurad increased urinary urate excretion in normal function and mild renal impairment; the increase was less with moderate or severe renal impairment. Lesinurad was well tolerated by all subjects. Lesinurad exposure increased with decreasing renal function; however, the effects of lesinurad on sUA were attenuated in moderate to severe renal impairment.

  19. Genomic integration of ERRγ-HNF1β regulates renal bioenergetics and prevents chronic kidney disease.

    PubMed

    Zhao, Juanjuan; Lupino, Katherine; Wilkins, Benjamin J; Qiu, Chengxiang; Liu, Jian; Omura, Yasuhiro; Allred, Amanda L; McDonald, Caitlin; Susztak, Katalin; Barish, Grant D; Pei, Liming

    2018-05-22

    Mitochondrial dysfunction is increasingly recognized as a critical determinant of both hereditary and acquired kidney diseases. However, it remains poorly understood how mitochondrial metabolism is regulated to support normal kidney function and how its dysregulation contributes to kidney disease. Here, we show that the nuclear receptor estrogen-related receptor gamma (ERRγ) and hepatocyte nuclear factor 1 beta (HNF1β) link renal mitochondrial and reabsorptive functions through coordinated epigenomic programs. ERRγ directly regulates mitochondrial metabolism but cooperatively controls renal reabsorption via convergent binding with HNF1β. Deletion of ERRγ in renal epithelial cells (RECs), in which it is highly and specifically expressed, results in severe renal energetic and reabsorptive dysfunction and progressive renal failure that recapitulates phenotypes of animals and patients with HNF1β loss-of-function gene mutations. Moreover, ERRγ expression positively correlates with renal function and is decreased in patients with chronic kidney disease (CKD). REC-ERRγ KO mice share highly overlapping renal transcriptional signatures with human patients with CKD. Together these findings reveal a role for ERRγ in directing independent and HNF1β-integrated programs for energy production and use essential for normal renal function and the prevention of kidney disease.

  20. RENAL MICROVASCULAR DISEASE DETERMINES THE RESPONSES TO REVASCULARIZATION IN EXPERIMENTAL RENOVASCULAR DISEASE

    PubMed Central

    Chade, Alejandro R.; Kelsen, Silvia

    2011-01-01

    Background Percutaneous trasluminal renal angioplasty (PTRA) is the most frequent therapeutic approach to resolve renal artery stenosis (RAS). However, renal function recovers in only 30% of the cases. The causes of these poor outcomes are still unknown. We hypothesize that preserving the renal microcirculation distal to RAS will improve the responses to PTRA. Methods and Results RAS was induced in 28 pigs. In 14, vascular endothelial growth factor (VEGF)-165 was infused intra-renally (RAS+VEGF, 0.05 µg/kg). Single-kidney function was assessed in all pigs in vivo using ultra-fast CT after 6 weeks. Half of the RAS/RAS+VEGF completed their observation, and the other half underwent PTRA, VEGF was repeated, and CT studies repeated 4 weeks later. Pigs were then euthanized, the stenotic kidney removed, renal microvascular (MV) architecture reconstructed ex-vivo using 3D micro-CT, and renal fibrosis quantified. Degree of RAS and hypertension were similar in RAS and RAS+VEGF. Renal function and MV density were decreased in RAS but improved in RAS+VEGF. PTRA largely resolved RAS, but the improvements of hypertension and renal function were greater in RAS+VEGF+PTRA than in RAS+PTRA, accompanied by a 34% increase in MV density and decreased fibrosis. Conclusion Preservation of the MV architecture and function in the stenotic kidney improved the responses to PTRA, indicating that renal MV integrity plays a role in determining the responses to PTRA. This study indicates that damage and early loss of renal MV is an important determinant of the progression of renal injury in RAS and instigates often irreversible damage. PMID:20587789

  1. Neural regulation of the kidney function in rats with cisplatin induced renal failure

    PubMed Central

    Goulding, Niamh E.; Johns, Edward J.

    2015-01-01

    Aim: Chronic kidney disease (CKD) is often associated with a disturbed cardiovascular homeostasis. This investigation explored the role of the renal innervation in mediating deranged baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory function in cisplatin-induced renal failure. Methods: Rats were either intact or bilaterally renally denervated 4 days prior to receiving cisplatin (5 mg/kg i.p.) and entered a chronic metabolic study for 8 days. At day 8, other groups of rats were prepared for acute measurement of RSNA or renal function with either intact or denervated kidneys. Results: Following the cisplatin challenge, creatinine clearance was 50% lower while fractional sodium excretion and renal cortical and medullary TGF-β1 concentrations were 3–4 fold higher in both intact and renally denervated rats compared to control rats. In cisplatin-treated rats, the maximal gain of the high-pressure baroreflex curve was only 20% that of control rats, but following renal denervation not different from that of renally denervated control rats. Volume expansion reduced RSNA by 50% in control and in cisplatin-treated rats but only following bilateral renal denervation. The volume expansion mediated natriuresis/diuresis was absent in the cisplatin-treated rats but was normalized following renal denervation. Conclusions: Cisplatin-induced renal injury impaired renal function and caused a sympatho-excitation with blunting of high and low pressure baroreflex regulation of RSNA, which was dependent on the renal innervation. It is suggested that in man with CKD there is a dysregulation of the neural control of the kidney mediated by its sensory innervation. PMID:26175693

  2. Beneficial effects of previous exercise training on renal changes in streptozotocin-induced diabetic female rats

    PubMed Central

    Amaral, Liliany S de Brito; Silva, Fernanda A; Correia, Vicente B; Andrade, Clara EF; Dutra, Bárbara A; Oliveira, Márcio V; de Magalhães, Amélia CM; Volpini, Rildo A; Seguro, Antonio C; Coimbra, Terezila M

    2016-01-01

    This study evaluated the effects of aerobic exercise performed both previously and after the induction of diabetes mellitus on changes of renal function and structure in streptozotocin-induced diabetic rats. Female wistar rats were divided into five groups: sedentary control (C + Se); trained control (C + Ex); sedentary diabetic (D + Se); trained diabetic (D + Ex) and previously trained diabetic (D + PEx). The previous exercise consisted of treadmill running for four weeks before the induction of diabetes mellitus. After induction of diabetes mellitus with streptozotocin, the D + PEx, D + Ex and C + Ex groups were submitted to eight weeks of aerobic exercise. At the end of the training protocol, we evaluate the serum glucose, insulin and 17β-estradiol levels, renal function and structure, proteinuria, and fibronectin, collagen IV and transforming growth factor beta 1 (TGF-β1) renal expressions. Induction of diabetes mellitus reduced the insulin and did not alter 17β-estradiol levels, and exercise did not affect any of these parameters. Previous exercise training attenuated the loss of body weight, the blood glucose, the increase of glomerular filtration rate and prevented the proteinuria in the D + PEx group compared to D + Se group. Previous exercise also reduced glomerular hypertrophy, tubular and glomerular injury, as well as the expressions of fibronectin and collagen IV. These expressions were associated with reduced expression of TGF-β1. In conclusion, our study shows that regular aerobic exercise especially performed previously to induction of diabetes mellitus improved metabolic control and has renoprotective action on the diabetic kidney. PMID:26490345

  3. Beneficial effects of previous exercise training on renal changes in streptozotocin-induced diabetic female rats.

    PubMed

    Amaral, Liliany S de Brito; Silva, Fernanda A; Correia, Vicente B; Andrade, Clara E F; Dutra, Bárbara A; Oliveira, Márcio V; de Magalhães, Amélia C M; Volpini, Rildo A; Seguro, Antonio C; Coimbra, Terezila M; Soares, Telma de J

    2016-02-01

    This study evaluated the effects of aerobic exercise performed both previously and after the induction of diabetes mellitus on changes of renal function and structure in streptozotocin-induced diabetic rats. Female wistar rats were divided into five groups: sedentary control (C + Se); trained control (C + Ex); sedentary diabetic (D + Se); trained diabetic (D + Ex) and previously trained diabetic (D + PEx). The previous exercise consisted of treadmill running for four weeks before the induction of diabetes mellitus. After induction of diabetes mellitus with streptozotocin, the D + PEx, D + Ex and C + Ex groups were submitted to eight weeks of aerobic exercise. At the end of the training protocol, we evaluate the serum glucose, insulin and 17β-estradiol levels, renal function and structure, proteinuria, and fibronectin, collagen IV and transforming growth factor beta 1 (TGF-β1) renal expressions. Induction of diabetes mellitus reduced the insulin and did not alter 17β-estradiol levels, and exercise did not affect any of these parameters. Previous exercise training attenuated the loss of body weight, the blood glucose, the increase of glomerular filtration rate and prevented the proteinuria in the D + PEx group compared to D + Se group. Previous exercise also reduced glomerular hypertrophy, tubular and glomerular injury, as well as the expressions of fibronectin and collagen IV. These expressions were associated with reduced expression of TGF-β1. In conclusion, our study shows that regular aerobic exercise especially performed previously to induction of diabetes mellitus improved metabolic control and has renoprotective action on the diabetic kidney. © 2016 by the Society for Experimental Biology and Medicine.

  4. Thrombospondin-1 deficiency causes a shift from fibroproliferative to inflammatory kidney disease and delays onset of renal failure.

    PubMed

    Zeisberg, Michael; Tampe, Björn; LeBleu, Valerie; Tampe, Desiree; Zeisberg, Elisabeth M; Kalluri, Raghu

    2014-10-01

    Thrombospondin-1 (TSP1) is a multifunctional matricellular protein known to promote progression of chronic kidney disease. To gain insight into the underlying mechanisms through which TSP1 accelerates chronic kidney disease, we compared disease progression in Col4a3 knockout (KO) mice, which develop spontaneous kidney failure, with that of Col4a3;Tsp1 double-knockout (DKO) mice. Decline of excretory renal function was significantly delayed in the absence of TSP1. Although Col4a3;Tsp1 DKO mice did progress toward end-stage renal failure, their kidneys exhibited distinct histopathological lesions, compared with creatinine level-matched Col4a3 KO mice. Although kidneys of both Col4a3 KO and Col4a3;Tsp1 DKO mice exhibited a widened tubulointerstitium, predominant lesions in Col4a3 KO kidneys were collagen deposition and fibroblast accumulation, whereas in Col4a3;Tsp1 DKO kidney inflammation was predominant, with less collagen deposition. Altered disease progression correlated with impaired activation of transforming growth factor-β1 (TGF-β1) in vivo and in vitro in the absence of TSP1. In summary, our findings suggest that TSP1 contributes to progression of chronic kidney disease by catalyzing activation of latent TGF-β1, resulting in promotion of a fibroproliferative response over an inflammatory response. Furthermore, the findings suggest that fibroproliferative and inflammatory lesions are independent entities, both of which contribute to decline of renal function. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Availability of information on renal function in Dutch community pharmacies.

    PubMed

    Koster, Ellen S; Philbert, Daphne; Noordam, Michelle; Winters, Nina A; Blom, Lyda; Bouvy, Marcel L

    2016-08-01

    Background Early detection and monitoring of impaired renal function may prevent drug related problems. Objective To assess the availability of information on patient's renal function in Dutch community pharmacies, for patients using medication that might need monitoring in case of renal impairment. Methods Per pharmacy, 25 patients aged ≥65 years using at least one drug that requires monitoring, were randomly selected from the pharmacy information system. For these patients, information on renal function [estimated glomerular filtration rate (eGFR)], was obtained from the pharmacy information system. When absent, this information was obtained from the general practitioner (GP). Results Data were collected for 1632 patients. For 1201 patients (74 %) eGFR values were not directly available in the pharmacy, for another 194 patients (12 %) the eGFR value was not up-to-date. For 1082 patients information could be obtained from the GP, resulting in 942 additional recent eGFR values. Finally, recent information on renal function was available for 72 % (n = 1179) of selected patients. Conclusion In patients using drugs that require renal monitoring, information on renal function is often unknown in the pharmacy. For the majority of patients this information can be retrieved from the GP.

  6. Carotid artery wall shear stress is independently correlated with renal function in the elderly.

    PubMed

    Guo, Yuqi; Wei, Fang; Wang, Juan; Zhao, Yingxin; Sun, Shangwen; Zhang, Hua; Liu, Zhendong

    2018-01-12

    Hemodynamic has increasingly been regarded as an important factor of renal function. However, the relationship between carotid artery wall shear stress (WSS) and renal function is not clarified. To investigate the relationship between carotid WSS and renal function, we recruited 761 older subjects aged 60 years and over from community-dwelling in the Shandong area, China. Carotid WSS, endothelial function, and estimated glomerular filtration rate (eGFR) were assessed in all subjects. Subjects were grouped by the interquartile of the carotid artery mean WSS. We found that the eGFRs derived from serum creatinine and/or cystatin C using three CKD-EPI equations were significantly higher and albumin/creatinine ratio was lower in the higher interquartile groups than in the lower interquartile groups ( P <0.05). The mean WSS was independently correlated with eGFRs even after adjustment for confounders. Similar findings were found between carotid artery peak WSS and eGFRs and albumin/creatinine ratio. In addition, we found that endothelial function was strongly related to carotid WSS and renal function after adjustment for confounders. In conclusion, there is an independent correlation of carotid WSS with renal function in the elderly. The local rheologic forces may play an important role in renal function changing. The correlation may be mediated by regulation of endothelial function.

  7. A Review of Anesthetic Effects on Renal Function: Potential Organ Protection.

    PubMed

    Motayagheni, Negar; Phan, Sheshanna; Eshraghi, Crystal; Nozari, Ala; Atala, Anthony

    2017-01-01

    Renal protection is a critical concept for anesthesiologists, nephrologists, and urologists, since anesthesia and renal function are highly interconnected and can potentially interfere with one another. Therefore, a comprehensive understanding of anesthetic drugs and their effects on renal function remains fundamental to the success of renal surgeries, especially transplant procedures. Some experimental studies have shown that some anesthetics provide protection against renal ischemia/reperfusion (IR) injury, but there is limited clinical evidence. The effects of anesthetic drugs on renal failure are particularly important in the context of kidney transplantation, since the conditions of preservation following removal profoundly influence the recovery of organ function. Currently, preservation procedures are typically based on the usage of a cold-storage solution. Some anesthetic drugs induce anti-inflammatory, anti-necrotic, and anti-apoptotic effects. A more thorough understanding of anesthetic effects on renal function can present a novel approach for developing organ-protective strategies. The aim of this review is to discuss the effects of different anesthetic drugs on renal function, with particular focus on IR injury. Many studies have demonstrated the organ-protective effects of some anesthetic drugs, specifically propofol, which indicate the potential of some anesthetics to introduce novel organ protective targets. This is not surprising, since lipid emulsions are major components of propofol, which accumulating data show provide organ protective effects against IR injury. Key Messages: Thorough understanding of the interaction between anesthetic drugs and renal function remains fundamental to the delivery of safe perioperative care and to optimizing outcomes after renal surgeries, particularly transplant procedures. Anesthetics can be repurposed for organ protection with more information about their effects, especially during transplant procedures. Here, we review the effects of different anesthetic drugs - specifically those that contain lipids in their structure, with special reference to IR injury. © 2017 S. Karger AG, Basel.

  8. Impact of Sofosbuvir-Based Regimens for the Treatment of Hepatitis C After Liver Transplant on Renal Function: Results of a Canadian National Retrospective Study.

    PubMed

    Faisal, Nabiha; Bilodeau, Marc; Aljudaibi, Bandar; Hirch, Geri; Yoshida, Eric M; Hussaini, Trana; Ghali, Maged P; Congly, Stephen E; Ma, Mang M; Lilly, Leslie B

    2018-04-04

    We assessed the impact of sofosbuvir-based regimens on renal function in liver transplant recipients with recurrent hepatitis C virus and the role of renal function on the efficacy and safety of these regimens. In an expanded pan-Canadian cohort, 180 liver transplant recipients were treated with sofosbuvir-based regimens for hepatitis C virus recurrence from January 2014 to May 2015. Mean age was 58 ± 6.85 years, and 50% had F3/4 fibrosis. Patients were stratified into 4 groups based on baseline estimated glomerular filtration rate (calculated by the Modification of Diet in Renal Disease formula): < 30, 30 to 45, 46 to 60, and > 60 mL/min/173 m2. The primary outcome was posttreatment changes in renal function from baseline. Secondary outcomes included sustained virologic response at 12 weeks posttreatment and anemia-related and serious adverse events. Posttreatment renal function was improved in most patients (58%). Renal function declined in 22% of patients, which was more marked in those with estimated glomerular filtration rate < 30 mL/min/173 m2, advanced cirrhosis (P = .05), and aggressive hepatitis C virus/fibrosing cholestatic hepatitis (P < .05). High rates (80%-88%) of sustained virologic response at 12 weeks posttreatment were seen across all renal function strata. Cirrhotic patients with glomerular filtration rates < 30 mL/min/173 m2 had sustained virologic response rates at 12 weeks posttreatment comparable to the overall patient group. Rates of anemia-related adverse events and transfusion requirements increased across decreasing estimated glomerular filtration rate groups, with notably more occurrences with ribavirin-based regimens. Sofosbuvir-based regimens improved overall renal function in liver transplant recipients, with sustained virologic response, suggesting an association of subclinical hepatitis C virus-related renal disease. Sustained virologic response rates at 12 weeks posttreatment (80%-88%) were comparable regardless of baseline renal function but lower in cirrhosis.

