Science.gov

Sample records for altered sleep homeostasis

  1. Maternal dietary restriction alters offspring's sleep homeostasis.

    PubMed

    Shimizu, Noriyuki; Chikahisa, Sachiko; Nishi, Yuina; Harada, Saki; Iwaki, Yohei; Fujihara, Hiroaki; Kitaoka, Kazuyoshi; Shiuchi, Tetsuya; Séi, Hiroyoshi

    2013-01-01

    Nutritional state in the gestation period influences fetal growth and development. We hypothesized that undernutrition during gestation would affect offspring sleep architecture and/or homeostasis. Pregnant female mice were assigned to either control (fed ad libitum; AD) or 50% dietary restriction (DR) groups from gestation day 12 to parturition. After parturition, dams were fed AD chow. After weaning, the pups were also fed AD into adulthood. At adulthood (aged 8-9 weeks), we carried out sleep recordings. Although offspring mice displayed a significantly reduced body weight at birth, their weights recovered three days after birth. Enhancement of electroencephalogram (EEG) slow wave activity (SWA) during non-rapid eye movement (NREM) sleep was observed in the DR mice over a 24-hour period without changing the diurnal pattern or amounts of wake, NREM, or rapid eye movement (REM) sleep. In addition, DR mice also displayed an enhancement of EEG-SWA rebound after a 6-hour sleep deprivation and a higher threshold for waking in the face of external stimuli. DR adult offspring mice exhibited small but significant increases in the expression of hypothalamic peroxisome proliferator-activated receptor α (Pparα) and brain-specific carnitine palmitoyltransferase 1 (Cpt1c) mRNA, two genes involved in lipid metabolism. Undernutrition during pregnancy may influence sleep homeostasis, with offspring exhibiting greater sleep pressure.

  2. Chronic social stress leads to altered sleep homeostasis in mice.

    PubMed

    Olini, Nadja; Rothfuchs, Iru; Azzinnari, Damiano; Pryce, Christopher R; Kurth, Salome; Huber, Reto

    2017-03-15

    Disturbed sleep and altered sleep homeostasis are core features of many psychiatric disorders such as depression. Chronic uncontrollable stress is considered an important factor in the development of depression, but little is known on how chronic stress affects sleep regulation and sleep homeostasis. We therefore examined the effects of chronic social stress (CSS) on sleep regulation in mice. Adult male C57BL/6 mice were implanted for electrocortical recordings (ECoG) and underwent either a 10-day CSS protocol or control handling (CON). Subsequently, ECoG was assessed across a 24-h post-stress baseline, followed by a 4-h sleep deprivation, and then a 20-h recovery period. After sleep deprivation, CSS mice showed a blunted increase in sleep pressure compared to CON mice, as measured using slow wave activity (SWA, electroencephalographic power between 1 - 4Hz) during non-rapid eye movement (NREM) sleep. Vigilance states did not differ between CSS and CON mice during post-stress baseline, sleep deprivation or recovery, with the exception of CSS mice exhibiting increased REM sleep during recovery sleep. Behavior during sleep deprivation was not affected by CSS. Our data provide evidence that CSS alters the homeostatic regulation of sleep SWA in mice. In contrast to acute social stress, which results in a faster SWA build-up, CSS decelerates the homeostatic build up. These findings are discussed in relation to the causal contribution of stress-induced sleep disturbance to depression.

  3. Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis.

    PubMed

    Brown, Marishka K; Chan, May T; Zimmerman, John E; Pack, Allan I; Jackson, Nicholas E; Naidoo, Nirinjini

    2014-06-01

    Alterations in the quality, quantity, and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response. The effectiveness of the adaptive unfolded protein response is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of X-box binding protein 1 and upregulation of phosphorylated elongation initiation factor 2 α, in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged or sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep or sleep debt discharge.

  4. Altered Sleep Homeostasis in Rev-erbα Knockout Mice

    PubMed Central

    Mang, Géraldine M.; La Spada, Francesco; Emmenegger, Yann; Chappuis, Sylvie; Ripperger, Jürgen A.; Albrecht, Urs; Franken, Paul

    2016-01-01

    Study Objectives: The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. Methods: EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. Results: Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1–4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. Conclusions: Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context. Citation: Mang GM, La Spada F, Emmenegger Y, Chappuis S, Ripperger JA, Albrecht U, Franken P. Altered sleep homeostasis in Rev

  5. Alcohol disrupts sleep homeostasis.

    PubMed

    Thakkar, Mahesh M; Sharma, Rishi; Sahota, Pradeep

    2015-06-01

    Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired

  6. Occurrence of Epilepsy at Different Zeitgeber Times Alters Sleep Homeostasis Differently in Rats

    PubMed Central

    Yi, Pei-Lu; Chen, Ying-Ju; Lin, Chung-Tien; Chang, Fang-Chia

    2012-01-01

    . Shifts of sleep circadian rhythm and PER1 oscillation induced by ZT6-kindling were blocked by administration of hypocretin receptor antagonist SB334867 into the SCN, indicating the involvement of hypocretin. Conclusion: These observations suggest that the occurrence of epilepsy at different ZTs alters sleep processes differently. Citation: Yi PL; Chen YJ; Lin CT; Chang FC. Occurrence of epilepsy at different zeitgeber times alters sleep homeostasis differently in rats. SLEEP 2012;35(12):1651–1665. PMID:23204608

  7. Sustained Sleep Fragmentation Induces Sleep Homeostasis in Mice

    PubMed Central

    Baud, Maxime O.; Magistretti, Pierre J.; Petit, Jean-Marie

    2015-01-01

    Study Objectives: Sleep fragmentation (SF) is an integral feature of sleep apnea and other prevalent sleep disorders. Although the effect of repetitive arousals on cognitive performance is well documented, the effects of long-term SF on electroencephalography (EEG) and molecular markers of sleep homeostasis remain poorly investigated. To address this question, we developed a mouse model of chronic SF and characterized its effect on EEG spectral frequencies and the expression of genes previously linked to sleep homeostasis including clock genes, heat shock proteins, and plasticity-related genes. Design: N/A. Setting: Animal sleep research laboratory. Participants : Sixty-six C57BL6/J adult mice. Interventions: Instrumental sleep disruption at a rate of 60/h during 14 days Measurements and Results: Locomotor activity and EEG were recorded during 14 days of SF followed by recovery for 2 days. Despite a dramatic number of arousals and decreased sleep bout duration, SF minimally reduced total quantity of sleep and did not significantly alter its circadian distribution. Spectral analysis during SF revealed a homeostatic drive for slow wave activity (SWA; 1–4 Hz) and other frequencies as well (4–40 Hz). Recordings during recovery revealed slow wave sleep consolidation and a transient rebound in SWA, and paradoxical sleep duration. The expression of selected genes was not induced following chronic SF. Conclusions: Chronic sleep fragmentation (SF) increased sleep pressure confirming that altered quality with preserved quantity triggers core sleep homeostasis mechanisms. However, it did not induce the expression of genes induced by sleep loss, suggesting that these molecular pathways are not sustainably activated in chronic diseases involving SF. Citation: Baud MO, Magistretti PJ, Petit JM. Sustained sleep fragmentation induces sleep homeostasis in mice. SLEEP 2015;38(4):567–579. PMID:25325477

  8. Sleep deprivation alters energy homeostasis through non-compensatory alterations in hypothalamic insulin receptors in Wistar rats.

    PubMed

    Moraes, Danilo Alves; Venancio, Daniel Paulino; Suchecki, Deborah

    2014-11-01

    Studies have shown a gradual reduction of sleep time in the general population, accompanied by increased food intake, representing a risk for developing obesity, type II diabetes and cardiovascular disease. Rats subjected to paradoxical sleep deprivation (PSD) exhibit feeding and metabolic alterations, both of which are regulated by the communication between peripheral signals and the hypothalamus. This study aimed to investigate the daily change of 96 h of PSD-induced food intake, body weight, blood glucose, plasma insulin and leptin concentrations and the expression of their receptors in the hypothalamus of Wistar rats. Food intake was assessed during the light and dark phases and was progressively increased in sleep-deprived animals, during the light phase. PSD produced body weight loss, particularly on the first day, and decreased plasma insulin and leptin levels, without change in blood glucose levels. Reduced leptin levels were compensated by increased expression of leptin receptors in the hypothalamus, whereas no compensations occurred in insulin receptors. The present results on body weight loss and increased food intake replicate previous studies from our group. The fact that reduced insulin levels did not lead to compensatory changes in hypothalamic insulin receptors, suggests that this hormone may be, at least in part, responsible for PSD-induced dysregulation in energy metabolism.

  9. Sleep and bodily functions: the physiological interplay between body homeostasis and sleep homeostasis.

    PubMed

    Amici, R; Bastianini, S; Berteotti, C; Cerri, M; Del Vecchio, F; Lo Martire, V; Luppi, M; Perez, E; Silvani, A; Zamboni, G; Zoccoli, G

    2014-01-01

    Body homeostasis and sleep homeostasis may both rely on the complex integrative activity carried out by the hypothalamus. Thus, the three main wake-sleep (WS) states (i.e. wakefulness, NREM sleep, and REM sleep) may be better understood if the different cardio-respiratory and metabolic parameters, which are under the integrated control of the autonomic and the endocrine systems, are studied during sleep monitoring. According to this view, many physiological events can be considered as an expression of the activity that physiological regulations should perform in order to cope with the need to fulfill body and sleep homeostasis. This review is aimed at making an assessment of data showing the existence of a physiological interplay between body homeostasis and sleep homeostasis, starting from the spontaneous changes observed in the somatic and autonomic activity during sleep, through evidence showing the deep changes occurring in the central integration of bodily functions during the different WS states, to the changes in the WS states observed when body homeostasis is challenged by the external environment and when the return to normal ambient conditions allows sleep homeo- stasis to run without apparent physiological restrictions. The data summarized in this review suggest that an approach to the dichotomy between NREM and REM sleep based on physiological regulations may offer a framework within which observations that a traditional behavioral approach may overlook can be interpreted. The study of the interplay between body and sleep homeostasis appears, therefore, to be a way to understand the function of complex organisms beyond that of the specific regulations.

  10. Synaptic Homeostasis and Restructuring across the Sleep-Wake Cycle.

    PubMed

    Blanco, Wilfredo; Pereira, Catia M; Cota, Vinicius R; Souza, Annie C; Rennó-Costa, César; Santos, Sharlene; Dias, Gabriella; Guerreiro, Ana M G; Tort, Adriano B L; Neto, Adrião D; Ribeiro, Sidarta

    2015-05-01

    Sleep is critical for hippocampus-dependent memory consolidation. However, the underlying mechanisms of synaptic plasticity are poorly understood. The central controversy is on whether long-term potentiation (LTP) takes a role during sleep and which would be its specific effect on memory. To address this question, we used immunohistochemistry to measure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα) in the rat hippocampus immediately after specific sleep-wake states were interrupted. Control animals not exposed to novel objects during waking (WK) showed stable pCaMKIIα levels across the sleep-wake cycle, but animals exposed to novel objects showed a decrease during subsequent slow-wave sleep (SWS) followed by a rebound during rapid-eye-movement sleep (REM). The levels of pCaMKIIα during REM were proportional to cortical spindles near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on a network of fully connected excitatory neurons fed with spikes recorded from the rat hippocampus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM transition led to marked swaps in synaptic weight ranking. To better understand the interaction between rescaling and restructuring during sleep, we implemented synaptic homeostasis and embossing in a detailed hippocampal-cortical model with both excitatory and inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation and strengthening depression, while synaptic embossing was simulated by evoking LTP on selected synapses. We observed that synaptic homeostasis facilitates controlled synaptic restructuring. The results imply a mechanism for a cognitive synergy between SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the effect of sleep: Its lack determines synaptic homeostasis, its presence causes synaptic

  11. Synaptic Homeostasis and Restructuring across the Sleep-Wake Cycle

    PubMed Central

    Rennó-Costa, César; Santos, Sharlene; Dias, Gabriella; Guerreiro, Ana M. G.; Tort, Adriano B. L.; Neto, Adrião D.; Ribeiro, Sidarta

    2015-01-01

    Sleep is critical for hippocampus-dependent memory consolidation. However, the underlying mechanisms of synaptic plasticity are poorly understood. The central controversy is on whether long-term potentiation (LTP) takes a role during sleep and which would be its specific effect on memory. To address this question, we used immunohistochemistry to measure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα) in the rat hippocampus immediately after specific sleep-wake states were interrupted. Control animals not exposed to novel objects during waking (WK) showed stable pCaMKIIα levels across the sleep-wake cycle, but animals exposed to novel objects showed a decrease during subsequent slow-wave sleep (SWS) followed by a rebound during rapid-eye-movement sleep (REM). The levels of pCaMKIIα during REM were proportional to cortical spindles near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on a network of fully connected excitatory neurons fed with spikes recorded from the rat hippocampus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM transition led to marked swaps in synaptic weight ranking. To better understand the interaction between rescaling and restructuring during sleep, we implemented synaptic homeostasis and embossing in a detailed hippocampal-cortical model with both excitatory and inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation and strengthening depression, while synaptic embossing was simulated by evoking LTP on selected synapses. We observed that synaptic homeostasis facilitates controlled synaptic restructuring. The results imply a mechanism for a cognitive synergy between SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the effect of sleep: Its lack determines synaptic homeostasis, its presence causes synaptic

  12. Cortical neuronal activity does not regulate sleep homeostasis.

    PubMed

    Qiu, M-H; Chen, M C; Lu, J

    2015-06-25

    The neural substrate of sleep homeostasis is unclear, but both cortical and subcortical structures are thought to be involved in sleep regulation. To test whether prior neuronal activity in the cortex or in subcortical regions drives sleep rebound, we systemically administered atropine (100mg/kg) to rats, producing a dissociated state with slow-wave cortical electroencephalogram (EEG) but waking behavior (e.g. locomotion). Atropine injections during the light period produced 6h of slow-wave cortical EEG but also subcortical arousal. Afterward, rats showed a significant increase in non-rapid eye movement (NREM) sleep, compared to the same period on a baseline day. Consistent with the behavioral and cortical EEG state produced by systemic atropine, c-Fos expression was low in the cortex but high in multiple subcortical arousal systems. These data suggest that subcortical arousal and behavior are sufficient to drive sleep homeostasis, while a sleep-like pattern of cortical activity is not sufficient to satisfy sleep homeostasis.

  13. Maternal Ube3a Loss Disrupts Sleep Homeostasis But Leaves Circadian Rhythmicity Largely Intact

    PubMed Central

    Ehlen, J. Christopher; Jones, Kelly A.; Pinckney, Lennisha; Gray, Cloe L.; Burette, Susan; Weinberg, Richard J.; Evans, Jennifer A.; Brager, Allison J.; Zylka, Mark J.

    2015-01-01

    Individuals with Angelman syndrome (AS) suffer sleep disturbances that severely impair quality of life. Whether these disturbances arise from sleep or circadian clock dysfunction is currently unknown. Here, we explored the mechanistic basis for these sleep disorders in a mouse model of Angelman syndrome (Ube3am−/p+ mice). Genetic deletion of the maternal Ube3a allele practically eliminates UBE3A protein from the brain of Ube3am−/p+ mice, because the paternal allele is epigenetically silenced in most neurons. However, we found that UBE3A protein was present in many neurons of the suprachiasmatic nucleus—the site of the mammalian circadian clock—indicating that Ube3a can be expressed from both parental alleles in this brain region in adult mice. We found that while Ube3am−/p+ mice maintained relatively normal circadian rhythms of behavior and light-resetting, these mice exhibited consolidated locomotor activity and skipped the timed rest period (siesta) present in wild-type (Ube3am+/p+) mice. Electroencephalographic analysis revealed that alterations in sleep regulation were responsible for these overt changes in activity. Specifically, Ube3am−/p+ mice have a markedly reduced capacity to accumulate sleep pressure, both during their active period and in response to forced sleep deprivation. Thus, our data indicate that the siesta is governed by sleep pressure, and that Ube3a is an important regulator of sleep homeostasis. These preclinical findings suggest that therapeutic interventions that target mechanisms of sleep homeostasis may improve sleep quality in individuals with AS. SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by loss of expression of the maternal copy of the UBE3A gene. Individuals with AS have severe sleep dysfunction that affects their cognition and presents challenges to their caregivers. Unfortunately, current treatment strategies have limited efficacy due to a poor understanding of the

  14. REM sleep homeostasis in the absence of REM sleep: Effects of antidepressants.

    PubMed

    McCarthy, Andrew; Wafford, Keith; Shanks, Elaine; Ligocki, Marcin; Edgar, Dale M; Dijk, Derk-Jan

    2016-09-01

    Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 ± 10% of lost REM sleep recovered following a 26-29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 ± 8, 84 ± 8 and 69 ± 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep.

  15. Ketone body metabolism and sleep homeostasis in mice.

    PubMed

    Chikahisa, Sachiko; Shimizu, Noriyuki; Shiuchi, Tetsuya; Séi, Hiroyoshi

    2014-04-01

    A link has been established between energy metabolism and sleep homeostasis. The ketone bodies acetoacetate and β-hydroxybutyrate, generated from the breakdown of fatty acids, are major metabolic fuels for the brain under conditions of low glucose availability. Ketogenesis is modulated by the activity of peroxisome proliferator-activated receptor alpha (PPARα), and treatment with a PPAR activator has been shown to induce a marked increase in plasma acetoacetate and decreased β-hydroxybutyrate in mice, accompanied by increased slow-wave activity during non-rapid eye movement (NREM) sleep. The present study investigated the role of ketone bodies in sleep regulation. Six-hour sleep deprivation increased plasma ketone bodies and their ratio (acetoacetate/β-hydroxybutyrate) in 10-week-old male mice. Moreover, sleep deprivation increased mRNA expression of ketogenic genes such as PPARα and 3-hydroxy-3-methylglutarate-CoA synthase 2 in the brain and decreased ketolytic enzymes such as succinyl-CoA: 3-oxoacid CoA transferase. In addition, central injection of acetoacetate, but not β-hydroxybutyrate, markedly increased slow-wave activity during NREM sleep and suppressed glutamate release. Central metabolism of ketone bodies, especially acetoacetate, appears to play a role in the regulation of sleep homeostasis.

  16. Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds?

    PubMed

    Lesku, John A; Vyssotski, Alexei L; Martinez-Gonzalez, Dolores; Wilzeck, Christiane; Rattenborg, Niels C

    2011-08-22

    The function of the brain activity that defines slow wave sleep (SWS) and rapid eye movement (REM) sleep in mammals is unknown. During SWS, the level of electroencephalogram slow wave activity (SWA or 0.5-4.5 Hz power density) increases and decreases as a function of prior time spent awake and asleep, respectively. Such dynamics occur in response to waking brain use, as SWA increases locally in brain regions used more extensively during prior wakefulness. Thus, SWA is thought to reflect homeostatically regulated processes potentially tied to maintaining optimal brain functioning. Interestingly, birds also engage in SWS and REM sleep, a similarity that arose via convergent evolution, as sleeping reptiles and amphibians do not show similar brain activity. Although birds deprived of sleep show global increases in SWA during subsequent sleep, it is unclear whether avian sleep is likewise regulated locally. Here, we provide, to our knowledge, the first electrophysiological evidence for local sleep homeostasis in the avian brain. After staying awake watching David Attenborough's The Life of Birds with only one eye, SWA and the slope of slow waves (a purported marker of synaptic strength) increased only in the hyperpallium--a primary visual processing region--neurologically connected to the stimulated eye. Asymmetries were specific to the hyperpallium, as the non-visual mesopallium showed a symmetric increase in SWA and wave slope. Thus, hypotheses for the function of mammalian SWS that rely on local sleep homeostasis may apply also to birds.

  17. Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.

    PubMed

    Silvani, Alessandro; Berteotti, Chiara; Bastianini, Stefano; Lo Martire, Viviana; Mazza, Roberta; Pagotto, Uberto; Quarta, Carmelo; Zoccoli, Giovanna

    2014-01-01

    Cannabinoid type 1 (CB1) receptors are highly expressed in the brain and play a role in behavior control. Endogenous cannabinoid signaling is modulated by high-fat diet (HFD). We investigated the consequences of congenital lack of CB1 receptors on sleep in mice fed standard diet (SD) and HFD. CB1 cannabinoid receptor knock-out (KO) and wild-type (WT) mice were fed SD or HFD for 4 months (n = 9-10 per group). Mice were instrumented with electroencephalographic (EEG) and electromyographic electrodes. Recordings were performed during baseline (48 hours), sleep deprivation (gentle handling, 6 hours), sleep recovery (18 hours), and after cage switch (insomnia model paradigm, 6 hours). We found multiple significant effects of genotype on sleep. In particular, KO spent more time awake and less time in non-rapid-eye-movement sleep (NREMS) and rapid-eye-movement sleep (REMS) than WT during the dark (active) period but not during the light (rest) period, enhancing the day-night variation of wake-sleep amounts. KO had slower EEG theta rhythm during REMS. REMS homeostasis after sleep deprivation was less effective in KO than in WT. Finally, KO habituated more rapidly to the arousing effect of the cage-switch test than WT. We did not find any significant effects of diet or of diet x genotype interaction on sleep. The occurrence of multiple sleep alterations in KO indicates important roles of CB1 cannabinoid receptors in limiting arousal during the active period of the day, in sleep regulation, and in sleep EEG in mice.

  18. DAF-16/FOXO regulates homeostasis of essential sleep-like behavior during larval transitions in C. elegans.

    PubMed

    Driver, Robert J; Lamb, Annesia L; Wyner, Abraham J; Raizen, David M

    2013-03-18

    Sleep homeostasis, which refers to the maintenance of sleep amount or depth following sleep deprivation, indicates that sleep and sleep-like states serve fundamental functions that cannot be bypassed [1]. Homeostasis of sleep-like behavior is observed during C. elegans lethargus, a 2-3 hr behavioral quiescent period that occurs during larval state transitions [2]. Here, we report a role for DAF-16/FOXO, a transcription factor that is active under conditions of stress [3], in the response to deprivation of lethargus quiescence. Forced locomotion during lethargus results in nuclear translocation of DAF-16. The formation of dauer larvae, a developmental state promoted by daf-16, is increased in response to quiescence deprivation. daf-16 mutants show an impaired homeostatic response to deprivation of lethargus quiescence and are hypersensitive to the lethal effects of forced locomotion during lethargus. DAF-16 expression in muscle cells, but not in neurons, is sufficient to restore a homeostatic response to deprivation of quiescence, pointing to a role for muscle in sleep homeostasis. These findings are relevant to clinical observations of altered metabolic signaling in response to sleep deprivation and suggest that these signaling pathways may act in nonneuronal tissue to regulate sleep behaviors.

  19. Behavioral Sleep-Wake Homeostasis and EEG Delta Power Are Decoupled By Chronic Sleep Restriction in the Rat

    PubMed Central

    Stephenson, Richard; Caron, Aimee M.; Famina, Svetlana

    2015-01-01

    Study Objectives: Chronic sleep restriction (CSR) is prevalent in society and is linked to adverse consequences that might be ameliorated by acclimation of homeostatic drive. This study was designed to test the hypothesis that the sleep-wake homeostat will acclimatize to CSR. DESIGN: A four-parameter model of proportional control was used to quantify sleep homeostasis with and without recourse to a sleep intensity function. Setting: Animal laboratory, rodent walking-wheel apparatus. Subjects: Male Sprague-Dawley rats. Interventions: Acute total sleep deprivation (TSD, 1 day × 18 or 24 h, N = 12), CSR (10 days × 18 h TSD, N = 6, or 5 days × 20 h TSD, N = 5). Measurements and Results: Behavioral rebounds were consistent with model predictions for proportional control of cumulative times in wake, nonrapid eye movement sleep (NREM) and rapid eye movement sleep (REM). Delta (Δ) energy homeostasis was secondary to behavioral homeostasis; a biphasic NREM Δ power rebound contributed to the dynamics (rapid response) but not to the magnitude of the rebound in Δ energy. REM behavioral homeostasis was little affected by CSR. NREM behavioral homeostasis was attenuated in proportion to cumulative NREM deficit, whereas the biphasic NREM Δ power rebound was only slightly suppressed, indicating decoupled regulatory mechanisms following CSR. Conclusions: We conclude that sleep homeostasis is achieved through behavioral regulation, that the nonrapid eye movement sleep behavioral homeostat is susceptible to attenuation during chronic sleep restriction and that the concept of sleep intensity is not essential in a model of sleep-wake regulation. Citation: Stephenson R, Caron AM, Famina S. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat. SLEEP 2015;38(5):685–697. PMID:25669184

  20. CD40 activation induces NREM sleep and modulates genes associated with sleep homeostasis.

    PubMed

    Gast, Heidemarie; Müller, Andreas; Lopez, Martin; Meier, Daniel; Huber, Reto; Dechent, Frieder; Prinz, Marco; Emmenegger, Yann; Franken, Paul; Birchler, Thomas; Fontana, Adriano

    2013-01-01

    The T-cell derived cytokine CD40 ligand is overexpressed in patients with autoimmune diseases. Through activation of its receptor, CD40 ligand leads to a tumor necrosis factor (TNF) receptor 1 (TNFR1) dependent impairment of locomotor activity in mice. Here we report that this effect is explained through a promotion of sleep, which was specific to non-rapid eye movement (NREM) sleep while REM sleep was suppressed. The increase in NREM sleep was accompanied by a decrease in EEG delta power during NREM sleep and by a decrease in the expression of transcripts in the cerebral cortex known to be associated with homeostatic sleep drive, such as Homer1a, Early growth response 2, Neuronal pentraxin 2, and Fos-like antigen 2. The effect of CD40 activation was mimicked by peripheral TNF injection and prevented by the TNF blocker etanercept. Our study indicates that sleep-wake dysregulation in autoimmune diseases may result from CD40 induced TNF:TNFR1 mediated alterations of molecular pathways, which regulate sleep-wake behavior.

  1. The Perilipin Homologue, Lipid Storage Droplet 2, Regulates Sleep Homeostasis and Prevents Learning Impairments Following Sleep Loss

    PubMed Central

    Thimgan, Matthew S.; Suzuki, Yasuko; Seugnet, Laurent; Gottschalk, Laura; Shaw, Paul J.

    2010-01-01

    Extended periods of waking result in physiological impairments in humans, rats, and flies. Sleep homeostasis, the increase in sleep observed following sleep loss, is believed to counter the negative effects of prolonged waking by restoring vital biological processes that are degraded during sleep deprivation. Sleep homeostasis, as with other behaviors, is influenced by both genes and environment. We report here that during periods of starvation, flies remain spontaneously awake but, in contrast to sleep deprivation, do not accrue any of the negative consequences of prolonged waking. Specifically, the homeostatic response and learning impairments that are a characteristic of sleep loss are not observed following prolonged waking induced by starvation. Recently, two genes, brummer (bmm) and Lipid storage droplet 2 (Lsd2), have been shown to modulate the response to starvation. bmm mutants have excess fat and are resistant to starvation, whereas Lsd2 mutants are lean and sensitive to starvation. Thus, we hypothesized that bmm and Lsd2 may play a role in sleep regulation. Indeed, bmm mutant flies display a large homeostatic response following sleep deprivation. In contrast, Lsd2 mutant flies, which phenocopy aspects of starvation as measured by low triglyceride stores, do not exhibit a homeostatic response following sleep loss. Importantly, Lsd2 mutant flies are not learning impaired after sleep deprivation. These results provide the first genetic evidence, to our knowledge, that lipid metabolism plays an important role in regulating the homeostatic response and can protect against neuronal impairments induced by prolonged waking. PMID:20824166

  2. Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration

    PubMed Central

    Tononi, Giulio; Cirelli, Chiara

    2014-01-01

    Summary Sleep is universal, tightly regulated, and its loss impairs cognition. But why does the brain need to disconnect from the environment for hours every day? The synaptic homeostasis hypothesis (SHY) proposes that sleep is the price the brain pays for plasticity. During a waking episode, learning statistical regularities about the current environment requires strengthening connections throughout the brain. This increases cellular needs for energy and supplies, decreases signal-to-noise ratios, and saturates learning. During sleep, spontaneous activity renormalizes net synaptic strength and restores cellular homeostasis. Activity-dependent down-selection of synapses can also explain the benefits of sleep on memory acquisition, consolidation, and integration. This happens through the off-line, comprehensive sampling of statistical regularities incorporated in neuronal circuits over a lifetime. This review considers the rationale and evidence for SHY and points to open issues related to sleep and plasticity. PMID:24411729

  3. The alteration of copper homeostasis in inflammation induced by lipopolysaccharides.

    PubMed

    Han, Ming; Lin, Zhexuan; Zhang, Yuan

    2013-08-01

    Significant changes of copper homeostasis were triggered by lipopolysaccharides, which result in systemic inflammatory response and contribute to hepatic injury. Administration of lipopolysaccharides resulted in the increase of plasma "free" copper and total copper concentrations, whereas, the decrease of "free" copper and total copper contents in liver tissue. Copper-associated proteins were detected and showed a down-regulation of X-linked inhibitor of apoptosis protein, and up-regulation of copper metabolism domain containing 1 and copper transporter 1. The alteration of these proteins would lower the apoptotic threshold. Meanwhile, the increasing of circulation copper might cause oxidative injury through Fenton reaction and contribute to tissue injury. Our findings underscored the possibility that these changes in systemic copper homeostasis might provide a novel insight of the characteristic of the acute phase of inflammatory response and the underlying influence on tissue injury.

  4. The brain functional connectome is robustly altered by lack of sleep.

    PubMed

    Kaufmann, Tobias; Elvsåshagen, Torbjørn; Alnæs, Dag; Zak, Nathalia; Pedersen, Per Ø; Norbom, Linn B; Quraishi, Sophia H; Tagliazucchi, Enzo; Laufs, Helmut; Bjørnerud, Atle; Malt, Ulrik F; Andreassen, Ole A; Roussos, Evangelos; Duff, Eugene P; Smith, Stephen M; Groote, Inge R; Westlye, Lars T

    2016-02-15

    Sleep is a universal phenomenon necessary for maintaining homeostasis and function across a range of organs. Lack of sleep has severe health-related consequences affecting whole-body functioning, yet no other organ is as severely affected as the brain. The neurophysiological mechanisms underlying these deficits are poorly understood. Here, we characterize the dynamic changes in brain connectivity profiles inflicted by sleep deprivation and how they deviate from regular daily variability. To this end, we obtained functional magnetic resonance imaging data from 60 young, adult male participants, scanned in the morning and evening of the same day and again the following morning. 41 participants underwent total sleep deprivation before the third scan, whereas the remainder had another night of regular sleep. Sleep deprivation strongly altered the connectivity of several resting-state networks, including dorsal attention, default mode, and hippocampal networks. Multivariate classification based on connectivity profiles predicted deprivation state with high accuracy, corroborating the robustness of the findings on an individual level. Finally, correlation analysis suggested that morning-to-evening connectivity changes were reverted by sleep (control group)-a pattern which did not occur after deprivation. We conclude that both, a day of waking and a night of sleep deprivation dynamically alter the brain functional connectome.

  5. Two features of sleep slow waves: homeostatic and reactive aspects--from long term to instant sleep homeostasis.

    PubMed

    Halász, Péter; Bódizs, Róbert; Parrino, Liborio; Terzano, Mario

    2014-10-01

    In this paper we reviewed results of sleep research that have changed the views about sleep slow wave homeostasis, which involve use-dependent and experience-dependent local aspects to understand more of the physiology of plastic changes during sleep. Apart from the traditional homeostatic slow-wave economy, we also overviewed research on the existence and role of reactive aspects of sleep slow waves. Based on the results from spontaneous and artificially evoked slow waves, we offer a new hypothesis on instant slow wave homeostatic regulation. This regulation compensates for any potentially sleep-disturbing events by providing instant "delta injections" to maintain the nightly delta level, thus protecting cognitive functions located in the frontal lobe. We suggest that this double (long-term /instant) homeostasis provides double security for the frontal lobes in order to protect cognitive functions. The incorporation of reactive slow wave activity (SWA) makes sleep regulation more dynamic and provides more room for the internalization of external influences during sleep.

  6. Low cerebrospinal fluid hypocretin (Orexin) and altered energy homeostasis in human narcolepsy.

    PubMed

    Nishino, S; Ripley, B; Overeem, S; Nevsimalova, S; Lammers, G J; Vankova, J; Okun, M; Rogers, W; Brooks, S; Mignot, E

    2001-09-01

    Hypocretins (orexins) are hypothalamic neuropeptides involved in sleep and energy homeostasis. Hypocretin mutations produce narcolepsy in animal models. In humans, narcolepsy is rarely due to hypocretin mutations, but this system is deficient in the cerebrospinal fluid (CSF) and brain of a small number of patients. A recent study also indicates increased body mass index (BMI) in narcolepsy. The sensitivity of low CSF hypocretin was examined in 38 successive narcolepsy-cataplexy cases [36 human leukocyte antigen (HLA)-DQB1*0602-positive] and 34 matched controls (15 controls and 19 neurological patients). BMI and CSF leptin levels were also measured. Hypocretin-1 was measurable (169 to 376 pg/ml) in all controls. Levels were unaffected by freezing/thawing or prolonged storage and did not display any concentration gradient. Hypocretin-1 was dramatically decreased (<100 pg/ml) in 32 of 38 patients (all HLA-positive). Four patients had normal levels (2 HLA-negative). Two HLA-positive patients had high levels (609 and 637 pg/ml). CSF leptin and adjusted BMI were significantly higher in patients versus controls. We conclude that the hypocretin ligand is deficient in most cases of human narcolepsy, providing possible diagnostic applications. Increased BMI and leptin indicate altered energy homeostasis. Sleep and energy metabolism are likely to be functionally connected through the hypocretin system.

  7. Altered sleep composition after traumatic brain injury does not affect declarative sleep-dependent memory consolidation.

    PubMed

    Mantua, Janna; Mahan, Keenan M; Henry, Owen S; Spencer, Rebecca M C

    2015-01-01

    Individuals with a history of traumatic brain injury (TBI) often report sleep disturbances, which may be caused by changes in sleep architecture or reduced sleep quality (greater time awake after sleep onset, poorer sleep efficiency, and sleep stage proportion alterations). Sleep is beneficial for memory formation, and herein we examine whether altered sleep physiology following TBI has deleterious effects on sleep-dependent declarative memory consolidation. Participants learned a list of word pairs in the morning or evening, and recall was assessed 12-h later, following an interval awake or with overnight sleep. Young adult participants (18-22 years) were assigned to one of four experimental groups: TBI Sleep (n = 14), TBI Wake (n = 12), non-TBI Sleep (n = 15), non-TBI Wake (n = 15). Each TBI participant was >1 year post-injury. Sleep physiology was measured with polysomnography. Memory consolidation was assessed by comparing change in word-pair recall over 12-h intersession intervals. The TBI group spent a significantly greater proportion of the night in SWS than the non-TBI group at the expense of NREM1. The TBI group also had marginally lower EEG delta power during SWS in the central region. Intersession changes in recall were greater for intervals with sleep than without sleep in both groups. However, despite abnormal sleep stage proportions for individuals with a TBI history, there was no difference in the intersession change in recall following sleep for the TBI and non-TBI groups. In both Sleep groups combined, there was a positive correlation between Intersession Change and the proportion of the night in NREM2 + SWS. Overall, sleep composition is altered following TBI but such deficits do not yield insufficiencies in sleep-dependent memory consolidation.

  8. Altered iron homeostasis involvement in arsenite-mediated cell transformation

    PubMed Central

    Wu, Jing; Eckard, Jonathan; Chen, Haobin; Costa, Max; Frenkel, Krystyna; Huang, Xi

    2010-01-01

    Chronic exposure to low doses of arsenite causes transformation of human osteogenic sarcoma (HOS) cells. Although oxidative stress is considered important in arsenite-induced cell transformation, the molecular and cellular mechanisms by which arsenite transforms human cells are still unknown. In the present study, we investigated whether altered iron homeostasis, known to affect cellular oxidative stress, can contribute to the arsenite-mediated cell transformation. Using arsenite-induced HOS cell transformation as a model, it was found that total iron levels are significantly higher in transformed HOS cells in comparison to parental control HOS cells. Under normal iron metabolism conditions, iron homeostasis is tightly controlled by inverse regulation of ferritin and transferrin receptor (TfR) through iron regulatory proteins (IRP). Increased iron levels in arsenite transformed cells should theoretically lead to higher ferritin and lower TfR in these cells than in controls. However, the results showed that both ferritin and TfR are decreased, apparently through two different mechanisms. A lower ferritin level in cytoplasm was due to the decreased mRNA in the arsenite-transformed HOS cells, while the decline in TfR was due to a lowered IRP-binding activity. By challenging cells with iron, it was further established that arsenite-transformed HOS cells are less responsive to iron treatment than control HOS cells, which allows accumulation of iron in the transformed cells, as exemplified by significantly lower ferritin induction. On the other hand, caffeic acid phenethyl ester (CAPE), an antioxidant previously shown to suppress As-mediated cell transformation, prevents As-mediated ferritin depletion. In conclusion, our results suggest that altered iron homeostasis contributes to arsenite-induced oxidative stress and, thus, may be involved in arsenite-mediated cell transformation. PMID:16443159

  9. The alteration of human sleep and circadian rhythms during spaceflight.

    PubMed

    Gundel, A; Polyakov, V V; Zulley, J

    1997-03-01

    Numerous anecdotes in the past suggest the concept that sleep disturbances in astronauts occur more frequently during spaceflight than on ground. Such disturbances may be caused in part by exogenous factors, but also an altered physiological state under microgravity may add to reducing sleep quality in a spacecraft. The present investigation aims at a better understanding of possible sleep disturbances under microgravity. For the first time, experiments were conducted in which sleep and circadian regulation could be simultaneously assessed in space. Four astronauts took part in this study aboard the Russian MIR station. Sleep was recorded polygraphically on tape together with body temperature. For a comparison, the same parameters were measured during baseline periods preceding the flights. The circadian phase of body temperature was found to be delayed by about 2 h in space compared with baseline data. A free-run was not observed during the first 30 d in space. Sleep was shorter and more disturbed than on earth. In addition, the structure of sleep was significantly altered. In space, the latency to the first REM episode was shorter, and slow-wave sleep was redistributed from the first to the second sleep cycle. Several mechanisms may be responsible for these alterations in sleep regulation and circadian phase. Most likely, altered circadian zeitgebers on MIR and a deficiency in the process S of Borbély's sleep model cause the observed findings. The change in process S may be related to changes in physical activity as a result of weightlessness.

  10. Update of sleep alterations in depression

    PubMed Central

    Medina, Andrés Barrera; Lechuga, DeboraYoaly Arana; Escandón, Oscar Sánchez; Moctezuma, Javier Velázquez

    2014-01-01

    Sleep disturbances in depression are up to 70%. Patients frequently have difficulty in falling asleep, frequent awakenings during the night and non-restorative sleep. Sleep abnormalities in depression are mainly characterized by increased rapid eye movement (REM) sleep and reduced slow wave sleep. Among the mechanisms of sleep disturbances in depression are hyperactivation of the hypothalamic-pituitary-adrenal axis, CLOCK gene polymorphism and primary sleep disorders. The habenula is a structure regulating the activities of monoaminergic neurons in the brain. The hyperactivation of the habenula has also been implicated, together with sleep disturbances, in depression. The presence of depression in primary sleep disorders is common. Sleep disturbances treatment include pharmacotherapy or Cognitive Behavioral Therapy. PMID:26483922

  11. Altered sleep-wake cycles and physical performance in athletes.

    PubMed

    Reilly, Thomas; Edwards, Ben

    2007-02-28

    Sleep-waking cycles are fundamental in human circadian rhythms and their disruption can have consequences for behaviour and performance. Such disturbances occur due to domestic or occupational schedules that do not permit normal sleep quotas, rapid travel across multiple meridians and extreme athletic and recreational endeavours where sleep is restricted or totally deprived. There are methodological issues in quantifying the physiological and performance consequences of alterations in the sleep-wake cycle if the effects on circadian rhythms are to be separated from the fatigue process. Individual requirements for sleep show large variations but chronic reduction in sleep can lead to immuno-suppression. There are still unanswered questions about the sleep needs of athletes, the role of 'power naps' and the potential for exercise in improving the quality of sleep.

  12. Osteopontin Deficiency Alters Biliary Homeostasis and Protects against Gallstone Formation

    PubMed Central

    Lin, Jing; Shao, Wei-qing; Chen, Zong-you; Zhu, Wen-wei; Lu, Lu; Cai, Duan; Qin, Lun-xiu; Jia, Hu-liang; Lu, Ming; Chen, Jin-hong

    2016-01-01

    The precipitation of excess biliary cholesterol as solid crystals is a prerequisite for cholesterol gallstone formation, which occurs due to disturbed biliary homeostasis. Biliary homeostasis is regulated by an elaborate network of genes in hepatocytes. If unmanaged, the cholesterol crystals will aggregate, fuse and form gallstones. We have previously observed that the levels of osteopontin (OPN) in bile and gallbladder were reduced in gallstone patients. However, the role and mechanism for hepatic OPN in cholesterol gallstone formation is undetermined. In this study, we found that the expression of hepatic OPN was increased in gallstone patients compared with gallstone-free counterparts. Then, we observed that OPN-deficient mice were less vulnerable to cholesterol gallstone formation than wild type mice. Further mechanistic studies revealed that this protective effect was associated with alterations of bile composition and was caused by the increased hepatic CYP7A1 expression and the reduced expression of hepatic SHP, ATP8B1, SR-B1 and SREBP-2. Finally, the correlations between the expression of hepatic OPN and the expression of these hepatic genes were validated in gallstone patients. Taken together, our findings reveal that hepatic OPN contributes to cholesterol gallstone formation by regulating biliary metabolism and might be developed as a therapeutic target for gallstone treatments. PMID:27484115

  13. The temporal structure of behaviour and sleep homeostasis.

    PubMed

    Vyazovskiy, Vladyslav V; Tobler, Irene

    2012-01-01

    The amount and architecture of vigilance states are governed by two distinct processes, which occur at different time scales. The first, a slow one, is related to a wake/sleep dependent homeostatic Process S, which occurs on a time scale of hours, and is reflected in the dynamics of NREM sleep EEG slow-wave activity. The second, a fast one, is manifested in a regular alternation of two sleep states--NREM and REM sleep, which occur, in rodents, on a time scale of ~5-10 minutes. Neither the mechanisms underlying the time constants of these two processes--the slow one and the fast one, nor their functional significance are understood. Notably, both processes are primarily apparent during sleep, while their potential manifestation during wakefulness is obscured by ongoing behaviour. Here, we find, in mice provided with running wheels, that the two sleep processes become clearly apparent also during waking at the level of behavior and brain activity. Specifically, the slow process was manifested in the total duration of waking periods starting from dark onset, while the fast process was apparent in a regular occurrence of running bouts during the waking periods. The dynamics of both processes were stable within individual animals, but showed large interindividual variability. Importantly, the two processes were not independent: the periodic structure of waking behaviour (fast process) appeared to be a strong predictor of the capacity to sustain continuous wakefulness (slow process). The data indicate that the temporal organization of vigilance states on both the fast and the slow time scales may arise from a common neurophysiologic mechanism.

  14. Bright morning light advances the human circadian system without affecting NREM sleep homeostasis.

    PubMed

    Dijk, D J; Beersma, D G; Daan, S; Lewy, A J

    1989-01-01

    Eight male subjects were exposed to either bright light or dim light between 0600 and 0900 h for 3 consecutive days each. Relative to the dim light condition, the bright light treatment advanced the evening rise in plasma melatonin and the time of sleep termination (sleep onset was held constant) for an average approximately 1 h. The magnitude of the advance of the plasma melatonin rise was dependent on its phase in dim light. The reduction in sleep duration was at the expense of rapid-eye-movement (REM) sleep. Spectral analysis of the sleep electroencephalogram (EEG) revealed that the advance of the circadian pacemaker did not affect EEG power densities between 0.25 and 15.0 Hz during either non-REM or REM sleep. The data show that shifting the human circadian pacemaker by 1 h does not affect non-REM sleep homeostasis. These findings are in accordance with the predictions of the two-process model of sleep regulation.

  15. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss

    PubMed Central

    Halassa, Michael M.; Florian, Cedrick; Fellin, Tommaso; Munoz, James R.; Lee, So-Young; Abel, Ted; Haydon, Philip G.; Frank, Marcos G.

    2009-01-01

    Astrocytes modulate neuronal activity by releasing chemical transmitters via a process termed gliotransmission. The role of this process in the control of behavior is unknown. Since one outcome of SNARE-dependent gliotransmission is the regulation of extracellular adenosine and because adenosine promotes sleep, we genetically inhibited the release of gliotransmitters and asked if astrocytes play an unsuspected role in sleep regulation. Inhibiting gliotransmission attenuated the accumulation of sleep pressure, assessed by measuring the slow wave activity of the EEG during NREM sleep and prevented cognitive deficits associated with sleep loss. Since the sleep-suppressing effects of the A1 receptor antagonist CPT were prevented following inhibition of gliotransmission and because intracerebroventricular delivery of CPT to wildtype mice mimicked the transgenic phenotype we conclude that astrocytes modulate the accumulation of sleep pressure and its cognitive consequences through a pathway involving A1 receptors. PMID:19186164

  16. Hallucinations, sleep fragmentation, and altered dream phenomena in Parkinson's disease.

    PubMed

    Pappert, E J; Goetz, C G; Niederman, F G; Raman, R; Leurgans, S

    1999-01-01

    In a series of consecutively randomized outpatients who had Parkinson's disease (PD), we examined the association of three behaviors: sleep fragmentation, altered dream phenomena, and hallucinations/illusions. Using a log-linear model methodology, we tested the independence of each behavior. Sixty-two percent of the subjects had sleep fragmentation, 48% had altered dream phenomena, and 26% had hallucinations/illusions. Eighty-two percent of the patients with hallucinations/illusions experienced some form of sleep disorder. The three phenomena were not independent. The interaction between sleep fragmentation and altered dream phenomena was strongly statistically significant. Likewise, a significant interaction existed between altered dream phenomena and hallucinations/illusions. No interaction occurred between sleep fragmentation and hallucinations/illusions. Sleep fragmentation, altered dream phenomena, and hallucinations/illusions in PD should be considered distinct but often overlapping behaviors. The close association between altered dream phenomena and hallucinations suggests that therapeutic interventions aimed at diminishing dream-related activities may have a specific positive impact on hallucinatory behavior.

  17. Relevance of the metabotropic glutamate receptor (mGluR5) in the regulation of NREM-REM sleep cycle and homeostasis: evidence from mGluR5 (-/-) mice.

    PubMed

    Ahnaou, A; Raeymaekers, L; Steckler, T; Drinkenbrug, W H I M

    2015-04-01

    Sleep is a homeostatically regulated behavior and sleep loss evokes a proportional increase in sleep time and delta slow wave activity. Glutamate and pharmacological modulation of the metabotropic glutamate receptors (mGluR) signaling have been implicated in the organization of vigilance states. Here, the role of the mGluR5 on homeostatic regulation of sleep-wake cycle and electroencephalographic (EEG) activity was examined in mGluR5 (-/-) mice. We first characterized the sleep-wake EEG phenotype in mGluR5 (-/-) and wild-type (WT) littermates mice by continuous recording for 72h of EEG, body temperature (BT) and locomotor activity (LMA). Next, we investigated the influence of sleep deprivation on the recovery sleep and EEG slow wave activity (1-4Hz) during NREM sleep to assess whether mGluR5 deletion affects the sleep homeostasis process. Like the control animals, mGluR5 (-/-) mice exhibited a clear-cut circadian sleep-wake architecture, however they showed reduced REM sleep time during the light phase with shorter REM sleep bouts and reduced state transitions in the NREM sleep-REM sleep cycle during the first and last 24h of the spontaneous 72h recording period. In addition, mGluR5 (-/-) mice had decreased slow EEG delta power during NREM sleep and enhanced LMA associated with elevated BT during the dark phase. Moreover, mGluR5 (-/-) mice exhibited reduced slow wave activity and sleep drive after sleep deprivation, indicating altered sleep homeostatic processes. The findings strongly indicate that mGluR5 is involved in shaping the stability of NREM sleep-REM sleep state transitions, NREM slow wave activity and homeostatic response to sleep loss.

  18. Musculoskeletal Sensitization and Sleep: Chronic Muscle Pain Fragments Sleep of Mice without Altering Its Duration

    PubMed Central

    Sutton, Blair C.; Opp, Mark R.

    2014-01-01

    Study Objectives: Musculoskeletal pain in humans is often associated with poor sleep quality. We used a model in which mechanical hypersensitivity was induced by injection of acidified saline into muscle to study the impact of musculoskeletal sensitization on sleep of mice. Design: A one month pre-clinical study was designed to determine the impact of musculoskeletal sensitization on sleep of C57BL/6J mice. Methods: We instrumented mice with telemeters to record the electroencephalogram (EEG) and body temperature. We used an established model of musculoskeletal sensitization in which mechanical hypersensitivity was induced using two unilateral injections of acidified saline (pH 4.0). The injections were given into the gastrocnemius muscle and spaced five days apart. EEG and body temperature recordings started prior to injections (baseline) and continued for three weeks after musculoskeletal sensitization was induced by the second injection. Mechanical hypersensitivity was assessed using von Frey filaments at baseline (before any injections) and on days 1, 3, 7, 14, and 21 after the second injection. Results: Mice injected with acidified saline developed bilateral mechanical hypersensitivity at the hind paws as measured by von Frey testing and as compared to control mice and baseline data. Sleep during the light period was fragmented in experimental mice injected with acidified saline, and EEG spectra altered. Musculoskeletal sensitization did not alter the duration of time spent in wakefulness, non-rapid eye movement sleep, or rapid eye movement sleep. Conclusions: Musculoskeletal sensitization in this model results in a distinct sleep phenotype in which sleep is fragmented during the light period, but the overall duration of sleep is not changed. This study suggests the consequences of musculoskeletal pain include sleep disruption, an observation that has been made in the clinical literature but has yet to be studied using preclinical models. Citation: Sutton BC

  19. Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions.

    PubMed

    Carter, Matthew E; Adamantidis, Antoine; Ohtsu, Hiroshi; Deisseroth, Karl; de Lecea, Luis

    2009-09-02

    The hypocretins (Hcrts) (also called orexins) are two neuropeptides expressed in the lateral hypothalamus that play a crucial role in the stability of wakefulness. Previously, our laboratory demonstrated that in vivo photostimulation of Hcrt neurons genetically targeted with ChR2, a light-activated cation channel, was sufficient to increase the probability of an awakening event during both slow-wave sleep and rapid eye movement sleep. In the current study, we ask whether Hcrt-mediated sleep-to-wake transitions are affected by light/dark period and sleep pressure. We found that stimulation of Hcrt neurons increased the probability of an awakening event throughout the entire light/dark period but that this effect was diminished with sleep pressure induced by 2 or 4 h of sleep deprivation. Interestingly, photostimulation of Hcrt neurons was still sufficient to increase activity assessed by c-Fos expression in Hcrt neurons after sleep deprivation, although this stimulation did not cause an increase in transitions to wakefulness. In addition, we found that photostimulation of Hcrt neurons increases neural activity assessed by c-Fos expression in the downstream arousal-promoting locus ceruleus and tuberomammilary nucleus but not after 2 h of sleep deprivation. Finally, stimulation of Hcrt neurons was still sufficient to increase the probability of an awakening event in histidine decarboxylase-deficient knock-out animals. Collectively, these results suggest that the Hcrt system promotes wakefulness throughout the light/dark period by activating multiple downstream targets, which themselves are inhibited with increased sleep pressure.

  20. Effects of light on cognitive brain responses depend on circadian phase and sleep homeostasis.

    PubMed

    Vandewalle, Gilles; Archer, Simon N; Wuillaume, Catherine; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Dijk, Derk-Jan; Maquet, Pierre

    2011-06-01

    Light is a powerful modulator of cognition through its long-term effects on circadian rhythmicity and direct effects on brain function as identified by neuroimaging. How the direct impact of light on brain function varies with wavelength of light, circadian phase, and sleep homeostasis, and how this differs between individuals, is a largely unexplored area. Using functional MRI, we compared the effects of 1 minute of low-intensity blue (473 nm) and green light (527 nm) exposures on brain responses to an auditory working memory task while varying circadian phase and status of the sleep homeostat. Data were collected in 27 subjects genotyped for the PER3 VNTR (12 PER3(5/5) and 15 PER3(4/4) ) in whom it was previously shown that the brain responses to this task, when conducted in darkness, depend on circadian phase, sleep homeostasis, and genotype. In the morning after sleep, blue light, relative to green light, increased brain responses primarily in the ventrolateral and dorsolateral prefrontal cortex and in the intraparietal sulcus, but only in PER3(4/4) individuals. By contrast, in the morning after sleep loss, blue light increased brain responses in a left thalamofrontoparietal circuit to a larger extent than green light, and only so in PER3(5/5) individuals. In the evening wake maintenance zone following a normal waking day, no differential effect of 1 minute of blue versus green light was observed in either genotype. Comparison of the current results with the findings observed in darkness indicates that light acts as an activating agent particularly under those circumstances in which and in those individuals in whom brain function is jeopardized by an adverse circadian phase and high homeostatic sleep pressure.

  1. Disturbed dreaming and sleep quality: altered sleep architecture in subjects with frequent nightmares.

    PubMed

    Simor, Péter; Horváth, Klára; Gombos, Ferenc; Takács, Krisztina P; Bódizs, Róbert

    2012-12-01

    Nightmares are intense, emotionally negative mental experiences that usually occur during late-night sleep and result in abrupt awakenings. Questionnaire-based studies have shown that nightmares are related to impaired sleep quality; however, the polysomnographic profile of nightmare subjects has been only scarcely investigated. We investigated the sleep architecture of 17 individuals with frequent nightmares and 23 control subjects based on polysomnographic recordings of a second night spent in the laboratory after an adaptation night. Nightmare subjects in comparison with control subjects were characterized by impaired sleep architecture, as reflected by reduced sleep efficiency, increased wakefulness, a reduced amount of slow wave sleep, and increased nocturnal awakenings, especially from Stage 2 sleep. While these differences were independent of the effects of waking psychopathology, nightmare subjects also exhibited longer durations of REM sleep that was mediated by heightened negative affect. Our results support that nightmares are related to altered sleep architecture, showing impaired sleep continuity and emotion-related increase in REM propensity.

  2. Impact of sleep and sleep loss on glucose homeostasis and appetite regulation

    PubMed Central

    Knutson, Kristen L

    2007-01-01

    Synopsis Over the past 30 years there has been an increase in the prevalence of obesity and diabetes, both of which can have serious consequences for longevity and quality of life. Sleep durations may have also decreased over this time period. This chapter reviews laboratory and epidemiologic evidence for an association between sleep loss and impairments in glucose metabolism and appetite regulation, which could increase the risk of diabetes or weight gain. PMID:18516218

  3. Increased Automaticity and Altered Temporal Preparation Following Sleep Deprivation

    PubMed Central

    Kong, Danyang; Asplund, Christopher L.; Ling, Aiqing; Chee, Michael W.L.

    2015-01-01

    participants also rely more on automatic processes. Citation: Kong D, Asplund CL, Ling A, Chee MWL. Increased automaticity and altered temporal preparation following sleep deprivation. SLEEP 2015;38(8):1219–1227. PMID:25845689

  4. Influence of serial electrical stimulations of perifornical and posterior hypothalamic orexin-containing neurons on regulation of sleep homeostasis and sleep-wakefulness cycle recovery from experimental comatose state and anesthesia-induced deep sleep.

    PubMed

    Chijavadze, E; Chkhartishvili, E; Babilodze, M; Maglakelidze, N; Nachkebia, N

    2013-11-01

    The work was aimed for the ascertainment of following question - whether Orexin-containing neurons of dorsal and lateral hypothalamic, and brain Orexinergic system in general, are those cellular targets which can speed up recovery of disturbed sleep homeostasis and accelerate restoration of sleep-wakefulness cycle phases during some pathological conditions - experimental comatose state and/or deep anesthesia-induced sleep. Study was carried out on white rats. Modeling of experimental comatose state was made by midbrain cytotoxic lesions at intra-collicular level.Animals were under artificial respiration and special care. Different doses of Sodium Ethaminal were used for deep anesthesia. 30 min after comatose state and/or deep anesthesia induced sleep serial electrical stimulations of posterior and/or perifornical hypothalamus were started. Stimulation period lasted for 1 hour with the 5 min intervals between subsequent stimulations applied by turn to the left and right side hypothalamic parts.EEG registration of cortical and hippocampal electrical activity was started immediately after experimental comatose state and deep anesthesia induced sleep and continued continuously during 72 hour. According to obtained new evidences, serial electrical stimulations of posterior and perifornical hypothalamic Orexin-containing neurons significantly accelerate recovery of sleep homeostasis, disturbed because of comatose state and/or deep anesthesia induced sleep. Speed up recovery of sleep homeostasis was manifested in acceleration of coming out from comatose state and deep anesthesia induced sleep and significant early restoration of sleep-wakefulness cycle behavioral states.

  5. Sleep deprivation alters choice strategy without altering uncertainty or loss aversion preferences

    PubMed Central

    Mullette-Gillman, O'Dhaniel A.; Kurnianingsih, Yoanna A.; Liu, Jean C. J.

    2015-01-01

    Sleep deprivation alters decision making; however, it is unclear what specific cognitive processes are modified to drive altered choices. In this manuscript, we examined how one night of total sleep deprivation (TSD) alters economic decision making. We specifically examined changes in uncertainty preferences dissociably from changes in the strategy with which participants engage with presented choice information. With high test-retest reliability, we show that TSD does not alter uncertainty preferences or loss aversion. Rather, TSD alters the information the participants rely upon to make their choices. Utilizing a choice strategy metric which contrasts the influence of maximizing and satisficing information on choice behavior, we find that TSD alters the relative reliance on maximizing information and satisficing information, in the gains domain. This alteration is the result of participants both decreasing their reliance on cognitively-complex maximizing information and a concomitant increase in the use of readily-available satisficing information. TSD did not result in a decrease in overall information use in either domain. These results show that sleep deprivation alters decision making by altering the informational strategies that participants employ, without altering their preferences. PMID:26500479

  6. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas.

    PubMed

    Soeda, Jumpei; Mouralidarane, Angelina; Cordero, Paul; Li, Jiawei; Nguyen, Vi; Carter, Rebeca; Kapur, Sabrina R; Pombo, Joaquim; Poston, Lucilla; Taylor, Paul D; Vinciguerra, Manlio; Oben, Jude A

    2016-06-01

    The prevalence of non-alcoholic fatty pancreas disease (NAFPD) is increasing in parallel with obesity rates. Stress-related alterations in endoplasmic reticulum (ER), such as the unfolded protein response (UPR), are associated with obesity. The aim of this study was to investigate ER imbalance in the pancreas of a mice model of adult and perinatal diet-induced obesity. Twenty female C57BL/6J mice were assigned to control (Con) or obesogenic (Ob) diets prior to and during pregnancy and lactation. Their offspring were weaned onto Con or Ob diets up to 6 months post-partum. Then, after sacrifice, plasma biochemical analyses, gene expression, and protein concentrations were measured in pancreata. Offspring of Ob-fed mice had significantly increased body weight (p < 0.001) and plasma leptin (p < 0.001) and decreased insulin (p < 0.01) levels. Maternal obesogenic diet decreased the total and phosphorylated Eif2α and increased spliced X-box binding protein 1 (XBP1). Pancreatic gene expression of downstream regulators of UPR (EDEM, homocysteine-responsive endoplasmic reticulum-resident (HERP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP)) and autophagy-related proteins (LC3BI/LC3BII) were differently disrupted by obesogenic feeding in both mothers and offspring (from p < 0.1 to p < 0.001). Maternal obesity and Ob feeding in their offspring alter UPR in NAFPD, with involvement of proapoptotic and autophagy-related markers. Upstream and downstream regulators of PERK, IRE1α, and ATF6 pathways were affected differently following the obesogenic insults.

  7. TRICLOSAN AND ENDOCRINE DISRUPTION: EVIDENCE FOR ALTERATIONS IN THYROID HORMONE HOMEOSTASIS.

    EPA Science Inventory

    Impact Statement: Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a chlorinated phenolic antibacterial compound found as an active ingredient in many personal care and household products. Recent studies suggest that triclosan may alter thyroid hormone (TH) homeostasis via ...

  8. ABILITY OF THE MALE RAT PUBERTAL ASSAY TO DETECT ENVIRONMENTAL CHEMICALS THAT ALTER THYROID HORMONE HOMEOSTASIS

    EPA Science Inventory

    ABILITY OF THE MALE RAT PUBERTAL ASSAY TO DETECT ENVIRONMENTAL CHEMICALS THAT ALTER THYROID HORMONE HOMEOSTASIS

    Stoker, Tammy E.1; Laws, Susan C.1; Ferrell, Janet M.1; Cooper, Ralph L.1.

    Endocrinology Branch, RTD, NHEERL, ORD, U.S. EPA, RTP, NC, 27711.

    The...

  9. Pulmonary Ozone Exposure Alters Essential Metabolic Pathways involved in Glucose Homeostasis in the Liver

    EPA Science Inventory

    Pulmonary Ozone Exposure Alters Essential Metabolic Pathways involved in Glucose Homeostasis in the Liver D.B. Johnson, 1 W.O. Ward, 2 V.L. Bass, 2 M.C.J. Schladweiler, 2A.D. Ledbetter, 2 D. Andrews, and U.P. Kodavanti 2 1 Curriculum in Toxicology, UNC School of Medicine, Cha...

  10. Altered Lipid Homeostasis in Sertoli Cells Stressed by Mild Hyperthermia

    PubMed Central

    Vallés, Ana S.; Aveldaño, Marta I.; Furland, Natalia E.

    2014-01-01

    Spermatogenesis is known to be vulnerable to temperature. Exposures of rat testis to moderate hyperthermia result in loss of germ cells with survival of Sertoli cells (SC). Because SC provide structural and metabolic support to germ cells, our aim was to test the hypothesis that these exposures affect SC functions, thus contributing to germ cell damage. In vivo, regularly repeated exposures (one of 15 min per day, once a day during 5 days) of rat testes to 43°C led to accumulation of neutral lipids. This SC-specific lipid function took 1–2 weeks after the last of these exposures to be maximal. In cultured SC, similar daily exposures for 15 min to 43°C resulted in significant increase in triacylglycerol levels and accumulation of lipid droplets. After incubations with [3H]arachidonate, the labeling of cardiolipin decreased more than that of other lipid classes. Another specifically mitochondrial lipid metabolic function, fatty acid oxidation, also declined. These lipid changes suggested that temperature affects SC mitochondrial physiology, which was confirmed by significantly increased degrees of membrane depolarization and ROS production. This concurred with reduced expression of two SC-specific proteins, transferrin, and Wilms' Tumor 1 protein, markers of SC secretion and differentiation functions, respectively, and with an intense SC cytoskeletal perturbation, evident by loss of microtubule network (α-tubulin) and microfilament (f-actin) organization. Albeit temporary and potentially reversible, hyperthermia-induced SC structural and metabolic alterations may be long-lasting and/or extensive enough to respond for the decreased survival of the germ cells they normally foster. PMID:24690895

  11. Subchronic arsenic exposure through drinking water alters vascular redox homeostasis and affects physical health in rats.

    PubMed

    Waghe, Prashantkumar; Sarath, Thengumpallil Sasindran; Gupta, Priyanka; Kutty, Harikumar Sankaran; Kandasamy, Kannan; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-12-01

    We evaluated whether arsenic can alter vascular redox homeostasis and modulate antioxidant status, taking rat thoracic aorta as a model vascular tissue. In addition, we evaluated whether the altered vascular biochemical homeostasis could be associated with alterations in the physical indicators of toxicity development. Rats were exposed to arsenic as 25, 50, and 100 ppm of sodium arsenite through drinking water for 90 consecutive days. Body weight, food intake, and water consumption were recorded weekly. On the 91st day, rats were sacrificed; vital organs and thoracic aorta were collected. Lipid peroxidation, reactive oxygen species generation, and antioxidants were assessed in the thoracic aorta. Arsenic increased aortic lipid peroxidation and hydrogen peroxide generation while decreased reduced glutathione content in a dose-dependent manner. The activities of the enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were decreased. Further, arsenic at 100 ppm decreased feed intake, water consumption, and body weight from the 11th week onward. At this concentration, arsenic increased the relative weights of the liver and kidney. The results suggest that arsenic causes dose-dependent oxidative stress, reduction in antioxidative defense systems, and body weight loss with alteration in hepato-renal organosomatic indices. Overall, subchronic arsenic exposure through drinking water causes alteration in vascular redox homeostasis and at high concentration affects physical health.

  12. Evidence that activation of nuclear peroxisome proliferator-activated receptor alpha (PPARα) modulates sleep homeostasis in rats.

    PubMed

    Murillo-Rodríguez, Eric; Guzmán, Khalil; Arankowsky-Sandoval, Gloria; Salas-Crisóstomo, Mireille; Jiménez-Moreno, Ramsés; Arias-Carrión, Oscar

    2016-10-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a member of the nuclear receptor superfamily that has been suggested as a modulator of several physiological functions. The PPARα recognizes as an endogenous ligand the anorexic lipid mediator oleoylethanolamide (OEA) which displays wake-inducing properties. Despite that recent evidence indicates that activation of PPARα by synthetic agonists such as Wy14643 enhances waking as well as the extracellular contents of wake-related neurotransmitters, the role of PPARα in sleep recovery after prolonged waking has not been fully described. Thus, the aim of this study was to characterize if PPARα regulates sleep rebound after total sleep deprivation (TSD). We report that after 6h of TSD activation of PPARα by pharmacological systemic administration of OEA (10, 20 or 30mg/Kg, i.p.) promoted alertness by blocking the sleep rebound after TSD. Besides, wake-linked compounds such as dopamine, norepinephrine, serotonin, or adenosine collected from nucleus accumbens were enhanced after TSD in OEA-treated animals. These sleep and neurochemical results were mimicked after injection of PPARα agonist Wy14643 (10, 20, 30mg/Kg, i.p.). However, similar findings from the sham of vehicle groups were observed if PPARα antagonist MK-886 was administered to rats (10, 20, 30mg/Kg, i.p.). Our results strengthened the hypothesis that PPARα might modulate sleep and neurochemical homeostasis after sleep deprivation.

  13. Revealing the role of the endocannabinoid system modulators, SR141716A, URB597 and VDM-11, in sleep homeostasis.

    PubMed

    Murillo-Rodríguez, Eric; Machado, Sergio; Rocha, Nuno Barbosa; Budde, Henning; Yuan, Ti-Fei; Arias-Carrión, Oscar

    2016-12-17

    The endocannabinoid system comprises receptors (CB1 and CB2 cannabinoid receptors), enzymes (Fatty Acid Amide Hydrolase [FAAH], which synthesizes the endocannabinoid anandamide), as well as the anandamide membrane transporter (AMT). Importantly, previous experiments have demonstrated that the endocannabinoid system modulates multiple neurobiological functions, including sleep. For instance, SR141716A (the CB1 cannabinoid receptor antagonist) as well as URB597 (the FAAH inhibitor) increase waking in rats whereas VDM-11 (the blocker of the AMT) enhances sleep in rodents. However, no further evidence is available regarding the neurobiological role of the endocannabinoid system in the homeostatic control of sleep. Therefore, the aim of the current experiment was to test if SR141716A, URB597 or VDM-11 would modulate the sleep rebound after sleep deprivation. Thus, these compounds were systemically injected (5, 10, 20mg/kg; ip; separately each one) into rats after prolonged waking. We found that SR141716A and URB597 blocked in dose-dependent fashion the sleep rebound whereas animals treated with VDM-11 displayed sleep rebound during the recovery period. Complementary, injection after sleep deprivation of either SR141716A or URB597 enhanced dose-dependently the extracellular levels of dopamine (DA), norepinephrine (NE), epinephrine (EP), serotonin (5-HT), as well as adenosine (AD) while VDM-11 caused a decline in contents of these molecules. These findings suggest that SR141716A or URB597 behave as a potent stimulants since they suppressed the sleep recovery period after prolonged waking. It can be concluded that elements of the endocannabinoid system, such as the CB1 cannabinoid receptor, FAAH and AMT, modulate the sleep homeostasis after prolonged waking.

  14. Altered Resting-State Brain Activity in Obstructive Sleep Apnea

    PubMed Central

    Zhang, Quan; Wang, Dawei; Qin, Wen; Li, Qiong; Chen, Baoyuan; Zhang, Yunting; Yu, Chunshui

    2013-01-01

    Study Objectives: Structural and functional brain changes may contribute to neural dysfunction in patients with obstructive sleep apnea (OSA). However, the effect of OSA on resting-state brain activity has not been established. The objective of this study was to investigate alterations in resting-state functional connectivity (rsFC) of the common brain networks in patients with OSA and their relationships with changes in gray matter volume (GMV) in the corresponding brain regions. Designs: Resting-state functional and structural MRI data were acquired from patients with OSA and healthy controls. Seven brain networks were identified by independent component analysis. The rsFC in each network was compared between groups and the GMV of brain regions with significant differences in rsFC was also compared. Setting: University hospital. Patients and Participants: Twenty-four male patients with untreated OSA and 21 matched healthy controls. Interventions: N/A. Measurements and Results: OSA specifically affected the cognitive and sensorimotor-related brain networks but not the visual and auditory networks. The medial prefrontal cortex and left dorsolateral prefrontal cortex (DLPFC) showed decreased rsFC and GMV in patients with OSA, suggesting structural and functional deficits. The right DLPFC and left precentral gyrus showed decreased rsFC and unchanged GMV, suggesting a functional deficit. The right posterior cingulate cortex demonstrated increased rsFC and unchanged GMV, suggesting functional compensation. In patients with OSA, the rsFC of the right DLPFC was negatively correlated with the apnea-hypopnea index. Conclusions: OSA specifically affects resting-state functional connectivity in cognitive and sensorimotor-related brain networks, which may be related to the impaired cognitive and motor functions in these patients. Citation: Zhang Q; Wang D; Qin W; Li Q; Chen B; Zhang Y; Yu C. Altered resting-state brain activity in obstructive sleep apnea. SLEEP 2013

  15. Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly

    PubMed Central

    Sawamura, Naoya; Ando, Tetsuya; Maruyama, Yasushi; Fujimuro, Masahiro; Mochizuki, Hiroaki; Honjo, Ken; Shimoda, Masami; Toda, Hirofumi; Sawamura-Yamamoto, Takako; Makuch, Lauren A; Hayashi, Akiko; Ishizuka, Koko; Cascella, Nicola G.; Kamiya, Atsushi; Ishida, Norio; Tomoda, Toshifumi; Hai, Tsonwin; Furukubo-Tokunaga, Katsuo; Sawa, Akira

    2009-01-01

    Disrupted-In-Schizophrenia-1 (DISC1) is one of major susceptibility factors for a wide range of mental illnesses, including schizophrenia, bipolar disorder, major depression, and autism spectrum conditions. DISC1 is located in several subcellular domains, such as the centrosome and the nucleus, and interacts with various proteins, including NudE-like (NUDEL/NDEL1) and activating transcription factor 4 (ATF4)/CREB2. Nevertheless, a role for DISC1 in vivo remains to be elucidated. Therefore, we have generated a Drosophila model for examining normal functions of DISC1 in living organisms. DISC1 transgenic flies with preferential accumulation of exogenous human DISC1 in the nucleus display disturbance in sleep homeostasis, which has been reportedly associated with CREB signaling/CRE-mediated gene transcription. Thus, in mammalian cells, we characterized nuclear DISC1, and identified a subset of nuclear DISC1 that co-localizes with the promyelocytic leukemia (PML) bodies, a nuclear compartment for gene transcription. Furthermore, we identified three functional cis-elements that regulate the nuclear localization of DISC1. We also report that DISC1 interacts with ATF4/CREB2 and a co-repressor N-CoR, modulating CRE-mediated gene transcription. PMID:18762802

  16. Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly.

    PubMed

    Sawamura, N; Ando, T; Maruyama, Y; Fujimuro, M; Mochizuki, H; Honjo, K; Shimoda, M; Toda, H; Sawamura-Yamamoto, T; Makuch, L A; Hayashi, A; Ishizuka, K; Cascella, N G; Kamiya, A; Ishida, N; Tomoda, T; Hai, T; Furukubo-Tokunaga, K; Sawa, A

    2008-12-01

    Disrupted-in-schizophrenia-1 (DISC1) is one of major susceptibility factors for a wide range of mental illnesses, including schizophrenia, bipolar disorder, major depression and autism spectrum conditions. DISC1 is located in several subcellular domains, such as the centrosome and the nucleus, and interacts with various proteins, including NudE-like (NUDEL/NDEL1) and activating transcription factor 4 (ATF4)/CREB2. Nevertheless, a role for DISC1 in vivo remains to be elucidated. Therefore, we have generated a Drosophila model for examining normal functions of DISC1 in living organisms. DISC1 transgenic flies with preferential accumulation of exogenous human DISC1 in the nucleus display disturbance in sleep homeostasis, which has been reportedly associated with CREB signaling/CRE-mediated gene transcription. Thus, in mammalian cells, we characterized nuclear DISC1, and identified a subset of nuclear DISC1 that colocalizes with the promyelocytic leukemia (PML) bodies, a nuclear compartment for gene transcription. Furthermore, we identified three functional cis-elements that regulate the nuclear localization of DISC1. We also report that DISC1 interacts with ATF4/CREB2 and a corepressor N-CoR, modulating CRE-mediated gene transcription.

  17. Genetic findings in schizophrenia patients related to alterations in the intracellular Ca-homeostasis.

    PubMed

    Giegling, Ina; Genius, Just; Benninghoff, Jens; Rujescu, Dan

    2010-12-01

    There is a relatively high genetic heritability of schizophrenia as shown by family, twin and adoption studies. A large number of hypotheses on the causes of schizophrenia occurred over time. In this review we focus on genetic findings related to potential alterations of intracellular Ca-homeostasis in association with schizophrenia. First, we provide evidence for the NMDA/glutamatergic theory of schizophrenia including calcium processes. We mainly focus on genes including: DAO (D-amino acid oxidase), DAOA (D-amino acid oxidase activator), DTNBP1 (Dysbindin 1, dystrobrevin-binding protein 1), NRG1 (Neuregulin 1), ERBB4 (v-erb-a erythroblastic leukemia viral oncogene homolog 4, avian), NOS1 (nitric oxide synthase 1, neuronal) and NRGN (Neurogranin). Furthermore, a gene coding for a calcium channel subunit (CACNA1C: calcium channel, voltage-dependent, L type, alpha 1C subunit) is discussed in the light of schizophrenia whereas genetic findings related to alterations in the intracellular Ca-homeostasis associated specifically with dopaminergic and serotonergic neurotransmission in schizophrenia are not herein closer reviewed. Taken together there is converging evidence for the contribution of genes potentially related to alterations in intracellular Ca-homeostasis to the risk of schizophrenia. Replications and functional studies will hopefully provide further insight into these genetic variants and the underlying processes.

  18. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress

    NASA Technical Reports Server (NTRS)

    Meerlo, P.; Koehl, M.; van der Borght, K.; Turek, F. W.

    2002-01-01

    Chronic sleep restriction is an increasing problem in many countries and may have many, as yet unknown, consequences for health and well being. Studies in both humans and rats suggest that sleep deprivation may activate the hypothalamic-pituitary-adrenal (HPA) axis, one of the main neuroendocrine stress systems. However, few attempts have been made to examine how sleep loss affects the HPA axis response to subsequent stressors. Furthermore, most studies applied short-lasting total sleep deprivation and not restriction of sleep over a longer period of time, as often occurs in human society. Using the rat as our model species, we investigated: (i) the HPA axis activity during and after sleep deprivation and (ii) the effect of sleep loss on the subsequent HPA response to a novel stressor. In one experiment, rats were subjected to 48 h of sleep deprivation by placing them in slowly rotating wheels. Control rats were placed in nonrotating wheels. In a second experiment, rats were subjected to an 8-day sleep restriction protocol allowing 4 h of sleep each day. To test the effects of sleep loss on subsequent stress reactivity, rats were subjected to a 30-min restraint stress. Blood samples were taken at several time points and analysed for adrenocorticotropic hormone (ACTH) and corticosterone. The results show that ACTH and corticosterone concentrations were elevated during sleep deprivation but returned to baseline within 4 h of recovery. After 1 day of sleep restriction, the ACTH and corticosterone response to restraint stress did not differ between control and sleep deprived rats. However, after 48 h of total sleep deprivation and after 8 days of restricted sleep, the ACTH response to restraint was significantly reduced whereas the corticosterone response was unaffected. These results show that sleep loss not only is a mild activator of the HPA axis itself, but also affects the subsequent response to stress. Alterations in HPA axis regulation may gradually appear under

  19. Impaired K+ Homeostasis and Altered Electrophysiological Properties of Post-Traumatic Hippocampal Glia

    PubMed Central

    D'Ambrosio, Raimondo; Maris, Donald O.; Grady, M. Sean; Winn, H. Richard; Janigro, Damir

    2014-01-01

    Traumatic brain injury (TBI) can be associated with memory impairment, cognitive deficits, or seizures, all of which can reflect altered hippocampal function. Whereas previous studies have focused on the involvement of neuronal loss in post-traumatic hippocampus, there has been relatively little understanding of changes in ionic homeostasis, failure of which can result in neuronal hyperexcitability and abnormal synchronization. Because glia play a crucial role in the homeostasis of the brain microenvironment, we investigated the effects of TBI on rat hippocampal glia. Using a fluid percussion injury (FPI) model and patch-clamp recordings from hippocampal slices, we have found impaired glial physiology 2 d after FPI. Electrophysiologically, we observed reduction in transient outward and inward K+ currents. To assess the functional consequences of these glial changes, field potentials and extracellular K+ activity were recorded in area CA3 during antidromic stimulation. An abnormal extracellular K+ accumulation was observed in the post-traumatic hippocampal slices, accompanied by the appearance of CA3 afterdischarges. After pharmacological blockade of excitatory synapses and of K+ inward currents, uninjured slices showed the same altered K+ accumulation in the absence of abnormal neuronal activity. We suggest that TBI causes loss of K+ conductance in hippocampal glia that results in the failure of glial K+ homeostasis, which in turn promotes abnormal neuronal function. These findings provide a new potential mechanistic link between traumatic brain injury and subsequent development of disorders such as memory loss, cognitive decline, seizures, and epilepsy. PMID:10479715

  20. Sleep

    MedlinePlus

    ... is REM sleep? What is the effect of sleep deprivation? What are sleep myths? What are sleep disorders? ... is REM sleep? What is the effect of sleep deprivation? What are sleep myths? What are sleep disorders? ...

  1. Sleep variability in adolescence is associated with altered brain development.

    PubMed

    Telzer, Eva H; Goldenberg, Diane; Fuligni, Andrew J; Lieberman, Matthew D; Gálvan, Adriana

    2015-08-01

    Despite the known importance of sleep for brain development, and the sharp increase in poor sleep during adolescence, we know relatively little about how sleep impacts the developing brain. We present the first longitudinal study to examine how sleep during adolescence is associated with white matter integrity. We find that greater variability in sleep duration one year prior to a DTI scan is associated with lower white matter integrity above and beyond the effects of sleep duration, and variability in bedtime, whereas sleep variability a few months prior to the scan is not associated with white matter integrity. Thus, variability in sleep duration during adolescence may have long-term impairments on the developing brain. White matter integrity should be increasing during adolescence, and so sleep variability is directly at odds with normative developmental trends.

  2. Heparanase Overexpression Reduces Hepcidin Expression, Affects Iron Homeostasis and Alters the Response to Inflammation

    PubMed Central

    Asperti, Michela; Stuemler, Tanja; Poli, Maura; Gryzik, Magdalena; Lifshitz, Lena; Meyron-Holtz, Esther G.; Vlodavsky, Israel

    2016-01-01

    Hepcidin is the key regulator of systemic iron availability that acts by controlling the degradation of the iron exporter ferroportin. It is expressed mainly in the liver and regulated by iron, inflammation, erythropoiesis and hypoxia. The various agents that control its expression act mainly via the BMP6/SMAD signaling pathway. Among them are exogenous heparins, which are strong hepcidin repressors with a mechanism of action not fully understood but that may involve the competition with the structurally similar endogenous Heparan Sulfates (HS). To verify this hypothesis, we analyzed how the overexpression of heparanase, the HS degrading enzyme, modified hepcidin expression and iron homeostasis in hepatic cell lines and in transgenic mice. The results showed that transient and stable overexpression of heparanase in HepG2 cells caused a reduction of hepcidin expression and of SMAD5 phosphorylation. Interestingly, the clones showed also altered level of TfR1 and ferritin, indices of a modified iron homeostasis. The heparanase transgenic mice showed a low level of liver hepcidin, an increase of serum and liver iron with a decrease in spleen iron content. The hepcidin expression remained surprisingly low even after treatment with the inflammatory LPS. The finding that modification of HS structure mediated by heparanase overexpression affects hepcidin expression and iron homeostasis supports the hypothesis that HS participate in the mechanisms controlling hepcidin expression. PMID:27711215

  3. Altered microglial copper homeostasis in a mouse model of Alzheimer's disease.

    PubMed

    Zheng, Zhiqiang; White, Carine; Lee, Jaekwon; Peterson, Troy S; Bush, Ashley I; Sun, Grace Y; Weisman, Gary A; Petris, Michael J

    2010-09-01

    Alzheimer's disease (AD) is characterized by progressive neurodegeneration associated with the aggregation and deposition of β-amyloid (Aβ(40) and Aβ(42) ) peptide in senile plaques. Recent studies suggest that copper may play an important role in AD pathology. Copper concentrations are elevated in amyloid plaques and copper binds with high affinity to the Aβ peptide and promotes Aβ oligomerization and neurotoxicity. Despite this connection between copper and AD, it is unknown whether the expression of proteins involved in regulating copper homeostasis is altered in this disorder. In this study, we demonstrate that the copper transporting P-type ATPase, ATP7A, is highly expressed in activated microglial cells that are specifically clustered around amyloid plaques in the TgCRND8 mouse model of AD. Using a cultured microglial cell line, ATP7A expression was found to be increased by the pro-inflammatory cytokine interferon-gamma, but not by TNF-α or IL-1β. Interferon-gamma also elicited marked changes in copper homeostasis, including copper-dependent trafficking of ATP7A from the Golgi to cytoplasmic vesicles, increased copper uptake and elevated expression of the CTR1 copper importer. These findings suggest that pro-inflammatory conditions associated with AD cause marked changes in microglial copper trafficking, which may underlie the changes in copper homeostasis in AD. It is concluded that copper sequestration by microglia may provide a neuroprotective mechanism in AD.

  4. Altered Cellular Homeostasis in Murine MPS I Fibroblasts: Evidence of Cell-Specific Physiopathology.

    PubMed

    Viana, Gustavo Monteiro; do Nascimento, Cinthia Castro; Paredes-Gamero, Edgar Julian; D'Almeida, Vânia

    2017-02-21

    Mucopolysaccharidosis type I (MPS I), a rare autosomal recessive disease, is caused by a deficiency of the lysosomal enzyme alfa-L-iduronidase. Impaired enzyme activity promotes glycosaminoglycans accumulation in several tissues and organs, leading to complex multisystemic complications. Several studies using animal models indicated different intracellular pathways involving MPS I physiopathology; however, the exact mechanisms underlying this syndrome are still not understood. Previous results from our group showed alterations in ionic homeostasis and cell viability of splenocytes and macrophages in Idua-/- mice. In the present study, we found altered intracellular ionic homeostasis in a different cell type (fibroblasts) from the same murine model. Idua-/- fibroblasts from 3-month-old mice presented higher cytoplasmatic and endoplasmic reticulum Ca(2+) concentration, lower levels of mitochondrial Ca(2+) and mitochondrial membrane potential and higher cytoplasmatic pH when compared to Idua+/+ animals. Also, Idua-/- fibroblasts were more resistant to the apoptotic induction with staurosporine, indicating a possible resistance to apoptotic induction in those cells. In addition, despite the intracellular ionic imbalance, no significant alterations were found in apoptosis and autophagy in Idua-/- fibroblasts, which implies that the ionic alterations did not activate those pathways. The investigation of mechanisms underlying the cellular physiopathology of lysosomal diseases is crucial for a better understanding about the progression of these diseases. Since splenocytes, macrophages, and fibroblasts have different embryonic origins and distinct structural and functional features, potentially altered signaling pathways found in a cell-specific manner in an alfa-L-iduronidase-deficient environment provide additional understanding of the clinical multisystemic presentation of this disease and provide new basis for improved therapeutic approaches.

  5. Sleep and mealtime misalignment alters functional connectivity: A pilot resting state study

    PubMed Central

    Yoncheva, Yuliya N.; Castellanos, F. Xavier; Pizinger, Theresa; Kovtun, Kyle; St-Onge, Marie-Pierre

    2016-01-01

    Delayed sleep and meal times promote metabolic dysregulation and obesity. Altered coordination of sleeping and eating times may impact food reward valuation and interoception in the brain, yet the independent and collective contributions of sleep and meal times are unknown. This randomized, inpatient crossover study experimentally manipulates sleep and meal times while preserving sleep duration (7.05±0.44h for 5 nights). Resting-state functional MRI scans (2×5-minute runs) were obtained for 4 participants (3 males; 25.3±4.6 y), each completing all study phases (normal sleep/normal meal; late sleep/normal meal; normal sleep/late meal; late sleep/late meal). Normal mealtimes were 1, 5, 11, and 12.5h after awakening; late mealtimes were 4.5, 8.5, 14.5 and 16h after awakening. Seed-based resting-state functional connectivity (RSFC) was computed for a priori regions-of-interest (seeds) and contrasted across conditions. Statistically significant (p<0.05, whole-brain corrected) regionally-specific effects were found for multiple seeds. The strongest effects were linked to the amygdala: increased RSFC for late versus normal mealtimes (equivalent to skipping breakfast). A main effect of sleep and interaction with mealtime were also observed. Preliminary findings support the feasibility of examining the effects of sleep and meal time misalignment, independent of sleep duration, on RSFC in regions relevant to food reward and interoception. PMID:27478925

  6. Sympathetic and Catecholaminergic Alterations in Sleep Apnea with Particular Emphasis on Children

    PubMed Central

    Hakim, Fahed; Gozal, David; Kheirandish-Gozal, Leila

    2012-01-01

    Sleep is involved in the regulation of major organ functions in the human body, and disruption of sleep potentially can elicit organ dysfunction. Obstructive sleep apnea (OSA) is the most prevalent sleep disorder of breathing in adults and children, and its manifestations reflect the interactions between intermittent hypoxia, intermittent hypercapnia, increased intra-thoracic pressure swings, and sleep fragmentation, as elicited by the episodic changes in upper airway resistance during sleep. The sympathetic nervous system is an important modulator of the cardiovascular, immune, endocrine and metabolic systems, and alterations in autonomic activity may lead to metabolic imbalance and organ dysfunction. Here we review how OSA and its constitutive components can lead to perturbation of the autonomic nervous system in general, and to altered regulation of catecholamines, both of which then playing an important role in some of the mechanisms underlying OSA-induced morbidities. PMID:22319509

  7. Altered transition metal homeostasis in Niemann-Pick disease, Type C1

    PubMed Central

    Hung, Ya Hui; Faux, Noel G.; Killilea, David W.; Yanjanin, Nicole; Firnkes, Sally; Volitakis, Irene; Ganio, George; Walterfang, Mark; Hastings, Caroline; Porter, Forbes D.; Ory, Daniel S.; Bush, Ashley I.

    2014-01-01

    The loss of NPC1 protein function is the predominant cause of Niemann-Pick type C1 disease (NP-C1), a systemic and neurodegenerative disorder characterized by late-endosomal/lysosomal accumulation of cholesterol and other lipids. Limited evidence from post-mortem human tissues, an Npc1−/− mouse model, and cell culture studies also suggest failure of metal homeostasis in NP-C1. To investigate these findings, we performed a comprehensive transition metal analysis of cerebrospinal fluid (CSF), plasma and tissue samples from human NP-C1 patients and an Npc1−/− mouse model. NPC1 deficiency in the Npc1−/− mouse model resulted in a perturbation of transition metal homeostasis in the plasma and key organs (brain, liver, spleen, heart, lungs, and kidneys). Analysis of human patient CSF, plasma and post-mortem brain tissues also indicated disrupted metal homeostasis. There was a disparity in the direction of metal changes between the human and the Npc1−/− mouse samples, which may reflect species-specific metal metabolism. Nevertheless, common to both species is brain zinc accumulation. Furthermore, treatment with the glucosylceramide synthase inhibitor miglustat, the only drug shown in a controlled clinical trial to have some efficacy for NP-C1, did not correct the alterations in CSF and plasma transition metal and ceruloplasmin (CP) metabolism in NP-C1 patients. These findings highlight the importance of NPC1 function in metal homeostasis, and indicate that metal-targeting therapy may be of value as a treatment for NP-C. PMID:24343124

  8. Sleep Architecture and NREM Alterations in Children and Adolescents with Asperger Syndrome

    PubMed Central

    Bruni, Oliviero; Ferri, Raffaele; Vittori, Elena; Novelli, Luana; Vignati, Manuela; Porfirio, Maria C.; Aricò, Debora; Bernabei, Paola; Curatolo, Paolo

    2007-01-01

    Study Objectives: To analyze sleep in children with Asperger syndrome (AS) by means of standard sleep questionnaires, to evaluate sleep architecture and NREM sleep alterations by means of cyclic alternating pattern (CAP) and to correlate objective sleep parameters with cognitive behavioral measures. Design: Cross-sectional study involving validated sleep questionnaires, neuropsychological scales, and PSG recording. Setting: Sleep medicine center. Participants: Eight children with AS, 10 children with autism, and 12 healthy control children. Interventions: N/A Measurements and Results: Children with AS had a higher prevalence of problems of initiating sleep and daytime sleepiness. Sleep architecture parameters showed minor differences between the 3 groups. CAP parameters showed an increased percentage of A1 and a decreased percentage of A2 subtypes in subjects with AS vs. controls. All A subtype indexes (number per hour of NREM sleep) were decreased, mostly in sleep stage 2 but not in SWS. With respect to children with autism, subjects with AS showed increased CAP rate in SWS and A1 percentage. In subjects with AS, verbal IQ had a significant positive correlation with total CAP rate and CAP rate in SWS and with global and SWS A1 index. The percentage of A2 negatively correlated with full scale IQ, verbal and performance IQ. CBCL total score correlated positively with CAP rate and A1 index while externalizing score correlated negatively with A3%. Conclusions: This study shows peculiar CAP modifications in children with AS and represents an attempt to correlate the quantification of sleep EEG oscillations with the degree of mental ability/disability. Citation: Bruni O; Ferri R; Vittori E; Novelli L; Vignati M; Porfirio MC; Aricò D; Bernabei P; Curatolo P. Sleep architecture and NREM alterations in children and adolescents with asperger syndrome. SLEEP 2007;30(11):1577-1585. PMID:18041490

  9. Prominent pancreatic endocrinopathy and altered control of food intake disrupt energy homeostasis in prion diseases

    USGS Publications Warehouse

    Bailey, J.D.; Berardinelli, J.G.; Rocke, T.E.; Bessen, R.A.

    2008-01-01

    Prion diseases are fatal neurodegenerative diseases that can induce endocrinopathies. The basis of altered endocrine function in prion diseases is not well understood, and the purpose of this study was to investigate the spatiotemporal relationship between energy homeostasis and prion infection in hamsters inoculated with either the 139H strain of scrapie agent, which induces preclinical weight gain, or the HY strain of transmissible mink encephalopathy (TME), which induces clinical weight loss. Temporal changes in body weight, feed, and water intake were measured as well as both non-fasted and fasted concentrations of serum glucose, insulin, glucagon, ??-ketones, and leptin. In 139H scrapie-infected hamsters, polydipsia, hyperphagia, non-fasted hyperinsulinemia with hyperglycemia, and fasted hyperleptinemia were found at preclinical stages and are consistent with an anabolic syndrome that has similarities to type II diabetes mellitus and/or metabolic syndrome X. In HY TME-infected hamsters, hypodipsia, hypersecretion of glucagon (in both non-fasted and fasted states), increased fasted ??-ketones, fasted hypoglycemia, and suppressed non-fasted leptin concentrations were found while feed intake was normal. These findings suggest a severe catabolic syndrome in HY TME infection mediated by chronic increases in glucagon secretion. In both models, alterations of pancreatic endocrine function were not associated with PrPSc deposition in the pancreas. The results indicate that prominent endocrinopathy underlies alterations in body weight, pancreatic endocrine function, and intake of food. The prion-induced alterations of energy homeostasis in 139H scrapie- or HY TME-infected hamsters could occur within areas of the hypothalamus that control food satiety and/or within autonomic centers that provide neural outflow to the pancreas. ?? 2008 Society for Endocrinology.

  10. Modeling sleep alterations in Parkinson's disease: How close are we to valid translational animal models?

    PubMed

    Fifel, Karim; Piggins, Hugh; Deboer, Tom

    2016-02-01

    Parkinson disease is one of the neurodegenerative diseases that benefited the most from the use of non-human models. Consequently, significant advances have been made in the symptomatic treatments of the motor aspects of the disease. Unfortunately, this translational success has been tempered by the recognition of the debilitating aspect of multiple non-motor symptoms of the illness. Alterations of the sleep/wakefulness behavior experienced as insomnia, excessive daytime sleepiness, sleep/wake cycle fragmentation and REM sleep behavior disorder are among the non-motor symptoms that predate motor alterations and inevitably worsen over disease progression. The absence of adequate humanized animal models with the perfect phenocopy of these sleep alterations contribute undoubtedly to the lack of efficient therapies for these non-motor complications. In the context of developing efficient translational therapies, we provide an overview of the strengths and limitations of the various currently available models to replicate sleep alterations of Parkinson's disease. Our investigation reveals that although these models replicate dopaminergic deficiency and related parkinsonism, they rarely display a combination of sleep fragmentation and excessive daytime sleepiness and never REM sleep behavior disorder. In this light, we critically discuss the construct, face and predictive validities of both rodent and non-human primate animals to model the main sleep abnormalities experienced by patients with PD. We conclude by highlighting the need of integrating a network-based perspective in our modeling approach of such complex syndrome in order to celebrate valid translational models.

  11. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis.

    PubMed

    Mu, Ting-Wei; Fowler, Douglas M; Kelly, Jeffery W

    2008-02-01

    A lysosomal storage disease (LSD) results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum-associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil-both US Food and Drug Administration-approved hypertension drugs-partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient-derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely alpha-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety.

  12. Sleep Homeostasis and General Anesthesia: Are Fruit Flies Well-Rested After Emergence From Propofol?

    PubMed Central

    Gardner, Benjamin; Strus, Ewa; Meng, Qing Cheng; Coradetti, Thomas; Naidoo, Nirinjini N.; Kelz, Max B.; Williams, Julie A.

    2015-01-01

    Background Shared neurophysiologic features between sleep and anesthetic-induced hypnosis indicate a potential overlap in neuronal circuitry underlying both states. Previous studies in rodents indicate that pre-existing sleep debt discharges under propofol anesthesia. We explored the hypothesis that propofol anesthesia also dispels sleep pressure in the fruit fly. To our knowledge, this constitutes the first time propofol has been tested in the genetically tractable model, Drosophila melanogaster. Methods Daily sleep was measured in Drosophila using a standard locomotor activity assay. Propofol was administered by transferring flies onto food containing various doses of propofol or equivalent concentrations of vehicle. High-Performance Liquid Chromatography (HPLC) was used to measure tissue concentrations of ingested propofol. To determine if propofol anesthesia substitutes for natural sleep, we subjected flies to 10 hours (h) sleep deprivation (SD), followed by 6h propofol exposure, and monitored subsequent sleep. Results Oral propofol treatment causes anesthesia in flies as indicated by a dose-dependent reduction in locomotor activity (n=11–41 flies from each group) and increased arousal threshold (n=79–137). Recovery sleep in flies fed propofol after SD was delayed until after flies had emerged from anesthesia (n=30–48). SD was also associated with a significant increase in mortality in propofol-fed flies (n=44–46). Conclusions Together, these data indicate that fruit flies are effectively anesthetized by ingestion of propofol, and suggest that homologous molecular and neuronal targets of propofol are conserved in Drosophila. However, behavioral measurements indicate that propofol anesthesia does not satisfy the homeostatic need for sleep, and may compromise the restorative properties of sleep. PMID:26556728

  13. Early and later life stress alter brain activity and sleep in rats.

    PubMed

    Mrdalj, Jelena; Pallesen, Ståle; Milde, Anne Marita; Jellestad, Finn Konow; Murison, Robert; Ursin, Reidun; Bjorvatn, Bjørn; Grønli, Janne

    2013-01-01

    Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2-14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way.

  14. Sleep Deprivation Reveals Altered Brain Perfusion Patterns in Somnambulism

    PubMed Central

    Dang-Vu, Thien Thanh; Zadra, Antonio; Labelle, Marc-Antoine; Petit, Dominique; Soucy, Jean-Paul; Montplaisir, Jacques

    2015-01-01

    Background Despite its high prevalence, relatively little is known about the pathophysiology of somnambulism. Increasing evidence indicates that somnambulism is associated with functional abnormalities during wakefulness and that sleep deprivation constitutes an important drive that facilitates sleepwalking in predisposed patients. Here, we studied the neural mechanisms associated with somnambulism using Single Photon Emission Computed Tomography (SPECT) with 99mTc-Ethylene Cysteinate Dimer (ECD), during wakefulness and after sleep deprivation. Methods Ten adult sleepwalkers and twelve controls with normal sleep were scanned using 99mTc-ECD SPECT in morning wakefulness after a full night of sleep. Eight of the sleepwalkers and nine of the controls were also scanned during wakefulness after a night of total sleep deprivation. Between-group comparisons of regional cerebral blood flow (rCBF) were performed to characterize brain activity patterns during wakefulness in sleepwalkers. Results During wakefulness following a night of total sleep deprivation, rCBF was decreased bilaterally in the inferior temporal gyrus in sleepwalkers compared to controls. Conclusions Functional neural abnormalities can be observed during wakefulness in somnambulism, particularly after sleep deprivation and in the inferior temporal cortex. Sleep deprivation thus not only facilitates the occurrence of sleepwalking episodes, but also uncovers patterns of neural dysfunction that characterize sleepwalkers during wakefulness. PMID:26241047

  15. Sleep alterations in mammals: did aquatic conditions inhibit rapid eye movement sleep?

    PubMed

    Madan, Vibha; Jha, Sushil K

    2012-12-01

    Sleep has been studied widely in mammals and to some extent in other vertebrates. Higher vertebrates such as birds and mammals have evolved an inimitable rapid eye movement (REM) sleep state. During REM sleep, postural muscles become atonic and the temperature regulating machinery remains suspended. Although REM sleep is present in almost all the terrestrial mammals, the aquatic mammals have either radically reduced or completely eliminated REM sleep. Further, we found a significant negative correlation between REM sleep and the adaptation of the organism to live on land or in water. The amount of REM sleep is highest in terrestrial mammals, significantly reduced in semi-aquatic mammals and completely absent or negligible in aquatic mammals. The aquatic mammals are obligate swimmers and have to surface at regular intervals for air. Also, these animals live in thermally challenging environments, where the conductive heat loss is approximately ~90 times greater than air. Therefore, they have to be moving most of the time. As an adaptation, they have evolved unihemispheric sleep, during which they can rove as well as rest. A condition that immobilizes muscle activity and suspends the thermoregulatory machinery, as happens during REM sleep, is not suitable for these animals. It is possible that, in accord with Darwin's theory, aquatic mammals might have abolished REM sleep with time. In this review, we discuss the possibility of the intrinsic role of aquatic conditions in the elimination of REM sleep in the aquatic mammals.

  16. Altered potassium homeostasis in cirrhosis of the liver and Crohn's disease

    SciTech Connect

    Schober, O.; Bossaller, C.

    1984-01-01

    In the course of patients (pts) with cirrhosis of the liver (Ci) and Crohn's disease (CD) frequently noticed arrhythmias of the heart, weakness and adynamic ileus suggest alterations in the potassium (K) homeostasis. It is the purpose of the study to assess the role of Na/sup +/-K/sup +/ pump mechanism in intracellular and extracellular K homeostasis. Relative total body potassium (TBK), serum potassium (K-S), and the number of red blood cell ouabain binding sites (n-ATPase) was studied in 21 pts with Ci, 31 pts with CD and in 31 controls (C), all were not on digitalis. TBK was measured by equilibrium binding of H-3-ouabain. A significant reduction in TBK was accompanied by normal serum potassium levels, whereas the number of Na-K pumps is increased. The results support the suggestion that changes in TBK may regulate the synthesis of Na-K pump molecules. Secondary hyperaldosteronism and diarrhea e.g. may be responsible for chronic potassium depletion. The need for a nutritional support is discussed.

  17. Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia.

    PubMed

    Martins-de-Souza, Daniel; Gattaz, Wagner F; Schmitt, Andrea; Rewerts, Christiane; Maccarrone, Giuseppina; Dias-Neto, Emmanuel; Turck, Christoph W

    2009-04-01

    Schizophrenia is a complex disease, likely to be caused by a combination of serial alterations in a number of genes and environmental factors. The dorsolateral prefrontal cortex (Brodmann's Area 46) is involved in schizophrenia and executes high-level functions such as working memory, differentiation of conflicting thoughts, determination of right and wrong concepts and attitudes, correct social behavior and personality expression. Global proteomic analysis of post-mortem dorsolateral prefrontal cortex samples from schizophrenia patients and non-schizophrenic individuals was performed using stable isotope labeling and shotgun proteomics. The analysis resulted in the identification of 1,261 proteins, 84 of which showed statistically significant differential expression, reinforcing previous data supporting the involvement of the immune system, calcium homeostasis, cytoskeleton assembly, and energy metabolism in schizophrenia. In addition a number of new potential markers were found that may contribute to the understanding of the pathogenesis of this complex disease.

  18. Caffeine Consuming Children and Adolescents Show Altered Sleep Behavior and Deep Sleep.

    PubMed

    Aepli, Andrina; Kurth, Salome; Tesler, Noemi; Jenni, Oskar G; Huber, Reto

    2015-10-15

    Caffeine is the most commonly ingested psychoactive drug worldwide with increasing consumption rates among young individuals. While caffeine leads to decreased sleep quality in adults, studies investigating how caffeine consumption affects children's and adolescents' sleep remain scarce. We explored the effects of regular caffeine consumption on sleep behavior and the sleep electroencephalogram (EEG) in children and adolescents (10-16 years). While later habitual bedtimes (Caffeine 23:14 ± 11.4, Controls 22:17 ± 15.4) and less time in bed were found in caffeine consumers compared to the control group (Caffeine 08:10 ± 13.3, Controls 09:03 ± 16.1), morning tiredness was unaffected. Furthermore, caffeine consumers exhibited reduced sleep EEG slow-wave activity (SWA, 1-4.5 Hz) at the beginning of the night compared to controls (20% ± 9% average reduction across all electrodes and subjects). Comparable reductions were found for alpha activity (8.25-9.75 Hz). These effects, however, disappeared in the morning hours. Our findings suggest that caffeine consumption in adolescents may lead to later bedtimes and reduced SWA, a well-established marker of sleep depth. Because deep sleep is involved in recovery processes during sleep, further research is needed to understand whether a caffeine-induced loss of sleep depth interacts with neuronal network refinement processes that occur during the sensitive period of adolescent development.

  19. Caffeine Consuming Children and Adolescents Show Altered Sleep Behavior and Deep Sleep

    PubMed Central

    Aepli, Andrina; Kurth, Salome; Tesler, Noemi; Jenni, Oskar G.; Huber, Reto

    2015-01-01

    Caffeine is the most commonly ingested psychoactive drug worldwide with increasing consumption rates among young individuals. While caffeine leads to decreased sleep quality in adults, studies investigating how caffeine consumption affects children’s and adolescents’ sleep remain scarce. We explored the effects of regular caffeine consumption on sleep behavior and the sleep electroencephalogram (EEG) in children and adolescents (10–16 years). While later habitual bedtimes (Caffeine 23:14 ± 11.4, Controls 22:17 ± 15.4) and less time in bed were found in caffeine consumers compared to the control group (Caffeine 08:10 ± 13.3, Controls 09:03 ± 16.1), morning tiredness was unaffected. Furthermore, caffeine consumers exhibited reduced sleep EEG slow-wave activity (SWA, 1–4.5 Hz) at the beginning of the night compared to controls (20% ± 9% average reduction across all electrodes and subjects). Comparable reductions were found for alpha activity (8.25–9.75 Hz). These effects, however, disappeared in the morning hours. Our findings suggest that caffeine consumption in adolescents may lead to later bedtimes and reduced SWA, a well-established marker of sleep depth. Because deep sleep is involved in recovery processes during sleep, further research is needed to understand whether a caffeine-induced loss of sleep depth interacts with neuronal network refinement processes that occur during the sensitive period of adolescent development. PMID:26501326

  20. Sleep Physiology Alterations Precede Plethoric Phenotypic Changes in R6/1 Huntington's Disease Mice.

    PubMed

    Lebreton, Fanny; Cayzac, Sebastien; Pietropaolo, Susanna; Jeantet, Yannick; Cho, Yoon H

    2015-01-01

    In hereditary neurodegenerative Huntington's disease (HD), there exists a growing consideration that sleep and circadian dysregulations may be important symptoms. It is not known, however, whether sleep abnormalities contribute to other behavioral deficits in HD patients and mouse models. To determine the precise chronology for sleep physiology alterations and other sensory, motor, psychiatric and cognitive symptoms of HD, the same R6/1 HD transgenics and their wild-type littermates were recorded monthly for sleep electroencephalogram (EEG) together with a wide range of behavioral tests according to a longitudinal plan. We found an early and progressive deterioration of both sleep architecture and EEG brain rhythms in R6/1 mice, which are correlated timely with their spatial working memory impairments. Sleep fragmentation and memory impairments were accompanied by the loss of delta (1-4 Hz) power in the transgenic mice, the magnitude of which increased with age and disease progression. These precocious sleep and cognitive impairments were followed by deficits in social behavior, sensory and motor abilities. Our data confirm the existence and importance of sleep physiology alterations in the widely used R6/1 mouse line and highlight their precedence over other plethoric phenotypic changes. The brainwave abnormalities, may represent a novel biomarker and point to innovative therapeutic interventions against HD.

  1. Altered salience network connectivity predicts macronutrient intake after sleep deprivation

    PubMed Central

    Fang, Zhuo; Spaeth, Andrea M.; Ma, Ning; Zhu, Senhua; Hu, Siyuan; Goel, Namni; Detre, John A.; Dinges, David F.; Rao, Hengyi

    2015-01-01

    Although insufficient sleep is a well-recognized risk factor for overeating and weight gain, the neural mechanisms underlying increased caloric (particularly fat) intake after sleep deprivation remain unclear. Here we used resting-state functional magnetic resonance imaging and examined brain connectivity changes associated with macronutrient intake after one night of total sleep deprivation (TSD). Compared to the day following baseline sleep, healthy adults consumed a greater percentage of calories from fat and a lower percentage of calories from carbohydrates during the day following TSD. Subjects also exhibited increased brain connectivity in the salience network from the dorsal anterior cingulate cortex (dACC) to bilateral putamen and bilateral anterior insula (aINS) after TSD. Moreover, dACC-putamen and dACC-aINS connectivity correlated with increased fat and decreased carbohydrate intake during the day following TSD, but not during the day following baseline sleep. These findings provide a potential neural mechanism by which sleep loss leads to increased fat intake. PMID:25645575

  2. ALTERATIONS OF FE HOMEOSTASIS IN RAT CARDIOVASCULAR DISEASE MODELS AND ITS CONTRIBUTION TO CARDIOPULMONARY TOXICITY

    EPA Science Inventory

    Introduction: Fe homeostasis can be disrupted in human cardiovascular diseases (CVD). We addressed how dysregulation of Fe homeostasis affected the pulmonary inflammation/oxidative stress response and disease progression after exposure to Libby amphibole (LA), an asbestifonn mine...

  3. Sleep architecture and homeostasis in mice with partial ablation of melanin-concentrating hormone neurons.

    PubMed

    Varin, Christophe; Arthaud, Sébastien; Salvert, Denise; Gay, Nadine; Libourel, Paul-Antoine; Luppi, Pierre-Hervé; Léger, Lucienne; Fort, Patrice

    2016-02-01

    Recent reports support a key role of tuberal hypothalamic neurons secreting melanin concentrating-hormone (MCH) in the promotion of Paradoxical Sleep (PS). Controversies remain concerning their concomitant involvement in Slow-Wave Sleep (SWS). We studied the effects of their selective loss achieved by an Ataxin 3-mediated ablation strategy to decipher the contribution of MCH neurons to SWS and/or PS. Polysomnographic recordings were performed on male adult transgenic mice expressing Ataxin-3 transgene within MCH neurons (MCH(Atax)) and their wild-type littermates (MCH(WT)) bred on two genetic backgrounds (FVB/N and C57BL/6). Compared to MCH(WT) mice, MCH(Atax) mice were characterized by a significant drop in MCH mRNAs (-70%), a partial loss of MCH-immunoreactive neurons (-30%) and a marked reduction in brain density of MCH-immunoreactive fibers. Under basal condition, such MCH(Atax) mice exhibited higher PS amounts during the light period and a pronounced SWS fragmentation without any modification of SWS quantities. Moreover, SWS and PS rebounds following 4-h total sleep deprivation were quantitatively similar in MCH(Atax)vs. MCH(WT) mice. Additionally, MCH(Atax) mice were unable to consolidate SWS and increase slow-wave activity (SWA) in response to this homeostatic challenge as observed in MCH(WT) littermates. Here, we show that the partial loss of MCH neurons is sufficient to disturb the fine-tuning of sleep. Our data provided new insights into their contribution to subtle process managing SWS quality and its efficiency rather than SWS quantities, as evidenced by the deleterious impact on two powerful markers of sleep depth, i.e., SWS consolidation/fragmentation and SWA intensity under basal condition and under high sleep pressure.

  4. High glucose alters tendon homeostasis through downregulation of the AMPK/Egr1 pathway

    PubMed Central

    Wu, Yu-Fu; Wang, Hsing-Kuo; Chang, Hong-Wei; Sun, Jingyu; Sun, Jui-Sheng; Chao, Yuan-Hung

    2017-01-01

    Diabetes mellitus (DM) is associated with higher risk of tendinopathy, which reduces tolerance to exercise and functional activities and affects lifestyle and glycemic control. Expression of tendon-related genes and matrix metabolism in tenocytes are essential for maintaining physiological functions of tendon. However, the molecular mechanisms involved in diabetic tendinopathy remain unclear. We hypothesized that high glucose (HG) alters the characteristics of tenocyte. Using in vitro 2-week culture of tenocytes, we found that expression of tendon-related genes, including Egr1, Mkx, TGF-β1, Col1a2, and Bgn, was significantly decreased in HG culture and that higher glucose consumption occurred. Down-regulation of Egr1 by siRNA decreased Scx, Mkx, TGF-β1, Col1a1, Col1a2, and Bgn expression. Blocking AMPK activation with Compound C reduced the expression of Egr1, Scx, TGF-β1, Col1a1, Col1a2, and Bgn in the low glucose condition. In addition, histological examination of tendons from diabetic mice displayed larger interfibrillar space and uneven glycoprotein deposition. Thus, we concluded that high glucose alters tendon homeostasis through downregulation of the AMPK/Egr1 pathway and the expression of downstream tendon-related genes in tenocytes. The findings render a molecular basis of the mechanism of diabetic tendinopathy and may help develop preventive and therapeutic strategies for the pathology. PMID:28266660

  5. Obesity alters the ovarian glucidic homeostasis disrupting the reproductive outcome of female rats.

    PubMed

    Bazzano, María Victoria; Paz, Dante Agustín; Elia, Evelin Mariel

    2017-04-01

    Obesity constitutes a health problem of increasing worldwide prevalence related to many reproductive problems such as infertility, ovulation dysfunction, preterm delivery, fetal growth disorders, etc. The mechanisms linking obesity to these pathologies are not fully understood. Cafeteria diet (CAF) is the animal model used for the study of obesity that more closely reflects western diet habits. Previously we described that CAF induces obesity associated to hyperglycemia, reduced ovarian reserve, presence of follicular cysts and ovulatory impairments. The aim of the present study was to contribute in the understanding of the physiological mechanisms altered as consequence of obesity. For that purpose, female Wistar rats were fed ad libitum with a standard diet (control group) or CAF (Obese group). We found that CAF fed-rats developed obesity, glucose intolerance and insulin resistance. Ovaries from obese rats showed decreased glucose uptake and became insulin resistant, showing decreased ovarian expression of glucotransporter type 4 and insulin receptor gene expression respect to controls. These animals showed an increased follicular nitric oxyde synthase expression that may be responsible for the ovulatory disruptions and for inflammation, a common feature in obesity. Obese rats resulted subfertile and their pups were macrosomic. We conclude that obesity alters the systemic and the ovarian glucidic homeostasis impairing the reproductive outcome. Since macrosomia is a risk factor for metabolic and obstetric disorders in adult life, we suggest that obesity is impacting not only on health and reproduction but it is also impacting on health and reproduction of the offspring.

  6. Protective effect of alprazolam against sleep deprivation-induced behavior alterations and oxidative damage in mice.

    PubMed

    Singh, Anant; Kumar, Anil

    2008-04-01

    Sleep deprivation is considered as a risk factor for various diseases. Sleep deprivation leads to behavioral, hormonal, neurochemical and biochemical alterations in the animals. The present study was designed to explore the possible involvement of GABAergic mechanism in protective effect of alprazolam against 72h sleep deprivation-induced behavior alterations and oxidative damage in mice. In the present study, sleep deprivation caused anxiety-like behavior, weight loss, impaired ambulatory movements and oxidative damage as indicated by increase in lipid peroxidation, nitrite level and depletion of reduced glutathione and catalase activity in sleep-deprived mice brain. Treatment with alprazolam (0.25 and 0.5 mg/kg, ip) significantly improved behavioral alterations. Biochemically, alprazolam treatment significantly restored depleted reduced glutathione, catalase activity, reversed raised lipid peroxidation and nitrite level. Combination of flumazenil (0.5 mg/kg) and picrotoxin (0.5 mg/kg) with lower dose of alprazolam (0.25mg/kg) significantly antagonized protective effect of alprazolam. However, combination of muscimol (0.05 mg/kg) with alprazolam (0.25 mg/kg, ip) potentiated protective effect of alprazolam. On the basis of these results, it might be suggested that alprazolam might produce protective effect by involving GABAergic system against sleep deprivation-induced behavior alterations and related oxidative damage.

  7. Sleep and meal-time misalignment alters functional connectivity: a pilot resting-state study.

    PubMed

    Yoncheva, Y N; Castellanos, F X; Pizinger, T; Kovtun, K; St-Onge, M-P

    2016-11-01

    Delayed sleep and meal times promote metabolic dysregulation and obesity. Altered coordination of sleeping and eating times may impact food-reward valuation and interoception in the brain, yet the independent and collective contributions of sleep and meal times are unknown. This randomized, in-patient crossover study experimentally manipulates sleep and meal times while preserving sleep duration (7.05±0.44 h for 5 nights). Resting-state functional magnetic resonance imaging scans (2 × 5-minute runs) were obtained for four participants (three males; 25.3±4.6 years), each completing all study phases (normal sleep/normal meal; late sleep/normal meal; normal sleep/late meal; and late sleep/late meal). Normal mealtimes were 1, 5, 11 and 12.5 h after awakening; late mealtimes were 4.5, 8.5, 14.5 and 16 h after awakening. Seed-based resting-state functional connectivity (RSFC) was computed for a priori regions-of-interest (seeds) and contrasted across conditions. Statistically significant (P<0.05, whole-brain corrected) regionally specific effects were found for multiple seeds. The strongest effects were linked to the amygdala: increased RSFC for late versus normal mealtimes (equivalent to skipping breakfast). A main effect of sleep and interaction with meal time were also observed. Preliminary findings support the feasibility of examining the effects of sleep and meal-time misalignment, independent of sleep duration, on RSFC in regions relevant to food reward and interoception.

  8. Familial Alzheimer’s disease–associated presenilin-1 alters cerebellar activity and calcium homeostasis

    PubMed Central

    Sepulveda-Falla, Diego; Barrera-Ocampo, Alvaro; Hagel, Christian; Korwitz, Anne; Vinueza-Veloz, Maria Fernanda; Zhou, Kuikui; Schonewille, Martijn; Zhou, Haibo; Velazquez-Perez, Luis; Rodriguez-Labrada, Roberto; Villegas, Andres; Ferrer, Isidro; Lopera, Francisco; Langer, Thomas; De Zeeuw, Chris I.; Glatzel, Markus

    2014-01-01

    Familial Alzheimer’s disease (FAD) is characterized by autosomal dominant heritability and early disease onset. Mutations in the gene encoding presenilin-1 (PS1) are found in approximately 80% of cases of FAD, with some of these patients presenting cerebellar damage with amyloid plaques and ataxia with unclear pathophysiology. A Colombian kindred carrying the PS1-E280A mutation is the largest known cohort of PS1-FAD patients. Here, we investigated PS1-E280A–associated cerebellar dysfunction and found that it occurs early in PS1-E208A carriers, while cerebellar signs are highly prevalent in patients with dementia. Postmortem analysis of cerebella of PS1-E280A carrier revealed greater Purkinje cell (PC) loss and more abnormal mitochondria compared with controls. In PS1-E280A tissue, ER/mitochondria tethering was impaired, Ca2+ channels IP3Rs and CACNA1A were downregulated, and Ca2+-dependent mitochondrial transport proteins MIRO1 and KIF5C were reduced. Accordingly, expression of PS1-E280A in a neuronal cell line altered ER/mitochondria tethering and transport compared with that in cells expressing wild-type PS1. In a murine model of PS1-FAD, animals exhibited mild ataxia and reduced PC simple spike activity prior to cerebellar β-amyloid deposition. Our data suggest that impaired calcium homeostasis and mitochondrial dysfunction in PS1-FAD PCs reduces their activity and contributes to motor coordination deficits prior to Aβ aggregation and dementia. We propose that PS1-E280A affects both Ca2+ homeostasis and Aβ precursor processing, leading to FAD and neurodegeneration. PMID:24569455

  9. Tuberal Hypothalamic Neurons Secreting the Satiety Molecule Nesfatin-1 Are Critically Involved in Paradoxical (REM) Sleep Homeostasis

    PubMed Central

    Jego, Sonia; Salvert, Denise; Renouard, Leslie; Mori, Masatomo; Goutagny, Romain; Luppi, Pierre-Hervé; Fort, Patrice

    2012-01-01

    The recently discovered Nesfatin-1 plays a role in appetite regulation as a satiety factor through hypothalamic leptin-independent mechanisms. Nesfatin-1 is co-expressed with Melanin-Concentrating Hormone (MCH) in neurons from the tuberal hypothalamic area (THA) which are recruited during sleep states, especially paradoxical sleep (PS). To help decipher the contribution of this contingent of THA neurons to sleep regulatory mechanisms, we thus investigated in rats whether the co-factor Nesfatin-1 is also endowed with sleep-modulating properties. Here, we found that the disruption of the brain Nesfatin-1 signaling achieved by icv administration of Nesfatin-1 antiserum or antisense against the nucleobindin2 (NUCB2) prohormone suppressed PS with little, if any alteration of slow wave sleep (SWS). Further, the infusion of Nesfatin-1 antiserum after a selective PS deprivation, designed for elevating PS needs, severely prevented the ensuing expected PS recovery. Strengthening these pharmacological data, we finally demonstrated by using c-Fos as an index of neuronal activation that the recruitment of Nesfatin-1-immunoreactive neurons within THA is positively correlated to PS but not to SWS amounts experienced by rats prior to sacrifice. In conclusion, this work supports a functional contribution of the Nesfatin-1 signaling, operated by THA neurons, to PS regulatory mechanisms. We propose that these neurons, likely releasing MCH as a synergistic factor, constitute an appropriate lever by which the hypothalamus may integrate endogenous signals to adapt the ultradian rhythm and maintenance of PS in a manner dictated by homeostatic needs. This could be done through the inhibition of downstream targets comprised primarily of the local hypothalamic wake-active orexin- and histamine-containing neurons. PMID:23300698

  10. Tactile stimulation during sleep alters slow oscillation and spindle densities but not motor skill.

    PubMed

    Pereira, Sofia Isabel Ribeiro; Beijamini, Felipe; Weber, Frederik D; Vincenzi, Roberta Almeida; da Silva, Felipe Augusto Cini; Louzada, Fernando Mazzilli

    2017-02-01

    Studies using targeted memory reactivation have shown that presentation of auditory or olfactory contextual cues during sleep can bias hippocampal reactivations towards the preferential replay of the cue-associated material, thereby resulting in enhanced consolidation of that information. If the same cortical ensembles are indeed used for encoding and storage of a given piece of information, forcing the sleeping brain to re-engage in task-intrinsic information processing should disturb the natural ongoing consolidation processes and therefore impair possible sleep benefits. Here we aimed at recreating an integral part of the sensory experience of a motor skill in a daytime nap, by means of a tactile stimulation. We hypothesized that tampering with the tactile component of a motor skill during sleep would result in hindered performance at retest, due to interference between the highly congruent incoming stimuli and the core skill trace. Contrary to our predictions, the tactile stimulation did not influence neither speed nor accuracy, when compared to natural sleep. However, an exploratory sleep EEG analysis revealed stimulation-induced alterations in the abundance and cortical topography of slow oscillations and spindles. These findings suggest that despite the lack of a significant effect on motor behavior, tactile stimulation induced changes in EEG features suggestive of a possible uncoupling between the sleep oscillations thought to underlie consolidation processes, i.e. slow oscillations and sleep spindles.

  11. Sleep Alterations Following Exposure to Stress Predict Fear-Associated Memory Impairments in a Rodent Model of PTSD

    PubMed Central

    Vanderheyden, William M.; George, Sophie A.; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R.

    2015-01-01

    Sleep abnormalities such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of post-traumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating these sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stress exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops in rats. SPS resulted in acutely increased REM sleep, transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. We also report reductions in theta (4–10 Hz) and sigma (10–15 Hz) band power during transition to REM sleep which also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure. PMID:26019008

  12. Altered Chondrocyte Differentiation and Extracellular Matrix Homeostasis in a Zebrafish Model for Mucolipidosis II

    PubMed Central

    Flanagan-Steet, Heather; Sias, Christina; Steet, Richard

    2009-01-01

    Mucolipidosis II (ML-II) is a pediatric disorder caused by defects in the biosynthesis of mannose 6-phosphate, the carbohydrate recognition signal responsible for targeting certain acid hydrolases to lysosomes. The mechanisms underlying the developmental defects of ML-II are largely unknown due in part to the lack of suitable animal models. To overcome these limitations, we developed a model for ML-II in zebrafish by inhibiting the expression of N-acetylglucosamine-1-phosphotransferase, the enzyme that initiates mannose 6-phosphate biosynthesis. Morphant embryos manifest craniofacial defects, impaired motility, and abnormal otolith and pectoral fin development. Decreased mannose phosphorylation of several lysosomal glycosidases was observed in morphant lysates, consistent with the reduction in phosphotransferase activity. Investigation of the craniofacial defects in the morphants uncovered striking changes in the timing and localization of both type II collagen and Sox9 expression, suggestive of an accelerated chondrocyte differentiation program. Accumulation of type II collagen was also noted within misshapen cartilage elements at later stages of development. Furthermore, we observed abnormal matrix formation and calcium deposition in morphant otoliths. Collectively, these data provide new insight into the developmental pathology of ML-II and suggest that altered production and/or homeostasis of extracellular matrix proteins are integral to the disease process. These findings highlight the potential of the zebrafish system in studying lysosomal disease pathogenesis. PMID:19834066

  13. Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms

    PubMed Central

    Mullenders, Jasper; Aranda-Orgilles, Beatriz; Lhoumaud, Priscillia; Keller, Matthew; Pae, Juhee; Wang, Kun; Kayembe, Clarisse; Rocha, Pedro P.; Raviram, Ramya; Gong, Yixiao; Premsrirut, Prem K.; Tsirigos, Aristotelis; Bonneau, Richard; Skok, Jane A.; Cimmino, Luisa; Hoehn, Daniela

    2015-01-01

    The cohesin complex (consisting of Rad21, Smc1a, Smc3, and Stag2 proteins) is critically important for proper sister chromatid separation during mitosis. Mutations in the cohesin complex were recently identified in a variety of human malignancies including acute myeloid leukemia (AML). To address the potential tumor-suppressive function of cohesin in vivo, we generated a series of shRNA mouse models in which endogenous cohesin can be silenced inducibly. Notably, silencing of cohesin complex members did not have a deleterious effect on cell viability. Furthermore, knockdown of cohesin led to gain of replating capacity of mouse hematopoietic progenitor cells. However, cohesin silencing in vivo rapidly altered stem cells homeostasis and myelopoiesis. Likewise, we found widespread changes in chromatin accessibility and expression of genes involved in myelomonocytic maturation and differentiation. Finally, aged cohesin knockdown mice developed a clinical picture closely resembling myeloproliferative disorders/neoplasms (MPNs), including varying degrees of extramedullary hematopoiesis (myeloid metaplasia) and splenomegaly. Our results represent the first successful demonstration of a tumor suppressor function for the cohesin complex, while also confirming that cohesin mutations occur as an early event in leukemogenesis, facilitating the potential development of a myeloid malignancy. PMID:26438359

  14. DWARF overexpression induces alteration in phytohormone homeostasis, development, architecture and carotenoid accumulation in tomato.

    PubMed

    Li, Xiao-Jing; Chen, Xiao-Juan; Guo, Xie; Yin, Ling-Ling; Ahammed, Golam Jalal; Xu, Chang-Jie; Chen, Kun-Song; Liu, Chao-Chao; Xia, Xiao-Jian; Shi, Kai; Zhou, Jie; Zhou, Yan-Hong; Yu, Jing-Quan

    2016-03-01

    Brassinosteroids (BRs) play a critical role in plant growth, development and stress response; however, genetic evidence for the BR-mediated integrated regulation of plant growth still remains elusive in crop species. Here, we clarified the function of DWARF (DWF), the key BR biosynthetic gene in tomato, in the regulation of plant growth and architecture, phytohormone homeostasis and fruit development by comparing wild type, d^(im), a weak allele mutant impaired in DWF, and DWF-overexpressing plants in tomato. Results showed that increases in DWF transcripts and endogenous BR level resulted in improved germination, lateral root development, CO2 assimilation and eventually plant growth as characterized by slender and compact plant architecture. However, an increase in DWF transcript down-regulated the accumulation of gibberellin, which was associated with decreases in leaf size and thickness. BRs positively regulated lateral bud outgrowth, which was associated with decreased transcript of Aux/IAA3, and the ethylene-dependent petiole bending and fruit ripening. Notably, overexpression of DWF did not significantly alter fruit yield per plant; however, increases by 57.4% and 95.3% might be estimated in fruit yield per square metre in two transgenic lines due to their compact architecture. Significantly, BR level was positively related with the carotenoid accumulation in the fruits. Taken together, our results demonstrate that BRs are actively involved in the regulation of multiple developmental processes relating to agronomical important traits.

  15. Alteration of Homeostasis in Pre-osteoclasts Induced by Aggregatibacter actinomycetemcomitans CDT.

    PubMed

    Kawamoto, Dione; Ando-Suguimoto, Ellen S; Bueno-Silva, Bruno; DiRienzo, Joseph M; Mayer, Marcia P A

    2016-01-01

    The dysbiotic microbiota associated with aggressive periodontitis includes Aggregatibacter actinomycetemcomitans, the only oral species known to produce a cytolethal distending toxin (AaCDT). Give that CDT alters the cytokine profile in monocytic cells, we aimed to test the hypothesis that CDT plays a role in bone homeostasis by affecting the differentiation of precursor cells into osteoclasts. Recombinant AaCDT was added to murine bone marrow monocytes (BMMC) in the presence or absence of RANKL and the cell viability and cytokine profile of osteoclast precursor cells were determined. Multinucleated TRAP(+) cell numbers, and relative transcription of genes related to osteoclastogenesis were also evaluated. The addition of AaCDT did not lead to loss in cell viability but promoted an increase in the average number of TRAP(+) cells with 1-2 nuclei in the absence or presence of RANKL (Tukey, p < 0.05). This increase was also observed for TRAP(+) cells with ≥3nuclei, although this difference was not significant. Levels of TGF-β, TNF-α, and IL-6, in the supernatant fraction of cells, were higher when in AaCDT exposed cells, whereas levels of IL-1β and IL-10 were lower than controls under the same conditions. After interaction with AaCDT, transcription of the rank (encoding the receptor RANK), nfatc1 (transcription factor), and ctpK (encoding cathepsin K) genes was downregulated in pre-osteoclastic cells. The data indicated that despite the presence of RANKL and M-CSF, AaCDT may inhibit osteoclast differentiation by altering cytokine profiles and repressing transcription of genes involved in osteoclastogenesis. Therefore, the CDT may impair host defense mechanisms in periodontitis.

  16. Altered surfactant homeostasis and alveolar epithelial cell stress in amiodarone-induced lung fibrosis.

    PubMed

    Mahavadi, Poornima; Henneke, Ingrid; Ruppert, Clemens; Knudsen, Lars; Venkatesan, Shalini; Liebisch, Gerhard; Chambers, Rachel C; Ochs, Matthias; Schmitz, Gerd; Vancheri, Carlo; Seeger, Werner; Korfei, Martina; Guenther, Andreas

    2014-11-01

    Amiodarone (AD) is a highly efficient antiarrhythmic drug with potentially serious side effects. Severe pulmonary toxicity is reported in patients receiving AD even at low doses and may cause interstitial pneumonia as well as lung fibrosis. Apoptosis of alveolar epithelial type II cells (AECII) has been suggested to play an important role in this disease. In the current study, we aimed to establish a murine model of AD-induced lung fibrosis and analyze surfactant homeostasis, lysosomal, and endoplasmic reticulum (ER) stress in this model. AD/vehicle was instilled intratracheally into C57BL/6 mice, which were sacrificed on days 7, 14, 21, and 28. Extent of lung fibrosis development was assessed by trichrome staining and hydroxyproline measurement. Cytotoxicity was assessed by lactate dehydrogenase assay. Phospholipids (PLs) were analyzed by mass spectrometry. Surfactant proteins (SP) and markers for apoptosis, lysosomal, and ER stress were studied by Western blotting and immunohistochemistry. AECII morphology was evaluated by electron microscopy. Extensive lung fibrosis and AECII hyperplasia were observed in AD-treated mice already at day 7. Surfactant PL and SP accumulated in AECII over time. In parallel, induction of apoptosis, lysosomal, and ER stress was encountered in AECII of mice lungs and in MLE12 cells treated with AD. In vitro, siRNA-mediated knockdown of cathepsin D did not alter the AD-induced apoptotic response. Our data suggest that mice exposed to intratracheal AD develop severe pulmonary fibrosis, exhibit extensive surfactant alterations and cellular stress, but AD-induced AECII apoptosis is not mediated primarily via cathepsin D.

  17. Alteration of Homeostasis in Pre-osteoclasts Induced by Aggregatibacter actinomycetemcomitans CDT

    PubMed Central

    Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Bueno-Silva, Bruno; DiRienzo, Joseph M.; Mayer, Marcia P. A.

    2016-01-01

    The dysbiotic microbiota associated with aggressive periodontitis includes Aggregatibacter actinomycetemcomitans, the only oral species known to produce a cytolethal distending toxin (AaCDT). Give that CDT alters the cytokine profile in monocytic cells, we aimed to test the hypothesis that CDT plays a role in bone homeostasis by affecting the differentiation of precursor cells into osteoclasts. Recombinant AaCDT was added to murine bone marrow monocytes (BMMC) in the presence or absence of RANKL and the cell viability and cytokine profile of osteoclast precursor cells were determined. Multinucleated TRAP+ cell numbers, and relative transcription of genes related to osteoclastogenesis were also evaluated. The addition of AaCDT did not lead to loss in cell viability but promoted an increase in the average number of TRAP+ cells with 1-2 nuclei in the absence or presence of RANKL (Tukey, p < 0.05). This increase was also observed for TRAP+ cells with ≥3nuclei, although this difference was not significant. Levels of TGF-β, TNF-α, and IL-6, in the supernatant fraction of cells, were higher when in AaCDT exposed cells, whereas levels of IL-1β and IL-10 were lower than controls under the same conditions. After interaction with AaCDT, transcription of the rank (encoding the receptor RANK), nfatc1 (transcription factor), and ctpK (encoding cathepsin K) genes was downregulated in pre-osteoclastic cells. The data indicated that despite the presence of RANKL and M-CSF, AaCDT may inhibit osteoclast differentiation by altering cytokine profiles and repressing transcription of genes involved in osteoclastogenesis. Therefore, the CDT may impair host defense mechanisms in periodontitis. PMID:27064424

  18. Protein-energy malnutrition alters thermoregulatory homeostasis and the response to brain ischemia.

    PubMed

    Smith, Shari E; Prosser-Loose, Erin J; Colbourne, Frederick; Paterson, Phyllis G

    2011-02-01

    Co-existing protein-energy malnutrition (PEM), characterized by deficits in both protein and energy status, impairs functional outcome following global ischemia and has been associated with increased reactive gliosis. Since temperature is a key determinant of brain damage following an ischemic insult, the objective was to investigate whether alterations in post-ischemic temperature regulation contribute to PEM-induced reactive gliosis following ischemia. Male Sprague-Dawley rats (190-280 g) were assigned to either control diet (18% protein) or PEM induced by feeding a low protein diet (2% protein) for 7 days prior to either global ischemia or sham surgery. There was a rapid disruption in thermoregulatory function in rats fed the low protein diet as assessed by continuous recording of core temperature with bio-electrical sensor transmitters. Both daily temperature fluctuation and mean temperature increased within the first 24 hours, and these remained significantly elevated throughout the 7 day pre-ischemic period (p < 0.027). In the immediate post-surgical period, PEM decreased body temperature to a greater extent than that in well-nourished controls (p = 0.003). The increase in daily temperature fluctuation caused by PEM persisted throughout the 7 day post-surgical period (p < 0.001), and this interacted with the effects of global ischemia on days 8 (p = 0.018) and 11 (p = 0.021). The astrocytic and microglial responses induced at 7 days after global ischemia were not influenced by PEM, but this preliminary analysis needs to be confirmed with a more reliable global ischemia model. In conclusion, exposure to a low protein diet rapidly impairs the ability to maintain thermoregulatory homeostasis, and the resultant PEM also diminishes the ability to thermoregulate in response to a challenge. Since temperature regulation is a key determinant of brain injury following ischemia, these findings suggest that the pathophysiology of brain injury could be altered in stroke

  19. Abdominal Fat and Sarcopenia in Women Significantly Alter Osteoblasts Homeostasis In Vitro by a WNT/β-Catenin Dependent Mechanism

    PubMed Central

    Wannenes, Francesca; Papa, Vincenza; Greco, Emanuela A.; Fornari, Rachele; Marocco, Chiara; Di Luigi, Luigi; Donini, Lorenzo M.; Lenzi, Andrea

    2014-01-01

    Obesity and sarcopenia have been associated with mineral metabolism derangement and low bone mineral density (BMD). We investigated whether imbalance of serum factors in obese or obese sarcopenic patients could affect bone cell activity in vitro. To evaluate and characterize potential cellular and molecular changes of human osteoblasts, cells were exposed to sera of four groups of patients: (1) affected by obesity with normal BMD (O), (2) affected by obesity with low BMD (OO), (3) affected by obesity and sarcopenia (OS), and (4) affected by obesity, sarcopenia, and low BMD (OOS) as compared to subjects with normal body weight and normal BMD (CTL). Patients were previously investigated and characterized for body composition, biochemical and bone turnover markers. Then, sera of different groups of patients were used to incubate human osteoblasts and evaluate potential alterations in cell homeostasis. Exposure to OO, OS, and OOS sera significantly reduced alkaline phosphatase, osteopontin, and BMP4 expression compared to cells exposed to O and CTL, indicating a detrimental effect on osteoblast differentiation. Interestingly, sera of all groups of patients induced intracellular alteration in Wnt/β-catenin molecular pathway, as demonstrated by the significant alteration of specific target genes expression and by altered β-catenin cellular compartmentalization and GSK3β phosphorylation. In conclusion our results show for the first time that sera of obese subjects with low bone mineral density and sarcopenia significantly alter osteoblasts homeostasis in vitro, indicating potential detrimental effects of trunk fat on bone formation and skeletal homeostasis. PMID:24963291

  20. Artificial Outdoor Nighttime Lights Associate with Altered Sleep Behavior in the American General Population

    PubMed Central

    Ohayon, Maurice M.; Milesi, Cristina

    2016-01-01

    Study Objectives: Our study aims to explore the associations between outdoor nighttime lights (ONL) and sleep patterns in the human population. Methods: Cross-sectional telephone study of a representative sample of the general US population age 18 y or older. 19,136 noninstitutionalized individuals (participation rate: 83.2%) were interviewed by telephone. The Sleep-EVAL expert system administered questions on life and sleeping habits; health; sleep, mental and organic disorders (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision; International Classification of Sleep Disorders, Second Edition; International Classification of Diseases, 10th Edition). Individuals were geolocated by longitude and latitude. Outdoor nighttime light measurements were obtained from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS), with nighttime passes taking place between 19:30 and 22:30 local time. Light data were correlated precisely to the geolocation of each participant of the general population sample. Results: Living in areas with greater ONL was associated with delayed bedtime (P < 0.0001) and wake up time (P < 0.0001), shorter sleep duration (P < 0.01), and increased daytime sleepiness (P < 0.0001). Living in areas with greater ONL also increased the dissatisfaction with sleep quantity and quality (P < 0.0001) and the likelihood of having a diagnostic profile congruent with a circadian rhythm disorder (P < 0.0001). Conclusions: Although they improve the overall safety of people and traffic, nighttime lights in our streets and cities are clearly linked with modifications in human sleep behaviors and also impinge on the daytime functioning of individuals living in areas with greater ONL. Citation: Ohayon MM, Milesi C. Artificial outdoor nighttime lights associate with altered sleep behavior in the american general population. SLEEP 2016;39(6):1311–1320. PMID:27091523

  1. Environmental disruption of the circadian clock leads to altered sleep and immune responses in mouse.

    PubMed

    Phillips, Derrick J; Savenkova, Marina I; Karatsoreos, Ilia N

    2015-07-01

    In mammals, one of the most salient outputs of the circadian (daily) clock is the timing of the sleep-wake cycle. Modern industrialized society has led to a fundamental breakdown in the relationship between our endogenous timekeeping systems and the solar day, disrupting normal circadian rhythms. We have argued that disrupted circadian rhythms could lead to changes in allostatic load, and the capacity of organisms to respond to other environmental challenges. In this set of studies, we apply a model of circadian disruption characterized in our lab in which mice are housed in a 20h long day, with 10h of light and 10h of darkness. We explored the effects of this environmental disruption on sleep patterns, to establish if this model results in marked sleep deprivation. Given the interaction between circadian, sleep, and immune systems, we further probed if our model of circadian disruption also alters the innate immune response to peripheral bacterial endotoxin challenge. Our results demonstrate that this model of circadian disruption does not lead to marked sleep deprivation, but instead affects the timing and quality of sleep. We also show that while circadian disruption does not lead to basal changes in the immune markers we explored, the immune response is affected, both in the brain and the periphery. Together, our findings further strengthen the important role of the circadian timing system in sleep regulation and immune responses, and provide evidence that disrupting the circadian clock increases vulnerability to further environmental stressors, including immunological challenges.

  2. [Night sleep structural alteration as a function of individual strategy of adapting to 520-isolation].

    PubMed

    Zavalko, I M; Boritko, Ya S; Kovrov, G V; Vinokhodova, A G; Chekalina, A I; Smoleevsky, A E

    2014-01-01

    Purpose of the work was to establish a relationship between trends in sleep alteration and individual adaptation to the stress-factors in the 520-day isolation study. Psychological evaluations using a battery of motivation tests and L. Sobchik's modification of the Luscher personality test, and Mirror coordinograph enabled to differentiate groups reacting to the stress on the pattern of "control" (G-1) or "search" (G-2) manifested in individual styles of behavior and operator's activity. The 2 groups showed different dynamics of the night sleep structure. Difficulties with falling asleep in G-1 arose on the eve of "landing onto Mars" and end of the experiment, whereas in G-2 they were evident prior to the end only. Besides, the micro- and segmental sleep structures were more stable in G-1 suggesting the integrity of somnogenic mechanisms despite difficult sleep initiation.

  3. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones.

    PubMed

    Pichette, Jennifer; Gagnon, Jeffrey

    2016-01-01

    Diabetes and its comorbidities continue to be a major health problem worldwide. Understanding the precise mechanisms that control glucose homeostasis and their dysregulation during diabetes are a major research focus. Hydrogen sulfide (H2S) has emerged as an important regulator of glucose homeostasis. This is achieved through its production and action in several metabolic and hormone producing organs including the pancreas, liver, and adipose. Of importance, H2S production and signaling in these tissues are altered during both type 1 and type 2 diabetes mellitus. This review first examines how H2S is produced both endogenously and by gastrointestinal microbes, with a particular focus on the altered production that occurs during obesity and diabetes. Next, the action of H2S on the metabolic organs with key roles in glucose homeostasis, with a particular focus on insulin, is described. Recent work has also suggested that the effects of H2S on glucose homeostasis goes beyond its role in insulin secretion. Several studies have demonstrated important roles for H2S in hepatic glucose output and adipose glucose uptake. The mechanism of H2S action on these metabolic organs is described. In the final part of this review, future directions examining the roles of H2S in other metabolic and glucoregulatory hormone secreting tissues are proposed.

  4. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones

    PubMed Central

    Pichette, Jennifer

    2016-01-01

    Diabetes and its comorbidities continue to be a major health problem worldwide. Understanding the precise mechanisms that control glucose homeostasis and their dysregulation during diabetes are a major research focus. Hydrogen sulfide (H2S) has emerged as an important regulator of glucose homeostasis. This is achieved through its production and action in several metabolic and hormone producing organs including the pancreas, liver, and adipose. Of importance, H2S production and signaling in these tissues are altered during both type 1 and type 2 diabetes mellitus. This review first examines how H2S is produced both endogenously and by gastrointestinal microbes, with a particular focus on the altered production that occurs during obesity and diabetes. Next, the action of H2S on the metabolic organs with key roles in glucose homeostasis, with a particular focus on insulin, is described. Recent work has also suggested that the effects of H2S on glucose homeostasis goes beyond its role in insulin secretion. Several studies have demonstrated important roles for H2S in hepatic glucose output and adipose glucose uptake. The mechanism of H2S action on these metabolic organs is described. In the final part of this review, future directions examining the roles of H2S in other metabolic and glucoregulatory hormone secreting tissues are proposed. PMID:27478532

  5. Iron overload alters glucose homeostasis, causes liver steatosis, and increases serum triacylglycerols in rats.

    PubMed

    Silva, Maísa; Silva, Marcelo E; de Paula, Heberth; Carneiro, Cláudia Martins; Pedrosa, Maria Lucia

    2008-06-01

    The objective of this study was to investigate the effect of iron overload with a hyperlipidemic diet on the histologic feature of hepatic tissue, the lipid and glycemic serum profiles, and the markers of oxidative damage and stress in a rat model. Twenty-four male Fischer rats, purchased from Experimental Nutrition Laboratory, Federal University of Ouro Preto, were assigned to 4 equal groups, 2 were fed a standard cholesterol-free diet (group C or control and CI or control with iron) containing 8.0% soybean oil and 2 were fed a hyperlipidemic diet (group H or hyperlipidemic and HI or hyperlipidemic with iron) containing 1.0% cholesterol and 25.0% soybean oil. A total of 50 mg of iron was administered to rats in groups CI and HI in 5 equal doses (1 every 3 weeks for a 16-week period) by intraperitoneal injections of 0.1 mL of iron dextran solution (100 g Fe(2+)/L; Sigma, St Louis, Mo). The other rats in groups C and H were treated in a similar manner but with sterile saline (0.1 mL). Irrespective of the diet, iron excess enhanced serum triacylglycerols (P < .05) and reduced serum glucose and glycated hemoglobin levels (P < .05) but did not affect serum cholesterol concentration. Histologic analysis showed steatosis in groups H and to a lesser extent in HI. No significant differences (P > .05) were observed in paraoxonase activities or in serum levels of free or total sulfhydryl radicals, malondialdehyde, or total antioxidants. The findings suggest that iron excess in the rat probably modifies lipid metabolism and, as a consequence, alters glucose homeostasis and increases the level of serum triacylglycerols but not of cholesterol.