  9. Comparing renal function preservation after laparoscopic radio frequency ablation assisted tumor enucleation and laparoscopic partial nephrectomy for clinical T1a renal tumor: using a 3D parenchyma measurement system.

    PubMed

    Zhu, Liangsong; Wu, Guangyu; Huang, Jiwei; Wang, Jianfeng; Zhang, Ruiyun; Kong, Wen; Xue, Wei; Huang, Yiran; Chen, Yonghui; Zhang, Jin

    2017-05-01

    To compare the renal function preservation between laparoscopic radio frequency ablation assisted tumor enucleation and laparoscopic partial nephrectomy. Data were analyzed from 246 patients who underwent laparoscopic radio frequency ablation assisted tumor enucleation and laparoscopic partial nephrectomy for solitary cT1a renal cell carcinoma from January 2013 to July 2015. To reduce the intergroup difference, we used a 1:1 propensity matching analysis. The functional renal parenchyma volume preservation were measured preoperative and 12 months after surgery. The total renal function recovery and spilt GFR was compared. Multivariable logistic analysis was used for predictive factors for renal function decline. After 1:1 propensity matching, each group including 100 patients. Patients in the laparoscopic radio frequency ablation assisted tumor enucleation had a smaller decrease in estimate glomerular filtration rate at 1 day (-7.88 vs -20.01%, p < 0.001), 3 months (-2.31 vs -10.39%, p < 0.001), 6 months (-2.16 vs -7.99%, p = 0.015), 12 months (-3.26 vs -8.03%, p = 0.012) and latest test (-3.24 vs -8.02%, p = 0.040), also had better functional renal parenchyma volume preservation (89.19 vs 84.27%, p < 0.001), lower decrease of the spilt glomerular filtration rate (-9.41 vs -17.13%, p < 0.001) at 12 months. The functional renal parenchyma volume preservation, warm ischemia time and baseline renal function were the important independent factors in determining long-term functional recovery. The laparoscopic radio frequency ablation assisted tumor enucleation technology has unique advantage and potential in preserving renal parenchyma without ischemia damage compared to conventional laparoscopic partial nephrectomy, and had a better outcome, thus we recommend this technique in selected T1a patients.

  10. Influence of percutaneous mitral valve repair using the MitraClip® system on renal function in patients with severe mitral regurgitation.

    PubMed

    Rassaf, Tienush; Balzer, Jan; Rammos, Christos; Zeus, Tobias; Hellhammer, Katharina; v Hall, Silke; Wagstaff, Rabea; Kelm, Malte

    2015-04-01

    In patients with mitral regurgitation (MR), changes in cardiac stroke volume, and thus renal preload and afterload may affect kidney function. Percutaneous mitral valve repair (PMVR) with the MitraClip® system can be a therapeutic alternative to surgical valve repair. The influence of MitraClip® therapy on renal function and clinical outcome parameters is unknown. Sixty patients with severe MR underwent PMVR using the MitraClip® system in an open-label observational study. Patients were stratified according to their renal function. All clips have been implanted successfully. Effective reduction of MR by 2-3 grades acutely improved KDOQI class. Lesser MR reduction (MR reduction of 0-1 grades) led to worsening of renal function in patients with pre-existing normal or mild (KDOQI 1-2) compared to severe (KDOQI 3-4) renal dysfunction. Reduction of MR was associated with improvement in Minnesota Living with Heart Failure Questionnaire (MLHFQ), NYHA-stadium, and 6-minute walk test. Successful PMVR was associated with an improvement in renal function. The improvement in renal function was associated with the extent of MR reduction and pre-existing kidney dysfunction. Our data emphasize the relevance of PVMR to stabilize the cardiorenal axis in patients with severe MR. © 2014 Wiley Periodicals, Inc.

  11. Interaction between alpha 2-adrenergic and angiotensin II systems in the control of glomerular hemodynamics as assessed by renal micropuncture in the rat

    NASA Technical Reports Server (NTRS)

    Thomson, S. C.; Gabbai, F. B.; Tucker, B. J.; Blantz, R. C.

    1992-01-01

    The hypothesis that renal alpha 2 adrenoceptors influence nephron filtration rate (SNGFR) via interaction with angiotensin II (AII) was tested by renal micropuncture. The physical determinants of SNGFR were assessed in adult male Munich Wistar rats 5-7 d after ipsilateral surgical renal denervation (DNX). DNX was performed to isolate inhibitory central and presynaptic alpha 2 adrenoceptors from end-organ receptors within the kidney. Two experimental protocols were employed: one to test whether prior AII receptor blockade with saralasin would alter the glomerular hemodynamic response to alpha 2 adrenoceptor stimulation with the selective agonist B-HT 933 under euvolemic conditions, and the other to test whether B-HT 933 would alter the response to exogenous AII under conditions of plasma volume expansion. In euvolemic rats, B-HT 933 caused SNGFR to decline as the result of a decrease in glomerular ultrafiltration coefficient (LpA), an effect that was blocked by saralasin. After plasma volume expansion, B-HT 933 showed no primary effect on LpA but heightened the response of arterial blood pressure, glomerular transcapillary pressure gradient, and LpA to AII. The parallel results of these converse experiments suggest a complementary interaction between renal alpha 2-adrenergic and AII systems in the control of LpA.

  12. Neural control of renal tubular solute and water transport.

    PubMed

    DiBona, G F

    1989-01-01

    The neural control of renal tubular solute and water transport is recognized as an important physiological mechanism in the overall regulation of solute and water homeostasis by the mammalian organism. Recent studies have expanded the understanding of this mechanism concerning the transport of diverse solutes with beginning insight into the precise nature of the cellular transport processes involved. The modulatory roles of both circulating and intrarenal hormonal systems on the responses to alterations in the magnitude of efferent renal sympathetic nerve activity are being understood from the nerve terminal release of neurotransmitter to influences on cellular transport processes which determine the overall effect. When dietary sodium intake is normal or only modestly reduced, intact renal innervation is not essential for normal renal sodium conservation. However, when dietary sodium intake is severely restricted, there is maximum engagement of all mechanisms known to participate in renal sodium conservation and, under these conditions, intact renal innervation is essential for normal renal sodium conservation.

  13. Functional Renal Imaging with 2-Deoxy-2-18F-Fluorosorbitol PET in Rat Models of Renal Disorders.

    PubMed

    Werner, Rudolf A; Wakabayashi, Hiroshi; Chen, Xinyu; Hirano, Mitsuru; Shinaji, Tetsuya; Lapa, Constantin; Rowe, Steven P; Javadi, Mehrbod S; Higuchi, Takahiro

    2018-05-01

    Precise regional quantitative assessment of renal function is limited with conventional 99m Tc-labeled renal radiotracers. A recent study reported that the PET radiotracer 2-deoxy-2- 18 F-fluorosorbitol ( 18 F-FDS) has ideal pharmacokinetics for functional renal imaging. Furthermore, 18 F-FDS is available via simple reduction from routinely used 18 F-FDG. We aimed to further investigate the potential of 18 F-FDS PET as a functional renal imaging agent using rat models of kidney disease. Methods: Two different rat models of renal impairment were investigated: induction of acute renal failure by intramuscular administration of glycerol in the hind legs, and induction of unilateral ureteral obstruction by ligation of the left ureter. At 24 h after these procedures, dynamic 30-min 18 F-FDS PET data were acquired using a dedicated small-animal PET system. Urine 18 F-FDS radioactivity 30 min after radiotracer injection was measured together with coinjected 99m Tc-diethylenetriaminepentaacetic acid urine activity. Results: Dynamic PET imaging demonstrated rapid 18 F-FDS accumulation in the renal cortex and rapid radiotracer excretion via the kidneys in healthy control rats. On the other hand, significantly delayed renal radiotracer uptake (continuous slow uptake) was observed in acute renal failure rats and unilateral ureteral obstruction kidneys. Measured urine radiotracer concentrations of 18 F-FDS and 99m Tc-diethylenetriaminepentaacetic acid correlated well with each other ( R = 0.84, P < 0.05). Conclusion: 18 F-FDS PET demonstrated favorable kinetics for functional renal imaging in rat models of kidney diseases. 18 F-FDS PET imaging, with its advantages of high spatiotemporal resolution and simple tracer production, could potentially complement or replace conventional renal scintigraphy in select cases and significantly improve the diagnostic performance of renal functional imaging. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  14. Safety, Tolerability, and Pharmacokinetics of Ribavirin in Hepatitis C Virus-Infected Patients with Various Degrees of Renal Impairment

    PubMed Central

    Wang, K.; Blotner, S.; Magnusson, M. O.; Wilkins, J. J.; Martin, P.; Solsky, J.; Nieforth, K.; Wat, C.; Grippo, J. F.

    2013-01-01

    Ribavirin (RBV) is an integral part of standard-of-care hepatitis C virus (HCV) treatments and many future regimens under investigation. The pharmacokinetics (PK), safety, and tolerability of RBV in chronically HCV-infected patients with renal impairment are not well defined and were the focus of an open-label PK study in HCV-infected patients receiving RBV plus pegylated interferon. Serial RBV plasma samples were collected over 12 h on day 1 of weeks 1 and 12 from patients with moderate renal impairment (creatinine clearance [CLCR], 30 to 50 ml/min; RBV, 600 mg daily), severe renal impairment (CLCR, <30 ml/min; RBV, 400 mg daily), end-stage renal disease (ESRD) (RBV, 200 mg daily), or normal renal function (CLCR, >80 ml/min; RBV, 800 to 1,200 mg daily). Of the 44 patients, 9 had moderately impaired renal function, 10 had severely impaired renal function, 13 had ESRD, and 12 had normal renal function. The RBV dose was reduced because of adverse events (AEs) in 71% and 53% of severe and moderate renal impairment groups, respectively. Despite this modification, patients with moderate and severe impairment had 12-hour (area under the concentration-time curve from 0 to 12 h [AUC0–12]) values 36% (38,452 ng · h/ml) and 25% (35,101 ng · h/ml) higher, respectively, than those with normal renal function (28,192 ng · h/ml). Patients with ESRD tolerated a 200-mg daily dose, and AUC0–12 was 20% lower (22,629 ng · h/ml) than in patients with normal renal function. PK modeling and simulation (M&S) indicated that doses of 200 mg or 400 mg alternating daily for patients with moderate renal impairment and 200 mg daily for patients with severe renal impairment were the most appropriate dose regimens in these patients. PMID:24080649

  15. Recurrent Renal Colic in a Patient with Munchausen Syndrome

    PubMed Central

    Miconi, Francesco; Rapaccini, Valentina; Savarese, Emanuela; Cabiati, Gabriele; Pasini, Augusto; Miconi, Giovanni; Principi, Nicola

    2018-01-01

    Background: In most of the cases regarding children, factitious disorders (FDs) are intentionally produced by parents. Less attention is paid to FDs in which a child or adolescent intentionally induces or falsifies the disease to attain a patient’s role. Case presentation: A 13-year-old immigrated and adopted boy previously underwent an operation for renal joint syndrome and was affected by recurrent episodes of renal colic. The boy was admitted reporting acute left flank pain with scars on the mucous face of his prepuce and had a recent previous hospitalization for the same reason. Laboratory tests and radiological findings did not reveal any morphological or functional alterations. Self-induced FD was suspected, and a psychiatric consultation was performed. After psychiatric consultation and remission of the symptoms with a placebo, a diagnosis of Munchausen syndrome was suspected. The patient’s uncle was not initially convinced of the diagnosis. Some videos clearly showed that the boy was handling his prepuce to excrete stones, explaining the scars. A therapeutic plan with psychiatrist support was later accepted with a positive outcome. No further signs and symptoms of renal colic were reported. Conclusions: It is recommended that paediatricians include FD in the differential diagnosis of a persistent and unexplained medical condition. If suspicion arises, confirmation and long-term therapy by a group of qualified specialists, including psychiatrists, should be planned. PMID:29596350

  16. Calcium oxalate crystals increased enolase-1 secretion from renal tubular cells that subsequently enhanced crystal and monocyte invasion through renal interstitium.

    PubMed

    Chiangjong, Wararat; Thongboonkerd, Visith

    2016-04-05

    Calcium oxalate monohydrate (COM) crystals cause kidney stone disease by still unclear mechanisms. The present study aimed to characterize changes in secretion of proteins from basolateral compartment of renal tubular epithelial cells after exposure to COM crystals and then correlated them with the stone pathogenesis. Polarized MDCK cells were cultivated in serum-free medium with or without 100 μg/ml COM crystals for 20 h. Secreted proteins collected from the lower chamber (basolateral compartment) were then resolved in 2-D gels and visualized by Deep Purple stain (n = 5 gels/group). Spot matching and intensity analysis revealed six protein spots with significantly altered levels in COM-treated samples. These proteins were then identified by tandem mass spectrometry (Q-TOF MS/MS), including enolase-1, phosphoglycerate mutase-1, actinin, 14-3-3 protein epsilon, alpha-tubulin 2, and ubiquitin-activating enzyme E1. The increased enolase-1 level was confirmed by Western blot analysis. Functional analysis revealed that enolase-1 dramatically induced COM crystal invasion through ECM migrating chamber in a dose-dependent manner. Moreover, enolase-1 bound onto U937 monocytic cell surface markedly enhanced cell migration through the ECM migrating chamber. In summary, our data indicated that the increased secretory enolase-1 induced by COM crystals played an important role in crystal invasion and inflammatory process in renal interstitium.

  17. Somatic Pairing of Chromosome 19 in Renal Oncocytoma Is Associated with Deregulated ELGN2-Mediated Oxygen-Sensing Response

    PubMed Central

    Petillo, David; Westphal, Michael; Koelzer, Katherine; Metcalf, Julie L.; Zhang, Zhongfa; Matsuda, Daisuke; Dykema, Karl J.; Houseman, Heather L.; Kort, Eric J.; Furge, Laura L.; Kahnoski, Richard J.; Richard, Stéphane; Vieillefond, Annick; Swiatek, Pamela J.; Teh, Bin Tean; Ohh, Michael; Furge, Kyle A.

    2008-01-01

    Chromosomal abnormalities, such as structural and numerical abnormalities, are a common occurrence in cancer. The close association of homologous chromosomes during interphase, a phenomenon termed somatic chromosome pairing, has been observed in cancerous cells, but the functional consequences of somatic pairing have not been established. Gene expression profiling studies revealed that somatic pairing of chromosome 19 is a recurrent chromosomal abnormality in renal oncocytoma, a neoplasia of the adult kidney. Somatic pairing was associated with significant disruption of gene expression within the paired regions and resulted in the deregulation of the prolyl-hydroxylase ELGN2, a key protein that regulates the oxygen-dependent degradation of hypoxia-inducible factor (HIF). Overexpression of ELGN2 in renal oncocytoma increased ubiquitin-mediated destruction of HIF and concomitantly suppressed the expression of several HIF-target genes, including the pro-death BNIP3L gene. The transcriptional changes that are associated with somatic pairing of chromosome 19 mimic the transcriptional changes that occur following DNA amplification. Therefore, in addition to numerical and structural chromosomal abnormalities, alterations in chromosomal spatial dynamics should be considered as genomic events that are associated with tumorigenesis. The identification of EGLN2 as a significantly deregulated gene that maps within the paired chromosome region directly implicates defects in the oxygen-sensing network to the biology of renal oncocytoma. PMID:18773095

  18. IgG4-Related Kidney Disease: Report of a Case Presenting as a Renal Mass.

    PubMed

    Bianchi, Daniele; Topazio, Luca; Gaziev, Gabriele; Iacovelli, Valerio; Bove, Pierluigi; Mauriello, Alessandro; Finazzi Agrò, Enrico

    2017-01-01

    IgG4-related disease (IgG4-RD) is a nosological entity defined as a chronic immune-mediated fibro-inflammatory condition characterized by a tendency to form tumefactive, tissue-destructive lesions or by organ failure. Urologic involvement in IgG4-RD has been described in some short series of patients and in isolated case reports, most often involving the kidneys in so-called IgG4-related kidney disease (IgG4-RKD). The disease can occasionally mimic malignancies and is at risk of being misdiagnosed due to its rarity. We report the case of a 56-year-old man presenting with a right renal mass suspected of being malignant. Laboratory tests showed normal creatinine levels, a high erythrocyte sedimentation rate, and high levels of C-reactive protein and microalbuminuria. The patient underwent radical right nephroureterectomy and histopathologic examination revealed features proving IgG4-RKD. He was therefore referred to immunologists. Typical clinical presentation of IgG4-RKD includes altered renal function with inconstant or no radiologic findings. Conversely, in the case we presented, a single nodule was detected upon imaging evaluation, thus mimicking malignancy. This raises the issue of a proper differential diagnosis. A multidisciplinary approach can be useful, although in clinical practice the selection of patients suspected of having IgG4-RKD is critical in the cases presenting with a renal mass that mimics malignancy.