  6. Tissue-specific alterations in thyroid hormone homeostasis in combined Mct10 and Mct8 deficiency.

    PubMed

    Müller, Julia; Mayerl, Steffen; Visser, Theo J; Darras, Veerle M; Boelen, Anita; Frappart, Lucien; Mariotta, Luca; Verrey, Francois; Heuer, Heike

    2014-01-01

    The monocarboxylate transporter Mct10 (Slc16a10; T-type amino acid transporter) facilitates the cellular transport of thyroid hormone (TH) and shows an overlapping expression with the well-established TH transporter Mct8. Because Mct8 deficiency is associated with distinct tissue-specific alterations in TH transport and metabolism, we speculated that Mct10 inactivation may compromise the tissue-specific TH homeostasis as well. However, analysis of Mct10 knockout (ko) mice revealed normal serum TH levels and tissue TH content in contrast to Mct8 ko mice that are characterized by high serum T3, low serum T4, decreased brain TH content, and increased tissue TH concentrations in the liver, kidneys, and thyroid gland. Surprisingly, mice deficient in both TH transporters (Mct10/Mct8 double knockout [dko] mice) showed normal serum T4 levels in the presence of elevated serum T3, indicating that the additional inactivation of Mct10 partially rescues the phenotype of Mct8 ko mice. As a consequence of the normal serum T4, brain T4 content and hypothalamic TRH expression were found to be normalized in the Mct10/Mct8 dko mice. In contrast, the hyperthyroid situation in liver, kidneys, and thyroid gland of Mct8 ko mice was even more severe in Mct10/Mct8 dko animals, suggesting that in these organs, both transporters contribute to the TH efflux. In summary, our data indicate that Mct10 indeed participates in tissue-specific TH transport and also contributes to the generation of the unusual serum TH profile characteristic for Mct8 deficiency.

  7. Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing.

    PubMed

    Basner, Mathias; Dinges, David F; Mollicone, Daniel; Ecker, Adrian; Jones, Christopher W; Hyder, Eric C; Di Antonio, Adrian; Savelev, Igor; Kan, Kevin; Goel, Namni; Morukov, Boris V; Sutton, Jeffrey P

    2013-02-12

    The success of interplanetary human spaceflight will depend on many factors, including the behavioral activity levels, sleep, and circadian timing of crews exposed to prolonged microgravity and confinement. To address the effects of the latter, we used a high-fidelity ground simulation of a Mars mission to objectively track sleep-wake dynamics in a multinational crew of six during 520 d of confined isolation. Measurements included continuous recordings of wrist actigraphy and light exposure (4.396 million min) and weekly computer-based neurobehavioral assessments (n = 888) to identify changes in the crew's activity levels, sleep quantity and quality, sleep-wake periodicity, vigilance performance, and workload throughout the record-long 17 mo of mission confinement. Actigraphy revealed that crew sedentariness increased across the mission as evident in decreased waking movement (i.e., hypokinesis) and increased sleep and rest times. Light exposure decreased during the mission. The majority of crewmembers also experienced one or more disturbances of sleep quality, vigilance deficits, or altered sleep-wake periodicity and timing, suggesting inadequate circadian entrainment. The results point to the need to identify markers of differential vulnerability to hypokinesis and sleep-wake changes during the prolonged isolation of exploration spaceflight and the need to ensure maintenance of circadian entrainment, sleep quantity and quality, and optimal activity levels during exploration missions. Therefore, successful adaptation to such missions will require crew to transit in spacecraft and live in surface habitats that instantiate aspects of Earth's geophysical signals (appropriately timed light exposure, food intake, exercise) required for temporal organization and maintenance of human behavior.

  8. Dietary selenomethionine exposure alters swimming performance, metabolic capacity and energy homeostasis in juvenile fathead minnow.

    PubMed

    McPhee, D Landon; Janz, David M

    2014-10-01

    Selenium (Se) is known to cause chronic toxicity in aquatic species. In particular, dietary exposure of fish to selenomethionine (SeMet), the primary form of Se in the diet, is of concern. Recent studies suggest that chronic exposure to elevated dietary SeMet alters energy and endocrine homeostasis in adult fish. However, little is known about the direct effects of dietary SeMet exposure in juvenile fish. The objective of the present study was to investigate sublethal physiological effects of dietary SeMet exposure in juvenile fathead minnow (Pimephales promelas). Twenty days-post-hatch fathead minnow were exposed for 60 days to different measured concentrations (2.8, 5.4, 9.9, 26.5 μg Se/g dry mass [dm]) of Se in food in the form of SeMet. After exposure, samples were collected for Se analysis and fish were subjected to a swimming performance challenge to assess critical swim speed (Ucrit), tail beat frequency and tail beat amplitude, oxygen consumption (MO2), cost of transport (COT), standard metabolic rate (SMR), active metabolic rate (AMR), and factorial aerobic scope (F-AS). Ucrit was decreased in the 26.5 μg Se/g dm exposure group compared to the control group. Tail beat frequency and tail beat amplitude were significantly reduced in fish fed 9.9 and 26.5 μg Se/g. An increase in MO2 and COT was observed in the 9.9 and 26.5 μg Se/g exposure groups compared to the control group. While the AMR of the high dose group was increased relative to control, there were no significant differences in SMR and F-AS. Energy storage capacity was measured via whole body triglyceride and glycogen concentrations. Triglyceride concentrations in non-swam fish were elevated in the 5.4 μg Se/g group relative to controls. Fatigued (swam) fish had significantly lower whole body triglycerides than non-swam fish. All non-swam SeMet exposure groups had significantly decreased whole body glycogen concentrations compared to controls, while the 5.4 and 26.5 μg Se/g exposure groups had

  9. Autonomic and Renal Alterations in the Offspring of Sleep-Restricted Mothers During Late Pregnancy

    PubMed Central

    Raimundo, Joyce R S; Bergamaschi, Cassia T; Campos, Ruy R; Palma, Beatriz D; Tufik, Sergio; Gomes, Guiomar N

    2016-01-01

    OBJECTIVES: Considering that changes in the maternal environment may result in changes in progeny, the aim of this study was to investigate the influence of sleep restriction during the last week of pregnancy on renal function and autonomic responses in male descendants at an adult age. METHODS: After confirmation of pregnancy, female Wistar rats were randomly assigned to either a control or a sleep restriction group. The sleep-restricted rats were subjected to sleep restriction using the multiple platforms method for over 20 hours per day between the 14th and 20th day of pregnancy. After delivery, the litters were limited to 6 offspring that were designated as offspring from control and offspring from sleep-restricted mothers. Indirect measurements of systolic blood pressure (BPi), renal plasma flow, glomerular filtration rate, glomerular area and number of glomeruli per field were evaluated at three months of age. Direct measurements of cardiovascular function (heart rate and mean arterial pressure), cardiac sympathetic tone, cardiac parasympathetic tone, and baroreflex sensitivity were evaluated at four months of age. RESULTS: The sleep-restricted offspring presented increases in BPi, glomerular filtration rate and glomerular area compared with the control offspring. The sleep-restricted offspring also showed higher basal heart rate, increased mean arterial pressure, increased sympathetic cardiac tone, decreased parasympathetic cardiac tone and reduced baroreflex sensitivity. CONCLUSIONS: Our data suggest that reductions in sleep during the last week of pregnancy lead to alterations in cardiovascular autonomic regulation and renal morpho-functional changes in offspring, triggering increases in blood pressure. PMID:27652834

  10. Alteration of calcium homeostasis in primary preeclamptic syncytiotrophoblasts: effect on calcium exchange in placenta

    PubMed Central

    Haché, S; Takser, L; LeBellego, F; Weiler, H; Leduc, L; Forest, J C; Giguère, Y; Masse, A; Barbeau, B; Lafond, J

    2011-01-01

    Abstract Preeclampsia (PE) is characterized by maternal hypertension, proteinuria, oedema and, in 30% of cases, by intrauterine growth retardation. Causes are still unknown; however, epidemiological and clinical studies have suggested alterations in maternal calcium metabolism. We suggested that in PE, calcium transport by the syncytiotrophoblast (ST) is disturbed. From total placental tissues, we studied the expression of: calcium channels (TRPV5, TRPV6 [transient receptor potential vanilloid]), calcium binding proteins (CaBP-9K, CaBP-28K), plasma membrane calcium ATPase (PMCA)1,2,3,4 pumps, ATP synthase, genes implicated in Ca2+ release [inositol-1,4,5-triphosphate receptor (IP3R)1,2,3; Ryanodine receptor (RyR)1,2,3] and replenishment (SERCA1,2,3 [sarcoendoplasmic reticulum Ca2+ ATPases]) from endoplasmic reticulum, channels implicated in mitochondrial Ca2+ accumulation (VDAC1,2,3 [voltage-dependent anion channels]) and a marker of oxidative stress (hOGG1 [Human 8-oxoguanine-DNA glycosylase 1]), as well as the influence of these variations on calcium transport in primary ST cultures. The mRNA and protein levels were thereby examined by real-time PCR and Western blot analysis, respectively, in two different groups of pregnant women with similar gestational age: a normal group (n= 16) and a PE group (n= 8), diagnosed by a clinician. Our study showed a significant decrease in calcium transport by the ST cultured from preeclamptic placentas. We found a significant (P < 0.05) decrease in mRNA levels of TRPV5, TRPV6, CaBP-9K, CaBP-28K, PMCA1, PMCA4, ATP synthase, IP3R1, IP3R2, RyR1, RyR2 and RyR3 in PE group compared to normal one. We also noted a significant decrease in protein levels of TRPV5, TRPV6, CaBP-9K, CaBP-28K and PMCA1/4 in PE group. In contrast, SERCA1, SERCA2, SERCA3, VDAC3 and hOGG1 mRNA expressions were significantly increased in PE placentas. Calcium homeostasis and transport through placenta is compromised in preeclamptic pregnancies and it appears to

  11. A dopamine receptor d2-type agonist attenuates the ability of stress to alter sleep in mice.

    PubMed

    Jefferson, F; Ehlen, J C; Williams, N S; Montemarano, J J; Paul, K N

    2014-11-01

    Although sleep disruptions that accompany stress reduce quality of life and deteriorate health, the mechanisms through which stress alters sleep remain obscure. Psychological stress can alter sleep in a variety of ways, but it has been shown to be particularly influential on rapid eye movement (REM) sleep. Prolactin (PRL), a sexually dimorphic, stress-sensitive hormone whose basal levels are higher in females, has somnogenic effects on REM sleep. In the current study, we examined the relationship between PRL secretion and REM sleep after restraint stress to determine whether: 1) the ability of stress to increase REM sleep is PRL-dependent, and 2) fluctuating PRL levels underlie sex differences in sleep responses to stress. Because dopamine D2 receptors in the pituitary gland are the primary regulator of PRL secretion, D2 receptor agonist, 1-[(6-allylergolin-8β-yl)-carbonyl]-1-[3-(dimethylamino) propyl]-3-ethylurea (cabergoline), was used to attenuate PRL levels in mice before 1 hour of restraint stress. Mice were implanted with electroencephalographic/electromyographic recording electrodes and received an ip injection of either 0.3-mg/kg cabergoline or vehicle before a control procedure of 1 hour of sleep deprivation by gentle handling during the light phase. Six days after the control procedure, mice received cabergoline or vehicle 15 minutes before 1 hour of restraint stress. Cabergoline blocked the ability of restraint stress to increase REM sleep amount in males but did not alter REM sleep amount after stress in females even though it reduced basal REM sleep amount in female controls. These data provide evidence that the ability for restraint stress to increase REM sleep is dependent on PRL and that sex differences in REM sleep amount may be driven by PRL.

  12. Larval Population Density Alters Adult Sleep in Wild-Type Drosophila melanogaster but Not in Amnesiac Mutant Flies.

    PubMed

    Chi, Michael W; Griffith, Leslie C; Vecsey, Christopher G

    2014-08-11

    Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis.

  13. Energy content of the evening meal alters nocturnal body temperature but not sleep.

    PubMed

    Driver, H S; Shulman, I; Baker, F C; Buffenstein, R

    Meals of varying energy content and episodes of sleep influence body temperature. We compared the effect of an evening meal, varying from high-energy (11.91 +/- 0.86 MJ) to average (5.74 +/- 0.88 MJ) and a 10-h fast (no evening meal), on nocturnal body temperature and sleep. Seven healthy men (20-24 years, mean body mass index of 23.4 +/- 2.6 kg/m2) reported to the laboratory for an evening meal at 2000 h having consumed similar amounts of food before 1300 h. After completing the meal, subjective hunger ratings were assessed, and a venous blood sample taken. The subjects spent 4 nonconsecutive nights (an adaptation night, followed by either of the two meal conditions or the fast in random order) in the sleep laboratory when polysomnographic recordings were made from 2300 to 0700 h. Meal energy content and serum concentrations of insulin, triglyceride, and low-density lipoproteins (LDL) varied significantly. Lower rectal temperatures were measured during the fast than following the meals. Over the 8-h recording period, thermal response indices (TRI) varied with higher body temperatures following the higher energy meal. Similar rectal temperatures were attained by the end of the sleep periods. There were no significant differences in any of the subjective or objective sleep measures. The physiological responses associated with the transient dietary changes of an evening meal or a 10-h fast altered nocturnal body temperature but did not significantly affect sleep of good sleepers when sleep was initiated 2 to 3 h after finishing the meal.

  14. Chronic sleep deprivation alters the myosin heavy chain isoforms in the masseter muscle in rats.

    PubMed

    Cao, Ruihua; Huang, Fei; Wang, Peihuan; Chen, Chen; Zhu, Guoxiong; Chen, Lei; Wu, Gaoyi

    2015-05-01

    To investigate the changes in myosin heavy chain (MyHC) isoforms of rat masseter muscle fibres caused by chronic sleep deprivation and a possible link with the pathogenesis of disorders of the temporomandibular joint (TMJ). A total of 180 male rats were randomly divided into three groups (n=60 in each): cage controls, large platform controls, and chronic sleep deprivation group. Each group was further divided into three subgroups with different observation periods (7, 14, and 21 days). We investigated he expression of MyHC isoforms in masseter muscle fibres by real-time quantitative polymerase chain reaction (PCR), Western blotting, and immunohistochemical staining. In rats with chronic sleep deprivation there was increased MyHC-I expression in layers of both shallow and deep muscles at 7 and 21 days compared with the control groups, whereas sleep deprivation was associated with significantly decreased MyHC-II expression. At 21 days, there were no differences in MyHC-I or MyHC-II expression between the groups and there were no differences between the two control groups at any time point. These findings suggest that chronic sleep deprivation alters the expression of MyHC isoforms, which may contribute to the pathogenesis of disorders of the TMJ.

  15. Disrupted Sleep is Associated with Altered Pain Processing by Sex and Ethnicity in Knee Osteoarthritis

    PubMed Central

    Petrov, Megan E.; Goodin, Burel R.; Cruz-Almeida, Yenisel; King, Chris; Glover, Toni L.; Bulls, Hailey W.; Herbert, Matthew; Sibille, Kimberly T.; Bartley, Emily J.; Fessler, Barri J.; Sotolongo, Adriana; Staud, Roland; Redden, David; Fillingim, Roger B.; Bradley, Laurence A.

    2015-01-01

    Studies indicate that improving sleep decreases reported pain in patients with knee osteoarthritis (OA), but it is unclear if this association extends to experimentally-induced pain responses. A community-based sample of 88 African-American and 52 non-Hispanic white adults (45-76y) with knee OA completed the Insomnia Severity Index and the arousal subscale of the Sleep Hygiene and Practices Scale. Participants underwent quantitative sensory testing including measures of pain sensitivity and facilitation at the knee, and pain inhibition. Outcomes were analyzed with multiple Tobit, hierarchical regression models, with adjustment for relevant covariates. Ethnicity and sex by sleep interactions were also entered into the models. After covariate adjustment, main associations were not observed. However, sex interacted with insomnia severity to predict greater temporal summation of heat and punctate pressure pain among women and lower heat temporal summation among men. Men and women who engaged in frequent arousal-associated sleep behaviors demonstrated higher and lower heat temporal summation, respectively. Non-Hispanic whites with greater insomnia severity displayed lower pressure pain thresholds and pain inhibition. Our findings are the first to demonstrate that disrupted sleep is associated with altered pain processing differentially by sex and ethnicity/race among people with knee OA. PMID:25725172

  16. Structural Brain Alterations Associated with Rapid Eye Movement Sleep Behavior Disorder in Parkinson’s Disease

    PubMed Central

    Boucetta, Soufiane; Salimi, Ali; Dadar, Mahsa; Jones, Barbara E.; Collins, D. Louis; Dang-Vu, Thien Thanh

    2016-01-01

    Characterized by dream-enactment motor manifestations arising from rapid eye movement (REM) sleep, REM sleep behavior disorder (RBD) is frequently encountered in Parkinson’s disease (PD). Yet the specific neurostructural changes associated with RBD in PD patients remain to be revealed by neuroimaging. Here we identified such neurostructural alterations by comparing large samples of magnetic resonance imaging (MRI) scans in 69 PD patients with probable RBD, 240 patients without RBD and 138 healthy controls, using deformation-based morphometry (p < 0.05 corrected for multiple comparisons). All data were extracted from the Parkinson’s Progression Markers Initiative. PD patients with probable RBD showed smaller volumes than patients without RBD and than healthy controls in the pontomesencephalic tegmentum, medullary reticular formation, hypothalamus, thalamus, putamen, amygdala and anterior cingulate cortex. These results demonstrate that RBD is associated with a prominent loss of volume in the pontomesencephalic tegmentum, where cholinergic, GABAergic and glutamatergic neurons are located and implicated in the promotion of REM sleep and muscle atonia. It is additionally associated with more widespread atrophy in other subcortical and cortical regions whose loss also likely contributes to the altered regulation of sleep-wake states and motor activity underlying RBD in PD patients. PMID:27245317

  17. The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis.

    PubMed

    McKinley, M J; Yao, S T; Uschakov, A; McAllen, R M; Rundgren, M; Martelli, D

    2015-05-01

    Located in the midline anterior wall of the third cerebral ventricle (i.e. the lamina terminalis), the median preoptic nucleus (MnPO) receives a unique set of afferent neural inputs from fore-, mid- and hindbrain. These afferent connections enable it to receive neural signals related to several important aspects of homeostasis. Included in these afferent projections are (i) neural inputs from two adjacent circumventricular organs, the subfornical organ and organum vasculosum laminae terminalis, that respond to hypertonicity, circulating angiotensin II or other humoural factors, (ii) signals from cutaneous warm and cold receptors that are relayed to MnPO, respectively, via different subnuclei in the lateral parabrachial nucleus and (iii) input from the medulla associated with baroreceptor and vagal afferents. These afferent signals reach appropriate neurones within the MnPO that enable relevant neural outputs, both excitatory and inhibitory, to be activated or inhibited. The efferent neural pathways that proceed from the MnPO terminate on (i) neuroendocrine cells in the hypothalamic supraoptic and paraventricular nuclei to regulate vasopressin release, while polysynaptic pathways from MnPO to cortical sites may drive thirst and water intake, (ii) thermoregulatory pathways to the dorsomedial hypothalamic nucleus and medullary raphé to regulate shivering, brown adipose tissue and skin vasoconstriction, (iii) parvocellular neurones in the hypothalamic paraventricular nucleus that drive autonomic pathways influencing cardiovascular function. As well, (iv) other efferent pathways from the MnPO to sites in the ventrolateral pre-optic nucleus, perifornical region of the lateral hypothalamic area and midbrain influence sleep mechanisms.

  18. Multimodal neuroimaging investigations of alterations to consciousness: the relationship between absence epilepsy and sleep.

    PubMed

    Bagshaw, Andrew P; Rollings, David T; Khalsa, Sakh; Cavanna, Andrea E

    2014-01-01

    The link between epilepsy and sleep is well established on many levels. The focus of the current review is on recent neuroimaging investigations into the alterations of consciousness that are observed during absence seizures and the descent into sleep. Functional neuroimaging provides simultaneous cortical and subcortical recording of activity throughout the brain, allowing a detailed definition and characterization of large-scale brain networks and the interactions between them. This has led to the identification of a set of regions which collectively form the consciousness system, which includes contributions from the default mode network (DMN), ascending arousal systems, and the thalamus. Electrophysiological and neuroimaging investigations have also clearly demonstrated the importance of thalamocortical and corticothalamic networks in the evolution of sleep and absence epilepsy, two phenomena in which the subject experiences an alteration to the conscious state and a disconnection from external input. However, the precise relationship between the consciousness system, thalamocortical networks, and consciousness itself remains to be clarified. One of the fundamental challenges is to understand how distributed brain networks coordinate their activity in order to maintain and implement complex behaviors such as consciousness and how modifications to this network activity lead to alterations in consciousness. By taking into account not only the level of activation of individual brain regions but also their connectivity within specific networks and the activity and connectivity of other relevant networks, a more specific quantification of brain states can be achieved. This, in turn, may provide a more fundamental understanding of the alterations to consciousness experienced in sleep and epilepsy.

  19. Role of homocysteine and folic acid on the altered calcium homeostasis of platelets from rats with biliary cirrhosis.

    PubMed

    Romecín, Paola; Atucha, Noemí M; Navarro, Esther G; Clara Ortiz, M; Iyú, David; Rosado, Juan Antonio; García-Estañ, Joaquín

    2017-02-02

    Previously, we have found that intracellular calcium homeostasis is altered in platelets from an experimental model of liver cirrhosis, the bile-duct ligated (BDL) rat; these alterations are compatible with the existence of a hypercoagulable state. Different studies indicate that cholestatic diseases are associated with hyperhomocysteinemia; thus, we hypothetized that it could contribute to those platelet alterations. In the present study, we have investigated the role of homocysteine (HCY) in platelet aggregation and calcium signaling in the BDL model. The effect of chronic folic acid treatment was also analyzed. Acute treatment with HCY increased the aggregation response to ADP and calcium responses to thrombin in platelets of control and BDL rats. Capacitative calcium entry was not altered by HCY. Chronic treatment with folic acid decreased platelet aggregation in control and BDL rats, but this decrease was greater in BDL rats. In folic acid-treated rats, thrombin-induced calcium entry and release were decreased in platelet of control rats but unaltered in BDL rats; however, capacitative calcium entry was decreased in platelets of control and BDL rats treated with folic acid. Reactive oxygen species were produced at higher levels by BDL platelets after stimulation with HCY or thrombin and folic acid normalized these responses. HCY plays a role in the enhanced platelet aggregation response of BDL rats, probably through an enhanced formation of ROS. Folic acid pretreatment normalizes many of the platelet alterations shown by BDL rats.

  20. Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis

    PubMed Central

    Brahma, Manoja K.; Adam, Rene C.; Pollak, Nina M.; Jaeger, Doris; Zierler, Kathrin A.; Pöcher, Nadja; Schreiber, Renate; Romauch, Matthias; Moustafa, Tarek; Eder, Sandra; Ruelicke, Thomas; Preiss-Landl, Karina; Lass, Achim; Zechner, Rudolf; Haemmerle, Guenter

    2014-01-01

    Fibroblast growth factor 21 (FGF21) is a PPARα-regulated gene elucidated in the liver of PPARα-deficient mice or PPARα agonist-treated mice. Mice globally lacking adipose triglyceride lipase (ATGL) exhibit a marked defect in TG catabolism associated with impaired PPARα-activated gene expression in the heart and liver, including a drastic reduction in hepatic FGF21 mRNA expression. Here we show that FGF21 mRNA expression is markedly increased in the heart of ATGL-deficient mice accompanied by elevated expression of endoplasmic reticulum (ER) stress markers, which can be reversed by reconstitution of ATGL expression in cardiac muscle. In line with this assumption, the induction of ER stress increases FGF21 mRNA expression in H9C2 cardiomyotubes. Cardiac FGF21 expression was also induced upon fasting of healthy mice, implicating a role of FGF21 in cardiac energy metabolism. To address this question, we generated and characterized mice with cardiac-specific overexpression of FGF21 (CM-Fgf21). FGF21 was efficiently secreted from cardiomyocytes of CM-Fgf21 mice, which moderately affected cardiac TG homeostasis, indicating a role for FGF21 in cardiac energy metabolism. Together, our results show that FGF21 expression is activated upon cardiac ER stress linked to defective lipolysis and that a persistent increase in circulating FGF21 levels interferes with cardiac and whole body energy homeostasis. PMID:25176985

  1. Sleep apnoea.

    PubMed

    Jun, Jonathan C; Chopra, Swati; Schwartz, Alan R

    2016-03-01

    Sleep apnoea is a disorder characterised by repetitive pauses in breathing during sleep caused by airway occlusion (obstructive sleep apnoea) or altered control of breathing (central sleep apnoea). In this Clinical Year in Review, we summarise high-impact research from the past year pertaining to management, diagnosis and cardio-metabolic consequences of sleep apnoea.

  2. Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing

    PubMed Central

    Basner, Mathias; Dinges, David F.; Mollicone, Daniel; Ecker, Adrian; Jones, Christopher W.; Hyder, Eric C.; Di Antonio, Adrian; Savelev, Igor; Kan, Kevin; Goel, Namni; Morukov, Boris V.; Sutton, Jeffrey P.

    2013-01-01

    The success of interplanetary human spaceflight will depend on many factors, including the behavioral activity levels, sleep, and circadian timing of crews exposed to prolonged microgravity and confinement. To address the effects of the latter, we used a high-fidelity ground simulation of a Mars mission to objectively track sleep–wake dynamics in a multinational crew of six during 520 d of confined isolation. Measurements included continuous recordings of wrist actigraphy and light exposure (4.396 million min) and weekly computer-based neurobehavioral assessments (n = 888) to identify changes in the crew's activity levels, sleep quantity and quality, sleep–wake periodicity, vigilance performance, and workload throughout the record-long 17 mo of mission confinement. Actigraphy revealed that crew sedentariness increased across the mission as evident in decreased waking movement (i.e., hypokinesis) and increased sleep and rest times. Light exposure decreased during the mission. The majority of crewmembers also experienced one or more disturbances of sleep quality, vigilance deficits, or altered sleep–wake periodicity and timing, suggesting inadequate circadian entrainment. The results point to the need to identify markers of differential vulnerability to hypokinesis and sleep–wake changes during the prolonged isolation of exploration spaceflight and the need to ensure maintenance of circadian entrainment, sleep quantity and quality, and optimal activity levels during exploration missions. Therefore, successful adaptation to such missions will require crew to transit in spacecraft and live in surface habitats that instantiate aspects of Earth's geophysical signals (appropriately timed light exposure, food intake, exercise) required for temporal organization and maintenance of human behavior. PMID:23297197

  3. Sleep deprivation alters functioning within the neural network underlying the covert orienting of attention.

    PubMed

    Mander, Bryce A; Reid, Kathryn J; Davuluri, Vijay K; Small, Dana M; Parrish, Todd B; Mesulam, M-Marsel; Zee, Phyllis C; Gitelman, Darren R

    2008-06-27

    One function of spatial attention is to enable goal-directed interactions with the environment through the allocation of neural resources to motivationally relevant parts of space. Studies have shown that responses are enhanced when spatial attention is predictively biased towards locations where significant events are expected to occur. Previous studies suggest that the ability to bias attention predictively is related to posterior cingulate cortex (PCC) activation [Small, D.M., et al., 2003. The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention. Neuroimage 18, 633-41]. Sleep deprivation (SD) impairs selective attention and reduces PCC activity [Thomas, M., et al., 2000. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J. Sleep Res. 9, 335-352]. Based on these findings, we hypothesized that SD would affect PCC function and alter the ability to predictively allocate spatial attention. Seven healthy, young adults underwent functional magnetic resonance imaging (fMRI) following normal rest and 34-36 h of SD while performing a task in which attention was shifted in response to peripheral targets preceded by spatially informative (valid), misleading (invalid), or uninformative (neutral) cues. When rested, but not when sleep-deprived, subjects responded more quickly to targets that followed valid cues than those after neutral or invalid cues. Brain activity during validly cued trials with a reaction time benefit was compared to activity in trials with no benefit. PCC activation was greater during trials with a reaction time benefit following normal rest. In contrast, following SD, reaction time benefits were associated with activation in the left intraparietal sulcus, a region associated with receptivity to stimuli at unexpected locations. These changes may render sleep-deprived individuals less able

  4. Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus

    PubMed Central

    Blossom, Sarah J.; Melnyk, Stepan; Cooney, Craig A.; Gilbert, Kathleen M.; James, S. Jill

    2012-01-01

    Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally-relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione depletion in the cerebellum indicating increased sensitivity to oxidative stress. The purpose of this study was to extend our findings and further characterize the impact of TCE exposure on redox homeostasis and biomarkers of oxidative stress in the hippocampus, a brain region prone to oxidative stress. Instead of a continuous exposure, the mice were exposed to water only or two environmentally relevant doses of TCE in the drinking water postnatally from birth until 6 weeks of age. Biomarkers of plasma metabolites in the transsulfuration pathway and the transmethylation pathway of the methionine cycle were also examined. Gene expression of neurotrophins was examined to investigate a possible relationship between oxidative stress, redox imbalance and neurotrophic factor expression with TCE exposure. Our results show that hippocampi isolated from male mice exposed to TCE showed altered glutathione redox homeostasis indicating a more oxidized state. Also observed was a significant, dose dependent increase in glutathione precursors. Plasma from the TCE treated mice showed alterations in metabolites in the transsulfuration and transmethylation pathways indicating redox imbalance and altered methylation capacity. 3-Nitrotyrosine, a biomarker of protein oxidative stress, was also significantly higher in plasma and hippocampus of TCE-exposed mice compared to controls. In contrast, expression of key neurotrophic factors in the hippocampus (BDNF, NGF, and NT-3) was significantly reduced compared to controls. Our results demonstrate that low-level postnatal and early life TCE exposure modulates neurotrophin gene expression in the mouse hippocampus and may provide a mechanism for TCE-mediated neurotoxicity. PMID:22421312

  5. GPR17 gene disruption does not alter food intake or glucose homeostasis in mice

    PubMed Central

    Mastaitis, Jason; Min, Soo; Elvert, Ralf; Kannt, Aimo; Xin, Yurong; Ochoa, Francisca; Gale, Nicholas W.; Valenzuela, David M.; Murphy, Andrew J.; Yancopoulos, George D.; Gromada, Jesper

    2015-01-01

    G protein-coupled receptor 17 (GPR17) was recently reported to be a Foxo1 target in agouti-related peptide (AGRP) neurons. Intracerebroventricular injection of GPR17 agonists induced food intake, whereas administration of an antagonist to the receptor reduced feeding. These data lead to the conclusion that pharmacological modulation of GPR17 has therapeutic potential to treat obesity. Here we report that mice deficient in Gpr17 (Gpr17−/−) have similar food intake and body weight compared with their wild-type littermates. Gpr17−/− mice have normal hypothalamic Agrp mRNA expression, AGRP plasma levels, and metabolic rate. GPR17 deficiency in mice did not affect glucose homeostasis or prevent fat-induced insulin resistance. These data do not support a role for GPR17 in the control of food intake, body weight, or glycemic control. PMID:25624481

  6. Starter Feeding Supplementation Alters Colonic Mucosal Bacterial Communities and Modulates Mucosal Immune Homeostasis in Newborn Lambs

    PubMed Central

    Liu, Junhua; Bian, Gaorui; Sun, Daming; Zhu, Weiyun; Mao, Shengyong

    2017-01-01

    This study aims to investigate the effect of starter feeding supplementation on colonic mucosal bacterial communities and on mucosal immune homeostasis in pre-weaned lambs. We selected eight pairs of 10-day-old lamb twins. One twin was fed breast milk (M, n = 8), while the other was fed breast milk plus starter (M+S, n = 8). The lambs were sacrificed at 56 days age. Colonic content was collected to determine the pH and the concentrations of volatile fatty acids (VFA) and lactate. The colonic mucosa was harvested to characterize the bacterial communities using Illumina MiSeq sequencing and to determine mRNA expression levels of cytokines and toll-like receptors (TLR) using quantitative real-time PCR. The results show that starter feeding decreased luminal pH and increased the concentrations of acetate, propionate, butyrate, total VFA, and lactate in the colon. The principal coordinate analysis (PCA) and analysis of molecular variance show that starter feeding supplementation significantly affected the colonic mucosal bacterial communities with a higher relative abundance of the dominant taxa unclassified S24-7, Oscillibacter, Prevotella, Parabacteroides, Bifidobacterium, Ruminobacter, and Succinivibrio, and a lower proportion of unclassified Ruminococcaceae, RC9_gut_group, Blautia, Phocaeicola, Phascolarctobacterium, unclassified BS11_gut_group, unclassified family_XIII, and Campylobacter in lambs. Meanwhile, starter feeding decreased mRNA expression of TLR4 and cytokines TNF-α and IFN-γ in colonic tissue. Furthermore, the changes in the colonic mucosal mRNA expression of TLR and cytokines were associated with changes in mucosal bacterial composition. These findings may provide new insights into colonic mucosal bacteria and immune homeostasis in developing lambs. PMID:28382025

  7. Partial sleep deprivation does not alter processes involved in semantic word priming: event-related potential evidence.

    PubMed

    Tavakoli, Paniz; Muller-Gass, Alexandra; Campbell, Kenneth

    2015-03-01

    Sleep deprivation has generally been observed to have a detrimental effect on tasks that require sustained attention for successful performance. It might however be possible to counter these effects by altering cognitive strategies. A recent semantic word priming study indicated that subjects used an effortful predictive-expectancy search of semantic memory following normal sleep, but changed to an automatic, effortless strategy following total sleep deprivation. Partial sleep deprivation occurs much more frequently than total sleep deprivation. The present study therefore employed a similar priming task following either 4h of sleep or following normal sleep. The purpose of the study was to determine whether partial sleep deprivation would also lead to a shift in cognitive strategy to compensate for an inability to sustain attention and effortful processing necessary for using the predicative expectancy strategy. Sixteen subjects were presented with word pairs, a prime and a target that were either strongly semantically associated (cat...dog), weakly associated (cow...barn) or not associated (apple...road). The subject's task was to determine if the target word was semantically associated to the prime. A strong priming effect was observed in both conditions. RTs were slower, accuracy lower, and N400 larger to unassociated targets, independent of the amount of sleep. The overall N400 did not differ as a function of sleep. The scalp distribution of the N400 was also similar following both normal sleep and sleep loss. There was thus little evidence of a difference in the processing of the target stimulus as a function of the amount sleep. Similarly, ERPs in the period between the onset of the prime and the subsequent target also did not differ between the normal sleep and sleep loss conditions. In contrast to total sleep deprivation, subjects therefore appeared to use a common predictive expectancy strategy in both conditions. This strategy does however require an

  8. Exposure to TBT increases accumulation of lipids and alters fatty acid homeostasis in the ramshorn snail Marisa cornuarietis.

    PubMed

    Janer, Gemma; Navarro, Juan Carlos; Porte, Cinta

    2007-09-01

    Recent studies have shown that organotin compounds affect lipid homeostasis in vertebrates, probably through interaction with RXR and/or PPARgamma receptors. Molluscs are sensitive species to the toxic effects of tributyltin (TBT), particularly to masculinization, and TBT has been recently shown to bind to molluscs RXR. Thus, we hypothesized that exposure to TBT could affect lipid homeostasis in the ramshorn snail Marisa cornuarietis. For comparative purposes, the synthetic androgen methyl-testosterone (MT) was included in the study due to its masculinization effects, but its lack of binding to the RXR receptor. M. cornuarietis was exposed to different concentrations of TBT (30, 125, 500 ng/L as Sn) and MT (30, 300 ng/L) for 100 days. Females exposed to 500 ng/L TBT showed increased percentage of lipids and increased levels of fatty acids in the digestive gland/gonad complex (2- to 3-fold). In addition, fatty acid profiles were altered in both males and females exposed to 125 and 500 ng/L TBT. These effects were not observed in females exposed to MT. Overall, this work suggest that TBT acts as a potent inducer of lipid and fatty acid accumulation in M. cornuarietis as shown in vertebrate studies earlier, and that sex differences in sensitivity do exist.

  9. Sleep Deprivation Alters Rat Ventral Prostate Morphology, Leading to Glandular Atrophy: A Microscopic Study Contrasted with the Hormonal Assays

    PubMed Central

    Venâncio, Daniel P.; Andersen, Monica L.; Vilamaior, Patricia S. L.; Santos, Fernanda C.; Zager, Adriano; Tufik, Sérgio; Taboga, Sebastião R.; De Mello, Marco T.

    2012-01-01

    We investigated the effect of 96 h paradoxical sleep deprivation (PSD) and 21-day sleep restriction (SR) on prostate morphology using stereological assays in male rats. After euthanasia, the rat ventral prostate was removed, weighed, and prepared for conventional light microscopy. Microscopic analysis of the prostate reveals that morphology of this gland was altered after 96 h of PSD and 21 days of SR, with the most important alterations occurring in the epithelium and stroma in the course of both procedures compared with the control group. Both 96 h PSD and 21-day SR rats showed lower serum testosterone and higher corticosterone levels than control rats. The significance of our result referring to the sleep deprivation was responsible for deep morphological alterations in ventral prostate tissue, like to castration microscopic modifications. This result is due to the marked alterations in hormonal status caused by PSD and SR. PMID:22927719

  10. Short-term sleep deprivation with nocturnal light exposure alters time-dependent glucagon-like peptide-1 and insulin secretion in male volunteers.

    PubMed

    Gil-Lozano, Manuel; Hunter, Paola M; Behan, Lucy-Ann; Gladanac, Bojana; Casper, Robert F; Brubaker, Patricia L

    2016-01-01

    The intestinal L cell is the principal source of glucagon-like peptide-1 (GLP-1), a major determinant of insulin release. Because GLP-1 secretion is regulated in a circadian manner in rodents, we investigated whether the activity of the human L cell is also time sensitive. Rhythmic fluctuations in the mRNA levels of canonical clock genes were found in the human NCI-H716 L cell model, which also showed a time-dependent pattern in their response to well-established secretagogues. A diurnal variation in GLP-1 responses to identical meals (850 kcal), served 12 h apart in the normal dark (2300) and light (1100) periods, was also observed in male volunteers maintained under standard sleep and light conditions. These findings suggest the existence of a daily pattern of activity in the human L cell. Moreover, we separately tested the short-term effects of sleep deprivation and nocturnal light exposure on basal and postprandial GLP-1, insulin, and glucose levels in the same volunteers. Sleep deprivation with nocturnal light exposure disrupted the melatonin and cortisol profiles and increased insulin resistance. Moreover, it also induced profound derangements in GLP-1 and insulin responses such that postprandial GLP-1 and insulin levels were markedly elevated and the normal variation in GLP-1 responses was abrogated. These alterations were not observed in sleep-deprived participants maintained under dark conditions, indicating a direct effect of light on the mechanisms that regulate glucose homeostasis. Accordingly, the metabolic abnormalities known to occur in shift workers may be related to the effects of irregular light-dark cycles on these glucoregulatory pathways.

  11. The 5α-reductase inhibitor finasteride is not associated with alterations in sleep spindles in men referred for polysomnography

    PubMed Central

    Goldstein, Michael R.; Cook, Jesse D.; Plante, David T.

    2015-01-01

    Objective Endogenous neurosteroids that potentiate the GABAA receptor are thought to enhance the generation of sleep spindles. This study tested the hypothesis that the 5α-reductase inhibitor finasteride, an agent associated with reductions in neurosteroids, would be associated with reduced sleep spindles in men referred for polysomnography. Methods Spectral analysis and spindle waveform detection were performed on electroencephalographic (EEG) sleep data in the 11–16Hz sigma band, as well as several subranges, from 27 men taking finasteride and 27 matched comparison patients (ages 18 to 81 years). Results No significant differences between groups were observed for spectral power or sleep spindle morphology measures, including spindle density, amplitude, duration, and integrated spindle activity. Conclusions Contrary to our hypothesis, these findings demonstrate that finasteride is not associated with alterations in sleep spindle range activity or spindle morphology parameters. PMID:26494125

  12. Twenty-four hours, or five days, of continuous sleep deprivation or experimental sleep fragmentation do not alter thirst or motivation for water reward in rats.

    PubMed

    Christie, Michael A; McCarley, Robert W; Strecker, Robert E

    2010-12-25

    effect on breakpoint in the progressive ratio task indicating that 5 days of SD or SF did not alter motivation for water reward. As previously reported, food consumption increased and body weight decreased during the 5 days of SD. in experiment 2. The findings indicate that although sleep disruption increases food consumption and decreases body weight, it does not alter thirst or motivation for water reward. Thus, water restriction is well suited for experiments examining the effect of sleep disruption on reward motivated behavioral tests in rats.

  13. UV-A emission from fluorescent energy-saving light bulbs alters local retinoic acid homeostasis.

    PubMed

    Hellmann-Regen, Julian; Heuser, Isabella; Regen, Francesca

    2013-12-01

    Worldwide bans on incandescent light bulbs (ILBs) drive the use of compact fluorescent light (CFL) bulbs, which emit ultraviolet (UV) radiation. Potential health issues of these light sources have already been discussed, including speculation about the putative biological effects on light exposed tissues, yet the underlying mechanisms remain unclear. We hypothesized photoisomerization of all-trans retinoic acid (at-RA), a highly light sensitive morphogen, into biologically less active isomers, as a mechanism mediating biological effects of CFLs. Local at-RA is anti-carcinogenic, entrains molecular rhythms and is crucial for skin homeostasis. Therefore, we quantified the impact of CFL irradiation on extra- and intracellular levels of RA isomers using an epidermal cell culture model. Moreover, a biologically relevant impact of CFL irradiation was assessed using highly at-RA-sensitive human neuroblastoma cells. Dose-dependent conversion of extra- and intracellular at-RA into the biologically less active 13-cis-isomer was significantly higher in CFL vs. ILB exposure and completely preventable by employing a UV-filter. Moreover, pre-irradiation of culture media by CFL attenuated at-RA-specific effects on cell viability in human at-RA-sensitive cells in a dose-dependent manner. These findings point towards a biological relevance of CFL-induced at-RA decomposition, providing a mechanism for CFL-mediated effects on environmental health.

  14. Altered telomere homeostasis and resistance to skin carcinogenesis in Suv39h1 transgenic mice

    PubMed Central

    Petti, Eleonora; Jordi, Fabian; Buemi, Valentina; Dinami, Roberto; Benetti, Roberta; Blasco, Maria A; Schoeftner, Stefan

    2015-01-01

    The Suv39h1 and Suv39h2 H3K9 histone methyltransferases (HMTs) have a conserved role in the formation of constitutive heterochromatin and gene silencing. Using a transgenic mouse model system we demonstrate that elevated expression of Suv39h1 increases global H3K9me3 levels in vivo. More specifically, Suv39h1 overexpression enhances the imposition of H3K9me3 levels at constitutive heterochromatin at telomeric and major satellite repeats in primary mouse embryonic fibroblasts. Chromatin compaction is paralleled by telomere shortening, indicating that telomere length is controlled by H3K9me3 density at telomeres. We further show that increased Suv39h1 levels result in an impaired clonogenic potential of transgenic epidermal stem cells and Ras/E1A transduced transgenic primary mouse embryonic fibroblasts. Importantly, Suv39h1 overexpression in mice confers resistance to a DMBA/TPA induced skin carcinogenesis protocol that is characterized by the accumulation of activating H-ras mutations. Our results provide genetic evidence that Suv39h1 controls telomere homeostasis and mediates resistance to oncogenic stress in vivo. This identifies Suv39h1 as an interesting target to improve oncogene induced senescence in premalignant lesions. PMID:25789788

  15. Keynote lecture: The genetics and epigenetics of altered proliferative homeostasis in ageing and cancer

    PubMed Central

    Martin, George M.

    2007-01-01

    Ageing mammals are subject to an amazing array of aberrations in proliferative homeostasis. These are of two basic types: the post-maturational failure to adequately replace effete somatic cells (atrophies) and excessive proliferations of somatic cells (hyperplasias). To a surprising degree, these occur side by side within the same tissues and are features of numerous mammalian geriatric disorders. Atrophy is the likely usual initial event, the proliferative response perhaps developing as a secondary, compensatory, initially adaptive reaction. We have little understanding of why this putative compensatory reaction so often fails to be appropriately regulated in ageing mammals, leading to such pathologies as chronic inflammation, fibrosis, metaplasia and neoplasia. Advances in formal genetic analysis, mutagenesis, stem cell biology and epigenetics are likely to provide major new understanding. Stochastic epigenetic shifts in gene expression are of growing interest, particularly in explaining intra-specific variations on rates and patterns of ageing. Nature may well have evolved such random fluctuations in gene expression as a type of group-selectionist adaptive strategy to cope with diverse stochastic environmental challenges. Alternatively, such background “noise” in transcription and translation may simply reflect a type of informational entropy. PMID:17116316

  16. Dietary fish protein alters blood lipid concentrations and hepatic genes involved in cholesterol homeostasis in the rat model.

    PubMed

    Shukla, Anjali; Bettzieche, Anja; Hirche, Frank; Brandsch, Corinna; Stangl, Gabriele I; Eder, Klaus

    2006-10-01

    It is known that various dietary plant proteins are capable of influencing the lipid metabolism of human subjects and animals when compared with casein. Less, however, is known about the effects of fish protein on the cholesterol and triacylglycerol metabolism. Therefore, two experiments were conducted in which rats were fed diets containing 200 g of either fish protein, prepared from Alaska pollack fillets, or casein, which served as control, per kilogram, over 20 and 22 d, respectively. As parameters of lipid metabolism, the concentrations of cholesterol and triacylglycerols in the plasma and liver, the faecal excretion of bile acids and the hepatic expression of genes encoding proteins involved in lipid homeostasis were determined. In both experiments, rats fed fish protein had higher concentrations of cholesteryl esters in the liver, a lower concentration of cholesterol in the HDL fraction (rho > 1.063 kg/l) and lower plasma triacylglycerol concentrations than rats fed casein (P < 0.05). The gene expression analysis performed in experiment 2 showed that rats fed fish protein had higher relative mRNA concentrations of sterol regulatory element-binding protein (SREBP)-2, 3-hydroxy-3-methylglutaryl coenzyme A reductase, LDL receptor, apo AI, scavenger receptor B1 and lecithin-cholesterol-acyltransferase in their liver than did rats fed casein (P < 0.05). The faecal excretion of bile acids and the mRNA concentrations of cholesterol 7alpha-hydroxylase, SREBP-1c and corresponding target genes were not altered. These findings show that fish protein had multiple effects on plasma and liver lipids that were at least in part caused by an altered expression of the hepatic genes involved in lipid homeostasis.

  17. Modulation of polyamine metabolic flux in adipose tissue alters the accumulation of body fat by affecting glucose homeostasis

    PubMed Central

    Liu, Chunli; Perez-Leal, Oscar; Barrero, Carlos; Zahedi, Kamyar; Soleimani, Manoocher; Porter, Carl

    2013-01-01

    The continued rise in obesity despite public education, awareness and policies indicates the need for mechanism-based therapeutic approaches to help control the disease. Our data, in conjunction with other studies, suggest an unexpected role for the polyamine catabolic enzyme spermidine/spermine-N1-acetyltransferase (SSAT) in fat homeostasis. Our previous studies showed that deletion of SSAT greatly exaggerates weight gain and that the transgenic overexpression suppresses weight gain in mice on a high-fat diet. This discovery is substantial but the underlying molecular linkages are only vaguely understood. Here, we used a comprehensive systems biology approach, on white adipose tissue (WAT), to discover that the partition of acetyl-CoA towards polyamine catabolism alters glucose homeostasis and hence, fat accumulation. Comparative proteomics and antibody-based expression studies of WAT in SSAT knockout, wild type and transgenic mice identified nine proteins with an increasing gradient across the genotypes, all of which correlate with acetyl-CoA consumption in polyamine acetylation. Adipose-specific SSAT knockout mice and global SSAT knockout mice on a high-fat diet exhibited similar growth curves and proteomic patterns in their WAT, confirming that attenuated consumption of acetyl-CoA in acetylation of polyamines in adipose tissue drives the obese phenotype of these mice. Analysis of protein expression indicated that the identified changes in the levels of proteins regulating acetyl-CoA consumption occur via the AMP-activated protein kinase pathway. Together, our data suggest that differential expression of SSAT markedly alters acetyl-CoA levels, which in turn trigger a global shift in glucose metabolism in adipose tissue, thus affecting the accumulation of body fat. PMID:23881108

  18. Altered functional Connectivity in Lesional Peduncular Hallucinosis with REM Sleep Behavior Disorder

    PubMed Central

    Geddes, Maiya R.; Tie, Yanmei; Gabrieli, John D. E.; McGinnis, Scott M.; Golby, Alexandra J.; Whitfield-Gabrieli, Susan

    2016-01-01

    Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic infarct. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and PFC was significantly increased in the patient. Focal damage to the left rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways. PMID:26656284

  19. Calcium homeostasis alterations in a mouse model of the Dynamin 2-related centronuclear myopathy

    PubMed Central

    Fraysse, Bodvaël; Guicheney, Pascale

    2016-01-01

    ABSTRACT Autosomal dominant centronuclear myopathy (CNM) is a rare congenital myopathy characterized by centrally located nuclei in muscle fibers. CNM results from mutations in the gene encoding dynamin 2 (DNM2), a large GTPase involved in endocytosis, intracellular membrane trafficking, and cytoskeleton regulation. We developed a knock-in mouse model expressing the most frequent DNM2-CNM mutation; i.e. the KI-Dnm2R465W model. Heterozygous (HTZ) KI-Dnm2 mice progressively develop muscle atrophy, impairment of contractile properties, histopathological abnormalities, and elevated cytosolic calcium concentration. Here, we aim at better characterizing the calcium homeostasis impairment in extensor digitorum longus (EDL) and soleus muscles from adult HTZ KI-Dnm2 mice. We demonstrate abnormal contractile properties and cytosolic Ca2+ concentration in EDL but not soleus muscles showing that calcium impairment is correlated with muscle weakness and might be a determinant factor of the spatial muscle involvement. In addition, the elevated cytosolic Ca2+ concentration in EDL muscles is associated with an increased sarcolemmal permeability to Ca2+ and releasable Ca2+ content from the sarcoplasmic reticulum. However, amplitude and kinetics characteristics of the calcium transient appear unchanged. This suggests that calcium defect is probably not a primary cause of decreased force generation by compromised sarcomere shortening but may be involved in long-term deleterious consequences on muscle physiology. Our results highlight the first pathomechanism which may explain the spatial muscle involvement occurring in DNM2-related CNM and open the way toward development of a therapeutic approach to normalize calcium content. PMID:27870637

  20. Nutrients drive transcriptional changes that maintain metabolic homeostasis but alter genome architecture in Microcystis

    PubMed Central

    Steffen, Morgan M; Dearth, Stephen P; Dill, Brian D; Li, Zhou; Larsen, Kristen M; Campagna, Shawn R; Wilhelm, Steven W

    2014-01-01

    The cyanobacterium Microcystis aeruginosa is a globally distributed bloom-forming organism that degrades freshwater systems around the world. Factors that drive its dispersion, diversification and success remain, however, poorly understood. To develop insight into cellular-level responses to nutrient drivers of eutrophication, RNA sequencing was coupled to a comprehensive metabolomics survey of M. aeruginosa sp. NIES 843 grown in various nutrient-reduced conditions. Transcriptomes were generated for cultures grown in nutrient-replete (with nitrate as the nitrogen (N) source), nitrogen-reduced (with nitrate, urea or ammonium acting as the N sources) and phosphate-reduced conditions. Extensive expression differences (up to 696 genes for urea-grown cells) relative to the control treatment were observed, demonstrating that the chemical variant of nitrogen available to cells affected transcriptional activity. Of particular note, a high number of transposase genes (up to 81) were significantly and reproducibly up-regulated relative to the control when grown on urea. Conversely, phosphorus (P) reduction resulted in a significant cessation in transcription of transposase genes, indicating that variation in nutrient chemistry may influence transcription of transposases and may impact the highly mosaic genomic architecture of M. aeruginosa. Corresponding metabolomes showed comparably few differences between treatments, suggesting broad changes to gene transcription are required to maintain metabolic homeostasis under nutrient reduction. The combined observations provide novel and extensive insight into the complex cellular interactions that take place in this important bloom-forming organism during variable nutrient conditions and highlight a potential unknown molecular mechanism that may drive Microcystis blooms and evolution. PMID:24858783

  1. A brain MRI study of chronic fatigue syndrome: evidence of brainstem dysfunction and altered homeostasis

    PubMed Central

    Barnden, Leighton R; Crouch, Benjamin; Kwiatek, Richard; Burnet, Richard; Mernone, Anacleto; Chryssidis, Steve; Scroop, Garry; Del Fante, Peter

    2011-01-01

    To explore brain involvement in chronic fatigue syndrome (CFS), the statistical parametric mapping of brain MR images has been extended to voxel-based regressions against clinical scores. Using SPM5 we performed voxel-based morphometry (VBM) and analysed T1- and T2-weighted spin-echo MR signal levels in 25 CFS subjects and 25 normal controls (NC). Clinical scores included CFS fatigue duration, a score based on the 10 most common CFS symptoms, the Bell score, the hospital anxiety and depression scale (HADS) anxiety and depression, and hemodynamic parameters from 24-h blood pressure monitoring. We also performed group × hemodynamic score interaction regressions to detect locations where MR regressions were opposite for CFS and NC, thereby indicating abnormality in the CFS group. In the midbrain, white matter volume was observed to decrease with increasing fatigue duration. For T1-weighted MR and white matter volume, group × hemodynamic score interactions were detected in the brainstem [strongest in midbrain grey matter (GM)], deep prefrontal white matter (WM), the caudal basal pons and hypothalamus. A strong correlation in CFS between brainstem GM volume and pulse pressure suggested impaired cerebrovascular autoregulation. It can be argued that at least some of these changes could arise from astrocyte dysfunction. These results are consistent with an insult to the midbrain at fatigue onset that affects multiple feedback control loops to suppress cerebral motor and cognitive activity and disrupt local CNS homeostasis, including resetting of some elements of the autonomic nervous system (ANS). © 2011 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd. PMID:21560176

  2. Altered carnitine homeostasis is associated with decreased mitochondrial function and altered nitric oxide signaling in lambs with pulmonary hypertension

    PubMed Central

    Sharma, Shruti; Sud, Neetu; Wiseman, Dean A.; Carter, A. Lee; Kumar, Sanjiv; Hou, Yali; Rau, Thomas; Wilham, Jason; Harmon, Cynthia; Oishi, Peter; Fineman, Jeffrey R.; Black, Stephen M.

    2008-01-01

    Utilizing aortopulmonary vascular graft placement in the fetal lamb, we have developed a model (shunt) of pulmonary hypertension that mimics congenital heart disease with increased pulmonary blood flow. Our previous studies have identified a progressive development of endothelial dysfunction in shunt lambs that is dependent, at least in part, on decreased nitric oxide (NO) signaling. The purpose of this study was to evaluate the possible role of a disruption in carnitine metabolism in shunt lambs and to determine the effect on NO signaling. Our data indicate that at 2 wk of age, shunt lambs have significantly reduced expression (P < 0.05) of the key enzymes in carnitine metabolism: carnitine palmitoyltransferases 1 and 2 as well as carnitine acetyltransferase (CrAT). In addition, we found that CrAT activity was inhibited due to increased nitration. Furthermore, free carnitine levels were significantly decreased whereas acylcarnitine levels were significantly higher in shunt lambs (P < 0.05). We also found that alterations in carnitine metabolism resulted in mitochondrial dysfunction, since shunt lambs had significantly decreased pyruvate, increased lactate, and a reduced pyruvate/lactate ratio. In pulmonary arterial endothelial cells cultured from juvenile lambs, we found that mild uncoupling of the mitochondria led to a decrease in cellular ATP levels and a reduction in both endothelial NO synthase-heat shock protein 90 (eNOS-HSP90) interactions and NO signaling. Similarly, in shunt lambs we found a loss of eNOS-HSP90 interactions that correlated with a progressive decrease in NO signaling. Our data suggest that mitochondrial dysfunction may play a role in the development of endothelial dysfunction and pulmonary hypertension and increased pulmonary blood flow. PMID:18024721

  3. Deregulation of the pRb-E2F4 axis alters epidermal homeostasis and favors tumor development

    PubMed Central

    Costa, Clotilde; Santos, Mirentxu; Martínez-Fernández, Mónica; Lorz, Corina; Lázaro, Sara; Paramio, Jesús M.

    2016-01-01

    E2F/RB activity is altered in most human tumors. The retinoblastoma family of proteins plays a key role in regulating the progression of the cell cycle from the G1 to S phases. This is achieved through negative regulation of E2F transcription factors, important positive regulators of cell cycle entry. E2F family members are divided into two groups: activators (E2F1-E2F3a) and repressors (E2F3b-E2F8). E2F4 accounts for a large part of the E2F activity and is a main E2F repressor member in vivo. Perturbations in the balance from quiescence towards proliferation contribute to increased mitotic gene expression levels frequently observed in cancer. We have previously reported that combined Rb1-Rbl1 or Rb1-E2f1 ablation in epidermis produces important alterations in epidermal proliferation and differentiation, leading to tumor development. However, the possible roles of E2F4 in this context are still to be determined. Here, we show the absence of any discernible phenotype in the skin of mice lacking of E2f4. In contrast, the inducible loss of Rb1 in the epidermis of E2F4-null mice produced multiple skin abnormalities including altered differentiation and proliferation, spontaneous wounds, carcinoma in situ development and stem cell perturbations. All these phenotypic alterations are associated with extensive gene expression changes, the induction of c-myc and the Akt activation. Moreover the whole transcriptome analyses in comparison with previous models generated also revealed extensive changes in multiple repressive complexes and in transcription factor activity. These results point to E2F4 as a master regulator in multiple steps of epidermal homeostasis in Rb1 absence. PMID:27708231

  4. Alterations in calcium homeostasis and bone during actual and simulated space flight

    NASA Technical Reports Server (NTRS)

    Wronski, T. J.; Morey, E. R.

    1983-01-01

    Skeletal alteration in experimental animals induced by actual and simulated spaceflight are discussed, noting that the main factor contributing to bone loss in growing rats placed in orbit aboard Soviet Cosmos biosatellites appears to be diminished bone formation. Mechanical unloading is seen as the most obvious cause of bone loss in a state of weightlessness. Reference is made to a study by Roberts et al. (1981), which showed that osteoblast differentiation in the periodontal ligament of the maxilla was suppressed in rats flown in space. Since the maxilla lacks a weight-bearing function, this finding indicates that the skeletal alterations associated with orbital flight may be systemic rather than confined to weight-bearing bones. In addition, the skeletal response to simulated weightlessness may also be systemic (wronski and Morey, 1982). In suspended rats, the hindlimbs lost all weight-bearing functions, while the forelimbs maintained contact with the floor of the hypokinetic model. On this basis, it was to be expected that there would be different responses at the two skeletal sites if the observed abnormalities were due to mechanical unloading alone. The changes induced by simulated weightlessness in the proximal tibia and humerus, however, were generally comparable. This evidence for systemic skeletal responses has drawn attention to endocrine factors.

  5. Long-term mTOR inhibitors administration evokes altered calcium homeostasis and platelet dysfunction in kidney transplant patients

    PubMed Central

    López, Esther; Berna-Erro, Alejandro; Bermejo, Nuria; Brull, José María; Martinez, Rocío; Garcia Pino, Guadalupe; Alvarado, Raul; Salido, Ginés María; Rosado, Juan Antonio; Cubero, Juan José; Redondo, Pedro Cosme

    2013-01-01

    The use of the mammal target of rapamycin (mTOR) inhibitors has been consolidated as the therapy of election for preventing graft rejection in kidney transplant patients, despite their immunosuppressive activity is less strong than anti-calcineurin agents like tacrolimus and cyclosporine A. Furthermore, as mTOR is widely expressed, rapamycin (a macrolide antibiotic produced by Streptomyces hygroscopicus) is recommended in patients presenting neoplasia due to its antiproliferative actions. Hence, we have investigated whether rapamycin presents side effects in the physiology of other cell types different from leucocytes, such as platelets. Blood samples were drawn from healthy volunteers and kidney transplant patients long-term medicated with rapamycin: sirolimus and everolimus. Platelets were either loaded with fura-2 or directly stimulated, and immunoassayed or fixed with Laemmli's buffer to perform the subsequent analysis of platelet physiology. Our results indicate that rapamycin evokes a biphasic time-dependent alteration in calcium homeostasis and function in platelets from kidney transplant patients under rapamycin regime, as demonstrated by the reduction in granule secretion observed and subsequent impairment of platelet aggregation in these patients compared with healthy volunteers. Platelet count was also reduced in these patients, thus 41% of patients presented thrombocytopenia. All together our results show that long-term administration of rapamycin to kidney transplant patients evokes alteration in platelet function. PMID:23577651

  6. Deletion of the Snord116/SNORD116 Alters Sleep in Mice and Patients with Prader-Willi Syndrome

    PubMed Central

    Lassi, Glenda; Priano, Lorenzo; Maggi, Silvia; Garcia-Garcia, Celina; Balzani, Edoardo; El-Assawy, Nadia; Pagani, Marco; Tinarelli, Federico; Giardino, Daniela; Mauro, Alessandro; Peters, Jo; Gozzi, Alessandro; Grugni, Graziano; Tucci, Valter

    2016-01-01

    Study Objectives: Sleep-wake disturbances are often reported in Prader-Willi syndrome (PWS), a rare neurodevelopmental syndrome that is associated with paternally-expressed genomic imprinting defects within the human chromosome region 15q11-13. One of the candidate genes, prevalently expressed in the brain, is the small nucleolar ribonucleic acid-116 (SNORD116). Here we conducted a translational study into the sleep abnormalities of PWS, testing the hypothesis that SNORD116 is responsible for sleep defects that characterize the syndrome. Methods: We studied sleep in mutant mice that carry a deletion of Snord116 at the orthologous locus (mouse chromosome 7) of the human PWS critical region (PWScr). In particular, we assessed EEG and temperature profiles, across 24-h, in PWScr m+/p− heterozygous mutants compared to wild-type littermates. High-resolution magnetic resonance imaging (MRI) was performed to explore morphoanatomical differences according to the genotype. Moreover, we complemented the mouse work by presenting two patients with a diagnosis of PWS and characterized by atypical small deletions of SNORD116. We compared the individual EEG parameters of patients with healthy subjects and with a cohort of obese subjects. Results: By studying the mouse mutant line PWScrm+/p−, we observed specific rapid eye movement (REM) sleep alterations including abnormal electroencephalograph (EEG) theta waves. Remarkably, we observed identical sleep/EEG defects in the two PWS cases. We report brain morphological abnormalities that are associated with the EEG alterations. In particular, mouse mutants have a bilateral reduction of the gray matter volume in the ventral hippocampus and in the septum areas, which are pivotal structures for maintaining theta rhythms throughout the brain. In PWScrm+/p− mice we also observed increased body temperature that is coherent with REM sleep alterations in mice and human patients. Conclusions: Our study indicates that paternally expressed

  7. Alterations of orexinergic and melanin-concentrating hormone neurons in experimental sleeping sickness.

    PubMed

    Palomba, M; Seke-Etet, P F; Laperchia, C; Tiberio, L; Xu, Y-Z; Colavito, V; Grassi-Zucconi, G; Bentivoglio, M

    2015-04-02

    neurons in the pathogenesis of sleep/wake alterations in the disease and to their vulnerability to inflammatory signaling.

  8. Crz1p regulates pH homeostasis in Candida glabrata by altering membrane lipid composition.

    PubMed

    Yan, Dongni; Lin, Xiaobao; Qi, Yanli; Liu, Hui; Chen, Xiulai; Liu, Liming; Chen, Jian

    2016-09-23

    The asexual facultative aerobic haploid yeast Candida glabrata is widely used in the industrial production of various organic acids. To elucidate the physiological function of the transcription factor CgCrz1p and its role in tolerance to acid stress we deleted or overexpressed the corresponding gene CgCRZ1 Deletion of CgCRZ1 resulted in a 60% decrease in dry cell weight (DCW) and a 50% drop in cell viability compared to the wild type at pH 2.0. Expression of lipid metabolism-associated genes was also significantly down-regulated. Consequently, the proportion of C18:1 fatty acids, ratio of unsaturated to saturated fatty acids, and ergosterol content decreased by 30%, 46%, and 30%, respectively. Additionally, membrane integrity, fluidity, and H(+)-ATPase activity were reduced by 45%, 9%, and 50%, respectively. In contrast, overexpression of CgCrz1p increased C18:1 and ergosterol content by 16% and 40%, respectively. Overexpression also enhanced membrane integrity, fluidity, and H(+)-ATPase activity by 31%, 6%, and 20%, respectively. Moreover, in the absence of pH buffering, DCW and pyruvate titer increased by 48% and 60%, respectively, compared to the wild type. Together, these results suggest that CgCrz1p regulates tolerance to acidic conditions by altering membrane lipid composition in C. glabrata IMPORTANCE: The present study provides an insight into the metabolism of Candida glabrata under acidic conditions, such as those encountered during industrial production of organic acids. We found that overexpression of the transcription factor CgCrz1p improved viability, biomass, and pyruvate yields at low pH. Analysis of plasma membrane lipid composition indicated that CgCrz1p might play an important role in its integrity and fluidity, and enhanced the pumping of protons in acidic environments. We propose that altering the structure of the cell membrane may provide a successful strategy for increasing C glabrata productivity at low pH.

  9. Deficiency of FK506-binding protein (FKBP) 51 alters sleep architecture and recovery sleep responses to stress in mice.

    PubMed

    Albu, Stefana; Romanowski, Christoph P N; Letizia Curzi, M; Jakubcakova, Vladimira; Flachskamm, Cornelia; Gassen, Nils C; Hartmann, Jakob; Schmidt, Mathias V; Schmidt, Ulrike; Rein, Theo; Holsboer, Florian; Hausch, Felix; Paez-Pereda, Marcelo; Kimura, Mayumi

    2014-04-01

    FK506-binding protein 51 (FKBP51) is a co-chaperone of the glucocorticoid receptor, functionally linked to its activity via an ultra-short negative feedback loop. Thus, FKBP51 plays an important regulatory role in the hypothalamic-pituitary-adrenocortical (HPA) axis necessary for stress adaptation and recovery. Previous investigations illustrated that HPA functionality is influenced by polymorphisms in the gene encoding FKBP51, which are associated with both increased protein levels and depressive episodes. Because FKBP51 is a key molecule in stress responses, we hypothesized that its deletion impacts sleep. To study FKBP51-involved changes in sleep, polysomnograms of FKBP51 knockout (KO) mice and wild-type (WT) littermates were compared at baseline and in the recovery phase after 6-h sleep deprivation (SD) and 1-h restraint stress (RS). Using another set of animals, the 24-h profiles of hippocampal free corticosterone levels were also determined. The most dominant effect of FKBP51 deletion appeared as increased nocturnal wake, where the bout length was significantly extended while non-rapid eye movement sleep (NREMS) and rapid eye movement sleep were rather suppressed. After both SD and RS, FKBP51KO mice exhibited less recovery or rebound sleep than WTs, although slow-wave activity during NREMS was higher in KOs, particularly after SD. Sleep compositions of KOs were nearly opposite to sleep profiles observed in human depression. This might result from lower levels of free corticosterone in FKBP51KO mice, confirming reduced HPA reactivity. The results indicate that an FKBP51 deletion yields a pro-resilience sleep phenotype. FKBP51 could therefore be a therapeutic target for stress-induced mood and sleep disorders.

  10. Prenatal androgen treatment alters body composition and glucose homeostasis in male rats.

    PubMed

    Lazic, Milos; Aird, Fraser; Levine, Jon E; Dunaif, Andrea

    2011-03-01

    Prenatal androgen produces many reproductive and metabolic features of polycystic ovary syndrome in female rodents, sheep, and monkeys. We investigated the impact of such prenatal treatment in adult male rats. Pregnant dams received free testosterone (T; aromatizable androgen), dihydrotestosterone (D; nonaromatizable androgen), or vehicle control (C) on embryonic days 16-19. Neither of the prenatal androgen treatments resulted in increased body weight from weaning to age 65 days in males. However, at 65 days, there were significant increases in retroperitoneal (P < 0.001 T versus C; P < 0.05 D versus C), epididymal (P < 0.05 T versus C), and subcutaneous (P < 0.01 T versus C) fat pads in prenatally androgenized males. While both androgens altered body composition, subcutaneous fat depots increased only in T males. T males had elevated glucose levels (P < 0.01) compared to C males. There were no differences among the three groups in insulin sensitivity, circulating lipid and leptin levels, or hepatic triglyceride content. Real-time PCR analysis of insulin signaling pathway genes in retroperitoneal fat revealed a transcriptional downregulation of adipsin and insulin receptor substrate-1 in T and α-1D adrenergic receptor in D compared to C males. We conclude that transient exposure to androgen excess in utero increases body fat in adult male rats. Only T males exhibit increased circulating glucose levels and subcutaneous fat suggesting that these changes may be mediated by aromatization of androgen to estrogen rather than by direct androgenic actions.

  11. Altered systemic bile acid homeostasis contributes to liver disease in pediatric patients with intestinal failure

    PubMed Central

    Xiao, Yong-Tao; Cao, Yi; Zhou, Ke-Jun; Lu, Li-Na; Cai, Wei

    2016-01-01

    Intestinal failure (IF)-associated liver disease (IFALD), as a major complication, contributes to significant morbidity in pediatric IF patients. However, the pathogenesis of IFALD is still uncertain. We here investigate the roles of bile acid (BA) dysmetabolism in the unclear pathogenesis of IFALD. It found that the histological evidence of pediatric IF patients exhibited liver injury, which was characterized by liver bile duct proliferation, inflammatory infiltration, hepatocyte apoptosis and different stages of fibrosis. The BA compositions were altered in serum and liver of pediatric IF patients, as reflected by a primary BA dominant composition. In IF patients, the serum FGF19 levels decreased significantly, and were conversely correlated with ileal inflammation grades (r = −0.50, p < 0.05). In ileum, the inflammation grades were inversely associated with farnesoid X receptor (FXR) expression (r = −0.55, p < 0.05). In liver, the expression of induction of the rate-limiting enzyme in bile salt synthesis, cytochrome P450 7a1 (CYP7A1) increased evidently. In conclusion, ileum inflammation decreases FXR expression corresponding to reduce serum FGF19 concentration, along with increased hepatic bile acid synthesis, leading to liver damages in IF patients. PMID:27976737

  12. Bmp6 Regulates Retinal Iron Homeostasis and Has Altered Expression in Age-Related Macular Degeneration

    PubMed Central

    Hadziahmetovic, Majda; Song, Ying; Wolkow, Natalie; Iacovelli, Jared; Kautz, Leon; Roth, Marie-Paule; Dunaief, Joshua L.

    2011-01-01

    Iron-induced oxidative stress causes hereditary macular degeneration in patients with aceruloplasminemia. Similarly, retinal iron accumulation in age-related macular degeneration (AMD) may exacerbate the disease. The cause of retinal iron accumulation in AMD is poorly understood. Given that bone morphogenetic protein 6 (Bmp6) is a major regulator of systemic iron, we examined the role of Bmp6 in retinal iron regulation and in AMD pathogenesis. Bmp6 was detected in the retinal pigment epithelium (RPE), a major site of pathology in AMD. In cultured RPE cells, Bmp6 was down-regulated by oxidative stress and up-regulated by iron. Intraocular Bmp6 protein injection in mice up-regulated retinal hepcidin, an iron regulatory hormone, and altered retinal labile iron levels. Bmp6−/− mice had age-dependent retinal iron accumulation and degeneration. Postmortem RPE from patients with early AMD exhibited decreased Bmp6 levels. Because oxidative stress is associated with AMD pathogenesis and down-regulates Bmp6 in cultured RPE cells, the diminished Bmp6 levels observed in RPE cells in early AMD may contribute to iron build-up in AMD. This may in turn propagate a vicious cycle of oxidative stress and iron accumulation, exacerbating AMD and other diseases with hereditary or acquired iron excess. PMID:21703414

  13. Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress.