  19. Determination of split renal function using dynamic CT-angiography: preliminary results.

    PubMed

    Helck, Andreas; Schönermarck, Ulf; Habicht, Antje; Notohamiprodjo, Mike; Stangl, Manfred; Klotz, Ernst; Nikolaou, Konstantin; la Fougère, Christian; Clevert, Dirk Andrè; Reiser, Maximilian; Becker, Christoph

    2014-01-01

    To determine the feasibility of a dynamic CT angiography-protocol with regard to simultaneous assessment of renal anatomy and function. 7 healthy potential kidney donors (58 ± 7 years) underwent a dynamic computed tomography angiography (CTA) using a 128-slice CT-scanner with continuous bi-directional table movement, allowing the coverage of a scan range of 18 cm within 1.75 sec. Twelve scans of the kidneys (n = 14) were acquired every 3.5 seconds with the aim to simultaneously obtain CTA and renal function data. Image quality was assessed quantitatively (HU-measurements) and qualitatively (grade 1-4, 1 = best). The glomerular filtration rate (GFR) was calculated by a modified Patlak method and compared with the split renal function obtained with renal scintigraphy. Mean maximum attenuation was 464 ± 58 HU, 435 ± 48 HU and 277 ± 29 HU in the aorta, renal arteries, and renal veins, respectively. The abdominal aorta and all renal vessels were depicted excellently (grade 1.0). The image quality score for cortex differentiation was 1.6 ± 0.49, for the renal parenchyma 2.4 ± 0.49. GFR obtained from dynamic CTA correlated well with renal scintigraphy with a correlation coefficient of r = 0.84; P = 0.0002 (n = 14). The average absolute deviation was 1.6 mL/min. The average effective dose was 8.96 mSv. Comprehensive assessment of renal anatomy and function is feasible using a single dynamic CT angiography examination. The proposed protocol may help to improve management in case of asymmetric kidney function as well as to simplify evaluation of potential living kidney donors.

  20. Why, when and how should immunosuppressive therapy considered in patients with immunoglobulin A nephropathy?

    PubMed Central

    Rasche, F. M.; Rasche, W. G.; Schiekofer, S.; Boldt, A.; Sack, U.; Fahnert, J.

    2016-01-01

    Summary IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Lifelong mesangial deposition of IgA1 complexes subsist inflammation and nephron loss, but the complex pathogenesis in detail remains unclear. In regard to the heterogeneous course, classical immunosuppressive and specific therapeutic regimens adapted to the loss of renal function will here be discussed in addition to the essential common renal supportive therapy. Renal supportive therapy alleviates secondary, surrogate effects or sequelae on renal function and proteinuria of high intraglomerular pressure and subsequent nephrosclerosis by inhibition of the renin angiotensin system (RAASB). In patients with physiological (ΔGFR < 1·5 ml/min/year) or mild (ΔGFR 1·5–5 ml/min/year) decrease of renal function and proteinuric forms (> 1 g/day after RAASB), corticosteroids have shown a reduction of proteinuria and might protect further loss of renal function. In patients with progressive loss of renal function (ΔGFR > 3 ml/min within 3 months) or a rapidly progressive course with or without crescents in renal biopsy, cyclophosphamide with high‐dose corticosteroids as induction therapy and azathioprine maintenance has proved effective in one randomized controlled study of a homogeneous cohort in loss of renal function (ΔGFR). Mycophenolic acid provided further maintenance in non‐randomized trials. Differentiated, precise, larger, randomized, placebo‐controlled studies focused on the loss of renal function in the heterogeneous forms of IgAN are still lacking. Prospectively, fewer toxic agents will be necessary in the treatment of IgAN. PMID:27283488

  1. Osmotic Homeostasis

    PubMed Central

    Zeidel, Mark L.

    2015-01-01

    Alterations in water homeostasis can disturb cell size and function. Although most cells can internally regulate cell volume in response to osmolar stress, neurons are particularly at risk given a combination of complex cell function and space restriction within the calvarium. Thus, regulating water balance is fundamental to survival. Through specialized neuronal “osmoreceptors” that sense changes in plasma osmolality, vasopressin release and thirst are titrated in order to achieve water balance. Fine-tuning of water absorption occurs along the collecting duct, and depends on unique structural modifications of renal tubular epithelium that confer a wide range of water permeability. In this article, we review the mechanisms that ensure water homeostasis as well as the fundamentals of disorders of water balance. PMID:25078421

  2. Effect of trichloroethylene (TCE) toxicity on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in kidney and other rat tissues.

    PubMed

    Khan, Sheeba; Priyamvada, Shubha; Khan, Sara A; Khan, Wasim; Farooq, Neelam; Khan, Farah; Yusufi, A N K

    2009-07-01

    Trichloroethylene (TCE), an industrial solvent, is a major environmental contaminant. Histopathological examinations revealed that TCE caused liver and kidney toxicity and carcinogenicity. However, biochemical mechanism and tissue response to toxic insult are not completely elucidated. We hypothesized that TCE induces oxidative stress to various rat tissues and alters their metabolic functions. Male Wistar rats were given TCE (1000 mg/kg/day) in corn oil orally for 25 d. Blood and tissues were collected and analyzed for various biochemical and enzymatic parameters. TCE administration increased blood urea nitrogen, serum creatinine, cholesterol and alkaline phosphatase but decreased serum glucose, inorganic phosphate and phospholipids indicating kidney and liver toxicity. Activity of hexokinase, lactate dehydrogenase increased in the intestine and liver whereas decreased in renal tissues. Malate dehydrogenase and glucose-6-phosphatase and fructose-1, 6-bisphosphatase decreased in all tissues whereas increased in medulla. Glucose-6-phosphate dehydrogenase increased but NADP-malic enzyme decreased in all tissues except in medulla. The activity of BBM enzymes decreased but renal Na/Pi transport increased. Superoxide dismutase and catalase activities variably declined whereas lipid peroxidation significantly enhanced in all tissues. The present results indicate that TCE caused severe damage to kidney, intestine, liver and brain; altered carbohydrate metabolism and suppressed antioxidant defense system.

  3. Well Preserved Renal Function in Children With Untreated Chronic Liver Disease.

    PubMed

    Berg, Ulla B; Németh, Antal

    2018-04-01

    On the basis of studies with hepatorenal syndrome, it is widely regarded that renal function is impacted in chronic liver disease (CLD). Therefore, we investigated renal function in children with CLD. In a retrospective study of 277 children with CLD, renal function was investigated as glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), measured as clearance of inulin and para-amino hippuric acid or clearance of iohexol. The data were analyzed with regard to different subgroups of liver disease and to the grade of damage. Hyperfiltration (>+2 SD of controls) was found in the subgroups of progressive familial intrahepatic cholestasis (44%), glycogenosis (75%), and acute fulminant liver failure (60%). Patients with biliary atresia, most other patients with metabolic disease and intrahepatic cholestasis, and those with vascular anomalies and cryptogenic cirrhosis had normal renal function. Decreased renal function was found in patients with Alagille's syndrome (64% < -2 SD). Increased GFR and ERPF was found in patients with elevated transaminases, low prothrombin level, high bile acid concentration, and high aspartate-aminotransferase-to-platelet ratio. Most children with CLD had surprisingly well preserved renal function and certain groups had even hyperfiltration. The finding that children with decompensated liver disease and ongoing liver failure had stable kidney function suggests that no prognostic markers of threatening hepatorenal syndrome were at hand. Moreover, estimation of GFR based on serum creatinine fails to reveal hyperfiltration.

  4. Impaired left ventricular systolic function and increased brachial-ankle pulse-wave velocity are independently associated with rapid renal function progression.

    PubMed

    Chen, Szu-Chia; Lin, Tsung-Hsien; Hsu, Po-Chao; Chang, Jer-Ming; Lee, Chee-Siong; Tsai, Wei-Chung; Su, Ho-Ming; Voon, Wen-Chol; Chen, Hung-Chun

    2011-09-01

    Heart failure and increased arterial stiffness are associated with declining renal function. Few studies have evaluated the association between left ventricular ejection fraction (LVEF) and brachial-ankle pulse-wave velocity (baPWV) and renal function progression. The aim of this study was to assess whether LVEF<40% and baPWV are associated with a decline in the estimated glomerular filtration rate (eGFR) and the progression to a renal end point of ≥25% decline in eGFR. This longitudinal study included 167 patients. The baPWV was measured with an ankle-brachial index-form device. The change in renal function was estimated by eGFR slope. The renal end point was defined as ≥25% decline in eGFR. Clinical and echocardiographic parameters were compared and analyzed. After a multivariate analysis, serum hematocrit was positively associated with eGFR slope, and diabetes mellitus, baPWV (P=0.031) and LVEF<40% (P=0.001) were negatively associated with eGFR slope. Forty patients reached the renal end point. Multivariate, forward Cox regression analysis found that lower serum albumin and hematocrit levels, higher triglyceride levels, higher baPWV (P=0.039) and LVEF<40% (P<0.001) were independently associated with progression to the renal end point. Our results show that LVEF<40% and increased baPWV are independently associated with renal function decline and progression to the renal end point.

  5. Frasier syndrome, a potential cause of end-stage renal failure in childhood.

    PubMed

    Bache, Manon; Dheu, Céline; Doray, Bérénice; Fothergill, Hélène; Soskin, Sylvie; Paris, Françoise; Sultan, Charles; Fischbach, Michel

    2010-03-01

    The diagnosis of Frasier syndrome is based on the association of male pseudohermaphroditism (as a result of gonadal dysgenesis), with steroid-resistant nephrotic syndrome due to focal and segmental glomerular sclerosis (FSGS), which progresses to end-stage renal failure (ESRF) during adolescence or adulthood. Frasier syndrome results from mutations in the Wilms' tumour suppressor gene WT1, which is responsible for alterations in male genital development and podocyte dysfunction. We describe the case of a 7-year-old girl who was referred to the paediatric emergency department with ESRF. Haemodialysis was started immediately because of severe hypertension and hyperkalaemia. In view of the fact that our patient had a past medical history of pseudohermaphroditism, we suspected that the acute presentation in ESRF may be related to a new diagnosis of Frasier syndrome. Our hypothesis was confirmed on examination of the medical records. There had been no medical follow-up for several years and, in particular, no renal imaging or functional assessment had ever been performed. This lack of surveillance explains why our patient presented with ESRF much earlier in this disease than expected and subsequently had to undergo kidney transplantation at a very young age.

  6. Mitochondrial Reactive Oxygen Species and Kidney Hypoxia in the Development of Diabetic Nephropathy

    PubMed Central

    Schiffer, Tomas A.; Friederich-Persson, Malou

    2017-01-01

    The underlying mechanisms in the development of diabetic nephropathy are currently unclear and likely consist of a series of dynamic events from the early to late stages of the disease. Diabetic nephropathy is currently without curative treatments and it is acknowledged that even the earliest clinical manifestation of nephropathy is preceded by an established morphological renal injury that is in turn preceded by functional and metabolic alterations. An early manifestation of the diabetic kidney is the development of kidney hypoxia that has been acknowledged as a common pathway to nephropathy. There have been reports of altered mitochondrial function in the diabetic kidney such as altered mitophagy, mitochondrial dynamics, uncoupling, and cellular signaling through hypoxia inducible factors and AMP-kinase. These factors are also likely to be intertwined in a complex manner. In this review, we discuss how these pathways are connected to mitochondrial production of reactive oxygen species (ROS) and how they may relate to the development of kidney hypoxia in diabetic nephropathy. From available literature, it is evident that early correction and/or prevention of mitochondrial dysfunction may be pivotal in the prevention and treatment of diabetic nephropathy. PMID:28443030

  7. Mitochondrial Reactive Oxygen Species and Kidney Hypoxia in the Development of Diabetic Nephropathy.

    PubMed

    Schiffer, Tomas A; Friederich-Persson, Malou

    2017-01-01

    The underlying mechanisms in the development of diabetic nephropathy are currently unclear and likely consist of a series of dynamic events from the early to late stages of the disease. Diabetic nephropathy is currently without curative treatments and it is acknowledged that even the earliest clinical manifestation of nephropathy is preceded by an established morphological renal injury that is in turn preceded by functional and metabolic alterations. An early manifestation of the diabetic kidney is the development of kidney hypoxia that has been acknowledged as a common pathway to nephropathy. There have been reports of altered mitochondrial function in the diabetic kidney such as altered mitophagy, mitochondrial dynamics, uncoupling, and cellular signaling through hypoxia inducible factors and AMP-kinase. These factors are also likely to be intertwined in a complex manner. In this review, we discuss how these pathways are connected to mitochondrial production of reactive oxygen species (ROS) and how they may relate to the development of kidney hypoxia in diabetic nephropathy. From available literature, it is evident that early correction and/or prevention of mitochondrial dysfunction may be pivotal in the prevention and treatment of diabetic nephropathy.

  8. Cheilitis glandularis: immunohistochemical expression of protein water channels (aquaporins) in minor labial salivary glands.

    PubMed

    Nico, M M S; Melo, J N; Lourenço, S V

    2014-03-01

    Cheilitis glandularis (CG) is a rare condition in which thick saliva is secreted from dilated ostia of swollen minor salivary glands from the lips. Aquaporins (AQPs) are membrane proteins that exhibit channel activity specific for water and small solutes. AQPs are essential for corporal homeostasis, and are widely expressed through human tissues. Most AQPs studies are based on renal and nervous pathophysiology; few involve salivary glands. Some previous investigators hypothesized that minor salivary gland structure and function is normal on CG. To study possible salivary synthesis alterations in CG, we compared the expression of AQPs present in minor salivary glands in specimens with CG and controls by using immunohistochemistry.   Seven cases of CG and three normal controls were studied. Intensity and patterns of expression of AQP 1, 2 and 8 differed in CG compared with controls. AQP 4 and 5 (the most important AQP in salivary function) showed identical patterns in CG and controls. Our findings suggest that the expression and arguably, function of some of the AQPs may be altered in CG; consequently, water flow mechanism abnormalities with possible alteration in salivary composition seem to occur. External factors (mainly UV rays) seem to play an important role in CG; nonetheless, our findings suggest that there might be some degree of alteration on water transportation. © 2013 The Authors. Journal of the European Academy of Dermatology and Venereology © 2013 European Academy of Dermatology and Venereology.

  9. Variability in the reporting of renal function endpoints in immunosuppression trials in renal transplantation: time for consensus?

    PubMed

    Knight, Simon R; Hussain, Samia

    2016-12-01

    Early measures of graft function are increasingly used to assess efficacy in clinical trials of kidney transplant immunosuppression. This study aimed to assess the variability and quality of reporting of these endpoints in contemporary trials. Data regarding renal function endpoints were extracted from 213 reports from randomized controlled trials comparing immunosuppressive interventions in renal transplant recipients published between 2010 and 2014. A total of 174 (81.7%) reports included a measure of renal function; in 44 (20.7%), this was the primary endpoint. A total of 103 manuscripts (48.4%) reported serum creatinine, 142 (66.6%) reported estimated glomerular filtration rate (eGFR), and 26 (12.2%) reported measured GFR. Formulas used for GFR estimation were modification of diet in renal disease (42.3%), Cockroft-Gault (23.5%), Nankivell (15.0%), and CKD-EPI (0.9%). Six studies (2.8%) did not report the formula used to estimate GFR. A total of 13.9% of endpoints had missing data. In 10 studies, disagreement was found in the significance of findings using different measures of renal function. There is a great deal of variability in the reporting of renal function endpoints, with a significant proportion of studies using underperforming or inappropriate estimates. There is a need for consensus as to the best tool for monitoring and reporting renal function post-transplant, and in particular for use in clinical trials and registries. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Risk factors and co-morbidities associated with changes in renal function among antiretroviral treatment-naïve adults in South Africa: A chart review.

    PubMed

    Assaram, Shirelle; Mashamba-Thompson, Tivani P; Magula, Nombulelo P

    2018-01-01

    Our systematic scoping review has demonstrated a research gap in antiretroviral treatment (ART) nephrotoxicity as well as in the long-term outcomes of renal function for patients on ART in South Africa. Bearing in mind the high prevalence of human immunodeficiency virus (HIV) in South Africa, this is of great concern. To determine the risk factors and co-morbidities associated with changes in renal function in HIV-infected adults in South Africa. We conducted a retrospective study of 350 ART-naïve adult patients attending the King Edward VIII HIV clinic, Durban, South Africa. Data were collected at baseline (pre-ART) and at six, 12, 18 and 24 months on ART. Renal function was assessed in the 24-month period using the Modification of Diet in Renal Disease equation and was categorised into normal renal function (estimated glomerular filtration rate [eGFR] ≥ 60), moderate renal impairment (eGFR 30-59), severe renal impairment (eGFR 15-29) and kidney failure (eGFR < 15 mL/min/1.73 m 2 ). Generalised linear models for binary data were used to model the probability of renal impairment over the five time periods, controlling for repeated measures within participants over time. Risk ratios and 95% confidence intervals (CI) were reported for each time point versus baseline. The cohort was 64% female, and 99% were Black. The median age was 36 years. At baseline, 10 patients had hypertension (HPT), six had diabetes, 61 were co-infected with tuberculosis (TB) and 157 patients had a high body mass index (BMI) with 25.4% being categorised as overweight and 19.4% as obese. The majority of the patients (59.3%) were normotensive. At baseline, the majority of the patients (90.4%) had normal renal function (95% CI: 86% - 93%), 7.0% (CI: 5% - 10%) had moderate renal impairment, 1.3% (CI: 0% - 3%) had severe renal impairment and 1.3% (CI: 0% - 3%) had renal failure. As BMI increased by one unit, the risk of renal impairment increased by 1.06 (CI: 1.03-1.10) times. The association of HPT with abnormal renal function was found to be insignificant, p > 0.05. The vast majority of patients were initiated on tenofovir disoproxil fumarate (TDF) (90.6%), in combination with lamivudine (3TC) (100%) and either efavirenz (EFV) (56.6%) or nevirapine (NVP) (43.4%). This study reports a low prevalence of baseline renal impairment in HIV-infected ART-naïve outpatients. An improvement in renal function after the commencement of ART has been demonstrated in this population. However, the long-term outcomes of patients with HIV-related renal disease are not known.

  11. Two distinct clinical courses of renal involvement in rheumatoid patients with AA amyloidosis.

    PubMed

    Uda, Hiroshi; Yokota, Akira; Kobayashi, Kumiko; Miyake, Tadao; Fushimi, Hiroaki; Maeda, Akira; Saiki, Osamu

    2006-08-01

    We conducted a prospective study to investigate whether a correlation exists between the clinical course of renal involvement and the pathological findings of renal amyloidosis in patients with rheumatoid arthritis (RA). Patients with RA of more than 5 years' duration and who did not show renal manifestations were selected and received a duodenal biopsy for the diagnosis of amyloidosis. After the diagnosis of AA amyloidosis, patients received a renal biopsy, and patterns of amyloid deposition were examined. We followed the renal functions (serum levels of blood urea nitrogen and creatinine) of patients diagnosed with AA amyloidosis for 5 years. We diagnosed 53 patients with AA amyloidosis and monitored the renal function of 38 of them for > 5 years. The histological patterns were examined; in the 38 patients there were appreciable variations in the patterns of amyloid deposition. In 27 patients, amyloid deposits were found exclusively in the glomerulus (type 1). In the other 11 patients, however, amyloid deposits were found selectively around blood vessels and were totally absent in the glomerulus (type 2). In type 1 patients with glomerular involvement, renal function deteriorated rapidly regardless of disease state; most patients received hemodialysis. In type 2 patients with purely vascular involvement, however, renal function did not deteriorate significantly. In patients with RA and AA amyloidosis, 2 distinct clinical courses in terms of renal involvement were identified. It is suggested that renal function does not deteriorate when amyloid deposition is totally lacking in the glomerulus.

  12. Renal microvascular disease determines the responses to revascularization in experimental renovascular disease.

    PubMed

    Chade, Alejandro R; Kelsen, Silvia

    2010-08-01

    Percutaneous transluminal renal angioplasty (PTRA) is the most frequent therapeutic approach to resolving renal artery stenosis (RAS). However, renal function recovers in only 30% of the cases. The causes of these poor outcomes are still unknown. We hypothesized that preserving the renal microcirculation distal to RAS will improve the responses to PTRA. RAS was induced in 28 pigs. In 14, vascular endothelial growth factor (VEGF)-165 0.05 microg/kg was infused intrarenally (RAS+VEGF). Single-kidney function was assessed in all pigs in vivo using ultrafast CT after 6 weeks. Observation of half of the RAS and RAS+VEGF pigs was completed. The other half underwent PTRA and repeated VEGF, and CT studies were repeated 4 weeks later. Pigs were then euthanized, the stenotic kidney removed, renal microvascular (MV) architecture reconstructed ex vivo using 3D micro-CT, and renal fibrosis quantified. The degree of RAS and hypertension were similar in RAS and RAS+VEGF. Renal function and MV density were decreased in RAS but improved in RAS+VEGF. PTRA largely resolved RAS, but the improvements of hypertension and renal function were greater in RAS+VEGF+PTRA than in RAS+PTRA, accompanied by a 34% increase in MV density and decreased fibrosis. Preservation of the MV architecture and function in the stenotic kidney improved the responses to PTRA, indicating that renal MV integrity plays a role in determining the responses to PTRA. This study indicates that damage and early loss of renal MV is an important determinant of the progression of renal injury in RAS and instigates often irreversible damage.

  13. Albumin infusion improves renal blood flow autoregulation in patients with acute decompensation of cirrhosis and acute kidney injury.

    PubMed

    Garcia-Martinez, Rita; Noiret, Lorette; Sen, Sambit; Mookerjee, Rajeshwar; Jalan, Rajiv

    2015-02-01

    In cirrhotic patients with renal failure, renal blood flow autoregulation curve is shifted to the right, which is consequent upon sympathetic nervous system activation and endothelial dysfunction. Albumin infusion improves renal function in cirrhosis by mechanisms that are incompletely understood. We aimed to determine the effect of albumin infusion on systemic haemodynamics, renal blood flow, renal function and endothelial function in patients with acute decompensation of cirrhosis and acute kidney injury. Twelve patients with refractory ascites and 10 patients with acute decompensation of cirrhosis and acute kidney injury were studied. Both groups were treated with intravenous albumin infusion, 40-60 g/days over 3-4 days. Cardiac and renal haemodynamics were measured. Endothelial activation/dysfunction was assessed using von Willebrand factor and serum nitrite levels. F2α Isoprostanes, resting neutrophil burst and noradrenaline levels were quantified as markers of oxidative stress, endotoxemia and sympathetic activation respectively. Albumin infusion leads to a shift in the renal blood flow autoregulation curve towards normalization, which resulted in a significant increase in renal blood flow. Accordingly, improvement of renal function was observed. In parallel, a significant decrease in sympathetic activation, inflammation/oxidative stress and endothelial activation/dysfunction was documented. Improvement of renal blood flow correlated with improvement in endothelial activation (r = 0.741, P < 0.001). The data suggest that albumin infusion improves renal function in acutely decompensated cirrhotic patients with acute kidney injury by impacting on renal blood flow autoregulation. This is possibly achieved through endothelial stabilization and a reduction in the sympathetic tone, endotoxemia and oxidative stress. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Arterial spin labeling blood flow magnetic resonance imaging for evaluation of renal injury.

    PubMed

    Liu, Yupin P; Song, Rui; Liang, Chang hong; Chen, Xin; Liu, Bo

    2012-08-15

    A multitude of evidence suggests that iodinated contrast material causes nephrotoxicity; however, there have been no previous studies that use arterial spin labeling (ASL) blood flow functional magnetic resonance imaging (fMRI) to investigate the alterations in effective renal plasma flow between normointensive and hypertensive rats following injection of contrast media. We hypothesized that FAIR-SSFSE arterial spin labeling MRI may enable noninvasive and quantitative assessment of regional renal blood flow abnormalities and correlate with disease severity as assessed by histological methods. Renal blood flow (RBF) values of the cortex and medulla of rat kidneys were obtained from ASL images postprocessed at ADW4.3 workstation 0.3, 24, 48, and 72 h before and after injection of iodinated contrast media (6 ml/kg). The H&E method for morphometric measurements was used to confirm the MRI findings. The RBF values of the outer medulla were lower than those of the cortex and the inner medulla as reported previously. Iodinated contrast media treatment resulted in decreases in RBF in the outer medulla and cortex in spontaneously hypertensive rats (SHR), but only in the outer medulla in normotensive rats. The iodinated contrast agent significantly decreased the RBF value in the outer medulla and the cortex in SHR compared with normotensive rats after injection of the iodinated contrast media. Histological observations of kidney morphology were also consistent with ASL perfusion changes. These results demonstrate that the RBF value can reflect changes of renal perfusion in the cortex and medulla. ASL-MRI is a feasible and accurate method for evaluating nephrotoxic drugs-induced kidney damage.

  15. Aortic calcification burden predicts deterioration of renal function after radical nephrectomy.

    PubMed

    Fukushi, Ken; Hatakeyama, Shingo; Yamamoto, Hayato; Tobisawa, Yuki; Yoneyama, Tohru; Soma, Osamu; Matsumoto, Teppei; Hamano, Itsuto; Narita, Takuma; Imai, Atsushi; Yoneyama, Takahiro; Hashimoto, Yasuhiro; Koie, Takuya; Terayama, Yuriko; Funyu, Tomihisa; Ohyama, Chikara

    2017-02-06

    Radical nephrectomy for renal cell carcinoma (RCC) is a risk factor for the development of chronic kidney disease (CKD), and the possibility of postoperative deterioration of renal function must be considered before surgery. We investigated the contribution of the aortic calcification index (ACI) to the prediction of deterioration of renal function in patients undergoing radical nephrectomy. Between January 1995 and December 2012, we performed 511 consecutive radical nephrectomies for patients with RCC. We retrospectively studied data from 109 patients who had regular postoperative follow-up of renal function for at least five years. The patients were divided into non-CKD and pre-CKD based on a preoperative estimated glomerular filtration rate (eGFR) of ≥60 mL/min/1.73 m 2 or <60 mL/min/1.73 m 2 , respectively. The ACI was quantitatively measured by abdominal computed tomography before surgery. The patients in each group were stratified between low and high ACIs. Variables such as age, sex, comorbidities, and pre- and postoperative renal function were compared between patients with a low or high ACI in each group. Renal function deterioration-free interval rates were evaluated by Kaplan-Meier analysis. Factors independently associated with deterioration of renal function were determined using multivariate analysis. The median age, preoperative eGFR, and ACI in this cohort were 65 years, 68 mL/min/1.73 m 2 , and 8.3%, respectively. Higher ACI (≥8.3%) was significantly associated with eGFR decline in both non-CKD and pre-CKD groups. Renal function deterioration-free interval rates were significantly lower in the ACI-high than ACI-low strata in both of the non-CKD and pre-CKD groups. Multivariate analysis showed that higher ACI was an independent risk factor for deterioration of renal function at 5 years after radical nephrectomy. Aortic calcification burden is a potential predictor of deterioration of renal function after radical nephrectomy. This study was registered as a clinical trial: UMIN000023577.

  16. Serum osteoprotegerin and renal function in the general population: the Tromsø Study.

    PubMed

    Vik, Anders; Brodin, Ellen E; Mathiesen, Ellisiv B; Brox, Jan; Jørgensen, Lone; Njølstad, Inger; Brækkan, Sigrid K; Hansen, John-Bjarne

    2017-02-01

    Serum osteoprotegerin (OPG) is elevated in patients with chronic kidney disease (CKD) and increases with decreasing renal function. However, there are limited data regarding the association between OPG and renal function in the general population. The aim of the present study was to explore the relation between serum OPG and renal function in subjects recruited from the general population. We conducted a cross-sectional study with 6689 participants recruited from the general population in Tromsø, Norway. Estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration equations. OPG was modelled both as a continuous and categorical variable. General linear models and linear regression with adjustment for possible confounders were used to study the association between OPG and eGFR. Analyses were stratified by the median age, as serum OPG and age displayed a significant interaction on eGFR. In participants ≤62.2 years with normal renal function (eGFR ≥90 mL/min/1.73 m 2 ) eGFR increased by 0.35 mL/min/1.73 m 2 (95% CI 0.13-0.56) per 1 standard deviation (SD) increase in serum OPG after multiple adjustment. In participants older than the median age with impaired renal function (eGFR <90 mL/min/1.73 m 2 ), eGFR decreased by 1.54 (95% CI -2.06 to -1.01) per 1 SD increase in serum OPG. OPG was associated with an increased eGFR in younger subjects with normal renal function and with a decreased eGFR in older subjects with reduced renal function. Our findings imply that the association between OPG and eGFR varies with age and renal function.

  17. Predictors of renal recovery in patients with pre-orthotopic liver transplant (OLT) renal dysfunction.

    PubMed

    Iglesias, Jose; Frank, Elliot; Mehandru, Sushil; Davis, John M; Levine, Jerrold S

    2013-07-13

    Renal dysfunction occurs commonly in patients awaiting orthotopic liver transplantation (OLT) for end-stage liver disease. The use of simultaneous liver-kidney transplantation has increased in the MELD scoring era. As patients may recover renal function after OLT, identifying factors predictive of renal recovery is a critical issue, especially given the scarcity of available organs. Employing the UNOS database, we sought to identify donor- and patient-related predictors of renal recovery among 1720 patients with pre-OLT renal dysfunction and transplanted from 1989 to 2005. Recovery of renal function post-OLT was defined as a composite endpoint of serum creatinine (SCr) ≤1.5 mg/dL at discharge and survival ≥29 days. Pre-OLT renal dysfunction was defined as any of the following: SCr ≥2 mg/dL at any time while awaiting OLT or need for renal replacement therapy (RRT) at the time of registration and/or OLT. Independent predictors of recovery of renal function post-OLT were absence of hepatic allograft dysfunction, transplantation during MELD era, recipient female sex, decreased donor age, decreased recipient ALT at time of OLT, decreased recipient body mass index at registration, use of anti-thymocyte globulin as induction therapy, and longer wait time from registration. Contrary to popular belief, a requirement for RRT, even for prolonged periods in excess of 8 weeks, was not an independent predictor of failure to recover renal function post-OLT. These data indicate that the duration of renal dysfunction, even among those requiring RRT, is a poor way to discriminate reversible from irreversible renal dysfunction.

  18. Renal function preservation with the mTOR inhibitor, Everolimus, after lung transplant.

    PubMed

    Schneer, Sonia; Kramer, Mordechai R; Fox, Benjamin; Rusanov, Viktoria; Fruchter, Oren; Rosengarten, Dror; Bakal, Ilana; Medalion, Benjamin; Raviv, Yael

    2014-06-01

    Chronic kidney disease (CKD) is a common complication of calcineurin inhibitors (CNIs) in solid organ transplantation. Previous data suggest that the use of everolimus as an immunosuppressant drug leads to improvement in renal function. The aim of our study was to establish the effect of everolimus in combination with lower doses of CNIs on renal function among lung transplant recipients. Data regarding renal function and pulmonary function were collected from 41 lung transplanted patients in whom treatment was converted to a combination of everolimus with lower doses of CNIs. Patients transferred to everolimus and low dose CNIs showed an improvement in renal function. Patients who continued treatment with everolimus showed improvement in renal function, as opposed to patients who discontinued the treatment. Subjects without proteinuria at baseline showed a better improvement compared with subjects with proteinuria. The incidence of graft rejection did not increase. We concluded that a protocol that includes everolimus and lower doses of CNIs is effective for preserving renal function in lung transplant recipients with CKD. We also believe that an early implementation of everolimus, before proteinuria occurs or creatinine clearance is reduced, could lead to better outcomes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quoilin, C., E-mail: cquoilin@ulg.ac.be; Mouithys-Mickalad, A.; Duranteau, J.