    PubMed

    Vojta, Petr; Kokáš, Filip; Husičková, Alexandra; Grúz, Jiří; Bergougnoux, Veronique; Marchetti, Cintia F; Jiskrová, Eva; Ježilová, Eliška; Mik, Václav; Ikeda, Yoshihisa; Galuszka, Petr

    2016-09-25

    Cytokinin plant hormones have been shown to play an important role in plant response to abiotic stresses. Herein, we expand upon the findings of Pospíšilová et al. [30] regarding preparation of novel transgenic barley lines overexpressing cytokinin dehydrogenase 1 gene from Arabidopsis under the control of mild root-specific promotor of maize β-glycosidase. These lines showed drought-tolerant phenotype mainly due to alteration of root architecture and stronger lignification of root tissue. A detailed transcriptomic analysis of roots of transgenic plants subjected to revitalization after drought stress revealed attenuated response through the HvHK3 cytokinin receptor and up-regulation of two transcription factors implicated in stress responses and abscisic acid sensitivity. Increased expression of several genes involved in the phenylpropanoid pathway as well as of genes encoding arogenate dehydratase/lyase participating in phenylalanine synthesis was found in roots during revitalization. Although more precursors of lignin synthesis were present in roots after drought stress, final lignin accumulation did not change compared to that in plants grown under optimal conditions. Changes in transcriptome indicated a higher auxin turnover in transgenic roots. The same analysis in leaves revealed that genes encoding putative enzymes responsible for production of jasmonates and other volatile compounds were up-regulated. Although transgenic barley leaves showed lower chlorophyll content and down-regulation of genes encoding proteins involved in photosynthesis than did wild-type plants when cultivated under optimal conditions, they did show a tendency to return to initial photochemical activities faster than did wild-type leaves when re-watered after severe drought stress. In contrast to optimal conditions, comparative transcriptomic analysis of revitalized leaves displayed up-regulation of genes encoding enzymes and proteins involved in photosynthesis, and especially

  14. REM sleep deprivation reverses neurochemical and other depressive-like alterations induced by olfactory bulbectomy.

    PubMed

    Maturana, Maira J; Pudell, Cláudia; Targa, Adriano D S; Rodrigues, Laís S; Noseda, Ana Carolina D; Fortes, Mariana H; Dos Santos, Patrícia; Da Cunha, Cláudio; Zanata, Sílvio M; Ferraz, Anete C; Lima, Marcelo M S

    2015-02-01

    There is compelling evidence that sleep deprivation (SD) is an effective strategy in promoting antidepressant effects in humans, whereas few studies were performed in relevant animal models of depression. Acute administration of antidepressants in humans and rats generates a quite similar effect, i.e., suppression of rapid eye movement (REM) sleep. Then, we decided to investigate the neurochemical alterations generated by a protocol of rapid eye movement sleep deprivation (REMSD) in the notably known animal model of depression induced by the bilateral olfactory bulbectomy (OBX). REMSD triggered antidepressant mechanisms such as the increment of brain-derived neurotrophic factor (BDNF) levels, within the substantia nigra pars compacta (SNpc), which were strongly correlated to the swimming time (r = 0.83; P < 0.0001) and hippocampal serotonin (5-HT) content (r = 0.66; P = 0.004). Moreover, there was a strong correlation between swimming time and hippocampal 5-HT levels (r = 0.70; P = 0.003), strengthen the notion of an antidepressant effect associated to REMSD in the OBX rats. In addition, REMSD robustly attenuated the hippocampal 5-HT deficiency produced by the OBX procedure. Regarding the rebound (REB) period, we observed the occurrence of a sustained antidepressant effect, indicated mainly by the swimming and climbing times which could be explained by the maintenance of the increased nigral BDNF expression. Hence, hippocampal 5-HT levels remained enhanced in the OBX group after this period. We suggested that the neurochemical complexity inflicted by the OBX model, counteracted by REMSD, is directly correlated to the nigral BDNF expression and hippocampal 5-HT levels. The present findings provide new information regarding the antidepressant mechanisms triggered by REMSD.

  15. A detailed assessment of alterations in bone turnover, calcium homeostasis, and bone density in normal pregnancy.

    PubMed

    Black, A J; Topping, J; Durham, B; Farquharson, R G; Fraser, W D

    2000-03-01

    The effects of pregnancy on bone turnover and the potential risk of developing an osteoporotic fracture in pregnancy are controversial. Utilizing biochemical markers of bone formation and resorption and dual-energy X-ray absorptiometry (DEXA), bone turnover before, during, and after pregnancy was studied in detail. Ten women (mean age 30 years; range 23-40) were recruited. Prepregnancy data were obtained and then a review was performed at 2-week intervals , once pregnancy was confirmed, until 14 weeks of gestation and thereafter monthly until term. Bone mineral density (BMD) was estimated by DEXA scanning of hip, spine, and forearm preconception and postpartum. In addition, BMD of the forearm at 14 weeks and 28 weeks gestation was obtained. All pregnancies had a successful outcome. Urinary free pyridinium cross-links, free pyridinoline (fPyr) and free deoxypyridinoline (fDPyr), were normal prepregnancy (mean [+/-SD]) 14.6 nmol/mmol (1.8) and 5.0 nmol/mmol (1.0) creat, respectively. By 14 weeks, they had increased to 20.8 nmol/mmol (4.3) and 6.1 nmol mmol (1.4) (both p < 0.02) and by 28 weeks to 26.3 nmol/mmol (5.6) and 7.4 nmol/mmol (1.6) (both p < 0.01). The ratio of fPyr to fDPyr remained constant. A similar significant increase was observed in N-telopeptide (NTx). Bone formation was assessed by measurement of carboxyterminal propeptide of type 1 collagen (P1CP) and bone-specific alkaline phosphatase (BSAP). Neither were altered significantly before 28 weeks, but subsequently mean P1CP increased from 110 microg/liter (23) to 235 microg/liter (84) at 38 weeks and mean BSAP increased from 11.1 U/liter (5.0) to 28.6 U/liter (11.1) (p < 0.01 for both variables). Lumbar spine (L1-L4) BMD decreased from a prepregnancy mean of 1.075 g/cm (0.115) to 1.054 g/cm2 (0.150) postpartum (p < 0.05). Total hip BMD decreased from a prepregnancy mean of 0.976 g/cm2 (0.089) to 0.941 g/cm2 (0.097) (p < 0.05). Forearm BMD at midradius, one-third distal and ultradistal decreased but

  16. Neutral buoyancy and sleep-deprived serum factors alter expression of cytokines regulating osteogenesis

    NASA Astrophysics Data System (ADS)

    Gorczynski, Reginald M.; Gorczynski, Christopher P.; Gorczynski, Laura Y.; Hu, Jiang; Lu, Jin; Manuel, Justin; Lee, Lydia

    2005-05-01

    We examined expression of genes associated with cytokine production, and genes implicated in regulating bone metabolism, in bone stromal and osteoblast cells incubated under standard ground conditions and under conditions of neutral buoyancy, and in the presence/absence of serum from normal or sleep-deprived mice. We observed a clear interaction between these two conditions (exposure to neutral buoyancy and serum stimulation) in promoting enhanced osteoclastogenesis. Both conditions independently altered expression of a number of cytokines implicated in the regulation of bone metabolism. However, using stromal cells from IL-1 and TNF α cytokine r KO mice, we concluded that the increased bone loss under microgravity conditions was not primarily cytokine mediated.

  17. Chronic alcohol exposure alters transcription broadly in a key integrative brain nucleus for homeostasis: the nucleus tractus solitarius.

    PubMed

    Covarrubias, Maria Yolanda; Khan, Rishi L; Vadigepalli, Rajanikanth; Hoek, Jan B; Schwaber, James S

    2005-12-14

    Chronic exposure to alcohol modifies physiological processes in the brain, and the severe symptoms resulting from sudden removal of alcohol from the diet indicate that these modifications are functionally important. We investigated the gene expression patterns in response to chronic alcohol exposure (21-28 wk) in the rat nucleus tractus solitarius (NTS), a brain nucleus with a key integrative role in homeostasis and cardiorespiratory function. Using methods and an experimental design optimized for detecting transcriptional changes less than twofold, we found 575 differentially expressed genes. We tested these genes for significant associations with physiological functions and signaling pathways using Gene Ontology terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, respectively. Chronic alcohol exposure resulted in significant NTS gene regulation related to the general processes of synaptic transmission, intracellular signaling, and cation transport as well as specific neuronal functions including plasticity and seizure behavior that could be related to alcohol withdrawal symptoms. The differentially expressed genes were also significantly enriched for enzymes of lipid metabolism, glucose metabolism, oxidative phosphorylation, MAP kinase signaling, and calcium signaling pathways from KEGG. Intriguingly, many of the genes we found to be differentially expressed in the NTS are known to be involved in alcohol-induced oxidative stress and/or cell death. The study provides evidence of very extensive alterations of physiological gene expression in the NTS in the adapted state to chronic alcohol exposure.

  18. Altered glucose and lipid homeostasis in liver and adipose tissue pre-dispose inducible NOS knockout mice to insulin resistance

    PubMed Central

    Kanuri, Babu Nageswararao; Kanshana, Jitendra S.; Rebello, Sanjay C.; Pathak, Priya; Gupta, Anand P.; Gayen, Jiaur R.; Jagavelu, Kumaravelu; Dikshit, Madhu

    2017-01-01

    On the basis of diet induced obesity and KO mice models, nitric oxide is implied to play an important role in the initiation of dyslipidemia induced insulin resistance. However, outcomes using iNOS KO mice have so far remained inconclusive. The present study aimed to assess IR in iNOS KO mice after 5 weeks of LFD feeding by monitoring body composition, energy homeostasis, insulin sensitivity/signaling, nitrite content and gene expressions changes in the tissues. We found that body weight and fat content in KO mice were significantly higher while the respiratory exchange ratio (RER), volume of carbon dioxide (VCO2), and heat production were lower as compared to WT mice. Furthermore, altered systemic glucose tolerance, tissue insulin signaling, hepatic gluconeogenesis, augmented hepatic lipids, adiposity, as well as gene expression regulating lipid synthesis, catabolism and efflux were evident in iNOS KO mice. Significant reduction in eNOS and nNOS gene expression, hepatic and adipose tissue nitrite content, circulatory nitrite was also observed. Oxygen consumption rate of mitochondrial respiration has remained unaltered in KO mice as measured using extracellular flux analyzer. Our findings establish a link between the NO status with systemic and tissue specific IR in iNOS KO mice at 5 weeks. PMID:28106120

  19. Sleep loss alters synaptic and intrinsic neuronal properties in mouse prefrontal cortex

    PubMed Central

    Winters, Bradley D.; Huang, Yanhua H.; Dong, Yan; Krueger, James M.

    2011-01-01

    Despite sleep-loss-induced cognitive deficits, little is known about the cellular adaptations that occur with sleep loss. We used brain slices obtained from mice that were sleep deprived for 8 h to examine the electrophysiological effects of sleep deprivation (SD). We employed a modified pedestal (flowerpot) over water method for SD that eliminated rapid eye movement sleep and greatly reduced non-rapid eye movement sleep. In layer V/VI pyramidal cells of the medial prefrontal cortex, miniature excitatory post synaptic current amplitude was slightly reduced, miniature inhibitory post synaptic currents were unaffected, and intrinsic membrane excitability was increased after SD. PMID:21962531

  20. Sleep loss alters synaptic and intrinsic neuronal properties in mouse prefrontal cortex.

    PubMed

    Winters, Bradley D; Huang, Yanhua H; Dong, Yan; Krueger, James M

    2011-10-28

    Despite sleep-loss-induced cognitive deficits, little is known about the cellular adaptations that occur with sleep loss. We used brain slices obtained from mice that were sleep deprived for 8h to examine the electrophysiological effects of sleep deprivation (SD). We employed a modified pedestal (flowerpot) over water method for SD that eliminated rapid eye movement sleep and greatly reduced non-rapid eye movement sleep. In layer V/VI pyramidal cells of the medial prefrontal cortex, miniature excitatory post synaptic current amplitude was slightly reduced, miniature inhibitory post synaptic currents were unaffected, and intrinsic membrane excitability was increased after SD.

  1. Alteration of local adipose tissue trace element homeostasis as a possible mechanism of obesity-related insulin resistance.

    PubMed

    Tinkov, Alexey A; Sinitskii, Anton I; Popova, Elizaveta V; Nemereshina, Olga N; Gatiatulina, Evgenia R; Skalnaya, Margarita G; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-09-01

    The mechanisms of association between obesity and the related metabolic disturbances in general and insulin resistance in particular are extensively studied. Taking into account a key role of adipose tissue insulin resistance in the development of systemic obesity-related insulin resistance, the estimation of mechanisms linking increased adiposity and impaired insulin signaling in adipocytes will allow to develop novel prophylactic and therapeutic approaches to treatment of these states. A number of trace elements like chromium, zinc, and vanadium have been shown to take part in insulin signaling via various mechanisms. Taking into account a key role of adipocyte in systemic carbohydrate homeostasis it can be asked if trace element homeostasis in adipose tissue may influence regulatory mechanisms of glucose metabolism. We hypothesize that caloric excess through currently unknown mechanisms results in decreased chromium, vanadium, and zinc content in adipocytes. Decreased content of trace elements in the adipose tissue causes impairment of intra-adipocyte insulin signaling subsequently leading to adipose tissue insulin resistance. The latter significantly contributes to systemic insulin resistance and further metabolic disruption in obesity. It is also possible that decreased adipose tissue trace element content is associated with dysregulation of insulin-sensitizing and proinflammatory adipokines also leading to insulin resistance. We hypothesize that insulin resistance and adipokine dysbalance increase the severity of obesity subsequently aggravating alteration of adipose tissue trace element balance. Single indications of high relative adipose tissue trace element content, decreased Cr, V, and Zn content in obese adipose tissue, and tight association between fat tissue chromium, vanadium, and zinc levels and metabolic parameters in obesity may be useful for hypothesis validation. If our hypothesis will be confirmed by later studies, adipose tissue chromium

  2. Mice Lacking the Circadian Modulators SHARP1 and SHARP2 Display Altered Sleep and Mixed State Endophenotypes of Psychiatric Disorders

    PubMed Central

    Shahmoradi, Ali; Reinecke, Lisa; Kroos, Christina; Wichert, Sven P.; Oster, Henrik; Wehr, Michael C.; Taneja, Reshma; Hirrlinger, Johannes; Rossner, Moritz J.

    2014-01-01

    Increasing evidence suggests that clock genes may be implicated in a spectrum of psychiatric diseases, including sleep and mood related disorders as well as schizophrenia. The bHLH transcription factors SHARP1/DEC2/BHLHE41 and SHARP2/DEC1/BHLHE40 are modulators of the circadian system and SHARP1/DEC2/BHLHE40 has been shown to regulate homeostatic sleep drive in humans. In this study, we characterized Sharp1 and Sharp2 double mutant mice (S1/2-/-) using online EEG recordings in living animals, behavioral assays and global gene expression profiling. EEG recordings revealed attenuated sleep/wake amplitudes and alterations of theta oscillations. Increased sleep in the dark phase is paralleled by reduced voluntary activity and cortical gene expression signatures reveal associations with psychiatric diseases. S1/2-/- mice display alterations in novelty induced activity, anxiety and curiosity. Moreover, mutant mice exhibit impaired working memory and deficits in prepulse inhibition resembling symptoms of psychiatric diseases. Network modeling indicates a connection between neural plasticity and clock genes, particularly for SHARP1 and PER1. Our findings support the hypothesis that abnormal sleep and certain (endo)phenotypes of psychiatric diseases may be caused by common mechanisms involving components of the molecular clock including SHARP1 and SHARP2. PMID:25340473

  3. Intermittent hypoxia alters gut microbiota diversity in a mouse model of sleep apnoea.

    PubMed

    Moreno-Indias, Isabel; Torres, Marta; Montserrat, Josep M; Sanchez-Alcoholado, Lidia; Cardona, Fernando; Tinahones, Francisco J; Gozal, David; Poroyko, Valeryi A; Navajas, Daniel; Queipo-Ortuño, Maria I; Farré, Ramon

    2015-04-01

    We assessed whether intermittent hypoxia, which emulates one of the hallmarks of obstructive sleep apnoea (OSA), leads to altered faecal microbiome in a murine model. In vivo partial pressure of oxygen was measured in colonic faeces during intermittent hypoxia in four anesthetised mice. 10 mice were subjected to a pattern of chronic intermittent hypoxia (20 s at 5% O2 and 40 s at room air for 6 h·day(-1)) for 6 weeks and 10 mice served as normoxic controls. Faecal samples were obtained and microbiome composition was determined by 16S rRNA pyrosequencing and bioinformatic analysis by Quantitative Insights into Microbial Ecology. Intermittent hypoxia exposures translated into hypoxia/re-oxygenation patterns in the faeces proximal to the bowel epithelium (<200 μm). A significant effect of intermittent hypoxia on global microbial community structure was found. Intermittent hypoxia increased the α-diversity (Shannon index, p<0.05) and induced a change in the gut microbiota (ANOSIM analysis of β-diversity, p<0.05). Specifically, intermittent hypoxia-exposed mice showed a higher abundance of Firmicutes and a smaller abundance of Bacteroidetes and Proteobacteria phyla than controls. Faecal microbiota composition and diversity are altered as a result of intermittent hypoxia realistically mimicking OSA, suggesting the possibility that physiological interplays between host and gut microbiota could be deregulated in OSA.

  4. Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice.

    PubMed

    Jara, Adam; Liu, Xingbo; Sim, Don; Benner, Chance M; Duran-Ortiz, Silvana; Qian, Yanrong; List, Edward O; Berryman, Darlene E; Kim, Jason K; Kopchick, John J

    2016-05-01

    GH is considered necessary for the proper development and maintenance of several tissues, including the heart. Studies conducted in both GH receptor null and bovine GH transgenic mice have demonstrated specific cardiac structural and functional changes. In each of these mouse lines, however, GH-induced signaling is altered systemically, being decreased in GH receptor null mice and increased in bovine GH transgenic mice. Therefore, to clarify the direct effects GH has on cardiac tissue, we developed a tamoxifen-inducible, cardiac-specific GHR disrupted (iC-GHRKO) mouse line. Cardiac GH receptor was disrupted in 4-month-old iC-GHRKO mice to avoid developmental effects due to perinatal GHR gene disruption. Surprisingly, iC-GHRKO mice showed no difference vs controls in baseline or postdobutamine stress test echocardiography measurements, nor did iC-GHRKO mice show differences in longitudinal systolic blood pressure measurements. Interestingly, iC-GHRKO mice had decreased fat mass and improved insulin sensitivity at 6.5 months of age. By 12.5 months of age, however, iC-GHRKO mice no longer had significant decreases in fat mass and had developed glucose intolerance and insulin resistance. Furthermore, investigation via immunoblot analysis demonstrated that iC-GHRKO mice had appreciably decreased insulin stimulated Akt phosphorylation, specifically in heart and liver, but not in epididymal white adipose tissue. These changes were accompanied by a decrease in circulating IGF-1 levels in 12.5-month-old iC-GHRKO mice. These data indicate that whereas the disruption of cardiomyocyte GH-induced signaling in adult mice does not affect cardiac function, it does play a role in systemic glucose homeostasis, in part through modulation of circulating IGF-1.

  5. The common inhaled anesthetic isoflurane increases aggregation of huntingtin and alters calcium homeostasis in a cell model of Huntington's disease

    SciTech Connect

    Wang Qiujun; Liang Ge; Yang Hui; Wang Shouping; Eckenhoff, Maryellen F.; Wei Huafeng

    2011-02-01

    Isoflurane is known to increase {beta}-amyloid aggregation and neuronal damage. We hypothesized that isoflurane will have similar effects on the polyglutamine huntingtin protein and will cause alterations in intracellular calcium homeostasis. We tested this hypothesis in striatal cells from the expanded glutamine huntingtin knock-in mouse (STHdh{sup Q111/Q111}) and wild type (STHdh{sup Q7/Q7}) striatal neurons. The primary cultured neurons were exposed for 24 h to equipotent concentrations of isoflurane, sevoflurane, and desflurane in the presence or absence of extracellular calcium and with or without xestospongin C, a potent endoplasmic reticulum inositol 1,4,5-trisphosphate (InsP{sub 3}) receptor antagonist. Aggregation of huntingtin protein, cell viability, and calcium concentrations were measured. Isoflurane, sevoflurane, and desflurane all increased the aggregation of huntingtin in STHdh{sup Q111/Q111} cells, with isoflurane having the largest effect. Isoflurane induced greater calcium release from the ER and relatively more cell damage in the STHdh{sup Q111/Q111} huntingtin cells than in the wild type STHdh{sup Q7/Q7} striatal cells. However, sevoflurane and desflurane caused less calcium release from the ER and less cell damage. Xestospongin C inhibited the isoflurane-induced calcium release from the ER, aggregation of huntingtin, and cell damage in the STHdh{sup Q111/Q111} cells. In summary, the Q111 form of huntingtin increases the vulnerability of striatal neurons to isoflurane neurotoxicity through combined actions on the ER IP{sub 3} receptors. Calcium release from the ER contributes to the anesthetic induced huntingtin aggregation in STHdh{sup Q111/Q111} striatal cells.

  6. Overexpression of the Novel Arabidopsis Gene At5g02890 Alters Inflorescence Stem Wax Composition and Affects Phytohormone Homeostasis

    PubMed Central

    Xu, Liping; Zeisler, Viktoria; Schreiber, Lukas; Gao, Jie; Hu, Kaining; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong

    2017-01-01

    The cuticle is composed of cutin and cuticular wax. It covers the surfaces of land plants and protects them against environmental damage. At5g02890 encodes a novel protein in Arabidopsis thaliana. In the current study, protein sequence analysis showed that At5g02890 is highly conserved in the Brassicaceae. Arabidopsis lines overexpressing At5g02890 (OE-At5g02890 lines) and an At5g02890 orthologous gene from Brassica napus (OE-Bn1 lines) exhibited glossy stems. Chemical analysis revealed that overexpression of At5g02890 caused significant reductions in the levels of wax components longer than 28 carbons (C28) in inflorescence stems, whereas the levels of wax molecules of chain length C28 or shorter were significantly increased. Transcriptome analysis indicated that nine of 11 cuticular wax synthesis-related genes with different expression levels in OE-At5g02890 plants are involved in very-long-chain fatty acid (VLCFA) elongation. At5g02890 is localized to the endoplasmic reticulum (ER), which is consistent with its function in cuticular wax biosynthesis. These results demonstrate that the overexpression of At5g02890 alters cuticular wax composition by partially blocking VLCFA elongation of C28 and higher. In addition, detailed analysis of differentially expressed genes associated with plant hormones and endogenous phytohormone levels in wild-type and OE-At5g02890 plants indicated that abscisic acid (ABA), jasmonic acid (JA), and jasmonoyl-isoleucine (JA-Ile) biosynthesis, as well as polar auxin transport, were also affected by overexpression of At5g02890. Taken together, these findings indicate that overexpression of At5g02890 affects both cuticular wax biosynthesis and phytohormone homeostasis in Arabidopsis. PMID:28184233

  7. Altered thalamocortical and intra-thalamic functional connectivity during light sleep compared with wake.

    PubMed

    Hale, Joanne R; White, Thomas P; Mayhew, Stephen D; Wilson, Rebecca S; Rollings, David T; Khalsa, Sakhvinder; Arvanitis, Theodoros N; Bagshaw, Andrew P

    2016-01-15

    The transition from wakefulness into sleep is accompanied by modified activity in the brain's thalamocortical network. Sleep-related decreases in thalamocortical functional connectivity (FC) have previously been reported, but the extent to which these changes differ between thalamocortical pathways, and patterns of intra-thalamic FC during sleep remain untested. To non-invasively investigate thalamocortical and intra-thalamic FC as a function of sleep stage we recorded simultaneous EEG-fMRI data in 13 healthy participants during their descent into light sleep. Visual scoring of EEG data permitted sleep staging. We derived a functional thalamic parcellation during wakefulness by computing seed-based FC, measured between thalamic voxels and a set of pre-defined cortical regions. Sleep differentially affected FC between these distinct thalamic subdivisions and their associated cortical projections, with significant increases in FC during sleep restricted to sensorimotor connections. In contrast, intra-thalamic FC, both within and between functional thalamic subdivisions, showed significant increases with advancement into sleep. This work demonstrates the complexity and state-specific nature of functional thalamic relationships--both with the cortex and internally--over the sleep/wake cycle, and further highlights the importance of a thalamocortical focus in the study of sleep mechanisms.

  8. Gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters retinoid homeostasis in maternal and perinatal tissues of the Holtzman rat

    SciTech Connect

    Kransler, Kevin M. Tonucci, David A. McGarrigle, Barbara P. Napoli, Joseph L. Olson, James R.

    2007-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), one of the most widely studied environmental contaminants, causes a variety of adverse health effects including teratogenesis and altered development which may be related to disruptions in retinoid homeostasis. The purpose of this study was to determine the effect that gestational administration of TCDD has on retinoid homeostasis in both pregnant Holtzman rats and developing fetuses and neonates. A single oral dose of TCDD (0, 1.5, 3, or 6 {mu}g/kg) was administered to pregnant rats on gestation day 10, with fetuses analyzed on gestation days 17 and 20, and neonates analyzed on post natal day 7. Exposure to TCDD generally produced decreases in the concentrations of retinyl esters, such as retinyl palmitate, and retinol in maternal and perinatal liver and lung, while increasing levels in the maternal kidney. Additionally, perinatal hepatic retinol binding protein 1-dependent retinyl ester hydrolysis was also decrease by TCDD. Sensitivity of the developing perinates to TCDD appeared to have an age-related component demonstrated by an increased rate of mortality and significant alterations to body weight and length on post natal day 7 relative to that observed at gestation day 20. A unique observation made in this study was a significant decrease in lung weight observed in the perinates exposed to TCDD. Taken together, these data demonstrate that TCDD significantly alters retinoid homeostasis in tissues of the developing fetus and neonate, suggesting that their unique sensitivity to TCDD may at least be in part the result of altered retinoid homeostasis.

  9. Homeostasis in Primates in the Hyperdynamic Environment. [circadian timekeeping and effects of lower body positive pressure on sleep

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.

    1985-01-01

    The influence of chronic centrifugation upon the homestatic regulation of the circadian timekeeping system was examined. The interactions of body temperature regulation and the behavioral state of arousal were studied by evaluating the influence of cephalic fluid shifts induced by lower body positive air pressure (LBPP), upon these systems. The small diurnal squirrel monkey (Saimiri sciureus) was used as the non-human primate model. Results show that the circadian timekeeping system of these primates is functional in the hyperdynamic environment, however, some of its components appear to be regulated at different homeostatic levels. The LBPP resulted in an approximate 0.7 C decrease in DBT (p 0.01). However, although on video some animals appeared drowsy during LBPP, sleep recording revealed no significant changes in state of arousal. Thus, the physiological mechanisms underlying this lowering of body temperature can be independent of the arousal state.

  10. Osmotic Homeostasis

    PubMed Central

    Zeidel, Mark L.

    2015-01-01

    Alterations in water homeostasis can disturb cell size and function. Although most cells can internally regulate cell volume in response to osmolar stress, neurons are particularly at risk given a combination of complex cell function and space restriction within the calvarium. Thus, regulating water balance is fundamental to survival. Through specialized neuronal “osmoreceptors” that sense changes in plasma osmolality, vasopressin release and thirst are titrated in order to achieve water balance. Fine-tuning of water absorption occurs along the collecting duct, and depends on unique structural modifications of renal tubular epithelium that confer a wide range of water permeability. In this article, we review the mechanisms that ensure water homeostasis as well as the fundamentals of disorders of water balance. PMID:25078421

  11. Electroencephalographic studies of sleep

    NASA Technical Reports Server (NTRS)

    Webb, W. B.; Agnew, H. W., Jr.

    1975-01-01

    Various experimental studies on sleep are described. The following areas are discussed: (1) effect of altered day length on sleep, (2) effect of a partial loss of sleep on subsequent nocturnal sleep; (3) effect of rigid control over sleep-wake-up times; (4) sleep and wakefulness in a time-free environment; (5) distribution of spindles during a full night of sleep; and (6) effect on sleep and performance of swiftly changing shifts of work.

  12. M1 muscarinic acetylcholine receptor agonism alters sleep without affecting memory consolidation.

    PubMed

    Nissen, Christoph; Power, Ann E; Nofzinger, Eric A; Feige, Bernd; Voderholzer, Ulrich; Kloepfer, Corinna; Waldheim, Bernhard; Radosa, Marc-Philipp; Berger, Mathias; Riemann, Dieter

    2006-11-01

    Preclinical studies have implicated cholinergic neurotransmission, specifically M1 muscarinic acetylcholine receptor (mAChR) activation, in sleep-associated memory consolidation. In the present study, we investigated the effects of administering the direct M1 mAChR agonist RS-86 on pre-post sleep memory consolidation. Twenty healthy human participants were tested in a declarative word-list task and a procedural mirror-tracing task. RS-86 significantly reduced rapid eye movement (REM) sleep latency and slow wave sleep (SWS) duration in comparison with placebo. Presleep acquisition and postsleep recall rates were within the expected ranges. However, recall rates in both tasks were almost identical for the RS-86 and placebo conditions. These results indicate that selective M1 mAChR activation in healthy humans has no clinically relevant effect on pre-post sleep consolidation of declarative or procedural memories at a dose that reduces REM sleep latency and SWS duration.

  13. Chlordecone, a mixed pregnane X receptor (PXR) and estrogen receptor alpha (ER{alpha}) agonist, alters cholesterol homeostasis and lipoprotein metabolism in C57BL/6 mice

    SciTech Connect

    Lee, Junga; Scheri, Richard C.; Zhang Yuan; Curtis, Lawrence R.

    2008-12-01

    Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [{sup 14}C]CD or [{sup 14}C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vitro reporter systems for human liver X receptors (LXRs) and activates those for human farnesoid X receptor (FXR), pregnane X receptor (PXR) and estrogen receptor {alpha} (ER{alpha}) in a concentration-dependent manner (0-50 {mu}M). Consistent with human PXR activation in vitro, three days after a single dose of CD (15 mg/kg) hepatic microsomal CYP3A11 protein increases in C57BL/6 mice. CD decreases hepatic CH ester content without altering total CH concentration. Apolipoprotein A-I (apoA-I) contents of hepatic lipoprotein-rich and microsomal fractions of CD-treated mice are higher than controls. There is a significant reduction in non-high density lipoprotein CH but not apolipoprotein B-48/100 (apoB-48/100) in plasma from CD-treated mice after a 4 h fast. At 14 days after 15 mg CD/kg apoA-I and apoB-100 proteins but not CYP3A11 protein in hepatic microsomes are similar to controls. This work indicates that altered CH homeostasis is a mode of OC insecticide action of relevance after a single dose. This at least partially explains altered CH tissue distribution in CD-pretreated mice.

  14. Loss of Goosecoid-like and DiGeorge syndrome critical region 14 in interpeduncular nucleus results in altered regulation of rapid eye movement sleep

    PubMed Central

    Funato, Hiromasa; Sato, Makito; Sinton, Christopher M.; Gautron, Laurent; Williams, S. Clay; Skach, Amber; Elmquist, Joel K.; Skoultchi, Arthur I.; Yanagisawa, Masashi

    2010-01-01

    Sleep and wakefulness are regulated primarily by inhibitory interactions between the hypothalamus and brainstem. The expression of the states of rapid eye movement (REM) sleep and non-REM (NREM) sleep also are correlated with the activity of groups of REM-off and REM-on neurons in the dorsal brainstem. However, the contribution of ventral brainstem nuclei to sleep regulation has been little characterized to date. Here we examined sleep and wakefulness in mice deficient in a homeobox transcription factor, Goosecoid-like (Gscl), which is one of the genes deleted in DiGeorge syndrome or 22q11 deletion syndrome. The expression of Gscl is restricted to the interpeduncular nucleus (IP) in the ventral region of the midbrain–hindbrain transition. The IP has reciprocal connections with several cell groups implicated in sleep/wakefulness regulation. Although Gscl−/− mice have apparently normal anatomy and connections of the IP, they exhibited a reduced total time spent in REM sleep and fewer REM sleep episodes. In addition, Gscl−/− mice showed reduced theta power during REM sleep and increased arousability during REM sleep. Gscl−/− mice also lacked the expression of DiGeorge syndrome critical region 14 (Dgcr14) in the IP. These results indicate that the absence of Gscl and Dgcr14 in the IP results in altered regulation of REM sleep. PMID:20921407

  15. Loss of Goosecoid-like and DiGeorge syndrome critical region 14 in interpeduncular nucleus results in altered regulation of rapid eye movement sleep.

    PubMed

    Funato, Hiromasa; Sato, Makito; Sinton, Christopher M; Gautron, Laurent; Williams, S Clay; Skach, Amber; Elmquist, Joel K; Skoultchi, Arthur I; Yanagisawa, Masashi

    2010-10-19

    Sleep and wakefulness are regulated primarily by inhibitory interactions between the hypothalamus and brainstem. The expression of the states of rapid eye movement (REM) sleep and non-REM (NREM) sleep also are correlated with the activity of groups of REM-off and REM-on neurons in the dorsal brainstem. However, the contribution of ventral brainstem nuclei to sleep regulation has been little characterized to date. Here we examined sleep and wakefulness in mice deficient in a homeobox transcription factor, Goosecoid-like (Gscl), which is one of the genes deleted in DiGeorge syndrome or 22q11 deletion syndrome. The expression of Gscl is restricted to the interpeduncular nucleus (IP) in the ventral region of the midbrain-hindbrain transition. The IP has reciprocal connections with several cell groups implicated in sleep/wakefulness regulation. Although Gscl(-/-) mice have apparently normal anatomy and connections of the IP, they exhibited a reduced total time spent in REM sleep and fewer REM sleep episodes. In addition, Gscl(-/-) mice showed reduced theta power during REM sleep and increased arousability during REM sleep. Gscl(-/-) mice also lacked the expression of DiGeorge syndrome critical region 14 (Dgcr14) in the IP. These results indicate that the absence of Gscl and Dgcr14 in the IP results in altered regulation of REM sleep.

  16. The Bidirectional Relationship between Sleep and Immunity against Infections

    PubMed Central

    Ibarra-Coronado, Elizabeth G.; Pantaleón-Martínez, Ana Ma.; Velazquéz-Moctezuma, Javier; Prospéro-García, Oscar; Méndez-Díaz, Mónica; Pérez-Tapia, Mayra; Pavón, Lenin; Morales-Montor, Jorge

    2015-01-01

    Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed. PMID:26417606

  17. Altering Misperception of Sleep in Insomnia: Behavioral Experiment Versus Verbal Feedback

    ERIC Educational Resources Information Center

    Tang, Nicole K. Y.; Harvey, Allison G.

    2006-01-01

    Forty-eight individuals with insomnia were asked to wear an actigraph and keep a sleep diary for 2 nights. On the following day, half were shown the discrepancy between the data recorded on the actigraph and their sleep diary via a behavioral experiment, whereas the other half were told of the discrepancy verbally. Participants were then asked to…

  18. The unrested resting brain: sleep deprivation alters activity within the default-mode network.

    PubMed

    Gujar, Ninad; Yoo, Seung-Schik; Hu, Peter; Walker, Matthew P

    2010-08-01

    The sleep-deprived brain has principally been characterized by examining dysfunction during cognitive task performance. However, far less attention has been afforded the possibility that sleep deprivation may be as, if not more, accurately characterized on the basis of abnormal resting-state brain activity. Here we report that one night of sleep deprivation significantly disrupts the canonical signature of task-related deactivation, resulting in a double dissociation within anterior as well as posterior midline regions of the default network. Indeed, deactivation within these regions alone discriminated sleep-deprived from sleep-control subjects with a 93% degree of sensitivity and 92% specificity. In addition, the relative balance of deactivation within these default nodes significantly correlated with the amount of prior sleep in the control group (and not extended time awake in the deprivation group). Therefore, the stability and the balance of task-related deactivation in key default-mode regions may be dependent on prior sleep, such that a lack thereof disrupts this signature pattern of brain activity, findings that may offer explanatory insights into conditions associated with sleep loss at both a clinical as well as societal level.

  19. Does sleep deprivation alter functional EEG networks in children with focal epilepsy?

    PubMed

    van Diessen, Eric; Otte, Willem M; Braun, Kees P J; Stam, Cornelis J; Jansen, Floor E

    2014-01-01

    Electroencephalography (EEG) recordings after sleep deprivation increase the diagnostic yield in patients suspected of epilepsy if the routine EEG remains inconclusive. Sleep deprivation is associated with increased interictal EEG abnormalities in patients with epilepsy, but the exact mechanism is unknown. In this feasibility study, we used a network analytical approach to provide novel insights into this clinical observation. The aim was to characterize the effect of sleep deprivation on the interictal functional network organization using a unique dataset of paired routine and sleep deprivation recordings in patients and controls. We included 21 children referred to the first seizure clinic of our center with suspected new onset focal epilepsy in whom a routine interictal and a sleep deprivation EEG (SD-EEG) were performed. Seventeen children, in whom the diagnosis of epilepsy was excluded, served as controls. For both time points weighted functional networks were constructed based on interictal artifact free time-series. Routine and sleep deprivation networks were characterized at different frequency bands using minimum spanning tree (MST) measures (leaf number and diameter) and classical measures of integration (path length) and segregation (clustering coefficient). A significant interaction was found for leaf number and diameter between patients and controls after sleep deprivation: patients showed a shift toward a more path-like MST network whereas controls showed a shift toward a more star-like MST network. This shift in network organization after sleep deprivation in patients is in accordance with previous studies showing a more regular network organization in the ictal state and might relate to the increased epileptiform abnormalities found in patients after sleep deprivation. Larger studies are needed to verify these results. Finally, MST measures were more sensitive in detecting network changes as compared to the classical measures of integration and

  20. Acute stress alters autonomic modulation during sleep in women approaching menopause.

    PubMed

    de Zambotti, Massimiliano; Sugarbaker, David; Trinder, John; Colrain, Ian M; Baker, Fiona C

    2016-04-01

    Hot flashes, hormones, and psychosocial factors contribute to insomnia risk in the context of the menopausal transition. Stress is a well-recognized factor implicated in the pathophysiology of insomnia; however the impact of stress on sleep and sleep-related processes in perimenopausal women remains largely unknown. We investigated the effect of an acute experimental stress (impending Trier Social Stress Task in the morning) on pre-sleep measures of cortisol and autonomic arousal in perimenopausal women with and without insomnia that developed in the context of the menopausal transition. In addition, we assessed the macro- and micro-structure of sleep and autonomic functioning during sleep. Following adaptation to the laboratory, twenty two women with (age: 50.4 ± 3.2 years) and eighteen women without (age: 48.5 ± 2.3 years) insomnia had two randomized in-lab overnight recordings: baseline and stress nights. Anticipation of the task resulted in higher pre-sleep salivary cortisol levels and perceived tension, faster heart rate and lower vagal activity, based on heart rate variability measures, in both groups of women. The effect of the stress manipulation on the autonomic nervous system extended into the first 4 h of the night in both groups. However, vagal tone recovered 4-6 h into the stress night in controls but not in the insomnia group. Sleep macrostructure was largely unaltered by the stress, apart from a delayed latency to REM sleep in both groups. Quantitative analysis of non-rapid eye movement sleep microstructure revealed greater electroencephalographic (EEG) power in the beta1 range (15-≤23 Hz), reflecting greater EEG arousal during sleep, on the stress night compared to baseline, in the insomnia group. Hot flash frequency remained similar on both nights for both groups. These results show that pre-sleep stress impacts autonomic nervous system functioning before and during sleep in perimenopausal women with and without insomnia. Findings also indicate

  1. Sleep complaints in periodic paralyses: a web survey.

    PubMed

    Buzzi, G; Mostacci, B; Sancisi, E; Cirignotta, F

    2001-01-01

    Neuronal potassium conductance has been shown to influence the sleep-wake cycle and REM sleep homeostasis. The periodic paralyses (PP) are characterized by episodes of muscular weakness associated with changes in serum potassium levels and, therefore, with possible alterations in extracellular neuronal potassium conductance. We submitted a sleep questionnaire to the members of Periodic Paralysis International Listserv, an on-line support and information group for subjects with PP. Three control groups were made up of patients with untreated depression, patients with depression under treatment and healthy subjects. Both subjects with PP and those with untreated depression had a higher frequency of self-reported insufficient sleep quality and a higher number of nocturnal awakenings than patients with depression under treatment and healthy controls. PP subjects had more self-reported daytime sleepiness, sleep-related hallucinations and nightmares/abnormal dreams than the other three groups. Patients affected by PP may have disrupted sleep architecture and homeostasis. In particular, we suggest that the stereotypical abnormal dreams reported by several patients may reflect oneiric elaboration of nocturnal episodes of flaccid paralysis, while the increased frequency of sleep-related hallucinations may be due to enhanced REM sleep expression associated with alterations of neuronal potassium conductance.

  2. Global deletion of MGL in mice delays lipid absorption and alters energy homeostasis and diet-induced obesity

    PubMed Central

    Douglass, John D.; Zhou, Yin Xiu; Wu, Amy; Zadrogra, John A.; Gajda, Angela M.; Lackey, Atreju I.; Lang, Wensheng; Chevalier, Kristen M.; Sutton, Steven W.; Zhang, Sui-Po; Flores, Christopher M.; Connelly, Margery A.; Storch, Judith

    2015-01-01

    Monoacylglycerol lipase (MGL) is a ubiquitously expressed enzyme that catalyzes the hydrolysis of monoacylglycerols (MGs) to yield FFAs and glycerol. MGL contributes to energy homeostasis through the mobilization of fat stores and also via the degradation of the endocannabinoid 2-arachidonoyl glycerol. To further examine the role of MG metabolism in energy homeostasis, MGL−/− mice were fed either a 10% (kilocalories) low-fat diet (LFD) or a 45% (kilocalories) high-fat diet (HFD) for 12 weeks. Profound increases of MG species in the MGL−/− mice compared with WT control mice were found. Weight gain over the 12 weeks was blunted in both diet groups. MGL−/− mice were leaner than WT mice at both baseline and after 12 weeks of LFD feeding. Circulating lipids were decreased in HFD-fed MGL−/− mice, as were the levels of several plasma peptides involved in glucose homeostasis and energy balance. Interestingly, MGL−/− mice had markedly reduced intestinal TG secretion following an oral fat challenge, suggesting delayed lipid absorption. Overall, the results indicate that global MGL deletion leads to systemic changes that produce a leaner phenotype and an improved serum metabolic profile. PMID:25842377

  3. The loss of ATP2C1 impairs the DNA damage response and induces altered skin homeostasis: Consequences for epidermal biology in Hailey-Hailey disease

    PubMed Central

    Cialfi, Samantha; Le Pera, Loredana; De Blasio, Carlo; Mariano, Germano; Palermo, Rocco; Zonfrilli, Azzurra; Uccelletti, Daniela; Palleschi, Claudio; Biolcati, Gianfranco; Barbieri, Luca; Screpanti, Isabella; Talora, Claudio

    2016-01-01

    Mutation of the Golgi Ca2+-ATPase ATP2C1 is associated with deregulated calcium homeostasis and altered skin function. ATP2C1 mutations have been identified as having a causative role in Hailey-Hailey disease, an autosomal-dominant skin disorder. Here, we identified ATP2C1 as a crucial regulator of epidermal homeostasis through the regulation of oxidative stress. Upon ATP2C1 inactivation, oxidative stress and Notch1 activation were increased in cultured human keratinocytes. Using RNA-seq experiments, we found that the DNA damage response (DDR) was consistently down-regulated in keratinocytes derived from the lesions of patients with Hailey-Hailey disease. Although oxidative stress activates the DDR, ATP2C1 inactivation down-regulates DDR gene expression. We showed that the DDR response was a major target of oxidative stress-induced Notch1 activation. Here, we show that this activation is functionally important because early Notch1 activation in keratinocytes induces keratinocyte differentiation and represses the DDR. These results indicate that an ATP2C1/NOTCH1 axis might be critical for keratinocyte function and cutaneous homeostasis, suggesting a plausible model for the pathological features of Hailey-Hailey disease. PMID:27528123

  4. Simultaneous coffee caffeine intake and sleep deprivation alter glucose homeostasis in Iranian men: a randomized crossover trial.

    PubMed

    Rasaei, Behrouz; Talib, Ruzita Abd; Noor, Mohd Ismail; Karandish, Majid; Karim, Norimah A

    2016-12-01

    背景与目的:睡眠剥夺和咖啡中咖啡因的摄入对葡萄糖稳态的影响已分别被证 明,但这两个变量的综合效果尚不知道。方法与研究设计:42 名年龄在20-40 岁之间的伊朗男性在本随机交叉试验中被分配到3 个试验组,试验组间有两周 的洗脱期。研究对象为中度咖啡消费者(<=3 杯/天),并且匹兹堡睡眠质量指 数<=5。每种试验包括3 晚上的睡眠剥夺(在床上4 小时),加3 杯开水(BW 试验,每杯150 毫升)、无咖啡因的咖啡(DC 试验,不加糖,99.9%无咖啡 因)或含咖啡因的咖啡(CC 试验,不加糖,每杯含65 毫克咖啡因)。DC 和 CC 处理采用盲法。每种试验结束后,测量空腹血糖(采用酶法测定)和胰岛 素(采用电化学发光免疫分析法测定),口服葡萄糖耐量试验(OGTT)两个 小时后再次测量血糖和胰岛素。胰岛素抵抗采用稳态模型量化。结果:重复测 量方差分析表明各试验组间的空腹血糖(p=0.248)和胰岛素抵抗(p=0.079) 没有显著差异。然而,方差分析表明各试验组间空腹血清胰岛素、血糖和 OGTT 后的胰岛素有差异。配对比较(研究对象间)表明:与DC 试验组相 比,CC 试验组OGTT 后血糖和胰岛素较高(p<0.001),空腹血清胰岛素 (p=0.001)和胰岛素抵抗(p=0.039)也增加。结论:对睡眠被剥夺的人,含 咖啡因的咖啡比不含咖啡因的咖啡更不利于葡萄糖稳态。.

  5. Acute stress alters autonomic modulation during sleep in women approaching menopause

    PubMed Central

    de Zambotti, Massimiliano; Sugarbaker, David; Trinder, John; Colrain, Ian M.; Baker, Fiona C.

    2016-01-01

    Hot flashes, hormones, and psychosocial factors contribute to insomnia risk in the context of the menopausal transition. Stress is a well-recognized factor implicated in the pathophysiology of insomnia; however the impact of stress on sleep and sleep-related processes in perimenopausal women remains largely unknown. We investigated the effect of an acute experimental stress (impending Trier Social Stress Task in the morning) on presleep measures of cortisol and autonomic arousal in perimenopausal women with and without insomnia that developed in the context of the menopausal transition. In addition, we assessed the macro- and micro-structure of sleep and autonomic functioning during sleep. Following adaptation to the laboratory, twenty two women with (age: 50.4 ± 3.2 y) and eighteen women without (age: 48.5±2.3 y) insomnia had two randomized in-lab overnight recordings: baseline and stress nights. Anticipation of the task resulted in higher pre-sleep salivary cortisol levels and perceived tension, faster heart rate and lower vagal activity, based on heart rate variability measures, in both groups of women. The effect of the stress manipulation on the autonomic nervous system extended into the first four hours of the night in both groups. However, vagal tone recovered four-six hours into the stress night in controls but not in the insomnia group. Sleep macrostructure was largely unaltered by the stress, apart from a delayed latency to REM sleep in both groups. Quantitative analysis of non-rapid eye movement sleep microstructure revealed greater electroencephalographic (EEG) power in the beta1 range (15-≤23Hz), reflecting greater EEG arousal during sleep, on the stress night compared to baseline, in the insomnia group. Hot flash frequency remained similar on both nights for both groups. These results show that presleep stress impacts autonomic nervous system functioning before and during sleep in perimenopausal women with and without insomnia. Findings also

  6. Altered regulation of sleep and feeding contributes to starvation resistance in Drosophila melanogaster.

    PubMed

    Masek, Pavel; Reynolds, Lauren A; Bollinger, Wesley L; Moody, Catriona; Mehta, Aradhana; Murakami, Kazuma; Yoshizawa, Masato; Gibbs, Allen G; Keene, Alex C

    2014-09-01

    Animals respond to changes in food availability by adjusting sleep and foraging strategies to optimize their fitness. Wild populations of the fruit fly, Drosophila melanogaster, display highly variable levels of starvation resistance that are dependent on geographic location, food availability and evolutionary history. How behaviors that include sleep and feeding vary in Drosophila with increased starvation resistance is unclear. We have generated starvation-resistant flies through experimental evolution to investigate the relationship between foraging behaviors and starvation resistance. Outbred populations of D. melanogaster were selected for starvation resistance over 60 generations. This selection process resulted in flies with a threefold increase in total lipids that survive up to 18 days without food. We tested starvation-selected (S) flies for sleep and feeding behaviors to determine the effect that selection for starvation resistance has had on foraging behavior. Flies from three replicated starvation-selected populations displayed a dramatic reduction in feeding and prolonged sleep duration compared to fed control (F) populations, suggesting that modified sleep and feeding may contribute to starvation resistance. A prolonged larval developmental period contributes to the elevated energy stores present in starvation-selected flies. By preventing S larvae from feeding longer than F larvae, we were able to reduce energy stores in adult S flies to the levels seen in adult F flies, thus allowing us to control for energy storage levels. However, the reduction of energy stores in S flies fails to generate normal sleep and feeding behavior seen in F flies with similar energy stores. These findings suggest that the behavioral changes observed in S flies are due to genetic regulation of behavior rather than elevated lipid levels. Testing S-F hybrid individuals for both feeding and sleep revealed a lack of correlation between food consumption and sleep duration

  7. [Natural factors influencing sleep].

    PubMed

    Jurkowski, Marek K; Bobek-Billewicz, Barbara

    2007-01-01

    Sleep is a universal phenomenon of human and animal lives, although the importance of sleep for homeo-stasis is still unknown. Sleep disturbances influence many behavioral and physiologic processes, leading to health complications including death. On the other hand, sleep improvement can beneficially influence the course of healing of many disorders and can be a prognostic of health recovery. The factors influencing sleep have different biological and chemical origins. They are classical hormones, hypothalamic releasing and inhibitory hormones, neuropeptides, peptides and others as cytokines, prostaglandins, oleamid, adenosine, nitric oxide. These factors regulate most physiologic processes and are likely elements integrating sleep with physiology and physiology with sleep in health and disorders.

  8. Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose Tissue Inflammation and Insulin Resistance in Mice

    PubMed Central

    Poroyko, Valeriy A.; Carreras, Alba; Khalyfa, Abdelnaby; Khalyfa, Ahamed A.; Leone, Vanessa; Peris, Eduard; Almendros, Isaac; Gileles-Hillel, Alex; Qiao, Zhuanhong; Hubert, Nathaniel; Farré, Ramon; Chang, Eugene B.; Gozal, David

    2016-01-01

    Chronic sleep fragmentation (SF) commonly occurs in human populations, and although it does not involve circadian shifts or sleep deprivation, it markedly alters feeding behaviors ultimately promoting obesity and insulin resistance. These symptoms are known to be related to the host gut microbiota. Mice were exposed to SF for 4 weeks and then allowed to recover for 2 weeks. Taxonomic profiles of fecal microbiota were obtained prospectively, and conventionalization experiments were performed in germ-free mice. Adipose tissue insulin sensitivity and inflammation, as well as circulating measures of inflammation, were assayed. Effect of fecal water on colonic epithelial permeability was also examined. Chronic SF-induced increased food intake and reversible gut microbiota changes characterized by the preferential growth of highly fermentative members of Lachnospiraceae and Ruminococcaceae and a decrease of Lactobacillaceae families. These lead to systemic and visceral white adipose tissue inflammation in addition to altered insulin sensitivity in mice, most likely via enhanced colonic epithelium barrier disruption. Conventionalization of germ-free mice with SF-derived microbiota confirmed these findings. Thus, SF-induced metabolic alterations may be mediated, in part, by concurrent changes in gut microbiota, thereby opening the way for gut microbiome-targeted therapeutics aimed at reducing the major end-organ morbidities of chronic SF. PMID:27739530

  9. Transcriptome Analysis Reveals Altered Expression of Memory and Neurotransmission Associated Genes in the REM Sleep Deprived Rat Brain

    PubMed Central

    Narwade, Santosh C.; Mallick, Birendra N.; Deobagkar, Deepti D.

    2017-01-01

    Sleep disorders are associated with cognitive impairment. Selective rapid eye movement sleep (REMS) deprivation (REMSD) alters several physiological processes and behaviors. By employing NGS platform we carried out transcriptomic analysis in brain samples of control rats and those exposed to REMSD. The expression of genes involved in chromatin assembly, methylation, learning, memory, regulation of synaptic transmission, neuronal plasticity and neurohypophysial hormone synthesis were altered. Increased transcription of BMP4, DBH and ATP1B2 genes after REMSD supports our earlier findings and hypothesis. Alteration in the transcripts encoding histone subtypes and important players in chromatin remodeling was observed. The mRNAs which transcribe neurotransmitters such as OXT, AVP, PMCH and LNPEP and two small non-coding RNAs, namely RMRP and BC1 were down regulated. At least some of these changes are likely to regulate REMS and may participate in the consequences of REMS loss. Thus, the findings of this study have identified key epigenetic regulators and neuronal plasticity genes associated to REMS and its loss. This analysis provides a background and opens up avenues for unraveling their specific roles in the complex behavioral network particularly in relation to sustained REMS-loss associated changes. PMID:28367113

  10. Misassembly of full-length Disrupted-in-Schizophrenia 1 protein is linked to altered dopamine homeostasis and behavioral deficits

    PubMed Central

    Trossbach, S V; Bader, V; Hecher, L; Pum, M E; Masoud, S T; Prikulis, I; Schäble, S; de Souza Silva, M A; Su, P; Boulat, B; Chwiesko, C; Poschmann, G; Stühler, K; Lohr, K M; Stout, K A; Oskamp, A; Godsave, S F; Müller-Schiffmann, A; Bilzer, T; Steiner, H; Peters, P J; Bauer, A; Sauvage, M; Ramsey, A J; Miller, G W; Liu, F; Seeman, P; Brandon, N J; Huston, J P; Korth, C

    2016-01-01

    Disrupted-in-schizophrenia 1 (DISC1) is a mental illness gene first identified in a Scottish pedigree. So far, DISC1-dependent phenotypes in animal models have been confined to expressing mutant DISC1. Here we investigated how pathology of full-length DISC1 protein could be a major mechanism in sporadic mental illness. We demonstrate that a novel transgenic rat model, modestly overexpressing the full-length DISC1 transgene, showed phenotypes consistent with a significant role of DISC1 misassembly in mental illness. The tgDISC1 rat displayed mainly perinuclear DISC1 aggregates in neurons. Furthermore, the tgDISC1 rat showed a robust signature of behavioral phenotypes that includes amphetamine supersensitivity, hyperexploratory behavior and rotarod deficits, all pointing to changes in dopamine (DA) neurotransmission. To understand the etiology of the behavioral deficits, we undertook a series of molecular studies in the dorsal striatum of tgDISC1 rats. We observed an 80% increase in high-affinity DA D2 receptors, an increased translocation of the dopamine transporter to the plasma membrane and a corresponding increase in DA inflow as observed by cyclic voltammetry. A reciprocal relationship between DISC1 protein assembly and DA homeostasis was corroborated by in vitro studies. Elevated cytosolic dopamine caused an increase in DISC1 multimerization, insolubility and complexing with the dopamine transporter, suggesting a physiological mechanism linking DISC1 assembly and dopamine homeostasis. DISC1 protein pathology and its interaction with dopamine homeostasis is a novel cellular mechanism that is relevant for behavioral control and may have a role in mental illness. PMID:26754951

  11. Inhibition of diabetic-cataract by vitamin K1 involves modulation of hyperglycemia-induced alterations to lens calcium homeostasis.

    PubMed

    Sai Varsha, M K N; Raman, Thiagarajan; Manikandan, Ramar

    2014-11-01

    This study investigated the potential of vitamin K1 against streptozotocin-induced diabetic cataract in Wistar rats. A single, intraperitoneal injection of streptozotocin (STZ) (35 mg/kg) resulted in hyperglycemia, accumulation of sorbitol and formation of advanced glycation end product (AGE) in eye lens. Hyperglycemia in lens also resulted in superoxide anion and hydroxyl radical generation and less reduced glutathione suggesting oxidative stress in lens. Hyperglycemia also resulted in increase in lens Ca2+ and significant inhibition of lens Ca2+ ATPase activity. These changes were associated with cataract formation in diabetic animals. By contrast treatment of diabetic rats with vitamin K1 (5 mg/kg, sc, twice a week) resulted in animals with partially elevated blood glucose and with transparent lenses having normal levels of sorbitol, AGE, Ca2+ ATPase, Ca2+, and oxidative stress. Vitamin K 1 may function to protect against cataract formation in the STZ induced diabetic rat by affecting the homeostasis of blood glucose and minimizing subsequent oxidative and osmotic stress. Thus, these results show that Vitamin K1 inhibits diabetic-cataract by modulating lens Ca2+ homeostasis and its hypoglycemic effect through its direct action on the pancreas.

  12. Melanin-Concentrating Hormone: A New Sleep Factor?

    PubMed Central

    Torterolo, Pablo; Lagos, Patricia; Monti, Jaime M.

    2011-01-01

    Neurons containing the neuropeptide melanin-concentrating hormone (MCH) are mainly located in the lateral hypothalamus and the incerto-hypothalamic area, and have widespread projections throughout the brain. While the biological functions of this neuropeptide are exerted in humans through two metabotropic receptors, the MCHR1 and MCHR2, only the MCHR1 is present in rodents. Recently, it has been shown that the MCHergic system is involved in the control of sleep. We can summarize the experimental findings as follows: (1) The areas related to the control of sleep and wakefulness have a high density of MCHergic fibers and receptors. (2) MCHergic neurons are active during sleep, especially during rapid eye movement (REM) sleep. (3) MCH knockout mice have less REM sleep, notably under conditions of negative energy balance. Animals with genetically inactivated MCHR1 also exhibit altered vigilance state architecture and sleep homeostasis. (4) Systemically administered MCHR1 antagonists reduce sleep. (5) Intraventricular microinjection of MCH increases both slow wave sleep (SWS) and REM sleep; however, the increment in REM sleep is more pronounced. (6) Microinjection of MCH into the dorsal raphe nucleus increases REM sleep time. REM seep is inhibited by immunoneutralization of MCH within this nucleus. (7) Microinjection of MCH in the nucleus pontis oralis of the cat enhances REM sleep time and reduces REM sleep latency. All these data strongly suggest that MCH has a potent role in the promotion of sleep. Although both SWS and REM sleep are facilitated by MCH, REM sleep seems to be more sensitive to MCH modulation. PMID:21516258

  13. Complexity analysis of sleep and alterations with insomnia based on non-invasive techniques

    PubMed Central

    Holloway, Philip M.; Angelova, Maia; Lombardo, Sara; St Clair Gibson, Alan; Lee, David; Ellis, Jason

    2014-01-01

    For the first time, fractal analysis techniques are implemented to study the correlations present in sleep actigraphy for individuals suffering from acute insomnia with comparisons made against healthy subjects. Analysis was carried out for 21 healthy individuals with no diagnosed sleep disorders and 26 subjects diagnosed with acute insomnia during night-time hours. Detrended fluctuation analysis was applied in order to look for 1/f-fluctuations indicative of high complexity. The aim is to investigate whether complexity analysis can differentiate between people who sleep normally and people who suffer from acute insomnia. We hypothesize that the complexity will be higher in subjects who suffer from acute insomnia owing to increased night-time arousals. This hypothesis, although contrary to much of the literature surrounding complexity in physiology, was found to be correct—for our study. The complexity results for nearly all of the subjects fell within a 1/f-range, indicating the presence of underlying control mechanisms. The subjects with acute insomnia displayed significantly higher correlations, confirmed by significance testing—possibly a result of too much activity in the underlying regulatory systems. Moreover, we found a linear relationship between complexity and variability, both of which increased with the onset of insomnia. Complexity analysis is very promising and could prove to be a useful non-invasive identifier for people who suffer from sleep disorders such as insomnia. PMID:24501273

  14. Complexity analysis of sleep and alterations with insomnia based on non-invasive techniques.

    PubMed

    Holloway, Philip M; Angelova, Maia; Lombardo, Sara; St Clair Gibson, Alan; Lee, David; Ellis, Jason

    2014-04-06

    For the first time, fractal analysis techniques are implemented to study the correlations present in sleep actigraphy for individuals suffering from acute insomnia with comparisons made against healthy subjects. Analysis was carried out for 21 healthy individuals with no diagnosed sleep disorders and 26 subjects diagnosed with acute insomnia during night-time hours. Detrended fluctuation analysis was applied in order to look for 1/f-fluctuations indicative of high complexity. The aim is to investigate whether complexity analysis can differentiate between people who sleep normally and people who suffer from acute insomnia. We hypothesize that the complexity will be higher in subjects who suffer from acute insomnia owing to increased night-time arousals. This hypothesis, although contrary to much of the literature surrounding complexity in physiology, was found to be correct-for our study. The complexity results for nearly all of the subjects fell within a 1/f-range, indicating the presence of underlying control mechanisms. The subjects with acute insomnia displayed significantly higher correlations, confirmed by significance testing-possibly a result of too much activity in the underlying regulatory systems. Moreover, we found a linear relationship between complexity and variability, both of which increased with the onset of insomnia. Complexity analysis is very promising and could prove to be a useful non-invasive identifier for people who suffer from sleep disorders such as insomnia.

  15. Sex-specific alterations in glucose homeostasis and metabolic parameters during ageing of caspase-2-deficient mice

    PubMed Central

    Wilson, C H; Nikolic, A; Kentish, S J; Shalini, S; Hatzinikolas, G; Page, A J; Dorstyn, L; Kumar, S

    2016-01-01

    Gender-specific differences are commonly found in metabolic pathways and in response to nutritional manipulation. Previously, we identified a role for caspase-2 in age-related glucose homeostasis and lipid metabolism using male caspase-2-deficient (Casp2−/−) mice. Here we show that the resistance to age-induced glucose tolerance does not occur in female Casp2−/− mice and it appears to be independent of insulin sensitivity in males. Using fasting (18 h) as a means to further investigate the role of caspase-2 in energy and lipid metabolism, we identified sex-specific differences in the fasting response and lipid mobilization. In aged (18–22 months) male Casp2−/− mice, a significant decrease in fasting liver mass, but not total body weight, was observed while in females, total body weight, but not liver mass, was reduced when compared with wild-type (WT) animals. Fasting-induced lipolysis of adipose tissue was enhanced in male Casp2−/− mice as indicated by a significant reduction in white adipocyte cell size, and increased serum-free fatty acids. In females, white adipocyte cell size was significantly smaller in both fed and fasted Casp2−/− mice. No difference in fasting-induced hepatosteatosis was observed in the absence of caspase-2. Further analysis of white adipose tissue (WAT) indicated that female Casp2−/− mice may have enhanced fatty acid recycling and metabolism with expression of genes involved in glyceroneogenesis and fatty acid oxidation increased. Loss of Casp2 also increased fasting-induced autophagy in both male and female liver and in female skeletal muscle. Our observations suggest that caspase-2 can regulate glucose homeostasis and lipid metabolism in a tissue and sex-specific manner. PMID:27551503

  16. Constitutive expression of the ZmZIP7 in Arabidopsis alters metal homeostasis and increases Fe and Zn content.

    PubMed

    Li, Suzhen; Zhou, Xiaojin; Zhao, Yongfeng; Li, Hongbo; Liu, Yuanfeng; Zhu, Liying; Guo, Jinjie; Huang, Yaqun; Yang, Wenzhu; Fan, Yunliu; Chen, Jingtang; Chen, Rumei

    2016-09-01

    Iron (Fe) and zinc (Zn) are important micronutrients for plant growth and development. Zinc-regulated transporters and the iron-regulated transporter-like protein (ZIP) are necessary for the homeostatic regulation of these metal micronutrients. In this study, the physiological function of ZmZIP7 which encodes a ZIP family transporter was characterized. We detected the expression profiles of ZmZIP7 in maize, and found that the accumulation of ZmZIP7 in root, stem, leaf, and seed was relatively higher than tassel and young ear. ZmZIP7 overexpression transgenic Arabidopsis lines were generated and the metal contents in transgenic and wild-type (WT) plants were examined using inductively coupled plasma atomic emission spectroscopy (ICP-OES) and Zinpyr-1 staining. Fe and Zn concentrations were elevated in the roots and shoots of ZmZIP7-overexpressing plants, while only Fe content was elevated in the seeds. We also analyzed the expression profiles of endogenous genes associated with metal homeostasis. Both endogenic Fe-deficiency inducible genes and the genes responsible for Zn and Fe transport and storage were stimulated in ZmZIP7 transgenic plants. In conclusion, ZmZIP7 encodes a functional Zn and Fe transporter, and ectopic overexpression of ZmZIP7 in Arabidopsis stimulate endogenous Fe and Zn uptake mechanisms, thereby facilitating both metal uptake and homeostasis. Our results contribute to improved understanding of ZIP family transporter functions and suggest that ZmZIP7 could be used to enhance Fe levels in grains.

  17. Leptin: A biomarker for sleep disorders?

    PubMed Central

    Pan, Weihong; Kastin, Abba J.

    2014-01-01

    SUMMARY Leptin, a pleiotropic protein hormone produced mainly by fat cells, regulates metabolic activity and many other physiological functions. The intrinsic circadian rhythm of blood leptin is modulated by gender, development, feeding, fasting, sleep, obesity, and endocrine disorders. Hyperleptinemia is implicated in leptin resistance. To determine the specificity and sensitivity of leptin concentrations in sleep disorders, we summarize here the alterations of leptin in four conditions in animal and human studies: short duration of sleep, sleep fragmentation, obstructive sleep apnea (OSA), and after use of continuous positive airway pressure (CPAP) to treat OSA. The presence and causes of contradictory findings are discussed. Though sustained insufficient sleep lowers fasting blood leptin and therefore probably contributes to increased appetite, obesity and OSA independently result in hyperleptinemia. Successful treatment of OSA by CPAP is predicted to decrease hyperleptinemia, making leptin an ancillary biomarker for treatment efficacy. Current controversies also call for translational studies to determine how sleep disorders regulate leptin homeostasis and how the information can be used to improve sleep treatment. PMID:24080454

  18. State-Dependent Alterations in Sleep/wake Architecture Elicited by the M4 PAM VU0467154- Relation to Antipsychotic-like Drug Effects

    PubMed Central

    Gould, Robert W.; Nedelcovych, Michael T.; Gong, Xuewen; Tsai, Erica; Bubser, Michael; Bridges, Thomas M.; Wood, Michael R.; Duggan, Mark E.; Brandon, Nicholas J.; Dunlop, John; Wood, Michael W.; Ivarsson, Magnus; Noetzel, Meredith J.; Daniels, J. Scott; Niswender, Colleen M.; Lindsley, Craig W.; Conn, P. Jeffrey; Jones, Carrie K.

    2015-01-01

    Accumulating evidence indicates direct relationships between sleep abnormalities and the severity and prevalence of other symptom clusters in schizophrenia. Assessment of potential state-dependent alterations in sleep architecture and arousal relative to antipsychotic-like activity is critical for the development of novel antipsychotic drugs (APDs). Recently, we reported that VU0467154, a selective positive allosteric modulator (PAM) of the M4 muscarinic acetylcholine receptor (mAChR), exhibits robust APD-like and cognitive enhancing activity in rodents. However, the state-dependent effects of VU0467154 on sleep architecture and arousal have not been examined. Using polysomnography and quantitative electroencephalographic recordings from subcranial electrodes in rats, we evaluated the effects of VU0467154, in comparison with the atypical APD clozapine and the M1/M4-preferring mAChR agonist xanomeline. VU0467154 induced state-dependent alterations in sleep architecture and arousal by delaying Rapid Eye Movement (REM) sleep onset, selectively increased cumulative duration of total and Non-Rapid Eye Movement (NREM) sleep, and increased arousal during waking periods. Clozapine decreased arousal during wake, increased cumulative NREM, and decreased REM sleep. In contrast, xanomeline increased time awake and arousal during wake, but reduced slow wave activity during NREM sleep. Additionally, in combination with the N-methyl-d-aspartate subtype of glutamate receptor (NMDAR) antagonist MK-801, modeling NMDAR hypofunction thought to underlie many symptoms in schizophrenia, both VU0467154 and clozapine attenuated MK-801-induced elevations in high frequency gamma power consistent with an APD-like mechanism of action. These findings suggest that selective M4 PAMs may represent a novel mechanism for treating multiple symptoms of schizophrenia, including disruptions in sleep architecture without a sedative profile. PMID:26617071

  19. State-dependent alterations in sleep/wake architecture elicited by the M4 PAM VU0467154 - Relation to antipsychotic-like drug effects.

    PubMed

    Gould, Robert W; Nedelcovych, Michael T; Gong, Xuewen; Tsai, Erica; Bubser, Michael; Bridges, Thomas M; Wood, Michael R; Duggan, Mark E; Brandon, Nicholas J; Dunlop, John; Wood, Michael W; Ivarsson, Magnus; Noetzel, Meredith J; Daniels, J Scott; Niswender, Colleen M; Lindsley, Craig W; Conn, P Jeffrey; Jones, Carrie K

    2016-03-01

    Accumulating evidence indicates direct relationships between sleep abnormalities and the severity and prevalence of other symptom clusters in schizophrenia. Assessment of potential state-dependent alterations in sleep architecture and arousal relative to antipsychotic-like activity is critical for the development of novel antipsychotic drugs (APDs). Recently, we reported that VU0467154, a selective positive allosteric modulator (PAM) of the M4 muscarinic acetylcholine receptor (mAChR), exhibits robust APD-like and cognitive enhancing activity in rodents. However, the state-dependent effects of VU0467154 on sleep architecture and arousal have not been examined. Using polysomnography and quantitative electroencephalographic recordings from subcranial electrodes in rats, we evaluated the effects of VU0467154, in comparison with the atypical APD clozapine and the M1/M4-preferring mAChR agonist xanomeline. VU0467154 induced state-dependent alterations in sleep architecture and arousal including delayed Rapid Eye Movement (REM) sleep onset, increased cumulative duration of total and Non-Rapid Eye Movement (NREM) sleep, and increased arousal during waking periods. Clozapine decreased arousal during wake, increased cumulative NREM, and decreased REM sleep. In contrast, xanomeline increased time awake and arousal during wake, but reduced slow wave activity during NREM sleep. Additionally, in combination with the N-methyl-d-aspartate subtype of glutamate receptor (NMDAR) antagonist MK-801, modeling NMDAR hypofunction thought to underlie many symptoms in schizophrenia, both VU0467154 and clozapine attenuated MK-801-induced elevations in high frequency gamma power consistent with an APD-like mechanism of action. These findings suggest that selective M4 PAMs may represent a novel mechanism for treating multiple symptoms of schizophrenia, including disruptions in sleep architecture without a sedative profile.

  20. High concentrations of hexavalent chromium in drinking water alter iron homeostasis in F344 rats and B6C3F1 mice.

    PubMed

    Suh, Mina; Thompson, Chad M; Kirman, Christopher R; Carakostas, Michael C; Haws, Laurie C; Harris, Mark A; Proctor, Deborah M

    2014-03-01

    Hexavalent chromium [Cr(VI)] induces hematological signs of microcytic anemia in rodents. Considering that Cr(VI) can oxidize ferrous (Fe(2+)) to ferric (Fe(3+)) iron, and that only the former is transported across the duodenum, we hypothesize that, at high concentrations, Cr(VI) oxidizes Fe(2+) in the lumen of the small intestine and perturbs iron absorption. Herein we report that 90-day exposure to Cr(VI) in drinking water resulted in dose-dependent decreases in Fe levels in the duodenum, liver, serum, and bone marrow. Toxicogenomic analyses from the duodenum indicate responses consistent with Fe deficiency, including significant induction of divalent metal transporter 1 (DMT1, Slc11a2) and transferrin receptor 1 (TFR1, Tfr1). In addition, at ⩾20mg Cr(VI)/L in drinking water, Cr RBC:plasma ratios in rats were increased and exceeded unity, indicating saturation of reductive capacity and intracellular absorption of Cr(VI) into red blood cells (RBCs). These effects occurred in both species but were generally more severe in rats. These data suggest that high concentrations of Cr(VI) in drinking limit Fe absorption and alter iron homeostasis. Furthermore, some effects observed at high doses in recent Cr(VI) chronic and subchronic bioassays may be explained, at least in part, by iron deficiency and disruption of homeostasis.

  1. CCR7 expression alters memory CD8 T-cell homeostasis by regulating occupancy in IL-7- and IL-15-dependent niches.

    PubMed

    Jung, Yong Woo; Kim, Hyun Gyung; Perry, Curtis J; Kaech, Susan M

    2016-07-19

    C-C receptor 7 (CCR7) is important to allow T cells and dendritic cells to migrate toward CCL19- and CCL21-producing cells in the T-cell zone of the spleen and lymph nodes. The role of this chemokine receptor in regulating the homeostasis of effector and memory T cells during acute viral infection is poorly defined, however. In this study, we show that CCR7 expression alters memory CD8 T-cell homeostasis following lymphocytic choriomeningitis virus infection. Greater numbers of CCR7-deficient memory T cells were formed and maintained compared with CCR7-sufficient memory T cells, especially in the lung and bone marrow. The CCR7-deficient memory T cells also displayed enhanced rates of homeostatic turnover, which may stem from increased exposure to IL-15 as a consequence of reduced exposure to IL-7, because removal of IL-15, but not of IL-7, normalized the numbers of CCR7-sufficient and CCR7-deficient memory CD8 T cells. This result suggests that IL-15 is the predominant cytokine supporting augmentation of the CCR7(-/-) memory CD8 T-cell pool. Taken together, these data suggest that CCR7 biases memory CD8 T cells toward IL-7-dependent niches over IL-15-dependent niches, which provides insight into the homeostatic regulation of different memory T-cell subsets.