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonancemore » spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.« less

  20. Mendelian randomization analysis associates increased serum urate, due to genetic variation in uric acid transporters, with improved renal function.

    PubMed

    Hughes, Kim; Flynn, Tanya; de Zoysa, Janak; Dalbeth, Nicola; Merriman, Tony R

    2014-02-01

    Increased serum urate predicts chronic kidney disease independent of other risk factors. The use of xanthine oxidase inhibitors coincides with improved renal function. Whether this is due to reduced serum urate or reduced production of oxidants by xanthine oxidase or another physiological mechanism remains unresolved. Here we applied Mendelian randomization, a statistical genetics approach allowing disentangling of cause and effect in the presence of potential confounding, to determine whether lowering of serum urate by genetic modulation of renal excretion benefits renal function using data from 7979 patients of the Atherosclerosis Risk in Communities and Framingham Heart studies. Mendelian randomization by the two-stage least squares method was done with serum urate as the exposure, a uric acid transporter genetic risk score as instrumental variable, and estimated glomerular filtration rate and serum creatinine as the outcomes. Increased genetic risk score was associated with significantly improved renal function in men but not in women. Analysis of individual genetic variants showed the effect size associated with serum urate did not correlate with that associated with renal function in the Mendelian randomization model. This is consistent with the possibility that the physiological action of these genetic variants in raising serum urate correlates directly with improved renal function. Further studies are required to understand the mechanism of the potential renal function protection mediated by xanthine oxidase inhibitors.

  1. Altered regulation of renal sodium transporters in salt-sensitive hypertensive rats induced by uninephrectomy.

    PubMed

    Jung, Ji Yong; Lee, Jay Wook; Kim, Sejoong; Jung, Eun Sook; Jang, Hye Ryoun; Han, Jin Suk; Joo, Kwon Wook

    2009-12-01

    Uninephrectomy (uNx) in young rats causes salt-sensitive hypertension (SSH). Alterations of sodium handling in residual nephrons may play a role in the pathogenesis. Therefore, we evaluated the adaptive alterations of renal sodium transporters according to salt intake in uNx-SSH rats. uNx or sham operations were performed in male Sprague-Dawley rats, and normal-salt diet was fed for 4 weeks. Four experimental groups were used: sham-operated rats raised on a high-salt diet for 2 weeks (CHH) or on a low-salt diet for 1 week after 1 week's high-salt diet (CHL) and uNx rats fed on the same diet (NHH, NHL) as the sham-operated rats were fed. Expression of major renal sodium transporters were determined by semiquantitative immunoblotting. Systolic blood pressure was increased in NHH and NHL groups, compared with CHH and CHL, respectively. Protein abundances of Na(+)/K(+)/2Cl(-) cotransporter (NKCC2) and Na(+)/Cl(-) cotransporter (NCC) in the CHH group were lower than the CHL group. Expression of epithelial sodium channel (ENaC)-γ increased in the CHH group. In contrast, expressions of NKCC2 and NCC in the NHH group didn't show any significant alterations, compared to the NHL group. Expressions of ENaC-α and ENaC-β in the NHH group were higher than the CHH group. Adaptive alterations of NKCC2 and NCC to changes of salt intake were different in the uNx group, and changes in ENaC-α and ENaC-β were also different. These altered regulations of sodium transporters may be involved in the pathogenesis of SSH in the uNx rat model.

  2. Effect of bariatric surgery-induced weight loss on renal and systemic inflammation and blood pressure: a 12-month prospective study.

    PubMed

    Fenske, Wiebke K; Dubb, Sukhpreet; Bueter, Marco; Seyfried, Florian; Patel, Karishma; Tam, Frederick W K; Frankel, Andrew H; le Roux, Carel W

    2013-01-01

    Bariatric surgery improves arterial hypertension and renal function; however, the underlying mechanisms and effect of different surgical procedures are unknown. In the present prospective study, we compared the 12-month follow-up results after Roux-en-Y gastric bypass, laparoscopic adjustable gastric banding, and laparoscopic sleeve gastrectomy on weight loss, hypertension, renal function, and inflammatory status. A total of 34 morbidly obese patients were investigated before, one and 12 months after Roux-en-Y gastric bypass (n = 10), laparoscopic adjustable gastric banding (n = 13), and laparoscopic sleeve gastrectomy (n = 11) for hypertension, kidney function, urinary and serum cytokine levels of macrophage migration inhibitory factor, monocyte chemotactic protein-1, and chemokine ligand-18. At 12 months after surgery, the patients in all 3 treatment arms showed a significant decrease in the mean body mass index, mean arterial pressure, and urinary and serum inflammatory markers (all P < .001). The reduction in urinary and serum cytokine levels correlated directly with body weight loss (P < .05). Patients with impaired renal function at baseline (corresponding to serum cystatin C >.8 mg/L) had a marked improvement in renal function 12 months after surgery (P < .05). Surgically induced weight loss is associated with a marked decrease in renal and systemic inflammation and arterial hypertension and improvement in renal function in patients with pre-existing renal impairment. These effects appear to be independent of surgical procedure. The improvement in renal inflammation could be 1 of the mechanisms contributing to the beneficial effects of bariatric surgery on arterial blood pressure, proteinuria, and renal function. Copyright © 2013 American Society for Metabolic and Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  3. Dehydration upon admission is a risk factor for incomplete recovery of renal function in children with haemolytic uremic syndrome.

    PubMed

    Ojeda, José M; Kohout, Isolda; Cuestas, Eduardo

    2013-01-01

    Haemolytic uremic syndrome (HUS) is the most common cause of acute renal failure and the second leading cause of chronic renal failure in children. The factors that affect incomplete renal function recovery prior to hospital admission are poorly understood. To analyse the risk factors that determine incomplete recovery of renal function prior to hospitalisation in children with HUS. A retrospective case-control study. age, sex, duration of diarrhoea, bloody stools, vomiting, fever, dehydration, previous use of antibiotics, and incomplete recovery of renal function (proteinuria, hypertension, reduced creatinine clearance, and chronic renal failure during follow-up). Patients of both sexes under 15 years of age were included. Of 36 patients, 23 were males (65.3%; 95%CI: 45.8 to 80.9), with an average age of 2.5 ± 1.4 years. Twenty-one patients required dialysis (58%; 95% CI: 40.8 to 75.8), and 13 (36.1%; 95% CI: 19.0 to 53.1) did not recover renal function. In the bivariate model, the only significant risk factor was dehydration (defined as weight loss >5%) [(OR: 5.3; 95% CI: 1.4 to 12.3; P=.0220]. In the multivariate analysis (Cox multiple regression), only dehydration was marginally significant (HR: 95.823; 95% CI: 93.175 to 109.948; P=.085). Our data suggest that dehydration prior to admission may be a factor that increases the risk of incomplete recovery of renal function during long-term follow-up in children who develop HUS D+. Consequently, in patients with diarrhoea who are at risk of HUS, dehydration should be strongly avoided during outpatient care to preserve long-term renal function. These results must be confirmed by larger prospective studies.

  4. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals.

    PubMed

    Wang, Kefeng; Sun, Yin; Tao, Wei; Fei, Xiang; Chang, Chawnshang

    2017-05-28

    Increasing evidence has demonstrated that the androgen receptor (AR) plays important roles to promote the metastasis of clear cell renal cell carcinoma (ccRCC). The detailed mechanisms, especially how AR functions via altering the circular RNAs (circRNAs) remain unclear. Here we identified a new circRNA (named as circHIAT1) whose expression was lower in ccRCCs than adjacent normal tissues. Targeting AR could suppress ccRCC cell progression via increasing circHIAT1 expression. ChIP assay and luciferase assay demonstrated that AR suppressed circHIAT1 expression via regulating its host gene, Hippocampus Abundant Transcript 1 (HIAT1) expression at the transcriptional level. The consequences of AR-suppressed circHIAT1 resulted in deregulating miR-195-5p/29a-3p/29c-3p expressions, which increased CDC42 expression to enhance ccRCC cell migration and invasion. Increasing this newly identified signal via circHIAT1 suppressed AR-enhanced ccRCC cell migration and invasion. Together, these results suggested that circHIAT1 functioned as a metastatic inhibitor to suppress AR-enhanced ccRCC cell migration and invasion. Targeting this newly identified AR-circHIAT1-mediated miR-195-5p/29a-3p/29c-3p/CDC42 signals may help us develop potential new therapies to better suppress ccRCC metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. [Retinal vasculopathy with cerebral leukoencephalopathy carrying TREX1 mutation diagnosed by the intracranial calcification: a case report].

    PubMed

    Komaki, Ryouhei; Ueda, Takehiro; Tsuji, Yukio; Miyawaki, Toko; Kusuhara, Sentaro; Hara, Shigeo; Toda, Tatsushi

    2018-02-28

    A 40-year-old woman with renal dysfunction for 2 years was admitted to our hospital suffering from a headache. Family history revealed that her mother had a headache, renal dysfunction, and brain infarction in younger age. She had a retinal hemorrhage, a retinal atrophy, pitting edema in her lower extremities. Her neurological findings were unremarkable. Brain imaging showed multiple white matter lesions accompanied with calcifications and slightly enhancement. Kidney biopsy showed the thrombotic microangiopathy, Gene analysis demonstrated a causative mutation in three-prime repair exonuclease-1 (TREX1) gene, c.703_704insG (p.Val235GlyfsX6), thereby we diagnosed her as retinal vasculopathy with cerebral leukoencephalopathy (RVCL). RVCL is an autosomal dominant condition caused by C-terminal frame-shift mutation in TREX1. TREX1 protein is a major 3' to 5' DNA exonuclease, which are important in DNA repair. While TREX1 mutations identified in Aicardi-Goutieres syndrome patients lead to a reduction of enzyme activity, it is suggested that mutations in RVCL alter an intracellular location of TREX1 protein. There are no treatments based evidences in RVCL. We administered cilostazol to protect endothelial function, and her brain lesions and renal function have not become worse for 10 months after. It is necessary to consider RVCL associated with TREX1 mutation if a patient has retinal lesions, white matter lesions accompanied with calcifications, and multiple organ dysfunction.

  6. Tempol prevents altered K(+) channel regulation of afferent arteriolar tone in diabetic rat kidney.

    PubMed

    Troncoso Brindeiro, Carmen M; Lane, Pascale H; Carmines, Pamela K

    2012-03-01

    Experiments were performed to test the hypothesis that oxidative stress underlies the enhanced tonic dilator impact of inward-rectifier K(+) channels on renal afferent arterioles of rats with streptozotocin-induced diabetes mellitus. Sham and diabetic rats were left untreated or provided Tempol in their drinking water for 26±1 days, after which afferent arteriolar lumen diameter and its responsiveness to K(+) channel blockade were measured using the in vitro blood-perfused juxtamedullary nephron technique. Afferent diameter averaged 19.4±0.8 μm in sham rats and 24.4±0.8 μm in diabetic rats (P<0.05). The decrease in diameter evoked by Ba(2+) (inward-rectifier K(+) channel blocker) was 3 times greater in diabetic rats than in sham rats. Glibenclamide (K(ATP) channel blocker) and tertiapin-Q (Kir1.1/Kir3.x channel blocker) decreased afferent diameter in diabetic rats but had no effect on arterioles from sham rats. Chronic Tempol treatment prevented diabetes mellitus-induced increases in both renal vascular dihydroethidium staining and baseline afferent arteriolar diameter. Moreover, Tempol prevented the exaggeration of afferent arteriolar responses to Ba(2+), tertiapin-Q, and glibenclamide otherwise evident in diabetic rats. Preglomerular microvascular smooth muscle cells expressed mRNA encoding Kir1.1, Kir2.1, and Kir6.1. Neither diabetes mellitus nor Tempol altered Kir1.1, Kir2.1, Kir6.1, or SUR2B protein levels in renal cortical microvessels. To the extent that the effects of Tempol reflect its antioxidant actions, our observations indicate that oxidative stress contributes to the exaggerated impact of Kir1.1, Kir2.1, and K(ATP) channels on afferent arteriolar tone during diabetes mellitus and that this phenomenon involves posttranslational modulation of channel function.

  7. Unclassified renal cell carcinoma: a clinicopathological, comparative genomic hybridization, and whole-genome exon sequencing study.

    PubMed

    Hu, Zhen-Yan; Pang, Li-Juan; Qi, Yan; Kang, Xue-Ling; Hu, Jian-Ming; Wang, Lianghai; Liu, Kun-Peng; Ren, Yuan; Cui, Mei; Song, Li-Li; Li, Hong-An; Zou, Hong; Li, Feng

    2014-01-01

    Unclassified renal cell carcinoma (URCC) is a rare variant of RCC, accounting for only 3-5% of all cases. Studies on the molecular genetics of URCC are limited, and hence, we report on 2 cases of URCC analyzed using comparative genome hybridization (CGH) and the genome-wide human exon GeneChip technique to identify the genomic alterations of URCC. Both URCC patients (mean age, 72 years) presented at an advanced stage and died within 30 months post-surgery. Histologically, the URCCs were composed of undifferentiated, multinucleated, giant cells with eosinophilic cytoplasm. Immunostaining revealed that both URCC cases had strong p53 protein expression and partial expression of cluster of differentiation-10 and cytokeratin. The CGH profiles showed chromosomal imbalances in both URCC cases: gains were observed in chromosomes 1p11-12, 1q12-13, 2q20-23, 3q22-23, 8p12, and 16q11-15, whereas losses were detected on chromosomes 1q22-23, 3p12-22, 5p30-ter, 6p, 11q, 16q18-22, 17p12-14, and 20p. Compared with 18 normal renal tissues, 40 mutated genes were detected in the URCC tissues, including 32 missense and 8 silent mutations. Functional enrichment analysis revealed that the missense mutation genes were involved in 11 different biological processes and pathways, including cell cycle regulation, lipid localization and transport, neuropeptide signaling, organic ether metabolism, and ATP-binding cassette transporter signaling. Our findings indicate that URCC may be a highly aggressive cancer, and the genetic alterations identified herein may provide clues regarding the tumorigenesis of URCC and serve as a basis for the development of targeted therapies against URCC in the future.

  8. Unclassified renal cell carcinoma: a clinicopathological, comparative genomic hybridization, and whole-genome exon sequencing study

    PubMed Central

    Hu, Zhen-Yan; Pang, Li-Juan; Qi, Yan; Kang, Xue-Ling; Hu, Jian-Ming; Wang, Lianghai; Liu, Kun-Peng; Ren, Yuan; Cui, Mei; Song, Li-Li; Li, Hong-An; Zou, Hong; Li, Feng

    2014-01-01

    Unclassified renal cell carcinoma (URCC) is a rare variant of RCC, accounting for only 3-5% of all cases. Studies on the molecular genetics of URCC are limited, and hence, we report on 2 cases of URCC analyzed using comparative genome hybridization (CGH) and the genome-wide human exon GeneChip technique to identify the genomic alterations of URCC. Both URCC patients (mean age, 72 years) presented at an advanced stage and died within 30 months post-surgery. Histologically, the URCCs were composed of undifferentiated, multinucleated, giant cells with eosinophilic cytoplasm. Immunostaining revealed that both URCC cases had strong p53 protein expression and partial expression of cluster of differentiation-10 and cytokeratin. The CGH profiles showed chromosomal imbalances in both URCC cases: gains were observed in chromosomes 1p11-12, 1q12-13, 2q20-23, 3q22-23, 8p12, and 16q11-15, whereas losses were detected on chromosomes 1q22-23, 3p12-22, 5p30-ter, 6p, 11q, 16q18-22, 17p12-14, and 20p. Compared with 18 normal renal tissues, 40 mutated genes were detected in the URCC tissues, including 32 missense and 8 silent mutations. Functional enrichment analysis revealed that the missense mutation genes were involved in 11 different biological processes and pathways, including cell cycle regulation, lipid localization and transport, neuropeptide signaling, organic ether metabolism, and ATP-binding cassette transporter signaling. Our findings indicate that URCC may be a highly aggressive cancer, and the genetic alterations identified herein may provide clues regarding the tumorigenesis of URCC and serve as a basis for the development of targeted therapies against URCC in the future. PMID:25120763

  9. Clinical types and drug therapy of renal impairment in cirrhosis

    PubMed Central

    Rodés, J.; Bosch, J.; Arroyo, V.