  2. Neurexin-1 regulates sleep and synaptic plasticity in Drosophila melanogaster.

    PubMed

    Larkin, Aoife; Chen, Ming-Yu; Kirszenblat, Leonie; Reinhard, Judith; van Swinderen, Bruno; Claudianos, Charles

    2015-10-01

    Neurexins are cell adhesion molecules that are important for synaptic plasticity and homeostasis, although links to sleep have not yet been investigated. We examined the effects of neurexin-1 perturbation on sleep in Drosophila, showing that neurexin-1 nulls displayed fragmented sleep and altered circadian rhythm. Conversely, the over-expression of neurexin-1 could increase and consolidate night-time sleep. This was not solely due to developmental effects as it could be induced acutely in adulthood, and was coupled with evidence of synaptic growth. The timing of over-expression could differentially impact sleep patterns, with specific night-time effects. These results show that neurexin-1 was dynamically involved in synaptic plasticity and sleep in Drosophila. Neurexin-1 and a number of its binding partners have been repeatedly associated with mental health disorders, including autism spectrum disorders, schizophrenia and Tourette syndrome, all of which are also linked to altered sleep patterns. How and when plasticity-related proteins such as neurexin-1 function during sleep can provide vital information on the interaction between synaptic homeostasis and sleep, paving the way for more informed treatments of human disorders.

  3. Lipopolysaccharide Increases Immune Activation and Alters T Cell Homeostasis in SHIVB'WHU Chronically Infected Chinese Rhesus Macaque

    PubMed Central

    Zhang, Gao-Hong; Wu, Run-Dong; Zheng, Hong-Yi; Zhang, Xiao-Liang; Zhang, Ming-Xu; Tian, Ren-Rong; Liu, Guang-Ming; Pang, Wei; Zheng, Yong-Tang

    2015-01-01

    Immune activation plays a significant role in the disease progression of HIV. Microbial products, especially bacterial lipopolysaccharide (LPS), contribute to immune activation. Increasing evidence indicates that T lymphocyte homeostasis disruptions are associated with immune activation. However, the mechanism by which LPS affects disruption of immune response is still not fully understood. Chronically SHIVB'WHU-infected Chinese rhesus macaques received 50 μg/kg body weight LPS in this study. LPS administration affected the virus/host equilibrium by elevating the levels of viral replication and activating T lymphocytes. LPS induced upregulation of CD8+ naïve T cells and downregulated the number of CD4+ and CD8+ T effector memory cells. The downregulated effector memory cells are associated with a lower frequency of monofunctional and polyfunctional cells, and an upregulated programmed cell death-1 (PD-1) expression on CD4+ and CD8+ T cells was observed in monkeys after LPS stimulation. Our data provide new insights into the function of LPS in the immune activation in SHIV/HIV infection. PMID:26713320

  4. Soluble epoxide hydrolase deficiency alters pancreatic islet size and improves glucose homeostasis in a model of insulin resistance.

    PubMed

    Luria, Ayala; Bettaieb, Ahmed; Xi, Yannan; Shieh, Guang-Jong; Liu, Hsin-Chen; Inoue, Hiromi; Tsai, Hsing-Ju; Imig, John D; Haj, Fawaz G; Hammock, Bruce D

    2011-05-31

    Visceral obesity has been defined as an important element of the metabolic syndrome and contributes to the development of insulin resistance and cardiovascular disease. Increasing endogenous levels of epoxyeicosatrienoic acids (EETs) are known for their analgesic, antihypertensive, and antiinflammatory effects. The availability of EETs is limited primarily by the soluble epoxide hydrolase (sEH, EPHX2), which metabolizes EETs to their less active diols. In this study, we tested the hypothesis that EETs are involved in glucose regulation and in retarding the development of insulin resistance. To address the role of EETs in regulating glucose homeostasis and insulin signaling, we used mice with targeted gene deletion of sEH (Ephx2-null mice) and a subsequent study with a selective sEH inhibitor. When wild-type mice are fed a high fat diet, insulin resistance develops. However, knockout or inhibition of sEH activity resulted in a significant decrease in plasma glucose. These findings are characterized by enhancement of tyrosyl phosphorylation of the insulin receptor, insulin receptor substrate 1, and their downstream cascade. In addition, pancreatic islets were larger when sEH was disrupted. This effect was associated with an increase in vasculature. These observations were supported by pharmacological inhibition of sEH. These data suggest that an increase in EETs due to sEH-gene knockout leads to an increase in the size of islets and improved insulin signaling and sensitivity.

  5. Exercise and gut immune function: evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training.

    PubMed

    Cook, Marc D; Allen, Jacob M; Pence, Brandt D; Wallig, Matthew A; Gaskins, H Rex; White, Bryan A; Woods, Jeffrey A

    2016-02-01

    There is robust evidence that habitual physical activity is anti-inflammatory and protective against developing chronic inflammatory disease. Much less is known about the effects of habitual moderate exercise in the gut, the compartment that has the greatest immunological responsibility and interactions with the intestinal microbiota. The link between the two has become evident, as recent studies have linked intestinal dysbiosis, or the disproportionate balance of beneficial to pathogenic microbes, with increased inflammatory disease susceptibility. Limited animal and human research findings imply that exercise may have a beneficial role in preventing and ameliorating such diseases by having an effect on gut immune function and, recently, microbiome characteristics. Emerging data from our laboratory show that different forms of exercise training differentially impact the severity of intestinal inflammation during an inflammatory insult (for example, ulcerative colitis) and may be jointly related to gut immune cell homeostasis and microbiota-immune interactions. The evidence we review and present will provide data in support of rigorous investigations concerning the effects of habitual exercise on gut health and disease.

  6. Cyclic glycine-proline regulates IGF-1 homeostasis by altering the binding of IGFBP-3 to IGF-1

    NASA Astrophysics Data System (ADS)

    Guan, Jian; Gluckman, Peter; Yang, Panzao; Krissansen, Geoff; Sun, Xueying; Zhou, Yongzhi; Wen, Jingyuan; Phillips, Gemma; Shorten, Paul R.; McMahon, Chris D.; Wake, Graeme C.; Chan, Wendy H. K.; Thomas, Mark F.; Ren, April; Moon, Steve; Liu, Dong-Xu

    2014-03-01

    The homeostasis of insulin-like growth factor-1 (IGF-1) is essential for metabolism, development and survival. Insufficient IGF-1 is associated with poor recovery from wounds whereas excessive IGF-1 contributes to growth of tumours. We have shown that cyclic glycine-proline (cGP), a metabolite of IGF-1, can normalise IGF-1 function by showing its efficacy in improving the recovery from ischemic brain injury in rats and inhibiting the growth of lymphomic tumours in mice. Further investigation in cell culture suggested that cGP promoted the activity of IGF-1 when it was insufficient, but inhibited the activity of IGF-1 when it was excessive. Mathematical modelling revealed that the efficacy of cGP was a modulated IGF-1 effect via changing the binding of IGF-1 to its binding proteins, which dynamically regulates the balance between bioavailable and non-bioavailable IGF-1. Our data reveal a novel mechanism of auto-regulation of IGF-1, which has physiological and pathophysiological consequences and potential pharmacological utility.

  7. Organelle-specific expression of subunit ND5 of human complex I (NADH dehydrogenase) alters cation homeostasis in Saccharomyces cerevisiae.

    PubMed

    Steffen, Wojtek; Gemperli, Anja C; Cvetesic, Nevena; Steuber, Julia

    2010-09-01

    The ND5 component of the respiratory complex I is a large, hydrophobic subunit encoded by the mitochondrial genome. Its bacterial homologue, the NDH-1 subunit NuoL, acts as a cation transporter in the absence of other NDH-1 subunits. Mutations in human ND5 are frequently observed in neurodegenerative diseases. Wild type and mutant variants of ND5 fused to GFP or a FLAG peptide were targeted to the endoplasmatic reticulum (ER) or the inner mitochondrial membrane of Saccharomyces cerevisiae, which lacks an endogenous complex I. The localization of ND5 fusion proteins was confirmed by microscopic analyses of S. cerevisiae cells, followed by cellular fractionation and immunostaining. The impact of the expression of ND5 fusion proteins on the growth of S. cerevisiae in the presence and absence of added salts was studied. ER-resident ND5 conferred Li(+) sensitivity to S. cerevisiae, which was lost when the E145V variant of ND5 was expressed. All variants of ND5 tested led to increased resistance of S. cerevisiae at high external concentrations of Na(+) or K(+). The data seem to indicate that ND5 influences the salt homeostasis of S. cerevisiae independent of other complex I subunits, and paves the way for functional studies of mutations found in mitochondrially encoded complex I genes.

  8. Altered structural and effective connectivity in anorexia and bulimia nervosa in circuits that regulate energy and reward homeostasis

    PubMed Central

    Frank, G K W; Shott, M E; Riederer, J; Pryor, T L

    2016-01-01

    Anorexia and bulimia nervosa are severe eating disorders that share many behaviors. Structural and functional brain circuits could provide biological links that those disorders have in common. We recruited 77 young adult women, 26 healthy controls, 26 women with anorexia and 25 women with bulimia nervosa. Probabilistic tractography was used to map white matter connectivity strength across taste and food intake regulating brain circuits. An independent multisample greedy equivalence search algorithm tested effective connectivity between those regions during sucrose tasting. Anorexia and bulimia nervosa had greater structural connectivity in pathways between insula, orbitofrontal cortex and ventral striatum, but lower connectivity from orbitofrontal cortex and amygdala to the hypothalamus (P<0.05, corrected for comorbidity, medication and multiple comparisons). Functionally, in controls the hypothalamus drove ventral striatal activity, but in anorexia and bulimia nervosa effective connectivity was directed from anterior cingulate via ventral striatum to the hypothalamus. Across all groups, sweetness perception was predicted by connectivity strength in pathways connecting to the middle orbitofrontal cortex. This study provides evidence that white matter structural as well as effective connectivity within the energy-homeostasis and food reward-regulating circuitry is fundamentally different in anorexia and bulimia nervosa compared with that in controls. In eating disorders, anterior cingulate cognitive–emotional top down control could affect food reward and eating drive, override hypothalamic inputs to the ventral striatum and enable prolonged food restriction. PMID:27801897

  9. Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation.

    PubMed

    Dutilleul, Christelle; Garmier, Marie; Noctor, Graham; Mathieu, Chantal; Chétrit, Philippe; Foyer, Christine H; de Paepe, Rosine

    2003-05-01

    To explore the role of plant mitochondria in the regulation of cellular redox homeostasis and stress resistance, we exploited a Nicotiana sylvestris mitochondrial mutant. The cytoplasmic male-sterile mutant (CMSII) is impaired in complex I function and displays enhanced nonphosphorylating rotenone-insensitive [NAD(P)H dehydrogenases] and cyanide-insensitive (alternative oxidase) respiration. Loss of complex I function is not associated with increased oxidative stress, as shown by decreased leaf H(2)O(2) and the maintenance of glutathione and ascorbate content and redox state. However, the expression and activity of several antioxidant enzymes are modified in CMSII. In particular, diurnal patterns of alternative oxidase expression are lost, the relative importance of the different catalase isoforms is modified, and the transcripts, protein, and activity of cytosolic ascorbate peroxidase are enhanced markedly. Thus, loss of complex I function reveals effective antioxidant crosstalk and acclimation between the mitochondria and other organelles to maintain whole cell redox balance. This reorchestration of the cellular antioxidative system is associated with higher tolerance to ozone and Tobacco mosaic virus.

  10. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    SciTech Connect

    Banerjee, Chaitali; Goswami, Ramansu; Datta, Soma; Rajagopal, R.; Mazumder, Shibnath

    2011-10-01

    We had earlier shown that exposure to arsenic (0.50 {mu}M) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca{sup 2+}) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca{sup 2+} homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca{sup 2+} levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: > Altered Ca{sup 2+} homeostasis leads to arsenic-induced HKM apoptosis. > Calpain-2 plays a critical role in the process. > ERK is pro-apoptotic in arsenic-induced HKM apoptosis. > Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  11. Possible role of citalopram and desipramine against sleep deprivation-induced anxiety like-behavior alterations and oxidative damage in mice.

    PubMed

    Garg, Ruchika; Kumar, Anil

    2008-11-01

    Sleep is an essential physiological process for maintaining physical, mental, and emotional health. Sleep deprivation and associated disorders like depression and anxiety are one of the major problems now-days. The present study was designed to explore the neuroprotecitve effect of citalopram and desipramine on 72 hr sleep deprivation-induced behavioral alterations and oxidative damage in mice. Various behavioral tests (plus maze, zero maze, mirror chamber, actophotometer), body weight followed by oxidative parameters (malondialdehyde level, glutathione, catalase, nitrite and protein) were assessed. Treatment with citalopram (5 and 10 mg/kg, ip) and desipramine (10 and 20 mg/kg, ip) for 5 days significantly improved locomotor activity, anti-anxiety like behavior in all paradigms tasks (mirror chamber, plus maze, zero maze) as compared to control (72 hr sleep-deprived). Biochemically, citalopram and desipramine treatment significantly restored depleted reduced glutathione, catalase activity, attenuated raised lipid peroxidation and nitrite level as compared to control (72 hr sleep-deprived) animals. Results of present study suggest that citalopram (5 and 10mg/kg, ip) and desipramine (10 and 20 mg/kg, ip) have neuroprotective effect against sleep deprivation-induced behavior alteration and oxidative damage in mice.

  12. Circadian Disruption Leads to Loss of Homeostasis and Disease

    PubMed Central

    Escobar, Carolina; Salgado-Delgado, Roberto; Gonzalez-Guerra, Eduardo; Tapia Osorio, Araceli; Angeles-Castellanos, Manuel; Buijs, Ruud M.

    2011-01-01

    The relevance of a synchronized temporal order for adaptation and homeostasis is discussed in this review. We present evidence suggesting that an altered temporal order between the biological clock and external temporal signals leads to disease. Evidence mainly based on a rodent model of “night work” using forced activity during the sleep phase suggests that altered activity and feeding schedules, out of phase from the light/dark cycle, may be the main cause for the loss of circadian synchrony and disease. It is proposed that by avoiding food intake during sleep hours the circadian misalignment and adverse consequences can be prevented. This review does not attempt to present a thorough revision of the literature, but instead it aims to highlight the association between circadian disruption and disease with special emphasis on the contribution of feeding schedules in circadian synchrony. PMID:23471148

  13. CLA-enriched diet containing t10,c12-CLA alters bile acid homeostasis and increases the risk of cholelithiasis in mice.

    PubMed

    Letona, Amaia Zabala; Niot, Isabelle; Laugerette, Fabienne; Athias, Anne; Monnot, Marie-Claude; Portillo, Maria P; Besnard, Philippe; Poirier, Hélène

    2011-08-01

    Mice fed a mixture of CLA containing t10,c12-CLA lose fat mass and develop hyperinsulinemia and hepatic steatosis due to an accumulation of TG and cholesterol. Because cholesterol is the precursor in bile acid (BA) synthesis, we investigated whether t10,c12-CLA alters BA metabolism. In Expt. 1, female C57Bl/6J mice were fed a standard diet for 28 d supplemented with a CLA mixture (1 g/100 g) or not (controls). In Expt. 2, the feeding period was reduced to 4, 6, and 10 d. In Expt. 3, mice were fed a diet supplemented with linoleic acid, c9,t11-CLA, or t10,c12-CLA (0.4 g/100 g) for 28 d. In Expt. 1, the BA pool size was greater in CLA-fed mice than in controls and the entero-hepatic circulation of BA was altered due to greater BA synthesis and ileal reclamation. This resulted from higher hepatic cholesterol 7α-hydroxylase (CYP7A1) and ileal apical sodium BA transporter expressions in CLA-fed mice. Furthermore, hepatic Na(+)/taurocholate co-transporting polypeptide (NTCP) (-52%) and bile salt export pump (BSEP) (-77%) protein levels were lower in CLA-fed mice than in controls, leading to a greater accumulation of BA in the plasma (+500%); also, the cholesterol saturation index and the concentration of hydrophobic BA in the bile were greater in CLA-fed mice, changes associated with the presence of cholesterol crystals. Expt. 2 suggests that CLA-mediated changes were caused by hyperinsulinemia, which occurred after 6 d of the CLA diet before NTCP and BSEP mRNA downregulation (10 d). Expt. 3 demonstrated that only t10,c12-CLA altered NTCP and BSEP mRNA levels. In conclusion, t10,c12-CLA alters BA homeostasis and increases the risk of cholelithiasis in mice.

  14. MicroRNA 138, let-7b, and 125a inhibitors differentially alter sleep and EEG delta-wave activity in rats

    PubMed Central

    Clinton, James M.; Krueger, James M.

    2012-01-01

    Sleep deprivation was previously reported to alter microRNA (miRNA) levels in the brain; however, the direct effects of any miRNA on sleep have only been described recently. We determined miRNA 138 (miR-138), miRNA let-7b (let-7b), and miRNA 125a-5p (miR-125a) levels in different brain areas at the transitions between light and dark. In addition, we examined the extent to which inhibiting these miRNAs affects sleep and EEG measures. We report that the levels of multiple miRNAs differ at the end of the sleep-dominant light period vs. the end of the wake-dominant dark period in cortical areas, hippocampus, and hypothalamus. For instance, in multiple regions of the cortex, miR-138, let-7b, and miR-125a expression was higher at the end of the dark period compared with the end of the light period. Intracerebroventricular injection of a specific inhibitor (antiMIR) to miR-138 suppressed sleep and nonrapid eye movement sleep (NREMS) EEG delta power. The antiMIR to let-7b did not affect time in state but decreased NREMS EEG delta power, whereas the antiMIR to miR-125a failed to affect sleep until after 3 days and did not affect EEG delta power on any day. We conclude that miRNAs are uniquely expressed at different times and in different structures in the brain and have discrete effects and varied timings on several sleep phenotypes and therefore, likely play a role in the regulation of sleep. PMID:23104698

  15. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    PubMed

    Luz, Anthony L; Rooney, John P; Kubik, Laura L; Gonzalez, Claudia P; Song, Dong Hoon; Meyer, Joel N

    2015-01-01

    Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.

  16. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes

    PubMed Central

    Luz, Anthony L.; Rooney, John P.; Kubik, Laura L.; Gonzalez, Claudia P.; Song, Dong Hoon; Meyer, Joel N.

    2015-01-01

    Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes. PMID:26106885

  17. The structural alteration and aggregation propensity of glycated lens crystallins in the presence of calcium: Importance of lens calcium homeostasis in development of diabetic cataracts

    NASA Astrophysics Data System (ADS)

    ZM, Sara Zafaranchi; Khoshaman, Kazem; Masoudi, Raheleh; Hemmateenejad, Bahram; Yousefi, Reza

    2017-01-01

    The imbalance of the calcium homeostasis in the lenticular tissues of diabetic patients is an important risk factor for development of cataract diseases. In the current study, the impact of elevated levels of calcium ions were investigated on structure and aggregation propensity of glycated lens crystallins using gel electrophoresis and spectroscopic assessments. The glycated proteins indicated significant resistance against calcium-induced structural insults and aggregation. While, glycated crystallins revealed an increased conformational stability; a slight instability was observed for these proteins upon interaction with calcium ions. Also, in the presence of calcium, the proteolytic pattern of native crystallins was altered and that of glycated protein counterparts remained almost unchanged. According to results of this study it is suggested that the structural alteration of lens crystallins upon glycation may significantly reduce their calcium buffering capacity in eye lenses. Therefore, under chronic hyperglycemia accumulation of this cataractogenic metal ion in the lenticular tissues may subsequently culminate in activation of different pathogenic pathways, leading to development of lens opacity and cataract diseases.

  18. Effect of garlic (Allium sativum) on nickel II or chromium VI induced alterations of glucose homeostasis and hepatic antioxidant status under sub-chronic exposure conditions.

    PubMed

    Das Gupta, Amrita; Dhara, Prakash C; Dhundasi, Salim A; Das, Kusal K

    2009-01-01

    Garlic (Allium sativum) has a profound effect in reducing plasma glucose and increasing serum insulin in diabetic rats. We studied the effect of a garlic extract on nickel- or chromium-induced alteration of plasma glucose and hepatic glycogen levels and anti-oxidant status in rats. Adult male albino rats (n=36) divided into six groups of six animals each were treated as follows: Group I, untreated controls; Group II, fresh aqueous homogenate of garlic; Group III, nickel sulfate; Group IV, nickel sulfate + garlic; Group V, potassium dichromate; Group VI, potassium dichromate + garlic. In Groups IV and VI, the simultaneous administration of garlic abrogated a significant nickel- or chromium-induced increase in plasma glucose and decrease in liver glycogen. Nickel and chromium alone also increased lipid peroxide (LPO) and decreased glutathione levels, as well as the activity of superoxide dismutase (SOD), catalase, and glutathione peroxidase. Simultaneous garlic administration significantly reduced the LPO level and remarkably improved SOD activity. Hence, we postulate that the administration of garlic can prevent nickel II- or chromium VI-induced alterations in blood glucose homeostasis while exerting a hepatoprotective effect on glycogen levels and antioxidant status in male albino rats.

  19. Diet/Energy Balance Affect Sleep and Wakefulness Independent of Body Weight

    PubMed Central

    Perron, Isaac J.; Pack, Allan I.; Veasey, Sigrid

    2015-01-01

    Study Objectives: Excessive daytime sleepiness commonly affects obese people, even in those without sleep apnea, yet its causes remain uncertain. We sought to determine whether acute dietary changes could induce or rescue wake impairments independent of body weight. Design: We implemented a novel feeding paradigm that generates two groups of mice with equal body weight but opposing energetic balance. Two subsets of mice consuming either regular chow (RC) or high-fat diet (HFD) for 8 w were switched to the opposite diet for 1 w. Sleep recordings were conducted at Week 0 (baseline), Week 8 (pre-diet switch), and Week 9 (post-diet switch) for all groups. Sleep homeostasis was measured at Week 8 and Week 9. Participants: Young adult, male C57BL/6J mice. Measurements and Results: Differences in total wake, nonrapid eye movement (NREM), and rapid eye movement (REM) time were quantified, in addition to changes in bout fragmentation/consolidation. At Week 9, the two diet switch groups had similar body weight. However, animals switched to HFD (and thus gaining weight) had decreased wake time, increased NREM sleep time, and worsened sleep/wake fragmentation compared to mice switched to RC (which were in weight loss). These effects were driven by significant sleep/wake changes induced by acute dietary manipulations (Week 8 → Week 9). Sleep homeostasis, as measured by delta power increase following sleep deprivation, was unaffected by our feeding paradigm. Conclusions: Acute dietary manipulations are sufficient to alter sleep and wakefulness independent of body weight and without effects on sleep homeostasis. Citation: Perron IJ, Pack AI, Veasey S. Diet/energy balance affect sleep and wakefulness independent of body weight. SLEEP 2015;38(12):1893–1903. PMID:26158893

  20. Endoplasmic reticulum stress and disturbed calcium homeostasis are involved in copper-induced alteration in hepatic lipid metabolism in yellow catfish Pelteobagrus fulvidraco.

    PubMed

    Song, Yu-Feng; Luo, Zhi; Zhang, Li-Han; Hogstrand, Christer; Pan, Ya-Xiong

    2016-02-01

    The present study was conducted to investigate the effect of Cu exposure on ER stress and Ca(2+) homeostasis, and explore the underlying mechanism of the ER stress and disturbed Ca(2+) homeostasis in the regulation of hepatic lipid metabolism in yellow catfish Pelteobagrus fulvidraco. To this end, three experiments were conducted. In experiment 1, P. fulvidraco were exposed to three waterborne Cu concentrations for 56 days. Waterborne Cu exposure evoked ER stress and SREBP-1c activation and resulted in dysregulation of hepatic lipid metabolism in liver of P. fulvidraco in a time-dependent manner. In experiment 2, specific inhibitors 2-APB (IP3 receptor inhibitor) and dantrolene (RyR receptor inhibitor) were used to explore whether Ca(2+) release from ER was involved in the Cu-induced ER stress change. Dantrolene and 2-APB prevented Cu-induced intracellular Ca(2+) elevation, demonstrating that the release of Ca(2+) from the ER, mediated by both RyR and IP3R, contributed to dysregulation of lipid metabolism. In experiment 3, a chemical chaperone (PBA) was used to demonstrate whether Cu-induced alteration in lipid metabolism was suppressed through the attenuation of ER stress. PBA attenuated the Cu-induced elevation of mRNA expression of SREBP-1c, SCAP, ACC, FAS, GRP78/BiP, GRP94, CRT, eIF2α and XBP-1, and alleviated the Cu-induced downregulation of Insig-1. Based on these observations, these results reveal a link between ER stress and the change of lipid metabolism induced by Cu, which will help to understand the Cu-induced toxicity on cellular and molecular level, and provide some novel insights into the regulation of lipid metabolism in fish.

  1. Scn1b deletion leads to increased tetrodotoxin-sensitive sodium current, altered intracellular calcium homeostasis and arrhythmias in murine hearts.

    PubMed

    Lin, Xianming; O'Malley, Heather; Chen, Chunling; Auerbach, David; Foster, Monique; Shekhar, Akshay; Zhang, Mingliang; Coetzee, William; Jalife, José; Fishman, Glenn I; Isom, Lori; Delmar, Mario

    2014-08-15

    Na(+) current (INa) is determined not only by the properties of the pore-forming voltage-gated Na(+) channel (VGSC) α subunit, but also by the integrated function of a molecular aggregate (the VGSC complex) that includes the VGSC β subunit family. Mutations or rare variants in Scn1b (encoding the β1 and β1B subunits) have been associated with various inherited arrhythmogenic syndromes, including cases of Brugada syndrome and sudden unexpected death in patients with epilepsy. Here, we have used Scn1b null mouse models to understand better the relation between Scn1b expression, and cardiac electrical function. Using a combination of macropatch and scanning ion conductance microscopy we show that loss of Scn1b in juvenile null animals resulted in increased tetrodotoxin-sensitive INa but only in the cell midsection, even before full T-tubule formation; the latter occurred concurrent with increased message abundance for the neuronal Scn3a mRNA, suggesting increased abundance of tetrodotoxin-sensitive NaV1.3 protein and yet its exclusion from the region of the intercalated disc. Ventricular myocytes from cardiac-specific adult Scn1b null animals showed increased Scn3a message, prolonged action potential repolarization, presence of delayed after-depolarizations and triggered beats, delayed Ca(2+) transients and frequent spontaneous Ca(2+) release events and at the whole heart level, increased susceptibility to polymorphic ventricular arrhythmias. Most alterations in Ca(2+) homeostasis were prevented by 100 nm tetrodotoxin. Our results suggest that life-threatening arrhythmias in patients with mutations in Scn1b, a gene classically defined as ancillary to the Na(+) channel α subunit, can be partly consequent to disrupted intracellular Ca(2+) homeostasis in ventricular myocytes.

  2. A mutation in GDP-mannose pyrophosphorylase causes conditional hypersensitivity to ammonium, resulting in Arabidopsis root growth inhibition, altered ammonium metabolism, and hormone homeostasis.

    PubMed

    Barth, Carina; Gouzd, Zachary A; Steele, Hilary P; Imperio, Ryan M

    2010-01-01

    Ascorbic acid (AA) is an antioxidant fulfilling a multitude of cellular functions. Given its pivotal role in maintaining the rate of cell growth and division in the quiescent centre of the root, it was hypothesized that the AA-deficient Arabidopsis thaliana mutants vtc1-1, vtc2-1, vtc3-1, and vtc4-1 have altered root growth. To test this hypothesis, root development was studied in the wild type and vtc mutants grown on Murashige and Skoog medium. It was discovered, however, that only the vtc1-1 mutant has strongly retarded root growth, while the other vtc mutants exhibit a wild-type root phenotype. It is demonstrated that the short-root phenotype in vtc1-1 is independent of AA deficiency and oxidative stress. Instead, vtc1-1 is conditionally hypersensitive to ammonium (NH(4)(+)). To provide new insights into the mechanism of NH(4)(+) sensitivity in vtc1-1, root development, NH(4)(+) content, glutamine synthetase (GS) activity, glutamate dehydrogenase activity, and glutamine content were assessed in wild-type and vtc1-1 mutant plants grown in the presence and absence of high NH(4)(+) and the GS inhibitor MSO. Since VTC1 encodes a GDP-mannose pyrophosphorylase, an enzyme generating GDP-mannose for AA biosynthesis and protein N-glycosylation, it was also tested whether protein N-glycosylation is affected in vtc1-1. Furthermore, since root development requires the action of a variety of hormones, it was investigated whether hormone homeostasis is linked to NH(4)(+) sensitivity in vtc1-1. Our data suggest that NH(4)(+) hypersensitivity in vtc1-1 is caused by disturbed N-glycosylation and that it is associated with auxin and ethylene homeostasis and/or nitric oxide signalling.

  3. A mutation in GDP-mannose pyrophosphorylase causes conditional hypersensitivity to ammonium, resulting in Arabidopsis root growth inhibition, altered ammonium metabolism, and hormone homeostasis

    PubMed Central

    Barth, Carina; Gouzd, Zachary A.; Steele, Hilary P.; Imperio, Ryan M.

    2010-01-01

    Ascorbic acid (AA) is an antioxidant fulfilling a multitude of cellular functions. Given its pivotal role in maintaining the rate of cell growth and division in the quiescent centre of the root, it was hypothesized that the AA-deficient Arabidopsis thaliana mutants vtc1-1, vtc2-1, vtc3-1, and vtc4-1 have altered root growth. To test this hypothesis, root development was studied in the wild type and vtc mutants grown on Murashige and Skoog medium. It was discovered, however, that only the vtc1-1 mutant has strongly retarded root growth, while the other vtc mutants exhibit a wild-type root phenotype. It is demonstrated that the short-root phenotype in vtc1-1 is independent of AA deficiency and oxidative stress. Instead, vtc1-1 is conditionally hypersensitive to ammonium (NH4+). To provide new insights into the mechanism of NH4+ sensitivity in vtc1-1, root development, NH4+ content, glutamine synthetase (GS) activity, glutamate dehydrogenase activity, and glutamine content were assessed in wild-type and vtc1-1 mutant plants grown in the presence and absence of high NH4+ and the GS inhibitor MSO. Since VTC1 encodes a GDP-mannose pyrophosphorylase, an enzyme generating GDP-mannose for AA biosynthesis and protein N-glycosylation, it was also tested whether protein N-glycosylation is affected in vtc1-1. Furthermore, since root development requires the action of a variety of hormones, it was investigated whether hormone homeostasis is linked to NH4+ sensitivity in vtc1-1. Our data suggest that NH4+ hypersensitivity in vtc1-1 is caused by disturbed N-glycosylation and that it is associated with auxin and ethylene homeostasis and/or nitric oxide signalling. PMID:20007685

  4. Perinatal exposure to glyphosate-based herbicide alters the thyrotrophic axis and causes thyroid hormone homeostasis imbalance in male rats.

    PubMed

    de Souza, Janaina Sena; Kizys, Marina Malta Letro; da Conceição, Rodrigo Rodrigues; Glebocki, Gabriel; Romano, Renata Marino; Ortiga-Carvalho, Tania Maria; Giannocco, Gisele; da Silva, Ismael Dale Cotrim Guerreiro; Dias da Silva, Magnus Regios; Romano, Marco Aurélio; Chiamolera, Maria Izabel

    2017-02-15

    Glyphosate-based herbicides (GBHs) are widely used in agriculture. Recently, several animal and epidemiological studies have been conducted to understand the effects of these chemicals as an endocrine disruptor for the gonadal system. The aim of the present study was to determine whether GBHs could also disrupt the hypothalamic-pituitary-thyroid (HPT) axis. Female pregnant Wistar rats were exposed to a solution containing GBH Roundup(®)Transorb (Monsanto). The animals were divided into three groups (control, 5mg/kg/day or 50mg/kg/day) and exposed from gestation day 18 (GD18) to post-natal day 5 (PND5). Male offspring were euthanized at PND 90, and blood and tissues samples from the hypothalamus, pituitary, liver and heart were collected for hormonal evaluation (TSH-Thyroid stimulating hormone, T3-triiodothyronine and T4-thyroxine), metabolomic and mRNA analyses of genes related to thyroid hormone metabolism and function. The hormonal profiles showed decreased concentrations of TSH in the exposed groups, with no variation in the levels of the thyroid hormones (THs) T3 and T4 between the groups. Hypothalamus gene expression analysis of the exposed groups revealed a reduction in the expression of genes encoding deiodinases 2 (Dio2) and 3 (Dio3) and TH transporters Slco1c1 (former Oatp1c1) and Slc16a2 (former Mct8). In the pituitary, Dio2, thyroid hormone receptor genes (Thra1 and Thrb1), and Slc16a2 showed higher expression levels in the exposed groups than in the control group. Interestingly, Tshb gene expression did not show any difference in expression profile between the control and exposed groups. Liver Thra1 and Thrb1 showed increased mRNA expression in both GBH-exposed groups, and in the heart, Dio2, Mb, Myh6 (former Mhca) and Slc2a4 (former Glut4) showed higher mRNA expression in the exposed groups. Additionally, correlation analysis between gene expression and metabolomic data showed similar alterations as detected in hypothyroid rats. Perinatal exposure to

  5. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg2+ homeostasis and cytoskeletal architecture

    PubMed Central

    Stritt, Simon; Nurden, Paquita; Favier, Remi; Favier, Marie; Ferioli, Silvia; Gotru, Sanjeev K.; van Eeuwijk, Judith M M.; Schulze, Harald; Nurden, Alan T.; Lambert, Michele P.; Turro, Ernest; Burger-Stritt, Stephanie; Matsushita, Masayuki; Mittermeier, Lorenz; Ballerini, Paola; Zierler, Susanna; Laffan, Michael A.; Chubanov, Vladimir; Gudermann, Thomas; Nieswandt, Bernhard; Braun, Attila

    2016-01-01

    Mg2+ plays a vital role in platelet function, but despite implications for life-threatening conditions such as stroke or myocardial infarction, the mechanisms controlling [Mg2+]i in megakaryocytes (MKs) and platelets are largely unknown. Transient receptor potential melastatin-like 7 channel (TRPM7) is a ubiquitous, constitutively active cation channel with a cytosolic α-kinase domain that is critical for embryonic development and cell survival. Here we report that impaired channel function of TRPM7 in MKs causes macrothrombocytopenia in mice (Trpm7fl/fl-Pf4Cre) and likely in several members of a human pedigree that, in addition, suffer from atrial fibrillation. The defect in platelet biogenesis is mainly caused by cytoskeletal alterations resulting in impaired proplatelet formation by Trpm7fl/fl-Pf4Cre MKs, which is rescued by Mg2+ supplementation or chemical inhibition of non-muscle myosin IIA heavy chain activity. Collectively, our findings reveal that TRPM7 dysfunction may cause macrothrombocytopenia in humans and mice. PMID:27020697

  6. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis.

    PubMed

    Qian, Shu-Wen; Tang, Yan; Li, Xi; Liu, Yuan; Zhang, You-You; Huang, Hai-Yan; Xue, Rui-Dan; Yu, Hao-Yong; Guo, Liang; Gao, Hui-Di; Liu, Yan; Sun, Xia; Li, Yi-Ming; Jia, Wei-Ping; Tang, Qi-Qun

    2013-02-26

    Expression of bone morphogenetic protein 4 (BMP4) in adipocytes of white adipose tissue (WAT) produces "white adipocytes" with characteristics of brown fat and leads to a reduction of adiposity and its metabolic complications. Although BMP4 is known to induce commitment of pluripotent stem cells to the adipocyte lineage by producing cells that possess the characteristics of preadipocytes, its effects on the mature white adipocyte phenotype and function were unknown. Forced expression of a BMP4 transgene in white adipocytes of mice gives rise to reduced WAT mass and white adipocyte size along with an increased number of a white adipocyte cell types with brown adipocyte characteristics comparable to those of beige or brite adipocytes. These changes correlate closely with increased energy expenditure, improved insulin sensitivity, and protection against diet-induced obesity and diabetes. Conversely, BMP4-deficient mice exhibit enlarged white adipocyte morphology and impaired insulin sensitivity. We identify peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) as the target of BMP signaling required for these brown fat-like changes in WAT. This effect of BMP4 on WAT appears to extend to human adipose tissue, because the level of expression of BMP4 in WAT correlates inversely with body mass index. These findings provide a genetic and metabolic basis for BMP4's role in altering insulin sensitivity by affecting WAT development.

  7. Early-onset sleep defects in Drosophila models of Huntington's disease reflect alterations of PKA/CREB signaling

    PubMed Central

    Gonzales, Erin D.; Tanenhaus, Anne K.; Zhang, Jiabin; Chaffee, Ryan P.; Yin, Jerry C.P.

    2016-01-01

    Huntington's disease (HD) is a progressive neurological disorder whose non-motor symptoms include sleep disturbances. Whether sleep and activity abnormalities are primary molecular disruptions of mutant Huntingtin (mutHtt) expression or result from neurodegeneration is unclear. Here, we report Drosophila models of HD exhibit sleep and activity disruptions very early in adulthood, as soon as sleep patterns have developed. Pan-neuronal expression of full-length or N-terminally truncated mutHtt recapitulates sleep phenotypes of HD patients: impaired sleep initiation, fragmented and diminished sleep, and nighttime hyperactivity. Sleep deprivation of HD model flies results in exacerbated sleep deficits, indicating that homeostatic regulation of sleep is impaired. Elevated PKA/CREB activity in healthy flies produces patterns of sleep and activity similar to those in our HD models. We were curious whether aberrations in PKA/CREB signaling were responsible for our early-onset sleep/activity phenotypes. Decreasing signaling through the cAMP/PKA pathway suppresses mutHtt-induced developmental lethality. Genetically reducing PKA abolishes sleep/activity deficits in HD model flies, restores the homeostatic response and extends median lifespan. In vivo reporters, however, show dCREB2 activity is unchanged, or decreased when sleep/activity patterns are abnormal, suggesting dissociation of PKA and dCREB2 occurs early in pathogenesis. Collectively, our data suggest that sleep defects may reflect a primary pathological process in HD, and that measurements of sleep and cAMP/PKA could be prodromal indicators of disease, and serve as therapeutic targets for intervention. PMID:26604145

  8. Is there an association between altered baroreceptor sensitivity and obstructive sleep apnoea in the healthy elderly?

    PubMed Central

    Martin, Magali Saint; Barthélémy, Jean Claude; Roche, Frédéric

    2016-01-01

    Obstructive sleep apnoea (OSA) is associated with a rise in cardiovascular risk in which increased sympathetic activity and depressed baroreceptor reflex sensitivity (BRS) have been proposed. We examined this association in a sample of healthy elderly subjects with unrecognised OSA. 801 healthy elderly (aged ≥65 years) subjects undergoing clinical, respiratory polygraphy and vascular assessment were examined. According to the apnoea–hypopnoea index (AHI), the subjects were stratified into no OSA, mild–moderate OSA and severe OSA cases. OSA was present in 62% of the sample, 62% being mild–moderate and 38% severe. No differences were found for BRS value according to sex and OSA severity. 54% of the group had normal BRS value, 36% mild impairment and 10% severe dysfunction. BRS was negatively associated with body mass index (p=0.006), 24-h systolic (p=0.001) and diastolic pressure (p=0.001), and oxygen desaturation index (ODI) (p=0.03). Regression analyses revealed that subjects with lower BRS were those with hypertension (OR 0.41, 95% CI 0.24–0.81; p=0.002) and overweight (OR 0.42, 95% CI 0.25–0.81; p=0.008), without the effect of AHI and ODI. In the healthy elderly, the presence of a severe BRS dysfunction affects a small amount of severe cases without effect on snorers and mild OSA. Hypertension and obesity seem to play a great role in BRS impairment. PMID:27957483

  9. Is there an association between altered baroreceptor sensitivity and obstructive sleep apnoea in the healthy elderly?

    PubMed

    Sforza, Emilia; Martin, Magali Saint; Barthélémy, Jean Claude; Roche, Frédéric

    2016-07-01

    Obstructive sleep apnoea (OSA) is associated with a rise in cardiovascular risk in which increased sympathetic activity and depressed baroreceptor reflex sensitivity (BRS) have been proposed. We examined this association in a sample of healthy elderly subjects with unrecognised OSA. 801 healthy elderly (aged ≥65 years) subjects undergoing clinical, respiratory polygraphy and vascular assessment were examined. According to the apnoea-hypopnoea index (AHI), the subjects were stratified into no OSA, mild-moderate OSA and severe OSA cases. OSA was present in 62% of the sample, 62% being mild-moderate and 38% severe. No differences were found for BRS value according to sex and OSA severity. 54% of the group had normal BRS value, 36% mild impairment and 10% severe dysfunction. BRS was negatively associated with body mass index (p=0.006), 24-h systolic (p=0.001) and diastolic pressure (p=0.001), and oxygen desaturation index (ODI) (p=0.03). Regression analyses revealed that subjects with lower BRS were those with hypertension (OR 0.41, 95% CI 0.24-0.81; p=0.002) and overweight (OR 0.42, 95% CI 0.25-0.81; p=0.008), without the effect of AHI and ODI. In the healthy elderly, the presence of a severe BRS dysfunction affects a small amount of severe cases without effect on snorers and mild OSA. Hypertension and obesity seem to play a great role in BRS impairment.

  10. Improvement of mood and sleep alterations in posttraumatic stress disorder patients by eye movement desensitization and reprocessing

    PubMed Central

    Raboni, Mara R.; Alonso, Fabiana F. D.; Tufik, Sergio; Suchecki, Deborah

    2014-01-01

    Posttraumatic stress disorder (PTSD) patients exhibit depressive and anxiety symptoms, in addition to nightmares, which interfere with sleep continuity. Pharmacologic treatment of these sleep problems improves PTSD symptoms, but very few studies have used psychotherapeutic interventions to treat PTSD and examined their effects on sleep quality. Therefore, in the present study, we sought to investigate the effects of Eye Movement Desensitization Reprocessing therapy on indices of mood, anxiety, subjective, and objective sleep. The sample was composed of 11 healthy controls and 13 PTSD patients that were victims of assault and/or kidnapping. All participants were assessed before, and 1 day after, the end of treatment for depressive and anxiety profile, general well-being and subjective sleep by filling out specific questionnaires. In addition, objective sleep patterns were evaluated by polysomnographic recording. Healthy volunteers were submitted to the therapy for three weekly sessions, whereas PTSD patients underwent five sessions, on average. Before treatment, PTSD patients exhibited high levels of anxiety and depression, poor quality of life and poor sleep, assessed both subjectively and objectively; the latter was reflected by increased time of waking after sleep onset. After completion of treatment, patients exhibited improvement in depression and anxiety symptoms, and in quality of life; with indices that were no longer different from control volunteers. Moreover, these patients showed more consolidated sleep, with reduction of time spent awake after sleep onset. In conclusion, Eye Movement Desensitization and Reprocessing was an effective treatment of PTSD patients and improved the associated sleep and psychological symptoms. PMID:24959123

  11. Improvement of mood and sleep alterations in posttraumatic stress disorder patients by eye movement desensitization and reprocessing.

    PubMed

    Raboni, Mara R; Alonso, Fabiana F D; Tufik, Sergio; Suchecki, Deborah

    2014-01-01

    Posttraumatic stress disorder (PTSD) patients exhibit depressive and anxiety symptoms, in addition to nightmares, which interfere with sleep continuity. Pharmacologic treatment of these sleep problems improves PTSD symptoms, but very few studies have used psychotherapeutic interventions to treat PTSD and examined their effects on sleep quality. Therefore, in the present study, we sought to investigate the effects of Eye Movement Desensitization Reprocessing therapy on indices of mood, anxiety, subjective, and objective sleep. The sample was composed of 11 healthy controls and 13 PTSD patients that were victims of assault and/or kidnapping. All participants were assessed before, and 1 day after, the end of treatment for depressive and anxiety profile, general well-being and subjective sleep by filling out specific questionnaires. In addition, objective sleep patterns were evaluated by polysomnographic recording. Healthy volunteers were submitted to the therapy for three weekly sessions, whereas PTSD patients underwent five sessions, on average. Before treatment, PTSD patients exhibited high levels of anxiety and depression, poor quality of life and poor sleep, assessed both subjectively and objectively; the latter was reflected by increased time of waking after sleep onset. After completion of treatment, patients exhibited improvement in depression and anxiety symptoms, and in quality of life; with indices that were no longer different from control volunteers. Moreover, these patients showed more consolidated sleep, with reduction of time spent awake after sleep onset. In conclusion, Eye Movement Desensitization and Reprocessing was an effective treatment of PTSD patients and improved the associated sleep and psychological symptoms.

  12. Dependence of nighttime sleep duration in one-month-old infants on alterations in natural and artificial photoperiod.

    PubMed

    Iwata, Sachiko; Fujita, Fumie; Kinoshita, Masahiro; Unno, Mitsuaki; Horinouchi, Takashi; Morokuma, Seiichi; Iwata, Osuke

    2017-03-17

    Human sleep-wake cycles are entrained by both natural and artificial light-dark cycles. However, little is known regarding when and how the photoperiod changes entrain the biological clock after conception. To investigate the dependence of sleep patterns in young infants on the natural and artificial light-dark cycles, 1,302 pairs of one-month-old infants and their mothers were asked to answer a questionnaire. Birth in spring, longer daytime sleep duration, early/regular light-off times, and longer maternal nighttime sleep duration were identified as independent variables for longer infant nighttime sleep duration in both univariate and multivariate analyses. Longer maternal nighttime sleep duration was dependent on shorter naps and early/regular bed times but not on the season. We found that nighttime sleep duration depended on both natural and artificial diurnal photoperiod changes in one-month-old infants. Although sleep patterns of infants mimicked those of their mothers, nighttime sleep duration depended on the season, and was positively associated with daytime sleep duration, only in the infants. These specific variables, which render sleep patterns of the infants different from those of their mothers, might be a clue to reveal the covert acquisition process of mature circadian rhythms after birth.

  13. Neuroimmunologic aspects of sleep and sleep loss

    NASA Technical Reports Server (NTRS)

    Rogers, N. L.; Szuba, M. P.; Staab, J. P.; Evans, D. L.; Dinges, D. F.

    2001-01-01

    The complex and intimate interactions between the sleep and immune systems have been the focus of study for several years. Immune factors, particularly the interleukins, regulate sleep and in turn are altered by sleep and sleep deprivation. The sleep-wake cycle likewise regulates normal functioning of the immune system. Although a large number of studies have focused on the relationship between the immune system and sleep, relatively few studies have examined the effects of sleep deprivation on immune parameters. Studies of sleep deprivation's effects are important for several reasons. First, in the 21st century, various societal pressures require humans to work longer and sleep less. Sleep deprivation is becoming an occupational hazard in many industries. Second, to garner a greater understanding of the regulatory effects of sleep on the immune system, one must understand the consequences of sleep deprivation on the immune system. Significant detrimental effects on immune functioning can be seen after a few days of total sleep deprivation or even several days of partial sleep deprivation. Interestingly, not all of the changes in immune physiology that occur as a result of sleep deprivation appear to be negative. Numerous medical disorders involving the immune system are associated with changes in the sleep-wake physiology--either being caused by sleep dysfunction or being exacerbated by sleep disruption. These disorders include infectious diseases, fibromyalgia, cancers, and major depressive disorder. In this article, we will describe the relationships between sleep physiology and the immune system, in states of health and disease. Interspersed will be proposals for future research that may illuminate the clinical relevance of the relationships between sleeping, sleep loss and immune function in humans. Copyright 2001 by W.B. Saunders Company.

  14. Endoplasmic reticulum stress and dysregulation of calcium homeostasis mediate Cu-induced alteration in hepatic lipid metabolism of javelin goby Synechogobius hasta.

    PubMed

    Song, Yu-Feng; Huang, Chao; Shi, Xi; Pan, Ya-Xiong; Liu, Xu; Luo, Zhi

    2016-06-01

    The present study was conducted to investigate the effect of Cu exposure on endoplasmic reticulum (ER) stress and Ca(2+) homeostasis, and also explore the underlying mechanism of the ER stress and Ca(2+) homeostasis in the Cu-induced change of hepatic lipid metabolism in javelin goby Synechogobius hasta. To this end, four experiments were conducted. In experiment 1, the full-length cDNA sequences of two ER molecular chaperones [glucose-regulated protein 78 (GRP78) and calreticulin (CRT)] and three ER stress sensors [PKR-like ER kinase (PERK), inositol requiring enzyme (IRE)-1α, and activating transcription factor (ATF)-6α] cDNAs were firstly characterized from S. hasta. The predicted amino acid sequences for the S. hasta GRP78, CRT, PERK, IRE-1α and ATF-6α revealed that the proteins contained all of the structural features characteristic in other species. mRNAs of the five genes were expressed in various tissues, but their mRNA levels varied among tissues. In experiment 2, S. hasta were exposed to four waterborne Cu concentrations (control, 19μg/l, 38μg/l, and 57μg/l, respectively) for 60days. Cu exposure evoked ER stress in liver of S. hasta in a time- and concentration-course change. In experiment 3, specific inhibitors, 2-aminoethyldiphenyl borate (2-APB) and dantrolene, were used to explore whether Ca(2+) release from ER was involved in the Cu-induced ER stress change. Dantrolene and 2-APB prevented Cu-induced intracellular Ca(2+) elevation, which demonstrated the release of Ca(2+) from the ER was mediated by both RyR and IP3R. In experiment 4, a chemical chaperone, 4-phenyl butyric acid (4-PBA), was used to demonstrate whether Cu-induced alteration in lipid metabolism was suppressed through the attenuation of ER stress. Cu exposure evoked ER stress and sterol-regulator element-binding protein-1c (SREBP-1c) activation in hepatocytes of S. hasta, resulting in dysregulation of hepatic lipid metabolism. 4-PBA attenuated the Cu-induced elevation of m

  15. Diurnal Variation and Twenty-Four Hour Sleep Deprivation Do Not Alter Supine Heart Rate Variability in Healthy Male Young Adults

    PubMed Central

    Elvsåshagen, Torbjørn; Zak, Nathalia; Norbom, Linn B.; Pedersen, Per Ø.; Quraishi, Sophia H.; Bjørnerud, Atle; Malt, Ulrik F.; Groote, Inge R.; Kaufmann, Tobias; Andreassen, Ole A.; Westlye, Lars T.

    2017-01-01

    Heart rate variability (HRV) has become an increasingly popular index of cardiac autonomic control in the biobehavioral sciences due to its relationship with mental illness and cognitive traits. However, the intraindividual stability of HRV in response to sleep and diurnal disturbances, which are commonly reported in mental illness, and its relationship with executive function are not well understood. Here, in 40 healthy adult males we calculated high frequency HRV—an index of parasympathetic nervous system (PNS) activity—using pulse oximetry during brain imaging, and assessed attentional and executive function performance in a subsequent behavioral test session at three time points: morning, evening, and the following morning. Twenty participants were randomly selected for total sleep deprivation whereas the other 20 participants slept as normal. Sleep deprivation and morning-to-night variation did not influence high frequency HRV at either a group or individual level; however, sleep deprivation abolished the relationship between orienting attention performance and HRV. We conclude that a day of wake and a night of laboratory-induced sleep deprivation do not alter supine high frequency HRV in young healthy male adults. PMID:28151944

  16. Dependence of nighttime sleep duration in one-month-old infants on alterations in natural and artificial photoperiod

    PubMed Central

    Iwata, Sachiko; Fujita, Fumie; Kinoshita, Masahiro; Unno, Mitsuaki; Horinouchi, Takashi; Morokuma, Seiichi; Iwata, Osuke

    2017-01-01

    Human sleep–wake cycles are entrained by both natural and artificial light–dark cycles. However, little is known regarding when and how the photoperiod changes entrain the biological clock after conception. To investigate the dependence of sleep patterns in young infants on the natural and artificial light–dark cycles, 1,302 pairs of one-month-old infants and their mothers were asked to answer a questionnaire. Birth in spring, longer daytime sleep duration, early/regular light-off times, and longer maternal nighttime sleep duration were identified as independent variables for longer infant nighttime sleep duration in both univariate and multivariate analyses. Longer maternal nighttime sleep duration was dependent on shorter naps and early/regular bed times but not on the season. We found that nighttime sleep duration depended on both natural and artificial diurnal photoperiod changes in one-month-old infants. Although sleep patterns of infants mimicked those of their mothers, nighttime sleep duration depended on the season, and was positively associated with daytime sleep duration, only in the infants. These specific variables, which render sleep patterns of the infants different from those of their mothers, might be a clue to reveal the covert acquisition process of mature circadian rhythms after birth. PMID:28303945

  17. Ancestral sleep.

    PubMed

    de la Iglesia, Horacio O; Moreno, Claudia; Lowden, Arne; Louzada, Fernando; Marqueze, Elaine; Levandovski, Rosa; Pilz, Luisa K; Valeggia, Claudia; Fernandez-Duque, Eduardo; Golombek, Diego A; Czeisler, Charles A; Skene, Debra J; Duffy, Jeanne F; Roenneberg, Till

    2016-04-04

    While we do not yet understand all the functions of sleep, its critical role for normal physiology and behaviour is evident. Its amount and temporal pattern depend on species and condition. Humans sleep about a third of the day with the longest, consolidated episode during the night. The change in lifestyle from hunter-gatherers via agricultural communities to densely populated industrialized centres has certainly affected sleep, and a major concern in the medical community is the impact of insufficient sleep on health [1,2]. One of the causal mechanisms leading to insufficient sleep is altered exposure to the natural light-dark cycle. This includes the wide availability of electric light, attenuated exposure to daylight within buildings, and evening use of light-emitting devices, all of which decrease the strength of natural light-dark signals that entrain circadian systems [3].

  18. Loss of polyubiquitin gene Ubb leads to metabolic and sleep abnormalities in mice

    PubMed Central

    Ryu, K.-Y.; Fujiki, N.; Kazantzis, M.; Garza, J. C.; Bouley, D. M.; Stahl, A.; Lu, X.-Y.; Nishino, S.; Kopito, R. R.

    2010-01-01

    Aims Ubiquitin performs essential roles in a myriad of signalling pathways required for cellular function and survival. Recently, we reported that disruption of the stress-inducible ubiquitin-encoding gene Ubb reduces ubiquitin content in the hypothalamus and leads to adult-onset obesity coupled with a loss of arcuate nucleus neurones and disrupted energy homeostasis in mice. Neuropeptides expressed in the hypothalamus control both metabolic and sleep behaviours. In order to demonstrate that the loss of Ubb results in broad hypothalamic abnormalities, we attempted to determine whether metabolic and sleep behaviours were altered in Ubb knockout mice. Methods Metabolic rate and energy expenditure were measured in a metabolic chamber, and sleep stage was monitored via electroencephalographic/electromyographic recording. The presence of neurodegeneration and increased reactive gliosis in the hypothalamus were also evaluated. Results We found that Ubb disruption leads to early-onset reduced activity and metabolic rate. Additionally, we have demonstrated that sleep behaviour is altered and sleep homeostasis is disrupted in Ubb knockout mice. These early metabolic and sleep abnormalities are accompanied by persistent reactive gliosis and the loss of arcuate nucleus neurones, but are independent of neurodegeneration in the lateral hypothalamus. Conclusions Ubb knockout mice exhibit phenotypes consistent with hypothalamic dysfunction. Our data also indicate that Ubb is essential for the maintenance of the ubiquitin levels required for proper regulation of metabolic and sleep behaviours in mice. PMID:20002312

  19. Identification of Genes Associated with Resilience/Vulnerability to Sleep Deprivation and Starvation in Drosophila

    PubMed Central

    Thimgan, Matthew S.; Seugnet, Laurent; Turk, John; Shaw, Paul J.

    2015-01-01

    Background and Study Objectives: Flies mutant for the canonical clock protein cycle (cyc01) exhibit a sleep rebound that is ∼10 times larger than wild-type flies and die after only 10 h of sleep deprivation. Surprisingly, when starved, cyc01 mutants can remain awake for 28 h without demonstrating negative outcomes. Thus, we hypothesized that identifying transcripts that are differentially regulated between waking induced by sleep deprivation and waking induced by starvation would identify genes that underlie the deleterious effects of sleep deprivation and/or protect flies from the negative consequences of waking. Design: We used partial complementary DNA microarrays to identify transcripts that are differentially expressed between cyc01 mutants that had been sleep deprived or starved for 7 h. We then used genetics to determine whether disrupting genes involved in lipid metabolism would exhibit alterations in their response to sleep deprivation. Setting: Laboratory. Patients or Participants: Drosophila melanogaster. Interventions: Sleep deprivation and starvation. Measurements and Results: We identified 84 genes with transcript levels that were differentially modulated by 7 h of sleep deprivation and starvation in cyc01 mutants and were confirmed in independent samples using quantitative polymerase chain reaction. Several of these genes were predicted to be lipid metabolism genes, including bubblegum, cueball, and CG4500, which based on our data we have renamed heimdall (hll). Using lipidomics we confirmed that knockdown of hll using RNA interference significantly decreased lipid stores. Importantly, genetically modifying bubblegum, cueball, or hll resulted in sleep rebound alterations following sleep deprivation compared to genetic background controls. Conclusions: We have identified a set of genes that may confer resilience/vulnerability to sleep deprivation and demonstrate that genes involved in lipid metabolism modulate sleep homeostasis. Citation: Thimgan MS

  20. A sleep state during C. elegans development

    PubMed Central

    Nelson, Matthew D.; Raizen, David M.

    2013-01-01

    Caenorhabditis elegans is the simplest animal shown to sleep. It sleeps during lethargus, a larval transition stage. Behavior during lethargus has the sleep properties of a specific quiescent posture and elevated arousal threshold that are reversible to strong stimulation and of increased sleep drive following sleep deprivation. Genetic similarities between sleep regulation during C. elegans lethargus and sleep regulation in other animals point to a sleep state that was an evolutionarily ancestor to sleep both in C. elegans and other animals. Recent publications have shed light on key questions in sleep biology: (1) How is sleep regulated? (2) How is sensory information gated during sleep? (3) How is sleep homeostasis mediated? (4) What is the core function of sleep? PMID:23562486

  1. Effects of exercise on alterations in redox homeostasis in elite male and female endurance athletes using a clinical point-of-care test.

    PubMed

    Lewis, Nathan A; Towey, Colin; Bruinvels, Georgie; Howatson, Glyn; Pedlar, Charles R

    2016-10-01

    Exercise causes alterations in redox homeostasis (ARH). Measuring ARH in elite athletes may aid in the identification of training tolerance, fatigued states, and underperformance. To the best of our knowledge, no studies have examined ARH in elite male and female distance runners at sea level. The monitoring of ARH in athletes is hindered by a lack of reliable and repeatable in-the-field testing tools and by the rapid turnaround of results. We examined the effects of various exercise intensities on ARH in healthy (non-over-reached) elite male and female endurance athletes using clinical point-of-care (POC) redox tests, referred to as the free oxygen radical test (FORT) (pro-oxidant) and the free oxygen radical defence (FORD) (antioxidant). Elite male and female endurance athletes (n = 22) completed a discontinuous incremental treadmill protocol at submaximal running speeds and a test to exhaustion. Redox measures were analyzed via blood sampling at rest, warm-up, submaximal exercise, exhaustion, and recovery. FORD was elevated above rest after submaximal and maximal exercise, and recovery (p < 0.05, d = 0.87-1.55), with only maximal exercise and recovery increasing FORT (p < 0.05, d = 0.23-0.32). Overall, a decrease in oxidative stress in response to submaximal and maximal exercise was evident (p < 0.05, d = 0.46). There were no gender differences for ARH (p > 0.05). The velocity at lactate threshold (vLT) correlated with the FORD response at rest, maximal exercise, and recovery (p < 0.05). Using the clinical POC redox test, an absence of oxidative stress after exhaustive exercise is evident in the nonfatigued elite endurance athlete. The blood antioxidant response (FORD) to exercise appears to be related to a key marker of aerobic fitness: vLT.

  2. Sleep and psychoneuroimmunology.

    PubMed

    Opp, Mark R

    2006-08-01

    Personal experience indicates we sleep differently when sick. Data reviewed demonstrate the extent to which sleep is altered during the course of infection of host organisms by several classes of pathogens. One important unanswered question is whether or not the alterations in sleep during infection are of functional relevance. That is, does the way we sleep when sick facilitate or impede recovery? One retrospective, preclinical study suggests that sleep changes during infection are of functional relevance. Toth and colleagues [102] analyzed sleep responses of rabbits to three different microbial infections. Those rabbits that exhibited robust increases in NREM sleep were more likely to survive than those that exhibited long periods of NREM sleep suppression. These tantalizing data suggest that the precise alterations in sleep through the course of infection are important determinants of morbidity and mortality. Data from healthy subjects demonstrate a role for at least two cytokines in the regulation of spontaneous, physiologic NREM sleep. A second critical yet unanswered question is whether or not cytokines mediate infection-induced alterations in sleep. The hypothesis that cytokines mediate infection-induced alterations in sleep is logical based on observations of the impact of infection on levels of cytokines in the peripheral immune system and in the brain. No attempts have been made to intervene with cytokine systems in brain during the course of infection to determine if there is an impact on infection-induced alterations in sleep. Although substantial progress has been made in elucidating the myriad mechanisms by which cytokines regulate and modulate sleep, much remains to be determined with respect to mechanistic and functional aspects of infection-induced alterations in sleep.

  3. Sleep and Human Aging.

    PubMed

    Mander, Bryce A; Winer, Joseph R; Walker, Matthew P

    2017-04-05

    Older adults do not sleep as well as younger adults. Why? What alterations in sleep quantity and quality occur as we age, and are there functional consequences? What are the underlying neural mechanisms that explain age-related sleep disruption? This review tackles these questions. First, we describe canonical changes in human sleep quantity and quality in cognitively normal older adults. Second, we explore the underlying neurobiological mechanisms that may account for these human sleep alterations. Third, we consider the functional consequences of age-related sleep disruption, focusing on memory impairment as an exemplar. We conclude with a discussion of a still-debated question: do older adults simply need less sleep, or rather, are they unable to generate the sleep that they still need?

  4. Weekend-weekday advances in sleep timing are associated with altered reward-related brain function in healthy adolescents

    PubMed Central

    Hasler, Brant P.; Dahl, Ronald E.; Holm, Stephanie M.; Jakubcak, Jennifer L.; Ryan, Neal D.; Silk, Jennifer S.; Phillips, Mary L.; Forbes, Erika E.

    2012-01-01

    Sleep timing shifts later during adolescence, thus conflicting with early school start times. This can lead to irregular weekday-weekend schedules and circadian misalignment, which have been linked to depression and substance abuse, consistent with disruptions in the processing of rewards. We tested associations between weekend-weekday shifts in sleep timing and the neural response to monetary reward in healthy adolescents, using actigraphy and a functional magnetic resonance imaging paradigm. Region-of-interest analyses focused on the medial prefrontal cortex (mPFC) and striatum, both of which are implicated in reward function. Analyses adjusted for pubertal stage, sex, and total sleep time. Greater weekend-weekday advances in midsleep were associated with decreased mPFC and striatal reactivity to reward, which could reflect reduced regulatory response and reward sensitivity. We speculate that circadian misalignment associated with weekend shifts in sleep timing may contribute to reward-related problems such as depression and substance abuse. PMID:22960270

  5. Increased fragmentation of sleep-wake cycles in the 5XFAD mouse model of Alzheimer's disease.

    PubMed

    Sethi, M; Joshi, S S; Webb, R L; Beckett, T L; Donohue, K D; Murphy, M P; O'Hara, B F; Duncan, M J

    2015-04-02

    Sleep perturbations including fragmented sleep with frequent night-time awakenings and daytime naps are common in patients with Alzheimer's disease (AD), and these daily disruptions are a major factor for institutionalization. The objective of this study was to investigate if sleep-wake patterns are altered in 5XFAD mice, a well-characterized double transgenic mouse model of AD which exhibits an early onset of robust AD pathology and memory deficits. These mice have five distinct human mutations in two genes, the amyloid precursor protein (APP) and Presenilin1 (PS1) engineered into two transgenes driven by a neuron-specific promoter (Thy1), and thus develop severe amyloid deposition by 4 months of age. Age-matched (4-6.5 months old) male and female 5XFAD mice were monitored and compared to wild-type littermate controls for multiple sleep traits using a non-invasive, high throughput, automated piezoelectric system which detects breathing and gross body movements to characterize sleep and wake. Sleep-wake patterns were recorded continuously under baseline conditions (undisturbed) for 3 days and after sleep deprivation of 4h, which in mice produces a significant sleep debt and challenge to sleep homeostasis. Under baseline conditions, 5XFAD mice exhibited shorter bout lengths (14% lower values for males and 26% for females) as compared to controls (p<0.001). In females, the 5XFAD mice also showed 12% less total sleep than WT (p<0.01). Bout length reductions were greater during the night (the active phase for mice) than during the day, which does not model the human condition of disrupted sleep at night (the inactive period). However, the overall decrease in bout length suggests increased fragmentation and disruption in sleep consolidation that may be relevant to human sleep. The 5XFAD mice may serve as a useful model for testing therapeutic strategies to improve sleep consolidation in AD patients.

  6. Enhanced Histaminergic Neurotransmission and Sleep-Wake Alterations, a Study in Histamine H3-Receptor Knock-Out Mice

    PubMed Central

    Gondard, Elise; Anaclet, Christelle; Akaoka, Hidéo; Guo, Rui-Xian; Zhang, Mei; Buda, Colette; Franco, Patricia; Kotani, Hidehito; Lin, Jian-Sheng

    2013-01-01

    Long-term abolition of a brain arousal system impairs wakefulness (W), but little is known about the consequences of long-term enhancement. The brain histaminergic arousal system is under the negative control of H3-autoreceptors whose deletion results in permanent enhancement of histamine (HA) turnover. In order to determine the consequences of enhancement of the histaminergic system, we compared the cortical EEG and sleep-wake states of H3-receptor knockout (H3R−/−) and wild-type mouse littermates. We found that H3R−/−mice had rich phenotypes. On the one hand, they showed clear signs of enhanced HA neurotransmission and vigilance, i.e., a higher EEG θ power during spontaneous W and a greater extent of W or sleep restriction during behavioral tasks, including environmental change, locomotion, and motivation tests. On the other hand, during the baseline dark period, they displayed deficient W and signs of sleep deterioration, such as pronounced sleep fragmentation and reduced cortical slow activity during slow wave sleep (SWS), most likely due to a desensitization of postsynaptic histaminergic receptors as a result of constant HA release. Ciproxifan (H3-receptor inverse agonist) enhanced W in wild-type mice, but not in H3R−/−mice, indicating a functional deletion of H3-receptors, whereas triprolidine (postsynaptic H1-receptor antagonist) or α-fluoromethylhistidine (HA-synthesis inhibitor) caused a greater SWS increase in H3R−/− than in wild-type mice, consistent with enhanced HA neurotransmission. These sleep-wake characteristics and the obesity phenotypes previously reported in this animal model suggest that chronic enhancement of histaminergic neurotransmission eventually compromises the arousal system, leading to sleep-wake, behavioral, and metabolic disorders similar to those caused by voluntary sleep restriction in humans. PMID:23303066

  7. Enhanced histaminergic neurotransmission and sleep-wake alterations, a study in histamine H3-receptor knock-out mice.

    PubMed

    Gondard, Elise; Anaclet, Christelle; Akaoka, Hidéo; Guo, Rui-Xian; Zhang, Mei; Buda, Colette; Franco, Patricia; Kotani, Hidehito; Lin, Jian-Sheng

    2013-05-01

    Long-term abolition of a brain arousal system impairs wakefulness (W), but little is known about the consequences of long-term enhancement. The brain histaminergic arousal system is under the negative control of H3-autoreceptors whose deletion results in permanent enhancement of histamine (HA) turnover. In order to determine the consequences of enhancement of the histaminergic system, we compared the cortical EEG and sleep-wake states of H3-receptor knockout (H3R-/-) and wild-type mouse littermates. We found that H3R-/-mice had rich phenotypes. On the one hand, they showed clear signs of enhanced HA neurotransmission and vigilance, i.e., a higher EEG θ power during spontaneous W and a greater extent of W or sleep restriction during behavioral tasks, including environmental change, locomotion, and motivation tests. On the other hand, during the baseline dark period, they displayed deficient W and signs of sleep deterioration, such as pronounced sleep fragmentation and reduced cortical slow activity during slow wave sleep (SWS), most likely due to a desensitization of postsynaptic histaminergic receptors as a result of constant HA release. Ciproxifan (H3-receptor inverse agonist) enhanced W in wild-type mice, but not in H3R-/-mice, indicating a functional deletion of H3-receptors, whereas triprolidine (postsynaptic H1-receptor antagonist) or α-fluoromethylhistidine (HA-synthesis inhibitor) caused a greater SWS increase in H3R-/- than in wild-type mice, consistent with enhanced HA neurotransmission. These sleep-wake characteristics and the obesity phenotypes previously reported in this animal model suggest that chronic enhancement of histaminergic neurotransmission eventually compromises the arousal system, leading to sleep-wake, behavioral, and metabolic disorders similar to those caused by voluntary sleep restriction in humans.

  8. Altered activity in the central medial thalamus precedes changes in the neocortex during transitions into both sleep and propofol anesthesia.

    PubMed

    Baker, Rowan; Gent, Thomas C; Yang, Qianzi; Parker, Susan; Vyssotski, Alexei L; Wisden, William; Brickley, Stephen G; Franks, Nicholas P

    2014-10-01

    How general anesthetics cause loss of consciousness is unknown. Some evidence points toward effects on the neocortex causing "top-down" inhibition, whereas other findings suggest that these drugs act via subcortical mechanisms, possibly selectively stimulating networks promoting natural sleep. To determine whether some neuronal circuits are affected before others, we used Morlet wavelet analysis to obtain high temporal resolution in the time-varying power spectra of local field potentials recorded simultaneously in discrete brain regions at natural sleep onset and during anesthetic-induced loss of righting reflex in rats. Although we observed changes in the local field potentials that were anesthetic-specific, there were some common changes in high-frequency (20-40 Hz) oscillations (reductions in frequency and increases in power) that could be detected at, or before, sleep onset and anesthetic-induced loss of righting reflex. For propofol and natural sleep, these changes occur first in the thalamus before changes could be detected in the neocortex. With dexmedetomidine, the changes occurred simultaneously in the thalamus and neocortex. In addition, the phase relationships between the low-frequency (1-4 Hz) oscillations in thalamic nuclei and neocortical areas are essentially the same for natural sleep and following dexmedetomidine administration, but a sudden change in phase, attributable to an effect in the central medial thalamus, occurs at the point of dexmedetomidine loss of righting reflex. Our data are consistent with the central medial thalamus acting as a key hub through which general anesthesia and natural sleep are initiated.

  9. Associations between sleep loss and increased risk of obesity and diabetes.

    PubMed

    Knutson, Kristen L; Van Cauter, Eve

    2008-01-01

    During the past few decades, sleep curtailment has become a very common in industrialized countries. This trend for shorter sleep duration has developed over the same time period as the dramatic increase in the prevalence of obesity and diabetes. Evidence is rapidly accumulating to indicate that chronic partial sleep loss may increase the risk of obesity and diabetes. Laboratory studies in healthy volunteers have shown that experimental sleep restriction is associated with an adverse impact on glucose homeostasis. Insulin sensitivity decreases rapidly and markedly without adequate compensation in beta cell function, resulting in an elevated risk of diabetes. Prospective epidemiologic studies in both children and adults are consistent with a causative role of short sleep in the increased risk of diabetes. Sleep curtailment is also associated with a dysregulation of the neuroendocrine control of appetite, with a reduction of the satiety factor, leptin, and an increase in the hunger-promoting hormone, ghrelin. Thus, sleep loss may alter the ability of leptin and ghrelin to accurately signal caloric need, acting in concert to produce an internal misperception of insufficient energy availability. The adverse impact of sleep deprivation on appetite regulation is likely to be driven by increased activity in neuronal populations expressing the excitatory peptides orexins that promote both waking and feeding. Consistent with the laboratory evidence, multiple epidemiologic studies have shown an association between short sleep and higher body mass index after controlling for a variety of possible confounders.

  10. Associations between sleep loss and increased risk of obesity and diabetes

    PubMed Central

    Knutson, Kristen L.; Van Cauter, Eve

    2015-01-01

    During the past few decades, sleep curtailment has become a very common behavior in industrialized countries. This trend for shorter sleep duration has developed over the same time period as the dramatic increase in the prevalence of obesity and diabetes. There is rapidly accumulating evidence to indicate that chronic partial sleep loss may increase the risk of obesity and diabetes. Laboratory studies in healthy volunteers have shown that experimental sleep restriction is associated with an adverse impact on glucose homeostasis. Insulin sensitivity decreases rapidly and markedly without adequate compensation in beta cell function, resulting in an elevated risk of diabetes. Prospective epidemiologic studies in both children and adults are consistent with a causative role of short sleep in the increased risk of diabetes. Sleep curtailment is also associated with a dysregulation of the neuroendocrine control of appetite, with a reduction of the satiety factor leptin and an increase in the hunger-promoting hormone ghrelin. Thus, sleep loss may alter the ability of leptin and ghrelin to accurately signal caloric need, acting in concert to produce an internal misperception of insufficient energy availability. The adverse impact of sleep deprivation on appetite regulation is likely to be driven by increased activity in neuronal populations expressing the excitatory peptides orexins that promote both waling and feeding. Consistent with the laboratory evidence, multiple epidemiologic studies have shown an association between short sleep and higher body mass index after controlling for a variety of possible confounders. PMID:18591489

  11. Sleep, Circadian Rhythms, and Performance During Space Shuttle Missions

    NASA Technical Reports Server (NTRS)

    Neri, David F.; Czeisler, Charles A.; Dijk, Derk-Jan; Wyatt, James K.; Ronda, Joseph M.; Hughes, Rod J.

    2003-01-01

    Sleep and circadian rhythms may be disturbed during spaceflight, and these disturbances can affect crewmembers' performance during waking hours. The mechanisms underlying sleep and circadian rhythm disturbances in space are not well understood, and effective countermeasures are not yet available. We investigated sleep, circadian rhythms, cognitive performance, and light-dark cycles in five astronauts prior to, during, and after the 16-day STS-90 mission and the IO-day STS-95 mission. The efficacy of low-dose, alternative-night, oral melatonin administration as a countermeasure for sleep disturbances was evaluated. During these missions, scheduled rest activity cycles were 20-35 minutes shorter than 24 hours. Light levels on the middeck and in the Spacelab were very low; whereas on the flight deck (which has several windows), they were highly variable. Circadian rhythm abnormalities were observed. During the second half of the missions, the rhythm of urinary cortisol appeared to be delayed relative to the sleep-wake schedule. Performance during wakefulness was impaired. Astronauts slept only about 6.5 hours per day, and subjective sleep quality was lower in space. No beneficial effects of melatonin (0.3 mg administered prior to sleep episodes on alternate nights) were observed. A surprising finding was a marked increase in rapid eye movement (REM) sleep upon return to Earth. We conclude that these Space Shuttle missions were associated with circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and alterations in REM sleep homeostasis. Shorter than 24-hour rest-activity schedules and exposure to light-dark cycles inadequate for optimal circadian synchronization may have contributed to these disturbances.

  12. Altered Activity in the Central Medial Thalamus Precedes Changes in the Neocortex during Transitions into Both Sleep and Propofol Anesthesia

    PubMed Central

    Baker, Rowan; Gent, Thomas C.; Yang, Qianzi; Parker, Susan; Vyssotski, Alexei L.

    2014-01-01

    How general anesthetics cause loss of consciousness is unknown. Some evidence points toward effects on the neocortex causing “top-down” inhibition, whereas other findings suggest that these drugs act via subcortical mechanisms, possibly selectively stimulating networks promoting natural sleep. To determine whether some neuronal circuits are affected before others, we used Morlet wavelet analysis to obtain high temporal resolution in the time-varying power spectra of local field potentials recorded simultaneously in discrete brain regions at natural sleep onset and during anesthetic-induced loss of righting reflex in rats. Although we observed changes in the local field potentials that were anesthetic-specific, there were some common changes in high-frequency (20–40 Hz) oscillations (reductions in frequency and increases in power) that could be detected at, or before, sleep onset and anesthetic-induced loss of righting reflex. For propofol and natural sleep, these changes occur first in the thalamus before changes could be detected in the neocortex. With dexmedetomidine, the changes occurred simultaneously in the thalamus and neocortex. In addition, the phase relationships between the low-frequency (1–4 Hz) oscillations in thalamic nuclei and neocortical areas are essentially the same for natural sleep and following dexmedetomidine administration, but a sudden change in phase, attributable to an effect in the central medial thalamus, occurs at the point of dexmedetomidine loss of righting reflex. Our data are consistent with the central medial thalamus acting as a key hub through which general anesthesia and natural sleep are initiated. PMID:25274812

  13. Sleep in postmenopausal women.

    PubMed

    Vigeta, Sônia Maria Garcia; Hachul, Helena; Tufik, Sergio; de Oliveira, Eleonora Menicucci

    2012-04-01

    The aim of this study was to identify factors that most influence the perception of sleep quality in postmenopausal women. We used the methodological strategy of the Collective Subject Discourse (CSD), which is based on a theoretical framework of social representations theory. We obtained the data by interviewing 22 postmenopausal Brazilian women who were experiencing insomnia. The women gave accounts of their difficulties with sleep; a variety of dimensions were identified within the data. The onset of sleep disorders might have occurred during childhood or in situations considered to be stressful, and were not necessarily associated with menopause. We found that hormonal alterations occurring during menopause, psychosocial factors, and sleep-breathing disorders triggered occasional sleep disturbances during this time of life. Participants were aware of the consequences of sleep deprivation. In addition, inadequate sleep hygiene habits figured prominently as determinants in the persistence of sleep disturbances.

  14. Overnight emotional adaptation to negative stimuli is altered by REM sleep deprivation and is correlated with intervening dream emotions.

    PubMed

    Lara-Carrasco, Jessica; Nielsen, Tore A; Solomonova, Elizaveta; Levrier, Katia; Popova, Ani

    2009-06-01

    Rapid eye movement (REM) sleep and dreaming may be implicated in cross-night adaptation to emotionally negative events. To evaluate the impact of REM sleep deprivation (REMD) and the presence of dream emotions on a possible emotional adaptation (EA) function, 35 healthy subjects randomly assigned to REMD (n = 17; mean age 26.4 +/- 4.3 years) and control (n = 18; mean age 23.7 +/- 4.4 years) groups underwent a partial REMD and control nights in the laboratory, respectively. In the evening preceding and morning following REMD, subjects rated neutral and negative pictures on scales of valence and arousal and EA scores were calculated. Subjects also rated dream emotions using the same scales and a 10-item emotions list. REMD was relatively successful in decreasing REM% on the experimental night, although a mean split procedure was applied to better differentiate subjects high and low in REM%. High and low groups differed - but in a direction contrary to expectations. Subjects high in REMD% showed greater adaptation to negative pictures on arousal ratings than did those low in REMD% (P < 0.05), even after statistically controlling sleep efficiency and awakening times. Subjects above the median on EA(valence) had less intense overall dream negativity (P < 0.005) and dream sadness (P < 0.004) than subjects below the median. A correlation between the emotional intensities of the morning dream and the morning picture ratings supports a possible emotional carry-over effect. REM sleep may enhance morning reactivity to negative emotional stimuli. Further, REM sleep and dreaming may be implicated in different dimensions of cross-night adaptation to negative emotions.

  15. Short-term memory deficits correlate with hippocampal-thalamic functional connectivity alterations following acute sleep restriction.

    PubMed

    Chengyang, Li; Daqing, Huang; Jianlin, Qi; Haisheng, Chang; Qingqing, Meng; Jin, Wang; Jiajia, Liu; Enmao, Ye; Yongcong, Shao; Xi, Zhang

    2016-07-21

    Acute sleep restriction heavily influences cognitive function, affecting executive processes such as attention, response inhibition, and memory. Previous neuroimaging studies have suggested a link between hippocampal activity and short-term memory function. However, the specific contribution of the hippocampus to the decline of short-term memory following sleep restriction has yet to be established. In the current study, we utilized resting-state functional magnetic resonance imaging (fMRI) to examine the association between hippocampal functional connectivity (FC) and the decline of short-term memory following total sleep deprivation (TSD). Twenty healthy adult males aged 20.9 ± 2.3 years (age range, 18-24 years) were enrolled in a within-subject crossover study. Short-term memory and FC were assessed using a Delay-matching short-term memory test and a resting-state fMRI scan before and after TSD. Seed-based correlation analysis was performed using fMRI data for the left and right hippocampus to identify differences in hippocampal FC following TSD. Subjects demonstrated reduced alertness and a decline in short-term memory performance following TSD. Moreover, fMRI analysis identified reduced hippocampal FC with the superior frontal gyrus (SFG), temporal regions, and supplementary motor area. In addition, an increase in FC between the hippocampus and bilateral thalamus was observed, the extent of which correlated with short-term memory performance following TSD. Our findings indicate that the disruption of hippocampal-cortical connectivity is linked to the decline in short-term memory observed after acute sleep restriction. Such results provide further evidence that support the cognitive impairment model of sleep deprivation.

  16. Large Scale Comparative Proteomics of a Chloroplast Clp Protease Mutant Reveals Folding Stress, Altered Protein Homeostasis, and Feedback Regulation of Metabolism*

    PubMed Central

    Zybailov, Boris; Friso, Giulia; Kim, Jitae; Rudella, Andrea; Rodríguez, Verenice Ramírez; Asakura, Yukari; Sun, Qi; van Wijk, Klaas J.

    2009-01-01

    The clpr2-1 mutant is delayed in development due to reduction of the chloroplast ClpPR protease complex. To understand the role of Clp proteases in plastid biogenesis and homeostasis, leaf proteomes of young seedlings of clpr2-1 and wild type were compared using large scale mass spectrometry-based quantification using an LTQ-Orbitrap and spectral counting with significance determined by G-tests. Virtually only chloroplast-localized proteins were significantly affected, indicating that the molecular phenotype was confined to the chloroplast. A comparative chloroplast stromal proteome analysis of fully developed plants was used to complement the data set. Chloroplast unfoldase ClpB3 was strongly up-regulated in both young and mature leaves, suggesting widespread and persistent protein folding stress. The importance of ClpB3 in the clp2-1 mutant was demonstrated by the observation that a CLPR2 and CLPB3 double mutant was seedling-lethal. The observed up-regulation of chloroplast chaperones and protein sorting components further illustrated destabilization of protein homeostasis. Delayed rRNA processing and up-regulation of a chloroplast DEAD box RNA helicase and polynucleotide phosphorylase, but no significant change in accumulation of ribosomal subunits, suggested a bottleneck in ribosome assembly or RNA metabolism. Strong up-regulation of a chloroplast translational regulator TypA/BipA GTPase suggested a specific response in plastid gene expression to the distorted homeostasis. The stromal proteases PreP1,2 were up-regulated, likely constituting compensation for reduced Clp protease activity and possibly shared substrates between the ClpP and PreP protease systems. The thylakoid photosynthetic apparatus was decreased in the seedlings, whereas several structural thylakoid-associated plastoglobular proteins were strongly up-regulated. Two thylakoid-associated reductases involved in isoprenoid and chlorophyll synthesis were up-regulated reflecting feedback from rate

  17. Sleep walking

    MedlinePlus

    ... sleep cycle has stages, from light drowsiness to deep sleep. During the stage called rapid eye movement ( ... REM sleep. Sleepwalking (somnambulism) most often occurs during deep, non-REM sleep (called N3 sleep) early in ...

  18. Amygdala opioid receptors mediate the electroacupuncture-induced deterioration of sleep disruptions in epilepsy rats

    PubMed Central

    2013-01-01

    Background Clinical and experimental evidence demonstrates that sleep and epilepsy reciprocally affect each other. Previous studies indicated that epilepsy alters sleep homeostasis; in contrast, sleep disturbance deteriorates epilepsy. If a therapy possesses both epilepsy suppression and sleep improvement, it would be the priority choice for seizure control. Effects of acupuncture of Feng-Chi (GB20) acupoints on epilepsy suppression and insomnia treatment have been documented in the ancient Chinese literature, Lingshu Jing (Classic of the Miraculous Pivot). Therefore, this study was designed to investigate the effect of electroacupuncture (EA) stimulation of bilateral Feng-Chi acupoints on sleep disruptions in rats with focal epilepsy. Results Our result indicates that administration of pilocarpine into the left central nucleus of amygdala (CeA) induced focal epilepsy and decreased both rapid eye movement (REM) sleep and non-REM (NREM) sleep. High-frequency (100 Hz) EA stimulation of bilateral Feng-Chi acupoints, in which a 30-min EA stimulation was performed before the dark period of the light:dark cycle in three consecutive days, further deteriorated pilocarpine-induced sleep disruptions. The EA-induced exacerbation of sleep disruption was blocked by microinjection of naloxone, μ- (naloxonazine), κ- (nor-binaltorphimine) or δ-receptor antagonists (natrindole) into the CeA, suggesting the involvement of amygdaloid opioid receptors. Conclusion The present study suggests that high-frequency (100 Hz) EA stimulation of bilateral Feng-Chi acupoints exhibits no benefit in improving pilocarpine-induced sleep disruptions; in contrast, EA further deteriorated sleep disturbances. Opioid receptors in the CeA mediated EA-induced exacerbation of sleep disruptions in epileptic rats. PMID:24215575

  19. Estimating individual optimal sleep duration and potential sleep debt

    PubMed Central

    Kitamura, Shingo; Katayose, Yasuko; Nakazaki, Kyoko; Motomura, Yuki; Oba, Kentaro; Katsunuma, Ruri; Terasawa, Yuri; Enomoto, Minori; Moriguchi, Yoshiya; Hida, Akiko; Mishima, Kazuo

    2016-01-01

    In this study, we hypothesized that dynamics of sleep time obtained over consecutive days of extended sleep in a laboratory reflect an individual’s optimal sleep duration (OSD) and that the difference between OSD and habitual sleep duration (HSD) at home represents potential sleep debt (PSD). We found that OSD varies among individuals and PSD showed stronger correlation with subjective/objective sleepiness than actual sleep time, interacting with individual’s vulnerability of sleep loss. Furthermore, only 1 h of PSD takes four days to recover to their optimal level. Recovery from PSD was also associated with the improvement in glycometabolism, thyrotropic activity and hypothalamic-pituitary-adrenocortical axis. Additionally, the increase (rebound) in total sleep time from HSD at the first extended sleep would be a simple indicator of PSD. These findings confirmed self-evaluating the degree of sleep debt at home as a useful clinical marker. To establish appropriate sleep habits, it is necessary to evaluate OSD, vulnerability to sleep loss, and sleep homeostasis characteristics on an individual basis. PMID:27775095

  20. Estimating individual optimal sleep duration and potential sleep debt.

    PubMed

    Kitamura, Shingo; Katayose, Yasuko; Nakazaki, Kyoko; Motomura, Yuki; Oba, Kentaro; Katsunuma, Ruri; Terasawa, Yuri; Enomoto, Minori; Moriguchi, Yoshiya; Hida, Akiko; Mishima, Kazuo

    2016-10-24

    In this study, we hypothesized that dynamics of sleep time obtained over consecutive days of extended sleep in a laboratory reflect an individual's optimal sleep duration (OSD) and that the difference between OSD and habitual sleep duration (HSD) at home represents potential sleep debt (PSD). We found that OSD varies among individuals and PSD showed stronger correlation with subjective/objective sleepiness than actual sleep time, interacting with individual's vulnerability of sleep loss. Furthermore, only 1 h of PSD takes four days to recover to their optimal level. Recovery from PSD was also associated with the improvement in glycometabolism, thyrotropic activity and hypothalamic-pituitary-adrenocortical axis. Additionally, the increase (rebound) in total sleep time from HSD at the first extended sleep would be a simple indicator of PSD. These findings confirmed self-evaluating the degree of sleep debt at home as a useful clinical marker. To establish appropriate sleep habits, it is necessary to evaluate OSD, vulnerability to sleep loss, and sleep homeostasis characteristics on an individual basis.

  1. Sleep architecture of the melanin-concentrating hormone receptor 1-knockout mice.

    PubMed

    Adamantidis, Antoine; Salvert, Denise; Goutagny, Romain; Lakaye, Bernard; Gervasoni, Damien; Grisar, Thierry; Luppi, Pierre-Hervé; Fort, Patrice

    2008-04-01

    Growing amounts of data indicate involvement of the posterior hypothalamus in the regulation of sleep, especially paradoxical sleep (PS). Accordingly, we previously showed that the melanin-concentrating hormone (MCH)-producing neurons of the rat hypothalamus are selectively activated during a PS rebound. In addition, intracerebroventricular infusion of MCH increases total sleep duration, suggesting a new role for MCH in sleep regulation. To determine whether activation of the MCH system promotes sleep, we studied spontaneous sleep and its homeostatic regulation in mice with deletion of the MCH-receptor 1 gene (MCH-R1-/- vs. MCH-R1+/+) and their behavioural response to modafinil, a powerful antinarcoleptic drug. Here, we show that the lack of functional MCH-R1 results in a hypersomniac-like phenotype, both in basal conditions and after total sleep deprivation, compared to wild-type mice. Further, we found that modafinil was less potent at inducing wakefulness in MCH-R1-/- than in MCH-R1+/+ mice. We report for the first time that animals with genetically inactivated MCH signaling exhibit altered vigilance state architecture and sleep homeostasis. This study also suggests that the MCH system may modulate central pathways involved in the wake-promoting effect of modafinil.

  2. Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis

    PubMed Central

    Romero-Suarez, Sandra; Shen, Jinhua; Brotto, Leticia; Hall, Todd; Mo, ChengLin; Valdivia, Héctor H.; Andresen, Jon; Wacker, Michael; Nosek, Thomas M.; Qu, Cheng-Kui; Brotto, Marco

    2010-01-01

    We have recently reported that a novel muscle-specific inositide phosphatase (MIP/MTMR14) plays a critical role in [Ca2+]i homeostasis through dephosphorylation of sn-1-stearoyl-2-arachidonoyl phosphatidylinositol (3,5) bisphosphate (PI(3,5)P2). Loss of function mutations in MIP have been identified in human centronuclear myopathy. We developed a MIP knockout (MIPKO) animal model and found that MIPKO mice were more susceptible to exercise-induced muscle damage, a trademark of muscle functional changes in older subjects. We used wild-type (Wt) mice and MIPKO mice to elucidate the roles of MIP in muscle function during aging. We found MIP mRNA expression, MIP protein levels, and MIP phosphatase activity significantly decreased in old Wt mice. The mature MIPKO mice displayed phenotypes that closely resembled those seen in old Wt mice: i) decreased walking speed, ii) decreased treadmill activity, iii) decreased contractile force, and iv) decreased power generation, classical features of sarcopenia in rodents and humans. Defective Ca2+ homeostasis is also present in mature MIPKO and old Wt mice, suggesting a putative role of MIP in the decline of muscle function during aging. Our studies offer a new avenue for the investigation of MIP roles in skeletal muscle function and as a potential therapeutic target to treat aging sarcopenia. PMID:20817957

  3. Sleep disturbances in Parkinsonism.

    PubMed

    Askenasy, J J M

    2003-02-01

    The present article is meant to suggest an approach to the guidelines for the therapy of sleep disturbances in Parkinson's Disease (PD) patients.The factors affecting the quality of life in PD patients are depression, sleep disturbances and dependence. A large review of the literature on sleep disturbances in PD patients, provided the basis for the following classification of the sleep-arousal disturbances in PD patients. We suggest a model based on 3 steps in the treatment of sleep disturbances in PD patients. This model allowing the patient, the spouse or the caregiver a quiet sleep at night, may postpone the retirement and the institutionalization of the PD patient. I. Correct diagnosis of sleep disorders based on detailed anamnesis of the patient and of the spouse or of the caregiver. One week recording on a symptom diary (log) by the patient or the caregiver. Correct diagnosis of sleep disorders co morbidities. Selection of the most appropriate sleep test among: polysomnography (PSG), multiple sleep latency test (MSLT), multiple wake latency test (MWLT), Epworth Sleepiness Scale, actigraphy or video-PSG. II. The nonspecific therapeutic approach consists in: a) Checking the sleep effect on motor performance, is it beneficial, worse or neutral. b) Psycho-physical assistance. c) Dopaminergic adjustment is necessary owing to the progression of the nigrostriatal degeneration and the increased sensitivity of the terminals, which alter the normal modulator mechanisms of the motor centers in PD patients. Among the many neurotransmitters of the nigro-striatal pathway one can distinguish two with a major influence on REM and NonREM sleep. REM sleep corresponds to an increased cholinergic receptor activity and a decreased dopaminergic activity. This is the reason why REM sleep deprivation by suppressing cholinergic receptor activity ameliorates PD motor symptoms. L-Dopa and its agonists by suppressing cholinergic receptors suppress REM sleep. The permanent adjustment

  4. Accommodating Adolescent Sleep-Wake Patterns: The Effects of Shifting the Timing of Sleep on Training Effectiveness

    DTIC Science & Technology

    2012-01-01

    SLEEP , Vol. 35, No. 8, 2012 1123 Accommodating Adolescent Sleep -Wake Patterns—Miller et al INTRODUCTION Obtaining adequate sleep is a challenge for...dx.doi.org/10.5665/ sleep .2002 Accommodating Adolescent Sleep -Wake Patterns: The Effects of Shifting the Timing of Sleep on Training Effectiveness...nlmiller@nps.edu Study Objective: This study evaluated the effect of accommodating adolescent sleep -wake patterns by altering the timing of the major sleep

  5. Recovery sleep and performance following sleep deprivation with dextroamphetamine.

    PubMed

    Caldwell, J L; Caldwell, J A

    1997-06-01

    Twelve subjects were studied to determine the after-effects of using three 10-mg doses of dextroamphetamine to sustain alertness during sleep deprivation. Sleep architecture during recovery sleep was evaluated by comparing post-deprivation sleep after placebo. Performance and mood recovery were assessed by comparing volunteers who received dextroamphetamine first (during sleep deprivation) to those who received placebo first. Stages 1 and 2 sleep, movement time, REM latency, and sleep latency increased on the night after sleep deprivation with dextroamphetamine vs. placebo. Stage 4 was unaffected. Comparisons to baseline revealed more stage 1 during baseline than during either post-deprivation sleep period and more stage 2 during baseline than during sleep following placebo. Stage 4 sleep was lower during baseline and after dextroamphetamine than after placebo. Sleep onset was slowest on the baseline night. Next-day performance and mood were not different as a function of whether subjects received dextroamphetamine or placebo during deprivation. These data suggest dextroamphetamine alters post-deprivation sleep architecture when used to sustain alertness during acute sleep loss, but next-day performance and subjective mood ratings are not substantially affected. A recovery sleep period of only 8 h appears to be adequate to regain baseline performance levels after short-term sleep deprivation.

  6. Sleep Loss and Inflammation

    PubMed Central

    Simpson, Norah S.; Meier-Ewert, Hans K.; Haack, Monika

    2012-01-01

    Controlled, experimental studies on the effects of acute sleep loss in humans have shown that mediators of inflammation are altered by sleep loss. Elevations in these mediators have been found to occur in healthy, rigorously screened individuals undergoing experimental vigils of more than 24 hours, and have also been seen in response to various durations of sleep restricted to between 25 and 50% of a normal 8 hour sleep amount. While these altered profiles represent small changes, such sub-clinical shifts in basal inflammatory cytokines are known to be associated with the future development of metabolic syndrome disease in healthy, asymptomatic individuals. Although the mechanism of this altered inflammatory status in humans undergoing experimental sleep loss is unknown, it is likely that autonomic activation and metabolic changes play key roles. PMID:21112025

  7. Differential Kinetics in Alteration and Recovery of Cognitive Processes from a Chronic Sleep Restriction in Young Healthy Men.

    PubMed

    Rabat, Arnaud; Gomez-Merino, Danielle; Roca-Paixao, Laura; Bougard, Clément; Van Beers, Pascal; Dispersyn, Garance; Guillard, Mathias; Bourrilhon, Cyprien; Drogou, Catherine; Arnal, Pierrick J; Sauvet, Fabien; Leger, Damien; Chennaoui, Mounir

    2016-01-01

    Chronic sleep restriction (CSR) induces neurobehavioral deficits in young and healthy people with a morning failure of sustained attention process. Testing both the kinetic of failure and recovery of different cognitive processes (i.e., attention, executive) under CSR and their potential links with subject's capacities (stay awake, baseline performance, age) and with some biological markers of stress and anabolism would be useful in order to understand the role of sleep debt on human behavior. Twelve healthy subjects spent 14 days in laboratory with 2 baseline days (B1 and B2, 8 h TIB) followed by 7 days of sleep restriction (SR1-SR7, 4 h TIB), 3 sleep recovery days (R1-R3, 8 h TIB) and two more ones 8 days later (R12-R13). Subjective sleepiness (KSS), maintenance of wakefulness latencies (MWT) were evaluated four times a day (10:00, 12:00 a.m. and 2:00, 4:00 p.m.) and cognitive tests were realized at morning (8:30 a.m.) and evening (6:30 p.m.) sessions during B2, SR1, SR4, SR7, R2, R3 and R13. Saliva (B2, SR7, R2, R13) and blood (B1, SR6, R1, R12) samples were collected in the morning. Cognitive processes were differently impaired and recovered with a more rapid kinetic for sustained attention process. Besides, a significant time of day effect was only evidenced for sustained attention failures that seemed to be related to subject's age and their morning capacity to stay awake. Executive processes were equally disturbed/recovered during the day and this failure/recovery process seemed to be mainly related to baseline subject's performance and to their capacity to stay awake. Morning concentrations of testosterone, cortisol and α-amylase were significantly decreased at SR6-SR7, but were either and respectively early (R1), tardily (after R2) and not at all (R13) recovered. All these results suggest a differential deleterious and restorative effect of CSR on cognition through biological changes of the stress pathway and subject's capacity (ClinicalTrials-NCT01989741).

  8. Physiological, Biochemical, and Multiple-Task-Performance Responses to Different Alterations of the Wake-Sleep Cycle,

    DTIC Science & Technology

    1976-11-01

    which subjects adhered to a (lrly/ nau’~- citte chi olani irre s~ and li— ketogen ic steroids°night routine ; i,e., sleeping from 2230 to 0600. (17-KGS...17— KETOGENIC STEROIDS SUMMATION DIALS 0030 2 1 30 0330 I83:~~~~~~~~~~~~~~~~~ o63o 2 3 A...I 17- KETOGENIC STEROIDS SUMMATION DIALS 0030 2130 0330 0630 2 ~~~~~~~~~~~~A hn icotes end of GROUP U contro l period. I”mGT’RE 13.—17-k’t

  9. Differential Kinetics in Alteration and Recovery of Cognitive Processes from a Chronic Sleep Restriction in Young Healthy Men

    PubMed Central

    Rabat, Arnaud; Gomez-Merino, Danielle; Roca-Paixao, Laura; Bougard, Clément; Van Beers, Pascal; Dispersyn, Garance; Guillard, Mathias; Bourrilhon, Cyprien; Drogou, Catherine; Arnal, Pierrick J.; Sauvet, Fabien; Leger, Damien; Chennaoui, Mounir

    2016-01-01

    Chronic sleep restriction (CSR) induces neurobehavioral deficits in young and healthy people with a morning failure of sustained attention process. Testing both the kinetic of failure and recovery of different cognitive processes (i.e., attention, executive) under CSR and their potential links with subject’s capacities (stay awake, baseline performance, age) and with some biological markers of stress and anabolism would be useful in order to understand the role of sleep debt on human behavior. Twelve healthy subjects spent 14 days in laboratory with 2 baseline days (B1 and B2, 8 h TIB) followed by 7 days of sleep restriction (SR1-SR7, 4 h TIB), 3 sleep recovery days (R1–R3, 8 h TIB) and two more ones 8 days later (R12–R13). Subjective sleepiness (KSS), maintenance of wakefulness latencies (MWT) were evaluated four times a day (10:00, 12:00 a.m. and 2:00, 4:00 p.m.) and cognitive tests were realized at morning (8:30 a.m.) and evening (6:30 p.m.) sessions during B2, SR1, SR4, SR7, R2, R3 and R13. Saliva (B2, SR7, R2, R13) and blood (B1, SR6, R1, R12) samples were collected in the morning. Cognitive processes were differently impaired and recovered with a more rapid kinetic for sustained attention process. Besides, a significant time of day effect was only evidenced for sustained attention failures that seemed to be related to subject’s age and their morning capacity to stay awake. Executive processes were equally disturbed/recovered during the day and this failure/recovery process seemed to be mainly related to baseline subject’s performance and to their capacity to stay awake. Morning concentrations of testosterone, cortisol and α-amylase were significantly decreased at SR6-SR7, but were either and respectively early (R1), tardily (after R2) and not at all (R13) recovered. All these results suggest a differential deleterious and restorative effect of CSR on cognition through biological changes of the stress pathway and subject’s capacity (Clinical

  10. Sleep inertia, sleep homeostatic, and circadian influences on higher-order cognitive functions

    PubMed Central

    Ronda, Joseph M.; Czeisler, Charles A.; Wright, Kenneth P.

    2016-01-01

    Summary Sleep inertia, sleep homeostatic, and circadian processes modulate cognition, including reaction time, memory, mood, and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-daylong study that included two 14-daylong 28h forced desynchrony protocols, to examine separate and interacting influences of sleep inertia, sleep homeostasis, and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved over the first ~2-4h of wakefulness (sleep inertia); worsened thereafter until scheduled bedtime (sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~9AM and ~9PM respectively, in individuals with a habitual waketime of 7AM). The relative influences of sleep inertia, sleep homeostasis, and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation, and/or upon awakening from sleep. PMID:25773686

  11. A Thyroid Hormone Challenge in Hypothyroid Rats Identifies T3 Regulated Genes in the Hypothalamus and in Models with Altered Energy Balance and Glucose Homeostasis

    PubMed Central

    Herwig, Annika; Campbell, Gill; Mayer, Claus-Dieter; Boelen, Anita; Anderson, Richard A.; Ross, Alexander W.; Mercer, Julian G.

    2014-01-01

    Background: The thyroid hormone triiodothyronine (T3) is known to affect energy balance. Recent evidence points to an action of T3 in the hypothalamus, a key area of the brain involved in energy homeostasis, but the components and mechanisms are far from understood. The aim of this study was to identify components in the hypothalamus that may be involved in the action of T3 on energy balance regulatory mechanisms. Methods: Sprague Dawley rats were made hypothyroid by giving 0.025% methimazole (MMI) in their drinking water for 22 days. On day 21, half the MMI-treated rats received a saline injection, whereas the others were injected with T3. Food intake and body weight measurements were taken daily. Body composition was determined by magnetic resonance imaging, gene expression was analyzed by in situ hybridization, and T3-induced gene expression was determined by microarray analysis of MMI-treated compared to MMI-T3-injected hypothalamic RNA. Results: Post mortem serum thyroid hormone levels showed that MMI treatment decreased circulating thyroid hormones and increased thyrotropin (TSH). MMI treatment decreased food intake and body weight. Body composition analysis revealed reduced lean and fat mass in thyroidectomized rats from day 14 of the experiment. MMI treatment caused a decrease in circulating triglyceride concentrations, an increase in nonesterified fatty acids, and decreased insulin levels. A glucose tolerance test showed impaired glucose clearance in the thyroidectomized animals. In the brain, in situ hybridization revealed marked changes in gene expression, including genes such as Mct8, a thyroid hormone transporter, and Agrp, a key component in energy balance regulation. Microarray analysis revealed 110 genes to be up- or downregulated with T3 treatment (±1.3-fold change, p<0.05). Three genes chosen from the differentially expressed genes were verified by in situ hybridization to be activated by T3 in cells located at or close to the hypothalamic

  12. Growth hormone receptor antagonist (GHA) transgenic mice have increased subcutaneous adipose tissue mass, altered glucose homeostasis, and no change in white adipose tissue cellular senescence

    PubMed Central

    Comisford, Ross; Lubbers, Ellen R.; Householder, Lara; Suer, Ozan; Tchkonia, Tamara; Kirkland, James L.; List, Edward O.; Kopchick, John J.; Berryman, Darlene E.

    2015-01-01

    Background Growth hormone (GH) resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests long-lived GH resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice. OBJECTIVE The objective of this study was to examine white adipose tissue (WAT) senescence, WAT distribution, and glucose homeostasis in dwarf growth hormone receptor antagonist (GHA) transgenic mice, a unique mouse strain having decreased GH action but normal longevity. METHODS 18mo old female GHA mice and wild type (WT) littermate controls were used. Prior to dissection, body composition, fasting blood glucose, and glucose and insulin tolerance tests were performed. WAT distribution was determined by weighing four distinct WAT depots at the time of dissection. Cellular senescence in four WAT depots was assessed using senescence-associated β-galactosidase (SA-β-gal) staining to quantify the senescent cell burden and real time qPCR to quantify gene expression of senescence markers p16 and IL-6. RESULTS GHA mice had a 22% reduction in total body weight, 33% reduction in lean mass, and a 10% increase in body fat percentage compared to WT controls. GHA mice had normal fasting blood glucose and improved insulin sensitivity; however, they exhibited impaired glucose tolerance. Moreover, GHA mice displayed enhanced lipid storage in the inguinal subcutaneous WAT depot (p<.05) and a 1.7 fold increase in extra-/intraperitoneal WAT ratio compared to controls (p<.05). Measurements of WAT cellular senescence showed no difference between GHA mice and WT controls. CONCLUSIONS Similar to other mice with decreased GH action, female GHA mice display reduced age-related lipid redistribution and improved insulin

  13. Sleep and metabolic function

    PubMed Central

    Morselli, Lisa L.; Guyon, Aurore; Spiegel, Karine

    2012-01-01

    Evidence for the role of sleep on metabolic and endocrine function has been reported more than four decades ago. In the past 30 years, the prevalence of obesity and diabetes has greatly increased in industrialized countries, and self-imposed sleep curtailment, now very common, is starting to be recognized as a contributing factor, alongside with increased caloric intake and decreased physical activity. Furthermore, obstructive sleep apnea, a chronic condition characterized by recurrent upper airway obstruction leading to intermittent hypoxemia and sleep fragmentation, has also become highly prevalent as a consequence of the epidemic of obesity and has been shown to contribute, in a vicious circle, to the metabolic disturbances observed in obese patients. In this article, we summarize the current data supporting the role of sleep in the regulation of glucose homeostasis and the hormones involved in the regulation of appetite. We also review the results of the epidemiologic and laboratory studies that investigated the impact of sleep duration and quality on the risk of developing diabetes and obesity, as well as the mechanisms underlying this increased risk. Finally, we discuss how obstructive sleep apnea affects glucose metabolism and the beneficial impact of its treatment, the continuous positive airway pressure. In conclusion, the data available in the literature highlight the importance of getting enough good sleep for metabolic health. PMID:22101912

  14. Sleep Physiology, Abnormal States, and Therapeutic Interventions

    PubMed Central

    Wickboldt, Alvah T.; Bowen, Alex F.; Kaye, Aaron J.; Kaye, Adam M.; Rivera Bueno, Franklin; Kaye, Alan D.

    2012-01-01

    Sleep is essential. Unfortunately, a significant portion of the population experiences altered sleep states that often result in a multitude of health-related issues. The regulation of sleep and sleep-wake cycles is an area of intense research, and many options for treatment are available. The following review summarizes the current understanding of normal and abnormal sleep-related conditions and the available treatment options. All clinicians managing patients must recommend appropriate therapeutic interventions for abnormal sleep states. Clinicians' solid understanding of sleep physiology, abnormal sleep states, and treatments will greatly benefit patients regardless of their disease process. PMID:22778676

  15. Sleep and hormonal changes in aging.

    PubMed

    Copinschi, Georges; Caufriez, Anne

    2013-06-01

    Age-related sleep and endocrinometabolic alterations frequently interact with each other. For many hormones, sleep curtailment in young healthy subjects results in alterations strikingly similar to those observed in healthy old subjects not submitted to sleep restriction. Thus, recurrent sleep restriction, which is currently experienced by a substantial and rapidly growing proportion of children and young adults, might contribute to accelerate the senescence of endocrine and metabolic function. The mechanisms of sleep-hormonal interactions, and therefore the endocrinometabolic consequences of age-related sleep alterations, which markedly differ from one hormone to another, are reviewed in this article.

  16. Transcriptomics Profiling of Alzheimer’s Disease Reveal Neurovascular Defects, Altered Amyloid-β Homeostasis, and Deregulated Expression of Long Noncoding RNAs

    PubMed Central

    Magistri, Marco; Velmeshev, Dmitry; Makhmutova, Madina; Faghihi, Mohammad Ali

    2015-01-01

    Abstract The underlying genetic variations of late-onset Alzheimer’s disease (LOAD) cases remain largely unknown. A combination of genetic variations with variable penetrance and lifetime epigenetic factors may converge on transcriptomic alterations that drive LOAD pathological process. Transcriptome profiling using deep sequencing technology offers insight into common altered pathways regardless of underpinning genetic or epigenetic factors and thus represents an ideal tool to investigate molecular mechanisms related to the pathophysiology of LOAD. We performed directional RNA sequencing on high quality RNA samples extracted from hippocampi of LOAD and age-matched controls. We further validated our data using qRT-PCR on a larger set of postmortem brain tissues, confirming downregulation of the gene encoding substance P (TAC1) and upregulation of the gene encoding the plasminogen activator inhibitor-1 (SERPINE1). Pathway analysis indicates dysregulation in neural communication, cerebral vasculature, and amyloid-β clearance. Beside protein coding genes, we identified several annotated and non-annotated long noncoding RNAs that are differentially expressed in LOAD brain tissues, three of them are activity-dependent regulated and one is induced by Aβ1 - 42 exposure of human neural cells. Our data provide a comprehensive list of transcriptomics alterations in LOAD hippocampi and warrant holistic approach including both coding and non-coding RNAs in functional studies aimed to understand the pathophysiology of LOAD. PMID:26402107

  17. Sleep Problems

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Sleep Problems Share Tweet Linkedin Pin it More sharing ... PDF 474KB) En Español Medicines to Help You Sleep Tips for Better Sleep Basic Facts about Sleep ...

  18. Sleep Disorders

    MedlinePlus

    ... the day, even if you have had enough sleep? You might have a sleep disorder. The most common kinds are Insomnia - a hard time falling or staying asleep Sleep apnea - breathing interruptions during sleep Restless legs syndrome - ...

  19. cGMP-dependent protein kinase I, the circadian clock, sleep and learning.

    PubMed

    Feil, Robert; Hölter, Sabine M; Weindl, Karin; Wurst, Wolfgang; Langmesser, Sonja; Gerling, Andrea; Feil, Susanne; Albrecht, Urs

    2009-07-01

    The second messenger cGMP controls cardiovascular and gastrointestinal homeostasis in mammals. However, its physiological relevance in the nervous system is poorly understood.1 Now, we have reported that the cGMP-dependent protein kinase type I (PRKG1) is implicated in the regulation of the timing and quality of sleep and wakefulness.2Prkg1 mutant mice showed altered distribution of sleep and wakefulness as well as reduction in rapid-eye-movement sleep (REMS) duration and in non-REMS consolidation. Furthermore, the ability to sustain waking episodes was compromised. These observations were also reflected in wheel-running and drinking activity. A decrease in electroencephalogram power in the delta frequency range (1-4 Hz) under baseline conditions was observed, which was normalized after sleep deprivation. Together with the finding that circadian clock amplitude is reduced in Prkg1 mutants these results indicate a decrease of the wake-promoting output of the circadian system affecting sleep. Because quality of sleep might affect learning we tested Prkg1 mutants in several learning tasks and find normal spatial learning but impaired object recognition memory in these animals. Our findings indicate that Prkg1 impinges on circadian rhythms, sleep and distinct aspects of learning.

  20. Exposure to Bisphenol-A during Pregnancy Partially Mimics the Effects of a High-Fat Diet Altering Glucose Homeostasis and Gene Expression in Adult Male Mice

    PubMed Central

    García-Arevalo, Marta; Alonso-Magdalena, Paloma; Rebelo Dos Santos, Junia; Quesada, Ivan; Carneiro, Everardo M.; Nadal, Angel

    2014-01-01

    Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group); BPA treated mice that also ate a normal chow diet (BPA); vehicle treated animals that had a high fat diet (HFD) and BPA treated animals that were fed HFD (HFD-BPA). The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA) in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity. PMID:24959901

  1. Inactivation of 5HT transport in mice: modeling altered 5HT homeostasis implicated in emotional dysfunction, affective disorders, and somatic syndromes.

    PubMed

    Lesch, K P; Mössner, R

    2006-01-01

    Animal models have not only become an essential tool for investigating the neurobiological function of genes that are involved in the etiopathogenesis of human behavioral and psychiatric disorders but are also fundamental in the development novel therapeutic strategies. As an example, inactivation of the serotonin (5HT) transporter (5Htt, Slc6a4) gene in mice expanded our view of adaptive 5HT uptake regulation and maintenance of 5HT homeostasis in the developing human brain and molecular processes underlying anxiety-related traits, as well as affective spectrum disorders including depression. 5Htt-deficient mice have been employed as a model complementary to direct studies of genetically complex traits and disorders, with important findings in biochemical, morphological, behavioral, and pharmacological areas. Based on growing evidence for a critical role of the 5HTT in the integration of synaptic connections in the rodent, nonhuman primate, and human brain during critical periods of development and adult life, more in-depth knowledge of the molecular mechanisms implicated in these fine-tuning processes is currently evolving. Moreover, demonstration of a joint influence of the 5HTT variation and environmental sources during early brain development advanced our understanding of the mechanism of genexgene and genexenvironment interactions in the developmental neurobiology of anxiety and depression. Lastly, imaging techniques, which become increasingly elaborate in displaying the genomic influence on brain system activation in response to environmental cues, have provided the means to bridge the gap between small effects of 5HTT variation and complex behavior, as well as psychopathological dimensions. The combination of elaborate genetic, epigenetic, imaging, and behavioral analyses will continue to generate new insight into 5HTT's role as a master control gene of emotion regulation.

  2. Exposure to bisphenol-A during pregnancy partially mimics the effects of a high-fat diet altering glucose homeostasis and gene expression in adult male mice.

    PubMed

    García-Arevalo, Marta; Alonso-Magdalena, Paloma; Rebelo Dos Santos, Junia; Quesada, Ivan; Carneiro, Everardo M; Nadal, Angel

    2014-01-01

    Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group); BPA treated mice that also ate a normal chow diet (BPA); vehicle treated animals that had a high fat diet (HFD) and BPA treated animals that were fed HFD (HFD-BPA). The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA) in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity.

  3. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula.

    PubMed

    Zhang, Beilin; Gao, Yanxia; Li, Yang; Yang, Jing; Zhao, Hua

    2016-01-01

    Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.

  4. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula

    PubMed Central

    Gao, Yanxia

    2016-01-01

    Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis. PMID:27413249

  5. Metal homeostasis in dementia.

    PubMed

    Sensi, Stefano

    2014-10-01

    The molecular determinants of dementia of Alzheimer's tipe (DAT) are still not completely known; however, in the past two decades, a large body of evidence has indicated that an important contributing factor is represented by the unbalanced homeostasis of two cations: calcium (Ca(2) ) and zinc (Zn(2)). The two ions serve a critical role in the physiological signalling of the central nervous system. However, Alzheimer's disease-related neurodegeneration, deregulation of brain levels of Ca(2) and Zn(2) is instrumental in promoting amyloid-β (Aβ) dysmetabolism and tau phosphorylation as well as interference with additional pathogenic factors like energy production failure, hyperexcitabilty, excitotoxicity, and oxidative stress. Hyperexcitabilty and excitotoxicity are key mechanisms in the disease development and progression as an altered glutamatergic activation can further promote both Ca(2) and Zn(2) dyshomeostasis. The two cations can operate synergistically to promote the generation of free radicals that further increase intracellular Ca(2) and Zn(2) rises and set the stage for a self-perpetuating injurious loop. In the talk, we will review mechanisms of AD-related Ca(2) and Zn(2) dyshomeostasis in a preclinical model of DAT and discuss opportunity for disease-modifying strategies based on interventions aimed at restoring brain metal homeostasis.

  6. Alteration of serum levels of inflammatory cytokines and polysomnographic indices after uvulopalatal flap surgery in obstructive sleep apnea.

    PubMed

    Mutlu, Murad; Vuralkan, Erkan; Akin, Istemihan; Firat, Hikmet; Ardic, Sadik; Akaydin, Sevgi; Miser, Ece

    2017-02-01

    The aim of the current study was to compare the changes in polysomnographic indices and serum levels of C-reactive protein (CRP), cystatin C, tumor necrosis factor-α (TNF-α), and intercellular adhesion molecule-1 (ICAM-1) in patients with obstructive sleep apnea (OSA) who were treated surgically via a uvulopalatal flap (UPF) technique. Twenty-five patients (14 men, 11 women), average age 46.2 ± 9.3 years, who underwent UPF surgery were included in this study. Serum biochemical analyses and polysomnographic examinations were performed before and 6 months after the surgery. Pre- and postoperative values of apnea hypopnea index (AHI), oxygen desaturation index (ODI), and minimum oxygen concentrations, as well as serum levels of CRP, cystatin C, TNF-α, and ICAM-1 were compared. Comparison of variables before and after UPF surgery demonstrated that AHI (p = 0.001), ODI (p < 0.001) and oxygen saturation (p < 0.001) were significantly improved. In addition, serum levels of CRP (p = 0.036), cystatin C (p = 0.005), TNF-α (p < 0.001), and ICAM-1 (p < 0.001) were significantly reduced 6 months after surgery. Our results suggest that UPF is an effective surgical method that alleviates the severity of OSA. Moreover, it may have the potential to prevent the development of atherosclerosis by attenuating the inflammatory process induced by activation of inflammatory mediators such as CRP, TNF-α, ICAM-1, and cystatin C.

  7. Sleep disordered breathing at the extremes of age: infancy

    PubMed Central

    Tan, Hui-Leng

    2016-01-01

    Educational aims The reader will be able to: Understand normal sleep patterns in infancyAppreciate disorders of breathing in infancyAppreciate disorders of respiratory control Normal sleep in infancy is a time of change with alterations in sleep architecture, sleep duration, sleep patterns and respiratory control as an infant grows older. Interactions between sleep and respiration are key to the mechanisms by which infants are vulnerable to sleep disordered breathing. This review discusses normal sleep in infancy, as well as normal sleep breathing in infancy. Sleep disordered breathing (obstructive and central) as well as disorders of ventilatory control and infant causes of hypoventilation are all reviewed in detail. PMID:27064478

  8. A neuronal disruption in redox homeostasis elicited by ammonia alters the glycine/glutamate (GABA) cycle and contributes to MMA-induced excitability.

    PubMed

    Royes, Luiz Fernando Freire; Gabbi, Patrícia; Ribeiro, Leandro Rodrigo; Della-Pace, Iuri Domingues; Rodrigues, Fernanda Silva; de Oliveira Ferreira, Ana Paula; da Silveira Junior, Mauro Eduardo Porto; da Silva, Luís Roberto Hart; Grisólia, Alan Barroso Araújo; Braga, Danielle Valente; Dobrachinski, Fernando; da Silva, Anderson Manoel Herculano Oliveira; Soares, Félix Alexandre Antunes; Marchesan, Sara; Furian, Ana Flavia; Oliveira, Mauro Schneider; Fighera, Michele Rechia

    2016-06-01

    Hyperammonemia is a common finding in children with methylmalonic acidemia. However, its contribution to methylmalonate-induced excitotoxicty is poorly understood. The aim of this study was to evaluate the mechanisms by which ammonia influences in the neurotoxicity induced by methylmalonate (MMA) in mice. The effects of ammonium chloride (NH4Cl 3, 6, and 12 mmol/kg; s.c.) on electroencephalographic (EEG) and behavioral convulsions induced by MMA (0.3, 0.66, and 1 µmol/2 µL, i.c.v.) were observed in mice. After, ammonia, TNF-α, IL1β, IL-6, nitrite/nitrate (NOx) levels, mitochondrial potential (ΔΨ), reactive oxygen species (ROS) generation, Methyl-Tetrazolium (MTT) reduction, succinate dehydrogenase (SDH), and Na(+), K(+)-ATPase activity levels were measured in the cerebral cortex. The binding of [(3)H]flunitrazepam, release of glutamate-GABA; glutamate decarboxylase (GAD) and glutamine synthetase (GS) activity and neuronal damage [opening of blood brain barrier (BBB) permeability and cellular death volume] were also measured. EEG recordings showed that an intermediate dose of NH4Cl (6 mmol/kg) increased the duration of convulsive episodes induced by MMA (0.66 μmol/2 μL i.c.v). NH4Cl (6 mmol/kg) administration also induced neuronal ammonia and NOx increase, as well as mitochondrial ROS generation throughout oxidation of 2,7-dichlorofluorescein diacetate (DCFH-DA) to DCF-RS, followed by GS and GAD inhibition. The NH4Cl plus MMA administration did not alter cytokine levels, plasma fluorescein extravasation, or neuronal damage. However, it potentiated DCF-RS levels, decreased the ΔΨ potential, reduced MTT, inhibited SDH activity, and increased Na(+), K(+)-ATPase activity. NH4Cl also altered the GABA cycle characterized by GS and GAD activity inhibition, [(3)H]flunitrazepam binding, and GABA release after MMA injection. On the basis of our findings, the changes in ROS and reactive nitrogen species (RNS) levels elicited by ammonia alter the glycine

  9. Exposure to acute electromagnetic radiation of mobile phone exposure range alters transiently skin homeostasis of a model of pigmented reconstructed epidermis.

    PubMed

    Simon, D; Daubos, A; Pain, C; Fitoussi, R; Vié, K; Taieb, A; de Benetti, L; Cario-André, M

    2013-02-01

    Exposure to electromagnetic radiations (EMR) produced by mobile phone concerns half the world's population and raises the problem of their impact on human health. In this study, we looked at the effects of mobile phone exposure (GSM basic, 900 MHz, SAR 2 mW g(-1) , 6 h) on a model of pigmented skin. We have analysed the expression and localization of various markers of keratinocyte and melanocyte differentiation 2, 6, 18 and 24 h after EMR exposure of reconstructed epidermis containing either only keratinocytes or a combination of keratinocytes and melanocytes grown on dead de-epidermized dermis, using histology, immunohistochemistry and Western blot. No changes were found in epidermal architecture, localization of epidermal markers, presence of apoptotic cells and the induction of p53 in both types of epidermis (with or without melanocytes) after exposure to EMR. In pigmented reconstructs, no change in the location and dendricity of melanocytes and in melanin transfer to neighbouring keratinocytes was detected after EMR exposure. Loricrin, cytokeratin 14 were significantly decreased at 6 h. The level of all markers increased at 24 h as compared to 6 h post-EMR exposure, associated with a significant decrease of the 20S proteasome activity. Our data indicate that exposure to 900 MHz frequency induces a transient alteration of epidermal homoeostasis, which may alter the protective capacity of the skin against external factors. Presence or absence of melanocytes did not modify the behaviour of reconstructs after EMR exposure.

  10. Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT) neurons in mice with altered 5-HT homeostasis.

    PubMed

    Araragi, Naozumi; Mlinar, Boris; Baccini, Gilda; Gutknecht, Lise; Lesch, Klaus-Peter; Corradetti, Renato

    2013-01-01

    Firing activity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert-/-) and tryptophan hydroxylase-2 knockout (Tph2-/-) mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+)-8-hydroxy-2-(di-n-propylamino)tetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2-/- mice and Sert-/- mice, respectively. While 5-HT neurons from Tph2-/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert-/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP), neurons from both Tph2-/- and Sert-/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling.

  11. [Develpment of sleep stages in childhood].

    PubMed

    Geib, Lorena Teresinha Consalter

    2007-01-01

    With the perspective of describing some aspects of the ontogenesis and organization of the sleep stages during the first year of life, a literature review was carried out to assess the physiological and behavioral alterations controlled by changes occurring during sleep at this developmental stage. In addition, based on the sleep preceding theory the stages of differentiation, classification and time organization of sleep stages are presented, aiming at the favorable management of environmental events that affect the organization of infant sleep.

  12. Sleep and the functional connectome.

    PubMed

    Picchioni, Dante; Duyn, Jeff H; Horovitz, Silvina G

    2013-10-15

    Sleep and the functional connectome are research areas with considerable overlap. Neuroimaging studies of sleep based on EEG-PET and EEG-fMRI are revealing the brain networks that support sleep, as well as networks that may support the roles and processes attributed to sleep. For example, phenomena such as arousal and consciousness are substantially modulated during sleep, and one would expect this modulation to be reflected in altered network activity. In addition, recent work suggests that sleep also has a number of adaptive functions that support waking activity. Thus the study of sleep may elucidate the circuits and processes that support waking function and complement information obtained from fMRI during waking conditions. In this review, we will discuss examples of this for memory, arousal, and consciousness after providing a brief background on sleep and on studying it with fMRI.

  13. Lawsonia intracellularis exploits β-catenin/Wnt and Notch signalling pathways during infection of intestinal crypt to alter cell homeostasis and promote cell proliferation

    PubMed Central

    Huan, Yang W.; Bengtsson, Rebecca J.; MacIntyre, Neil; Guthrie, Jack; Finlayson, Heather; Smith, Sionagh H.; Archibald, Alan L.; Ait-Ali, Tahar

    2017-01-01

    Lawsonia intracellularis is an obligate intracellular bacterial pathogen that causes proliferative enteropathy (PE) in pigs. L. intracellularis infection causes extensive intestinal crypt cell proliferation and inhibits secretory and absorptive cell differentiation. However, the affected host upstream cellular pathways leading to PE are still unknown. β-catenin/Wnt signalling is essential in maintaining intestinal stem cell (ISC) proliferation and self-renewal capacity, while Notch signalling governs differentiation of secretory and absorptive lineage specification. Therefore, in this report we used immunofluorescence (IF) and quantitative reverse transcriptase PCR (RTqPCR) to examine β-catenin/Wnt and Notch-1 signalling levels in uninfected and L. intracellularis infected pig ileums at 3, 7, 14, 21 and 28 days post challenge (dpc). We found that while the significant increase in Ki67+ nuclei in crypts at the peak of L. intracellularis infection suggested enhanced cell proliferation, the expression of c-MYC and ASCL2, promoters of cell growth and ISC proliferation respectively, was down-regulated. Peak infection also coincided with enhanced cytosolic and membrane-associated β-catenin staining and induction of AXIN2 and SOX9 transcripts, both encoding negative regulators of β-catenin/Wnt signalling and suggesting a potential alteration to β-catenin/Wnt signalling levels, with differential regulation of the expression of its target genes. We found that induction of HES1 and OLFM4 and the down-regulation of ATOH1 transcript levels was consistent with the increased Notch-1 signalling in crypts at the peak of infection. Interestingly, the significant down-regulation of ATOH1 transcript levels coincided with the depletion of MUC2 expression at 14 dpc, consistent with the role of ATOH1 in promoting goblet cell maturation. The lack of significant change to LGR5 transcript levels at the peak of infection suggested that the crypt hyperplasia was not due to the expansion

  14. Ciliary neurotrophic factorAx15 alters energy homeostasis, decreases body weight, and improves metabolic control in diet-induced obese and UCP1-DTA mice.

    PubMed

    Blüher, Susann; Moschos, Stergios; Bullen, John; Kokkotou, Efi; Maratos-Flier, Eleftheria; Wiegand, Stanley J; Sleeman, Mark W; Sleemann, Mark W; Mantzoros, Christos S

    2004-11-01

    Ciliary neurotrophic factor (CNTF) potently reduces appetite and body weight in rodents and humans. We studied the short- and long-term effects of CNTF(Ax15), a second-generation CNTF analog, in diet-induced obese C57BL/6J mice and brown adipose tissue (BAT)-deficient obese UCP1-DTA (uncoupling protein 1-diphtheria toxin A) mice. CNTF(Ax15) administration (0.1, 0.3, or 1.0 microg . g(-1) . day(-1) s.c.) for 3 or 7 days reduced food intake and body weight (mainly body fat mass). The effect of CNTF(Ax15) on food intake and body weight was more pronounced in CNTF(Ax15)-treated diet-induced obese C57BL/6J mice compared with pair-fed controls and was associated with suppressed expression of hypothalamic neuropeptide Y and agouti gene-related protein. Moreover, CNTF(Ax15) increased uncoupling protein 1 mRNA expression in BAT and energy expenditure in diet-induced obese C57BL/6J mice. Longitudinal observations revealed a sustained reduction in body weight for several days post-CNTF(Ax15) treatment of CNTF(Ax15)-treated but not pair-fed mice, followed by a gradual regain in body weight over 28 days. Finally, CNTF(Ax15) administration improved the metabolic profile in both diet-induced obese C57BL/6J and UCP1-DTA mice and resulted in a significantly improved glycemic response to oral glucose tolerance tests in CNTF(Ax15)-treated UCP1-DTA compared with pair-fed mice of similar body weight. These data suggest that CNTF(Ax15) may act through a pathway downstream of the putative point responsible for leptin resistance in diet-induced obese C57BL/6J and UCP1-DTA mice to alter food intake, body weight, body composition, and metabolism. CNTF(Ax15) has delayed and persistent effects in diet-induced obese C57BL/6J mice, which account for a reduction in body weight over and above what would be expected based on decreased foot intake alone.

  15. Sleep and respiration in microgravity

    NASA Technical Reports Server (NTRS)

    Prisk, G. K.

    1998-01-01

    Sleep studies conducted during the STS-90 Neurolab mission are explored. The relationship between sleep, melatonin, and circadian phase is reviewed. The study contained both sleep and awake components. The objectives of the sleep component were to test five hypotheses: that circadian rhythms of core body temperature and urinary melatonin are synchronized to required sleep-wake schedules, that spaceflight results in substantial disruption of sleep, that the pattern of chest and abdominal wall motion alters during the different sleep stages in microgravity, that arterial oxygen saturation is reduced during some stages of sleep in microgravity, and that pre-sleep administration of melatonin during microgravity results in improved sleep quality. The awake component tested three hypotheses: that ventilatory response to carbon dioxide is increased during exposure to microgravity and that this exacerbates sleep disruption, that ventilatory response to hypoxia is increased by exposure to microgravity, and that the improved sleep resulting from the pre-sleep administration of melatonin enhances next day cognition when compared to placebo.

  16. Neuroregulators and sleep mechanisms.

    PubMed

    Holman, R B; Elliott, G R; Barchas, J D

    1975-01-01

    behavioral state. Yet, even without an understanding of what "causes" sleep, we may be able to develop pharmacological agents which permits discrete alteration of sleep mechanisms in a more physiological and specific manner. This potential for manipulation of sleep is of obvious importance in illnesses such as insomnia, narcolepsy, and sleep apnea (247, 248). In addition, it may be valuable in the treatment of such conditions as psychosis and depression, where sleep disturbances are an important component of the illness. For example, delirium tremens might be best understood as a psychotic episode which is the result of an aspect of sleep emerging into wakefulness. The range and breadth of both the basic questions and the potential application of sleep research portend an exciting future for this field.

  17. Sleep and respiratory sleep disorders in idiopathic pulmonary fibrosis.

    PubMed

    Milioli, Giulia; Bosi, Marcello; Poletti, Venerino; Tomassetti, Sara; Grassi, Andrea; Riccardi, Silvia; Terzano, Mario Giovanni; Parrino, Liborio

    2016-04-01

    Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease (ILD) characterized by inflammation and progressive scarring of the lung parenchyma. IPF profoundly affects the quality of life (QoL) and fatigue is a frequently disabling symptom. The cause of fatigue is not well understood but patients with IPF often report extremely poor sleep quality and sleep-related breathing disorders (SRBD) that correlate with QoL. IPF patients present alterations in sleep architecture, including decreased sleep efficiency, slow wave sleep and rapid eye movement (REM) sleep, and increased sleep fragmentation. Moreover, sleep related hypoventilation during the vulnerable REM sleep period and obstructive sleep apnea-hypopnea syndrome (OSAHS) are frequent, but remain usually underdiagnosed. These SRBD in IPF are associated with alterations of the sleep structure, reduction of QoL and increased risk of mortality. In the absence of an effective therapy for IPF, optimizing the QoL could become the primary therapeutic goal. In this perspective the diagnosis and treatment of SRBD could significantly improve the QoL of IPF patients.

  18. C9orf72 Hexanucleotide Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and Stress Granule Formation in Induced Pluripotent Stem Cell‐Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia

    PubMed Central

    Dafinca, Ruxandra; Scaber, Jakub; Ababneh, Nida'a; Lalic, Tatjana; Weir, Gregory; Christian, Helen; Vowles, Jane; Douglas, Andrew G.L.; Fletcher‐Jones, Alexandra; Browne, Cathy; Nakanishi, Mahito; Turner, Martin R.; Wade‐Martins, Richard

    2016-01-01

    Abstract An expanded hexanucleotide repeat in a noncoding region of the C9orf72 gene is a major cause of amyotrophic lateral sclerosis (ALS), accounting for up to 40% of familial cases and 7% of sporadic ALS in European populations. We have generated induced pluripotent stem cells (iPSCs) from fibroblasts of patients carrying C9orf72 hexanucleotide expansions, differentiated these to functional motor and cortical neurons, and performed an extensive phenotypic characterization. In C9orf72 iPSC‐derived motor neurons, decreased cell survival is correlated with dysfunction in Ca2+ homeostasis, reduced levels of the antiapoptotic protein Bcl‐2, increased endoplasmic reticulum (ER) stress, and reduced mitochondrial membrane potential. Furthermore, C9orf72 motor neurons, and also cortical neurons, show evidence of abnormal protein aggregation and stress granule formation. This study is an extensive characterization of iPSC‐derived motor neurons as cellular models of ALS carrying C9orf72 hexanucleotide repeats, which describes a novel pathogenic link between C9orf72 mutations, dysregulation of calcium signaling, and altered proteostasis and provides a potential pharmacological target for the treatment of ALS and the related neurodegenerative disease frontotemporal dementia. Stem Cells 2016;34:2063–2078 PMID:27097283

  19. Impact of traumatic brain injury on sleep structure, electrocorticographic activity and transcriptome in mice.

    PubMed

    Sabir, Meriem; Gaudreault, Pierre-Olivier; Freyburger, Marlène; Massart, Renaud; Blanchet-Cohen, Alexis; Jaber, Manar; Gosselin, Nadia; Mongrain, Valérie

    2015-07-01

    Traumatic brain injury (TBI), including mild TBI (mTBI), is importantly associated with vigilance and sleep complaints. Because sleep is required for learning, plasticity and recovery, we here evaluated the bidirectional relationship between mTBI and sleep with two specific objectives: (1) Test that mTBI rapidly impairs sleep-wake architecture and the dynamics of the electrophysiological marker of sleep homeostasis (i.e., non-rapid eye movement sleep delta (1-4Hz) activity); (2) evaluate the impact of sleep loss following mTBI on the expression of plasticity markers that have been linked to sleep homeostasis and on genome-wide gene expression. A closed-head injury model was used to perform a 48h electrocorticographic (ECoG) recording in mice submitted to mTBI or Sham surgery. mTBI was found to immediately decrease the capacity to sustain long bouts of wakefulness as well as the amplitude of the time course of ECoG delta activity during wakefulness. Significant changes in ECoG spectral activity during wakefulness, non-rapid eye movement and rapid eye movement sleep were observed mainly on the second recorded day. A second experiment was performed to measure gene expression in the cerebral cortex and hippocampus after a mTBI followed either by two consecutive days of 6h sleep deprivation (SD) or of undisturbed behavior (quantitative PCR and next-generation sequencing). mTBI modified the expression of genes involved in immunity, inflammation and glial function (e.g., chemokines, glial markers) and SD changed that of genes linked to circadian rhythms, synaptic activity/neuronal plasticity, neuroprotection and cell death and survival. SD appeared to affect gene expression in the cerebral cortex more importantly after mTBI than Sham surgery including that of the astrocytic marker Gfap, which was proposed as a marker of clinical outcome after TBI. Interestingly, SD impacted the hippocampal expression of the plasticity elements Arc and EfnA3 only after mTBI. Overall, our

  20. Sleep and psychoneuroimmunology.

    PubMed

    Opp, Mark R

    2009-05-01

    The brain uses a variety of mechanisms to survey the immune system constantly. Responses of the immune system to invading pathogens are detected by the central nervous system, which responds by orchestrating complex changes in behavior and physiology. Sleep is one of the behaviors altered in response to immune challenge. The role of cytokines as mediators of responses to infectious challenge and regulators and modulators of sleep is the focus of this article.

  1. Metabolic consequences of sleep and circadian disorders

    PubMed Central

    Depner, Christopher M.; Stothard, Ellen R.; Wright, Kenneth P.

    2014-01-01

    Sleep and circadian rhythms modulate or control daily physiological patterns with importance for normal metabolic health. Sleep deficiencies associated with insufficient sleep schedules, insomnia with short-sleep duration, sleep apnea, narcolepsy, circadian misalignment, shift work, night eating syndrome and sleep-related eating disorder may all contribute to metabolic dysregulation. Sleep deficiencies and circadian disruption associated with metabolic dysregulation may contribute to weight gain, obesity, and type 2 diabetes potentially by altering timing and amount of food intake, disrupting energy balance, inflammation, impairing glucose tolerance and insulin sensitivity. Given the rapidly increasing prevalence of metabolic diseases, it is important to recognize the role of sleep and circadian disruption in the development, progression, and morbidity of metabolic disease. Some findings indicate sleep treatments and countermeasures improve metabolic health, but future clinical research investigating prevention and treatment of chronic metabolic disorders through treatment of sleep and circadian disruption is needed. PMID:24816752

  2. [Sleep in normal aging].

    PubMed

    Goldenberg, F

    1991-10-01

    Sleep in the elderly is characterized by a decrease in the ability to stay asleep resulting in a more fragmented sleep. Spindles are less frequent and less ample, shorter, without an increase during the night contrary young subjects. Delta activity in slow wave sleep is decreased in the 0.5-2 Hz frequency band only. REM sleep occurs earlier the first REM period duration increases. The REM sleep appearance is almost uniform during the night. REMs density does not increase toward the end of the sleeping period. The sleep-wake circadian rhythm is advanced (bedtime and morning awakening occur earlier). The temperature rhythm is also advanced. The rise in temperature after the nadir begins earlier for females and the initial ascent is more rapid. This explains why women wake up earlier and sleep for shorter durations than men. The nocturnal and diurnal mean plasmatic norepinephrine values increase. The rhythm of cortisol secretion is advanced. The GH and melatonin peaks of secretion are decreased. The acrophase of melatonin rhythm is occurring later in the elderly. These results suggest a weakening of circadian structure in the course of aging and an altered relationship between the pacemakers driving melatonin and cortisol circadian rhythms.

  3. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation

    PubMed Central

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E.; McCarley, Robert W.; Choi, Jee Hyun

    2017-01-01

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation. PMID:28193862

  4. Cognitive Neuroscience of Sleep

    PubMed Central

    Poe, Gina R.; Walsh, Christine M.; Bjorness, Theresa E.

    2014-01-01

    Mechanism is at the heart of understanding, and this chapter addresses underlying brain mechanisms and pathways of cognition and the impact of sleep on these processes, especially those serving learning and memory. This chapter reviews the current understanding of the relationship between sleep/waking states and cognition from the perspective afforded by basic neurophysiological investigations. The extensive overlap between sleep mechanisms and the neurophysiology of learning and memory processes provide a foundation for theories of a functional link between the sleep and learning systems. Each of the sleep states, with its attendant alterations in neurophysiology, is associated with facilitation of important functional learning and memory processes. For rapid eye movement (REM) sleep, salient features such as PGO waves, theta synchrony, increased acetylcholine, reduced levels of monoamines and, within the neuron, increased transcription of plasticity-related genes, cumulatively allow for freely occurring bidirectional plasticity (long-term potentiation (LTP) and its reversal, depotentiation). Thus, REM sleep provides a novel neural environment in which the synaptic remodeling essential to learning and cognition can occur, at least within the hippocampal complex. During nonREM sleep Stage 2 spindles, the cessation and subsequent strong bursting of noradrenergic cells and coincident reactivation of hippocampal and cortical targets would also increase synaptic plasticity, allowing targeted bidirectional plasticity in the neocortex as well. In delta nonREM sleep, orderly neuronal reactivation events in phase with slow wave delta activity, together with high protein synthesis levels, would facilitate the events that convert early LTP to long lasting LTP. Conversely, delta sleep does not activate immediate early genes associated with de novo LTP. This nonREM sleep-unique genetic environment combined with low acetylcholine levels may serve to reduce the strength of

  5. Cognitive neuroscience of sleep.

    PubMed

    Poe, Gina R; Walsh, Christine M; Bjorness, Theresa E

    2010-01-01

    Mechanism is at the heart of understanding, and this chapter addresses underlying brain mechanisms and pathways of cognition and the impact of sleep on these processes, especially those serving learning and memory. This chapter reviews the current understanding of the relationship between sleep/waking states and cognition from the perspective afforded by basic neurophysiological investigations. The extensive overlap between sleep mechanisms and the neurophysiology of learning and memory processes provide a foundation for theories of a functional link between the sleep and learning systems. Each of the sleep states, with its attendant alterations in neurophysiology, is associated with facilitation of important functional learning and memory processes. For rapid eye movement (REM) sleep, salient features such as PGO waves, theta synchrony, increased acetylcholine, reduced levels of monoamines and, within the neuron, increased transcription of plasticity-related genes, cumulatively allow for freely occurring bidirectional plasticity, long-term potentiation (LTP) and its reversal, depotentiation. Thus, REM sleep provides a novel neural environment in which the synaptic remodelling essential to learning and cognition can occur, at least within the hippocampal complex. During non-REM sleep Stage 2 spindles, the cessation and subsequent strong bursting of noradrenergic cells and coincident reactivation of hippocampal and cortical targets would also increase synaptic plasticity, allowing targeted bidirectional plasticity in the neocortex as well. In delta non-REM sleep, orderly neuronal reactivation events in phase with slow wave delta activity, together with high protein synthesis levels, would facilitate the events that convert early LTP to long-lasting LTP. Conversely, delta sleep does not activate immediate early genes associated with de novo LTP. This non-REM sleep-unique genetic environment combined with low acetylcholine levels may serve to reduce the strength of

  6. Sleep in elite athletes and nutritional interventions to enhance sleep.

    PubMed

    Halson, Shona L

    2014-05-01

    Sleep has numerous important physiological and cognitive functions that may be particularly important to elite athletes. Recent evidence, as well as anecdotal information, suggests that athletes may experience a reduced quality and/or quantity of sleep. Sleep deprivation can have significant effects on athletic performance, especially submaximal, prolonged exercise. Compromised sleep may also influence learning, memory, cognition, pain perception, immunity and inflammation. Furthermore, changes in glucose metabolism and neuroendocrine function as a result of chronic, partial sleep deprivation may result in alterations in carbohydrate metabolism, appetite, food intake and protein synthesis. These factors can ultimately have a negative influence on an athlete's nutritional, metabolic and endocrine status and hence potentially reduce athletic performance. Research has identified a number of neurotransmitters associated with the sleep-wake cycle. These include serotonin, gamma-aminobutyric acid, orexin, melanin-concentrating hormone, cholinergic, galanin, noradrenaline, and histamine. Therefore, nutritional interventions that may act on these neurotransmitters in the brain may also influence sleep. Carbohydrate, tryptophan, valerian, melatonin and other nutritional interventions have been investigated as possible sleep inducers and represent promising potential interventions. In this review, the factors influencing sleep quality and quantity in athletic populations are examined and the potential impact of nutritional interventions is considered. While there is some research investigating the effects of nutritional interventions on sleep, future research may highlight the importance of nutritional and dietary interventions to enhance sleep.

  7. Experiment M133. Sleep monitoring on Skylab

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.; Shumate, W. H.; Salamy, J. G.; Booher, C. R.

    1977-01-01

    Subjective sleep logs during 59-day and 84-day Skylab missions indicate that prolonged space flight, with its accompanying weightless state, is not directly associated with major adverse changes in sleep characteristics. Observed alterations in sleep patterns were not of sufficient magnitude to result in significant degradation of performance capacity.

  8. Zinc homeostasis and neurodegenerative disorders

    PubMed Central

    Szewczyk, Bernadeta

    2013-01-01

    Zinc is an essential trace element, whose importance to the function of the central nervous system (CNS) is increasingly being appreciated. Alterations in zinc dyshomeostasis has been suggested as a key factor in the development of several neuropsychiatric disorders. In the CNS, zinc occurs in two forms: the first being tightly bound to proteins and, secondly, the free, cytoplasmic, or extracellular form found in presynaptic vesicles. Under normal conditions, zinc released from the synaptic vesicles modulates both ionotropic and metabotropic post-synaptic receptors. While under clinical conditions such as traumatic brain injury, stroke or epilepsy, the excess influx of zinc into neurons has been found to result in neurotoxicity and damage to postsynaptic neurons. On the other hand, a growing body of evidence suggests that a deficiency, rather than an excess, of zinc leads to an increased risk for the development of neurological disorders. Indeed, zinc deficiency has been shown to affect neurogenesis and increase neuronal apoptosis, which can lead to learning and memory deficits. Altered zinc homeostasis is also suggested as a risk factor for depression, Alzheimer's disease (AD), aging, and other neurodegenerative disorders. Under normal CNS physiology, homeostatic controls are put in place to avoid the accumulation of excess zinc or its deficiency. This cellular zinc homeostasis results from the actions of a coordinated regulation effected by different proteins involved in the uptake, excretion and intracellular storage/trafficking of zinc. These proteins include membranous transporters (ZnT and Zip) and metallothioneins (MT) which control intracellular zinc levels. Interestingly, alterations in ZnT and MT have been recently reported in both aging and AD. This paper provides an overview of both clinical and experimental evidence that implicates a dysfunction in zinc homeostasis in the pathophysiology of depression, AD, and aging. PMID:23882214

  9. Cytokines in sleep regulation.

    PubMed

    Krueger, J M; Takahashi, S; Kapás, L; Bredow, S; Roky, R; Fang, J; Floyd, R; Renegar, K B; Guha-Thakurta, N; Novitsky, S

    1995-01-01

    The central thesis of this essay is that the cytokine network in brain is a key element in the humoral regulation of sleep responses to infection and in the physiological regulation of sleep. We hypothesize that many cytokines, their cellular receptors, soluble receptors, and endogenous antagonists are involved in physiological sleep regulation. The expressions of some cytokines are greatly amplified by microbial challenge. This excess cytokine production during infection induces sleep responses. The excessive sleep and wakefulness that occur at different times during the course of the infectious process results from dynamic changes in various cytokines that occur during the host's response to infectious challenge. Removal of any one somnogenic cytokine inhibits normal sleep, alters the cytokine network by changing the cytokine mix, but does not completely disrupt sleep due to the redundant nature of the cytokine network. The cytokine network operates in a paracrine/autocrine fashion and is responsive to neuronal use. Finally, cytokines elicit their somnogenic actions via endocrine and neurotransmitter systems as well as having direct effects neurons and glia. Evidence in support of these postulates is reviewed in this essay.