    1975-01-01

    Four separate types of renal failure in cirrhosis are described: functional renal failure; diuretic induced uraemia; acute tubular necrosis; chronic intrinsic renal disease. Functional renal failure may arise spontaneously or be precipitated by such factors as haemorrhage, surgery, or infection. It carries a poor prognosis but preliminary results of treating this condition with plasma volume expansion in combination with high doses of furosemide are encouraging. PMID:1234328

  10. The role of the renal specialist nurse in prevention of renal failure.

    PubMed

    Hurst, J

    2002-01-01

    This article will investigate the care required for those with reduced renal function before renal replacement therapy (RRT) commences. Renal nurses are often involved with the technical, monitoring and evaluative aspects of RRT for those with end stage renal failure. However, many patients may experience reduced renal function many years before reaching the stage of needing RRT. Renal nurses are already involved in the preparation of patients for RRT, but are not presently exercising their specialist skills in the period before this time by contributing to the prevention of end stage renal failure (ESRF). Screening programmes carried out in various parts of the world demonstrate that many members of the population have undetected renal insufficiency, and may benefit from intervention from the nephrology team to prevent further renal dysfunction. It is for this group of patients that this article will consider the potential for the renal nurse to expand their scope of practice.

  11. Renal impairment as a surgical indication in primary hyperparathyroidism: do the data support this recommendation?

    PubMed

    Hendrickson, Chase D; Castro Pereira, Daniel J; Comi, Richard J

    2014-08-01

    Management of primary hyperparathyroidism has evolved over the past two decades, yet impaired renal function has consistently been a surgical indication. This recommendation has been based upon the historical association between primary hyperparathyroidism and renal impairment, and a review of the literature is needed to determine whether such a recommendation is warranted. PubMed was utilized to identify English-language articles published between January 1990 and February 2014 using keywords related to hyperparathyroidism and renal function. The keywords were "primary hyperparathyroidism," "surgery," "parathyroidectomy," "kidney," "renal," "glomerular filtration rate," and "creatinine." Of the 1926 articles obtained with this search, all articles germane to the topic that quantified the relationship between primary hyperparathyroidism and renal function were included. All references within these articles were investigated for inclusion. When helpful, data tables were constructed to summarize the results succinctly. A secondary elevation of PTH levels has not been consistently shown to occur at the threshold currently indicated for surgical intervention. While renal impairment is seen with more significant disease, mild asymptomatic primary hyperparathyroidism has not been conclusively associated with renal impairment. Furthermore, there is no evidence to suggest that surgically curing primary hyperparathyroidism via a parathyroidectomy has any impact upon renal function.

  12. Effect of renal denervation on dynamic autoregulation of renal blood flow.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2004-06-01

    Vasoconstrictor intensities of renal sympathetic nerve stimulation elevate the renal arterial pressure threshold for steady-state stepwise autoregulation of renal blood flow. This study examined the tonic effect of basal renal sympathetic nerve activity on dynamic autoregulation of renal blood flow in rats with normal (Sprague-Dawley and Wistar-Kyoto) and increased levels of renal sympathetic nerve activity (congestive heart failure and spontaneously hypertensive rats). Steady-state values of arterial pressure and renal blood flow before and after acute renal denervation were subjected to transfer function analysis. Renal denervation increased basal renal blood flow in congestive heart failure (+35 +/- 3%) and spontaneously hypertensive rats (+21 +/- 3%) but not in Sprague-Dawley and Wistar-Kyoto rats. Renal denervation significantly decreased transfer function gain (i.e., improved autoregulation of renal blood flow) and increased coherence only in spontaneously hypertensive rats. Thus vasoconstrictor intensities of renal sympathetic nerve activity impaired the dynamic autoregulatory adjustments of the renal vasculature to oscillations in arterial pressure. Renal denervation increased renal blood flow variability in spontaneously hypertensive rats and congestive heart failure rats. The contribution of vasoconstrictor intensities of basal renal sympathetic nerve activity to limiting renal blood flow variability may be important in the stabilization of glomerular filtration rate.

  13. Influence of fluid resuscitation on renal microvascular PO2 in a normotensive rat model of endotoxemia

    PubMed Central

    Johannes, Tanja; Mik, Egbert G; Nohé, Boris; Raat, Nicolaas JH; Unertl, Klaus E; Ince, Can

    2006-01-01

    Introduction Septic renal failure is often seen in the intensive care unit but its pathogenesis is only partly understood. This study, performed in a normotensive rat model of endotoxemia, tests the hypotheses that endotoxemia impairs renal microvascular PO2 (μPO2) and oxygen consumption (VO2,ren), that endotoxemia is associated with a diminished kidney function, that fluid resuscitation can restore μPO2, VO2,ren and kidney function, and that colloids are more effective than crystalloids. Methods Male Wistar rats received a one-hour intravenous infusion of lipopolysaccharide, followed by resuscitation with HES130/0.4 (Voluven®), HES200/0.5 (HES-STERIL® ® 6%) or Ringer's lactate. The renal μPO2 in the cortex and medulla and the renal venous PO2 were measured by a recently published phosphorescence lifetime technique. Results Endotoxemia induced a reduction in renal blood flow and anuria, while the renal μPO2 and VO2,ren remained relatively unchanged. Resuscitation restored renal blood flow, renal oxygen delivery and kidney function to baseline values, and was associated with oxygen redistribution showing different patterns for the different compounds used. HES200/0.5 and Ringer's lactate increased the VO2,ren, in contrast to HES130/0.4. Conclusion The loss of kidney function during endotoxemia could not be explained by an oxygen deficiency. Renal oxygen redistribution could for the first time be demonstrated during fluid resuscitation. HES130/0.4 had no influence on the VO2,ren and restored renal function with the least increase in the amount of renal work. PMID:16784545

  14. AGXT2 rs37369 polymorphism predicts the renal function in patients with chronic heart failure.

    PubMed

    Hu, Xiao-Lei; Zeng, Wen-Jing; Li, Mu-Peng; Yang, Yong-Long; Kuang, Da-Bin; Li, He; Zhang, Yan-Jiao; Jiang, Chun; Peng, Li-Ming; Qi, Hong; Zhang, Ke; Chen, Xiao-Ping

    2017-12-30

    Patients with chronic heart failure (CHF) are often accompanied with varying degrees of renal diseases. The purpose of this study was to identify rs37369 polymorphism of AGXT2 specific to the renal function of CHF patients. A total of 1012 southern Chinese participants, including 487 CHF patients without history of renal diseases and 525 healthy volunteers, were recruited for this study. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine the genotypes of AGXT2 rs37369 polymorphism. Levels of blood urea nitrogen (BUN) and serum creatinine (SCr) were detected to indicate the renal function of the participants. BUN level was significantly higher in CHF patients without history of renal diseases compared with healthy volunteers (p=0.000). And the similar result was also obtained for SCr (p=0.000). Besides, our results indicated that the level of BUN correlated significantly with SCr in both the CHF patients without renal diseases (r=0.4533, p<0.0001) and volunteers (r=0.2489, p<0.0001). Furthermore, we found that the AGXT2 rs37369 polymorphism could significantly affect the level of BUN in CHF patients without history of renal diseases (p=0.036, AA+AG vs GG). Patients with rs37369 GG genotype showed a significantly reduced level of BUN compared to those with the AA genotype (p=0.024), and the significant difference was still observed in the smokers of CHF patients without renal diseases (p=0.023). In conclusion, we found that CHF might induce the impairment of kidney and cause deterioration of renal function. AGXT2 rs37369 polymorphism might affect the renal function of CHF patients free from renal diseases, especially in patients with cigarette smoking. Copyright © 2017. Published by Elsevier B.V.

  15. A quantitative systems physiology model of renal function and blood pressure regulation: Model description.

    PubMed

    Hallow, K M; Gebremichael, Y

    2017-06-01

    Renal function plays a central role in cardiovascular, kidney, and multiple other diseases, and many existing and novel therapies act through renal mechanisms. Even with decades of accumulated knowledge of renal physiology, pathophysiology, and pharmacology, the dynamics of renal function remain difficult to understand and predict, often resulting in unexpected or counterintuitive therapy responses. Quantitative systems pharmacology modeling of renal function integrates this accumulated knowledge into a quantitative framework, allowing evaluation of competing hypotheses, identification of knowledge gaps, and generation of new experimentally testable hypotheses. Here we present a model of renal physiology and control mechanisms involved in maintaining sodium and water homeostasis. This model represents the core renal physiological processes involved in many research questions in drug development. The model runs in R and the code is made available. In a companion article, we present a case study using the model to explore mechanisms and pharmacology of salt-sensitive hypertension. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  16. Repeated daclizumab administration to delay the introduction of calcineurin inhibitors in heart transplant patients with postoperative renal dysfunction.

    PubMed

    Sánchez Lázaro, Ignacio J; Almenar Bonet, Luis; Martínez Dolz, Luis; Buendía Fuentes, Francisco; Navarro Manchón, Josep; Agüero Ramón-Llin, Jaime; Vicente Sánchez, José Luis; Salvador Sanz, Antonio

    2011-03-01

    Daclizumab is an interleukin-2 receptor antagonist which is used for induction therapy in heart transplant patients. It has few side effects and is associated with a low infection rate. Postoperative renal failure after heart transplantation is common and potentially fatal. The administration of calcineurin inhibitors in the postoperative period can aggravate the situation. We report the cases of six patients who underwent heart transplantation and developed acute renal failure in the immediate postoperative period. All were administered daclizumab weekly to avoid the introduction of calcineurin inhibitors and to facilitate recovery of renal function. Calcineurin inhibitors were introduced only once renal function had improved. Renal function recovered in all cases and there was a low complication rate. The administration of repeated doses of daclizumab to patients who experience acute postoperative renal failure after heart transplantation may provide an alternative therapeutic approach that enables calcineurin inhibitors to be avoided and, consequently, renal function to recover. Copyright © 2010 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  17. MRI to assess renal structure and function.

    PubMed

    Artunc, Ferruh; Rossi, Cristina; Boss, Andreas

    2011-11-01

    In addition to excellent anatomical depiction, MRI techniques have expanded to study functional aspects of renal physiology, such as renal perfusion, glomerular filtration rate (GFR) or tissue oxygenation. This review will focus on current developments with an emphasis on clinical applicability. The method of GFR determination is largely heterogeneous and still has weaknesses. However, the technique of employing liver disappearance curves has been shown to be accurate in healthy persons and patients with chronic kidney disease. In potential kidney donors, complete evaluation of kidney anatomy and function can be accomplished in a single-stop investigation. Techniques without contrast media can be utilized to measure renal tissue oxygenation (blood oxygen level-dependent MRI) or perfusion (arterial spin labeling) and could aid in the diagnosis and treatment of ischemic renal diseases, such as renal artery stenosis. Diffusion imaging techniques may provide information on spatially restricted water diffusion and tumor cellularity. Functional MRI opens new horizons in studying renal physiology and pathophysiology in vivo. Although extensively utilized in research, labor-intensive postprocessing and lack of standardization currently limit the clinical applicability of functional MRI. Further studies are necessary to evaluate the clinical value of functional magnetic resonance techniques for early discovery and characterization of kidney disease.

  18. [Impaired renal function: be aware of exogenous factors].

    PubMed

    van der Meijden, Wilbert A G; Smak Gregoor, Peter J H

    2013-01-01

    Renal function is currently estimated using the Modification of Diet in Renal Disease (MDRD) formula, which is partly based on the serum creatinine level. Patients with impaired renal function are referred to nephrologists in accordance with the Dutch national transmural agreement for 'Chronic renal impairment'. A 54-year-old woman without significant history was referred to analyse a coincidentally found decline in the estimated glomerular filtration rate (eGFR). The patient had no complaints and used no medication except creatine supplements. Additional diagnostic testing showed no abnormalities. After cessation of creatine supplementation, the calculated renal function normalized. Serum creatinine is a reflection of muscle mass. The use of creatine-containing dietary supplements, such as creatine ethyl ester, can influence serum creatinine levels and therefore the eGFR as calculated with the MDRD formula. The use of supplements deserves attention when taking the history.

  19. Worsening renal function defined as an absolute increase in serum creatinine is a biased metric for the study of cardio-renal interactions.

    PubMed

    Testani, Jeffrey M; McCauley, Brian D; Chen, Jennifer; Shumski, Michael; Shannon, Richard P

    2010-01-01

    Worsening renal function (WRF) during the treatment of decompensated heart failure, frequently defined as an absolute increase in serum creatinine >or=0.3 mg/dl, has been reported as a strong adverse prognostic factor in several studies. We hypothesized that this definition of WRF is biased by baseline renal function secondary to the exponential relationship between creatinine and renal function. We reviewed consecutive admissions with a discharge diagnosis of heart failure. An increase in creatinine >or=0.3 mg/dl (WRF(CREAT)) was compared to a decrease in GFR >or=20% (WRF(GFR)). Overall, 993 admissions met eligibility. WRF(CREAT) occurred in 31.5% and WRF(GFR) in 32.7%. WRF(CREAT) and WRF(GFR) had opposing relationships with baseline renal function (OR = 1.9 vs. OR = 0.51, respectively, p < 0.001). Both definitions had similar unadjusted associations with death at 30 days [WRF(GFR) OR = 2.3 (95% CI 1.1-4.8), p = 0.026; WRF(CREAT) OR = 2.1 (95% CI 1.0-4.4), p = 0.047]. Controlling for baseline renal insufficiency, WRF(GFR) added incrementally in the prediction of mortality (p = 0.009); however, WRF(CREAT) did not (p = 0.11). WRF, defined as an absolute change in serum creatinine, is heavily biased by baseline renal function. An alternative definition of WRF should be considered for future studies of cardio-renal interactions. Copyright 2010 S. Karger AG, Basel.

  20. Renal subcapsular rim sign. Radionuclide pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howman-Giles, R.; Gett, M.; Roy, P.

    1986-04-01

    The renal cortical rim sign is a radiological term describing the thin peripheral nephrogram of 2-4 mm thick which is from the peri-renal capsular collateral circulation in an otherwise nonfunctioning kidney. Radionuclides are used frequently in the estimation of renal function. A neonate with renal vein thrombosis demonstrated a rim sign on renal scan with Technetium DTPA. The rim sign on renal scan can be differentiated from severe hydronephrosis or multicystic kidney both of which may have a peripheral thin cortex which functions late on the renal scan. The rim sign in renal vein thrombosis was best visualized during themore » early blood pool phase when there was a considerable amount of radioactivity in the blood pool.« less

  1. Impact of Impaired Renal Function on Gadolinium Retention After Administration of Gadolinium-Based Contrast Agents in a Mouse Model.

    PubMed

    Kartamihardja, A Adhipatria P; Nakajima, Takahito; Kameo, Satomi; Koyama, Hiroshi; Tsushima, Yoshito

    2016-10-01

    The aim of this study was to investigate the impact of impaired renal function on gadolinium (Gd) retention in various organs after Gd-based contrast agent injection. After local animal care and review committee approval, 23 normal mice and 26 with renal failure were divided into 4 treatment groups (Gd-DTPA-BMA, 5 mmol/kg; Gd-DOTA, 5 mmol/kg; GdCl3, 0.02 mmol/kg; and saline, 250 μL). Each agent was intravenously administered on weekdays for 4 weeks. Samples were collected on days 3 (short-term) and 45 (long-term) after the last injection. Gadolinium concentrations were quantified by inductively coupled plasma-mass spectrometry. Three mice with renal failure and 2 normal mice in the GdCl3 group and 1 mouse with renal failure in the Gd-DTPA-BMA group died. In the Gd-DTPA-BMA group, impaired renal function increased short-term Gd retention in the liver, bone, spleen, skin, and kidney (P < 0.01) but did not affect long-term Gd retention. Gd-DTPA-BMA showed higher Gd retention than Gd-DOTA. Although Gd retention in the Gd-DOTA group was generally low, impaired renal function increased only long-term hepatic Gd retention. Hepatic and splenic Gd retentions were significantly higher than other organs' Gd retention in the GdCl3 group (P < 0.01). Renal function did not affect brain Gd retention, regardless of the Gd compound used. The tendency of Gd retention varied according to the agent, regardless of renal function. Although renal impairment increased short-term Gd retention after Gd-DTPA-BMA administration, long-term Gd retention for Gd-based contrast agents was almost unaffected by renal function, suggesting that the chemical structures of retained Gd may not be consistent and some Gd is slowly eliminated after initially being retained.

  2. Predictors of Renal Function Decline in Chinese Patients with Type 2 Diabetes Mellitus and in a Subgroup of Normoalbuminuria: A Retrospective Cohort Study.