  10. Altered sleep-wake characteristics and lack of arousal response to H3 receptor antagonist in histamine H1 receptor knockout mice.

    PubMed

    Huang, Zhi-Li; Mochizuki, Takatoshi; Qu, Wei-Min; Hong, Zong-Yuan; Watanabe, Takeshi; Urade, Yoshihiro; Hayaishi, Osamu

    2006-03-21

    Histaminergic neurons play an important role in the regulation of sleep-wake behavior through histamine H(1) receptors (H(1)R). Blockade of the histamine H(3) receptor (H(3)R) is proposed to induce wakefulness by regulating the release of various wake-related transmitters, not only histamine. In the present study, we characterized sleep-wake cycles of H(1)R knockout (KO) mice and their arousal responses to an H(3)R antagonist. Under baseline conditions, H(1)R KO mice showed sleep-wake cycles essentially identical to those of WT mice but with fewer incidents of brief awakening (<16-sec epoch), prolonged durations of non-rapid eye movement (NREM) sleep episodes, a decreased number of state transitions between NREM sleep and wakefulness, and a shorter latency for initiating NREM sleep after an i.p. injection of saline. The H(1)R antagonist pyrilamine mimicked these effects in WT mice. When an H(3)R antagonist, ciproxifan, was administered i.p., wakefulness increased in WT mice in a dose-dependent manner but did not increase at all in H(1)R KO mice. In vivo microdialysis revealed that the i.p. application of ciproxifan increased histamine release from the frontal cortex in both genotypes of mice. These results indicate that H(1)R is involved in the regulation of behavioral state transitions from NREM sleep to wakefulness and that the arousal effect of the H(3)R antagonist completely depends on the activation of histaminergic systems through H(1)R.

  11. Brain connectivity is altered by extreme physical exercise during non-REM sleep and wakefulness: indications from EEG and fMRI studies.

    PubMed

    Menicucci, D; Gentili, C; Piarulli, A; Laurino, M; Pellegrini, S; Mastorci, F; Bedini, R; Montanaro, D; Sebastiani, L; Gemignani, A

    2016-12-01

    Brain connectivity is associated to behavioral states (e.g. wake, sleep) and modified by physical activity although, to date, it is not clear which components (e.g. hypothalamus-pituitary-adrenal axis hormones, cytokines) associated to the exercise are involved. In this pilot study, we used extreme exercise (UltraTriathlon) as a model to investigate physical-activity-related changes of brain connectivity. We studied post-race brain synchronization during wakefulness and sleep as well as possible correlations between exercise-related cytokines/hormones and synchronization features. For wakefulness, global synchronization was evaluated by estimating from fMRI data (12 athletes) the brain global connectivity (GC). GC increased in several brain regions, mainly related to sensory-motor activity, emotional modulation and response to stress that may foster rapid exchange of information across regions, and reflect post-race internally-focused mental activity or disengagement from previous motor programs. No significant correlations between cytokines/hormones and GC were found. For sleep (8 athletes), synchronization was evaluated by estimating the local-(cortical) and global-related (thalamo- cortical) EEG features associated to the phenomenon of Sleep Slow Oscillations (SSO) of NREM sleep. Results showed that: power of fast rhythms in the baseline preceding the SSO increased in midline and parietal regions; amplitude and duration of SSOs increased, mainly in posterior areas; sigma modulation in the SSO up state decreased. In the post race, IL-10 positively correlated with fast rhythms baseline, SSO rate and positive slope; IL-1ra and cortisol inversely correlated with SSO duration; TNF-α and C-reactive protein positively correlated with fast rhythm modulation in the SSO up state. Sleep results suggest that: arousal during sleep, estimated by baseline fast rhythms, is increased; SSO may be sustained by cortical excitability, linked to anti-inflammatory markers (IL-10

  12. Insomnia types and sleep microstructure dynamics.

    PubMed

    Chouvarda, I; Grassi, A; Mendez, M O; Bianchi, A M; Parrino, L; Milioli, G; Terzano, M; Maglaveras, N; Cerutti, S

    2013-01-01

    This work aims to investigate sleep microstructure as expressed by Cyclic Alternating Pattern (CAP), and its possible alterations in pathological sleep. Three groups, of 10 subjects each, are considered: a) normal sleep, b) psychophysiological insomnia, and c) sleep misperception. One night sleep PSG and sleep macro- micro structure annotations were available per subject. The statistical properties and the dynamics of CAP events are in focus. Multiscale and non-linear methods are presented for the analysis of the microstructure event time series, applied for each type of CAP events, and their combination. The results suggest that a) both types of insomnia present CAP differences from normal sleep related to hyperarousal, b) sleep misperception presents more extensive differences from normal, potentially reflecting multiple sleep mechanisms, c) there are differences between the two types of insomnia as regard to the intertwining of events of different subtypes. The analysis constitutes a contribution towards new markers for the quantitative characterization of insomnia, and its subtypes.

  13. Effect of oxcarbazepine on sleep architecture.

    PubMed

    Ayala-Guerrero, Fructuoso; Mexicano, Graciela; González, Valentín; Hernandez, Mario

    2009-07-01

    The most common side effects following administration of antiepileptic drugs involve alterations in sleep architecture and varying degrees of daytime sleepiness. Oxcarbazepine is a drug that is approved as monotherapy for the treatment of partial seizures and generalized tonic-clonic seizures. However, there is no information about its effects on sleep pattern organization; therefore, the objective of this work was to analyze such effects. Animals (Wistar rats) exhibited three different behavioral and electrophysiological states of vigilance: wakefulness, slow wave sleep (SWS), and rapid eye movement (REM) sleep. Oral treatment with oxcarbazepine (100 mg/kg) produced an increment in total sleep time throughout the recording period. This increment involved both SWS and REM sleep. Mean duration of the REM sleep phase was not affected. In contrast, the frequency of this sleep phase increased significantly across the 10-hour period. REM sleep latency shortened significantly. Results obtained in this work indicate that oxcarbazepine's acute effects point to hypnotic properties.

  14. Effects of sleep deprivation on brain bioenergetics, sleep, and cognitive performance in cocaine-dependent individuals.

    PubMed

    Trksak, George H; Bracken, Bethany K; Jensen, J Eric; Plante, David T; Penetar, David M; Tartarini, Wendy L; Maywalt, Melissa A; Dorsey, Cynthia M; Renshaw, Perry F; Lukas, Scott E

    2013-01-01

    In cocaine-dependent individuals, sleep is disturbed during cocaine use and abstinence, highlighting the importance of examining the behavioral and homeostatic response to acute sleep loss in these individuals. The current study was designed to identify a differential effect of sleep deprivation on brain bioenergetics, cognitive performance, and sleep between cocaine-dependent and healthy control participants. 14 healthy control and 8 cocaine-dependent participants experienced consecutive nights of baseline, total sleep deprivation, and recovery sleep in the research laboratory. Participants underwent ³¹P magnetic resonance spectroscopy (MRS) brain imaging, polysomnography, Continuous Performance Task, and Digit Symbol Substitution Task. Following recovery sleep, ³¹P MRS scans revealed that cocaine-dependent participants exhibited elevated global brain β-NTP (direct measure of adenosine triphosphate), α-NTP, and total NTP levels compared to those of healthy controls. Cocaine-dependent participants performed worse on the Continuous Performance Task and Digit Symbol Substitution Task at baseline compared to healthy control participants, but sleep deprivation did not worsen cognitive performance in either group. Enhancements of brain ATP levels in cocaine dependent participants following recovery sleep may reflect a greater impact of sleep deprivation on sleep homeostasis, which may highlight the importance of monitoring sleep during abstinence and the potential influence of sleep loss in drug relapse.

  15. Paradoxical Sleep Deprivation Causes Cardiac Dysfunction and the Impairment Is Attenuated by Resistance Training

    PubMed Central

    Giampá, Sara Quaglia de Campos; Mônico-Neto, Marcos; de Mello, Marco Tulio; Souza, Helton de Sá; Tufik, Sergio; Lee, Kil Sun; Koike, Marcia Kiyomi; dos Santos, Alexandra Alberta; Antonio, Ednei Luiz; Serra, Andrey Jorge; Tucci, Paulo José Ferreira

    2016-01-01

    Background Paradoxical sleep deprivation activates the sympathetic nervous system and the hypothalamus-pituitary-adrenal axis, subsequently interfering with the cardiovascular system. The beneficial effects of resistance training are related to hemodynamic, metabolic and hormonal homeostasis. We hypothesized that resistance training can prevent the cardiac remodeling and dysfunction caused by paradoxical sleep deprivation. Methods Male Wistar rats were distributed into four groups: control (C), resistance training (RT), paradoxical sleep deprivation for 96 hours (PSD96) and both resistance training and sleep deprivation (RT/PSD96). Doppler echocardiograms, hemodynamics measurements, cardiac histomorphometry, hormonal profile and molecular analysis were evaluated. Results Compared to the C group, PSD96 group had a higher left ventricular systolic pressure, heart rate and left atrium index. In contrast, the left ventricle systolic area and the left ventricle cavity diameter were reduced in the PSD96 group. Hypertrophy and fibrosis were also observed. Along with these alterations, reduced levels of serum testosterone and insulin-like growth factor-1 (IGF-1), as well as increased corticosterone and angiotensin II, were observed in the PSD96 group. Prophylactic resistance training attenuated most of these changes, except angiotensin II, fibrosis, heart rate and concentric remodeling of left ventricle, confirmed by the increased of NFATc3 and GATA-4, proteins involved in the pathologic cardiac hypertrophy pathway. Conclusions Resistance training effectively attenuates cardiac dysfunction and hormonal imbalance induced by paradoxical sleep deprivation. PMID:27880816

  16. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases.

    PubMed

    Tobaldini, Eleonora; Costantino, Giorgio; Solbiati, Monica; Cogliati, Chiara; Kara, Tomas; Nobili, Lino; Montano, Nicola

    2017-03-01

    Sleep deprivation (SD) has become a relevant health problem in modern societies. We can be sleep deprived due to lifestyle habits or due to sleep disorders, such as insomnia, obstructive sleep apnea (OSA) and neurological disorders. One of the common element of sleep disorders is the condition of chronic SD, which has complex biological consequences. SD is capable of inducing different biological effects, such as neural autonomic control changes, increased oxidative stress, altered inflammatory and coagulatory responses and accelerated atherosclerosis. All these mechanisms links SD and cardiovascular and metabolic disorders. Epidemiological studies have shown that short sleep duration is associated with increased incidence of cardiovascular diseases, such as coronary artery disease, hypertension, arrhythmias, diabetes and obesity, after adjustment for socioeconomic and demographic risk factors and comorbidities. Thus, an early assessment of a condition of SD and its treatment is clinically relevant to prevent the harmful consequences of a very common condition in adult population.

  17. Cognitive Workload and Sleep Restriction Interact to Influence Sleep Homeostatic Responses

    PubMed Central

    Goel, Namni; Abe, Takashi; Braun, Marcia E.; Dinges, David F.

    2014-01-01

    responses by increasing subjective fatigue and sleepiness, and producing a global sleep homeostatic response by reducing wake after sleep onset. When combined with sleep restriction, high workload increased local (occipital) sleep homeostasis, suggesting a use-dependent sleep response to visual work. We conclude that sleep restriction and cognitive workload interact to influence sleep homeostasis. Citation: Goel N, Abe T, Braun ME, Dinges DF. Cognitive workload and sleep restriction interact to influence sleep homeostatic responses. SLEEP 2014;37(11):1745-1756. PMID:25364070

  18. ASICs and cardiovascular homeostasis.

    PubMed

    Abboud, François M; Benson, Christopher J

    2015-07-01

    In this review we address primarily the role of ASICs in determining sensory signals from arterial baroreceptors, peripheral chemoreceptors, and cardiopulmonary and somatic afferents. Alterations in these sensory signals during acute cardiovascular stresses result in changes in sympathetic and parasympathetic activities that restore cardiovascular homeostasis. In pathological states, however, chronic dysfunctions of these afferents result in serious sympatho-vagal imbalances with significant increases in mortality and morbidity. We identified a role for ASIC2 in the mechano-sensitivity of aortic baroreceptors and of ASIC3 in the pH sensitivity of carotid bodies. In spontaneously hypertensive rats, we reported decreased expression of ASIC2 in nodose ganglia neurons and overexpression of ASIC3 in carotid bodies. This reciprocal expression of ASIC2 and ASIC3 results in reciprocal changes in sensory sensitivity of baro- and chemoreceptors and a consequential synergistic exaggeration sympathetic nerve activity. A similar reciprocal sensory dysautonomia prevails in heart failure and increases the risk of mortality. There is also evidence that ASIC heteromers in skeletal muscle afferents contribute significantly to the exercise pressor reflex. In cardiac muscle afferents of the dorsal root ganglia, they contribute to nociception and to the detrimental sympathetic activation during ischemia. Finally, we report that an inhibitory influence of ASIC2-mediated baroreceptor activity suppresses the sympatho-excitatory reflexes of the chemoreceptors and skeletal muscle afferents, as well as the ASIC1a-mediated excitation of central neurons during fear, threat, or panic. The translational potential of activation of ASIC2 in cardiovascular disease states may be a beneficial sympatho-inhibition and parasympathetic activation. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.

  19. Sleep and Plasticity in Schizophrenia

    PubMed Central

    Sprecher, Kate E.; Ferrarelli, Fabio

    2016-01-01

    Schizophrenia is a devastating mental illness with a worldwide prevalence of approximately 1 %. Although the clinical features of the disorder were described over one hundred years ago, its neurobiology is still largely elusive despite several decades of research. Schizophrenia is associated with marked sleep disturbances and memory impairment. Above and beyond altered sleep architecture, sleep rhythms including slow waves and spindles are disrupted in schizophrenia. In the healthy brain, these rhythms reflect and participate in plastic processes during sleep. This chapter discusses evidence that schizophrenia patients exhibit dysfunction of sleep-mediated plasticity on a behavioral, cellular, and molecular level and offers suggestions on how the study of sleeping brain activity can shed light on the pathophysiological mechanisms of the disorder. PMID:25608723

  20. Metabolic signals in sleep regulation: recent insights.

    PubMed

    Shukla, Charu; Basheer, Radhika

    2016-01-01

    Sleep and energy balance are essential for health. The two processes act in concert to regulate central and peripheral homeostasis. During sleep, energy is conserved due to suspended activity, movement, and sensory responses, and is redirected to restore and replenish proteins and their assemblies into cellular structures. During wakefulness, various energy-demanding activities lead to hunger. Thus, hunger promotes arousal, and subsequent feeding, followed by satiety that promotes sleep via changes in neuroendocrine or neuropeptide signals. These signals overlap with circuits of sleep-wakefulness, feeding, and energy expenditure. Here, we will briefly review the literature that describes the interplay between the circadian system, sleep-wake, and feeding-fasting cycles that are needed to maintain energy balance and a healthy metabolic profile. In doing so, we describe the neuroendocrine, hormonal/peptide signals that integrate sleep and feeding behavior with energy metabolism.

  1. Metabolic signals in sleep regulation: recent insights

    PubMed Central

    Shukla, Charu; Basheer, Radhika

    2016-01-01

    Sleep and energy balance are essential for health. The two processes act in concert to regulate central and peripheral homeostasis. During sleep, energy is conserved due to suspended activity, movement, and sensory responses, and is redirected to restore and replenish proteins and their assemblies into cellular structures. During wakefulness, various energy-demanding activities lead to hunger. Thus, hunger promotes arousal, and subsequent feeding, followed by satiety that promotes sleep via changes in neuroendocrine or neuropeptide signals. These signals overlap with circuits of sleep-wakefulness, feeding, and energy expenditure. Here, we will briefly review the literature that describes the interplay between the circadian system, sleep-wake, and feeding-fasting cycles that are needed to maintain energy balance and a healthy metabolic profile. In doing so, we describe the neuroendocrine, hormonal/peptide signals that integrate sleep and feeding behavior with energy metabolism. PMID:26793010

  2. Sleep Talking (Somniloquy)

    MedlinePlus

    ... Overview & Facts Symptoms & Risk Factors Diagnosis & Treatment Sleep Hallucinations Overview & Facts Symptoms & Risk Factors Diagnosis & Treatment Exploding ... Sleep Behavior Disorder Sleep Paralysis Nightmares Bedwetting Sleep Hallucinations Exploding Head Syndrome Sleep Talking Sleep Talking – Overview ...

  3. Reversal of the sleep/wake cycle disorder of sleeping sickness after trypanosomicide treatment.

    PubMed

    Buguet, A; Tapie, P; Bert, J

    1999-09-01

    To determine whether the circadian disruption of the sleep/wake cycle observed in sleeping sickness, human African trypanosomiasis (HAT), can be reversed after trypanosomicide treatment, 10 Congolese patients infected by Trypanosoma brucei gambiense underwent 24-h polysomnographic recordings before treatment with melarsoprol and after each of three weekly treatment sessions. Polysomnography consisted of a continuous recording of the electroencephalogram, electromyogram and electro-oculogram on a Minidix Alvar polygraph. Sleep traces were analysed in 20-sec epochs for wakefulness, REM sleep, and NREM sleep [stages 1, 2, 3, 4; stages 3 and 4 representing slow-wave sleep (SWS)]. As previously described (Buguet et al. 1993), the 24-h distribution of the sleep/wake cycle was disturbed proportionally to the severity of the illness. The overall amounts of each sleep/wake stage did not change after treatment. However, the patterns of occurrence of sleep episodes, REM sleep and SWS phases were determinant in the evaluation of treatment efficacy. The trypanosomicide action of melarsoprol led to a reduction in the number of sleep episodes, except in one patient whose health condition worsened during the third treatment session: sleep onset REM sleep phases (SOREMPs) decreased and the number of SWS episodes during a sleep episode increased. We conclude that in HAT, the reversibility of the sleep/wake cycle alteration and that of sleep structure constitute the basis for an evaluation of the healing process.

  4. Percentage of REM sleep is associated with overnight change in leptin.

    PubMed

    Olson, Christy A; Hamilton, Nancy A; Somers, Virend K

    2016-08-01

    Sleep contributes importantly to energy homeostasis, and may impact hormones regulating appetite, such as leptin, an adipocyte-derived hormone. There is increasing evidence that sleep duration, and reduced rapid eye movement sleep, are linked to obesity. Leptin has central neural effects beyond modulation of appetite alone. As sleep is not a unifrom process, interactions between leptin and sleep stages including rapid eye movement sleep may play a role in the relationship between sleep and obesity. This study examined the relationship between serum leptin and rapid eye movement sleep in a sample of healthy adults. Participants were 58 healthy adults who underwent polysomnography. Leptin was measured before and after sleep. It was hypothesized that a lower percentage of rapid eye movement sleep would be related to lower leptin levels during sleep. The relationship between percentage of rapid eye movement sleep and leptin was analysed using hierarchical linear regression. An increased percentage of rapid eye movement sleep was related to a greater reduction in leptin during sleep even when controlling for age, gender, percent body fat and total sleep time. A greater percentage of rapid eye movement sleep was accompanied by more marked reductions in leptin. Studies examining the effects of selective rapid eye movement sleep deprivation on leptin levels, and hence on energy homeostasis in humans, are needed.

  5. Disruption of iron homeostasis in mesothelial cells following talc pleurodesis

    EPA Science Inventory

    The mechanism for biological effect following particle exposure is incompletely understood. One postulate proposed to explain biological effect after particles is an altered iron homeostasis in the host. The fibro-inflammatory properties of particles are exploited therapeutically...

  6. Pathophysiology of Sleep Apnea

    PubMed Central

    Veasey, Sigrid C.; Morgan, Barbara J.; O'Donnell, Christopher P.

    2010-01-01

    Sleep-induced apnea and disordered breathing refers to intermittent, cyclical cessations or reductions of airflow, with or without obstructions of the upper airway (OSA). In the presence of an anatomically compromised, collapsible airway, the sleep-induced loss of compensatory tonic input to the upper airway dilator muscle motor neurons leads to collapse of the pharyngeal airway. In turn, the ability of the sleeping subject to compensate for this airway obstruction will determine the degree of cycling of these events. Several of the classic neurotransmitters and a growing list of neuromodulators have now been identified that contribute to neurochemical regulation of pharyngeal motor neuron activity and airway patency. Limited progress has been made in developing pharmacotherapies with acceptable specificity for the treatment of sleep-induced airway obstruction. We review three types of major long-term sequelae to severe OSA that have been assessed in humans through use of continuous positive airway pressure (CPAP) treatment and in animal models via long-term intermittent hypoxemia (IH): 1) cardiovascular. The evidence is strongest to support daytime systemic hypertension as a consequence of severe OSA, with less conclusive effects on pulmonary hypertension, stroke, coronary artery disease, and cardiac arrhythmias. The underlying mechanisms mediating hypertension include enhanced chemoreceptor sensitivity causing excessive daytime sympathetic vasoconstrictor activity, combined with overproduction of superoxide ion and inflammatory effects on resistance vessels. 2) Insulin sensitivity and homeostasis of glucose regulation are negatively impacted by both intermittent hypoxemia and sleep disruption, but whether these influences of OSA are sufficient, independent of obesity, to contribute significantly to the “metabolic syndrome” remains unsettled. 3) Neurocognitive effects include daytime sleepiness and impaired memory and concentration. These effects reflect

  7. Sleep Disturbances

    MedlinePlus

    ... middle of the night. Sleep in a cool dark place and use the bed only for sleeping ... in Parkinson's Navigating Employment, Insurance, Financial and Legal Matters PD Take Three: Tips from the Health Care ...

  8. Sleep Apnea

    MedlinePlus

    Sleep apnea is a common disorder that causes your breathing to stop or get very shallow. Breathing ... an hour. The most common type is obstructive sleep apnea. It causes your airway to collapse or ...

  9. Sleeping sickness

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001362.htm Sleeping sickness To use the sharing features on this page, please enable JavaScript. Sleeping sickness is an infection caused by germs carried ...

  10. Dissipation of sleep pressure is stable across adolescence.

    PubMed

    Tarokh, L; Carskadon, M A; Achermann, P

    2012-08-02

    The sleep electroencephalogram (EEG) undergoes many changes during adolescence. We assessed whether sleep homeostasis is altered across adolescent development using two measures: the dissipation of slow-wave activity (SWA, 0.6-4.6Hz) across the night and the rate of build-up of SWA in the first non-rapid eye movement (NREM) sleep episode. Furthermore, we examined the association between homeostatic and circadian measures, by correlating the build-up of SWA in the first non-rapid eye movement (NREM) sleep episode with circadian phase. Finally, we compared the dissipation of SWA in individuals with (PH+) and without (PH-) a parental history of alcohol abuse/dependence. Twenty children (8 PH+) and 25 teens (10 PH+) underwent two consecutive polysomnographic recordings at ages 9/10 and 15/16 years and again 1.5-3 years later. Thirteen young adults (ages 20-23 years; no PH+) were assessed one time. The decay of Process S was modeled for each individual at each assessment using data from both recordings. Four parameters of Process S were derived for EEG derivation C3/A2: time constant of the decay, lower asymptote (LA), the level of S at sleep onset (S(SO)), and S(SO) minus LA. We found no change in these parameters between assessments for the children and teen cohorts. Between-subject analysis of the follow-up assessment for children (ages 11-13 years) and the initial assessment for teens (ages 15/16 years) showed no difference in these parameters, nor did follow-up assessment of teens (ages 17-19 years) compared to the single assessment of young adults (ages 20-23 years). Similarly, we observed no developmental changes in the rate of the build-up of SWA in the first NREM sleep episode for our within- and between-subject analyses, or a correlation between this measure and circadian phase for either cohort. With regard to parental alcohol history, we found no difference in the dissipation of sleep pressure between PH+ and PH- children and teens. These results indicate

  11. Oxygen Sensing and Homeostasis

    PubMed Central

    Semenza, Gregg L.

    2015-01-01

    The discovery of carotid bodies as sensory receptors for detecting arterial blood oxygen levels, and the identification and elucidation of the roles of hypoxia-inducible factors (HIFs) in oxygen homeostasis have propelled the field of oxygen biology. This review highlights the gas-messenger signaling mechanisms associated with oxygen sensing, as well as transcriptional and non-transcriptional mechanisms underlying the maintenance of oxygen homeostasis by HIFs and their relevance to physiology and pathology. PMID:26328879

  12. Role of sleep quality in the metabolic syndrome

    PubMed Central

    Koren, Dorit; Dumin, Magdalena; Gozal, David

    2016-01-01

    Emerging evidence has assigned an important role to sleep as a modulator of metabolic homeostasis. The impact of variations in sleep duration, sleep-disordered breathing, and chronotype to cardiometabolic function encompasses a wide array of perturbations spanning from obesity, insulin resistance, type 2 diabetes, the metabolic syndrome, and cardiovascular disease risk and mortality in both adults and children. Here, we critically and extensively review the published literature on such important issues and provide a comprehensive overview of the most salient pathophysiologic pathways underlying the links between sleep, sleep disorders, and cardiometabolic functioning. PMID:27601926

  13. Effects of CPAP-therapy on brain electrical activity in obstructive sleep apneic patients: a combined EEG study using LORETA and Omega complexity : reversible alterations of brain activity in OSAS.

    PubMed

    Toth, Marton; Faludi, Bela; Kondakor, Istvan

    2012-10-01

    Effects of initiation of continuous positive airway pressure (CPAP) therapy on EEG background activity were investigated in patients with obstructive sleep apnea syndrome (OSAS, N = 25) to test possible reversibility of alterations of brain electrical activity caused by chronic hypoxia. Normal control group (N = 14) was also examined. Two EEG examinations were done in each groups: at night and in the next morning. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega complexity) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Before CPAP-treatment, a significantly lower Omega complexity was found globally and over the right hemisphere. Due to CPAP-treatment, these significant differences vanished. Significantly decreased Omega complexity was found in the anterior region after treatment. LORETA showed a decreased activity in all of the beta bands after therapy in the right hippocampus, premotor and temporo-parietal cortex, and bilaterally in the precuneus, paracentral and posterior cingulate cortex. No significant changes were seen in control group. Comparing controls and patients before sleep, an increased alpha2 band activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex, while in the morning an increased beta3 band activity in the left precentral and bilateral premotor cortex and a decreased delta band activity in the right temporo-parietal cortex and insula were observed. These findings indicate that effect of sleep on EEG background activity is different in OSAS patients and normal controls. In OSAS patients, significant changes lead to a more normal EEG after a night under CPAP-treatment. Compensatory alterations of brain electrical activity in regions associated with influencing sympathetic outflow, visuospatial abilities, long

  14. Effects of partial sleep deprivation on slow waves during non-rapid eye movement sleep: a high density EEG investigation

    PubMed Central

    Plante, David T.; Goldstein, Michael R.; Cook, Jesse D.; Smith, Richard; Riedner, Brady A.; Rumble, Meredith E.; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M.; Peterson, Michael J.

    2015-01-01

    Objective Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Methods Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Results Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Conclusions Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. Significance These results demonstrate a homeostatic response to partial sleep loss in humans. PMID:26596212

  15. Sleep Deprivation.

    PubMed

    Abrams, Robert M

    2015-09-01

    Sleep deprivation occurs when inadequate sleep leads to decreased performance, inadequate alertness, and deterioration in health. It is incompletely understood why humans need sleep, although some theories include energy conservation, restoration, and information processing. Sleep deprivation has many deleterious health effects. Residency programs have enacted strict work restrictions because of medically related errors due to sleep deprivation. Because obstetrics is an unpredictable specialty with long irregular hours, enacting a hospitalist program enhances patient safety, decreases malpractice risk, and improves the physician's quality of life by allowing obstetricians to get sufficient rest.

  16. The Neurobiological Mechanisms and Treatments of REM Sleep Disturbances in Depression.

    PubMed

    Wang, Yi-Qun; Li, Rui; Zhang, Meng-Qi; Zhang, Ze; Qu, Wei-Min; Huang, Zhi-Li

    2015-01-01

    Most depressed patients suffer from sleep abnormalities, which are one of the critical symptoms of depression. They are robust risk factors for the initiation and development of depression. Studies about sleep electroencephalograms have shown characteristic changes in depression such as reductions in non-rapid eye movement sleep production, disruptions of sleep continuity and disinhibition of rapid eye movement (REM) sleep. REM sleep alterations include a decrease in REM sleep latency, an increase in REM sleep duration and REM sleep density with respect to depressive episodes. Emotional brain processing dependent on the normal sleep-wake regulation seems to be failed in depression, which also promotes the development of clinical depression. Also, REM sleep alterations have been considered as biomarkers of depression. The disturbances of norepinephrine and serotonin systems may contribute to REM sleep abnormalities in depression. Lastly, this review also discusses the effects of different antidepressants on REM sleep disturbances in depression.

  17. The Neurobiological Mechanisms and Treatments of REM Sleep Disturbances in Depression

    PubMed Central

    Wang, Yi-Qun; Li, Rui; Zhang, Meng-Qi; Zhang, Ze; Qu, Wei-Min; Huang, Zhi-Li

    2015-01-01

    Most depressed patients suffer from sleep abnormalities, which are one of the critical symptoms of depression. They are robust risk factors for the initiation and development of depression. Studies about sleep electroencephalograms have shown characteristic changes in depression such as reductions in non-rapid eye movement sleep production, disruptions of sleep continuity and disinhibition of rapid eye movement (REM) sleep. REM sleep alterations include a decrease in REM sleep latency, an increase in REM sleep duration and REM sleep density with respect to depressive episodes. Emotional brain processing dependent on the normal sleep-wake regulation seems to be failed in depression, which also promotes the development of clinical depression. Also, REM sleep alterations have been considered as biomarkers of depression. The disturbances of norepinephrine and serotonin systems may contribute to REM sleep abnormalities in depression. Lastly, this review also discusses the effects of different antidepressants on REM sleep disturbances in depression. PMID:26412074

  18. Sleep disorder or simple sleep ontogeny? Tendency for morningness is associated with worse sleep quality in the elderly.

    PubMed

    Barbosa, A A; Miguel, M A L; Tufik, S; Sabino, F C; Cendoroglo, M S; Pedrazzoli, M

    2016-10-10

    The objective of this study was to evaluate the alterations in sleep and circadian parameters during the aging process. The study sample comprises volunteers older than 18 up to 90 years of age that answered the Pittsburgh Sleep Quality Index (PSQI) and the Horne and Östberg circadian preference questionnaire. We observed that the shift to morningness with increasing age is associated with a significant worsening in sleep quality. We discuss that this sleep profile characterized by morningness and worse sleep quality observed in elderly, when compared to younger people, reflects not necessarily a pathological state, but an expected profile for this age group.

  19. Sleep disorder or simple sleep ontogeny? Tendency for morningness is associated with worse sleep quality in the elderly

    PubMed Central

    Barbosa, A.A.; Miguel, M.A.L.; Tufik, S.; Sabino, F.C.; Cendoroglo, M.S.; Pedrazzoli, M.

    2016-01-01

    The objective of this study was to evaluate the alterations in sleep and circadian parameters during the aging process. The study sample comprises volunteers older than 18 up to 90 years of age that answered the Pittsburgh Sleep Quality Index (PSQI) and the Horne and Östberg circadian preference questionnaire. We observed that the shift to morningness with increasing age is associated with a significant worsening in sleep quality. We discuss that this sleep profile characterized by morningness and worse sleep quality observed in elderly, when compared to younger people, reflects not necessarily a pathological state, but an expected profile for this age group. PMID:27737315

  20. Iron homeostasis: new players, newer insights.

    PubMed

    Edison, Eunice S; Bajel, Ashish; Chandy, Mammen

    2008-12-01

    Although iron is a relatively abundant element in the universe, it is estimated that more than 2 billion people worldwide suffer from iron deficiency anemia. Iron deficiency results in impaired production of iron-containing proteins, the most prominent of which is hemoglobin. Cellular iron deficiency inhibits cell growth and subsequently leads to cell death. Hemochromatosis, an inherited disorder results in disproportionate absorption of iron and the extra iron builds up in tissues resulting in organ damage. As both iron deficiency and iron overload have adverse effects, cellular and systemic iron homeostasis is critically important. Recent advances in the field of iron metabolism have led to newer understanding of the pathways involved in iron homeostasis and the diseases which arise from alteration in the regulators. Although insight into this complex regulation of the proteins involved in iron homeostasis has been obtained mainly through animal studies, it is most likely that this knowledge can be directly extrapolated to humans.

  1. Neurobiological linkage between stress and sleep

    NASA Astrophysics Data System (ADS)

    Sanford, Larry D.; Wellman, Laurie L.

    2012-10-01

    Stress can have a significant negative impact on health and stress-induced alterations in sleep are implicated in both human sleep disorders and in psychiatric disorders in which sleep is affected. We have demonstrated that the amygdala, a region critical for regulating emotion, is a key modulator of sleep. Our current research is focused on understanding how the amygdala and stressful emotion affect sleep and on the role sleep plays in recovery from stress. We have implemented animal models to examine the how stress and stress-related memories impact sleep. Experiencing uncontrollable stress and reminders of uncontrollable stress can produce significant reductions in sleep, in particular rapid eye movement sleep. We are using these models to explore the neurobiology linking stress-related emotion and sleep. This research is relevant for sleep disorders such as insomnia and into mental disorders in which sleep is affected such as post-traumatic stress disorder (PTSD), which is typically characterized by a prominent sleep disturbance in the aftermath of exposure to a psychologically traumatic event.

  2. Sleep Spindles Characteristics in Insomnia Sufferers and Their Relationship with Sleep Misperception

    PubMed Central

    2016-01-01

    Cortical hyperarousal is higher in insomnia sufferers (INS) than in good sleepers (GS) and could be related to an alteration in sleep protection mechanisms, like reduced density or altered characteristics in sleep spindles. The deficient sleep protection mechanisms might in turn enhance underestimation of sleep. This study's objective was to document sleep spindles characteristics in INS compared with GS and to investigate their potential role in sleep consolidation and misperception. Seventeen individuals with paradoxical insomnia (PARA-I), 24 individuals with psychophysiological insomnia (PSY-I), and 29 GS completed four consecutive polysomnographic nights in laboratory. Sleep spindles were detected automatically during stage 2 and SWS (3-4) on night 3. Number, density, duration, frequency, and amplitude of sleep spindles were calculated. A misperception index was used to determine the degree of discrepancy between subjective and objective total sleep times. Kruskal-Wallis H tests and post hoc tests revealed that PARA-I had significantly shorter sleep spindles than GS but that PSY-I and GS did not differ on spindles length. A standard multiple regression model revealed that neither sleep spindles characteristics nor objective sleep measures were predictive of sleep misperception. A longer duration of spindles could reflect a higher gating process but this hypothesis still needs to be confirmed in replication studies. PMID:27478648

  3. [Sleep as a restorative process under extreme exposure conditions].

    PubMed

    Stoilova, I

    1992-03-01

    In 40 aquanauts, a prolonged stay under increased pressure (11 to 46 kgs/cm2) of the oxygen-helium-nitrogen mixture did not affect the average duration of sleep. Slow-wave sleep, mostly its 3 rd and 4 th stages, and paradoxical sleep were significantly decreased whereas the light sleep/profound sleep ratio increased. The cyclic structure of sleep became altered. The longer the exposure to high pressure led to an augmentation of the slow-wave sleep and REM-phase, but the normal cycles terminating with a REM-phase could not be formed during the experiment.

  4. Altered Electroencephalographic Activity Associated with Changes in the Sleep-Wakefulness Cycle of C57BL/6J Mice in Response to a Photoperiod Shortening

    PubMed Central

    Rozov, Stanislav V.; Zant, Janneke C.; Gurevicius, Kestutis; Porkka-Heiskanen, Tarja; Panula, Pertti

    2016-01-01

    Aim: Under natural conditions diurnal rhythms of biological processes of the organism are synchronized with each other and to the environmental changes by means of the circadian system. Disturbances of the latter affect hormonal levels, sleep-wakefulness cycle and cognitive performance. To study mechanisms of such perturbations animal models subjected to artificial photoperiods are often used. The goal of current study was to understand the effects of circadian rhythm disruption, caused by a short light-dark cycle regime, on activity of the cerebral cortex in rodents. Methods: We used electroencephalogram to assess the distribution of vigilance states, perform spectral analysis, and estimate the homeostatic sleep drive. In addition, we analyzed spontaneous locomotion of C57BL/6J mice under symmetric, 22-, 21-, and 20-h-long light–dark cycles using video recording and tracking methods. Results and Conclusions: We found that shortening of photoperiod caused a significant increase of slow wave activity during non-rapid eye movement sleep suggesting an elevation of sleep pressure under such conditions. While the rhythm of spontaneous locomotion was completely entrained by all light–dark cycles tested, periodic changes in the power of the θ- and γ-frequency ranges during wakefulness gradually disappeared under 22- and 21-h-long light–dark cycles. This was associated with a significant increase in the θ–γ phase-amplitude coupling during wakefulness. Our results thus provide deeper understanding of the mechanisms underlying the impairment of learning and memory retention, which is associated with disturbed circadian regulation. PMID:27630549

  5. Sleep and Respiration in Microgravity

    NASA Technical Reports Server (NTRS)

    West, John B.; Elliott, Ann R.; Prisk, G. Kim; Paiva, Manuel

    2003-01-01

    Sleep is often reported to be of poor quality in microgravity, and studies on the ground have shown a strong relationship between sleep-disordered breathing and sleep disruption. During the 16-day Neurolab mission, we studied the influence of possible changes in respiratory function on sleep by performing comprehensive sleep recordings on the payload crew on four nights during the mission. In addition, we measured the changes in the ventilatory response to low oxygen and high carbon dioxide in the same subjects during the day, hypothesizing that changes in ventilatory control might affect respiration during sleep. Microgravity caused a large reduction in the ventilatory response to reduced oxygen. This is likely the result of an increase in blood pressure at the peripheral chemoreceptors in the neck that occurs when the normally present hydrostatic pressure gradient between the heart and upper body is abolished. This reduction was similar to that seen when the subjects were placed acutely in the supine position in one-G. In sharp contrast to low oxygen, the ventilatory response to elevated carbon dioxide was unaltered by microgravity or the supine position. Because of the similarities of the findings in microgravity and the supine position, it is unlikely that changes in ventilatory control alter respiration during sleep in microgravity. During sleep on the ground, there were a small number of apneas (cessation of breathing) and hypopneas (reduced breathing) in these normal subjects. During sleep in microgravity, there was a reduction in the number of apneas and hypopneas per hour compared to preflight. Obstructive apneas virtually disappeared in microgravity, suggesting that the removal of gravity prevents the collapse of upper airways during sleep. Arousals from sleep were reduced in microgravity compared to preflight, and virtually all of this reduction was as a result of a reduction in the number of arousals from apneas and hypopneas. We conclude that any sleep

  6. Day-night variations of adenosine and its metabolizing enzymes in the brain cortex of the rat--possible physiological significance for the energetic homeostasis and the sleep-wake cycle.

    PubMed

    Chagoya de Sánchez, V; Hernández Múñoz, R; Suárez, J; Vidrio, S; Yáñez, L; Díaz Múñoz, M

    1993-05-28

    The role of adenosine as a metabolic regulator of physiological processes in the brain was studied by measuring its concentrations and the activity of adenosine-metabolizing enzymes: 5'-nucleotidase, S-adenosylhomocysteine hydrolase, adenosine deaminase and adenosine kinase in the cerebral cortex of the rat. Other purine compounds, such as, inosine, hypoxanthine and adenine nucleotides were also studied. The purines' pattern was bimodal with high levels of adenosine, inosine and hypoxanthine during the light period reaching their peak at 12.00 h, 08.00 h and 16.00 h, respectively, and small increments during the night between 02.00 h and 04.00 h. The enzymatic activities showed, in general, an unimodal profile with low activity during the day and high activities at night. The adenine nucleotide profile showed a significant diminution between 12.00 h and 24.00 h. The high adenosine level during the day might be due to a diminution of adenine nucleotide and to the low activity of adenosine-metabolizing enzymes, suggesting an accumulation of the nucleoside. The night increase, although of less magnitude, is simultaneous to high activity of adenosine-metabolizing enzymes and could be due to an increased formation of the nucleoside. The present data and the findings from other authors strongly suggest that adenosine in the brain cortex of the rat can participate at least in two physiological processes: regulation of the sleep-wake cycle and replenishment of the adenine nucleotide pool.

  7. Homeostatic response to sleep/rest deprivation by constant water flow in larval zebrafish in both dark and light conditions.

    PubMed

    Aho, Vilma; Vainikka, Maija; Puttonen, Henri A J; Ikonen, Heidi M K; Salminen, Tiia; Panula, Pertti; Porkka-Heiskanen, Tarja; Wigren, Henna-Kaisa

    2017-03-02

    Sleep-or sleep-like states-have been reported in adult and larval zebrafish using behavioural criteria. These reversible quiescent periods, displaying circadian rhythmicity, have been used in pharmacological, genetic and neuroanatomical studies of sleep-wake regulation. However, one of the important criteria for sleep, namely sleep homeostasis, has not been demonstrated unequivocally. To study rest homeostasis in zebrafish larvae, we rest-deprived 1-week-old larvae with a novel, ecologically relevant method: flow of water. Stereotyped startle responses to sensory stimuli were recorded after the rest deprivation to study arousal threshold using a high-speed camera, providing an appropriate time resolution to detect species-specific behavioural responses occurring in a millisecond time-scale. Rest-deprived larvae exhibited fewer startle responses than control larvae during the remaining dark phase and the beginning of the light phase, which can be interpreted as a sign of rest homeostasis-often used as equivalent of sleep homeostasis. To address sleep homeostasis further, we probed the adenosinergic system, which in mammals regulates sleep homeostasis. The adenosine A1 receptor agonist, cyclohexyladenosine, administered during the light period, decreased startle responses and increased immobility bouts, while the adenosine antagonist, caffeine, administered during the dark period, decreased immobility bouts. These results suggest that the regulation of sleep homeostasis in zebrafish larvae consists of the same elements as that of other species.

  8. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  9. Phosphate homeostasis and disorders.

    PubMed

    Manghat, P; Sodi, R; Swaminathan, R

    2014-11-01

    Recent studies of inherited disorders of phosphate metabolism have shed new light on the understanding of phosphate metabolism. Phosphate has important functions in the body and several mechanisms have evolved to regulate phosphate balance including vitamin D, parathyroid hormone and phosphatonins such as fibroblast growth factor-23 (FGF23). Disorders of phosphate homeostasis leading to hypo- and hyperphosphataemia are common and have clinical and biochemical consequences. Notably, recent studies have linked hyperphosphataemia with an increased risk of cardiovascular disease. This review outlines the recent advances in the understanding of phosphate homeostasis and describes the causes, investigation and management of hypo- and hyperphosphataemia.

  10. Sleep quality in professional ballet dancers.

    PubMed

    Fietze, Ingo; Strauch, Jutta; Holzhausen, Martin; Glos, Martin; Theobald, Christiane; Lehnkering, Hanna; Penzel, Thomas

    2009-08-01

    Ballet dancers are competitive athletes who undergo extreme physical and mental stress and work according to an irregular schedule, with long days of training, rehearsal, and performance. Their most significant potential risks entail physical injury and altered sleep. The elaborate training requirements for ballet dancers do not allow regular chronobiological patterns or a normal sleep-wake rhythm. Our aim was to investigate the sleep-wake rhythm and sleep quality during rehearsal phases prior to a ballet premiere. We used wrist actigraphy and sleep diaries for a period of 67 days before the ballet premiere performance to study 24 classical ballet dancers. We likewise applied the Epworth Sleepiness Score (ESS), Pittsburgh Sleep Quality Index (PSQI), SF-12 Quality of life Assessment, and d2 Test of Attention to assess quality of sleep, aspects of cognitive performance, and health status. We found significant reduction in sleep duration, from 418+/-43 min to 391+/-42 min, and sleep efficiency, from 81+/-4% to 79+/-5%, over the 67-day course of the rehearsal. We also found a decline in time in bed and an increase in wakefulness after sleep onset. Sleep onset latency did not change. However, the changes in sleep as documented by actigraphy were not reflected by the subjective data of the sleep diaries and sleep scores. As a result of the facts that total sleep efficiency and sleep duration values were already lower than usual for the dancers' age group at the beginning of the study and that mental acuity, concentration, and speed were likewise impaired, we observed exacerbated health deterioration in terms of sleep deprivation in ballet dancers during preparation for a premier. We conclude that individual activity-rest schedules, including daytime naps, may be helpful, especially during the stressful training and rehearsal experienced prior to ballet premieres.

  11. American Sleep Association

    MedlinePlus

    ... Sleep Disorders Book Join ASA Press Room American Sleep Association Improving public health by increasing awareness about ... Members Username or Email Password Remember Me Register Sleep Blog Changing Bad Sleep Habits Asthma and Sleep ...

  12. Sleep structure in patients with periodic limb movements and obstructive sleep apnea syndrome.

    PubMed

    Iriarte, Jorge; Murie-Fernandez, Manuel; Toledo, Estefania; Urrestarazu, Elena; Alegre, Manuel; Viteri, Cesar; Salvador, Javier; Baptista, Peter; Alcaide, Belen; Artieda, Julio

    2009-08-01

    Periodic limb movements (PLM) and obstructive sleep apnea syndrome (OSAS) are two frequent sleep disorders which often occur in the same patient. The goal of this study was to know the influence of the presence of PLM in the sleep architecture in patients with and without OSAS. Two hundred twenty consecutive patients (69 women and 151 men) participated in this transversal study. They were patients with clinical suspicion of dysomnia, including snoring, OSAS, and PLM. All of them underwent a full polysomnography and were interviewed using questionnaires about the sleep quality. The sleep parameters (percentage of sleep stages, rapid eye movement latency, sleep efficiency, awakenings, PLM presence, apnea-hypopnea index) were calculated and compared between groups. Descriptive statistics and nonparametric distribution techniques were used for the analysis. Patients with PLM when compared with patients with OSAS had lower sleep efficiency and less rapid eye movement percentage. The presence of PLM in patients with sleep apnea was less relevant being responsible only for an increase in the rapid eye movement latency and a decrease in the duration of the three to four sleep stages. However, the presence of OSAS was related to a better sleep efficiency (patients with PLM plus OSAS had a better sleep efficiency than patients with only PLM). PLM alters the structure of sleep. In patients with sleep apnea, the presence of PLM is less relevant.

  13. Loss of promoter IV-driven BDNF expression impacts oscillatory activity during sleep, sensory information processing and fear regulation

    PubMed Central

    Hill, J L; Hardy, N F; Jimenez, D V; Maynard, K R; Kardian, A S; Pollock, C J; Schloesser, R J; Martinowich, K

    2016-01-01

    Posttraumatic stress disorder is characterized by hyperarousal, sensory processing impairments, sleep disturbances and altered fear regulation; phenotypes associated with changes in brain oscillatory activity. Molecules associated with activity-dependent plasticity, including brain-derived neurotrophic factor (BDNF), may regulate neural oscillations by controlling synaptic activity. BDNF synthesis includes production of multiple Bdnf transcripts, which contain distinct 5′ noncoding exons. We assessed arousal, sensory processing, fear regulation and sleep in animals where BDNF expression from activity-dependent promoter IV is disrupted (Bdnf-e4 mice). Bdnf-e4 mice display sensory hyper-reactivity and impaired electrophysiological correlates of sensory information processing as measured by event-related potentials (ERP). Utilizing electroencephalogram, we identified a decrease in slow-wave activity during non-rapid eye movement sleep, suggesting impaired sleep homeostasis. Fear extinction is controlled by hippocampal–prefrontal cortical BDNF signaling, and neurophysiological communication patterns between the hippocampus (HPC) and medial prefrontal cortex (mPFC) correlate with behavioral performance during extinction. Impaired fear extinction in Bdnf-e4 mice is accompanied by increased HPC activation and decreased HPC–mPFC theta phase synchrony during early extinction, as well as increased mPFC activation during extinction recall. These results suggest that activity-dependent BDNF signaling is critical for regulating oscillatory activity, which may contribute to altered behavior. PMID:27552586

  14. SLEEP DEPRIVATION,

    DTIC Science & Technology

    This report was confined to considering the effects of sleep deprivation , in man, with particular reference to studies of the resulting biochemical...have a limited value when taken separately: the biochemical and physiological changes that occur in response to sleep deprivation may depend...three separate heads: first, the biochemical changes resulting from sleep deprivation ; secondly, the physiological ones; and last, the changes in performance and behaviour. (Author)

  15. The role of sleep in bipolar disorder

    PubMed Central

    Gold, Alexandra K; Sylvia, Louisa G

    2016-01-01

    Bipolar disorder is a serious mental illness characterized by alternating periods of elevated and depressed mood. Sleep disturbances in bipolar disorder are present during all stages of the condition and exert a negative impact on overall course, quality of life, and treatment outcomes. We examine the partnership between circadian system (process C) functioning and sleep–wake homeostasis (process S) on optimal sleep functioning and explore the role of disruptions in both systems on sleep disturbances in bipolar disorder. A convergence of evidence suggests that sleep problems in bipolar disorder result from dysregulation across both process C and process S systems. Biomarkers of depressive episodes include heightened fragmentation of rapid eye movement (REM) sleep, reduced REM latency, increased REM density, and a greater percentage of awakenings, while biomarkers of manic episodes include reduced REM latency, greater percentage of stage I sleep, increased REM density, discontinuous sleep patterns, shortened total sleep time, and a greater time awake in bed. These findings highlight the importance of targeting novel treatments for sleep disturbance in bipolar disorder. PMID:27418862

  16. Sustained sleep fragmentation affects brain temperature, food intake and glucose tolerance in mice.

    PubMed

    Baud, Maxime O; Magistretti, Pierre J; Petit, Jean-Marie

    2013-02-01

    Sleep fragmentation is present in numerous sleep pathologies and constitutes a major feature of patients with obstructive sleep apnea. A prevalence of metabolic syndrome, diabetes and obesity has been shown to be associated to obstructive sleep apnea. While sleep fragmentation has been shown to impact sleep homeostasis, its specific effects on metabolic variables are only beginning to emerge. In this context, it is important to develop realistic animal models that would account for chronic metabolic effects of sleep fragmentation. We developed a 14-day model of instrumental sleep fragmentation in mice, and show an impact on both brain-specific and general metabolism. We first report that sleep fragmentation increases food intake without affecting body weight. This imbalance was accompanied by the inability to adequately decrease brain temperature during fragmented sleep. In addition, we report that sleep-fragmented mice develop glucose intolerance. We also observe that sleep fragmentation slightly increases the circadian peak level of glucocorticoids, a factor that may be involved in the observed metabolic effects. Our results confirm that poor-quality sleep with sustained sleep fragmentation has similar effects on general metabolism as actual sleep loss. Altogether, these results strongly suggest that sleep fragmentation is an aggravating factor for the development of metabolic dysfunctions that may be relevant for sleep disorders such as obstructive sleep apnea.

  17. Altered intrinsic regional brain activity in male patients with severe obstructive sleep apnea: a resting-state functional magnetic resonance imaging study

    PubMed Central

    Peng, De-Chang; Dai, Xi-Jian; Gong, Hong-Han; Li, Hai-Jun; Nie, Xiao; Zhang, Wei

    2014-01-01

    Background Previous studies have demonstrated that obstructive sleep apnea (OSA) is associated with abnormal brain structural deficits. However, little is known about the changes in local synchronization of spontaneous activity in patients with OSA. The primary aim of the present study was to investigate spontaneous brain activity in patients with OSA compared with good sleepers (GSs) using regional homogeneity (ReHo) analysis based on resting-state functional magnetic resonance imaging (MRI). Methods Twenty-five untreated male patients with severe OSA and 25 male GSs matched for age and years of education were included in this study. The ReHo method was calculated to assess the strength of local signal synchrony and was compared between the two groups. The observed mean ReHo values were entered into Statistical Package for the Social Sciences software to assess their correlation with behavioral performance. Results Compared with GSs, patients with OSA showed significantly lower ReHo in the right medial frontal gyrus (BA11), right superior frontal gyrus (BA10), right cluster of the precuneus and angular gyrus (BA39), and left superior parietal lobule (BA7), and higher ReHo in the right posterior lobe of the cerebellum, right cingulate gyrus (BA23), and bilateral cluster covering the lentiform nucleus, putamen, and insula (BA13). The lower mean ReHo value in the right cluster of the precuneus and angular gyrus had a significant negative correlation with sleep time (r=−0.430, P=0.032), and higher ReHo in the right posterior lobe of the cerebellum showed a significant positive correlation with stage 3 sleep (r=0.458, P=0.021) and in the right cingulate gyrus showed a significant positive correlation with percent rapid eye movement sleep (r=0.405, P=0.045). Conclusion Patients with OSA showed significant regional spontaneous activity deficits in default mode network areas. The ReHo method is a useful noninvasive imaging tool for detection of early changes in cerebral

  18. Sleep, immunity and inflammation in gastrointestinal disorders

    PubMed Central

    Ali, Tauseef; Choe, James; Awab, Ahmed; Wagener, Theodore L; Orr, William C

    2013-01-01

    Sleep disorders have become a global issue, and discovering their causes and consequences are the focus of many research endeavors. An estimated 70 million Americans suffer from some form of sleep disorder. Certain sleep disorders have been shown to cause neurocognitive impairment such as decreased cognitive ability, slower response times and performance detriments. Recent research suggests that individuals with sleep abnormalities are also at greater risk of serious adverse health, economic consequences, and most importantly increased all-cause mortality. Several research studies support the associations among sleep, immune function and inflammation. Here, we review the current research linking sleep, immune function, and gastrointestinal diseases and discuss the interdependent relationship between sleep and these gastrointestinal disorders. Different physiologic processes including immune system and inflammatory cytokines help regulate the sleep. The inflammatory cytokines such as tumor necrosis factor, interleukin-1 (IL-1), and IL-6 have been shown to be a significant contributor of sleep disturbances. On the other hand, sleep disturbances such as sleep deprivation have been shown to up regulate these inflammatory cytokines. Alterations in these cytokine levels have been demonstrated in certain gastrointestinal diseases such as inflammatory bowel disease, gastro-esophageal reflux, liver disorders and colorectal cancer. In turn, abnormal sleep brought on by these diseases is shown to contribute to the severity of these same gastrointestinal diseases. Knowledge of these relationships will allow gastroenterologists a great opportunity to enhance the care of their patients. PMID:24409051

  19. Sleep, immunity and inflammation in gastrointestinal disorders.

    PubMed

    Ali, Tauseef; Choe, James; Awab, Ahmed; Wagener, Theodore L; Orr, William C

    2013-12-28

    Sleep disorders have become a global issue, and discovering their causes and consequences are the focus of many research endeavors. An estimated 70 million Americans suffer from some form of sleep disorder. Certain sleep disorders have been shown to cause neurocognitive impairment such as decreased cognitive ability, slower response times and performance detriments. Recent research suggests that individuals with sleep abnormalities are also at greater risk of serious adverse health, economic consequences, and most importantly increased all-cause mortality. Several research studies support the associations among sleep, immune function and inflammation. Here, we review the current research linking sleep, immune function, and gastrointestinal diseases and discuss the interdependent relationship between sleep and these gastrointestinal disorders. Different physiologic processes including immune system and inflammatory cytokines help regulate the sleep. The inflammatory cytokines such as tumor necrosis factor, interleukin-1 (IL-1), and IL-6 have been shown to be a significant contributor of sleep disturbances. On the other hand, sleep disturbances such as sleep deprivation have been shown to up regulate these inflammatory cytokines. Alterations in these cytokine levels have been demonstrated in certain gastrointestinal diseases such as inflammatory bowel disease, gastro-esophageal reflux, liver disorders and colorectal cancer. In turn, abnormal sleep brought on by these diseases is shown to contribute to the severity of these same gastrointestinal diseases. Knowledge of these relationships will allow gastroenterologists a great opportunity to enhance the care of their patients.

  20. Sleep and obsessive-compulsive disorder (OCD).

    PubMed

    Paterson, Jessica L; Reynolds, Amy C; Ferguson, Sally A; Dawson, Drew

    2013-12-01

    Obsessive-compulsive disorder (OCD) is a chronic mental illness that can have a debilitating effect on daily functioning. A body of research reveals altered sleep behaviour in OCD sufferers; however, findings are inconsistent and there is no consensus on the nature of this relationship. Understanding sleep disturbance in OCD is of critical importance given the known negative consequences of disturbed sleep for mood and emotional wellbeing. A systematic literature search was conducted of five databases for studies assessing sleep in adults diagnosed with OCD. Fourteen studies met inclusion criteria and qualitative data analysis methods were used to identify common themes. There was some evidence of reduced total sleep time and sleep efficiency in OCD patients. Many of the sleep disturbances noted were characteristic of depression. However, some OCD sufferers displayed delayed sleep onset and offset and an increased prevalence of delayed sleep phase disorder (DSPD). Severe OCD symptoms were consistently associated with greater sleep disturbance. While the sleep of OCD patients has not been a major focus to date, the existing literature suggests that addressing sleep disturbance in OCD patients may ensure a holistic approach to treatment, enhance treatment efficacy, mitigate relapse and protect against the onset of co-morbid psychiatric illnesses.

  1. Effect of sedative-hypnotics, anesthetics and analgesics on sleep architecture in obstructive sleep apnea.

    PubMed

    McEntire, Dan M; Kirkpatrick, Daniel R; Kerfeld, Mitchell J; Hambsch, Zakary J; Reisbig, Mark D; Agrawal, Devendra K; Youngblood, Charles F

    2014-11-01

    The perioperative care of obstructive sleep apnea (OSA) patients is currently receiving much attention due to an increased risk for complications. It is established that postoperative changes in sleep architecture occur and this may have pathophysiological implications for OSA patients. Upper airway muscle activity decreases during rapid eye movement sleep (REMS). Severe OSA patients exhibit exaggerated chemoreceptor-driven ventilation during non-rapid eye movement sleep (NREMS), which leads to central and obstructive apnea. This article critically reviewed the literature relevant to preoperative screening for OSA, prevalence of OSA in surgical populations and changes in postoperative sleep architecture relevant to OSA patients. In particular, we addressed three questions in regard to the effects of sedative-hypnotics, anesthetics and analgesics on sleep architecture, the underlying mechanisms and the relevance to OSA. Indeed, these classes of drugs alter sleep architecture, which likely significantly contributes to abnormal postoperative sleep architecture, exacerbation of OSA and postoperative complications.

  2. Absence of rapid eye movements during sleep in adult zebrafish.

    PubMed

    Árnason, B B; Þorsteinsson, H; Karlsson, K Æ

    2015-09-15

    Sleep is not a uniform phenomenon, but is organized in alternating, fundamentally different states, rapid eye movement sleep and non-rapid eye movement sleep. Zebrafish (Danio rerio) have recently emerged as an excellent model for sleep research. Zebrafish are well characterized in terms of development, neurobiology and genetics. Moreover, there are many experimental tools not easily applied in mammalian models that can be readily applied to zebrafish, making them a valuable additional animal model for sleep research. Sleep in zebrafish is defined behaviorally and exhibits the hallmarks of mammalian sleep (e.g. sleep homeostasis and pressure). To our knowledge no attempts have been made to discern if sleep in zebrafish entails alternations of REM-NREM sleep cycles which are critical for further development of the model. In the current experiment we quantify two key REM sleep components, rapid eye movements and respiratory rates, across sleep-wake cycles. We find no sleep-related rapid eye movements. During sleep respiratory rates, however, are reduced and become less regular, further establishing that the behavioral definition used truly captures a change in the fish's physiology. We thus fail to find evidence for REM-NREM sleep cycles in zebrafish but demonstrate a physiological change that occurs concomitantly with the previously defined behavioral state of sleep. We do not rule out that other phasic REM components (e.g. atonia, cardiac arrhythmias, myoclonic twitches or desynchronized EEG) are coherently expressed during sleep but we conclude that adult zebrafish do not have REM-sleep-related rapid eye movements.

  3. Brain iron homeostasis.

    PubMed

    Moos, Torben

    2002-11-01

    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  4. Neurobiology: Setting the Set Point for Neural Homeostasis.

    PubMed

    Truszkowski, Torrey L S; Aizenman, Carlos D

    2015-12-07

    Neural homeostasis allows neural networks to maintain a dynamic range around a given set point. How this set point is determined remains unknown. New evidence shows that alterations of activity during a critical developmental period can alter the homeostatic set point, resulting in epilepsy-like activity.

  5. The role of sleep in emotional brain function.

    PubMed

    Goldstein, Andrea N; Walker, Matthew P

    2014-01-01

    Rapidly emerging evidence continues to describe an intimate and causal relationship between sleep and emotional brain function. These findings are mirrored by long-standing clinical observations demonstrating that nearly all mood and anxiety disorders co-occur with one or more sleep abnormalities. This review aims to (a) provide a synthesis of recent findings describing the emotional brain and behavioral benefits triggered by sleep, and conversely, the detrimental impairments following a lack of sleep; (b) outline a proposed framework in which sleep, and specifically rapid-eye movement (REM) sleep, supports a process of affective brain homeostasis, optimally preparing the organism for next-day social and emotional functioning; and (c) describe how this hypothesized framework can explain the prevalent relationships between sleep and psychiatric disorders, with a particular focus on posttraumatic stress disorder and major depression.

  6. The Role of Sleep in Emotional Brain Function

    PubMed Central

    Goldstein, Andrea N.; Walker, Matthew P.

    2014-01-01

    Rapidly emerging evidence continues to describe an intimate and causal relationship between sleep and emotional brain function. These findings are mirrored by longstanding clinical observations demonstrating that nearly all mood and anxiety disorders co-occur with one or more sleep abnormalities. This review aims to (1) provide a synthesis of recent findings describing the emotional brain and behavioral benefits triggered by sleep, and conversely, the detrimental impairments following a lack of sleep, (2) outline a proposed framework in which sleep, and specifically rapid-eye movement (REM) sleep, supports a process of affective brain homeostasis, optimally preparing the organism for next-day social and emotional functioning, and (3) describe how this hypothesized framework can explain the prevalent relationships between sleep and psychiatric disorders, with a particular focus on post-traumatic stress disorder and major depression. PMID:24499013

  7. Developmental changes in sleep biology and potential effects on adolescent behavior and caffeine use.

    PubMed

    Carskadon, Mary A; Tarokh, Leila

    2014-10-01

    Adolescent development includes changes in the biological regulatory processes for the timing of sleep. Circadian rhythm changes and changes to the sleep-pressure system (sleep homeostasis) during adolescence both favor later timing of sleep. These changes, combined with prevailing social pressures, are responsible for most teens sleeping too late and too little; those who sleep least report consuming more caffeine. Although direct research findings are scarce, the likelihood of use and abuse of caffeine-laden products grows across the adolescent years due, in part, to excessive sleepiness.

  8. Sleep at high altitude: guesses and facts.

    PubMed

    Bloch, Konrad E; Buenzli, Jana C; Latshang, Tsogyal D; Ulrich, Silvia

    2015-12-15

    Lowlanders commonly report a poor sleep quality during the first few nights after arriving at high altitude. Polysomnographic studies reveal that reductions in slow wave sleep are the most consistent altitude-induced changes in sleep structure identified by visual scoring. Quantitative spectral analyses of the sleep electroencephalogram have confirmed an altitude-related reduction in the low-frequency power (0.8-4.6 Hz). Although some studies suggest an increase in arousals from sleep at high altitude, this is not a consistent finding. Whether sleep instability at high altitude is triggered by periodic breathing or vice versa is still uncertain. Overnight changes in slow wave-derived encephalographic measures of neuronal synchronization in healthy subjects were less pronounced at moderately high (2,590 m) compared with low altitude (490 m), and this was associated with a decline in sleep-related memory consolidation. Correspondingly, exacerbation of breathing and sleep disturbances experienced by lowlanders with obstructive sleep apnea during a stay at 2,590 m was associated with poor performance in driving simulator tests. These findings suggest that altitude-related alterations in sleep may adversely affect daytime performance. Despite recent advances in our understanding of sleep at altitude, further research is required to better establish the role of gender and age in alterations of sleep at different altitudes, to determine the influence of acclimatization and of altitude-related illness, and to uncover the characteristics of sleep in highlanders that may serve as a study paradigm of sleep in patients exposed to chronic hypoxia due to cardiorespiratory disease.

  9. Functional Anatomy of Non-REM Sleep.

    PubMed

    de Andrés, Isabel; Garzón, Miguel; Reinoso-Suárez, Fernando

    2011-01-01

    The state of non-REM sleep (NREM), or slow wave sleep, is associated with a synchronized EEG pattern in which sleep spindles and/or K complexes and high-voltage slow wave activity (SWA) can be recorded over the entire cortical surface. In humans, NREM is subdivided into stages 2 and 3-4 (presently named N3) depending on the proportions of each of these polygraphic events. NREM is necessary for normal physical and intellectual performance and behavior. An overview of the brain structures involved in NREM generation shows that the thalamus and the cerebral cortex are absolutely necessary for the most significant bioelectric and behavioral events of NREM to be expressed; other structures like the basal forebrain, anterior hypothalamus, cerebellum, caudal brain stem, spinal cord and peripheral nerves contribute to NREM regulation and modulation. In NREM stage 2, sustained hyperpolarized membrane potential levels resulting from interaction between thalamic reticular and projection neurons gives rise to spindle oscillations in the membrane potential; the initiation and termination of individual spindle sequences depends on corticothalamic activities. Cortical and thalamic mechanisms are also involved in the generation of EEG delta SWA that appears in deep stage 3-4 (N3) NREM; the cortex has classically been considered to be the structure that generates this activity, but delta oscillations can also be generated in thalamocortical neurons. NREM is probably necessary to normalize synapses to a sustainable basal condition that can ensure cellular homeostasis. Sleep homeostasis depends not only on the duration of prior wakefulness but also on its intensity, and sleep need increases when wakefulness is associated with learning. NREM seems to ensure cell homeostasis by reducing the number of synaptic connections to a basic level; based on simple energy demands, cerebral energy economizing during NREM sleep is one of the prevalent hypotheses to explain NREM homeostasis.

  10. Functional Anatomy of Non-REM Sleep

    PubMed Central

    de Andrés, Isabel; Garzón, Miguel; Reinoso-Suárez, Fernando

    2011-01-01

    The state of non-REM sleep (NREM), or slow wave sleep, is associated with a synchronized EEG pattern in which sleep spindles and/or K complexes and high-voltage slow wave activity (SWA) can be recorded over the entire cortical surface. In humans, NREM is subdivided into stages 2 and 3–4 (presently named N3) depending on the proportions of each of these polygraphic events. NREM is necessary for normal physical and intellectual performance and behavior. An overview of the brain structures involved in NREM generation shows that the thalamus and the cerebral cortex are absolutely necessary for the most significant bioelectric and behavioral events of NREM to be expressed; other structures like the basal forebrain, anterior hypothalamus, cerebellum, caudal brain stem, spinal cord and peripheral nerves contribute to NREM regulation and modulation. In NREM stage 2, sustained hyperpolarized membrane potential levels resulting from interaction between thalamic reticular and projection neurons gives rise to spindle oscillations in the membrane potential; the initiation and termination of individual spindle sequences depends on corticothalamic activities. Cortical and thalamic mechanisms are also involved in the generation of EEG delta SWA that appears in deep stage 3–4 (N3) NREM; the cortex has classically been considered to be the structure that generates this activity, but delta oscillations can also be generated in thalamocortical neurons. NREM is probably necessary to normalize synapses to a sustainable basal condition that can ensure cellular homeostasis. Sleep homeostasis depends not only on the duration of prior wakefulness but also on its intensity, and sleep need increases when wakefulness is associated with learning. NREM seems to ensure cell homeostasis by reducing the number of synaptic connections to a basic level; based on simple energy demands, cerebral energy economizing during NREM sleep is one of the prevalent hypotheses to explain NREM homeostasis

  11. TSLP and immune homeostasis.

    PubMed

    Hanabuchi, Shino; Watanabe, Norihiko; Liu, Yong-Jun

    2012-03-01

    In an immune system, dendritic cells (DCs) are professional antigen-presenting cells (APCs) as well as powerful sensors of danger signals. When DCs receive signals from infection and tissue stress, they immediately activate and instruct the initiation of appropriate immune responses to T cells. However, it has remained unclear how the tissue microenvironment in a steady state shapes the function of DCs. Recent many works on thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine that has the strong ability to activate DCs, provide evidence that TSLP mediates crosstalk between epithelial cells and DCs, involving in DC-mediated immune homeostasis. Here, we review recent progress made on how TSLP expressed within the thymus and peripheral lymphoid and non-lymphoid tissues regulates DC-mediated T-cell development in the thymus and T-cell homeostasis in the periphery.

  12. In Vivo Imaging of the Central and Peripheral Effects of Sleep Deprivation and Suprachiasmatic Nuclei Lesion on PERIOD-2 Protein in Mice

    PubMed Central

    Curie, Thomas; Maret, Stephanie; Emmenegger, Yann; Franken, Paul

    2015-01-01

    Study Objectives: That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. Design: In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. Settings: Mouse sleep-recording facility. Participants: Per2::Luciferase knock-in mice. Interventions: N/A. Measurements and Results: Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. Conclusions: Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health. Citation: Curie T, Maret S, Emmenegger Y, Franken P. In

  13. Could post-weaning dietary chia seed mitigate the development of dyslipidemia, liver steatosis and altered glucose homeostasis in offspring exposed to a sucrose-rich diet from utero to adulthood?

    PubMed

    Fortino, M A; Oliva, M E; Rodriguez, S; Lombardo, Y B; Chicco, A

    2017-01-01

    The present work analyzes the effects of dietary chia seeds during postnatal life in offspring exposed to a sucrose-rich diet (SRD) from utero to adulthood. At weaning, chia seed (rich in α-linolenic acid) replaced corn oil (rich in linoleic acid) in the SRD. At 150 days of offspring life, anthropometrical parameters, blood pressure, plasma metabolites, hepatic lipid metabolism and glucose homeostasis were analyzed. Results showed that chia was able to prevent the development of hypertension, liver steatosis, hypertriglyceridemia and hypercholesterolemia. Normal triacylglycerol secretion and triacylglycerol clearance were accompanied by an improvement of de novo hepatic lipogenic and carnitine-palmitoyl transferase-1 enzymatic activities, associated with an accretion of n-3 polyunsaturated fatty acids in the total composition of liver homogenate. Glucose homeostasis and plasma free fatty acid levels were improved while visceral adiposity was slightly decreased. These results confirm that the incorporation of chia seed in the diet in postnatal life may provide a viable therapeutic option for preventing/mitigating adverse outcomes induced by an SRD from utero to adulthood.

  14. Sleep Enhances a Spatially Mediated Generalization of Learned Values

    ERIC Educational Resources Information Center

    Javadi, Amir-Homayoun; Tolat, Anisha; Spiers, Hugo J.

    2015-01-01

    Sleep is thought to play an important role in memory consolidation. Here we tested whether sleep alters the subjective value associated with objects located in spatial clusters that were navigated to in a large-scale virtual town. We found that sleep enhances a generalization of the value of high-value objects to the value of locally clustered…

  15. Sleep Disorders in Children: Collaboration for School-Based Intervention

    ERIC Educational Resources Information Center

    Everhart, D. Erik

    2011-01-01

    The effects of sleep disturbance on children are wide ranging and include alterations in behavior, mood, cognition, and academic performance. Screening and intervention for pediatric sleep disorders within the schools are not widely implemented, and the concept of integrating school personnel into the multidisciplinary sleep team has yet to be…

  16. Medicines for sleep

    MedlinePlus

    Benzodiazepines; Sedatives; Hypnotics; Sleeping pills; Insomnia - medicines; Sleep disorder - medicines ... the-counter (OTC) sleeping pills contain antihistamines. These medicines are commonly used to treat allergies. While these ...