    PubMed

    Hu, Ping; Zhou, Xiang-Hai; Wen, Xin; Ji, Linong

    2016-10-01

    Risk factors related to renal function decline in type 2 diabetes mellitus (T2DM) remain uncertain. This study aimed to investigate risk factors in relation to renal function decline in patients with T2DM and in a subgroup of patients with normoalbuminuria. This study was a retrospective cohort study, which included 451 patients with T2DM aged 63 ± 14 years admitted to a tertiary hospital in Beijing, China, between April and December 2010 and followed up for 6-60 months. Endpoint was renal function decline, defined as estimated glomerular filtration rate less than 60 mL/min 1.73 m 2 or at least twofold increase of serum creatinine. Cox proportional hazards analysis was used to estimate hazard ratios (HRs) for candidate risk factors of renal function decline. After a median follow-up of 3.3 years, 94 (20.8%) patients developed renal function decline. Increased age (HR, 1.045; 95% CI, 1.020-1.070), albuminuria (HR, 1.956; 95%CI, 1.271-3.011), mild renal dysfunction (HR, 4.521; 95%CI, 2.734-7.476), hyperfiltration (HR, 3.897; 95%CI, 1.572-9.663), and increased hemoglobin A1c (HR, 1.128; 95%CI, 1.020-1.249) were identified as major risk factors. Among a subgroup of 344 patients with normoalbuminuria at baseline, 53 (15.4%) patients developed renal function decline. Increased age (HR, 1.089; 95%CI, 1.050-1.129), mild renal dysfunction (HR, 4.667; 95%CI, 2.391-9.107), hyperfiltration (HR, 5.677; 95%CI, 1.544-20.872), smoking (HR, 2.886; 95%CI, 1.370-6.082), higher pulse pressure (HR, 1.022; 95%CI, 1.004-1.040), and increased fasting glucose (HR, 1.104; 95%CI, 1.020-1.194) were major risk factors. Risk factors of diabetic renal impairment in T2DM should be screened and evaluated at an early stage of diabetes. Albuminuria, mild renal dysfunction, hyperfiltration, increased blood glucose, increased pulse pressure, and smoking were all predictors for diabetic renal impairment and interventions that focus on these risk factors may reduce further decline in renal function.

  3. Vesicoureteral reflux in the primate IV: does reflux harm the kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, J.A.; Fischman, N.H.; Thomas, R.

    1982-09-01

    It has been said that vesicoureteral reflux causes renal scarring because of intrarenal reflux. We studied reflux in the monkey because of its similarity to man, especially in regard to the incidence of vesicoureteral reflux and chronic pyelonephritis. High pressure moderate grade reflux was produced and renal function followed by means of quantitative renal camera studies using /sup 131/I hippuran. There was no change in renal function from sterile reflux even when intrarenal reflux occurred. When, however, infection was introduced, renal function decreased. We concluded that sterile moderate vesicoureteral or intrarenal reflux does not harm the kidney.

  4. Why and how to measure renal function in patients with liver disease.

    PubMed

    Piano, Salvatore; Romano, Antonietta; Di Pascoli, Marco; Angeli, Paolo

    2017-01-01

    Patients with advanced liver disease frequently have impaired renal function. Both acute kidney injury (AKI) and chronic kidney disease (CKD) are quite common in patients with cirrhosis and both are associated with a worse prognosis in these patients. A careful assessment of renal function is highly important in these patients to help physicians determine their diagnosis, prognosis and therapeutic management and to define transplantation strategies (liver transplantation alone vs simultaneous liver and kidney transplantation). Although they are still widely used in clinical practice, conventional biomarkers of renal function such as serum creatinine have several limitations in these patients. Recent progress has been made in the evaluation of renal function and new diagnostic criteria for AKI have been proposed. However, certain issues such as the noninvasive assessment of the glomerular filtration rate and/or improvement in the differential diagnosis between hepatorenal syndrome and acute tubular necrosis must still be addressed. The purposes of this paper are: (i) to highlight the importance of the evaluation of renal function in patients with cirrhosis; (ii) to review the state of the art in the assessment of renal function in these patients as well as advances that we expect will be made to improve the accuracy of available tools. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Cigarette smoking causes epigenetic changes associated with cardiorenal fibrosis

    PubMed Central

    Haller, Steven T.; Fan, Xiaoming; Xie, Jeffrey X.; Kennedy, David J.; Liu, Jiang; Yan, Yanling; Hernandez, Dawn-Alita; Mathew, Denzil P.; Cooper, Christopher J.; Shapiro, Joseph I.; Tian, Jiang

    2016-01-01

    Clinical studies indicate that smoking combustible cigarettes promotes progression of renal and cardiac injury, leading to functional decline in the setting of chronic kidney disease (CKD). However, basic studies using in vivo small animal models that mimic clinical pathology of CKD are lacking. To address this issue, we evaluated renal and cardiac injury progression and functional changes induced by 4 wk of daily combustible cigarette smoke exposure in the 5/6th partial nephrectomy (PNx) CKD model. Molecular evaluations revealed that cigarette smoke significantly (P < 0.05) decreased renal and cardiac expression of the antifibrotic microRNA miR-29b-3 and increased expression of molecular fibrosis markers. In terms of cardiac and renal organ structure and function, exposure to cigarette smoke led to significantly increased systolic blood pressure, cardiac hypertrophy, cardiac and renal fibrosis, and decreased renal function. These data indicate that decreased expression of miR-29b-3p is a novel mechanism wherein cigarette smoke promotes accelerated cardiac and renal tissue injury in CKD. (155 words) PMID:27789733

  6. Predictors of renal recovery in patients with pre-orthotopic liver transplant (OLT) renal dysfunction

    PubMed Central

    2013-01-01

    Background Renal dysfunction occurs commonly in patients awaiting orthotopic liver transplantation (OLT) for end-stage liver disease. The use of simultaneous liver-kidney transplantation has increased in the MELD scoring era. As patients may recover renal function after OLT, identifying factors predictive of renal recovery is a critical issue, especially given the scarcity of available organs. Methods Employing the UNOS database, we sought to identify donor- and patient-related predictors of renal recovery among 1720 patients with pre-OLT renal dysfunction and transplanted from 1989 to 2005. Recovery of renal function post-OLT was defined as a composite endpoint of serum creatinine (SCr) ≤1.5 mg/dL at discharge and survival ≥29 days. Pre-OLT renal dysfunction was defined as any of the following: SCr ≥2 mg/dL at any time while awaiting OLT or need for renal replacement therapy (RRT) at the time of registration and/or OLT. Results Independent predictors of recovery of renal function post-OLT were absence of hepatic allograft dysfunction, transplantation during MELD era, recipient female sex, decreased donor age, decreased recipient ALT at time of OLT, decreased recipient body mass index at registration, use of anti-thymocyte globulin as induction therapy, and longer wait time from registration. Contrary to popular belief, a requirement for RRT, even for prolonged periods in excess of 8 weeks, was not an independent predictor of failure to recover renal function post-OLT. Conclusion These data indicate that the duration of renal dysfunction, even among those requiring RRT, is a poor way to discriminate reversible from irreversible renal dysfunction. PMID:23849513

  7. Dosing of cytotoxic chemotherapy: impact of renal function estimates on dose.

    PubMed

    Dooley, M J; Poole, S G; Rischin, D

    2013-11-01

    Oncology clinicians are now routinely provided with an estimated glomerular filtration rate on pathology reports whenever serum creatinine is requested. The utility of using this for the dose determination of renally excreted drugs compared with other existing methods is needed to inform practice. Renal function was determined by [Tc(99m)]DTPA clearance in adult patients presenting for chemotherapy. Renal function was calculated using the 4-variable Modification of Diet in Renal Disease (4v-MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), Cockcroft and Gault (CG), Wright and Martin formulae. Doses for renal excreted cytotoxic drugs, including carboplatin, were calculated. The concordance of the renal function estimates according to the CKD classification with measured Tc(99m)DPTA clearance in 455 adults (median age 64.0 years: range 17-87 years) for the 4v-MDRD, CKD-EPI, CG, Martin and Wright formulae was 47.7%, 56.3%, 46.2%, 56.5% and 60.2%, respectively. Concordance for chemotherapy dose for these formulae was 89.0%, 89.5%, 85.1%, 89.9% and 89.9%, respectively. Concordance for carboplatin dose specifically was 66.4%, 71.4%, 64.0%, 73.8% and 73.2%. All bedside formulae provide similar levels of concordance in dosage selection for the renal excreted chemotherapy drugs when compared with the use of a direct measure of renal function.

  8. Hereditary Lysozyme Amyloidosis Variant p.Leu102Ser Associates with Unique Phenotype

    PubMed Central

    Nasr, Samih H.; Dasari, Surendra; Mills, John R.; Theis, Jason D.; Zimmermann, Michael T.; Fonseca, Rafael; Vrana, Julie A.; Lester, Steven J.; McLaughlin, Brooke M.; Gillespie, Robert; Highsmith, W. Edward; Lee, John J.; Dispenzieri, Angela

    2017-01-01

    Lysozyme amyloidosis (ALys) is a rare form of hereditary amyloidosis that typically manifests with renal impairment, gastrointestinal (GI) symptoms, and sicca syndrome, whereas cardiac involvement is exceedingly rare and neuropathy has not been reported. Here, we describe a 40-year-old man with renal impairment, cardiac and GI symptoms, and peripheral neuropathy. Renal biopsy specimen analysis revealed amyloidosis with extensive involvement of glomeruli, vessels, and medulla. Amyloid was also detected in the GI tract. Echocardiographic and electrocardiographic findings were consistent with cardiac involvement. Proteomic analysis of Congo red–positive renal and GI amyloid deposits detected abundant lysozyme C protein. DNA sequencing of the lysozyme gene in the patient and his mother detected a heterozygous c.305T>C alteration in exon 3, which causes a leucine to serine substitution at codon 102 (Human Genome Variation Society nomenclature: p.Leu102Ser; legacy designation: L84S). We also detected the mutant peptide in the proband’s renal and GI amyloid deposits. PolyPhen analysis predicted that the mutation damages the encoded protein. Molecular dynamics simulations suggested that the pathogenesis of ALys p.Leu102Ser is mediated by shifting the position of the central β-hairpin coordinated with an antiparallel motion of the C-terminal helix, which may alter the native-state structural ensemble of the molecule, leading to aggregation-prone intermediates. PMID:28049649

  9. Angiotensin receptors modulate the renal hemodynamic effects of nitric oxide in conscious newborn lambs

    PubMed Central

    Vinturache, Angela E.; Smith, Francine G.

    2014-01-01

    Abstract This study aimed to elucidate the roles of both angiotensin II (ANG II) receptors – type 1 (AT1Rs) and type 2 (AT2Rs) – separately and together in influencing hemodynamic effects of endogenously produced nitric oxide (NO) during postnatal development. In conscious, chronically instrumented lambs aged ~1 week (8 ± 1 days, N = 8) and ~6 weeks (41 ± 2 days, N = 8), systolic, diastolic, and mean arterial pressure (SAP, DAP, MAP) and venous pressure (MVP), renal blood flow (RBF), and renal vascular resistance (RVR) were measured in response to the l‐arginine analog, l‐NAME after pretreatment with either the AT1R antagonist, ZD 7155, the AT2R antagonist, PD 123319, or both antagonists. The increase in SAP, DAP, and MAP by l‐NAME was not altered by either ATR antagonist in either age group. The increase in RBF after l‐NAME was, however, altered by both ATR antagonists in an age‐dependent manner, which was mediated predominantly through AT2Rs in newborn lambs. These findings reveal that there is an age‐dependent interaction between the renin–angiotensin (RAS) and the NO pathway in regulating renal but not systemic hemodynamics through both ATRs, whereas AT2Rs appear to be important in the renal hemodynamic effects of NO early in life. PMID:24872358

  10. Premalignant lesions in the kidney.

    PubMed

    Kirkali, Z; Yorukoglu, K

    2001-12-07

    Renal cell carcinoma (RCC) is the most malignant urologic disease. Different lesions, such as dysplasia in the tubules adjacent to RCC, atypical hyperplasia in the cyst epithelium of von Hippel-Lindau syndrome, and adenoma have been described for a number of years as possible premalignant changes or precursor lesions of RCC. In two recent papers, kidneys adjacent to RCC or removed from other causes were analyzed, and dysplastic lesions were identified and defined in detail. Currently renal intraepithelial neoplasia (RIN) is the proposed term for classification. The criteria for a lesion to be defined as premalignant are (1) morphological similarity; (2) spatial association; (3) development of microinvasive carcinoma; (4) higher frequency, severity, and extent then invasive carcinoma; (5) progression to invasive cancer; and (6) similar genetic alterations. RIN resembles the neoplastic cells of RCC. There is spatial association. Progression to invasive carcinoma is described in experimental cancer models, and in some human renal tumors. Similar molecular alterations are found in some putative premalignant changes. The treatment for RCC is radical or partial nephrectomy. Preneoplastic lesions may remain in the renal remnant in patients treated by partial nephrectomy and may be the source of local recurrences. RIN seems to be a biologic precursor of some RCCs and warrants further investigation. Interpretation and reporting of these lesions would reveal important resources for the biological nature and clinical significance. The management of RIN diagnosed in a renal biopsy and partial nephrectomy needs to be answered.

  11. Cellular mechanisms of renal adaptation of sodium dependent sulfate cotransport to altered dietary sulfate in rats.

    PubMed

    Sagawa, K; DuBois, D C; Almon, R R; Murer, H; Morris, M E

    1998-12-01

    The renal transport and fractional reabsorption of inorganic sulfate is altered under conditions of sulfate deficiency or excess. The objective of this study was to examine the cellular mechanisms of adaptation of renal sodium/sulfate cotransport after varying dietary intakes of a sulfur containing amino acid, methionine. Female Lewis rats were divided into four groups and fed diets containing various concentrations of methionine (0, 0.3, 0.82 and 2.46%) for 8 days. Urinary excretion rates and renal clearance of sulfate were significantly decreased in the animals fed a 0% methionine diet or a 0.3% methionine diet, and significantly increased in the animals fed a 2.46% methionine diet when evaluated on days 4 and 7. Serum sulfate concentrations were unchanged by diet treatment in all animals. The fractional reabsorption of sulfate was significantly increased in the animals fed the 0% methionine diet and the 0.3% methionine diets, and decreased in the animals fed the 2.46% methionine diet. Increased mRNA and protein levels for the sodium/sulfate transporter (NaSi-1) were found in the kidney cortex following treatment with the 0 and 0.3% methionine diet groups. Sulfate homeostasis by renal reabsorption is maintained by an up-regulation of steady state levels of NaSi-1 mRNA and protein when the diet is low in methionine.

  12. Diabetes and Age-Related Differences in Vascular Function of Renal Artery: Possible Involvement of Endoplasmic Reticulum Stress.

    PubMed

    Matsumoto, Takayuki; Watanabe, Shun; Ando, Makoto; Yamada, Kosuke; Iguchi, Maika; Taguchi, Kumiko; Kobayashi, Tsuneo

    2016-02-01

    To study the time-course relationship between vascular functions and endoplasmic reticulum (ER) stress in type 2 diabetes, we investigated vascular function and associated protein expression, including cyclo-oxygenase (COX), ER stress, and apoptotic markers, in renal arteries (RA) from type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats at the young adult (4 months old) and aged (18 months old) stages. In the RA of aged OLETF (vs. young OLETF), we found: (1) Increased contractions induced by uridine adenosine tetraphosphate (Up4A) and phenylephrine, (2) decreased relaxation and increased contraction induced by acetylcholine (ACh) at lower and higher concentrations, respectively, and (3) increased expression of COX-1 and C/EBP-homologous protein (CHOP, a pro-apoptotic protein). In aged rats, the expression of COX-1, COX-2, PDI (an ER protein disulfide isomerase), Bax (a proapoptotic marker), and CHOP were increased in RA from OLETF rats (vs. age-matched control Long-Evans Tokushima Otsuka [LETO] rats). Up-regulation of PDI and Bax were seen in the RA from young OLETF (vs. young LETO) rats. No age-related alterations were apparent in the above changes in RA from LETO rats, excluding ACh-induced contraction. Short-term treatment with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA, 100 mg/kg per day, intraperitoneally for 1 week) to OLETF rats at the chronic stage of the disease (12 months old) could suppress renal arterial contractions induced by Up4A and ACh. These results suggest that a long-term duration of disease may be important for the development of vascular dysfunction rather than aging per se. The early regulation of ER stress may be important against the development of diabetes-associated vascular dysfunction.

  13. Comparative geometric analysis of renal artery anatomy before and after fenestrated or snorkel/chimney endovascular aneurysm repair.