  17. Nocturnal psychophysiological correlates of somatic conditions and sleep disorders.

    PubMed

    Kales, J D; Kales, A

    1975-01-01

    Modern sleep research studies have provided the practicing physician with considerable new information concerning the basic psychophysiology of sleep, the effects of medical conditions on sleep and the role of maturational and emotional factors in producing certain sleep disorders. Medical and psychiatric disorders, sleep disorders and drug-induced sleep stage alterations are studied in the sleep laboratory using the same techniques developed to analyze sleep patterns in normal subjects. After initial sleep laboratory adaptation, a profile of the sleep characteristics of various clinical conditions is obtained. This profile can be compared to sleep profiles of normal subjects as well as to the effects on sleep of subsequent experimental or therapeutic procedures. Various studies have shown that coronary artery, duodenal ulcer and nocturnal headache patients experience angina, increased gastric acid secretion and migraine or cluster headaches, respectively during REM sleep. Adult nocturnal asthamtic episodes occur out of all sleep stages while attacks of dyspnea in asthmatic children occur in all stages except stage 4 sleep. Hypothyroid patients show decreases in stages 3 and 4 sleep, while in hyperthyroid patients the percentage of time spent in stages 3 and 4 sleep is markedly increased. Enuretic episodes occur predominantly in non-rapid eye movement (NREM) sleep. Sleepwalking and night terror episodes occur exclusively out of NREM sleep, particularly from stages 3 and 4 sleep. Most child somnambulists and children with night terrors "outgrow" this disorder, suggesting a delayed maturation of the central nervous system. Stimulant drugs are effective in the treatment of the sleep attacks of narcolepsy and in treating certain cases of hypersomnia, while imipramine is an effective treatment for the auxillary symptoms of narcolepsy. Psychological disturbances are frequent in adult somnambulism and night terrors as well as in hypersomnia and insomnia. Proper

  18. Effects of Diet on Sleep Quality.

    PubMed

    St-Onge, Marie-Pierre; Mikic, Anja; Pietrolungo, Cara E

    2016-09-01

    There is much emerging information surrounding the impact of sleep duration and quality on food choice and consumption in both children and adults. However, less attention has been paid to the effects of dietary patterns and specific foods on nighttime sleep. Early studies have shown that certain dietary patterns may affect not only daytime alertness but also nighttime sleep. In this review, we surveyed the literature to describe the role of food consumption on sleep. Research has focused on the effects of mixed meal patterns, such as high-carbohydrate plus low-fat or low-carbohydrate diets, over the short term on sleep. Such studies highlight a potential effect of macronutrient intakes on sleep variables, particularly alterations in slow wave sleep and rapid eye movement sleep with changes in carbohydrate and fat intakes. Other studies instead examined the intake of specific foods, consumed at a fixed time relative to sleep, on sleep architecture and quality. Those foods, specifically milk, fatty fish, tart cherry juice, and kiwifruit, are reviewed here. Studies provide some evidence for a role of certain dietary patterns and foods in the promotion of high-quality sleep, but more studies are necessary to confirm those preliminary findings.

  19. Sleep deprivation and sleep recovery modifies connexin36 and connexin43 protein levels in rat brain.

    PubMed

    Franco-Pérez, Javier; Ballesteros-Zebadúa, Paola; Fernández-Figueroa, Edith A; Ruiz-Olmedo, Isabel; Reyes-Grajeda, Pablo; Paz, Carlos

    2012-01-25

    Gap junctional communication is mainly mediated by connexin36 and connexin43 in neurons and astrocytes, respectively. It has been suggested that connexin36 allows electrical coupling between neurons whereas connexin43 participates in several process including release of ATP. It was recently reported that blockage of gap junctional communication mediated by connexin36 can disrupt the sleep architecture of the rat. However, there is no experimental approach about effects of sleep deprivation on connexins expression. Therefore, we examined in adult male Wistar rats whether protein levels of connexin36 and connexin43 change in pons, hypothalamus, and frontal cortex after 24 h of total sleep deprivation and 4 h of sleep recovery. Western blot revealed that total sleep deprivation significantly decreases the levels of connexin36 in the hypothalamus and this decrease maintains after sleep recovery. Meanwhile, connexin43 is not altered by total sleep deprivation but interestingly the sleep recovery period induces an increase of this connexin. These results suggest that electrical coupling between hypothalamic neurons could be altered by sleep deprivation and that sleep recovery drives changes in connexin43 expression probably as a mechanism related to ATP release and energy regulation during sleep.

  20. A single night of partial sleep loss impairs fasting insulin sensitivity but does not affect cephalic phase insulin release in young men.

    PubMed

    Cedernaes, Jonathan; Lampola, Lauri; Axelsson, Emil K; Liethof, Lisanne; Hassanzadeh, Sara; Yeganeh, Adine; Broman, Jan-Erik; Schiöth, Helgi B; Benedict, Christian

    2016-02-01

    The present study sought to investigate whether a single night of partial sleep deprivation (PSD) would alter fasting insulin sensitivity and cephalic phase insulin release (CPIR) in humans. A rise in circulating insulin in response to food-related sensory stimulation may prepare tissues to break down ingested glucose, e.g. by stimulating rate-limiting glycolytic enzymes. In addition, given insulin's anorexigenic properties once it reaches the brain, the CPIR may serve as an early peripheral satiety signal. Against this background, in the present study 16 men participated in two separate sessions: one night of PSD (4.25 h sleep) versus one night of full sleep (8.5 h sleep). In the morning following each sleep condition, subjects' oral cavities were rinsed with a 1-molar sucrose solution for 45 s, preceded and followed by blood sampling for repeated determination of plasma glucose and serum insulin concentrations (-3, +3, +5, +7, +10 and +20 min). Our main result was that PSD, compared with full sleep, was associated with significantly higher peripheral insulin resistance, as indicated by a higher fasting homeostasis model assessment of insulin resistance index (+16%, P = 0.025). In contrast, no CPIR was observed in any of the two sleep conditions. Our findings indicate that a single night of PSD is already sufficient to impair fasting insulin sensitivity in healthy men. In contrast, brief oral cavity rinsing with sucrose solution did not change serum insulin concentrations, suggesting that a blunted CPIR is an unlikely mechanism through which acute sleep loss causes metabolic perturbations during morning hours in humans.

  1. A role for cryptochromes in sleep regulation

    PubMed Central

    Wisor, Jonathan P; O'Hara, Bruce F; Terao, Akira; Selby, Chris P; Kilduff, Thomas S; Sancar, Aziz; Edgar, Dale M; Franken, Paul

    2002-01-01

    Background The cryptochrome 1 and 2 genes (cry1 and cry2) are necessary for the generation of circadian rhythms, as mice lacking both of these genes (cry1,2-/-) lack circadian rhythms. We studied sleep in cry1,2-/- mice under baseline conditions as well as under conditions of constant darkness and enforced wakefulness to determine whether cryptochromes influence sleep regulatory processes. Results Under all three conditions, cry1,2-/- mice exhibit the hallmarks of high non-REM sleep (NREMS) drive (i.e., increases in NREMS time, NREMS consolidation, and EEG delta power during NREMS). This unexpected phenotype was associated with elevated brain mRNA levels of period 1 and 2 (per1,2), and albumin d-binding protein (dbp), which are known to be transcriptionally inhibited by CRY1,2. To further examine the relationship between circadian genes and sleep homeostasis, we examined wild type mice and rats following sleep deprivation and found increased levels of per1,2 mRNA and decreased levels of dbp mRNA specifically in the cerebral cortex; these changes subsided with recovery sleep. The expression of per3, cry1,2, clock, npas2, bmal1, and casein-kinase-1ε did not change with sleep deprivation. Conclusions These results indicate that mice lacking cryptochromes are not simply a genetic model of circadian arrhythmicity in rodents and functionally implicate cryptochromes in the homeostatic regulation of sleep. PMID:12495442

  2. [Sleep disturbances in children with autistic spectrum disorders].

    PubMed

    Kelmanson, I A

    2015-01-01

    An association between sleep disorders and autistic spectrum disorders in children is considered. Characteristic variants of sleep disorders, including resistance to going to bed, frequent night awakenings, parasomnias, changes in sleep structure, primarily, the decrease in the percentage of rapid eye movement sleep, are presented. Attention is focused on the possibility of the direct relationship between sleep disturbance and the pathogenesis of autistic spectrum disorders. A role of pathological alterations in the production of neuromediators and morphological changes in the brain structures characteristic of autistic spectrum disorders in the genesis of sleep disorders in children is discussed. Possible non-pharmacological and pharmacological approaches are suggested.

  3. Novel word learning in older adults: A role for sleep?

    PubMed

    Kurdziel, Laura B F; Mantua, Janna; Spencer, Rebecca M C

    2017-04-01

    Sleep is an offline period during which newly acquired semantic information is transformed into longer-lasting memories. Language acquisition, which requires new word learning and semantic integration, is preferentially benefitted by a period of sleep in children and young adults. Specific features of sleep (e.g., sleep stage characteristics) have been associated with enhanced language acquisition and generalization. However, with increasing age, even in healthy individuals, sleep quality and quantity decrease. Simultaneously, deficits in word retrieval and new word learning emerge. Yet it is unknown whether age-related alterations in language ability are linked with alterations in sleep. The goal of this review is to examine changes in language learning and sleep across the lifespan. We consider how sleep detriments that occur with aging could affect abilities to learn novel words and semantic generalization and propose hypotheses to motivate future research in this area.

  4. The Synergistic Relationship between Alzheimer's Disease and Sleep Disorders: An Update.

    PubMed

    Villa, Chiara; Ferini-Strambi, Luigi; Combi, Romina

    2015-01-01

    Sleep disorders are frequently reported in Alzheimer's disease (AD), with a significant impact on patients and caregivers and a major risk factor for early institutionalization. Although changes in sleep organization are a hallmark of the normal aging processes, sleep macro- and micro-architectural alterations are more evident in patients affected by AD. Degeneration of neural pathways regulating sleep-wake patterns and sleep architecture may contribute to sleep alterations. In return, several recent studies suggested that common sleep disorders may precede clinical symptoms of dementia and represent risk factors for cognitive decline, through impairment of sleep-dependent memory consolidation processes. Thus, a close relationship between sleep disorders and AD has been largely hypothesized. Here, sleep alterations in AD and its pre-dementia stage, mild cognitive impairment, and their complex interactions are reviewed.

  5. [Correlation between eating disorders and sleep disturbances].

    PubMed

    Eiber, R; Friedman, S

    2001-01-01

    Anorectics and bulimics often complain sleep onset insomnia and disrupted sleep. During awakenings bulimics can have binges. Conversely, eating disorders can be a clinical expression of a concomitantly occurring sleep disorder. Two clinical entities have been recently described: the Night Eating Syndrome (NES) and the Sleep Related Eating Disorders. The main goal of this literature review was to better characterize the relationships between eating disorders and sleep disturbances. No specific EEG sleep pattern emerges in anorectic and bulimic patients. However, all studies include several methodological limitations: a few number of patients, heterogeneous patient groups, various diagnostic criteria. The results of studies evaluating the impact of depression on sleep EEG in eating disorder patients are also subject to controversy. The only study examining the relationship between sleep EEG and morphological alterations in anorectics and normal weight bulimics shows that patients with enlarged cerebrospinal fluid spaces spent more time in slow wave sleep and that the duration of rapid eye movement (REM) sleep was reduced. The ventricular brain ratio was negatively correlated with REM sleep. The Night Eating Syndrome consists in insomnia, binge eating and morning anorexia. Other criteria are proposed to characterize the NES: more than 50% of the daily energy intake is consumed after the last evening meal, awakenings at least once a night, repetition of the provisional criteria for more than 3 months, subjects do not meet criteria for bulimia nervosa or binge eating disorder. Patients have no amnesia nor alteration of alertness, and no other sleep disorder. There is no modification of sleep EEG except sleep maintenance. The prevalence of the NES is 1.5% in the general population. Some neuroendocrine disturbances have been found in the NES. The delimitation with eating disorders is not yet clearly established. If it shares the compulsive features with eating disorders

  6. Endocannabinoid Signaling Regulates Sleep Stability

    PubMed Central

    Pava, Matthew J.; Makriyannis, Alexandros; Lovinger, David M.

    2016-01-01

    The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis. PMID:27031992

  7. Troubled sleep

    PubMed Central

    Haig, David

    2014-01-01

    Disrupted sleep is probably the most common complaint of parents with a new baby. Night waking increases in the second half of the first year of infant life and is more pronounced for breastfed infants. Sleep-related phenotypes of infants with Prader-Willi and Angelman syndromes suggest that imprinted genes of paternal origin promote greater wakefulness whereas imprinted genes of maternal origin favor more consolidated sleep. All these observations are consistent with a hypothesis that waking at night to suckle is an adaptation of infants to extend their mothers’ lactational amenorrhea, thus delaying the birth of a younger sib and enhancing infant survival. PMID:24610432

  8. Physiology and pathophysiology of potassium homeostasis.

    PubMed

    Palmer, Biff F; Clegg, Deborah J

    2016-12-01

    Total body potassium content and proper distribution of potassium across the cell membrane is of critical importance for normal cellular function. Potassium homeostasis is maintained by several different methods. In the kidney, total body potassium content is achieved by alterations in renal excretion of potassium in response to variations in intake. Insulin and beta-adrenergic tone play critical roles in maintaining the internal distribution of potassium under normal conditions. Despite homeostatic pathways designed to maintain potassium levels within the normal range, disorders of altered potassium homeostasis are common. The clinical approach to designing effective treatments relies on understanding the pathophysiology and regulatory influences which govern the internal distribution and external balance of potassium. Here we provide an overview of the key regulatory aspects of normal potassium physiology. This review is designed to provide an overview of potassium homeostasis as well as provide references of seminal papers to guide the reader into a more in depth discussion of the importance of potassium balance. This review is designed to be a resource for educators and well-informed clinicians who are teaching trainees about the importance of potassium balance.

  9. Essential Roles of GABA Transporter-1 in Controlling Rapid Eye Movement Sleep and in Increased Slow Wave Activity after Sleep Deprivation

    PubMed Central

    Xu, Xin-Hong; Qu, Wei-Min; Bian, Min-Juan; Huang, Fang; Fei, Jian; Urade, Yoshihiro; Huang, Zhi-Li

    2013-01-01

    GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep. PMID:24155871

  10. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.

    PubMed

    Xu, Xin-Hong; Qu, Wei-Min; Bian, Min-Juan; Huang, Fang; Fei, Jian; Urade, Yoshihiro; Huang, Zhi-Li

    2013-01-01

    GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.

  11. Neuroscience of glucose homeostasis.

    PubMed

    La Fleur, S E; Fliers, E; Kalsbeek, A

    2014-01-01

    Plasma glucose concentrations are homeostatically regulated and maintained within strict boundaries. Several mechanisms are in place to increase glucose output when glucose levels in the circulation drop as a result of glucose utilization, or to decrease glucose output and increase tissue glucose uptake to prevent hyperglycemia. Although the term homeostasis mostly refers to stable levels, the blood glucose concentrations fluctuate over the day/night cycle, with the highest concentrations occurring just prior to the activity period in anticipation of increased caloric need. In this chapter we describe how the brain, particularly the hypothalamus, is involved in both the daily rhythm of plasma glucose concentrations and acute glucose challenges.

  12. Sleep Drive Is Encoded by Neural Plastic Changes in a Dedicated Circuit.

    PubMed

    Liu, Sha; Liu, Qili; Tabuchi, Masashi; Wu, Mark N

    2016-06-02

    Prolonged wakefulness leads to an increased pressure for sleep, but how this homeostatic drive is generated and subsequently persists is unclear. Here, from a neural circuit screen in Drosophila, we identify a subset of ellipsoid body (EB) neurons whose activation generates sleep drive. Patch-clamp analysis indicates these EB neurons are highly sensitive to sleep loss, switching from spiking to burst-firing modes. Functional imaging and translational profiling experiments reveal that elevated sleep need triggers reversible increases in cytosolic Ca(2+) levels, NMDA receptor expression, and structural markers of synaptic strength, suggesting these EB neurons undergo "sleep-need"-dependent plasticity. Strikingly, the synaptic plasticity of these EB neurons is both necessary and sufficient for generating sleep drive, indicating that sleep pressure is encoded by plastic changes within this circuit. These studies define an integrator circuit for sleep homeostasis and provide a mechanism explaining the generation and persistence of sleep drive.

  13. Sleep and orexins in nonmammalian vertebrates.

    PubMed

    Volkoff, Hélène

    2012-01-01

    Although a precise definition of "sleep" has yet to be established, sleep-like behaviors have been observed in all animals studied to date including mammals and nonmammalian vertebrates. Orexins are hypothalamic neuropeptides that are involved in the regulation of many physiological functions, including feeding, thermoregulation, cardiovascular control, as well as the control of the sleep-wakefulness cycle. To date, the knowledge on the functions of orexins in nonmammalian vertebrates is still limited, but the similarity of the structures of orexins and their receptors among vertebrates suggest that they have similar conserved physiological functions. This review describes our current knowledge on sleep in nonmammalian vertebrates (birds, reptiles, amphibians, and fish) and the possible role of orexins in the regulation of their energy homeostasis and arousal states.

  14. National Sleep Foundation

    MedlinePlus

    ... Macedonian Malay Maltese Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swahili Swedish Thai Turkish ... About Us “National Sleep Foundation” is a registered trademark of the National Sleep Foundation. sleep.org Sleep ...

  15. Healthy Sleep Habits

    MedlinePlus

    ... to locate sleep centers in your area. Search radius (in miles): 10 25 50 Share: Essentials in ... to locate sleep centers in your area. Search radius: Email Print Essentials in Sleep Insomnia Sleep Apnea ...

  16. Problems sleeping during pregnancy

    MedlinePlus

    ... sleeping References Balserak BI, Lee KA. Sleep and sleep disorders associated with pregnancy. In: Kryger M, Roth T, ... Elsevier; 2017:chap 156. Ibrahim S, Foldvary-Shaefer N. Sleep disorders in pregnancy: implications, evaluation, and treatment. Neurologic Clinics . ...

  17. Sleep Apnea (For Parents)

    MedlinePlus

    ... Feeding Your 1- to 2-Year-Old Obstructive Sleep Apnea KidsHealth > For Parents > Obstructive Sleep Apnea Print ... kids and teens can develop it, too. About Sleep Apnea Sleep apnea happens when a person stops ...

  18. Obstructive sleep apnea - adults

    MedlinePlus

    Sleep apnea - obstructive - adults; Apnea - obstructive sleep apnea syndrome - adults; Sleep-disordered breathing - adults; OSA - adults ... When you sleep, all of the muscles in your body become more relaxed. This includes the muscles that help keep your ...

  19. Pediatric sleep apnea

    MedlinePlus

    Sleep apnea - pediatric; Apnea - pediatric sleep apnea syndrome; Sleep-disordered breathing - pediatric ... During sleep, all of the muscles in the body become more relaxed. This includes the muscles that help keep ...

  20. Sleeping during Pregnancy

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Sleeping During Pregnancy KidsHealth > For Parents > Sleeping During Pregnancy ... have trouble getting enough deep, uninterrupted sleep. Why Sleeping Can Be Difficult The first and most pressing ...

  1. American Sleep Apnea Association

    MedlinePlus

    American Sleep Apnea Association Learn About the CPAP Assistance Program About ASAA News about ASAA Who we are Leadership Team Supporting the ASAA Financials Learn Healthy sleep Sleep apnea Other sleep disorders Personal stories Treat Test Yourself ...

  2. Exercise & Sleep

    MedlinePlus

    ... on. Feature: Back to School, the Healthy Way Exercise & Sleep Past Issues / Fall 2012 Table of Contents ... helps kids. Photo: iStock 6 "Bests" About Kids' Exercise At least one hour of physical activity a ...

  3. Cell Injury and Repair Resulting from Sleep Loss and Sleep Recovery in Laboratory Rats

    PubMed Central

    Everson, Carol A.; Henchen, Christopher J.; Szabo, Aniko; Hogg, Neil

    2014-01-01

    Study Objectives: Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. Design: Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. Measurements and Results: Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Two days of recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. Conclusions: These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury. Citation: Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats

  4. Iron Homeostasis in Health and Disease

    PubMed Central

    Gozzelino, Raffaella; Arosio, Paolo

    2016-01-01

    Iron is required for the survival of most organisms, including bacteria, plants, and humans. Its homeostasis in mammals must be fine-tuned to avoid iron deficiency with a reduced oxygen transport and diminished activity of Fe-dependent enzymes, and also iron excess that may catalyze the formation of highly reactive hydroxyl radicals, oxidative stress, and programmed cell death. The advance in understanding the main players and mechanisms involved in iron regulation significantly improved since the discovery of genes responsible for hemochromatosis, the IRE/IRPs machinery, and the hepcidin-ferroportin axis. This review provides an update on the molecular mechanisms regulating cellular and systemic Fe homeostasis and their roles in pathophysiologic conditions that involve alterations of iron metabolism, and provides novel therapeutic strategies to prevent the deleterious effect of its deficiency/overload. PMID:26805813

  5. Sleep in Othello

    PubMed Central

    Dimsdale, Joel E.

    2009-01-01

    Some of our best descriptions of sleep disorders come from literature. While Shakespeare is well known for his references to insomnia and sleep walking, his works also demonstrate a keen awareness of many other sleep disorders. This paper examines sleep themes in Shakespeare's play Othello. The play indicates Shakespeare's astute eye for sleep deprivation, sexual parasomnias, and effects of stress and drugs on sleep. Citation: Dimsdale JE. Sleep in Othello. J Clin Sleep Med 2009;5(3):280-281. PMID:19960651

  6. Ageing and water homeostasis

    NASA Technical Reports Server (NTRS)

    Robertson, David; Jordan, Jens; Jacob, Giris; Ketch, Terry; Shannon, John R.; Biaggioni, Italo

    2002-01-01

    This review outlines current knowledge concerning fluid intake and volume homeostasis in ageing. The physiology of vasopressin is summarized. Studies have been carried out to determine orthostatic changes in plasma volume and to assess the effect of water ingestion in normal subjects, elderly subjects, and patients with dysautonomias. About 14% of plasma volume shifts out of the vasculature within 30 minutes of upright posture. Oral ingestion of water raises blood pressure in individuals with impaired autonomic reflexes and is an important source of noise in blood pressure trials in the elderly. On the average, oral ingestion of 16 ounces (473ml) of water raises blood pressure 11 mmHg in elderly normal subjects. In patients with autonomic impairment, such as multiple system atrophy, strikingly exaggerated pressor effects of water have been seen with blood pressure elevations greater than 75 mmHg not at all uncommon. Ingestion of water is a major determinant of blood pressure in the elderly population. Volume homeostasis is importantly affected by posture and large changes in plasma volume may occur within 30 minutes when upright posture is assumed.

  7. Sleep architecture in patients with fibromyalgia.

    PubMed

    Besteiro González, José Luis; Suárez Fernández, Tomás Vicente; Arboleya Rodríguez, Luis; Muñiz, José; Lemos Giráldez, Serafín; Alvarez Fernández, Angel

    2011-08-01

    The main objective of this work was to evaluate the characteristics of sleep in patients diagnosed with fibromyalgia syndrome. Sleep architecture in 32 patients with fibromyalgia and 20 healthy controls was evaluated. Following the recommendations of the International Federation of Clinical Neurophysiology, polysomnographies were conducted with fibromyalgia patients and the control subjects. The fibromyalgia patients showed alterations in cyclic organization of sleep and an increased number of periodic leg movements associated with cortical arousals. No significant differences were found in respiratory and oximetry variables or in alpha-delta sleep. The results support that fibromyalgia patients present an increase of superficial sleep at the expense of deep sleep and also an increase of periodic leg movements, which could have a pathogenic effect, facilitating the onset of the illness. Lastly, we discuss the results and propose some future lines of research.

  8. Sleep drives metabolite clearance from the adult brain.

    PubMed

    Xie, Lulu; Kang, Hongyi; Xu, Qiwu; Chen, Michael J; Liao, Yonghong; Thiyagarajan, Meenakshisundaram; O'Donnell, John; Christensen, Daniel J; Nicholson, Charles; Iliff, Jeffrey J; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2013-10-18

    The conservation of sleep across all animal species suggests that sleep serves a vital function. We here report that sleep has a critical function in ensuring metabolic homeostasis. Using real-time assessments of tetramethylammonium diffusion and two-photon imaging in live mice, we show that natural sleep or anesthesia are associated with a 60% increase in the interstitial space, resulting in a striking increase in convective exchange of cerebrospinal fluid with interstitial fluid. In turn, convective fluxes of interstitial fluid increased the rate of β-amyloid clearance during sleep. Thus, the restorative function of sleep may be a consequence of the enhanced removal of potentially neurotoxic waste products that accumulate in the awake central nervous system.

  9. Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration.

    PubMed

    Vivancos, Pedro Diaz; Driscoll, Simon P; Bulman, Christopher A; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H

    2011-09-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway.

  10. Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration1[W][OA

    PubMed Central

    Vivancos, Pedro Diaz; Driscoll, Simon P.; Bulman, Christopher A.; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H.

    2011-01-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway. PMID:21757634

  11. Prolonged REM sleep restriction induces metabolic syndrome-related changes: Mediation by pro-inflammatory cytokines.

    PubMed

    Venancio, Daniel Paulino; Suchecki, Deborah

    2015-07-01

    Chronic sleep restriction in human beings results in metabolic abnormalities, including changes in the control of glucose homeostasis, increased body mass and risk of cardiovascular disease. In rats, 96h of REM sleep deprivation increases caloric intake, but retards body weight gain. Moreover, this procedure increases the expression of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), which may be involved with the molecular mechanism proposed to mediate insulin resistance. The goal of the present study was to assess the effects of a chronic protocol of sleep restriction on parameters of energy balance (food intake and body weight), leptin plasma levels and its hypothalamic receptors and mediators of the immune system in the retroperitoneal adipose tissue (RPAT). Thirty-four Wistar rats were distributed in control (CTL) and sleep restriction groups; the latter was kept onto individual narrow platforms immersed in water for 18h/day (from 16:00h to 10:00h), for 21days (SR21). Food intake was assessed daily, after each sleep restriction period and body weight was measured daily, after the animals were taken from the sleep deprivation chambers. At the end of the 21day of sleep restriction, rats were decapitated and RPAT was obtained for morphological and immune functional assays and expression of insulin receptor substrate 1 (IRS-1) was assessed in skeletal muscle. Another subset of animals was used to evaluate blood glucose clearance. The results replicated previous findings on energy balance, e.g., increased food intake and reduced body weight gain. There was a significant reduction of RPAT mass (p<0.001), of leptin plasma levels and hypothalamic leptin receptors. Conversely, increased levels of TNF-α and IL-6 and expression of phosphorylated NFκ-β in the RPAT of SR21 compared to CTL rats (p<0.01, for all parameters). SR21 rats also displayed reduced glucose clearance and IRS-1 expression than CTL rats (p<0.01). The

  12. Do sleep abnormalities and misaligned sleep/circadian rhythm patterns represent early clinical characteristics for developing psychosis in high risk populations?

    PubMed

    Zanini, Marcio; Castro, Juliana; Coelho, Fernando Morgadinho; Bittencourt, Lia; Bressan, Rodrigo A; Tufik, Sergio; Brietzke, Elisa

    2013-12-01

    Sleep architecture changes, such as slow-wave sleep (SWS) percentage variations and reductions in latency and density of rapid eye movement (REM), are found in most patients with schizophrenia and are considered to be an important part of the pathophysiology of the disorder. In addition to these sleep parameters changes, disruptions in sleep homeostasis and the sleep/circadian rhythm also occur in these patients. Sleep/circadian rhythm abnormalities negatively affect neocortical plasticity and cognition and often precede the diagnosis of the illness. Thus, it has been suggested that the sleep/circadian rhythm might be involved in the pathophysiology of psychosis. Recent advances in the identification of individuals at a high risk for developing schizophrenia allow us to investigate several neurobiological processes involved in the development of psychosis. In this article, we review the current evidence of the effects of sleep parameter abnormalities, disruptions in sleep homeostasis and misalignments of sleep circadian rhythm on the early stages of schizophrenia. In addition, we discuss the preliminary evidence of sleep and circadian rhythm abnormalities during the prodromal stages of psychosis and propose that these abnormalities can be explored as potential predictors, as an adjunct to clinical diagnosis, of developing a psychotic disorder in at risk populations.

  13. Sleep and gastrointestinal disturbances in autism spectrum disorder in children.

    PubMed

    Klukowski, Mark; Wasilewska, Jolanta; Lebensztejn, Dariusz

    2015-01-01

    Autism spectrum disorder (ASD), a neurodevelopmental disorder with a prevalence of 1 in 68 children, commonly presents with comorbid conditions which include sleep disorders. Sleep disorders reported in ASD include, among others, increased bedtime resistance, insomnia, parasomnia, sleep disordered breathing, morning rise problems, and daytime sleepiness. Polysomnography studies show that children with ASD have altered sleep architecture including shorter total sleep time and longer sleep latency than typically developing peers. Sleep-related problems have been shown to affect overall autism scores, social skills decits, stereotypic behavior, and cognitive performance. Additionally, problematic sleep in children with ASD has been associated with higher levels of parental stress. Underlying causes specically related to sleep disorders are not fully known. Gastrointestinal (GI) disorders are commonly associated with sleep problems in these patients. Children with ASD and GI symptoms have been found to have a higher prevalence of sleep disturbances compared with typically developing peers who do not have GI symptoms. Treatment approaches to children with sleep disorders are varied and range from lifestyle modications and behavioral interventions to drug therapies and surgical interventions. Physicians should take into account GI disorders as possible underlying causes of sleep-related problems in children with ASD. Therapeutic interventions should begin with less invasive methods before progressing to more invasive options such as pharmacotherapy and should be based on medical indications in order to provide effective care while minimizing potential adverse health effects. Evidence-based studies concerning GI and sleep disorders in children with ASD are limited and further studies are warranted.

  14. Regulation of cholesterol homeostasis.

    PubMed

    van der Wulp, Mariëtte Y M; Verkade, Henkjan J; Groen, Albert K

    2013-04-10

    Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and non-coding RNA's. The last two decades insight into underlying mechanisms has increased vastly but there are still a lot of unknowns, particularly regarding intracellular cholesterol transport. After decades of concentration on the liver, in recent years the intestine has come into focus as an important control point in cholesterol homeostasis. This review will discuss current knowledge of cholesterol physiology, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and new (possible) therapeutic options for hypercholesterolemia.

  15. Neuronal ubiquitin homeostasis

    PubMed Central

    Hallengren, Jada; Chen, Ping-Chung; Wilson, Scott M.

    2013-01-01

    Neurons have highly specialized intracellular compartments that facilitate the development and activity of the nervous system. Ubiquitination is a post-translational modification that controls many aspects of neuronal function by regulating protein abundance. Disruption of this signaling pathway has been demonstrated in neurological disorders such as Parkinson’s disease, Amyotrophic Lateral Sclerosis and Angleman Syndrome. Since many neurological disorders exhibit ubiquitinated protein aggregates, the loss of neuronal ubiquitin homeostasis may be an important contributor of disease. This review discusses the mechanisms utilized by neurons to control the free pool of ubiquitin necessary for normal nervous system development and function as well as new roles of protein ubiquitination in regulating synaptic activity. PMID:23686613

  16. Pain emotion and homeostasis.

    PubMed

    Panerai, Alberto E

    2011-05-01

    Pain has always been considered as part of a defensive strategy, whose specific role is to signal an immediate, active danger. This definition partially fits acute pain, but certainly not chronic pain, that is maintained also in the absence of an active noxa or danger and that nowadays is considered a disease by itself. Moreover, acute pain is not only an automatic alerting system, but its severity and characteristics can change depending on the surrounding environment. The affective, emotional components of pain have been and are the object of extensive attention and research by psychologists, philosophers, physiologists and also pharmacologists. Pain itself can be considered to share the same genesis as emotions and as a specific emotion in contributing to the maintenance of the homeostasis of each unique subject. Interestingly, this role of pain reaches its maximal development in the human; some even argue that it is specific for the human primate.

  17. Increased Sleep Depth in Developing Neural Networks: New Insights from Sleep Restriction in Children.

    PubMed

    Kurth, Salome; Dean, Douglas C; Achermann, Peter; O'Muircheartaigh, Jonathan; Huber, Reto; Deoni, Sean C L; LeBourgeois, Monique K

    2016-01-01

    Brain networks respond to sleep deprivation or restriction with increased sleep depth, which is quantified as slow-wave activity (SWA) in the sleep electroencephalogram (EEG). When adults are sleep deprived, this homeostatic response is most pronounced over prefrontal brain regions. However, it is unknown how children's developing brain networks respond to acute sleep restriction, and whether this response is linked to myelination, an ongoing process in childhood that is critical for brain development and cortical integration. We implemented a bedtime delay protocol in 5- to 12-year-old children to obtain partial sleep restriction (1-night; 50% of their habitual sleep). High-density sleep EEG was assessed during habitual and restricted sleep and brain myelin content was obtained using mcDESPOT magnetic resonance imaging. The effect of sleep restriction was analyzed using statistical non-parametric mapping with supra-threshold cluster analysis. We observed a localized homeostatic SWA response following sleep restriction in a specific parieto-occipital region. The restricted/habitual SWA ratio was negatively associated with myelin water fraction in the optic radiation, a developing fiber bundle. This relationship occurred bilaterally over parieto-temporal areas and was adjacent to, but did not overlap with the parieto-occipital region showing the most pronounced homeostatic SWA response. These results provide evidence for increased sleep need in posterior neural networks in children. Sleep need in parieto-temporal areas is related to myelin content, yet it remains speculative whether age-related myelin growth drives the fading of the posterior homeostatic SWA response during the transition to adulthood. Whether chronic insufficient sleep in the sensitive period of early life alters the anatomical generators of deep sleep slow-waves is an important unanswered question.

  18. Increased Sleep Depth in Developing Neural Networks: New Insights from Sleep Restriction in Children

    PubMed Central

    Kurth, Salome; Dean, Douglas C.; Achermann, Peter; O’Muircheartaigh, Jonathan; Huber, Reto; Deoni, Sean C. L.; LeBourgeois, Monique K.

    2016-01-01

    Brain networks respond to sleep deprivation or restriction with increased sleep depth, which is quantified as slow-wave activity (SWA) in the sleep electroencephalogram (EEG). When adults are sleep deprived, this homeostatic response is most pronounced over prefrontal brain regions. However, it is unknown how children’s developing brain networks respond to acute sleep restriction, and whether this response is linked to myelination, an ongoing process in childhood that is critical for brain development and cortical integration. We implemented a bedtime delay protocol in 5- to 12-year-old children to obtain partial sleep restriction (1-night; 50% of their habitual sleep). High-density sleep EEG was assessed during habitual and restricted sleep and brain myelin content was obtained using mcDESPOT magnetic resonance imaging. The effect of sleep restriction was analyzed using statistical non-parametric mapping with supra-threshold cluster analysis. We observed a localized homeostatic SWA response following sleep restriction in a specific parieto-occipital region. The restricted/habitual SWA ratio was negatively associated with myelin water fraction in the optic radiation, a developing fiber bundle. This relationship occurred bilaterally over parieto-temporal areas and was adjacent to, but did not overlap with the parieto-occipital region showing the most pronounced homeostatic SWA response. These results provide evidence for increased sleep need in posterior neural networks in children. Sleep need in parieto-temporal areas is related to myelin content, yet it remains speculative whether age-related myelin growth drives the fading of the posterior homeostatic SWA response during the transition to adulthood. Whether chronic insufficient sleep in the sensitive period of early life alters the anatomical generators of deep sleep slow-waves is an important unanswered question. PMID:27708567

  19. Intestine-specific Deletion of Sirt1 in Mice Impairs DCoH2–HNF1α–FXR Signaling and Alters Systemic Bile Acid Homeostasis

    PubMed Central

    Kazgan, Nevzat; Metukuri, Mallikarjuna R.; Purushotham, Aparna; Lu, Jing; Rao, Anuradha; Lee, Sangkyu; Pratt-Hyatt, Matthew; Lickteig, Andrew; Csanaky, Ivan; Zhao, Yingming; Dawson, Paul A.; Li, Xiaoling

    2014-01-01

    Background & Aims Sirtuin 1 (SIRT1), the most conserved mammalian NAD+-dependent protein deacetylase, is an important metabolic sensor in many tissues. However, little is known about its role in the small intestine, which absorbs and senses nutrients. We investigated the functions of intestinal Sirt1 in systemic bile acid and cholesterol metabolism in mice. Methods Sirt1 was specifically deleted from intestines of mice using the Flox-villin-Cre system (Sirt1 iKO mice). Intestinal and heptic tissues were collected, and bile acid absorption was analyzed using the everted gut sac experiment. Systemic bile acid metabolism was studied in Sirt1 iKO and Flox control mice placed on standard diets, diets containing 0.5% cholic acid or 1.25% cholesterol, or lithogenic diets. Results Sirt1 iKO mice had reduced intestinal Fxr signaling via Hnf1a compared with controls, which reduced expression of the bile acid transporter genes Asbt and Mcf2l (encodes Ost) and absorption of ileal bile acids. Sirt1 regulated Hnf1α–Fxr signaling partially through Dcoh2, which increases dimerization of Hnf1α. Sirt1 was found to deacetylate DCoH2, promoting its interaction with Hnf1α and inducing DNA binding by Hnf1α. Intestine-specific deletion of Sirt1 increased hepatic bile acid biosynthesis, reduced hepatic accumulation of bile acids, and protected animals from liver damage from high-bile acid diets. Conclusions Intestinal Sirt1, a key nutrient sensor, is required for ileal bile acid absorption and systemic bile acid homeostasis in mice. We delineated the mechanism of metabolic regulation of Hnf1α–Fxr signaling. Reagents designed to inhibit intestinal SIRT1 might be developed to treat bile acid-related diseases such as cholestasis. PMID:24389307

  20. How (and why) the immune system makes us sleep

    PubMed Central

    Imeri, Luca; Opp, Mark R.

    2010-01-01

    Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified during infection, indicating that these interactions might underlie the changes in sleep that occur during infection. Why should the immune system cause us to sleep differently when we are sick? We propose that the alterations in sleep architecture during infection are exquisitely tailored to support the generation of fever, which in turn imparts survival value. PMID:19209176

  1. The Importance of astrocyte-derived purines in the modulation of sleep.

    PubMed

    Blutstein, Tamara; Haydon, Philip G

    2013-02-01

    Sleep is an evolutionarily conserved phenomenon that is clearly essential for survival, but we have limited understanding of how and why it is so important. Adenosine triphosphate (ATP)/adenosine signaling has been known to be important in the regulation of sleep and recent evidence suggests a critical role for gliotransmission in the modulation of sleep homeostasis. Herein, we review the regulation of ATP/adenosine in the nervous system and provide evidence of a critical role for astrocyte-derived adenosine in the regulation of sleep homeostasis and the modulation of synaptic transmission. Further understanding of the role of glial cells in the regulation of sleep may provide new targets for pharmaceutical intervention in the treatment of brain dysfunctions, specifically those that are comorbid with sleep disruptions.

  2. A Physiologist's View of Homeostasis

    ERIC Educational Resources Information Center

    Modell, Harold; Cliff, William; Michael, Joel; McFarland, Jenny; Wenderoth, Mary Pat; Wright, Ann

    2015-01-01

    Homeostasis is a core concept necessary for understanding the many regulatory mechanisms in physiology. Claude Bernard originally proposed the concept of the constancy of the "milieu interieur," but his discussion was rather abstract. Walter Cannon introduced the term "homeostasis" and expanded Bernard's notion of…

  3. [Neurochemical mechanisms of sleep regulation].

    PubMed

    2009-01-01

    suggest a role of REM sleep in brain development and maturation, synaptic homeostasis, memory and learning, but sleep in not universal state with the same underlying vital function in all species. Even within the species that do meet the behavioral definitons of sleep behavior (about 50 of 60 000 vertebrates tested) still is questionable do they sleep for the same reason.

  4. Cardiovascular, Inflammatory and Metabolic Consequences of Sleep Deprivation

    PubMed Central

    Mullington, Janet M.; Haack, Monika; Toth, Maria; Serrador, Jorge; Meier-Ewert, Hans

    2009-01-01

    That insufficient sleep is associated with poor attention and performance deficits is becoming widely recognized. Fewer people are aware that chronic sleep complaints in epidemiological studies have also been associated with an increase in overall mortality and morbidity. This article summarizes findings of known effects of insufficient sleep on cardiovascular risk factors including blood pressure, glucose metabolism, hormonal regulation and inflammation with particular emphasis on experimental sleep loss, using models of total and partial sleep deprivation, in healthy individuals who normally sleep in the range of 7-8 hours and have no sleep disorders. These studies show that insufficient sleep alters established cardiovascular risk factors in a direction that is known to increase the risk of cardiac morbidity. PMID:19110131

  5. Sleep and synaptic plasticity in the developing and adult brain.

    PubMed

    Frank, Marcos G

    2015-01-01

    Sleep is hypothesized to play an integral role in brain plasticity. This has traditionally been investigated using behavioral assays. In the last 10-15 years, studies combining sleep measurements with in vitro and in vivo models of synaptic plasticity have provided exciting new insights into how sleep alters synaptic strength. In addition, new theories have been proposed that integrate older ideas about sleep function and recent discoveries in the field of synaptic plasticity. There remain, however, important challenges and unanswered questions. For example, sleep does not appear to have a single effect on synaptic strength. An unbiased review of the literature indicates that the effects of sleep vary widely depending on ontogenetic stage, the type of waking experience (or stimulation protocols) that precede sleep and the type of neuronal synapse under examination. In this review, I discuss these key findings in the context of current theories that posit different roles for sleep in synaptic plasticity.

  6. Operation of a Homeostatic Sleep Switch

    PubMed Central

    Talbot, Clifford B.; Song, Seoho M.; Thurston, Alexander J. F.; Miesenböck, Gero

    2016-01-01

    Sleep disconnects animals from the external world, at considerable risks and costs that must be offset by a vital benefit. Insight into this mysterious benefit will come from understanding sleep homeostasis: to monitor sleep need, an internal bookkeeper must track physiological changes that are linked to the core function of sleep1. In Drosophila, a crucial component of the machinery for sleep homeostasis is a cluster of neurons innervating the dorsal fan-shaped body (dFB) of the central complex2,3. Artificial activation of these cells induces sleep2, whereas reductions in excitability cause insomnia3,4. dFB neurons in sleep-deprived flies tend to be electrically active, with high input resistances and long membrane time constants, while neurons in rested flies tend to be electrically silent3. Correlative evidence thus supports the simple view that homeostatic sleep control works by switching sleep-promoting neurons between active and quiescent states3. Here we demonstrate state switching by dFB neurons, identify dopamine as a neuromodulator that operates the switch, and delineate the switching mechanism. Arousing dopamine4–8 caused transient hyperpolarization of dFB neurons within tens of milliseconds and lasting excitability suppression within minutes. Both effects were transduced by Dop1R2 receptors and mediated by potassium conductances. The switch to electrical silence involved the downregulation of voltage-gated A-type currents carried by Shaker and Shab and the upregulation of voltage-independent leak currents through a two-pore domain potassium channel we term Sandman. Sandman is encoded by the CG8713 gene and translocates to the plasma membrane in response to dopamine. dFB-restricted interference with the expression of Shaker or Sandman decreased or increased sleep, respectively, by slowing the repetitive discharge of dFB neurons in the ON state or blocking their entry into the OFF state. Biophysical changes in a small population of neurons are thus

  7. REM sleep dysregulation in depression: state of the art.

    PubMed

    Palagini, Laura; Baglioni, Chiara; Ciapparelli, Antonio; Gemignani, Angelo; Riemann, Dieter

    2013-10-01

    Disturbances of sleep are typical for most depressed patients and belong to the core symptoms of the disorder. Since the 1960s polysomnographic sleep research has demonstrated that besides disturbances of sleep continuity, depression is associated with altered sleep architecture, i.e., a decrease in slow wave sleep (SWS) production and disturbed rapid eye movement (REM) sleep regulation. Shortened REM latency (i.e., the interval between sleep onset and the occurrence of the first REM period), increased REM sleep duration and increased REM density (i.e., the frequency of rapid eye movements per REM period) have been considered as biological markers of depression which might predict relapse and recurrence. High risk studies including healthy relatives of patients with depression demonstrate that REM sleep alterations may precede the clinical expression of depression and may thus be useful in identifying subjects at high risk for the illness. Several models have been developed to explain REM sleep abnormalities in depression, like the cholinergic-aminergic imbalance model or chronobiologically inspired theories, which are reviewed in this overview. Moreover, REM sleep alterations have been recently considered not only as biological "scars" but as true endophenotypes of depression. This review discusses the genetic, neurochemical and neurobiological factors that have been implicated to play a role in the complex relationships between REM sleep and depression. We hypothesize on the one hand that REM sleep dysregulation in depression may be linked to a genetic predisposition/vulnerability to develop the illness; on the other hand it is conceivable that REM sleep disinhibition in itself is a part of a maladaptive stress reaction with increased allostatic load. We also discuss whether the REM sleep changes in depression may contribute themselves to the development of central symptoms of depression such as cognitive distortions including negative self-esteem and the

  8. Neurexin regulates nighttime sleep by modulating synaptic transmission

    PubMed Central

    Tong, Huawei; Li, Qian; Zhang, Zi Chao; Li, Yi; Han, Junhai

    2016-01-01

    Neurexins are cell adhesion molecules involved in synaptic formation and synaptic transmission. Mutations in neurexin genes are linked to autism spectrum disorders (ASDs), which are frequently associated with sleep problems. However, the role of neurexin-mediated synaptic transmission in sleep regulation is unclear. Here, we show that lack of the Drosophila α-neurexin homolog significantly reduces the quantity and quality of nighttime sleep and impairs sleep homeostasis. We report that neurexin expression in Drosophila mushroom body (MB) αβ neurons is essential for nighttime sleep. We demonstrate that reduced nighttime sleep in neurexin mutants is due to impaired αβ neuronal output, and show that neurexin functionally couples calcium channels (Cac) to regulate synaptic transmission. Finally, we determine that αβ surface (αβs) neurons release both acetylcholine and short neuropeptide F (sNPF), whereas αβ core (αβc) neurons release sNPF to promote nighttime sleep. Our findings reveal that neurexin regulates nighttime sleep by mediating the synaptic transmission of αβ neurons. This study elucidates the role of synaptic transmission in sleep regulation, and might offer insights into the mechanism of sleep disturbances in patients with autism disorders. PMID:27905548

  9. Sleep and vigilance linked to melanism in wild barn owls.

    PubMed

    Scriba, M F; Rattenborg, N C; Dreiss, A N; Vyssotski, A L; Roulin, A

    2014-10-01

    Understanding the function of variation in sleep requires studies in the natural ecological conditions in which sleep evolved. Sleep has an impact on individual performance and hence may integrate the costs and benefits of investing in processes that are sensitive to sleep, such as immunity or coping with stress. Because dark and pale melanic animals differentially regulate energy homeostasis, immunity and stress hormone levels, the amount and/or organization of sleep may covary with melanin-based colour. We show here that wild, cross-fostered nestling barn owls (Tyto alba) born from mothers displaying more black spots had shorter non-REM (rapid eye movement) sleep bouts, a shorter latency until the occurrence of REM sleep after a bout of wakefulness and more wakefulness bouts. In male nestlings, the same sleep traits also correlated with their own level of spotting. Because heavily spotted male nestlings and the offspring of heavily spotted biological mothers switched sleep-wakefulness states more frequently, we propose the hypothesis that they could be also behaviourally more vigilant. Accordingly, nestlings from mothers displaying many black spots looked more often towards the nest entrance where their parents bring food and towards their sibling against whom they compete. Owlets from heavily spotted mothers might invest more in vigilance, thereby possibly increasing associated costs due to sleep fragmentation. We conclude that different strategies of the regulation of brain activity have evolved and are correlated with melanin-based coloration.

  10. Neuroendocrine and Peptidergic Regulation of Stress-Induced REM Sleep Rebound

    PubMed Central

    Machado, Ricardo Borges; Suchecki, Deborah

    2016-01-01

    Sleep homeostasis depends on the length and quality (occurrence of stressful events, for instance) of the preceding waking time. Forced wakefulness (sleep deprivation or sleep restriction) is one of the main tools used for the understanding of mechanisms that play a role in homeostatic processes involved in sleep regulation and their interrelations. Interestingly, forced wakefulness for periods longer than 24 h activates stress response systems, whereas stressful events impact on sleep pattern. Hypothalamic peptides (corticotropin-releasing hormone, prolactin, and the CLIP/ACTH18–39) play an important role in the expression of stress-induced sleep effects, essentially by modulating rapid eye movement sleep, which has been claimed to affect the organism resilience to the deleterious effects of stress. Some of the mechanisms involved in the generation and regulation of sleep and the main peptides/hypothalamic hormones involved in these responses will be discussed in this review. PMID:28066328

  11. Circadian Rhythm Sleep Disorders

    PubMed Central

    Zhu, Lirong; Zee, Phyllis C.

    2012-01-01

    There have been remarkable advances in our understanding of the molecular, cellular and physiological mechanisms underlying the regulation of circadian rhythms, as well as the impact of circadian dysfunction on health and disease. This information has transformed our understanding of the effect of circadian rhythm sleep disorders (CRSD) on health, performance and safety. CRSDs are caused by alterations of the central circadian time-keeping system, or a misalignment of the endogenous circadian rhythm and the external environment. In this section, we provide a review of circadian biology and discuss the pathophysiology, clinical features, diagnosis, and treatment of the most commonly encountered CRSDs in clinical practice. PMID:23099133

  12. The important role of sleep in metabolism.

    PubMed

    Copinschi, Georges; Leproult, Rachel; Spiegel, Karine

    2014-01-01

    Both reduction in total sleep duration with slow-wave sleep (SWS) largely preserved and alterations of sleep quality (especially marked reduction of SWS) with preservation of total sleep duration are associated with insulin resistance without compensatory increase in insulin secretion, resulting in impaired glucose tolerance and increased risk of type 2 diabetes. When performed under rigorously controlled conditions of energy intake and physical activity, sleep restriction is also associated with a decrease in circulating levels of leptin (an anorexigenic hormone) and an increase in circulating levels of ghrelin (an orexigenic hormone), hunger and appetite. Furthermore, sleep restriction is also associated with a stimulation of brain regions sensitive to food stimuli, indicating that sleep loss may lead to obesity through the selection of high-calorie food. There is also evidence that sleep restriction could provide a permissive environment for the activation of genes that promote obesity. Indeed, the heritability of body mass index is increased in short sleepers. Thus, chronic sleep curtailment, which is on the rise in modern society, including in children, is likely to contribute to the current epidemics of type 2 diabetes and obesity.

  13. Sleep Deprivation and Recovery Sleep Prior to a Noxious Inflammatory Insult Influence Characteristics and Duration of Pain

    PubMed Central

    Vanini, Giancarlo

    2016-01-01

    Study Objectives: Insufficient sleep and chronic pain are public health epidemics. Sleep loss worsens pain and predicts the development of chronic pain. Whether previous, acute sleep loss and recovery sleep determine pain levels and duration remains poorly understood. This study tested whether acute sleep deprivation and recovery sleep prior to formalin injection alter post-injection pain levels and duration. Methods: Male Sprague-Dawley rats (n = 48) underwent sleep deprivation or ad libitum sleep for 9 hours. Thereafter, rats received a subcutaneous injection of formalin or saline into a hind paw. In the recovery sleep group, rats were allowed 24 h between sleep deprivation and the injection of formalin. Mechanical and thermal nociception were assessed using the von Frey test and Hargreaves' method. Nociceptive measures were performed at 1, 3, 7, 10, 14, 17 and 21 days post-injection. Results: Formalin caused bilateral mechanical hypersensitivity (allodynia) that persisted for up to 21 days post-injection. Sleep deprivation significantly enhanced bilateral allodynia. There was a synergistic interaction when sleep deprivation preceded a formalin injection. Rats allowed a recovery sleep period prior to formalin injection developed allodynia only in the injected limb, with higher mechanical thresholds (less allodynia) and a shorter recovery period. There were no persistent changes in thermal nociception. Conclusion: The data suggest that acute sleep loss preceding an inflammatory insult enhances pain and can contribute to chronic pain. The results encourage studies in a model of surgical pain to test whether enhancing sleep reduces pain levels and duration. Citation: Vanini G. Sleep deprivation and recovery sleep prior to a noxious inflammatory insult influence characteristics and duration of pain. SLEEP 2016;39(1):133–142. PMID:26237772

  14. Water Homeostasis: Evolutionary Medicine

    PubMed Central

    Zeidel, Mark L.

    2012-01-01

    As a major component of homeostasis, all organisms regulate the water composition of various compartments. Through the selective use of barrier membranes and surface glycoproteins, as well as aquaporin water channels, organisms ranging from Archaebacteria to humans can vary water permeabilities across their cell membranes by 4 to 5 orders of magnitude. In barrier epithelia the outer, or exofacial, leaflet acts as the main resistor to water flow; this leaflet restricts water flow by minimizing the surface area of lipid molecules which is not covered by phosphate headgroups and by packing hydrocarbon chains at maximal density. Cells may enhance the barrier by expressing glycoproteins that augment the “thickness” of unstirred layers at their surfaces, reducing osmotic gradients at the lipid bilayer surface. Aquaporins markedly and highly selectively accelerate water flux and are “switched on” either by deployment into membranes or gating. This review summarizes these mechanisms in many species, and indicates potential roles for manipulating water permeabilities in treating disease. PMID:23303973

  15. Sleep and immune function: glial contributions and consequences of aging.

    PubMed

    Ingiosi, Ashley M; Opp, Mark R; Krueger, James M

    2013-10-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging.

  16. Sleep Apnea

    MedlinePlus

    ... of other risk factors linked to a higher risk of heart disease. The conditions that make up metabolic syndrome include high blood pressure, abnormal cholesterol, high blood sugar and an increased waist circumference. Complications with medications and surgery. Obstructive sleep apnea ...

  17. Sleep disruption and the sequelae associated with traumatic brain injury

    PubMed Central

    Lucke-Wold, Brandon P.; Smith, Kelly E.; Nguyen, Linda; Turner, Ryan C.; Logsdon, Aric F.; Jackson, Garrett J.; Huber, Jason D.; Rosen, Charles L.; Miller, Diane B.

    2016-01-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy. PMID:25956251

  18. Sleep disruption and the sequelae associated with traumatic brain injury.

    PubMed

    Lucke-Wold, Brandon P; Smith, Kelly E; Nguyen, Linda; Turner, Ryan C; Logsdon, Aric F; Jackson, Garrett J; Huber, Jason D; Rosen, Charles L; Miller, Diane B

    2015-08-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy.

  19. NCKX5, a natural regulator of human skin colour variation, regulates the expression of key pigment genes MC1R and alpha-MSH and alters cholesterol homeostasis in normal human melanocytes.

    PubMed

    Wilson, Stephen; Ginger, Rebecca S; Dadd, Tony; Gunn, David; Lim, Fei-Ling; Sawicka, Magdalena; Sandel, Melanie; Schnetkamp, Paul P M; Green, Martin R

    2013-01-01

    Natural human skin colour is determined both by environmental exposure to ultraviolet light and through inherited genetic variation in a very limited number of genes. Variation of a non-synonymous single-nucleotide polymorphism (nsSNP; rs1426654) in the gene (SLC24A5) encoding the NCKX5 protein is associated with differences in constitutive skin colour in South Asians. The nsSNP encodes the substitution of alanine for threonine at residue 111 (A111T) near a transmembrane region required for exchanger activity, a region which is highly conserved across different species and between NCKX family members. We have shown that NCKX5 is located at the trans-Golgi network of melanocytes and functions as a potassium-dependent sodium-calcium exchanger. When heterologously expressed, the 111T variant of NCKX5 shows significantly lower exchanger activity than the A111 variant. We have postulated that lower exchanger activity causes the reduced melanogenesis and lighter skin in Thr111-positive individuals. We used gene expression microarrays with qPCR replication and validation to assess the impact of siRNA-mediated knockdown of SLC24A5 on the transcriptome of cultured normal human melanocytes (NHM). Very few genes associated with melanogenesis were altered at the transcript level except for MC1R, suggesting that SLC24A5 interacts with at least one well-characterized melanogenic signalling pathway. More surprisingly, the expression of a number of cholesterol homeostatic genes was altered after SLC24A5 knockdown, and the total cholesterol content of NHM was increased. Cholesterol has previously been identified as a potential melanogenic regulator, and our data imply that NCKX5 exchanger function influences natural variation in skin pigmentation via a novel, unknown mechanism affecting cellular sterol levels.

  20. [Sleep: regulation and phenomenology].

    PubMed

    Vecchierini, M-F

    2013-12-01

    This article describes the two-process model of sleep regulation. The 24-hour sleep-wake cycle is regulated by a homeostatic process and an endogenous, 2 oscillators, circadian process, under the influence of external synchronisers. These two processes are partially independent but influence each other, as shown in the two-sleep-process auto-regulation model. A reciprocal inhibition model of two interconnected neuronal groups, "SP on" and "SP off", explains the regular recurrence of paradoxical sleep. Sleep studies have primarily depended on observation of the subject and have determined the optimal conditions for sleep (position, external conditions, sleep duration and need) and have studied the consequences of sleep deprivation or modifications of sleep schedules. Then, electrophysiological recordings permitted the classification of sleep stages according to the observed EEG patterns. The course of a night's sleep is reported on a "hypnogram". The adult subject falls asleep in non-REM sleep (N1), then sleep deepens progressively to stages N2 and N3 with the appearance of spindles and slow waves (N2). Slow waves become more numerous in stage N3. Every 90minutes REM sleep recurs, with muscle atonia and rapid eye movements. These adult sleep patterns develop progressively during the 2 first years of life as total sleep duration decreases, with the reduction of diurnal sleep and of REM sleep. Around 2 to 4 months, spindles and K complexes appear on the EEG, with the differentiation of light and deep sleep with, however, a predominance of slow wave sleep.

  1. Roles of orexins in the regulation of body weight homeostasis.

    PubMed

    Sakurai, Takeshi

    2014-01-01

    Lateral hypothalamic neuropeptides, orexins, have been recognized as one of the most important regulators of sleep/wakefulness states. Besides, these peptides are also regarded as an important factor that regulates feeding behavior, owing to their localization within the lateral hypothalamic area, the classic "feeding center", pharmacological activities, and the fact that prepro-orexin mRNA is upregulated when animals are fasted. This review summarizes the role of orexins in the regulation of feeding behavior and body weight homeostasis in relation to other systems that involve orexinergic neurotransmission.

  2. Is sleep-related verbal memory consolidation impaired in sleepwalkers?

    PubMed

    Uguccioni, Ginevra; Pallanca, Olivier; Golmard, Jean-Louis; Leu-Semenescu, Smaranda; Arnulf, Isabelle

    2015-04-01

    In order to evaluate verbal memory consolidation during sleep in subjects experiencing sleepwalking or sleep terror, 19 patients experiencing sleepwalking/sleep terror and 19 controls performed two verbal memory tasks (16-word list from the Free and Cued Selective Reminding Test, and a 220- and 263-word modified story recall test) in the evening, followed by nocturnal video polysomnography (n = 29) and morning recall (night-time consolidation after 14 h, n = 38). The following morning, they were given a daytime learning task using the modified story recall test in reverse order, followed by an evening recall test after 9 h of wakefulness (daytime consolidation, n = 38). The patients experiencing sleepwalking/sleep terror exhibited more frequent awakenings during slow-wave sleep and longer wakefulness after sleep onset than the controls. Despite this reduction in sleep quality among sleepwalking/sleep terror patients, they improved their scores on the verbal tests the morning after sleep compared with the previous evening (+16 ± 33%) equally well as the controls (+2 ± 13%). The performance of both groups worsened during the daytime in the absence of sleep (-16 ± 15% for the sleepwalking/sleep terror group and -14 ± 11% for the control group). There was no significant correlation between the rate of memory consolidation and any of the sleep measures. Seven patients experiencing sleepwalking also sleep-talked during slow-wave sleep, but their sentences were unrelated to the tests or the list of words learned during the evening. In conclusion, the alteration of slow-wave sleep during sleepwalking/sleep terror does not noticeably impact on sleep-related verbal memory consolidation.

  3. Markers of Oxidative Stress in Pregnant Women with Sleep Disturbances

    PubMed Central

    Rajendiran, Soundravally; Nimesh, Archana; Ananthanarayanan, P. H.; Dhiman, Pooja

    2015-01-01

    Objective The quality and duration of sleep is impaired during pregnancy. Our study aimed to determine whether maternal sleep deprivation occurring during the second and third trimester of pregnancy could alter fetal well-being with respect to birth weight and APGAR score by altering the inflammatory status and oxidative stress in the mothers.  Methods Sleep adequacy was assessed using the Pittsburgh Sleep Quality Index (PSQI). We investigated the inflammatory status and oxidative stress at term in the blood of pregnant subjects with and without sleep deprivation by measuring the levels of protein-bound sialic acid (PBSA), high-sensitivity C-reactive protein (hsCRP), malondialdehyde (MDA) and protein carbonyl (PCO). Homocysteine (Hcy) and its vitamin determinants were also measured. Fetal outcome with respect to birth weight and APGAR score were compared between study subjects.  Results A significant increase was observed in the levels of hsCRP, PBSA, Hcy, MDA, and PCO, in the sleep-deprived group when compared to the control group. Fetal outcome at birth showed a significant difference between the cases with high sleep deprivation and those with low sleep deprivation.  Conclusion Sleep deprivation in pregnancy leads to an increase in the inflammatory parameters, oxidative stress, and Hcy levels. Fetal outcome at birth was affected more in mothers with high sleep deprivation than those with low sleep deprivation. Follow-up in these babies are needed to reveal any differences in their growth and development. PMID:26366260

  4. Sleep deprivation and the effect on exercise performance.

    PubMed

    VanHelder, T; Radomski, M W

    1989-04-01

    Sleep deprivation or partial sleep loss are common in work conditions as rotating shifts and prolonged work hours, in sustained military operations and in athletes competing in events after crossing several time zones or engaged in ultramarathon or triathlon events. Although it is well established that sleep loss has negative effects on mental performance, its effects on physical performance are equivocal. This review examines the latter question in light of recent studies published on this problem. Sleep deprivation of 30 to 72 hours does not affect cardiovascular and respiratory responses to exercise of varying intensity, or the aerobic and anaerobic performance capability of individuals. Muscle strength and electromechanical responses are also not affected. Time to exhaustion, however, is decreased by sleep deprivation. Although ratings of perceived exertion always increased during exercise in sleep-deprived (30 to 60 hours) subjects compared with normal sleep, this is not a reliable assessment of a subject's ability to perform physical work as the ratings of perceived exertion are dissociated from any cardiovascular changes in sleep deprivation. Examination of the various hormonal and metabolic parameters which have been measured in the studies reviewed reveals that the major metabolic perturbations accompanying sleep deprivation in humans are an increase in insulin resistance and a decrease in glucose tolerance. This may explain the reduction in observed time to exhaustion in sleep-deprived subjects. The role of growth hormone in mediating altered carbohydrate metabolism may be of particular relevance as to how sleep deprivation alters the supply of energy substrate to the muscle.

  5. Metabolic and Glycemic Sequelae of Sleep Disturbances in Children and Adults

    PubMed Central

    Koren, Dorit; O'Sullivan, Katie L.; Mokhlesi, Babak

    2015-01-01

    The prevalence of obesity in adults and children has increased greatly in the past three decades, as have metabolic sequelae, such as insulin resistance and type 2 diabetes mellitus (T2DM). Sleep disturbances are increasingly recognized as contributors to this widespread epidemic in adults, and data are emerging in children as well. The categories of sleep disturbances that contribute to obesity and its glycemic co-morbidities include the following: (1) alterations of sleep duration, chronic sleep restriction and excessive sleep; (2) alterations in sleep architecture; (3) sleep fragmentation; (4) circadian rhythm disorders and disruption (i.e., shift work); and (5) obstructive sleep apnea. This article reviews current evidence supporting the contributions that these sleep disorders play in the development of obesity, insulin resistance, and T2DM as well as possibly influences on glycemic control in type 1 diabetes, with a special focus on data in pediatric populations. PMID:25398202

  6. Metabolic and glycemic sequelae of sleep disturbances in children and adults.

    PubMed

    Koren, Dorit; O'Sullivan, Katie L; Mokhlesi, Babak

    2015-01-01

    The prevalence of obesity in adults and children has increased greatly in the past three decades, as have metabolic sequelae, such as insulin resistance and type 2 diabetes mellitus (T2DM). Sleep disturbances are increasingly recognized as contributors to this widespread epidemic in adults, and data are emerging in children as well. The categories of sleep disturbances that contribute to obesity and its glycemic co-morbidities include the following: (1) alterations of sleep duration, chronic sleep restriction and excessive sleep; (2) alterations in sleep architecture; (3) sleep fragmentation; (4) circadian rhythm disorders and disruption (i.e., shift work); and (5) obstructive sleep apnea. This article reviews current evidence supporting the contributions that these sleep disorders play in the development of obesity, insulin resistance, and T2DM as well as possibly influences on glycemic control in type 1 diabetes, with a special focus on data in pediatric populations.

  7. Sleep studies (image)

    MedlinePlus

    During a sleep study the sleep cycles and stages of sleep are monitored. Electrodes are placed to monitor continuous recordings of brain waves, electrical activity of muscles, eye movement, respiratory ...

  8. Isolated sleep paralysis

    MedlinePlus

    Sleep paralysis - isolated; Parasomnia - isolated sleep paralysis ... Episodes of isolated sleep paralysis last from a few seconds to 1 or 2 minutes. During these episodes the person is unable to move or ...

  9. Polysomnography (Sleep Study)

    MedlinePlus

    ... begins with a sleep stage called non-rapid eye movement (NREM) sleep. During this stage, your brain waves, ... your brain activity picks up again, and rapid eye movement (REM) sleep begins. Most dreaming occurs during REM ...

  10. Sleep and Your Preschooler

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Sleep and Your Preschooler KidsHealth > For Parents > Sleep and ... child chattering away, playing through the entire naptime. Sleeping Problems Preschoolers may have nightmares or night terrors , ...

  11. A Bird's Eye View of Sleep-Dependent Memory Consolidation.

    PubMed

    Brawn, Timothy P; Margoliash, Daniel

    2015-01-01

    How new experiences are solidified into long-lasting memories is a central question in the study of brain and behavior. One of the most intriguing discoveries in memory research is that brain activity during sleep helps to transform newly learned information and skills into robust memories. Though the first experimental work linking sleep and memory was conducted 90 years ago by Jenkins and Dallenbach, the case for sleep-dependent memory consolidation has only garnered strong support in the last decade. Recent studies in humans provide extensive behavioral, imaging, and polysomnographic data supporting sleep consolidation of a broad range of memory tasks. Likewise, studies in a few animal model systems have elucidated potential mechanisms contributing to sleep consolidation such as neural reactivation and synaptic homeostasis. Here, we present an overview of sleep-dependent memory consolidation, focusing on how investigations of sleep and learning in birds have complemented the progress made in mammalian systems by emphasizing a strong connection between behavior and physiology. We begin by describing the behavioral approach that has been utilized to demonstrate sleep consolidation in humans. We then address neural reactivation in the rodent hippocampal system as a putative mechanism of sleep consolidation. Next, we discuss the role of sleep in the learning and maintenance of song in zebra finches. We note that while both the rodent and zebra finch systems provide evidence for sleep-dependent memory changes in physiology and behavior, neither duplicates the pattern of changes most commonly observed in humans. Finally, we present a recently developed model of sleep consolidation involving auditory classification learning in European starlings , which has the potential to connect behavioral evidence of sleep consolidation as developed in humans with underlying neural mechanisms observable in animals.

  12. Redox homeostasis: The Golden Mean of healthy living

    PubMed Central

    Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay

    2016-01-01

    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary

  13. Sleep active cortical neurons expressing neuronal nitric oxide synthase are active after both acute sleep deprivation and chronic sleep restriction.

    PubMed

    Zielinski, M R; Kim, Y; Karpova, S A; Winston, S; McCarley, R W; Strecker, R E; Gerashchenko, D

    2013-09-05

    Non-rapid eye movement (NREM) sleep electroencephalographic (EEG) delta power (~0.5-4 Hz), also known as slow wave activity (SWA), is typically enhanced after acute sleep deprivation (SD) but not after chronic sleep restriction (CSR). Recently, sleep-active cortical neurons expressing neuronal nitric oxide synthase (nNOS) were identified and associated with enhanced SWA after short acute bouts of SD (i.e., 6h). However, the relationship between cortical nNOS neuronal activity and SWA during CSR is unknown. We compared the activity of cortical neurons expressing nNOS (via c-Fos and nNOS immuno-reactivity, respectively) and sleep in rats in three conditions: (1) after 18-h of acute SD; (2) after five consecutive days of sleep restriction (SR) (18-h SD per day with 6h ad libitum sleep opportunity per day); (3) and time-of-day matched ad libitum sleep controls. Cortical nNOS neuronal activity was enhanced during sleep after both 18-h SD and 5 days of SR treatments compared to control treatments. SWA and NREM sleep delta energy (the product of NREM sleep duration and SWA) were positively correlated with enhanced cortical nNOS neuronal activity after 18-h SD but not 5days of SR. That neurons expressing nNOS were active after longer amounts of acute SD (18h vs. 6h reported in the literature) and were correlated with SWA further suggest that these cells might regulate SWA. However, since these neurons were active after CSR when SWA was not enhanced, these findings suggest that mechanisms downstream of their activation are altered during CSR.

  14. Growth hormone and cortisol secretion in relation to sleep and wakefulness.

    PubMed Central

    Davidson, J R; Moldofsky, H; Lue, F A

    1991-01-01

    The study investigated secretory patterns of growth hormone (GH) and cortisol in relation to sleep and wakefulness. Plasma hormone levels were monitored in 10 young men during baseline waking and sleeping, during 40 hours of wakefulness, and during sleep following deprivation. The normal nocturnal GH surge disappeared with sleep deprivation, and was intensified following sleep deprivation. Mean GH levels were higher during slow wave sleep (SWS) compared with other sleep stages. During sleep after deprivation, GH secretion was prolonged, and second GH peaks occurred in three subjects which were not associated with SWS. Average 24-hour cortisol levels were not altered by sleep deprivation or sleep following deprivation, but the nocturnal cortisol rise occurred approximately one hour earlier with sleep deprivation and one hour later with resumed sleep, compared to baseline. This effect on the timing of the rise is consistent with an initial inhibitory influence of sleep on cortisol secretion. The results demonstrate that: the nocturnal growth hormone surge is largely sleep-dependent; temporal associations between GH and SWS are not reliable after sleep deprivation; although the cortisol rhythm is not sleep-dependent, the timing of the cortisol rise may be influenced by sudden changes in the sleep-wake schedule. PMID:1911740

  15. Fear Conditioning Increases NREM Sleep

    PubMed Central

    Hellman, Kevin; Abel, Ted

    2010-01-01

    To understand the role that sleep may play in memory storage, the authors investigated how fear conditioning affects sleep–wake states by performing electroencephalographic (EEG) and electromyographic recordings of C57BL/6J mice receiving fear conditioning, exposure to conditioning stimuli, or immediate shock treatment. This experimental design allowed us to examine the effects of associative learning, presentation of the conditioning stimuli, and presentation of the unconditioned stimuli on sleep–wake states. During the 24 hr after training, fear-conditioned mice had approximately 1 hr more of nonrapid-eye-movement (NREM) sleep and less wakefulness than mice receiving exposure to conditioning stimuli or immediate shock treatment. Mice receiving conditioning stimuli had more delta power during NREM sleep, whereas mice receiving fear conditioning had less theta power during rapid-eye-movement sleep. These results demonstrate that a single trial of fear conditioning alters sleep–wake states and EEG oscillations over a 24-hr period, supporting the idea that sleep is modified by experience and that such changes in sleep–wake states and EEG oscillations may play a role in memory consolidation. PMID:17469920

  16. Integration of human sleep-wake regulation and circadian rhythmicity

    NASA Technical Reports Server (NTRS)

    Dijk, Derk-Jan; Lockley, Steven W.

    2002-01-01

    The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is normally timed to occur at a specific phase relative to the external cycle of light-dark exposure. It is also timed at a specific phase relative to internal circadian rhythms, such as the pineal melatonin rhythm, the circadian sleep-wake propensity rhythm, and the rhythm of responsiveness of the circadian pacemaker to light. Variations in these internal and external phase relationships, such as those that occur in blindness, aging, morning and evening, and advanced and delayed sleep-phase syndrome, lead to sleep disruptions and complaints. Changes in ocular circadian phot