    PubMed

    Ullery, Brant W; Suh, Ga-Young; Lee, Jason T; Liu, Brian; Stineman, Robert; Dalman, Ronald L; Cheng, Christopher P

    2016-04-01

    The durability of stent grafts may be related to how procedures and devices alter native anatomy. We aimed to quantify and compare renal artery geometry before and after fenestrated (F-) or snorkel/chimney (Sn-) endovascular aneurysm repair (EVAR). Forty patients (75 ± 6 years) underwent computed tomographic angiography before and after F-EVAR (n = 21) or Sn-EVAR (n = 19), with a total of 72 renal artery stents. Renal artery geometry was quantified using three-dimensional model-based centerline extraction. The stented length was computed from the vessel origin to the stent end. The branch angle was computed relative to the orthogonal configuration with respect to the aorta. The end-stent angle was computed relative to the distal native renal artery. Peak curvature was defined as the inverse of the radius of the circumscribed circle at the highest curvature within the proximal portion from the origin to the stent end and the distal portion from the stent end to the first renal artery bifurcation. Sn-renals had greater stented length compared to F-renals (P < .05). From the pre- to the postoperative period, the origins of the Sn-left renal artery and right renal artery (RRA) angled increasingly downward by 21 ± 19° and 13 ± 17°, respectively (P < .005). The F-left renal artery and RRA angled upward by 25 ± 15° and 14 ± 15°, respectively (P < .005). From the pre- to the postoperative period, the end-stent angle of the Sn-RRA increased by 17 ± 12° (P < .00001), with greater magnitude change compared to the F-RRA (P < .0005). Peak curvature increased in distal Sn-RRAs by .02 ± .03 mm(-1) (P < .05). Acute renal failure occurred in 12.5% of patients, although none required dialysis following either F- and Sn-EVAR. Renal stent patency was 97.2% at mean follow-up of 13.7 months. Three type IA endoleaks were identified, prompting one secondary procedure, with the remainder resolving at 6-month follow-up. One renal artery reintervention was performed due to a compressed left renal stent in an asymptomatic patient. Stented renal arteries were angled more inferiorly after Sn-EVAR and more superiorly after F-EVAR due to stent configuration. Sn-EVAR induced significantly greater angle change at the stent end and curvature change distal to the stent compared to F-EVAR, although no difference in patency was noted in this small series with relatively short follow-up. Sn-RRAs exhibited greater end-stent angle change from the pre- to the postoperative period as compared to the F-RRA. These differences may exert differential effects on long-term renal artery patency, integrity, and renal function following complex EVAR for juxta- or pararenal abdominal aortic aneurysms. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  14. Neurogenic regulation of renal tubular sodium reabsorption.

    PubMed

    DiBona, G F

    1977-08-01

    The evidence supporting a role for direct neurogenic control of renal tubular sodium reabsorption is reviewed. Electron microscopic and fluorescence histochemical studies have demonstrated adrenergic nerve terminals in direct contact with basement membranes of mammalian (rat, dog, and monkey) renal tubular epithelial cells. Low-level direct or baroreceptor reflex stimulation of renal sympathetic nerves produces an increase in renal tubular sodium reabsorption without alterations in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. Antinatriuresis was prevented by prior treatment of the kidney with guanethidine or phenoxybenzamine. Rat kidney micropuncture studies have localized a site of enhanced tubular sodium reabsorption to the proximal tubule. Possible indirect mediation of the antinatriuresis by other humoral agents known to be released from the kidney on renal nerve stimulation (angiotensin II, prostaglandin) was excluded by experiments with appropriate blocking agents. The possible effects of anesthesia and uncertainties about the completeness of surgical renal denervation and other tubular segmental sites of action are critically analyzed. The clinical implications of this mechanism in pathologic conditions of sodium and water retention are discussed and and a prospectus for future work is presented.

  15. [Effect of a modified low protein and low fat diet on histologic changes and metabolism in kidneys in an experimental model of polycystic kidney disease].

    PubMed

    Banković-Calić, Neda; Ogbori, Malkom R; Nicman, Evin

    2002-01-01

    Dietary protein restriction slows progression in numerous animal models of renal diseases. Flax seed has also demonstrated useful anti-inflammatory properties in a number of animal models and human diseases. We undertook several studies to determine if feeding with low protein casein, soy diet and flax seed diet would ameliorate renal injury in Han:SPRD-cy rat model of polycystic kidney disease. Male offspring of Han:SPRD-cy heterozygotes received protein modified diet: ad libidum LP 8% casein in test or 20% casein in control group for 8 weeks; 20% heat treated soy protein or 20% casein in control group two separate studies for 8 weeks ad libidum and pair feeding in 6 weeks; and 10% flax seed diet or control rat chow for 8 weeks from weaning. Tissue was harvested for histological assessment and metabolic changes in lipids, citric acid metabolites and osmolytes. Morphometrically after histochemical and immunohistochemical staining cystic changes, renal tubular proliferation and apoptosis, number of interstitial cells/macrophages infiltration and interstitial fibrosis were measured. Gas chromatography was used for lipid analysis in renal and liver tissue. 1-HNMR spectroscopy was used for urine and tissue organic anion and osmolytes content analysis. RESULTS IN PROTEIN MODIFIED DIET: Casein low protein as well as soy protein fed animals demonstrated reduced PKD pathology: significant reduction in cystic changes, interstitial inflammation and fibrosis and also reduction in tubular cells proliferation and apoptosis. Pair feeding protocol in second soy diet study confirmed that significant effect on renal histology was not because of protein deprivation and growth retardation. 1-H NMR spectroscopy revealed that progression of chronic renal failure in Han:SPRD-cy rat PKD is associated with renal depletion of citric acid cycle metabolite and betaine. Amelioration of PKD by soy protein diet is associated with renal retention of citric acid cycle anions, despite increased excretion and preservation of betaine in renal tissue. Soy feeding increased both hepatic and renal content of linoleic acid and increased renal alpha linolenic acid content, while decreased arachidonic hepatic content. RESULTS IN FLAX SEED SUPPLEMENTATION IN DIET: Flax seed fed animals had moderate decrease in cystic size and less interstitial inflammation and fibrosis while there were no differences in epithelial cell apoptosis and proliferation. Lipid analysis revealed significant renal enrichment of 18 and 20 carbon omega 3 polyunsaturated fatty acids. In flax fed animals there was an increased urinary citrate excretion without significant changes in urinary ammonia excretion, so increased citrate excretion was not due to alkaline effect of the diet. Kidney tissue 1H NMR spectroscopy revealed that disease amelioration was associated with tissue retention of succinate and betaine. Effect on histology: Low casein and soy feeding ameliorates Han: SPRD-cy rat polycystic kidney disease reducing both tubular remodeling and interstitial inflammation and fibrosis, while flax seed diet effect appears to be through moderation of associated interstitial nephritis. Metabolic effect: Soy diet alters the renal content of polyunsaturated fatty acids and enriched renal betaine content with retention of citric acid cycle metabolites despite increased excretion. Flax seed diet alters renal content of polyunsaturated fatty acids and promotes the formation of less inflammatory classes of renal prostanoides. Flax seed diet also enriched renal content of betaine and succinate. Amelioration of Hans:SPRD-cy rat polycystic kidney disease by diet is associated with alteration in the handling of citric acid cycle metabolites and betaine, and also in content of polyunsaturated fatty acids in kidneys and liver. Metabolic pathways in dietary modified renal pathology have to be established.

  16. Changes of Tight Junction Protein Claudins in Small Intestine and Kidney Tissues of Mice Fed a DDC Diet.

    PubMed

    Abiko, Yukie; Kojima, Takashi; Murata, Masaki; Tsujiwaki, Mitsuhiro; Takeuchi, Masaya; Sawada, Norimasa; Mori, Michio

    2013-12-01

    DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine)-fed mice are widely used as a model for cholestatic liver disease. We examined the expression of tight junction protein claudin subspecies by immunofluorescent histochemistry in small intestine and kidney tissues of mice fed a DDC diet for 12 weeks. In the small intestine, decreases in claudin-3, claudin-7 and claudin-15 were observed in villous epithelial cells corresponding to the severity of histological changes while leaving the abundance of these claudin subspecies unchanged in crypt cells. Nevertheless, the proliferative activity of intestinal crypt cells measured by immunohistochemistry for Ki-67 decreased in the mice fed the DDC diet compared with that of control mice. These results suggest the possibility that DDC feeding affects the barrier function of villous epithelial cells and thus inhibits the proliferative activity of crypt epithelial cells. On the other hand, in the kidney, remarkable changes were found in the subcellular localization of claudin subspecies in a segment-specific manner, although histological changes of renal epithelial cells were quite minimal. These results indicate that immunohistochemistry for claudin subspecies can serve as a useful tool for detecting minute functional alterations of intestinal and renal epithelial cells.

  17. The effects of rhodium on the renal function of female Wistar rats.

    PubMed

    Iavicoli, Ivo; Leso, Veruscka; Fontana, Luca; Marinaccio, Alessandro; Bergamaschi, Antonio; Calabrese, Edward J

    2014-06-01

    In recent years, the increased use of rhodium (Rh) as an active catalyst material in modern three-way automobile catalytic converters has led to a parallel rise in environmental levels of this metal. In spite of this, the literature contains few studies of the effects of Rh on human health. The aim of this study is to assess the effects of Rh on the renal function of female Wistar rats. Our findings show that sub-acute exposure to six increasing concentrations, ranging from 0.001 to 1 mg L(-1), of Rh (III) chloride hydrate in drinking water does not induce alterations in urinary albumin levels, while, at concentrations from 0.1 to 1 mg L(-1), a significant rise in urinary levels of Retinol Binding Protein is evident and an increasing trend in urinary β2-microglobulin, which becomes significant at 1 mg L(-1), is observed. These results therefore demonstrate a nephrotoxic action of Rh at tubular level in a wide range of doses. Interestingly, because of the recent increase in environmental Rh levels, these findings may have relevant implications both for occupationally exposed subjects and for the general population, especially children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Losartan prevents the imbalance between renal dopaminergic and renin angiotensin systems induced by fructose overload. L-dopa/dopamine index as new potential biomarker of renal dysfunction.

    PubMed

    Mikusic, Natalia Lucía Rukavina; Kouyoumdzian, Nicolás Martín; Uceda, Ana; Del Mauro, Julieta Sofía; Pandolfo, Marcela; Gironacci, Mariela Mercedes; Puyó, Ana María; Toblli, Jorge Eduardo; Fernández, Belisario Enrique; Choi, Marcelo Roberto

    2018-05-01

    The renin angiotensin system (RAS) and the renal dopaminergic system (RDS) act as autocrine and paracrine systems to regulate renal sodium management and inflammation and their alterations have been associated to hypertension and renal damage. Nearly 30-50% of hypertensive patients have insulin resistance (IR), with a strong correlation between hyperinsulinemia and microalbuminuria. The aim of this study was to demonstrate the existence of an imbalance between RAS and RDS associated to IR, hypertension and kidney damage induced by fructose overload (FO), as well as to establish their prevention, by pharmacological inhibition of RAS with losartan. Ninety-six male Sprague-Dawley rats were randomly divided into four groups and studied at 4, 8 and 12 weeks: control group (C4, C8 and C12; tap water to drink); fructose-overloaded group (F4, F8 and F12; 10% w/v fructose solution to drink); losartan-treated control (L) group (L4, L8 and L12; losartan 30 mg/kg/day, in drinking water); and fructose-overloaded plus losartan group (F + L4, F + L8 and F + L12, in fructose solution). FO induced metabolic and hemodynamic alterations as well as an imbalance between RAS and RDS, characterized by increased renal angiotensin II levels and AT 1 R overexpression, reduced urinary excretion of dopamine, increased excretion of L-dopa (increased L-dopa/dopamine index) and down-regulation of D 1 R and tubular dopamine transporters OCT-2, OCT-N1 and total OCTNs. This imbalance was accompanied by an overexpression of renal tubular Na + , K + -ATPase, pro-inflammatory (NF-kB, TNF-α, IL-6) and pro-fibrotic (TGF-β1 and collagen) markers and by renal damage (microalbuminuria and reduced nephrin expression). Losartan prevented the metabolic and hemodynamic alterations induced by FO from week 4. Increased urinary L-dopa/dopamine index and decreased D 1 R renal expression associated to FO were also prevented by losartan since week 4. The same pattern was observed for renal expression of OCTs/OCTNs, Na + , K + -ATPase, pro-inflammatory and pro-fibrotic markers from week 8. The appearance of microalbuminuria and reduced nephrin expression was prevented by losartan at week 12. The results of this study provide new insight regarding the mechanisms by which a pro-hypertensive and pro-inflammatory system, such as RAS, downregulates another anti-hypertensive and anti-inflammatory system such as RDS. Additionally, we propose the use of L-dopa/dopamine index as a biochemical marker of renal dysfunction in conditions characterized by sodium retention, IR and/or hypertension, and as a predictor of response to treatment and follow-up of these processes. Copyright © 2018. Published by Elsevier Inc.

  19. Homeostatic effect of p-chloro-diphenyl diselenide on glucose metabolism and mitochondrial function alterations induced by monosodium glutamate administration to rats.

    PubMed

    Quines, Caroline B; Rosa, Suzan G; Chagas, Pietro M; da Rocha, Juliana T; Dobrachinski, Fernando; Carvalho, Nélson R; Soares, Félix A; da Luz, Sônia C Almeida; Nogueira, Cristina W

    2016-01-01

    The metabolic syndrome is a group of metabolic alterations considered a worldwide public health problem. Organic selenium compounds have been reported to have many different pharmacological actions, such as anti-hypercholesterolemic and anti-hyperglycemic. The aim of this study was to evaluate the effect of p-chloro-diphenyl diselenide (p-ClPhSe)2, an organic selenium compound, in a model of obesity induced by monosodium glutamate (MSG) administration in rats. The rats were treated during the first ten postnatal days with MSG and received (p-ClPhSe)2 (10 mg/kg, intragastrically) from 45th to 51 th postnatal day. Glucose, lipid and lactate levels were determined in plasma of rats. Glycogen levels and activities of tyrosine aminotransferase, hexokinase, citrate synthase and glucose-6-phosphatase (G-6-Pase) were determined in livers of rats. Renal G-6-Pase activity was also determined. The purine content [Adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate] and mitochondrial functionality in the liver were also investigated. p-(ClPhSe)2 did not alter the reduction in growth performance and in the body weight caused by MSG but reduced epididymal fat deposition of rats. p-(ClPhSe)2 restored glycemia, triglycerides, cholesterol and lactate levels as well as the glucose metabolism altered in rats treated with MSG. p-(ClPhSe)2 restored hepatic mitochondrial dysfunction and the decrease in citrate synthase activity and ATP and ADP levels caused by MSG in rats. In summary, (p-ClPhSe)2 had homeostatic effects on glucose metabolism and mitochondrial function alterations induced by MSG administration to rats.

  20. Effect of renal impairment on the pharmacokinetics, pharmacodynamics, and safety of apixaban.

    PubMed

    Chang, Ming; Yu, Zhigang; Shenker, Andrew; Wang, Jessie; Pursley, Janice; Byon, Wonkyung; Boyd, Rebecca A; LaCreta, Frank; Frost, Charles E

    2016-05-01

    This open-label study evaluated apixaban pharmacokinetics, pharmacodynamics, and safety in subjects with mild, moderate, or severe renal impairment and in healthy subjects following a single 10-mg oral dose. The primary analysis determined the relationship between apixaban AUC∞ and 24-hour creatinine clearance (CLcr ) as a measure of renal function. The relationships between 24-hour CLcr and iohexol clearance, estimated CLcr (Cockcroft-Gault equation), and estimated glomerular filtration rate (modification of diet in renal disease [MDRD] equation) were also assessed. Secondary objectives included assessment of safety and tolerability as well as international normalized ratio (INR) and anti-factor Xa activity as pharmacodynamic endpoints. The regression analysis showed that decreasing renal function resulted in modestly increased apixaban exposure (AUC∞ increased by 44% in severe impairment with a 24-hour CLcr of 15 mL/min, compared with subjects with normal renal function), but it did not affect Cmax or the direct relationship between apixaban plasma concentration and anti-factor Xa activity or INR. The assessment of renal function measured by iohexol clearance, Cockcroft-Gault, and MDRD was consistent with that determined by 24-hour CLcr . Apixaban was well tolerated in this study. These results suggest that dose adjustment of apixaban is not required on the basis of renal function alone. © 2015, The American College of Clinical Pharmacology.

Top